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We elucidate the correspondence between a particular class of su-
perconformal field theories in six dimensions and homomorphisms
from discrete subgroups of SU(2) into E8, as predicted from string
dualities. We show how this match works for homomorphisms from
the binary icosahedral group SL(2, 5) into E8, correcting previous
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correspondence to list the homomorphisms from binary dihedral
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specified by renormalization group flows suggests an ordering on
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1. Introduction

In the last century, mathematics has led to incredible progress in theoretical
physics. Differential geometry, linear algebra, and group theory have proven
instrumental in modern studies of gravity, quantum mechanics, and parti-
cle physics, respectively. In the last 30 years, however, the pendulum has
swung the other way, and theoretical physics has paved the way for new
developments in algebraic topology and geometry.

In this work, we will elaborate on one example of this pheomenon: the
connection between homomorphisms from discrete subgroups of SU(2) into
E8 and a certain class of elliptically-fibered Calabi-Yau three-folds, which
are identified in physics terms with six-dimensional superconformal field
theories (6D SCFTs).

6D SCFTs are among the most mysterious quantum field theories. Al-
though they feature tensionless strings as one of their key ingredients, they
nonetheless obey the rules of local quantum field theory. Thus far, the best
evidence for the existence of these theories has come from string theory
[4, 6, 9, 10, 21, 23, 30, 49, 58–60, 63–65], with further evidence provided by
the conformal bootstrap [5, 12]. Nonetheless, the absence of a Lagrangian
description makes these theories particularly resistant to investigation.

A seminal work in the study of 6D SCFTs was [26], which showed
how these theories could be systematically classified in terms of noncom-
pact, elliptically-fibered Calabi-Yau three-folds using F-theory [62]. Shortly
thereafter, [15] used this F-theory description to study 6D SCFTs arising
as worldvolume theories of M5-branes probing a C2/Γ orbifold singularity
and an “end-of-the-world” E8 wall. Such theories are uniquely specified by
three pieces of data: the number of M5-branes N , the choice of orbifold
group Γ ⊂ SU(2), and a boundary condition labeled by a homomorphism
Γ → E8. Thus, for fixed N and Γ, the resulting class of 6D SCFTs are in
1-1 correspondence with the homomorphisms of interest.

Discrete subgroups Γ ⊂ SU(2) are in 1-1 correspondence with simply-
laced Lie groups according to the famed “McKay correspondence” of [41].
In particular, one has:

ΓAk

∼= Zk+1 : the cyclic group of order k + 1

ΓDk

∼= Dick−2 : the dicyclic group of order 4k − 8

ΓE6
∼= SL(2, 3) : the binary tetrahedral group

ΓE7
∼= the binary octahedral group

ΓE8
∼= SL(2, 5) : the binary icosahedral group(1.1)
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Homomorphisms Zk → E8 were classified by Kac in [35]. Homomorphisms
ΓE8

∼= SL(2, 5) → E8 were classified in [17], as were homomorphisms Dih3 →
E8, Dih5 → E8. In our notation, Dick is the double cover ⟨A,B | A2k =
1, Ak = B2, BAB−1 = A−1⟩ of Dihk, which is the dihedral group of order 2k.
Since Dick admits a projection homomorphism to Dihk, a homomorphism
Dihk → E8 extends to a homomorphism Dick → E8 under composition with
projection, but not all homomorphisms Dick → E8 factorize through Dihk
in this way. Thus, homomorphisms Γ → E8 have been fully classified for
Γ = Zk, Γ = SL(2, 5) and partially classified for Γ =Dic3, Γ =Dic5.

For these particular choices of Γ in which the homomorphisms have been
classified, [24] checked the conjectured correspondence between 6D SCFTs
and homomorphisms by explicitly carrying out the F-theory classification
of 6D SCFTs conceptualized in [26] and writing down the theories in ques-
tion. For Γ = Zk, Dic3, and Dic5, the conjectured correspondence was con-
firmed spectacularly. For the more complicated case of Γ = SL(2, 5), how-
ever, there were some slight discrepancies between the list of 6D SCFTs
and the list of homomorphisms derived in [17]. Such discrepancies were
due in large part to difficulties in 6D SCFTs regarding global symmetries
and “unpaired tensors” (tensor multiplets without a gauge group). Fortu-
nately, these difficulties have since been largely addressed by the analyses
of [7, 25, 28, 44, 47, 53]. With our improved understanding of 6D SCFTs,
we are now in a position to resolve almost all of the discrepancies for the
case of Γ = SL(2, 5), finding a mismatch of only two homomorphisms out
of 137 total between the mathematics computation and the physics compu-
tation. We extend our conjectured classification of homomorphisms to the
dicyclic groups, SL(2, 3) ∼= ΓE6

, and ΓE7
.1 We will see that homomorphisms

Dick−2
∼= ΓDk

→ E8 can be written in a very simple manner in terms of
6D SCFTs: any such homomorphism is labeled by a nilpotent orbit of Dk

together with an appropriate choice of simple Lie algebra.
The rest of this paper is organized as follows: in Section 2, we review the

classification and global symmetries of 6D SCFTs. In Section 3, we elaborate
on the correspondence between 6D SCFTs and homomorphisms Γ → E8,
reviewing the previously-understood case of Γ = Zk, revising the partially-
understood case of Γ = SL(2, 5), and covering the remaining, novel cases.
In Section 4, we discuss the RG flows between the 6D SCFTs representing

1Possibly up to outer automorphism. See Subsection 3.3.2 for further discussion
on this issue.
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these homomorphisms. In Section 5, we end with some conclusions and spec-
ulations on future research. In an appendix, we explain the mathematical
classification of these homomorphisms in further detail.

2. Classification of 6D SCFTs

The classification of 6D SCFTs using F-theory was initiated in [26], carried
out in [24], and reviewed more recently in [27]. Here, we summarize the
aspects of this classification relevant for our purposes.

6D SCFTs are constructed by compactifying 12-dimensional F-theory
on a non-compact, elliptically-fibered Calabi-Yau three-fold. This three-fold
consists of a complex 2-dimensional base B2 together with an elliptic fibra-
tion. Given the set of irreducible effective curves Σi in B2, we can define an
intersection matrix Ωij = Σi ∩ Σj . In order to reach the superconformal fixed
point, every curve Σi must be simultaneously contractible, which translates
to the statement that Ω must be negative definite, and every curve Σi must
have genus 0 [3].

The diagonal entries of Ω represent the self-intersection numbers of the
curves Σi. It turns out that in any 6D SCFT, these self-intersection num-
bers must satisfy −1 ≥ Σi ∩ Σi ≥ −12. Furthermore, the intersection num-
ber Σi ∩ Σj = Σj ∩ Σi between any two distinct curves can only be 0 or
1. This allows us to depict Ω in a simple graphical form: a curve of self-
intersection −n is represented by the integer n, with neighboring integers
indicating curves that intersect at a point. For instance,

Ω =





−2 1 0
1 −3 1
0 1 −1



 ⇒ 2 3 1(2.1)

Ω =







−1 1 0 0
1 −4 1 1
0 1 −1 0
0 1 0 −1







⇒ 1
1
4 1(2.2)

At generic points in B2, the fiber will be smooth, but over the irreducible
curves Σi, it can develop singularities. The possible types of singular fibers
were classified by Kodaira [37]. In field theory language, a singular fiber
over a curve in B2 indicates a non-Abelian gauge algebra associated with
the curve, and the type of singularity dictates the type of simple Lie algebra.
We indicate the gauge algebra g associated with a given curve pictorially
by writing the gauge algebra just above the self-intersection number of the
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curve. For instance, we might add gauge algebras to the base in (2.1) as
follows:

(2.3)
su2

2
so7

3
sp1

1

Every curve has a “minimal fiber type” that depends on its self-
intersection number. A curve of self-intersection −1 or −2 may have a
smooth fiber, corresponding to the absence of any gauge algebra. On the
other hand, a curve of self-intersection −3 or below necessarily has a singu-
lar fiber, yielding a non-Abelian gauge algebra. The minimal gauge algebra
for each self-intersection number is as follows:

(2.4) 1 2
su3

3
so8

4
f4
5

e6
6

e7
7

e7
8

e8
9

e8
10

e8
11

e8
12.

Furthermore, curves of self-intersection −3 can intersect curves of self-
intersection −2 in three distinct patterns. When this happens, the minimal
gauge algebra for each is enhanced to the following:

(2.5)
su2

2
g2

3 2
su2

2
g2

3
su

(L)
2

2
so7

3
su

(R)
2

2 .

Whenever gauge algebras appear on intersecting curves, as they do here,
there must be hypermultiplets charged under some mixed representation
of the two gauge algebras. In the first two cases above, there is a half-
hypermultiplet charged under the bifundamental (7,2) of g2 ⊕ su2. In the
second case, there is one half-hypermultiplet in the mixed representation

(8,2) of so7 ⊕ su
(L)
2 and another in the mixed representation so7 ⊕ su

(R)
2 .

The list of curves in (2.4) of self-intersection −2 or below together with
the configurations of curves in (2.5) form the full list of so-called “non-
Higgsable clusters” (NHCs) that arise in 6D SCFTs [48]. The base of any 6D
SCFT consists of a set of NHCs linked together by curves of self-intersection
−1. For instance, the base

3 1 5 1 3 2 2 1 8

consists of four NHCs (3, 5, 322, 8) linked together by three curves of self-
intersection −1. The gauge algebras allowed on this base are minimally given
by (2.4) and (2.5):

(2.6)
su3

3 1
f4
5 1

g2

3
su2

2 2 1
e7
8



✐

✐

“4-Rudelius” — 2020/8/14 — 1:48 — page 714 — #6
✐

✐

✐

✐

✐

✐
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However, these gauge algebras may be “enhanced” to larger non-Abelian
Lie algebras consistent with certain conditions. First of all, the anomaly
cancellation conditions discussed in Section 6 of [24] (see also [22, 38, 50–
52, 55–57]) must be obeyed. These anomaly cancellation conditions are very
constraining, and in all but one instance they uniquely fix the spectrum of
massless hypermultiplets charged under a given gauge algebra. For instance,
the gauge algebra on a −3 curve can be enhanced from su3 to g2, but there
is necessarily a single fundamental charged under this g2. This g2 can be
further enhanced to so7 with two spinors. We indicate this charged matter
with a subscript:

(2.7)
su3

3 ⇒
g2

3
[Nf=1]

⇒
so7

3
[Ns=2]

Moving from left to right here corresponds in F-theory to enhancing the
singularity, while moving from right to left corresponds in field theory to
the process of Higgsing.

There are also conditions on “unpaired” −1 and −2 curves, which do
not have an associated gauge algebra. If an unpaired −1 curve meets curves
carrying gauge algebra gL and gR, we must have

(2.8) gL ⊕ gR ⊂ e8.

This is often referred to as the “E8 gauging condition.” We see that the su3
gauge algebra in the theory of (2.6) can be enhanced to g2 consistently with
the E8 gauging condition,

(2.9)
g2

3
[Nf=1]

1
f4
5 1

g2

3
su2

2 2 1
e7
8

However, a further enhancement to so7 is impossible, because so7 ⊕ f4 ̸⊂ e8:

(2.10) NOT POSSIBLE:
so7

3
[Ns=2]

1
f4
5 1

g2

3
su2

2 2 1
e7
8

Similarly, an unpaired−2 curve that meets curves carrying gauge algebra
gL and gR must satisfy an SU(2) gauging condition,

(2.11) gL ⊕ gR ⊂ su2.

This SU(2) gauging condition is necessary but not quite sufficient [47]. Fur-
ther constraints on unpaired −2 curves have been understood from F-theory,
but their field theory interpretation is not yet clear.
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Thus, every known 6D SCFT is uniquely specified by a diagram like the
ones in (2.6) and (2.9), which encode the intersection pairing Ω for curves
in the F-theory base B2, the spectrum of gauge algebras associated with
these curves, and the matter charged under these gauge algebras. We will
sometimes refer to these diagrams as “quiver diagrams.” Further information
on the classification of 6D SCFTs in terms of these quiver diagrams can be
found in [24].

2.1. Global symmetries of 6D SCFTs

Global symmetries will play a crucial role in the match between 6D SCFTs
and homomorphisms. The global symmetry of a given 6D SCFT is typically
easy to compute from its quiver, but there are several cases in which it is
quite nontrivial. Fortunately, recent progress in [1, 7, 25, 28, 47, 53] has
resolved almost all of these subtle cases. In this subsection, we summarize
the rules for computing the global symmetry of a given 6D SCFT. This is
in fact the first time such a summary has appeared in the literature.

For a given 6D SCFT, global symmetries can arise in one of three ways:

(i) As the unbroken subgroup of E8 associated with an “unpaired” −1
curve.

(ii) As the unbroken SU(2) associated with one or more consecutive “un-
paired” −2 curves.

(iii) As the flavor symmetry rotating hypermultiplets charged under a given
gauge algebra.

We begin by examining case (i). A given 6D SCFT may have unpaired
−1 curves intersecting either one or two curves, both of which may carry a
gauge algebra:

gL

L 1
gR

R

As discussed previously, a necessary condition on these gauge algebras is
gL ⊕ gR ⊂ e8. This e8 can be interpreted as the global symmetry of the −1
curve, which is gauged by the combination gL ⊕ gR. The leftover global sym-
metry on the −1 curve is then the maximal subalgebra h ⊂ e8 left ungauged.
More precisely, the global symmetry on the −1 curve is given by the maxi-
mal h such that h⊕ gL ⊕ gR ⊂ e8. This holds true even if the unpaired −1
curve meets an unpaired −2 curve. Thus, the global symmetry associated
with each −1 curve in the below quiver is G2, since g2 ⊕ f4 is a maximal



✐

✐

“4-Rudelius” — 2020/8/14 — 1:48 — page 716 — #8
✐

✐

✐

✐

✐

✐

716 D. D. Frey and and T. Rudelius

subalgebra of e8:

[SU(2)] 2 1
[G2]

f4
5 1

[G2]
.

Here and throughout this paper, we use upper-case letters to indicate fla-
vor symmetries in order to distinguish them from gauge symmetries. Unless
otherwise stated, however, we are referring to the global symmetry algebra
rather than the group. Note also that we depict the flavor symmetry associ-
ated with a given curve with a subscript if the curve is in the interior of the
quiver, but we place it on the side if the curve is on the end of the quiver to
make it easier to read.

The above rule suffices to compute the global symmetry of a −1 curve
in just about every case. An exception to this is the case where the −1 curve
meets an su2 gauge algebra and an so8 gauge algebra:

. . .
su2

2 1
so8

4 . . .

Here, the so8 gauge algebra leaves an so8 unbroken inside of e8, but now there
is a subtlety: so8 has both su2 ⊕ su2 ⊕ su2 ⊕ su2 and su2 ⊕ sp2 as maximal
subalgebras. This means that the flavor symmetry leftover after gauging the
su2 could be either SU(2)× SU(2)× SU(2) or Sp(2).

We now consider case (ii), the global symmetry associated with one or
more unpaired −2 curves. In any 6D SCFT, a chain of more than one consec-
utive unpaired −2 curves always has an associated SU(2) flavor symmetry:

[SU(2)] 2 2 . . . 2 . . .

A single unpaired −2 curve can meet at most one curve carrying su2 gauge
algebra. If it does meet such a curve, it has no global symmetry. If it does
not, it has SU(2) global symmetry. For instance, the unpaired −2 curve at
the left of the following quiver has SU(2) global symmetry, while the one at
the right does not:

[SU(2)] 2 1
[G2]

f4
5 1

g2

3
su2

2 2.

Finally, we consider case (iii), in which the global symmetry comes from
hypermultiplets charged under a gauge group. In a typical quiver, many of
the hypermultiplets needed for gauge anomaly cancellation will transform
in mixed representations under two different gauge algebras. These mixed
representations never contribute to the global symmetry. The leftover hyper-
multiplets, which are charged under a single gauge algebra, will then dictate
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Gauge Algebra Relevant Representations Global Symmetry

su2 Fundamental 2 SO(2NF )
∗

su3 Fundamental 3 U(NF )
su4 Fundamental 4, Antisymmetric 6 U(NF )× Sp(NA)

su(N), N ≥ 5 Fundamental N, Antisymmetric N(N−1)
2 U(NF )× U(NA)

so7 Vector 7, Spinor 8 Sp(NV )× Sp(NS)
so8 Vector 8v, Spinor 8s, Conjugate 8c Sp(NV )× Sp(NS)× Sp(NC)
so9 Vector 9, Spinor 16 Sp(NV )× Sp(NS)
so10 Vector 10, Spinor 16 Sp(NV )× U(NS)
so11 Vector 11, Spinor 32 Sp(NV )× SO(NS)
so12 Vector 12, Spinor 32 Sp(NV )× SO(NS)

so(M),M ≥ 13 Vector M Sp(NV )

sp(P ), P ≥ 1 Fundamental 2P SO(2NF )

g2 Fundamental 7 Sp(NF )

f4 Fundamental 26 Sp(NF )

e6 Fundamental 27 U(NF )
e7 Fundamental 56 SO(NF )
e8 N/A N/A

Table 1: Flavor Symmetries for hypermultiplets in 6D SCFTs. Note that
su2 on a −2 curve yields only an SO(7) flavor symmetry, rather than the
näıvely expected SO(8).

the global symmetry associated with this curve. As an example, consider
the quiver

[SO(10)]
sp1

1
so10

4
sp1

1 [SO(10)]

Here, gauge anomaly cancellation implies there are ten hypermultiplets
charged under each sp1 gauge algebra. However, mixed anomaly cancel-
lation implies that there is a half-bifundamental 1

2(2,10) charged under the
first and second gauge algebra, and another half-bifundamental between the
second and third gauge algebras. After accounting for these bifundamen-
tals, there are five “leftover” fundamentals charged under the first gauge
algebra, none under the second, and five under the third. These leftover
doublets transform as half-bifundamentals under respective SO(10) global
symmetries on the left and right of the quiver.

For a given gauge algebra and set number of hypermultiplets, the flavor
symmetry (in almost all cases) may be read off from Table 5.1 of [7]. We
reproduce the relevant aspects here in Table 1.

Most of the study of 6D SCFTs has ignored abelian flavor symmetries.
However, thanks to recent progress in the study of abelian symmetries [1, 39],
we can now classify the U(1)s associated with a given quiver. In general,
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these U(1)s arise either as the abelian part of some U(N) or as an SO(2) ≃
U(1), as determined by Table 1. However, there is one subtlety: in the case of
a chain of su(N) gauge algebras, an overall U(1) center-of-mass is projected
out. For instance, consider the quiver:

[U(3)]
su3

2
su3

2
su3

2 [U(3)]

Here, the overall global symmetry is not simply U(3)× U(3), but rather
S[U(3)× U(3)] ≃ SU(3)× SU(3)× U(1). This projection does not occur in
other cases. For instance, the following theory has a U(2) ≃ SU(2)× U(1)
global symmetry:

(2.12)
e6
4

[U(2)]

The only remaining subtleties with flavor symmetries involve unpaired
−2 curves or the gauge group su2. First, as conjectured in [24] and proven
in [53], for a −2 curve carrying su2, the 8 half-hypermultiplets transform as
a spinor under an SO(7) flavor symmetry, rather than the näıvely expected
SO(8):

[SO(7)]
su2

2 1
e7
8 . . .

Furthermore, an empty −2 curve sitting next to a curve carrying su2 gauge
algebra sucks away a single half-hypermultiplet. So, for instance, we have
an SO(19) flavor symmetry in the theory

[SU(2)] 2
sp1

1 [SO(19)]

rather than the SO(20) in the theory without the unpaired −2 curve,

sp1

1 [SO(20)]

By the same reasoning, a −2 curve with su2 gauge algebra has its global
symmetry reduced from SO(7) to G2 by an unpaired −2 curve, with 7 half-
hypermultiplets transforming in the fundamental of G2 [53]:

2
su2

2 [G2]

There are a few remaining situations in which the flavor symmetry is
difficult to read off from the quiver, but may be determined using the con-
nection between 6D SCFTs and nilpotent orbits discovered in [28]. A −2
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curve carrying su2 gauge algebra that meets two unpaired −2 curves carries
an SU(3) gauge algebra:

2
su2

2
[SU(3)]

2

One might have thought that the six half-hypermultiplets of su2 would trans-
form under so6, but this turns out not to be the case. Next, a chain of
multiple −2 curves carrying su2 gauge algebra has SU(2)× SU(2)× SU(2)
global symmetry:

[SU(2)× SU(2)]
su2

2
su2

2
[SU(2)]

1
e7
8 . . .

One might have expected an SO(4) ∼= SU(2)× SU(2) on both the left- and
right-hand sides of the chain of −2 curves, but again this intuition is wrong.
If one side of the chain has an empty −2 curve, the flavor symmetry is
reduced to SU(2)× SU(2):

[SU(2)× SU(2)]
su2

2
su2

2
su2

2 2 1
e8
12 . . .

If both sides of a chain of two −2 curves have an empty −2 curve, the flavor
symmetry is reduced to SU(2),

2
su2

2
su2

2
[SU(2)]

2 1
e8
12 . . .

For three su2s, there is an additional U(1):

2
su2

2
su2

2
[SU(2)×U(1)]

su2

2 2 1
e8
12 . . .

These rules appear to be sufficient to determine the global symmetry of
any 6D SCFT in the classification of [24]. Many more examples can be found
in the appendix of [28] or appendix B of the arXiv version of the current
paper [19].

3. 6D SCFTs and Hom(Γ, E8)

In the present work, we are concerned with a particular class of 6D SCFTs
that admit a construction in heterotic M-theory. In particular, we take a
stack of N M5-branes to probe an E8 wall as well as an orbifold singularity
C2/Γ, as shown in Table 2.
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0 1 2 3 4 5 6 7 8 9 10

N M5s × × × × × ×
E8 Wall × × × × × × × × × ×
C2/Γ × × × ×

Table 2: The brane configuration.

The worldvolume theory of this stack of M5-branes is a 6D SCFT with
a partial tensor branch with quiver description of the form

(3.1) [E8]
g

1
g

2 . . .
g

2
︸ ︷︷ ︸

N

[G]

Here, g and G represent the simply-laced Lie algebra and Lie group associ-
ated to the orbifold singularity.

In addition to the number of M5-branes N and the type of orbifold sin-
gularity Γ, there is a choice of boundary condition. Namely, we may choose
to turn on a flat E8 connection at the “infinity” of C2/Γ ∼= S3/Γ [15]. Flat
connections on this space are in 1-1 correspondence with homomorphisms
π1(S

3/Γ) → E8, which are in turn in a 1-1 correspondence with homomor-
phisms Γ → E8. Thus, for each such homomorphism, we expect to find a
corresponding 6D SCFT. These 6D SCFTs arise as deformations of the the-
ory in (3.1). In field theory terms, this deformation involves moving onto the
“Higgs branch” of the theory by giving vevs to scalars in hypermultiplets.
In F-theory terms, it involves a complex structure deformation. This means
in particular that the resulting configuration of curves in the base will al-
ways blow down to the same 1, 2, 2, . . . , 2 configuration as in the original
undeformed theory of (3.1).

As in the case of homomorphisms su2 → g discussed in [28], global sym-
metries are the key to matching 6D SCFTs with homomorphisms Γ → E8. A
given homomorphism ρ : Γ → E8 will generically have an image ρ(Γ) ⊂ E8

that commutes with some subgroup H(ρ) ⊂ E8, and the associated 6D
SCFT will have global symmetry H(ρ). This allows us to identify the cor-
responding 6D SCFTs by a computation of their global symmetries.

In [24], this conjectured correspondence was verified explicitly for homo-
morphisms Zk

∼= ΓAk−1
→ E8 and for the known homomorphisms Dic3 →

E8, Dic5 → E8. Further, many 6D SCFTs representing homomorphisms
SL(2, 5) ∼= ΓE8

→ E8 were identified, but subtleties involving global symme-
tries prevented a perfect match. In subsequent subsections, we will review
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the Zk case, revisit the SL(2, 5) case, and extend the match to the remaining
cases.

3.1. Review of Hom(Zk, E8)

We consider first the Ak−1-type case, in which we consider M5-branes prob-
ing an E8 wall and a Zk orbifold singularity. This case was considered in
Section 7 of [24], and as a first example, we review it here. As shown in [35],
homomorphisms from Zk into E8 can be classified by deleting nodes from
the affine E8 Dynkin diagram according to a simple rule.2 In particular,
given the Dynkin diagram, one numbers the nodes as follows:

1 2 3 4 5 6 4′ 2′

3′

Now, to classify the homomorphisms from Zk into E8, one considers all
lists of nodes such that the sum of the numbers of these nodes equals k,
where any given node may be used multiple times. For instance, for k = 4,
we have the following choices of nodes:

(3.2) 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 1 + 2′,

1 + 3, 1 + 3′, 2 + 2, 2 + 2′, 2′ + 2′, 4, 4′.

The maximal subgroup of E8 that commutes with the image of the homo-
morphism is then given simply by the diagram remaining after deleting the
corresponding nodes from the affine E8 Dynkin diagram. This subgroup is
isomorphic to the flavor symmetry of the corresponding 6D SCFT. So, for
each of the above homomorphisms, we have the following correspondence
between homomorphisms, Dynkin diagrams, and 6D SCFTs:

1 + 1 + 1 + 1 ↔
2 3 4 5 6 4′ 2′

3′

↔ [E8] 1 2
su2

2
su3

2
su4

2 . . . [SU(4)]

2Technically, the heterotic M-theory setup involves the real form of E8, whereas
the classification of [35] deals with the complex form of the Lie group E8. The
match between 6D SCFTs and homomorphisms nonetheless works perfectly.
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1 + 1 + 2 ↔
3 4 5 6 4′ 2′

3′

↔ [E7] 1
su2

2
[Nf=1]

su3

2
su4

2 . . . [SU(4)]

1 + 1 + 2′ ↔
2 3 4 5 6 4′

3′

↔ [SO(14)]
sp1

1
su3

2
su4

2 . . . [SU(4)]

1 + 3 ↔
2 4 5 6 4′ 2′

3′

↔ [E6] 1
su3

2
[SU(2)]

su4

2 . . . [SU(4)]

1 + 3′ ↔
2 3 4 5 6 4′ 2′

↔ [SU(8)]
su3

1
su4

2
su4

2 . . . [SU(4)]

2 + 2 ↔
1 3 4 5 6 4′ 2′

3′

↔ [E7] 1
su2

2
su4

2
[SU(2)]

. . . [SU(4)]

2 + 2′ ↔
1 3 4 5 6 4′

3′

↔ [SO(12)]
sp1

1
su4

2
[SU(2)]

su4

2 . . . [SU(4)]

2′ + 2′ ↔
1 2 3 4 5 6 4′

3′

↔ [SO(16)]
sp2

1
su4

2
su4

2 . . . [SU(4)]

4 ↔
1 2 3 5 6 4′ 2′

3′

↔ [SO(10)] 1
su4

2
[SU(4)]

su4

2 . . . [SU(4)]

4′ ↔
1 2 3 4 5 6

3′

2′
↔ [SU(8)× SU(2)]

su4

1
su4

2
su4

2 . . . [SU(4)]

This correspondence may be easily extended to arbitrary Zk, though the
number of homomorphisms grows rapidly with k.
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3.1.1. Hom(Zk, E8) and the F-theory swampland. It is worth men-
tioning that this match between 6D SCFTs and Hom(Zk, E8) may be useful
for resolving apparent discrepancies between a geometric F-theory analysis
and a field theoretic analysis of 6D SCFTs. In particular, a −1 curve carry-
ing su3 gauge algebra features 12 fundamental hypermultiplets transforming
under an SU(12) flavor symmetry. But as noted in [7], (see also [44]), no
F-theory geometry has yet been constructed in which the full SU(12) flavor
symmetry is realized. In fact, if one further attempts to gauge some su(M)
of this SU(12) symmetry with a −2 curve, the known F-theory construc-
tions only account for M ≤ 9 [34]. Does this point to a limitation in the
field theory analysis, which suggests that all 12 can be gauged consistently
with anomaly cancellation, or a limitation in the F-theory analysis, which
suggests that they cannot?

In this case, the match with homomorphisms decides in favor of field
theory. The Z11 → E8 homomorphism labeled by 3′ + 3′ + 3′ + 2′ yields an
SU(8) flavor symmetry with corresponding 6D SCFT

(3.3)
su3

1
[Nf=1]

su11

2
[SU(8)]

su11

2 . . . [SU(12)]

Similarly, the Z12 → E8 homomorphism labeled by 3′ + 3′ + 3′ + 3′ yields an
SU(9) flavor symmetry. One can check that the corresponding theory must
be

(3.4)
su3

1
su12

2
[SU(9)]

su12

2 . . . [SU(12)]

In particular, all 12 of the fundamentals of su3 have been gauged by the
neighboring su12. Constructing these theories in F-theory therefore remains
an open challenge.

3.1.2. Hom(Zk, E8) and the 6D θ angle. Another important issue
regarding this match with homomorphisms is the possibility of distinct the-
ories with a single 6D SCFT quiver, labeled by a choice of discrete θ angle
[42]. Consider a quiver of the form

(3.5)
sp(P )

1
su(2P+8)

2 . . .

where the remainder of the quiver on the right-hand side is free to vary.
An unpaired −1 curve can be thought of as the special case of P = 0.
As discussed in [42], this quiver actually corresponds to two distinct 6D
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SCFTs, which differ by the embedding of su(2P + 8) into the flavor symme-
try so(4P + 16) of the −1 curve. This comes about because these theories
have instanton strings for the sp(P ) gauge symmetry, which transform under
a spinor representation of the so(4P + 16) flavor symmetry; the two theories
in question are distinguished by the chirality of this spinor, as the two spinors
of so(4P + 16) decompose differently under su(2P + 8) ⊂ so(4P + 16). As a
result, the flavor symmetries of the theories differ: one has SU(8) flavor
symmetry, while the other yields SU(8)× SU(2).

This subtlety only shows up for the particular case of su(2P + 8) ⊂
so(4P + 16) depicted in (3.5). As noted in [42], a chiral spinor of so(4P + 16)
decomposes into nonchiral spinors of some proper subalgebra so(2x), so there
is no subtlety for embedding su(x) ⊂ so(4P + 16). And if the flavor symme-
try is instead a unitary or symplectic group, there is no such distinction
between decompositions of chiral and nonchiral representations, so the issue
does not arise at all. As a result, this subtlety involving a discrete angle
only shows up for Hom(Zk, E8), and not in any of the dicyclic or binary
polyhedral group homormorphisms we will consider in the rest of the paper.

3.2. Reconsideration of Hom(SL(2, 5), E8)

The case of a Zk orbifold above was rather straightforward due to the sim-
plicity of the 6D SCFTs involved and the elegant classification of [35]. On
the other hand, the Dk and Ek cases involve significantly more complicated
theories, and the corresponding homomorphisms have not been classified in
general. The one exception to this is the case of E8: homomorphisms from
ΓE8

∼= SL(2, 5) were classified in [17]. In [24], a large class of 6D SCFTs
associated to these homomorphisms were identified. However, the primitive
understanding of global symmetries in 6D SCFTs at the time prevented a
complete match. Now, using our improved understanding of global symme-
tries in 6D SCFTs, as reviewed in Section 2.1, we may revisit the corre-
spondence between 6D SCFTs and Hom(SL(2, 5), E8). Our analysis reveals
minor errors in both the physics and mathematics literature, which upon
correction result in a near-perfect match between the relevant homomor-
phisms and the relevant 6D SCFTs.

On the mathematical side, the classification of Hom(SL(2, 5), E8) was
first performed in [17], and the results are listed in Tables 7.6 and 8.2.
More precisely, these tables list the conjugacy classes of SL(2, 5) subgroups
of E8. In most cases, a single conjugacy class corresponds to two distinct
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Centralizer
Number of Homomorphisms
Math Physics Difference

∅ 1 1 0
U(1)2 4 4 0
SU(2) 12 14 -2

SU(2)× U(1) 7 7 0
SU(2)2 21 21 0

SU(2)2 × U(1) 2 2 0
SU(2)3 10 10 0
Sp(2) 4 4 0

Sp(2)× U(1) 4 4 0
Sp(2)× SU(2) 2 2 0

SU(3) 4 4 0
SU(3)× U(1) 4 4 0
SU(3)× SU(2) 2 2 0

G2 4 4 0
G2 × SU(2) 7 7 0

Sp(2)2 1 1 0
Sp(3) 4 4 0

Sp(3)× SU(2) 2 2 0
Sp(4) 2 2 0
SO(7) 1 1 0

SO(7)× U(1) 2 2 0
SO(7)× SU(2) 4 4 0

SU(4) 1 1 0
SU(4)× U(1) 2 2 0
SU(4)× SU(2) 2 2 0

SU(5) 1 1 0
SU(6) 4 4 0
SU(3)2 1 1 0
G2

2 2 2 0
SO(8) 2 2 0
F4 2 2 0

F4 × SU(2) 2 2 0
SO(9)× SU(2) 2 2 0

SO(10) 1 1 0
SO(11) 1 1 0
SO(12) 1 1 0
SO(13) 2 2 0

E6 2 2 0
E7 2 2 0
E8 1 1 0

Total 135 137 -2

Table 3: The number of homomorphisms SL(2, 5) → E8 for each centralizer
type. Math and physics agree except for two homomorphisms with central-
izer SU(2).



✐

✐

“4-Rudelius” — 2020/8/14 — 1:48 — page 726 — #18
✐

✐

✐

✐

✐

✐

726 D. D. Frey and and T. Rudelius

homomorphisms, which are related by an outer automorphism.3 In some
cases, however, the Z2 outer automorphism takes the homomorphism back
to itself, and there is only one homomorphism associated with the conjugacy
class. More details on the mathematical classification of conjugacy classes
and their associated homomorphisms can be found in appendix A.

On the physics side, the classification of Hom(SL(2, 5), E8) via 6D SCFTs
works similarly to the Hom(Zk, E8) case considered previously. The theories
in question feature a chain of e8 gauge algebras and a global symmetry which
matches the centralizer of the homomorphism inside E8. For instance, there
is one homomorphism in this set with centralizer SO(12). It corresponds to
a 6D SCFT of the form

(3.6) [SO(12)]
sp1

1
so7

3
su2

2 1
e7

8 1
su2

2
g2

3 1
f4

5 1
g2

3
su2

2 2 1
e8

(12) . . . [E8]

As another example, there is a homomorphism with centralizer SU(2) cor-
responding to a 6D SCFT of the form

(3.7) 2
su2

2
[SU(2)]

su2

2 2 1
e8

(11) . . . [E8]

It is nontrivial to read off the SU(2) global symmetry of this theory, and as a
result the theory was originally omitted from the claimed correspondence of
[24]. However, using the correspondence between 6D SCFTs and nilpotent
orbits in [28] as a Rosetta Stone, we can now verify that the global symmetry
is indeed SU(2).

The full list of 6D SCFTs in this correspondence can be found in ap-
pendix B of the arXiv version of this paper [19]. The number of homomor-
phisms of each centralizer subgroup of E8, computed both from the physics
side and from the mathematics side, is shown in Table 3. Clearly, the match
between mathematics and physics is remarkable, and far too close to be a
coincidence. However, it is not perfect: the correspondence with 6D SCFTs
suggests the existence of two homomorphisms with SU(2) centralizer that
are not observed from the mathematical perspective. We are not sure what
accounts for this discrepancy.4

3This fact was not adequately appreciated in [24], which led to errors in the
claimed correspondence.

4One possible source of the discrepancy is the difference between the real and
complex forms of E8, since our physics classification deals with the former while
the mathematical classification deals with the latter. In Table A1, we show that all
the image groups are conjugate to groups that live in E8(R), so the discrepancy
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It is also worth noting that the match with 6D SCFTs has revealed
several minor errors in the mathematical classification of [17]. In particular,
Fusion pattern 19 of Table 8.2 has centralizer dimension 17 rather than
the claimed 11 and corresponds to G2A1 rather than A2A1 (note that 17
matches the result given in Table 4.9 of [17].) In addition, cases 1310 and
1328 in Table 8.2 have centralizer dimension 21 and rank 3 but correspond
to C3 rather than B3. Similarly, case 2324 has centralizer dimension 24 and
rank 4 but corresponds to C3A1 rather than B3A1.

3.3. Classification of Hom(Dick−2, E8)

Having understood the connection between 6D SCFTs and
Hom(SL(2, 5), E8), we are now in a position to do the same for homomor-
phisms from dicyclic groups into E8. Some of these homomorphisms were
computed for the particular cases of Dic3 and Dic5 in [17], and the analo-
gous 6D SCFTs were identified in [24]. However, these homomorphisms have
not been classified in full generality. In this subsection, we will describe the
6D SCFTs corresponding to Hom(Dick−2

∼= ΓDk
, E8) for k ≥ 4. The special

cases of Dic2 and Dic3 are written explicitly in appendix B of the arXiv
version of this present paper, [19].

Our starting point is the theory of (3.1) for G = SO(2k), which corre-
sponds to the trivial homomorphism:

(3.8) [E8]
so2k

1
so2k

2 . . .
so2k

2 [SO(2k)]

→ [E8] 1 2
su2

2
g2

3 1
so9

4
sp1

1
so11

4 . . .
so2k

4 . . .
so2k

4
spk−4

1 [SO(2k)].

As usual, we assume that the quiver is sufficiently long that we can ignore
any deformations of the right-hand side of the quiver. The resolved theory
involves a ramp of the type discovered in [15] that starts with so9 gauge
algebra and builds up to so2k before leveling off. Clearly, theory has F-theory
base,

(3.9) 1 2 2 3 1 4 1 4 . . . 4 1.

is not due to subgroups of E8(C) that are not conjugate to subgroups of E8(R).
However, two subgroups of E8(R) could be conjugate in E8(C) but not conjugate
in E8(R). So if the E8(C) classification were to differ from the E8(R) classification,
we would expect the E8(R) classification to have a larger number of classes (which
it currently does).
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All other homomorphisms are labeled by deformations of this theory and
involve one of the following F-theory bases:

1 2 2 3 1 4 1 4 . . . 4 1(3.10)

1 2 3 1 4 1 4 . . . 4 1(3.11)

1 3 1 4 1 4 . . . 4 1(3.12)

2 1 4 1 4 . . . 4 1(3.13)

1
1
4 1 4 . . . 4 1(3.14)

Our task of classifying these homomorphisms thus amounts to identifying
the ways in which these bases may be decorated with gauge groups consistent
with the usual rules of 6D SCFTs, ending with a sequence of so2k gauge al-
gebras on the right-hand side of the quiver. Here, we show that the solutions
to these constraints, which are in 1-1 correspondence with homomorphisms
Dick → E8, may be given a simple combinatoric interpretation in terms of
“D-partitions” of 2k supplemented with an additional gauge algebra.

3.3.1. Hom(Dick−2, E8) from nilpotent orbits. Our starting point is
to notice the similarity between the 6D SCFTs related to Hom(Dick−2, E8)
and the 6D SCFTs related to nilpotent orbits of Dk studied in [28, 43].
These nilpotent orbits are classified by “D-partitions” of 2k, which are par-
titions of 2k subject to the constraint that any even number must appear
an even number of times. So for instance, the 6D SCFT corresponding to
the partition µ = [2k − 1, 1] is given by

(3.15) 2
su2

2
g2

3 1
so9

4
sp1

1
so11

4 . . .
so2k

4 . . .
so2k

4
spk−4

1 [SO(2k)].

This looks very similar to the theory in (3.8)! The only difference between
the two is that the −1 curve at the far left of the theory in (3.8) has now
disappeared. At the other extreme, the nilpotent orbit µ = [12k] corresponds
to the 6D SCFT

(3.16) [SO(2k)]
spk−4

1
so2k

4
spk−4

1 . . .
so2k

4 . . .
so2k

4
spk−4

1 [SO(2k)].

By adding a single curve of self-intersection −2 to the left-hand side of
this quiver or a −1 curve above the left-most −4 curve, we can get a base
that looks like the ones in (3.13) or (3.14), respectively. This is the idea
behind the full classification of homomorphisms Dick−2 → E8: we start with
an SCFT quiver corresponding to a nilpotent orbit of SO(2k) and “affinize”
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it by adding a single curve.5 We are then left with a set of choices for
the gauge algebra on this additional node, each of which corresponds to a
distinct homomorphism. Thus, any homomorphism Dick−2 → E8 is labeled
by a D-partition of 2k with an additional choice of gauge algebra.

We now explain how this works in detail. For reasons that will become
clear shortly, we may split our analysis of D-partitions µ into three cases: (i)
µT
1 ≥ 8, (ii) µT

1 < 8, µT
1 + µT

2 ≥ 6, and (iii) µT
1 + µT

2 < 6. Here, µT indicates
the transpose of the partition µ, and µT

i is the ith entry of µT .

Case (i): µT
1 ≥ 8.

6D SCFTs corresponding to nilpotent orbits with µT
1 ≥ 8 take the form

[43]

(3.17)
sp(P1)

1
so(M1)

4
sp(P2)

1 . . .
so2k

4 . . .
so2k

4
spk−4

1 [SO(2k)].

We may “affinize” this quiver in two ways: we can either (a) add a −2 curve
to the far left, giving us the base in (3.13), or (b) add a −1 curve on top of
the left-most −4 curve, giving us the base in (3.14). At least one of these is
always possible for any D-partition with µT

1 ≥ 8. In case (a), we have several
possibilities for how to decorate this −2 curve with a gauge algebra: it may
in general hold su(N), so(M), g2, or be empty of any gauge algebra, but the
actual set of possibilities is constrained by the partition µ. In particular, if
the −2 curve has su(N), N ≥ 2:

su(N)

2
sp(P1)

1
so(M1)

4
sp(P2)

1 . . .
so2k

4 . . .
so2k

4
spk−4

1 [SO(2k)],

then N is constrained by N ≥ P1,M1 + 2N ≤ 4P1 + 16 with the one excep-
tion of N = 4, P1 = 0, M1 ≤ 10. Using the rules of [43], we can express these
conditions on N in terms of the partition µ:

1

2
(µT

1 − µT
2 ) ≥ N ≥ 1

2
(µT

1 − 8)(3.18)

or N = 4, µT
1 = 8, µT

2 ≤ 2.(3.19)

The exceptional case in which P1 = 0, M1 = 9, 10, N = 4 is due to the fact
that su4 ⊕ so10 ⊂ so16 ⊂ e8. One might initially have thought that P1 = 0,
M1 = 13, N = 2 would be allowed for the same reason: su2 ⊕ so13 ⊂ so16 ⊂

5All little string theories are related to 6D SCFTs by this “affinization” process of
adding a single node to the quiver [8]. Note that here, our end result of affinization
is not a little string theory, but simply another SCFT.
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e8. However, there are a couple of ways to argue that such a theory is not
allowed. First off, the analysis of [45] and [47] (see also [7, 46, 54]) indi-
cates that it is impossible to construct such a configuration in F-theory.
Furthermore, if such a configuration were possible, one would expect that
the configuration

[Sp(5)]
so13

4 1
su2

2
so7

3
su2

2 1
e7

8 . . . [E7].

should also be allowed, representing a homomorphism from ΓE7
into E8,

since it features a similar case of so13 and su2 meeting an unpaired −1
curve. But it is also clear that such a homomorphism cannot exist because
Sp(5) is not a subgroup of E8! This gives us a second reason for doubting
the existence of this particular theory. We interpret the nonexistence of this
theory as evidence that the global structure of the su2 gauge algebra must in
fact be SU(2) rather than SO(3). Although SO(3)× SO(13) is a subgroup
of E8, SU(2)× SO(13) is not. Thus, the E8 gauging condition is satisfied
at the level of algebras, but violated at the level of groups.

If we next attempt to stick so(M) gauge algebra on the −2 curve,M ≥ 7,
we must have P1 ≤ M − 6 if 13 ≥ M ≥ 9, P1 ≤ 2 if M = 8, or P1 ≤ 4 if M =
7. We must also have M + δM,7 +M1 ≤ 4P1 + 16 if P1 ≥ 1 and M +M1 ≤
16 if P1 = 0. For the special case of M = 7, P1 = 1, there is an additional
possibility: rather than a spinor transforming as a mixed representation
under so7 ⊕ sp1 as 1

2(8,2), we may have a fundamental 1
2(7,2). In this case,

we must have 7 +M1 ≤ 4P1 + 16 = 20. These possibilities can be expressed
in terms of the partition µ as follows:

M = 7, 16 ≥ µT
1 ≥ µT

2 + 8− δµT
1 ,8

(3.20)

or M = 7, µT
1 = 10, µT

2 ≤ 3(3.21)

or M = 8, 12 ≥ µT
1 ≥ µT

2 + 8(3.22)

or 13 ≥ M ≥ 9, 2M − 4 ≥ µT
1 ≥ µT

2 +M.(3.23)

Putting g2 on the −2 curve, we have P1 ≤ 4, 4P1 + 9 ≥ M1. In terms of
µ, this is simply the condition

16 ≥ µT
1 ≥ µT

2 + 7.(3.24)

If this condition is met, g2 is a possible decoration. Otherwise, it is not
allowed.

Finally, we consider the case in which the −2 curve is left devoid of any
gauge algebra, which for most practical purposes can be thought of as the
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case su(N) with N = 1 [2]. In this case, there are two possibilities: P1 =
0,M1 ≤ 16 or else P1 = 1,M1 ≤ 19. Expressing these conditions in terms of
µ, we have that for a −2 curve without a gauge algebra,

µT
1 = 8(3.25)

or µT
1 = 10, µT

2 ≤ 9.(3.26)

For P1 = 0, it is not hard to see why M1 must be smaller than 16: so16 ⊂ e8,
while so17 ̸⊂ e8 [47]. On the other hand, for P1 = 1, we have a −1 curve
with sp1 gauge algebra and 20 half-hypermultiplets. One half-hyper lives
at the intersection with the −2 curve, and the remaining 19 are free to
transform under the so19 gauge algebra of the adjacent −4 curve. Indeed,
by the analysis of [7], one may verify that a Weierstrass model of the form

II
2

Ins
3

1
I
∗,ns
6

4 . . .

is allowed in F-theory and gives rise to the desired quiver

2
sp1

1
so19

4 . . .

Further evidence for the constraint M1 ≤ 19 comes from the match with the
known homomorphisms from Dic3 into E8. As shown in [17], there is one
such homomorphism with centralizer SO(9), which implies an associated 6D
SCFT with flavor symmetry SO(9). The only possibility is

2
sp1

1
[SO(9)]

so10

4 . . . [SO(10)],

which indicates that there must indeed be a single half-hypermultiplet of
sp1 localized at the intersection with the −2 curve, leaving 19 to transform
as vectors under the so10 gauge symmetry and the SO(9) flavor symmetry.

Moving on to case (b), we now want to add a −1 curve on top of the −4
curve, resulting in a tree-like quiver. This curve may be decorated with an
sp(P ) gauge algebra, P ≥ 0, subject to the constraints M1 − 8 ≥ P + P1 +
P2, 4P + 16 ≥ M1. In terms of the partition µ, this is simply

1

2
(µT

2 − µT
3 ) ≥ P ≥ 1

4
(µT

1 + µT
2 )− 4.(3.27)

This concludes our discussion of case (i).

Case (ii): µT
1 < 8, µT

1 + µT
2 ≥ 6.
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D-partitions satisfying µT
1 < 8, µT

1 + µT
2 ≥ 6 give rise to 6D SCFTs of

the form, [43]

(3.28)
g

3
sp(P2)

1 . . .
so2k

4 . . .
so2k

4
spk−4

1 [SO(2k)].

Here, g can be so(M), 12 ≥ M ≥ 7, g2, or su3. We may affinize this quiver
by adding a −1 curve carrying gauge algebra sp(P ), P ≥ 0 at the far left,

(3.29)
sp(P )

1
g

3
sp(P2)

1 . . .
so2k

4 . . .
so2k

4
spk−4

1 [SO(2k)].

The choices for P are dictated by the partition µ. We discuss the possibilities
in turn:

(a) We may have µT
1 = 4, µT

2 = 2. This corresponds to g = su3. In this case,
we must have P = 0.

(b) We may have µT
1 = 4, µT

2 = 3. In this case, we have g = g2, and the
constraint on P is simply P ≤ 1

2(3− µT
3 ).

(c) We may have µT
1 = 4, µT

2 = 4. This gives g = so7, and P ≤ 1.

(d) We may have µT
1 = 6, µT

2 = 1. This gives g = so7, and P ≤ 2.
We may have µT

1 = 6, µT
2 = 2. This gives g = so8, and P ≤ 1.

(e) We may have µT
1 = 6, µT

2 ≥ 2. This gives g = so6+µT
2
, and P satisfies

P ≤ 1
2(µ

T
1 + µT

2 − µT
3 )− 3.

This concludes our study of case (ii).

Case (iii): µT
1 + µT

2 < 6.
Finally, we have the simplest case, in which µT

1 + µT
2 < 6. These theories

are in 1-1 correspondence with nilpotent orbits: no decoration is allowed at
all. To get from the SCFT for the nilpotent orbit to the SCFT for the
homomorphism Dick−2 → E8, one simply adds a −1 curve to the far left of
the quiver. Thus, the theory for a partition with µT

1 = µT
2 = µT

3 = µT
4 = 2 is

(3.30) [E7] 1
su2

2
so7

3
sp1

1 . . .
so2k

4 . . .
so2k

4
spk−4

1 [SO(2k)].

The theory for a partition with µT
1 = 4, µT

2 = 1 is

(3.31) [E7] 1
su2

2
so7

3
[SU(2)]

1 . . .
so2k

4 . . .
so2k

4
spk−4

1 [SO(2k)].
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The theory for a partition with µT
1 = µT

2 = µT
3 = 2, µT

4 = 1 is

(3.32) [E7] 1
su2

2
g2

3 1 . . .
so2k

4 . . .
so2k

4
spk−4

1 [SO(2k)].

And finally, the theory for a partition with µT
1 = 2, µT

2 = 1 is the theory of
the trivial homomorphism in (3.8):

(3.33) [E8] 1 2
su2

2
g2

3 1 . . .
so2k

4 . . .
so2k

4
spk−4

1 [SO(2k)].

The global symmetries for all of these theories, corresponding to the
subgroup of E8 left unbroken by the corresponding homomorphism, can be
computed straightforwardly using the rules of 2.1. In appendix B of the
arXiv version of this paper [19], we carry out the classification and work out
the global symmetries explicitly for the cases k = 4, k = 5.

3.3.2. Caveat: Outer automorphisms. In the case of Hom(SL(2, 5), E8),
we saw that two homomorphisms are sometimes exchanged under a Z2 outer
automorphism. Fortunately, these two distinct automorphisms always lead
to 6D SCFTs with distinct quivers. Or, to be more precise, the 6D SCFTs as-
sociated with these homomorphisms flow to distinct theories under a tensor
branch flow.

This is not the case for nilpotent orbits ofDk. Here, there are two distinct
orbits associated with a single “very even” partition–a partition consisting
of only even numbers–and these orbits are exchanged under outer automor-
phism. Thus, for k = 6, we have two distinct orbits for the partition [42, 22],
exchanged by outer automorphism:

(3.34) [42, 22]I ↔ [42, 22]II .

In the special case of k = 4, the outer automorphism group enlarges to S3.
Here, an additional nilpotent orbit is exchanged under this “triality” auto-
morphism:

[24]I ↔ [24]II ↔ [3, 15],

[42]I ↔ [42]II ↔ [5, 13].(3.35)

As shown in Figure 4 of [28], the 6D SCFTs associated with these nilpotent
orbits have the same quiver! In our estimation, the most likely interpretation
of this fact is that these 6D SCFTs, while distinct at their superconformal
fixed point, flow to the same free theories in the infrared.
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Given this subtlety, a couple of caveats regarding our conjectured classi-
fication of homomorphisms are in order. First, we should note that nilpotent
orbits of Dk related by outer automorphism give rise to the same quiver.
Appending an additional node to this quiver gives a unique quiver for a
homomorphism in Hom(Dick−2, E8). Therefore, the above classification of
Hom(Dick−2, E8) in terms of nilpotent orbits of Dk should likely be mod-
ded out by outer automorphisms of Dk: we should only consider a single
nilpotent orbit in each equivalence class.

Furthermore, the identification of multiple nilpotent orbits of Dk with a
single 6D SCFT quiver should make us wary of the same phenomenon oc-
curring here for Hom(Dick−2, E8). It is possible that the above classification
fails to distinguish homomorphisms in Hom(Dick−2, E8) that are related by
outer automorphism. Therefore, we should be careful to simply conjecture a
classification of Hom(Dick−2, E8) up to outer automorphism. Future progress
in the study of these homomorphisms will hopefully shed light on this issue.

3.3.3. Summary of Hom(Dick−2, E8). Let us summarize the classifi-
cation results of the last few pages. Any homomorphism Dick−2

∼= ΓDk
→ E8

is labeled by D-partition µ of 2k (that is, a partition of 2k in which every
even number shows up an even number of times) along with a choice of
Lie algebra g. In 6D SCFT terms, this Lie algebra is a gauge algebra that
“affinizes” the quiver of the theory corresponding to the nilpotent orbit la-
beled by µ (see [28, 43] for details). Note that the allowed set of affinizing
Lie algebras is heavily constrained according to the choice of partition µ.
The possibilities are as follows:

(i) µT
1 ≥ 8

(a) g = su(N), N ≥ 2, 1
2(µ

T
1 − µT

2 ) ≥ N ≥ 1
2(µ

T
1 − 8) or N = 4, µT

1 =
8, µT

2 ≤ 2.
(b) g = su(N), N = 1, µT

1 = 8 or µT
1 = 10, µT

2 ≤ 9.
(c) g = so(M),M = 7, 16 ≥ µT

1 ≥ µT
2 + 8− δµT

1 ,8
.

(d) g = so(M),M = 7, µT
1 = 10, µT

2 ≤ 3.
(e) g = so(M),M = 8, 12 ≥ µT

1 ≥ µT
2 + 8.

(f) g = so(M), 13 ≥ M ≥ 9, 2M − 4 ≥ µT
1 ≥ µT

2 +M .
(g) g = g2, 16 ≥ µT

1 ≥ µT
2 + 7.

(h) g = sp(P ), P ≥ 0, 12(µ
T
2 − µT

3 ) ≥ P ≥ 1
4(µ

T
1 + µT

2 )− 4.

(ii) 8 > µT
1 , µ

T
1 + µT

2 ≥ 6.
(a) g = sp(P ), P = 0, µT

1 = 4, µT
2 = 2.

(b) g = sp(P ), 0 ≤ P ≤ 1
2(3− µT

3 ), µ
T
1 = 4, µT

2 = 3.
(c) g = sp(P ), 0 ≤ P ≤ 1, µT

1 = 4, µT
2 = 4.
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(d) g = sp(P ), 0 ≤ P ≤ 2, µT
1 = 6, µT

2 = 1.
(e) g = sp(P ), 0 ≤ P ≤ 1, µT

1 = 6, µT
2 = 2.

(f) g = sp(P ), 0 ≤ P ≤ 1
2(µ

T
1 + µT

2 − µT
3 )− 3, µT

1 = 6, µT
2 ≥ 2.

(iii) µT
1 + µT

2 < 6
(a) g is trivial.

Note than in case (i), we have been careful to distinguish g = sp0 from
g = su1, in accordance with our earlier discussion. In 6D SCFT language, the
former corresponds to an unpaired −1 curve, while the second corresponds
to an unpaired −2 curve.

3.4. Classification of Hom(ΓE6,7
, E8)

The classification of homomorphisms ΓE6
∼= SL(2, 3) → E8 and ΓE7

→ E8

can be performed in an analogous manner. We present the results of this
analysis in appendix B in the arXiv version of this paper [19].

4. Renormalization group flows

Renormalization group (RG) flows between different theories are among the
central aspects of quantum field theory. 6D SCFTs admit no supersymmetry-
preserving relevant or marginal deformations [14], so any RG flow from one
6D SCFT to another requires giving a vev to an operator of the theory. All
known interacting 6D SCFTs admit a “tensor branch,” whereby a scalar
field in a tensor multiplet aquires a vev. Many 6D SCFTs also feature a
“Higgs branch,” in which a scalar field in a hypermultiplet aquires a vev.
Tensor branch flows are easy to understand in our F-theory framework and
act only on the base B2 of the Calabi-Yau three-fold. Higgs branch flows,
on the other hand, can act on both the elliptic fiber and the base of the
F-theory geometry and are relatively poorly understood.

We have seen that there is a 1-1 correspondence between 6D SCFTs and
homomorphisms Γ → E8. In [28], a similar correspondence was observed for
homomorphisms su2 → g (or equivalently, for nilpotent orbits of g). In that
case, the correspondence could actually be pushed beyond the classification
of theories to the classification of RG flows: given two nilpotent orbits µ1, µ2

and corresponding 6D SCFTs T1, T2, there is a Higgs branch flow from T1
to T2 if and only if µ1 ≻ µ2 in the usual ordering of nilpotent orbits. Said
differently, the Hasse diagram of nilpotent orbits matches the RG flow hier-
archy.



✐

✐

“4-Rudelius” — 2020/8/14 — 1:48 — page 736 — #28
✐

✐

✐

✐

✐

✐

736 D. D. Frey and and T. Rudelius

1 + 1 + 1 + 1 : [E8] 1 2
su2

2
su3

2
su4

2 . . . [SU(4)]

1 + 1 + 2 : [E7] 1
su2

2
[Nf=1]

su3

2
su4

2 . . . [SU(4)]

1 + 1 + 2′ : [SO(14)]
sp1

1
su3

2
su4

2 . . . [SU(4)]

1 + 3 : [E6] 1
su3

2
[SU(2)]

su4

2 . . . [SU(4)]

1 + 3′ : [SU(8)]
su3

1
su4

2
su4

2 . . . [SU(4)]2 + 2 : [E7] 1
su2

2
su4

2
[SU(2)]

. . . [SU(4)]

2 + 2′ : [SO(12)]
sp1

1
su4

2
[SU(2)]

su4

2 . . . [SU(4)]

4 : [SO(10)] 1
su4

2
[SU(4)]

su4

2 . . . [SU(4)]

4′ : [SU(8)× SU(2)]
su4

1
su4

2
su4

2 . . . [SU(4)]

2′ + 2′ : [SO(16)]
sp2

1
su4

2
su4

2 . . . [SU(4)]

Figure 1: RG flow hierarchy for 6D SCFTs representing Hom(Z4, E8).

In our present case of homomorphisms Γ → E8, a similar relation should
hold. Namely, we may define a partial ordering on two homomorphisms
ρ1, ρ2 by saying ρ1 ≻ ρ2 if and only if there is a Higgs branch flow T1 →
T2 between the corresponding SCFTs. In Figure 1, we demonstrate this
hierarchy for the particular case of Z4 → E8 flows. We do not yet have a
mathematical interpretation for this formally-defined ordering, but it would
be very interesting to explore further.
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The hierarchy between these 6D SCFTs is also motivated by the results
of [25], which studied some of the flows in the SL(2, 5) → E8 hierarchy from
the perspective of both F-theory geometry and ’t Hooft anomaly match-
ing. However, the present work partially revises our understanding of these
flows: we now see that every theory in the hierarchy represents a distinct
homomorphism Γ → E8, so every RG flow visible as a deformation of the
F-theory geometry is also visible as a deformation of the heterotic M-theory
setup of Section 3. Thus, the ordering of homomorphisms exactly matches
the web of RG flows.

5. Conclusions

We have explicitly verified the correspondence between 6D SCFTs and
Hom(Γ, E8) predicted by the string duality web. This matching was facili-
tated by recent progress in classifying 6D SCFTs and understanding their
global symmetries, which enabled us to address various subtleties and cor-
rect both the mathematics and physics literature. Quite remarkably, this
connection between 6D SCFTs and group homomorphisms has allowed us
to classify homomorphisms from dicyclic groups into E8, a task that has
not been achieved to date from a purely mathematical perspective. The re-
sult may be stated in a very simple way: homomorphisms from Dick−2 into
E8 are labeled by nilpotent orbits of Dk supplemented with an appropriate
choice of simple Lie algebra.

This work suggests a number of interesting future directions. We have
classified 6D SCFTs by relating them to elliptically-fibered Calabi-Yau three-
folds, and we have classified homomorphisms by relating them to 6D SCFTs.
This shows that there is a correspondence between a particular class of
elliptically-fibered Calabi-Yau three-folds and homomorphisms Γ → E8, and
it would be interesting to understand this correspondence from a purely
mathematical perspective.

On the physics side, the current work is yet another example of the
power of group theory in understanding and classifying 6D SCFTs. Indeed,
as shown in [29], for a fixed maximal gauge algebra, any sufficiently long 6D
SCFT quiver can be classified in terms of a pair of homomorphisms (ρL, ρR),
where ρR is a homomorphism from su2 into some simple gauge algebra (i.e.
a nilpotent orbit) and ρL is either a nilpotent orbit or a homomorphism Γ →
E8. It is tempting to conjecture that all 6D SCFTs, as well as the web of RG
flows between them, can be given a simple group-theoretic interpretation.
Finally, this correspondence between 6D SCFTs and group theory may prove
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useful for understanding the compactification of general 6D SCFTs to lower
dimensions.
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Appendix A. On the mathematical classification of
homomorphisms

In this appendix, we elaborate on the mathematical classification of
Hom(SL(2, 5), E8) performed in [17]. We further explain why the analogous
classification of Hom(Dic2, E8) was more complicated than we originally
thought it would be (so is not included in this article).

A.1. Hom(SL(2, 5), E8)

The original intent in [17] was to classify Alt5 (the alternating group of
degree 5) and SL(2, 5) (the binary icosahedral group) subgroups of E8(C) up
to conjugacy (rather than homomorphisms SL(2, 5) → E8(C)). These two
groups were classified together because the quotient of SL(2, 5) by its center
(of order 2) is Alt5. The interest of this paper is to classify homomorphisms
from SL(2, 5) (and Alt5, as it is a quotient of SL(2, 5)) into E8(C), and the
number of such classes of homomorphisms is different than the number of
classes of subgroups. However, the two problems are closely related, and in
fact the present question about homomorphisms is also addressed in [17].

The approach taken in [17] was three-fold, and it centered around the
notion of a fusion pattern. A fusion pattern from a group A to a group B
is a function f from the set of conjugacy classes of A to the set of conjugacy
classes of B such that6

1) if K is a class in A of elements of order n, then its image f(K) is a
class in B of elements of order n.

6This definition is essentially [16, 1.1].
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2) f commutes with power maps. That is, if K(m) denotes the conjugacy
class of all mth powers of elements of K, a conjugacy class in A, then
f(K(m)) = f(K)(m) for every class K in A and all integers m.

A list of conjugacy classes of elements of small order in E8 can be found
in a number of places, including [13, Table 4] and [17, Table 1.16], though
[13, Table 4] does not include classes of elements of order 10. The classes of
order 10 were calculated in [17, Table 1.16] using the approach of [36].

We typically denote fusion patterns by listing the images of the classes
for the respective group. For example,

2A, 3B, 5G for Alt5
2A, 3B, 4A, 5B, 6F, 10Z for SL(2, 5), though we often only list 4A, 6F ,

10Z, since these classes determine the others.
This means that the elements of order 2 in our Alt5 subgroup of E8

(which are all conjugate to each other in Alt5) come from the E8 conjugacy
class labeled 2A in [13, Table 4] (and in [17, Table 1.16]). The elements of
order 3 in our Alt5 subgroup (which also are all conjugate to one another in
Alt5) come from the E8 class labeled 3B, and the elements of order 5 come
from the E8 class labeled 5G. This fusion pattern represents a somewhat
special case because generally, elements of order 5 in E8 (and Alt5) are
not conjugate to their squares, but those in class 5G are conjugate to their
squares in E8 (but not in Alt5, of course). Such a class in E8 is called
rational. There are two rational classes of elements of order 5 in E8, namely
5C and 5G. The other classes are not rational, but are real (meaning that
each element is conjugate in E8 to its inverse). In fact, all elements of E8 are
real. Non-rationality for elements of order 5 is indicated in [13, Table 4] and
in [17, Table 1.16] with a “[2]” next to the label name. Such entries actually
represent two conjugacy classes of elements rather than just one. The “[2]”
indicates that the square of a given element is in a different conjugacy class.
So if z is a non-rational element of order 5, its primitive powers fall into two
classes, namely {z, z−1} and {z2, z3}.

Elements of order 10 can similarly be rational or not in E8. Elements of
the class 10Z, for example, are not rational because they are not conjugate to
their cubes. Thus, the primitive powers of an element x of type 10Z similarly
fall into two classes, namely {x, x−1} and {x3, x7}. Non-rational classes of
order 10 in [17, Table 1.16] are indicated with a “[3].” There are rational
classes of elements of order 10 in E8, namely 10FF, 10GG, 10OO, 10SS,
10TT, and 10FFF, but most are non-rational.

Two of the three parts of the three-fold approach in [17] involved com-
plex character theory, both for the finite groups Alt5 and SL(2, 5), and for
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complex Lie groups. One can find the elementary theory of characters for
finite groups in [31] and [33]. For the representation theory involved for
Lie groups, consider [20]. The three-fold approach in [17] consisted of the
following:

(1) In the first stage, we use complex character theory to eliminate
fusion pattern possibilities for Alt5 and SL(2, 5) by eliminating those fusion
patterns which did not yield nonnegative integer values for

(χL, η) =
1

|L|
∑

g∈L

χ(g)η(g)

where χL represents the adjoint character for E8 restricted to the proposed
subgroup L with the given fusion pattern, and η runs through the irreducible
characters for L. (A character is irreducible if it is afforded by an irre-
ducible representation. More simply a character η is irreducible if and only if
(η, η) = 1. ([31, Corollary 2.17]).) This part of the argument ended up being
most important for eliminating possible fusion patterns with 0-dimensional
centralizers. In fact, there was only one conjugacy class of Alt5 subgroups
and there were no classes of SL(2, 5) subgroups with 0-dimensional cen-
tralizer. Recall that the centralizer of a subgroup H in a group G is the
subgroup

CG(H) = {g ∈ G | g−1hg = h, ∀h ∈ H}.

This part of the argument is also important for establishing the dimension
of the connected component of the centralizer that contains the identity (the
connected centralizer for short) since that is measured by (χ|L, ι) where
ι is the trivial character for L.

For example, consider the fusion pattern 2A, 3A, 5F. How do we know
there is no Alt5 subgroup of E8 with this fusion pattern? If we assume that
there is such a subgroup, say L, and we restrict the adjoint character χ for
E8 to L, it can be decomposed into irreducible characters for Alt5. According
to character theory (see, for example, [33, Theorem 14.17]), the multiplicity
of each irreducible character η for Alt5 in the decomposition of χL can be
determined by calculating the inner product

(χL, η) =
1

|L|
∑

g∈L

χ(g)η(g).
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In this case, the sum for η = ι, the trivial character, looks like

(χL, ι) =
1

60
[248 · 1 + 15 · 24 · 1 + 20 · (−4) · 1
+ 12 · (28 + 50τ) · 1 + 12 · (78− 50τ) · 1]

=
1

60
[528 + 1, 272]

= 30

Here, τ =
1 +

√
5

2
. This calculation tells us that the trivial character (the

character whose value on each element of L is 1) occurs with multiplicity
30 in the decomposition of χL over L. (It also tells us that the connected
centralizer of L is 30-dimensional.) The values of χ on the elements of L
are given in [13, Table 4] and [17, Table 1.16]. However, if η = 3a (the first
degree 3 character mentioned in [32]), we also have

(χL, 3a) =
1

60

[

248 · 3 + 15 · 24 · (−1) + 20 · (−4) · 0(A.1)

+ 12 · (28 + 50τ) ·
(
1−

√
5

2

)

+ 12 · (78− 50τ) ·
(
1 +

√
5

2

)]

=
1

60

[

384 + 12

(

14
(

1−
√
5
)

+
25

2

(

1−
√
5
)(

1 +
√
5
))

+12

(

39
(

1 +
√
5
)

− 25

2

(

1 +
√
5
)2

)]

=
1

60

[

384 + 12
(

14
(

1−
√
5
)

− 50
)

+12

(

39
(

1 +
√
5
)

− 25

2

(

6 + 2
√
5
))]

=
1

60
[−480]

= −8

Since we are getting a negative multiplicity for this character, an Alt5
subgroup with these character values cannot occur in E8, so this fusion
pattern does not correspond to an Alt5 subgroup of E8. The character values
for η come from [32].
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(2) In the second stage, we use complex character theory to construct
copies of Alt5 and SL(2, 5) in various classical subgroups of E8, particularly
the centralizers of elements of orders 2 and 3 and certain elementary abelian
subgroups with exponent 2 or 3, namely the A8 subgroup (the centralizer of
an element of type 3A), the D8 subgroup (the centralizer of an element of
type 2B), the A2E6 subgroup (the centralizer of an element of type 3B), the
A4

2 subgroup (the centralizer of a nine-element subgroup consisting of eight
elements of type 3B in addition to the identity) and the A8

1 subgroup (the
centralizer of a 2A82B7 elementary abelian group of order 16).

For the construction of subgroups of the A8 subgroup A (which is iso-
morphic to SL(9,C)/Z3 by [13, Lemma 3.3(iii)]), one uses straightforward
character theory (with appropriate accommodations for the fact that the
embedding is in a quotient group) and an observation that since 9 is odd,
conjugacy in GL(9,C) is equivalent to conjugacy in SL(9,C) by [17, 4.12
and 4.13]. The values of the adjoint character on elements of such groups is
ascertained using the formula

χA = char
(

adj(A) +
∧3

V +
∧3

V ∗
)

(see [20, page 361]) where adj(A) is the adjoint character for A, V is the
natural 9-dimensional module for SL(9,C) and V ∗ is its dual. (The dual has
eigenvalues that are the inverses of the eigenvalues of V .)

As an example of such a calculation, consider the 9-dimensional Alt5
character 3a + 6 · ι (i.e. the sum of the first 3-dimensional irreducible char-
acter listed in [32] and six copies of the trivial character). This character
corresponds to a representation ρ : Alt5 → SL(9,C). Let’s consider an ele-
ment x of Alt5 of order 2. The eigenvalues of this matrix can be ascertained
by the trace of this matrix, which will be −1 + 6 · 1 = 5 using the values
in [32]. Since x has order 2, the eigenvalues must be square roots of 1, so
must be ±1. Thus, the eigenvalues of x are −1 with multiplicity 2 and 1
with multiplicity 7. This gives us the correct trace (which is the sum of
the eigenvalues). The adjoint representation for A is 80-dimensional and
can be calculated by conjugating each of the basis vectors Eij for i ̸= j by
diag(−1,−1, 17), where Eij is the matrix with all 0’s except for a 1 at the
i, j position. (These are the root vectors for the Lie algebra a8. Note that
there are 81− 9 = 72 of them.) Then the multiplicity of the eigenvalue 1
should be increased by 8 to account for the (trivial) action on the Cartan
subalgebra. A shortcut to this calculation is to simply calculate the eigen-
values of V ⊗ V ∗ and subtract 1 from the multiplicity of the eigenvalue 1.
This is because V ⊗ V ∗ decomposes as adj(A) + ι.
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In the case of x, the eigenvalues are:

• 1, with multiplicity 2 · 2 + 7 · 7− 1 = 52 and

• −1, with multiplicity 2 · 7 + 7 · 2 = 28.

For the exterior cubes, we simply calculate all products λiλjλk for i <
j < k to get the eigenvalues of

∧3 V , where the λi’s are the eigenvalues of

the corresponding 9× 9 matrix for x. Thus,
∧3 V is

(
9

3

)

= 84-dimensional.

In the case of x, we get the eigenvalue 1 with multiplicity 7 +

(
7

3

)

= 42 and

the eigenvalue −1 with multiplicity 2

(
7

2

)

= 42. The eigenvalues of V ∗ are

simply the inverses of the eigenvalues of V , which in the case of x does not
change the eigenvalues, so we get the same results for

∧3 V ∗. Thus, for χ(x),
we get eigenvalue 1 with multiplicity 52 + 42 + 42 = 136 and eigenvalue −1
with multiplicity 28 + 42 + 42 = 112. That matches the multiplicities for
elements of type 2A in E8.

Similarly, if y is an element of order 3 in A corresponding to the Alt5
character 3a + 6 · ι, we see that the trace of such a matrix in SL(9,C) is
0 + 6 = 6, so we can use the diagonal matrix diag(ω, ω, 17) where ω = e

2πi

3 .
For the adjoint character, we have 1 with multiplicity 2 + 7 · 7− 1 = 50,
ω with multiplicity 1 + 2 · 7 = 15 and ω with multiplicity 1 + 2 · 7 = 15. For
∧3 V we get 1 with multiplicity 7 +

(
7

3

)

= 42, ω with multiplicity

(
7

2

)

= 21

and ω with multiplicity

(
7

2

)

= 21. We get the same results for
∧3 V ∗. So

for y, the multiplicities of the eigenvalues for χ are:

• 50 + 2 · 42 = 134, for 1,

• 15 + 2 · 21 = 57, for ω and ω.

This matches the multiplicities for elements of type 3D in E8.
Similarly, we get class 5H for an element of order 5 corresponding to

the Alt5 character 3a + 6 · ι. Thus, the Alt5 subgroup of A8 corresponding
to the character 3a + 16 will have fusion pattern 2A, 3D, 5H. The results of
these calculations are given in [17, Table 4.16 and Table 4.18].

The construction of subgroups of the D8 subgroup D (which is isomor-
phic to HSpin(16,C) by [13, Lemma 3.3(i)]) is a little more subtle. Since the
smallest representation for HSpin(16,C) is 120-dimensional, the construc-
tions were performed using SO(16,C). Both HSpin(16,C) and SO(16,C)
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are quotients of Spin(16,C) by central involutions, so one can move from
one to the other by lifting to Spin(16,C) and then performing a quotient
by a different central involution. By [17, Lemma 5.4], conjugacy is preserved
when going back and forth between these groups (although an Alt5 can be
converted to an SL(2, 5) and vice versa). Of course, the 16-dimensional char-
acters only determine conjugacy in GL(16,C), but because the characters for
Alt5 have positive indicator (see [32, p. xxviii]), and Alt5 is simple, we may
assume that our image is in SO(16,C). Furthermore, a theorem of Tits ([61,
7.3]) tells us that any two such subgroups that are conjugate in GL(16,C)
are conjugate in O(16,C). If we can then find an element of O(16,C) of
determinant −1 that normalizes one of the two subgroups, the two must be
conjugate in SO(16,C). A sufficient condition for such an element to exist
is that one of the constituents of the 16-dimensional character is odd. Thus,
in most cases, the character is enough to determine conjugacy in D.

To determine the value of the adjoint character of E8 for a given element
ofD, we write our 16-dimensional matrix in the form diag(A,A−t) whereA ∈
GL(8,C). Our element x ∈ D is also conjugate to an element of the maximal
torus of D, so it corresponds to an element a in the Cartan subalgebra, whose
action on the root vectors er of the Lie algebra e8 (using the notation of [11])
is to simply multiply er by the scalar (a, r) so that x.er = e2πi(a,r)er. Thus,
we can find the eigenvalues of x and determine the value of the adjoint
character on x. Of course, there are two such elements in D for each element
in SO(16,C), so there can be some ambiguity in the fusion pattern of the
image, though this was not really a problem for Alt5 characters.

For example, consider the 16-dimensional matrix diag(ω, ω, ω, ω, 112).
(This would be a matrix that would be determined by the 16-dimensional
Alt5 character 2 · 3a + 10 · ι.) We write the roots of the Lie algebra e8 in
terms of a standard basis {ei}8i=1, so the roots of e8 are all vectors of the

form ±ei ± ej for i ̸= j or
1

2

8∑

i=1

ϵiei, where ϵi = ±1 and

8∏

i=1

ϵi = 1 (see [11, p.

48]). We write our diagonal matrix as an 8-dimensional vector by splitting
the eigenvalues into inverse pairs and choosing one eigenvalue from each
pair, and we construct the corresponding vector in the Cartan subalgebra
from the powers of ω. This gives us three choices for our vector, namely
(1, 1, 06), (1, 2, 06) and (2, 2, 06). Let us consider the first. We think of our
vector (1, 1, 06) as e1 + e2 and calculate the inner product of our vector with
each of the root vectors of E8. We find

• 2 (or −1) for
1) e1 + e2, −e1 ± ej and −e2 ± ej for j > 2 (25 vectors)
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2)
1

2

8∑

i=1

ϵiei when ϵ1 = ϵ2 = −1 (32 vectors),

• 1 (or −2) for
1) −e1 − e2, e1 ± ej and e2 ± ej for j > 2 (25 vectors)

2)
1

2

8∑

i=1

ϵiei when ϵ1 = ϵ2 = 1 (32 vectors),

• and 0 for

1) e1 − e2, e2 − e1,±ei ± ej where i, j > 2,

(

2 + 4 ·
(
6

2

)

= 62 vectors

)

2)
1

2

8∑

i=1

ϵiei when ϵ1 = −ϵ2 (64 vectors).

So for the action of x on the root vectors of e8,

• we get the eigenvalue 1 with multiplicity 8 + 62 + 64 = 134, (recall we
get 1 eight times from the (trivial) action of x on the Cartan subalge-
bra),

• we get the eigenvalue ω with multiplicity 25 + 32 = 57, and

• we get the eigenvalue ω with multiplicity 25 + 32 = 57.

These results match the multiplicities of a 3D element in E8.
Note that we get the same result if we had chosen (2, 2, 06) instead of

(1, 1, 06). However, we do not get the same result if we choose (1, 2, 06). In
this case, we actually get an element of order 6 because we get half-integers
as inner products. In this case we get inner products

• 0 (or ±3) for e1 + e2,−e1 − e2,±ei ± ej for i, j > 2,(

2 + 4 ·
(
6

2

)

= 62 vectors

)

• 1 (or −2) for−e1 + e2, e1 ± ej for j > 2, −e2 ± ej for j > 2 (25 vectors)

• 2 (or −1) for e1 − e2, e2 ± ej for j > 2, −e1 ± ej for j > 2 (25 vectors)

• 3

2

(

or − 3

2

)

for
1

2

8∑

i=1

ϵiei with ε1 = ε2, (64 vectors)

• 1

2
for

1

2

8∑

i=1

ϵiei with ϵ1 = −1, ϵ2 = 1 (32 vectors)
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• −1

2
for

1

2

8∑

i=1

ϵiei with ϵ1 = 1, ϵ2 = −1 (32 vectors).

If we thought of our original matrix as a matrix with powers of α = e
2πi

6

instead of powers of ω, then our Cartan algebra vector would be (2, 4, 06),
and all the inner products would be twice as large. This yields

• eigenvalue 1 with multiplicity 62 + 8 = 70

• eigenvalue α with multiplicity 32 (see the
1

2
inner products)

• eigenvalue α2 = ω with multiplicity 25 (see the 1 inner products)

• eigenvalue α3 = −1 with multiplicity 64 (see the
3

2
and −3

2
inner prod-

ucts)

• eigenvalue α4 = ω with multplicity 25

• eigenvalue α with multiplicity 32.

This matches the action of an element of type 6M. We expect to sometimes
get SL(2, 5) subgroups in HSpin(16,C) instead of Alt5 subgroups because
sometimes elements of SO(16,C) of order 2 get lifted to elements of order
4 in Spin(16,C) rather than elements of order 2. One can decide which of
the two cases is realized by looking at the multiplicity of the eigenvalue −1
in the elements of order 2 in the Alt5 subgroup of SO(16,C). In practice,
for Alt5 characters, this is determined by the parity of the number of non-
trivial irreducible constituents (see [17, Lemma 5.11]). The results of these
calculations with Alt5 characters are given in [17, Tables 5.13 and 5.14].

On the other hand, the irreducible representations for SL(2, 5) are not
real (although their characters are). So an SL(2, 5) 16-dimensional char-
acter will only have an image in O(16,C) if the faithful constituents have
even multiplicity, by [17, Corollary 5.16]. (A character χ is faithful if the
set Kerχ = {g ∈ G | χ(g) = χ(1)} = {1}. In these groups, the faithful char-
acters correspond to faithful representations (i.e. representations with triv-
ial kernel).) Since L ∼= SL(2, 5) is perfect (i.e. the commutator subgroup
⟨x−1y−1xy | x, y ∈ L⟩ is the whole group L), any image in O(16,C) will in
fact be in SO(16,C). And, as before, a sufficient condition for two subgroups
with the same 16-dimensional character to be conjugate in SO(16,C) is that
one of the irreducible constituents has odd dimension. In the case of an
SL(2, 5) character, the problem of ambiguity really does require a solution,
and a fair amount of time is spent in [17, Chapter 5] to address it.
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(3) In the third stage, we use elements in the centralizer of an Alt5 or
SL(2, 5) subgroup of E8 to force such a subgroup to have a conjugate in
one of the subgroups where we’ve already constructed a complete list of E8-
conjugacy classes. In particular, if the connected centralizer of a subgroup
L has rank at least 3 (2 in the case of SL(2, 5)), then L is conjugate to a
subgroup of D by [17, Lemma 5.24]. This does not always settle things im-
mediately, since there are ambiguities in some D- fusion patterns, and still
conjugacy questions to settle. (For example, there are often multiple char-
acters that yield the same fusion pattern, so one has to determine whether
two such images are conjugate in E8.) These questions are almost all settled
in [17], and a list of conjugacy classes of Alt5 (resp. SL(2, 5)) is given in
Table 7.6 (resp. Table 8.2) of [17].

As an example, consider the SL(2, 5) fusion pattern 4D, 6O, 10AAA,
which was given the number 786 in [17]. Since (χL, ι) = 9 (where L is such
an SL(2, 5) subgroup), the connected centralizer is 9-dimensional, and by
[17, Lemma 5.35 and Table 5.36] has rank 3. Thus, by [17, Lemma 5.24], L
is conjugate to a subgroup of D. By [17, Table 5.36], there are two charac-
ters that correspond to embeddings (i.e. injective homomorphisms), namely
2 · 2a + 2 · 5 + 2 · ι and 2 · 2a + 2 · 3a + 2 · 3b, where 2a is the first degree two
character for SL(2, 5) in [32], and 3a and 3b are the two degree three charac-
ters for Alt5. Since both characters have odd degree constituents, we know
that these represent single D-classes. Since all SL(2, 5) subgroups with this
fusion pattern are forced into D, there must be either one or two classes in
E8. By [17, Lemmas 5.32-5.34], one can “see” the centralizing tori and can
calculate the classes of elements in the tori using the technique described
above. In particular, we can find a 9-element elementary abelian group with
8 3B elements in the torus centralizing the group corresponding to the
2 · 2a + 2 · 3a + 2 · 3b embedding so this group is conjugate to a subgroup
of the A4

2 subgroup which is the centralizer of such a 9-element subgroup
of E8. On the other hand, the group corresponding to 2 · 2a + 2 · 5 + 2 · ι
has elements from all the classes of elements of order 3, but the centralizing
torus does not have a 9-element subgroup with all 3B elements. Thus, these
two classes in D do not fuse in E8, so there are two E8 classes of SL(2, 5)
subgroups with fusion pattern 786.

This classification was not quite completed in [17] as there were five fu-
sion patterns where the number of classes of subgroups was not determined,
although in three cases, the groups were proven to have conjugates inside the
centralizer of an element of type 3B. Those three cases were later resolved
in [16]. The remaining two cases were resolved in [40].
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When considering the question of conjugacy classes of homomorphisms
– the interest of this paper – it is important to keep in mind that in most
cases, a single class of groups yields two classes of homomorphisms. The
reason is that both Alt5 and SL(2, 5) have an outer automorphism group
of order 2. For any homomorphism ϕ : L → E8, there is another homomor-
phism η ◦ ϕ where η is an outer automorphism of L. (Here, we are assuming
that functions act on the right, so that η ◦ ϕ means we apply η first and then
ϕ.) An outer automorphism of L ∼= SL(2, 5) will interchange the two classes
of elements of order 5 as well as the two classes of elements of order 10 [32].
The elements of order 10 in L are in a different class than their cubes, while
the elements of order 5 are in a different class than their squares. The same
is true of most elements of order 10 and 5 in E8, so in most cases, the new
homomorphism η ◦ ϕ is not conjugate to the homomorphism ϕ, i.e. there is
no element g ∈ NE8

(L) such that η ◦ ϕ = ϕ ◦ ig, where ig is the outer auto-
morphism of ϕ(L) induced by conjugation by g. (Of course ig is an inner
automorphism of E8 but induces an outer automorphism of ϕ(L).) For most
SL(2, 5) fusion patterns, one can simply look at the elements of order 10
to see if the elements of order 10 are conjugate to their cubes. This can be
ascertained by looking at [17, Table 1.16]. Those that are not conjugate in
E8 to their cubes have a “[3]” at the end of their label. Similarly, for Alt5
fusion patterns, one can simply look at the elements of order 5 to see if they
are conjugate in E8 to their squares. If not, then there cannot be an inner
automorphism ig of E8 that makes η ◦ ϕ = ϕ ◦ ig, since then the elements of
order 10 (5) in fact would be conjugate in E8 to their cubes (squares). But
this is only a sufficient condition for there to be two homomorphisms for a
given class of SL(2, 5) or Alt5 subgroups. In the cases where the classes of
order 5 and 10 are rational (i.e. conjugate to their squares or cubes respec-
tively), more thought needs to be applied to determine whether there is one
or two classes of homomorphisms per class of subgroups.

Now consider L ∼= SL(2, 5) where the elements of order 10 are rational.
(This forces the elements of order 5 to also be rational.) If a homomorphism
ϕ of L corresponds to a character, the homomorphism η ◦ ϕ (where η is an
outer automorphism of L) will be represented by the same character, except
the two characters of degree 2 and the two characters of degree 3 will be
interchanged. This was called an outer twist in [17]. Suppose the character
of ϕ is a 16-dimensional character in which the multiplicities of the faithful
characters of L have even multiplicity. Then the image of L is conjugate to a
subgroup of SO(16,C). If the outer twist results in the same character, then
by ordinary character theory, there is an element g ∈ GL(16,C) such that
η ◦ ϕ = ϕ ◦ ig. By [61, 7.3], we may assume that g ∈ O(16,C). But then, by
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[17, 5.9], we may assume that g ∈ SO(16,C) if there is an element of O(16,C)
of determinant −1 that normalizes η ◦ ϕ(G). But there is such an element if
at least one of the constituents of the character is odd, by [17, 5.10]. Since
the element g is in SO(16,C), when we lift to Spin(16,C) and project to
HSpin(16,C) (the D8-subgroup of E8), our element g comes along for the
ride, so it is available to perform the outer automorphism on the resulting
subgroup of D. So for each SL(2, 5) fusion pattern, if an embedding in
SO(16,C) can be found that is unchanged by an outer twist and has at
least one odd constituent, then there is only one class of homomorphisms
corresponding to that class of groups rather than the usual two. A very
similar argument works for Alt5, and such characters are listed in [17, 7.7
and 8.3].

It should be noted that [17] was considering homomorphisms into E8(C),
while most physicists are interested in E8(R). However, it turns out that all
of the homomorphisms discussed in [17] have images in E8(R). To see this,
we note that by [32, p. xxviii], the Frobenius-Schur indicator function
for a character χ of a group G defined by

indχ =
1

|G|
∑

g∈G

χ(g2)

takes on three possible values: 1, if χ is afforded by a real representation, −1,
if the character only has real values, but there are no real representations
that afford χ, and 0, if χ has nonreal values. On page 2 of [32], we see that
all of the characters for Alt5 have positive indicator, so are afforded by real
representations. Hence, any embedding of Alt5 in E8(C) is also an embedding
in E8(R). However, the indicators for the faithful characters of SL(2, 5) are
negative, meaning that they are not afforded by a real representation. But
by [33, 23.6], the character χ+ χ can be afforded by a real representation.
In the case of characters with negative indicators, since χ = χ, we see that
χ+ χ can be afforded by a real representation. Thus, if we can decompose
the adjoint character for E8 over a given SL(2, 5) subgroup, and all of the
faithful irreducible constituents have even multiplicity, then that particular
subgroup appears in E8(R). This calculation is done for SL(2, 5) in [17, Table
4.9], but there are several errors in that table. So we did the calculations
again, and discovered that each entry that involves an SL(2, 5) subgroup
of E8(C) has even multiplicities for each of the faithful SL(2, 5) characters.
These corrected multiplicities are listed in Table A1.
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Fusion pattern
Multiplicities of
Nonfaithful Characters
1, 3a, 3b, 4, 5

Multiplicities of
Faithful Characters
2a, 2b, 4f , 6

3 4A, 6C, 10N 11, 13, 9, 6, 7 0, 16, 2, 12
19 4A, 6C, 10D 17, 0, 28, 0, 7 0, 28, 14, 0
22 4A, 6C, 10Z 7, 8, 10, 10, 7 8, 10, 4, 10
37 4A, 6C, 10U 9, 5, 15, 8, 7 6, 16, 8, 6
57 4A, 6C, 10HH 6, 9, 8, 11, 7 6, 10, 2, 12
152 4D, 6G, 10L 9, 15, 3, 2, 13 0, 8, 6, 12
170 4D, 6G, 10P 9, 2, 16, 2, 13 0, 14, 12, 6
174 4D, 6G, 10JJ 3, 6, 6, 8, 13 4, 4, 6, 12
188 4D, 6G, 10KK 3, 5, 7, 8, 13 4, 6, 8, 10
210 4D, 6G, 10AAA 6, 7, 8, 5, 13 2, 8, 8, 10
598 4A, 6F, 10Z 4, 8, 10, 7, 10 2, 4, 10, 10
613 4A, 6F, 10U 6, 5, 15, 5, 10 0, 10, 14, 6
633 4A, 6F, 10HH 3, 9, 8, 8, 10 0, 4, 8, 12
750 4D, 6O, 10JJ 6, 6, 6, 11, 10 4, 4, 6, 12
764 4D, 6O, 10KK 6, 5, 7, 11, 10 4, 6, 8, 10
785 4D, 6O, 10ZZ 17, 23, 0, 0, 10 18, 0, 16, 2
786 4D, 6O, 10AAA 9, 7, 8, 8, 10 2, 8, 8, 10
800 4D, 6O, 10WW 17, 22, 1, 0, 10 0, 4, 2, 16
934 4E, 6P, 10YY 39, 1, 10, 16, 0 18, 32, 0, 2
951 4E, 6P, 10BBB 55, 0, 27, 0, 0 0, 52, 2, 0
1310 4D, 6R, 10L 21, 15, 3, 14, 1 6, 14, 0, 12
1328 4D, 6R 10P 21, 2, 16, 14, 1 6, 20, 6, 6
1368 4D, 6R, 10AAA 18, 7, 8, 17, 1 8, 14, 2, 10
1401 4D, 6R, 10EEE 35, 31, 1, 0, 1 0, 20, 0, 12
1419 4D 6R, 10DDD 35, 0, 32, 0, 1 0, 32, 12, 0
1504 4E, 6L, 10YY 24, 1, 10, 1, 15 0, 14, 18, 2
1556 4E, 6L, 10TT 17, 2, 2, 8, 15 0, 0, 4, 16
2294 4G, 6S, 10CCC 133, 0, 1, 0, 0 0, 56, 0, 0
2305 4B, 6A, 10A 36, 0, 28, 0, 0 0, 48, 8, 0
2324 4B, 6A, 10O 24, 1, 15, 12, 0 14, 28, 2, 6
2342 4B, 6A, 10FF 20, 6, 6, 16, 0 20, 20, 0, 8
2458 4C, 6I, 10EE 6, 14, 2, 4, 10 0, 8, 4, 16
2475 4C, 6I, 10AA 6, 5, 11, 4, 10 4, 10, 10, 10
2476 4C, 6I, 10II 4, 5, 9, 6, 10 4, 8, 8, 12
2491 4C, 6I, 10T 10, 0, 20, 0, 10 0, 20, 16, 4
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2493 4C, 6I, 10OO 2, 6, 6, 8, 10 6, 6, 8, 12
2511 4C, 6I, 10MM 3, 8, 5, 7, 10 4, 6, 6, 14
2900 4B, 6H, 10O 13, 1, 15, 1, 11 0, 14, 16, 6
2918 4B, 6H, 10FF 9, 6, 6, 5, 11 6, 6, 14, 8
2937 4B, 6H, 10MM 6, 6, 3, 8, 11 2, 4, 8, 14
3052 4C, 6K, 10II 11, 5, 9, 13, 3 8, 12, 4, 12
3063 4C, 6H, 10OO 3, 6, 6, 9, 9 4, 4, 10, 12
3069 4C, 6K, 10OO 9, 6, 6, 15, 3 10, 10, 4, 12
3088 4C, 6K, 10PP 24, 0, 27, 0, 3 0, 32, 16, 0
3089 4C, 6K, 10QQ 16, 16, 3, 8, 3 16, 8, 8, 8
3105 4C, 6K, 10XX 22, 17, 8, 2, 3 0, 16, 0, 16
3141 4C, 6K, 10SS 15, 9, 9, 9, 3 8, 8, 0, 16
3500 4B, 6J, 10FF 10, 6, 6, 6, 10 4, 4, 16, 8
3628 4C, 6I, 10II 6, 5, 9, 8, 8 0, 4, 12, 12
3645 4C, 6J, 10OO 4, 6, 6, 10, 8 2, 2, 12, 12
3665 4C, 6J, 10QQ 11, 16, 3, 3, 8 8, 0, 16, 8
3717 4C, 6J, 10SS 10, 9, 9, 4, 8 0, 0, 8, 16
3847 4F, 6Q, 10B 78, 0, 14, 0, 0 0, 64, 0, 0
3868 4F, 6Q, 10FFF 66, 1, 1, 12, 0 32, 32, 0, 0
4438 4F, 6M, 10FFF 55, 1, 1, 1, 11 0, 0, 32, 0

Table A1: Multiplicities of irreducible SL(2, 5) constituents
of the adjoint character for E8 when restricted to SL(2, 5)
subgroups of each fusion pattern.

Also, we should note that we can clean up a logic error in [17, Lemma
5.43]. The proof erroneously says that an element of order 4 in an SL(2, 5)
subgroup M with one of the fusion patterns listed, would force some con-
jugate of M to be in the E7 subgroup. The proof is correct in saying that
subgroups with these fusion patterns cannot live in the E7 subgroup and
also that any such subgroup would have to live in the A1E7 centralizer of an
element of type 2A. However, there is a list of possible fusion patterns for
SL(2, 5) subgroups of A1E7 in [18, Table XIX], and none of the fusion pat-
terns mentioned in this Lemma appear on that list, so they were correctly
eliminated from consideration.
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A.2. Hom(Dick−2, E8)

We attempted to do a mathematical classification of Dic2 → E8 homomor-
phisms as well. One might have expected that this task would be easier than
the Alt5 and SL(2, 5) problem, since Dic2 is much smaller than either Alt5
or SL(2, 5). However, other subtleties arise in the dicyclic case, significantly
complicating the analysis. These subtleties arise in the consideration of di-
cyclic subgroups of the D8 subgroup because of our use of SO(16,C) to build
embeddings rather than building them directly in HSpin(16,C). The lifting
of groups to Spin(16,C) produces different behavior in the solvable dicyclic
groups than it did in the perfect alternating and SL(2, 5) groups, the extent
of which we didn’t fully realize initially. Progress has recently been made,
some results have been achieved, and we expect to achieve and publish more
results in the near future.
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