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The perturbation theory for critical points of causal variational
principles is developed. We first analyze the class of perturbations
obtained by multiplying the universal measure by a weight func-
tion and taking the push-forward under a diffeomorphism. Then
the constructions are extended to convex combinations of such
measures, leading to perturbation expansions for the mean and
the fluctuation of the measure, both being coupled in higher order
perturbation theory. It is explained how our methods and results
apply to the causal action principle for causal fermion systems. It is
shown how the perturbation expansion in the continuum limit and
the effect of microscopic mixing are recovered in specific limiting
cases.
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1. Introduction

The theory of causal fermion systems is a recent approach to fundamental
physics. Giving quantum mechanics, general relativity and quantum field
theory as limiting cases, it is a candidate for a unified physical theory (see [8]
or the survey article [14]). So far, the connection to perturbative quantum
field theory has been established by first taking the continuum limit [8] and
then including the mechanism of microscopic mixing (see [7]). Although this
procedure gives the correct limiting case with an interaction described by a
unitary time evolution on Fock spaces (see [7, Section 8]), the derivation is
not quite convincing conceptually because it is based on the perturbation
expansion for solutions of the Dirac equation coupled to classical bosonic
fields as obtained in the continuum limit (see [8, §3.8.4] and [7, Section 2]).
In order to clarify the mathematical structure of the theory, it is desirable
to perform the perturbation expansion directly for the universal measure of
the causal fermion system, without referring to specific limiting cases (for
more details see Section 2 below). Analyzing this problem also opens up the
research program to explore how the perturbation theory for causal fermion
systems differs from perturbative quantum field theory, with the goal of
making experimental predictions.

In this paper the general perturbation theory for causal fermion systems
is developed. We thus succeed in extending the methods of perturbative
quantum field theory to non-smooth situations where space-time has a non-
trivial, possibly discrete microscopic structure and the physical equations are
no longer obtained by quantizing differential equations. We work in the jet
formalism introduced in [15] in the more general and at the same time more
convenient framework of causal variational principles in the non-compact
setting. Our perturbation expansion has the nice feature that the bosonic
and fermionic perturbations are described on the same footing in terms of
jet spaces containing bosonic and fermionic subspaces.

In the setting of causal variational principles, the basic object is a mea-
sure ρ on a manifold F (for the necessary preliminaries see Section 3). Our
methods for perturbing this measure are developed in two steps. In the first
step, our method is to multiply ρ by a non-negative function f and to take
the push-forward under a mapping F ,

(1.1) ρ̃ = F∗

(
f ρ
)
.

We then compute f and F order by order in a formal power expansion in
a “coupling parameter” λ. In the second step, we consider more generally a
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convex combination of a finite number of measures of the form (1.1),

(1.2) ρ̃ =
1

L

L∑

a=1

(Fa)∗
(
fa ρ

)
.

This ansatz allows for the possibility that the measure is “decomposed” into
several components and the support of the measure is “enlarged” (see Fig-
ure 3 on page 586). We refer to this effect as a fragmentation of the measure.
In analogy to the perturbation theory for degenerate eigenvalues of a linear
operator, where the perturbation must be “diagonalized on the degenerate
eigenspace” before performing the perturbation expansion, the perturbation
theory with fragmentation makes it necessary to choose jets which describe
how the fragmentation forms (see (5.23) and (5.24) on page 595).

The paper is organized as follows. In Section 2 we give a brief physical
motivation and put our perturbation expansion into the context of the on-
going research program on causal fermion systems. Section 3 provides the
necessary background on causal variational principles and the jet formalism.
In Section 4 the perturbation theory without fragmentation is developed.
After bringing the combinatorics into a convenient form (Section 4.1), we
invert the linearized equations with Green’s operators (see Definition 4.2 in
Section 4.2). The resulting perturbation expansion is summarized in Sec-
tion 4.3. In Section 4.4 it is explained how, starting from a linearized solu-
tion, one can construct a one-parameter family of nonlinear solutions of the
field equations. In Sections 4.5 it is shown how, perturbing the vacuum by
an inhomogeneity, one can construct a corresponding nonlinear solution of
the field equations.

In Section 5 the perturbation theory with fragmentation is developed.
The method is to decompose suitable jets describing the perturbation into
their mean and the fluctuations (see (5.4) in Section 5.1). A technical com-
plication is that, if fragmentation occurs, the unperturbed Laplacian can no
longer be inverted. This is illustrated in Section 5.2 in a concrete example.
The method to overcome this problem is to invert instead the perturbed
Laplacian (see Section 5.3).

In Section 6 we explain how our methods and results apply to the setting
of causal fermion systems. After the necessary preliminaries (Section 6.1),
the perturbation expansion for the wave evaluation operator is derived (Sec-
tion 6.2). After identifying jets with perturbations of the wave evaluation
operator, the general perturbation expansion applies in a straightforward
way (Section 6.3).
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In Section 7, it is shown that by a suitable choice of the jet spaces one
recovers the analysis in the continuum limit as carried out in [8]. Finally, in
Section 8 we describe how to incorporate the effect of microscopic mixing as
analyzed in [7].

2. Physical motivation and significance of the perturbation

expansion

Before delving into the constructions, we give a physical motivation of the
perturbation expansion and explain its significance within the research pro-
gram on causal fermion systems and causal variational principles.

We begin with a brief introduction and an outline of the present status
of the theory. Causal fermion systems are based on a novel mathematical
model of space-time, where the basic object is a measure on linear operators
of a Hilbert space:

Definition 2.1. (causal fermion system) Given a separable complex Hilbert
space H with scalar product 〈.|.〉H and a parameter n ∈ N (the “spin di-
mension”), we let F ⊂ L(H) be the set of all selfadjoint operators on H of
finite rank, which (counting multiplicities) have at most n positive and at
most n negative eigenvalues. On F we are given a positive measure ρ (de-
fined on a σ-algebra of subsets of F), the so-called universal measure. We
refer to (H,F, ρ) as a causal fermion system.

This definition gives rise to a space-time together with structures therein,
most notably a causal structure, spinorial wave functions and geometric ob-
jects like connection and curvature. The resulting abstract setting has been
worked out in a satisfying way (see for example [8, Section 1.1]). Moreover,
it is clear how the abstract structures are related to the usual objects in
Minkowski space or on a Lorentzian manifold (see [8, Section 1.2] or the
introduction and survey in [10]). In order to see the correspondence, one
must keep in mind that the objects of the causal fermion system involve an
ultraviolet regularization on a length scale ε > 0. Thus we always consider
the regularized quantities as those having mathematical and physical signif-
icance. The corresponding objects in Minkowski space or on a Lorentzian
manifold are obtained in a certain limiting case εց 0 in which the ultravi-
olet regularization is removed.

In the theory of causal fermion systems, the physical equations are for-
mulated via a variational principle, the so-called causal action principle. It is
defined as follows (for more details see [F1, §1.1.1] or [15]). Given x, y ∈ F,
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we denote the non-trivial eigenvalues of the operator product xy count-
ing algebraic multiplicities by λxy1 , . . . , λ

xy
2n ∈ C. We introduce the spectral

weight | . | of an operator as the sum of the absolute values of its eigenvalues.
In particular, the spectral weights of the operator products xy and (xy)2

are defined by

(2.1) |xy| =
2n∑

i=1

∣
∣λxyi

∣
∣ and

∣
∣(xy)2

∣
∣ =

2n∑

i=1

∣
∣λxyi

∣
∣2 .

We introduce the Lagrangian and the causal action by

Lagrangian: L(x, y) =
∣
∣(xy)2

∣
∣− 1

2n
|xy|2(2.2)

causal action: S(ρ) =
¨

F×F

L(x, y) dρ(x) dρ(y) .(2.3)

The causal action principle is to minimize S by varying the universal mea-
sure under the following constraints,

volume constraint: ρ(F) = const

trace constraint:

ˆ

F

tr(x) dρ(x) = const

boundedness constraint: T (ρ) :=

¨

F×F

|xy|2 dρ(x) dρ(y) ≤ C ,

where C is a given parameter (and tr denotes the trace of a linear operator
on H). The form of the above Lagrangian is the result of long considerations
and many computations (for a systematic account see [4, Chapter 5]). The
constraints are needed in order to obtain a mathematically well-defined vari-
ational principle with non-trivial minimizers. A simple way of understand-
ing the structure of the Lagrangian is the following connection to causality:
Writing the Lagrangian as (see [8, eq. (1.1.9)])

L =
1

4n

2n∑

i,j=1

(∣
∣λxyi

∣
∣−
∣
∣λxyj

∣
∣

)2
,

one sees that L vanishes if the eigenvalues λxyi all have the same absolute
value. Defining spacelike separation by this property, pairs of points with
spacelike separation do not enter the action. This can be seen in analogy
to the usual notion of causality where points with spacelike separation can-
not influence each other. It turns out that in suitable limiting cases, the
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above definition of causality indeed agrees with the usual causal structure
of Minkowski space or of a Lorentzian manifold (for details see [8, §1.2.5]
or [12, Sections 4 and 5]).

Causal variational principles are a mathematical generalization of the
causal action principle, with the aim of restricting attention to the essential
analytic structures. The existence theory and the general structure of the
corresponding Euler-Lagrange equations have been worked out in [1, 5]. The
connection to physics is made in [8, Chapter 3-5], where it is shown that in
a well-defined limiting case, the so-called continuum limit, the interaction
given by the causal action principle can be described effectively by the Dirac
equation coupled to classical field equations for gauge fields and the grav-
itational field. In this limiting case, one obtains all the interactions of the
standard model plus classical gravity.

The next challenge is to understand how quantum field theory arises from
the causal action principle. Indeed, in the paper [7] the connection between
the causal action principle and a second-quantized dynamics on Fock spaces
has been made in a certain limiting case. But some of the assumptions and
constructions remain to be justified and understood better. Moreover, a
number of important open questions still need to be addressed:

(a) Since an ultraviolet regularization on the scale ε is built in, the the-
ory of causal fermion systems is ultraviolet finite. Nevertheless, it is
an important task to understand the asymptotics of interacting sys-
tems for small ε. In particular, is it possible to take limit εց 0 with
renormalization techniques? Is the effective theory obtained in this limit
renormalizable?

(b) The fact that the continuum limit also gives the Einstein equations
raises the question to which extent and how precisely the constructions
in [7] relate to quantum gravity. Do causal fermion systems really give
a mathematically well-defined setting for describing quantized gravi-
tational fields? Can the resulting “geometry of quantum gravity” be
described by the geometric structures of the causal fermion system?

Answering these questions in the affirmative would show that causal fermion
systems are a mathematically consistent, non-perturbative quantum field
theory. The ultimate goal is to understand the quantum field theory limit
of causal fermion systems in a way where it becomes possible to go beyond
quantum field theory in the following sense:
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(c) How does the dynamics described by the causal action principle differ
from quantum field theory? How can the deviations be quantified? Can
they be detected in experiments?

The present paper is an important step towards answering these ques-
tions, as we now explain. The procedure in [7] is closely tied to the con-
tinuum limit analysis and to the Dirac equation coupled to classical field
equations obtained in this limit. The method to go beyond the continuum
limit is referred to as microscopic mixing. In the present formulation with
measures, microscopic mixing can be understood by taking universal mea-
sures ρ1, . . . , ρL, each describing a system of Dirac particles in Minkowski
space with an interaction via classical bosonic potentials A1, . . . , AL. Then
the convex combination of the measures

(2.4) ρ̃ =
1

L

L∑

a=1

ρa

is again a measure. It contains information on the bosonic potentials A1, . . . ,
AL of the “subsystems” described by ρ1, . . . , ρL. As observed in [7] (based
on preliminary considerations in [6]), the resulting collection of bosonic po-
tentials can be described effectively by a second-quantized bosonic field.
Moreover, taking into account an interaction of the subsystems described
by ρ1, . . . , ρL by combining the perturbation expansion for classical fields
with some features of microscopic mixing, one obtains an effective interac-
tion described by a second-quantized Hamiltonian acting on fermionic and
bosonic Fock spaces (see [7, Section 8]).

Although these constructions are an important first step, there is the
major shortcoming that the connection to Fock spaces is based on the per-
turbation expansion for classical fields in each subsystem. The fact that the
description with classical fields is valid only approximately makes it difficult
to justify the validity and to quantify the error of the Fock space dynam-
ics. Moreover, the description makes it necessary to assume that there are
subsystems, but it remains unclear how the subsystems form dynamically.
In [7], this open problem was bypassed by considering the so-called limiting
case of an instantaneous recombination of subsystems. But in order to tackle
the above open questions, the validity of this limiting case must be justified,
and the errors of the approximation must be quantified.

The main point of the constructions of the present paper is to overcome
the shortcomings of the treatment in [7]. The perturbation expansion devel-
oped here only uses the Euler-Lagrange equations of the causal action, but
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it does not rely on the classical field equations obtained in the continuum
limit. The possibility for the formation of subsystems (2.4) is now taken into
account by the fragmentation of the measure (1.2). In contrast to the ad-hoc
ansatz (2.4), the perturbation theory with fragmentation makes it possible
to analyze in detail whether and how fragmentation forms. Moreover, the
mutual interaction of the resulting subsystems can be quantified. Intuitively
speaking, the fragmentation of the measure means that space-time does not
stay classical, but becomes a “quantum space-time” which can be thought
of as a “superposition” or “mixture” of the space-times described by the
individual subsystems. In view of the general scope and applicability of our
constructions, the methods and results of this paper are a promising starting
point for addressing the above questions (a)–(c) in a precise mathematical
setting.

3. Preliminaries

3.1. Causal variational principles in the non-compact setting

We consider causal variational principles in the non-compact setting as in-
troduced in [15, Section 2] (the connection to causal fermion systems will be
made in Section 6 below). Thus let F be a (possibly non-compact) smooth
manifold of dimension m ≥ 1. Moreover, we are given a non-negative func-
tion L : F × F → R

+
0 (the Lagrangian) with the following properties:

(i) L is lower semi-continuous, i.e. for all sequences xn → x and yn′ → y,

L(x, y) ≤ lim inf
n,n′→∞

L(xn, yn′) .

(ii) L is symmetric: L(x, y) = L(y, x) for all x, y ∈ F.

Next, we let ρ be a (positive) Borel measure on F (the universal measure).
The causal variational principle is to minimize the action

S =

ˆ

F

dρ(x)

ˆ

F

dρ(y)L(x, y)

under variations of the measure ρ, keeping the total volume ρ(F) fixed. If
the total volume is infinite, one can make mathematical sense of variations
of S by considering variations of ρ of finite total variation and zero volume
(for details see [15, Section 2]). Here we do not enter the details of the
minimization procedure and of the properties of the minimizing measure.
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Instead, we restrict attention to the resulting Euler-Lagrange (EL) equations
as derived in [15, Lemma 2.3]:

Definition 3.1. A Borel measure ρ on F is a minimizer of the causal
variational principle if it has the following properties:

◮ The measure ρ is locally finite.

◮ The function L(x, .) is ρ-integrable for all x ∈ F.

◮ For a suitable value of the parameter s > 0, the function ℓ defined by

(3.1) ℓ(x) =

ˆ

F

L(x, y) dρ(y)− s

is minimal and vanishes on the support of ρ,

(3.2) ℓ|supp ρ ≡ inf
F
ℓ = 0 .

We remark that the value of the parameter s can be changed arbitrarily
by rescaling the measure according to

(3.3) ρ→ νρ with ν > 0 .

With this in mind, we shall always keep s fixed when varying or perturbing
the measure.

3.2. The weak Euler-Lagrange equations

Let ρ be a critical point of the causal variational principle. We introduce
space-time M as the support of this measure,

M := supp ρ ⊂ F .

The idea behind the formulation of the weak EL equations is to use only part
of the information contained in the EL equations (3.2). Namely, we evaluate
them only on M , taking into account first derivatives. Moreover, we restrict
attention to directions where ℓ is differentiable. And finally, we want to
have the freedom to restrict attention to the part of information needed for
the application. This leads to the following construction: By C∞(M,R) we
denote all real-valued functions on M which have a smooth extension to F.
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Likewise, by

Γ = C∞(M,TF)

we denote the smooth vector fields on F along M (thus every u ∈ Γ is a
mapping from M to TF with u(x) ∈ TxF for all x ∈M , which can be ex-
tended to a smooth vector field on F). We define the jet space on M as the
vector space

J :=
{
u = (a, u) with a ∈ C∞(M,R) and u ∈ Γ

}
.

Moreover, we let Γdiff be those vector fields for which the directional deriva-
tive of the function ℓ exists,

Γdiff =
{
u ∈ C∞(M,TF)

∣
∣ Duℓ(x) exists for all x ∈M

}
.

Next, we introduce the subspace of jets

Jdiff := C∞(M,R)⊕ Γdiff ⊂ J .

For a jet u = (a, u) ∈ Jdiff we define ∇u as the linear combination of scalar
multiplication and directional derivative, i.e.

∇uℓ(x) := a(x) ℓ(x) +
(
Duℓ

)
(x) .

Finally, we choose a linear subspace Jtest ⊂ Jdiff with the property that its
scalar and vector components are both vector spaces,

Jtest = Ctest(M,R)⊕ Γtest ⊂ Jdiff ,

and the scalar component is nowhere trivial in the sense that

for all x ∈M there is a ∈ Ctest(M,R) with a(x) 6= 0 .

Then the weak EL equations read (for details cf. [15, (eq. (4.10)])

(3.4) ∇uℓ|M = 0 for all u ∈ Jtest .

The purpose of introducing Jtest is that it gives the freedom to restrict at-
tention to the portion of information in the EL equations which is relevant
for the application in mind. For example, if one is interested only in the
macroscopic dynamics, one can choose Jtest to be composed of jets which
disregard the microscopic fluctuations of ℓ.
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We finally point out that the weak EL equations (3.4) do not hold only
for minimizers, but also for critical points of the causal action. With this in
mind, all methods and results of this paper do not apply only to minimizers,
but more generally to critical points of the causal variational principle. For
brevity, we also refer to a measure with satisfies the weak EL equations (3.4)
as a critical measure.

3.3. Jet spaces and the linearized field equations

For the detailed study of the weak EL equations it is most convenient work
with Taylor expansions of the component functions in a given chart. There-
fore, for any x ∈M we choose a chart of F around x and work in compo-
nents xα. For ease in notation, we usually omit the index α as well as all
vector and tensor indices. But one should keep in mind that from now on,
we always work in suitably chosen charts.

We now introduce useful jet spaces. We begin with the space of dual
jets (Jtest)∗. To this end, we denote the continuous global one-jets taking
values in the cotangent bundle restricted to M by

J∗ := C0(M,R)⊕ C0(M,T ∗F) .

We let (Jtest)∗ be the quotient space

(Jtest)∗ := J∗
/{

(g, ϕ) ∈ J∗
∣
∣ g(x) a(x) + 〈ϕ(x), u(x)〉 = 0

for all u = (a, u) ∈ Jtest and all x ∈M
}
,

where 〈., .〉 denotes the dual pairing of T ∗
xF and TxF. Here we take equiva-

lence classes simply because it is convenient to disregard dual jets which are
trivial on Jtest.

We next introduce the spaces Jℓ, where the superscript ℓ ∈ N0 ∪ {∞}
can be thought of as the order of differentiability if the derivatives act si-
multaneously on both arguments of the Lagrangian:

Definition 3.2. For any ℓ ∈ N0 ∪ {∞}, the jet space Jℓ ⊂ J is defined as
the vector space of test jets with the following properties:

(i) For all y ∈M and all x in an open neighborhood of M , the directional
derivatives

(3.5)
(
∇1,v1

+∇2,v1

)
· · ·
(
∇1,vp

+∇2,vp

)
L(x, y)
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(computed componentwise in charts around x and y) exist for all p ∈
{1, . . . , ℓ} and all v1, . . . , vp ∈ Jℓ.

(ii) The functions in (3.5) are ρ-integrable in the variable y, giving rise to
locally bounded functions in x. More precisely, these functions are in
the space

L∞
loc

(

L1
(
M,dρ(y)

)
, dρ(x)

)

.

(iii) Integrating the expression (3.5) in y over M with respect to the mea-
sure ρ, the resulting function (defined for all x in an open neighborhood
ofM) is continuously differentiable in the direction of every jet u ∈ Jtest.

Here and throughout this paper, we use the following conventions for partial
derivatives and jet derivatives:

◮ Partial and jet derivatives with an index i ∈ {1, 2}, as for example
in (3.5), only act on the respective variable of the function L. This
implies, for example, that the derivatives commute,

∇1,v∇1,uL(x, y) = ∇1,u∇1,vL(x, y) .

◮ The partial or jet derivatives which do not carry an index act as par-
tial derivatives on the corresponding argument of the Lagrangian. This
implies, for example, that

∇u

ˆ

F

∇1,v L(x, y) dρ(y) =
ˆ

F

∇1,u∇1,v L(x, y) dρ(y) .

We point out that, in contrast to the method and conventions used in [15],
jets are never differentiated.

The combination of derivatives in (3.5) requires a brief explanation. In
the case p = 1, the combination of directional derivatives in (3.5) is defined
by

(
D1,v +D2,v

)
L(x, y) := d

dτ
L
(
Fτ (x), Fτ (y)

)∣
∣
τ=0

,

where Fτ is the flow of the vector field v. The higher derivatives are defined
inductively. However, we use the convention that the partial derivatives act
only on the arguments of L, but not on any other jets. This means that one
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must subtract the terms involving derivatives of the jets. For example,

(
D1,v +D2,v

)2L(x, y) := d2

dτ2
L
(
Fτ (x), Fτ (y)

)∣
∣
τ=0

−
(
D1,Dvv +D2,Dvv

)
L(x, y) ,

and similarly for higher derivatives. The condition in Definition 3.2 (i) im-
plies that all the resulting terms must exist.

Linearized solutions are linear perturbations of ρ which preserve the
weak EL equations (3.4). We now give the precise definition (for more details
see [15, Section 4.2]).

Definition 3.3. A jet v ∈ J1 is referred to as a solution of the linearized
field equations if

∇u

ˆ

M

(
∇1,v +∇2,v

)
L(x, y) dρ(y) = ∇u∇v s for all u ∈ Jtest and x ∈M .

The vector space of all linearized solutions is denoted by Jlin ⊂ J1.

4. The abstract perturbation expansion

4.1. Perturbation expansion for the universal measure

Let ρ be a measure (not necessarily a critical point of the causal variational
principle). We want to construct a measure ρ̃ which satisfies the weak EL
equations. To this end, we make the ansatz

(4.1) ρ̃ = F∗

(
f ρ
)
,

where f and F are smooth,

(4.2) f ∈ C∞
(
M,R+

)
and F ∈ C∞

(
M,F

)

(where smooth onM again means that there exists a smooth extension to F).
This ansatz is motivated mainly by its simplicity. More general perturbations
of the universal measure will be studied in Section 5.
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We denote the test space for the measure ρ̃ by J̃test, i.e.

J̃test ⊂
{
u = (a, u) with a ∈ C∞(M̃,R) and u ∈ C∞(M̃, TF)

}
,

where M̃ := supp ρ̃ is the support of the varied measure. We write the weak
EL equations (3.4) for the measure ρ̃ as

(4.3) ∇1,ũ(F (x))

(
ˆ

M

L
(
F (x), F (y)

)
f(y) dρ(y)− s

)

= 0 for all ũ ∈ J̃test,

to be evaluated pointwise for all x ∈M . Here the notation ∇1,ũ clarifies
that the derivative acts on the first argument of the Lagrangian. On the
constant s it acts by multiplication with the scalar component,

∇1,ũ(F (x)) s = ∇ũ(F (x)) s = a
(
F (x)

)
s ,

where we again denote the components by u = (a, u). Note that, being de-
fined on M̃ , the jet ũ can be evaluated at x ∈M only after composing it
with F . In order to rewrite this equation in a way where x and y are treated
in a more symmetric way, we multiply (4.3) by the function f(x) and write
this function inside the brackets,

∇1,ũ(F (x))

(
ˆ

M

f(x)L
(
F (x), F (y)

)
f(y) dρ(y)− s f(x)

)

= 0

for all ũ ∈ J̃test .

Working in charts makes it possible to identify the tangent spaces at dif-
ferent points simply by identifying the components. In particular, we use
this method in order to identify ũ(F (x)) with a jet u(x). We choose the jet
space J̃test such that, under this identification, it coincides with Jtest. Then
the weak EL equations can be written as

(4.4) ∇1,u

(
ˆ

M

f(x)L
(
F (x), F (y)

)
f(y) dρ(y)− s f(x)

)

= 0 ,

to be satisfied for all u ∈ Jtest and all x ∈M . We again point out that the
derivative ∇1,u acts on the first argument of the Lagrangian and on the
constant s, but the factor f(x) is not differentiated.

In physical applications, it is relatively easy to construct an approximate
solution of the EL equations (typically by regularizing Dirac sea structures
in the presence of a classical bosonic potential; for details see [8]). With this
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in mind, we now assume that the measure ρ is close to a critical point in
the sense that

(4.5) ∇u

(
ˆ

M

L(x, y) dρ(y)− s

)

= λ∇uE
(1)

with an error term E(1), where λ ∈ R is a small parameter. We expand both f
and F in a power series in λ. For the function f , we make the perturbation
ansatz

(4.6) f(x) =

∞∑

p=0

λp f (p)(x) with f (0)(x) = 1 ,

where the choice of f (0) will ensure that the measure ρ̃ goes over to the
unperturbed measure ρ in the limit λ→ 0. For the expansion of F , we
choose a chart around x and write F (x) in components as (F (x)α)α=1,...,m.
Then we can expand F componentwise,

(4.7) F (x)α =

∞∑

p=0

λp F (p)(x)α with F (0)(x)α = xα .

For ease in notation, we shall omit the index α from now on. But one should
keep in mind that the expansion of F (x) always involves the choice of a
chart around x.

In the next lemma we evaluate (4.4) to any order p = 1, 2, . . . in λ. In
order to simplify the combinatorics, it turns out to be convenient to work
instead of the function f with its logarithm

(4.8) c(x) := log f(x) ,

which, similar to (4.6), we again expand in powers of λ,

(4.9) c(x) =

∞∑

p=0

λp c(p)(x) with c(0)(x) = 0 .

Moreover, we combine the c(p) and F (p) to jets w(p), i.e.

(4.10) w(p) :=
(
c(p), F (p)

)
for p = 1, 2, . . . .
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Lemma 4.1. To every order p = 1, 2, . . ., the weak EL equations (4.4) can
be written as

0 = ∇u

p
∑

ℓ=1

1

ℓ!

∑

q1, . . . , qℓ ≥ 1

with q1+···+qℓ=p

×
{
ˆ

M

(
∇1,w(q1) +∇2,w(q1)

)
· · ·
(
∇1,w(qℓ) +∇2,w(qℓ)

)
L(x, y) dρ(y)

− s c(q1)(x) · · · c(qℓ)(x)
}

.(4.11)

Proof. The combinatorics can be handled elegantly by working with expo-
nentials. We explain the method in the example of a function h(F (x)). We
first expand in a Taylor series,

h
(
F (x)

)
= h

(
x+ (F (x)− x)

)
=

∞∑

p=0

1

p!
Dp

F (x)−xh(x) = exp
(

Dp

F (x)−x

)

h(x) .

The exponential on the right simply is a short notation for the formal power
series. Multiplying by f(x) and using (4.8), we can combine the exponentials
to obtain a jet derivative,

f(x)h
(
F (x)

)
= ec(x) exp

(

Dp

F (x)−x

)

h(x) = exp
(

∇p
w̃

)

h(x) ,

where the jet w̃ has the components

w̃(x) =
(
c(x), F (x)− x

)
.

Applying the same method to the integrand in (4.4) gives

(4.12) f(x)L
(
F (x), F (y)

)
f(y) = exp

(

∇1,w̃ +∇2,w̃

)

L(x, y) ,

where we used that the derivatives all act on the arguments of L(x, y),
making it possible to simplify the prefactors with the usual computation
rules of the exponential. Using the abbreviation

∇w :=
(
∇1,w +∇2,w

)
,

the identity (4.12) can be written in the compact form

(4.13) f(x)L
(
F (x), F (y)

)
f(y) = e∇w̃ L(x, y) .
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It remains to expand the exponential in (4.13) in powers of λ. Inserting
the perturbation expansion of w̃, we obtain

e∇w̃ = exp
(
λ∇w(1) + λ2∇w(2) + · · ·

)
.

Let us compute the pth λ-derivative of this exponential at λ = 0. We consider
the contribution involving the factors ∇wq1 , . . . ,∇wqℓ . Since each factor ∇wq

comes with a factor λq, we clearly get a contribution only if q1 + · · ·+ qℓ = p.
We thus obtain

dp

dλp
e∇w̃

∣
∣
∣
∣
λ=0

=

p
∑

ℓ=1

∑

q1, . . . , qℓ ≥ 1

with q1+···+qℓ=p

cq1,...,cℓ ∇w(q1) · · · ∇w(qℓ) ,

where cq1,...,cℓ are combinatorial factors which can be determined as fol-
lows. Clearly, each λ-derivative annihilates one of the factors λ of the mono-
mial λq1 · · ·λqℓ . We must count the number of possibilities with which this
can occur. We first distinguish those λ-derivatives which act on the expo-
nential according to

d

dλ
eλ

q ∇
w(q) = q λq−1∇w(q) eλ

q ∇
w(q) .

Note that each such derivative generates a factor ∇w(q) . We use the conven-
tion that, carrying out the λ-derivatives consecutively, the first λ-derivative
acting on the exponential generates the factor∇w(q1) , the second such deriva-
tive generates the factor ∇w(q2) , and so on. Dropping this convention gives
a factor 1/ℓ!, i.e.

dp

dλp
e∇w̃

∣
∣
∣
∣
λ=0

=

p
∑

ℓ=1

1

ℓ!

∑

q1, . . . , qℓ ≥ 1

with q1+···+qℓ=p

c̃q1,...,cℓ ∇w(q1) · · · ∇w(qℓ)

with new combinatorial factors c̃q1,...,cℓ which are obtained simply by count-
ing the number of possibilities of forming groups of λ-derivatives acting
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on λq1 , λq2 , and so on. These combinatorial factors are given by the mono-
mial theorem. We thus obtain

dp

dλp
e∇w̃

∣
∣
∣
∣
λ=0

=

p
∑

ℓ=1

1

ℓ!

∑

q1, . . . , qℓ ≥ 1

with q1+···+qℓ=p

(
p

q1 · · · qℓ

)

×
(
dq1

dλq1
eλ

q1 ∇
w

(q1)

)

· · ·
(
dqℓ

dλqℓ
eλ

qℓ ∇
w

(qℓ)

)∣
∣
∣
∣
λ=0

= p!

p
∑

ℓ=1

1

ℓ!

∑

q1, . . . , qℓ ≥ 1

with q1+···+qℓ=p

∇w(q1) · · · ∇w(qℓ) .

Using this formula in (4.13) gives

1

p!

dp

dλp

(

f(x)L
(
F (x), F (y)

)
f(y)

)

=

p
∑

ℓ=0

1

ℓ!

∑

q1, . . . , qℓ ≥ 1

with q1+···+qℓ=p

∇w(q1) · · · ∇w(qℓ) L(x, y) .

Similarly, one derives the identity

1

p!

dp

dλp
ec(x) =

p
∑

ℓ=0

1

ℓ!

∑

q1, . . . , qℓ ≥ 1

with q1+···+qℓ=p

c(q1)(x) · · · c(qℓ)(x) .

Employing these formulas in (4.4) gives the result. �

4.2. Green’s operators

In Lemma 4.1 we rewrote the weak EL equations as the system of equa-
tions (4.11), to be satisfied for every p = 1, 2, . . .. In order to solve this sys-
tem of equations, we bring the contribution involving w(p) to the left. We
thus obtain the equation

(4.14) ∇u

(
ˆ

M

(
∇1,w(p) +∇2,w(p)

)
L(x, y) dρ(y)− s c(p)(x)

)

=−∇uE
(p)(x),
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where E(1) is given by (4.5), whereas for p > 1 we have

E(p) =

p
∑

ℓ=2

1

ℓ!

∑

q1, . . . , qℓ ≥ 1

with q1+···+qℓ=p

{

− s c(q1)(x) · · · c(qℓ)(x)

(4.15)

+

ˆ

M

(
∇1,w(q1) +∇2,w(q1)

)
· · ·
(
∇1,w(qℓ) +∇2,w(qℓ)

)
L(x, y) dρ(y)

}

.

Before solving for w(p), we need to specify the jet space used for varying the
measure: We denote the continuous global one-jets of the cotangent bundle
restricted to M by

J∗ := C0(M,R)⊕ C0(M,T ∗F) .

We let (Jtest)∗ be the quotient space

(Jtest)∗ := J∗
/{

(g, ϕ) ∈ J∗
∣
∣ g(x) a(x) + 〈ϕ(x), u(x)〉 = 0

for all u = (a, u) ∈ Jtest and x ∈M
}
,

where 〈., .〉 denotes the dual pairing of T ∗
xF and TxF (the reason for taking

equivalence classes simply is that it is convenient to disregard dual jets which
are trivial on Jtest). We thus obtain a mapping

∆ℓ : J∞ × · · · × J∞
︸ ︷︷ ︸

ℓ factors

→ (Jtest)∗ ,(4.16)

〈
u,∆ℓ

[
v1, . . . , vℓ

]〉
(x)

=
1

ℓ!
∇u

(
ˆ

M

(
∇1,v1

+∇2,v1

)
· · ·
(
∇1,vℓ

+∇2,vℓ

)
L(x, y) dρ(y)

− s b1(x) · · · bℓ(x)
)

,

valid for any u ∈ Jtest. We remark for clarity that the mapping ∆ℓ is sym-
metric in its ℓ arguments. Choosing ℓ = 1, we obtain the mapping ∆ ≡ ∆1 :
J∞ → (Jtest)∗ given by

〈u,∆v〉(x) = ∇u

(
ˆ

M

(
∇1,v +∇2,v

)
L
(
x, y
)
dρ(y)−∇v s

)

.
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Definition 4.2. A linear mapping S : (Jtest)∗ → J∞ is referred to as a
Green’s operator if

(4.17) ∆S v = −v for all v ∈ (Jtest)∗ .

Clearly, a Green’s operator exists if and only if the mapping ∆ is surjective.
In analogy to the situation for hyperbolic PDEs, the Green’s operators need
not be unique. Indeed, just as in classical field theory, the difference of two
Green’s operators is a solution of the linearized field equations (see Defini-
tion 3.3). We remark that, similar as in classical field theory and quantum
field theory, one could work with specific Green’s operators determined by
support properties (like retarded or advanced Green’s operators) or by mi-
crolocal properties (like the Feynman propagator). However, at this stage,
where we merely seek for solutions of the weak EL equations without specify-
ing initial conditions, we cannot and need not specify the Green’s operators.

With the above notions, we can write (4.14) as

(4.18) ∆w(p) = −E(p) ∈ (Jtest)∗ .

Having a Green’s operator to our disposal, we can solve this equation forw(p),

(4.19) w(p) = S E(p) .

Combining this equation with (4.5) and (4.15), we have obtained an itera-
tive procedure for constructing measures which satisfy the weak EL equa-
tions (4.4). We again point out that the Green’s operator S is not unique.
Indeed, there is the freedom to choose a different Green’s operator to ev-
ery order in perturbation theory. Exactly as in the analogous situation for
hyperbolic PDEs, taking this freedom into account gives rise to the general
solution to the weak EL equations. In order to make this non-uniqueness
manifest, we prefer to write (4.19) as

(4.20) w(p) = S(p)E(p) ,

where S(1), S(2), . . . are arbitrary Green’s operators.

4.3. Diagrams and Feynman rules

We now summarize the above construction and formulate it in a diagram-
matic language. For simplicity, we leave out the parameter λ, which was
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used merely as a book-keeping device in order to keep track of the different
orders in perturbation theory. We introduce the operators ∆ℓ by (see (4.16))

∆0(x) =

ˆ

M

L(x, y) dρ(y)− s(4.21)

∆ℓ

[
w1, . . . ,wℓ

]
(x) =

1

ℓ!

(
ˆ

M

(
∇1,w1

+∇2,w1

)
· · ·
(
∇1,wℓ

+∇2,wℓ

)
L(x, y) dρ(y)

− s c1(x) · · · cℓ(x)
)

(for ℓ ≥ 1)(4.22)

and choose Green’s operators S(p) with p = 1, 2, . . . as minus the inverse
of ∆ ≡ ∆1 (see Definition 4.2),

(4.23) ∆S(p) v = −v for all v ∈ (Jtest)∗ .

Then the jets w(p) are defined iteratively by (see (4.20))

(4.24) w(p) = S(p)E(p) ,

where E(p) depends on the previous jets w(1), . . . ,w(p−1) by (see (4.5) and
(4.15))

E(1)(x) = ∆0(x)(4.25)

E(p)(x) =

p
∑

ℓ=2

E
(p)
ℓ (x) (for p ≥ 2)(4.26)

E
(p)
ℓ (x) =

∑

q1, . . . , qℓ ≥ 1

with q1+···+qℓ=p

∆ℓ

[
w(q1), . . . ,w(qℓ)

]
(x) .(4.27)

The universal measure ρ̃ is obtained by (see (4.1), (4.6), (4.7), (4.8)
and (4.10))

(4.28) ρ̃ = F∗

(
ec ρ
)

where (c, F )(x) = (0, x) +

∞∑

p=1

w(p)(x) .

For the graphical representation, we denote the Green’s operator by a wig-
gled line and the operators ∆ℓ by semicircles (see Figure 1). Then the con-
tributions to the perturbation expansion can be depicted by Feynman dia-
grams as illustrated in Figure 2. The combinatorics is given in (4.26), (4.27)
and (4.28). We point out that our perturbation expansion only involves tree
diagrams.
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∆0

· · ·

b

b

b

∆2

w1

w2

w1

S

···

b

b

w2

wℓ

∆ℓ

Figure 1: Building blocks of Feynman diagrams.

b

b

w(1)

w(1)

w(2)

Figure 2: A simple Feynman diagram.

Remark 4.3. (alternative form of the perturbation expansion) For
completeness, we now give an alternative form of the perturbation expansion
will be used in Section 5 and might be useful for future applications. Namely,
dividing by f(x), the weak EL equations (4.4) can be written alternatively
as

(4.29) ∇1,u

(
ˆ

M

L
(
F (x), F (y)

)
f(y) dρ(y)− s

)

= 0 ,

to be satisfied for all u ∈ Jtest. Expanding the equations in this form, one ob-
tains the same perturbation expansion as above, except that the operator ∆ℓ

in (4.22) is to be modified to

∆̆ℓ

[
w1, . . . ,wℓ

]
(x)(4.30)

=
1

ℓ!

ˆ

M

(
D1,w1

+∇2,w1

)
· · ·
(
D1,wℓ

+∇2,wℓ

)
L(x, y) dρ(y) .

This formulation has the advantage that the Lagrange multiplier s drops
out. Moreover, it becomes clearer that the scalar component of the jets only
enters at the point y (as is obvious in (4.29) where only f(y) appears). The
disadvantage is that (4.30) is less symmetric in the variables x and y (in
particular, the form (4.22) is of advantage for the derivation of conservation
laws for surface layer integrals in [15, 16]).
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4.4. Constructing nonlinear solutions of the field equations

We now explain how the general construction of Section 4.1 can be adapted
in order to construct nonlinear solutions of the field equations. We consider
the setting that ρ is a minimizing measure, and we again assume that we
are given a Green’s operator S (see Definition 4.2). Moreover, we are given
a jet w(1) ∈ J∞ being a solution of the linearized field equations (see Defini-
tion 3.3). Our goal is to construct a family of solutions (ρ̃τ )τ∈R of the weak
EL equations of the form (4.1) whose first variation coincides with w(1), i.e.

ρ̃τ |τ=0 = ρ and
(
∂τf, ∂τF

)∣
∣
τ=0

= w(1) .

To this end, we construct the jets w(2),w(3), . . . iteratively again by (4.24),
(4.26) and (4.27) with ∆ℓ according to (4.22) (note that now ∆0 =
∆1[w

(1)] = 0). The desired family of measures (ρ̃τ ) is then defined similar
to (4.28) by inserting powers of τ , i.e.

ρ̃τ = (Fτ )∗
(
ecτ ρ

)
with (cτ , Fτ )(x) = (0, x) +

∞∑

p=1

τpw(p)(x) .

4.5. Perturbing a vacuum measure

In the applications, one often knows a critical measure which typically de-
scribes the vacuum of the system. Then the system is modified, for example
by introducing particles and/or fields. The task is to construct a solution of
the weak EL equations, starting from the modified system. We now adapt
the construction of Section 4.1 to this setting. To this end, we assume that ρ
is a measure which satisfies the EL equations (3.2). Moreover, we assume
that we are given a Green’s operator S (see Definition 4.2). The modified
system is described by a measure ρ̂ which, in analogy to (4.1), we assume
to be of the form

(4.31) ρ̂ = H∗

(
h ρ
)
,

where h and H are smooth,

h ∈ C∞
(
M,R+

)
and H ∈ C∞

(
M,F

)
.

Clearly, the measure ρ̂ is no longer a solution of the weak EL equations.
Similar to (4.8), (4.10) and (4.28), we expand h and H and rewrite the
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M := supp ρ

(a) (b) (c)

supp ρ̃

F
F2

F1

supp ρ̃

M

F F F

Figure 3: Fragmentation of the measure ρ.

coefficients with jets,

(4.32)
(
log h,H

)
(x) = (0, x) +

∞∑

p=1

v(p)(x) with v(p) ∈ J∞ .

Here we need to assume that the resulting jets v(p) are in J∞.
In order to construct a corresponding solution of the EL equations, we

again make the ansatz (4.1) and describe f and F by jets w(p) (see (4.7),
(4.8), (4.9) and (4.10)). Now we perform the perturbation expansion similar
to (4.26)–(4.28), taking into account the inhomogeneity v(p) to every order
in perturbation theory. More precisely, (4.24) is to be replaced by

w(p) = v(p) + S(p)
(

E(p) +∆v(p)
)

.

Indeed, applying the operator ∆ and using the defining equation of the
Green’s operator (4.17), one sees that the relations (4.18) again hold.

5. Perturbation theory with fragmentation

The perturbation expansion of the previous section was based on the ansatz
that the perturbed measure ρ̃ should be of the form (4.1) with f and F
according to (4.2). Intuitively speaking, this ansatz means that the support
of the measure is changed smoothly as a whole (see Figure 3 (a)), but it
is impossible to model a situation where the measure ρ “disintegrates” into
several “components” which are perturbed differently (see Figure 3 (b)). We
now extend the constructions Section 4 such as to allow for such a so-called
fragmentation of the universal measure.

We consider the following setting. Similar as in Section 4.4 we want to
construct nonlinear solutions of the field equations. Therefore, we assume
that ρ is a measure which satisfies the weak EL equations (3.4). We choose
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a parameter L ∈ N and consider mappings

fa ∈ C∞
(
M,R+

)
, Fa ∈ C∞

(
M,F

)
with a = 1, . . . , L .

For the universal measure with fragmentation we make the ansatz

(5.1) ρ̃ =
1

L

L∑

a=1

(Fa)∗
(
fa ρ

)
.

We refer to L as the number of subsystems and to a as the subsystem index.
Clearly, for one subsystem, (5.1) reduces to our earlier ansatz (4.1). The
larger L is chosen, the more freedom we have in perturbing the measure ρ.
We point out that we may choose L arbitrarily large. In the limit L→ ∞,
one can even describe situations where the support of the measure ρ is
“enlarged” by the perturbation as shown in Figure 3 (c). We also note that
a universal measure of the form (5.1) is closely related to the mechanism
of microscopic mixing as introduced in [7]; this will be explained further in
Section 8.

5.1. Linearized field equations for fluctuations

It is a bit easier to perform the perturbation expansion with fragmentation
in the alternative formulation introduced in Remark 4.3, because then the
scalar component of the jets appears only as a function of the variable y (but
of course, all our results can be rewritten in a straightforward way in the for-
mulation (4.4)). Adapted to the measure (5.1), the weak EL equations (4.29)
read

∇1,ua

(
1

L

L∑

b=1

ˆ

M

L
(
Fa(x), Fb(y)

)
fb(y) dρ(y)− s

)

= 0 ,

to be satisfied for all jets u ∈ (Jtest)L as well as for all x ∈M and a ∈
{1, . . . , L}. Since in finite dimension, pointwise evaluation is the same as
weak evaluation, we can write this equation equivalently as

(5.2)
1

L

L∑

a=1

∇1,ua

(
1

L

L∑

b=1

ˆ

M

L
(
Fa(x), Fb(y)

)
fb(y) dρ(y)− s

)

= 0 ,

which must hold for all u ∈ (Jtest)L and all x ∈M .
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In preparation of the perturbation expansion, we derive the correspond-
ing linearized field equations. To this end, we again expand f and F accord-
ing to (4.6) and (4.7). To first order, the EL equations (5.2) become

(5.3)
〈
u,∆

[
w(1)

]〉
(x) :=

1

L2

L∑

a,b=1

×∇ua(x)

ˆ

M

((
D1,w

(1)
a

+D2,w
(1)

b

)
L(x, y) + L(x, y) f (1)

b
(y)
)

dρ(y)

with w
(1)
a := (f

(1)
a , F

(1)
a ). Note that the vector component of the jet w

(1)
a

shifts the support of the universal measure in each subsystem independently
(as shown in Figure 3 (b)).

At this point, it is helpful to decompose the jets into components in-
dependent of the subsystem index and components whose mean vanishes,
i.e.

(5.4) u = ū+ uF with ūa(x) :=
1

L

L∑

b=1

ub(x) .

Here the subscript “F” can be thought of as referring to the “fragmentation”
of the universal measure or as describing the “fluctuations” of the jets in
the subsystems. For a convenient notation, we usually omit the subsystem
index of ū. The above splitting gives rise to a direct sum decomposition of
the jet spaces, which we write as

JL = J̄⊕ JF

and similarly for the jet spaces Jtest and J∞.
Using these notions, we can carry out the b-sum in (5.3) to obtain

〈
u,∆

[
w(1)

]〉
(x) =

1

L

L∑

a=1

∇ua(x)

ˆ

M

((
D1,w

(1)
a

+D2,w̄(1)

)
L(x, y)

+ L(x, y) f̄ (1)(y)
)

dρ(y) .

The fluctuations drop out completely when testing in J̄test,

〈
ū,∆

[
w(1)

]〉
(x) = ∇ū(x)

ˆ

M

((
D1,w̄(1) +D2,w̄(1)

)
L(x, y)

+ L(x, y) f̄ (1)(y)
)

dρ(y) ,
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giving back the linearized field equations without fragmentation. But clearly,
the fluctuations are visible when testing in Jtest

F
because

〈
uF,∆

[
w(1)

]〉
(x) =

1

L

L∑

a=1

∇uF,a(x)

ˆ

M

D1,w
(1)
F,a

L(x, y) dρ(y) .

Using that the first derivative of ℓ vanishes in view of the EL equations, we
can write this equation in the more compact form

〈
uF,∆

[
w(1)

]〉
(x) =

1

L

L∑

a=1

DuF,a(x)Dw
(1)
F,a

ℓ(x) for all x ∈M .

These findings lead to the following definition:

Definition 5.1. A jet v ∈ (J1)L is referred to as a solution of the lin-
earized field equations with fragmentation if its mean v̄ and fluctua-
tion vF satisfy for all u ∈ (Jtest)L and all x ∈M the equations

∇ū(x)

ˆ

M

((
D1,v̄ +∇2,v̄

)
L(x, y)

)

dρ(y) = 0(5.5)

1

L

L∑

a=1

DuF,a(x)DvF,a
ℓ(x) = 0 .(5.6)

The vector space of all linearized solutions is denoted by

Jlin = J̄lin ⊕ Jlin

F
⊂ (J1)L .

We point out that the linearized field equations with fragmentation do
not involve all the components of the jets, neither of the test jet u nor of
the linearized field v. Indeed, only the vector component of the fluctuations
comes into play, but their scalar component does not enter. Moreover, if uF

is chosen as a linearized solution, then (5.6) is satisfied, no matter how vF
is chosen. In other words, testing in the direction of fluctuating linearized
solutions, the equation (5.6) does not give any information. Hence in the
linearized field equations with fragmentation (5.5) and (5.6), the jets u can
be changed freely in Jlin

F
.
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In order to implement these findings in a compact notation, it is useful
to decompose the fluctuating jets as

J1
F
= Jc

F
⊕ Jlin

F
,

where Jc

F
is a (non-orthogonal) complement of Jlin

F
in J1

F
. We thus obtain the

decomposition of the jet spaces

(J1)L = J̄⊕ Jc

F
⊕ Jlin

F
.

Using a block matrix notation, the unperturbed operator ∆ takes the form

(5.7) 〈u,∆v〉(x) =
〈




ū

uc

F

ulin

F



 ,





∆̄ 0 0
0 ∆F 0
0 0 0









v̄

vc

F

vlin

F





〉

,

where the operators ∆̄ and ∆F are defined by

∆̄ : J̄1 → (J̄test)∗

〈ū, ∆̄v̄〉(x) = ∇ū

ˆ

M

((
D1,v̄ +D2,v̄

)
L(x, y) + L(x, y) b̄(y)

)

dρ(y)(5.8)

∆F : Jc

F
→ (Jc

F
∩ Jtest

F
)∗

〈uF,∆FvF〉(x) =
1

L

L∑

a=1

DuF,a(x)DvF,a
ℓ(x) .(5.9)

We finally remark that, disregarding differentiability issues, the jet space
Jlin

F
can also be understood from the perspective of stability. If ρ is a mini-

mizer, then then the Hessian of ℓ is non-negative and thus gives rise to the
positive semi-definite bilinear form (for details see [11, Section 4])

1

L

L∑

a=1

ˆ

M

∇2ℓ|x(., .) dρ : (Jtest)L × (J1)L → R .

The space Jlin

F
is obtained by all fluctuating jets which are in the neutral

subspace of this positive semi-definite bilinear form. This means that frag-
mentation can occur only in directions in which the Hessian of the causal
action vanishes.
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5.2. An explicit example

Similar to the procedure in Section 4.2, we may assume that the operators ∆̄
and ∆F in (5.7) can be inverted by corresponding Green’s operators:

Definition 5.2. A linear mapping S̄ : (J̄test)∗ → J̄∞ is referred to as an
Green’s operator for the mean if

∆̄ S̄ v̄ = −v̄ for all v̄ ∈ (J̄test)∗ .

A linear mapping SF : (Jc

F
∩ Jtest

F
)∗ → Jc

F
∩ J∞

F
is referred to as a Green’s

operator for fluctuations if

∆F SF vF = −vF for all vF ∈ (Jc

F
∩ Jtest

F
)∗ .

Before we can perform the perturbation expansion, we must analyze how
to invert the field equations on the subspace Jlin

F
. As one sees in (5.7), the

linearized operator ∆ vanishes on this subspace. This means that the opera-
tor on this subspace is determined by the perturbation itself. This situation
resembles the perturbation theory with degeneracies for the eigenvalues of
a linear operator. In this case, the procedure is to diagonalize the perturba-
tion on the degenerate subspaces (without using perturbation theory) before
performing the perturbation expansion. In order to explain how to proceed
in our setting, we begin with a simple concrete example.

Example 5.3. Let F = R2 and

L
(
(x1, x2), (y1, y2)

)
= (x1 − y1)

4 + (x2 − y2)
2 − (x2 + y2)

2 (x1 − y1)
2

(for the moment, we disregard that this Lagrangian is unbounded from be-
low; this shortcoming will be removed after (5.22) below). Moreover, we let ρ
be the Dirac measure supported at the origin. The jet spaces are

J = Jtest = R× R
2 ∋ u = (a, u1, u2) .

Obviously, all first and second partial derivatives of the Lagrangian vanish at
the origin. Therefore, ρ is a critical measure, and the EL equations (5.2) are
satisfied for the unperturbed system with the Lagrange multiplier s chosen
to be zero.
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We now consider a fragmentation with two subsystems L = 2, i.e.

(5.10) JF =
{
(ua)a=1,2 , u1 = −u2 =

(
a, u1, u2

)
∈ R× R

2
}
.

In order to determine Jlin

F
, we first compute the Hessian of ℓ,

ℓ(x1, x2) = L
(
(x1, x2), (0, 0)

)
= x41 + x22 − x22 x

2
1 , D2ℓ|(0,0) =

(
0 0
0 2

)

.

Therefore

(5.11) Jlin

F
=
{

(ua)a=1,2 , u1 = −u2 =
(
a, u1, 0

)
∈ R× R

}

,

showing that fragmentation can occur only in the x1-direction.
We now prescribe the leading orders of the transformation of the univer-

sal measure (5.1) and verify if this gives a suitable starting point for a pertur-

bative treatment. In order to preserve the total volume, we choose fa = f
(0)
a

with

(5.12) 0 < f
(0)
1 < 2 and f

(0)
2 = 2− f

(0)
1 .

The transformation Fa, on the other hand, is chosen as

(5.13) Fa(0) = λw
(1)
a

with the vector component

w
(1)
1 = (w, 1) and w

(2)
1 = (−w, 1)

and w ∈ R.
Let us verify if this family of measures satisfies the weak EL equations,

and if not, what the resulting error is. The support of the perturbed measures
consists of the two points

(5.14) p1 := λ (w, 1) and p2 := λ (−w, 1) .
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Moreover, a direct computation gives

ℓ(p1) = −8λ4
(
2− f

(0)
1

)
w2
(
w2 − 1

)

ℓ(p2) = −8λ4 f
(0)
1 w2

(
w2 − 1

)

Dℓ|p1 = −8λ3
(
2− f

(0)
1

) (

− w
(
2w2 − 1

)
, w2

)

Dℓ|p2 = −8λ3 f
(0)
1

(

w
(
2w2 − 1

)
, w2

)

.

Hence, testing with the average and the fluctuation gives

1

2

2∑

a=1

∇ūa
ℓ(pa) = −8λ3





ā
ū1

ū2



 ·






λw2
(
w2 − 1

)

(
f
(0)
1 − 1

)
w
(
2w2 − 1

)

w2




(5.15)

1

2

2∑

a=1

∇(uF)aℓ(pa) = −8λ3





a
u1

u2



 ·






λ
(
f
(0)
1 − 1

)
w2
(
w2 − 1

)

−w
(
2w2 − 1

)

−
(
f
(0)
1 − 1

)
w2




(5.16)

(where in the last line we parametrized the fluctuating jets as in (5.10)).
We now restrict attention to the subspace Jlin

F
on which the unperturbed

operator ∆ in (5.7) vanishes. Again parametrizing according to (5.11), we
obtain

(5.17)
1

2

2∑

a=1

∇(ulin
F

)a
ℓ(pa) = −8λ3

(
a
u1

)

·
(

λ
(
f
(0)
1 − 1

)
w2
(
w2 − 1

)

−w
(
2w2 − 1

)

)

(here we simply dropped the last component in (5.16)). Moreover, the Lapla-
cian on Jlin

F
is computed by

(5.18) 〈ulin

F
, ∆̃vlin

F
〉

= 4

〈(
a
u1

)

,

(

2w2 (w2 − 1)λ4 4
(
f
(0)
1 − 1

)
w (2w2 − 1)λ3

−w (2w2 − 1)λ3 −
(
f
(0)
1 − 4

)
(6w2 − 1)λ2

)(
b
v1

)〉

C2

.

The basic question is whether the error in the linearized field equa-
tions (5.17) can be compensated by perturbations of fa and Fa. Having
prescribed the leading orders by (5.12) and (5.13), the next orders are per-
turbations of the form

λ f
(1)
a and λ2 F

(2)
a .
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Substituting into (5.18) gives a contribution scaling like

〈ulin

F
, ∆̃vlin

F
〉 = a c5 λ

5 + u1 c4 λ
4 + O(λ6) .

This contribution is by a factor of λ smaller than the error in the linearized
field equations (5.17). This shows that at this stage, a perturbation expan-
sion is not sensible. This can be understood similar to the problem in the
perturbation theory for linear operators when applying the naive perturba-
tion expansion to a degenerate subspace.

The method to cure this problem is to choose f
(0)
1 and w appropriately.

Indeed, setting

(5.19) f
(0)
1 = 1 and w =

1√
2
,

we obtain

1

2

2∑

a=1

∇(ulin
F

)a
ℓ(pa) =

(
a
u1

)

·
(
0

0

)

(5.20)

〈ulin

F
, ∆̃vlin

F
〉 =

〈(
a
u1

)

,

(
2λ4 0

0 24λ2

)(
b
v1

)〉

C2

.(5.21)

Now the linearized field equations are satisfied. This can be understood
immediately by the plot of ℓ̃(x1, λ) in Figure 4, which shows that the minima

λ w-λ w

-0.10 -0.05 0.05 0.10
x
1

-0.00020

-0.00015

-0.00010

-0.00005

Figure 4: The function ℓ(x1, λ) for the fragmented measure and λ = 0.1.

of ℓ are precisely at the support points (5.14).
Moreover, one sees that for the resulting system a perturbation expan-

sion is sensible, provided that the error in the linearized field equations scales
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like

1

2

2∑

a=1

∇(ulin
F

)a
ℓ(pa) .

(
a
u1

)

·
(
O(λ5)

O(λ4)

)

.

If this condition holds, the perturbation expansion consists in determining
the jets

(
f
(1)
a , F

(2)
a

)
,
(
f
(2)
a , F

(3)
a

)
,
(
f
(3)
a , F

(4)
a

)
, . . .

iteratively. For example, we may modify the Lagrangian by adding a poten-
tial of sixth order

(5.22) L
(
(x1, x2), (y1, y2)

)
→ L

(
(x1, x2), (y1, y2)

)
+
(
x61 + x62 + y61 + y62

)
.

After this modification, the Lagrangian is bounded below. By adding an
irrelevant constant, it can even be arranged to be non-negative.

5.3. The perturbation expansion

After these preparations, we now give the general construction. We choose
the unperturbed scalar components such as to preserve the total volume, i.e.

(5.23) f
(0)
a ≥ 0 and

1

L

L∑

a=1

f
(0)
a = 1 .

Next, we choose the linearized solution which triggers the fragmentation. In
order to allow for a more general scaling, we make the ansatz

(5.24) w(1) = λp v̄lin + λq vlin

F

with parameters p, q > 0 and

min(p, q) = 1

(here vlin

F
denotes a jet with vanishing scalar component).

For the perturbation expansion, we again work with the function c de-
fined by (4.8) and expand according to (4.7) and (4.9). We also again use the
notation (4.10) (but of course, now all objects carry additional subsystem
indices a or b). Our ansatz (5.23) and (5.24) means that the following jets
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are already determined:

c
(0)
a (x) = log f

(0)
a (x) , F

(0)
a (x) = x

and {

w(p) = v̄lin + vlin

F
if p = q

w(p) = v̄lin and w(q) = vlin

F
if p 6= q .

We set all other jets w(ℓ) to zero. Now we proceed in two steps. We first
perturb only in the jet spaces J̄⊕ Jc

F
, beginning to the order p+ 1. Thus we

modify the jets according to
{

w(n) = w̄(n) + (wc

F
)(n) if n > p, n 6= q

w(n) = vlin

F
+ w̄(n) + (wc

F
)(n) if n > p, n = q .

The jets w̄(n) and (wc

F
)(n) can be computed iteratively for n = p+ 1, p+

2, . . . by multiplying the error in the weak EL equations by the Green’s
operators in Definition 5.2. We let ρ̃ be the measure obtained from this
perturbation expansion according to (5.1). By construction, this measure
satisfies the weak EL equations (5.2) if tested in the direction of J̄⊕ Jc

F
, i.e.

1

L

L∑

a=1

∇ua
ℓ̃
(
Fa(x)

)
= 0 for all u ∈ (J̄ ⊕ Jc

F
) ∩ Jtest ,

where the tilde refers to the perturbed measure,

ℓ̃(Fa(x)) :=
1

L

L∑

b=1

ˆ

M

L
(
Fa(x), Fb(y)

)
fb(y) dρ(y)− s .

However, the weak EL equations will not hold in general if we test in the
direction of Jlin

F
. In order to obtain a well-defined perturbation expansion, we

need to assume that the error in the EL equation is small compared to the
size of the Laplacian on Jlin

F
, as is made precise in the following definition.

Definition 5.4. The Laplacian on Jlin

F
is definite of order r if there is an

operator TF : (Jlin

F
∩ Jtest

F
)∗ → Jlin

F
with the property that for all u ∈ Jlin

F
∩ Jtest

and v ∈ (Jlin

F
∩ Jtest

F
)∗,

(5.25)
〈(
alin

F
, λq ulin

F

)
, ∆̃TF

(
blin
F
, λq vlin

F

)〉

= λr
〈
ulin

F
, vlin

F

〉(

1 + O(λ)
)

.

The ansatz (5.23) and (5.24) gives rise to a well-posed fragmentation if
there is r > q such that the Laplacian on Jlin

F
is definite of order r and if for
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all u ∈ Jlin

F
∩ Jtest,

(5.26)
1

L

L∑

a=1

((
alin

F

)

a
(x) + λqD(

ulin
F

)

a

)

ℓ̃
(
Fa(x)

)
= O

(
λr+1

)
.

If the condition in this definition holds, the weak EL equations can
also be satisfied in the direction of Jlin

F
by changing the perturbation ansatz

according to

w̃ → w̃+ λ
((
clin
F

)(1)
, λq

(
wlin

F

)(q+1)
)

(5.27)

+ λ2
((
clin
F

)(2)
, λq

(
wlin

F

)(q+2)
)

+ · · · .

Now the error in the EL equations in the direction of Jlin

F
can be compensated

order by order by multiplying with the corresponding Green’s operator TF.
Clearly, the higher order jets w̄(n) and (wc

F
)(n) are also affected by the jets

added in (5.27), but the resulting error can be compensated again using the
Green’s operators in Definition 5.2. In this way, we obtain a perturbation
expansion for the universal measure with fragmentation. The expansion is
well-defined as a formal power series in λ.

We note that the different fragments of the measure are separated by
w̃lin

F
∼ λq. Therefore, the “size” of the microstructure obtained by fragmen-

tation is of order ∼ λq. Consequently, differentiating this microstructure
gives a scaling factor λ−q. This is the reason why on the left side of (5.25)
and (5.26), the vector components of the jets are multiplied by scaling fac-
tors λq. In Example (5.3), this scaling behavior can be seen explicitly from
the different powers of λ in (5.21).

For clarity, we also point out that in the applications, the delicate step

is to choose the weights f
(0)
a as well as the ansatz (5.24) correctly such as to

obtain a well-posed fragmentation. This difficulty already became clear in
Example 5.3, where we had to come up with the ansatz (5.19) and choose p =
q, giving a well-posed fragmentation with r = 4. Once the correct ansatz
for the fragmentation has been found, the perturbation expansion can be
performed in a straightforward way as outlined above. We postpone the
combinatorial details to the physical applications in [2].
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6. Perturbation expansion for causal fermion systems

6.1. Preliminaries

We briefly recall how the causal action principle for causal fermion systems
fits into the framework of causal variational principles in the non-compact
setting (see also [15, Section 2.3]). Compared to the setting in Section 2
and [8, Section 1.1], we incorporate the trace constraint by restricting at-
tention to operators of fixed trace. Moreover, we treat the boundedness
constraint with a Lagrange multiplier κ. Finally, by assuming that the un-
perturbed measure has the property that all space-time points are regular
(see [8, Definition 1.1.5]), we may assume that all operators have exactly n
positive and n negative eigenvalues. This leads to the following setting:

Let (H, 〈.|.〉H) be a complex Hilbert space. Moreover, we are given pa-
rameters n ∈ N (the spin dimension), c > 0 (the constraint for the local
trace) and κ > 0 (the Lagrange multiplier of the boundedness constraint).
We let F ⊂ L(H) be the set of all operators on H with the following prop-
erties:

◮ F is selfadjoint, has finite rank and (counting multiplicities) has n pos-
itive and n negative eigenvalues.

◮ The trace is constant, i.e.

(6.1) tr(F ) = c .

On F we consider the topology induced by the sup-norm on L(H). If H is
finite-dimensional, then F has a smooth manifold structure (see the concept
of a flag manifold in [18] or the detailed construction in [17, Section 2.4]).

We introduce the Lagrangian Lκ by adding a Lagrange multiplier term
to (2.2),

(6.2) Lκ : F × F → R , Lκ(x, y) =
∣
∣(xy)2

∣
∣− 1

2n
|xy|2 + κ |xy|2 .

Clearly, this Lagrangian is non-negative and continuous on F × F. Thus we
are back in the setting of Section 3.1. The EL equations in Definition 3.1
agree with the EL equations as derived for the causal action principle with
constraints in [1] (see [1, Theorem 1.1]).

Before going on, we make a few remarks. Since in the present setting, the
Lagrange multiplier term κ |xy|2 in (6.2) is always present, we can simplify
the notation by always omitting the subscript κ. We also point out that we
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shall always keep the constants c and κ in (6.1) and (6.2) fixed when varying
or perturbing the measure ρ. This is justified as follows. The constant c can
be changed arbitrarily by rescaling the measure according to

ρ(Ω) → ρ
({
αx
∣
∣x ∈ Ω

})

with α ∈ R .

Combining this transformation with our previous transformation (3.3), the
freedom in rescaling the universal measure is exhausted. Therefore, the pa-
rameter κ must be regarded as a physical parameter of the system. The
reason for keeping it fixed is that we want to describe localized physical sys-
tems, meaning that the perturbations of ρ are spatially compact or that the
resulting space-time is asymptotically flat. In such situations, the param-
eter κ is determined by the asymptotic form of the universal measure at
infinity, which is kept fixed in our variations and perturbations. More gen-
erally, κ can be kept fixed if we assume that there is a macroscopic region
in space-time where no interaction takes place.

We now recall the definition of a few other basic objects needed for the
analysis of causal fermion systems (for more details see [8, Section 1.1]). For
every x ∈ F we define the spin space Sx by Sx = x(H); it is a subspace of H
of dimension 2n. On the spin space Sx, the spin scalar product ≺.|.≻x is
defined by

≺u|v≻x = −〈u|xu〉H (for all u, v ∈ Sx) .

We let πx be the orthogonal projection on Sx ⊂ H. Then, for any x, y ∈M
we define the kernel of the fermionic projector P (x, y) by

P (x, y) = πx y|Sy
: Sy → Sx .

The kernel of the fermionic projector is very useful because, forming the
closed chain Axy by

Axy := P (x, y)P (y, x) = πx y x|Sx
: Sx → Sx ,

the eigenvalues of Axy coincide with the eigenvalues λxy1 , . . . , λ
xy
2n in (2.1).

In this way, the Lagrangian can be expressed in terms of the kernel of the
fermionic projector.

A wave function ψ is defined as a mapping which to every x ∈M asso-
ciates a vector of the corresponding spin space,

ψ : M → H with ψ(x) ∈ SxM for all x ∈M .
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A wave function is said to be continuous at x if for every x ∈M and ε > 0,
there is δ > 0 such that

∥
∥
√

|y|ψ(y)−
√

|x|ψ(x)
∥
∥
H
< ε for all y ∈M with ‖y − x‖ ≤ δ .

The vector space of continuous wave functions is denoted by C0(M,SM).
For every u ∈ H, the corresponding physical wave function ψu is the wave
function obtained by projecting to the spin spaces, i.e.

ψu(x) := πxu ∈ SxM .

The physical wave functions can be understood as describing the “occupied
states” of the system (for details see [8, §1.1.4 and §1.2.4]). The physical wave
functions are all continuous. The wave evaluation operator Ψ is the linear
operator which to every Hilbert space vector associates the corresponding
physical wave function,

(6.3) Ψ : H → C0(M,SM) , u 7→ ψu .

Evaluating at a fixed space-time point gives the mapping

Ψ(x) : H → SxM , u 7→ ψu(x) .

The operator x as well as the kernel of the fermionic projector can be ex-
pressed in terms of the wave evaluation operator by (see [8, Lemma 1.1.3])

(6.4) x = −Ψ(x)∗Ψ(x) and P (x, y) = −Ψ(x)Ψ(y)∗ .

6.2. Perturbation expansion for the wave evaluation operator

The perturbation expansion in Section 4 was performed in a chart on F. We
now explain how to construct such a chart. Working in this chart will also
immediately give a perturbation expansion for the wave evaluation operator.
Given x ∈M , we consider the mapping

(6.5) R :
{
ψ ∈ L(H, Sx)

∣
∣ tr(ψ∗ψ) 6= 0

}
→ L(H) , ψ 7→ c

tr(ψ∗ψ)
ψ∗ψ .

The operators in the image of R are selfadjoint, have finite rank and at
most n positive and at most n negative eigenvalues. Moreover, due to the
rescaling by the prefactor c/ tr(ψ∗ψ), they satisfy the trace condition (6.1).
Let us verify that the image of R contains all operators in F: By definition
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of F, a given operator F ∈ F is selfadjoint and has n positive eigenvalues
(which we denote by ν1, . . . , νn > 0) and n negative eigenvalues (denoted
by (νn+1, . . . , ν2n)). Diagonalizing F gives a representation

F = U diag(ν1, . . . , ν2n)U
∗

where U : C2n → H is an isometric embedding. It is useful to rewrite this
equation as

F = V ∗ diag(1, . . . , 1
︸ ︷︷ ︸

n entries

,−1, . . . ,−1
︸ ︷︷ ︸

n entries

)V

with V := diag(
√

|ν1|, . . . ,
√

|ν2n|)U∗. Then, choosing a pseudo-orthogonal
basis (eα)α=1,...,2n of Sx, the mapping

ψ : H → Sx , ψ(u) :=

2n∑

α=1

(V u)α eα

has the desired property F = ψ∗ψ.
But the mapping R is not injective for two reasons: First, due to the

rescaling, multiplying ψ by a complex number leaves R(ψ) unchanged. Sec-
ond, a local unitary transformation

(6.6) ψ → U ψ with U ∈ U(Sx)

preserves the combination ψ∗ψ and thus leaves R(ψ) unchanged.
The mapping R can be used to construct a chart of F around x: Since

the image of R contains F, the operator x can be written as x = R(ψ)
with ψ ∈ L(H, Sx) (more explicitly, we can choose ψ = Ψ(x)). By continuity,
the numbers of positive and negative eigenvalues of the operator R(φ) are
again equal to n for all φ in a small neighborhood V ⊂ L(H, Sx) of ψ. Thus
the restriction of R to this neighborhood maps to F,

R|V : L(H, Sx) ∩ V → F .

Differentiating at ψ gives a linear operator DR|ψ : L(H, Sx) → TxF. This
operator is not injective (because infinitesimal scalings and unitary transfor-
mations (6.6) lie in its kernel). Therefore, we choose a proper subspace E ⊂
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L(H, Sx) such that the restriction to E is invertible,

DR|ψ
∣
∣
E

: E ⊂ L(H, Sx) → TxF is continuously invertible

(if H is finite-dimensional, such a subspace E always exist; in the infinite-
dimensional setting the condition that the inverse be continuous poses con-
straints which we shall not analyze here). As a consequence, the restriction
of R is a local diffeomorphism, meaning that there is an open neighbor-
hood V ′ ⊂ V ⊂ L(H, Sx) of ψ and an open neighborhood U ⊂ F of x such
that the restriction

R|ψ+(E∩V ′) : ψ + (E ∩ V ′) → U ⊂ F

is a diffeomorphism (here ψ + E denotes the affine subspace through ψ). Its
inverse

X := (R|ψ+(E∩V ′))
−1 : U ⊂ F → ψ + E

defines a chart (X,U) around x. Choosing a basis (e1, . . . , em) of E, we write
the mapping F :M → F in components F (x)α, i.e.

X
(
F (x)

)
= ψ +

m∑

α=1

F (x)α eα .

Choosing for every x ∈M a chart of this form and choosing a suitable
jet space Jtest, we are back in the setting of Section 4.1. After determining
the F (p), the corresponding perturbation of the wave evaluation operator is
given simply by the component in our chart, i.e.

Ψ(p)(x) = F (p)(x)α eα ∈ E ⊂ L(H, Sx) (p ≥ 1) .

6.3. Perturbing the vacuum

We now explain how the construction in Section 4.5 applies to causal fermion
systems. Let ρ be a universal measure describing the vacuum (for example,
a regularized Dirac sea configuration as constructed in [8, Section 1.2]). In-
troducing particles and/or anti-particles (as described in [8, Section §2.1.7])
amounts to modifying the wave evaluation operator Ψ to

(6.7) Ψ̂ := Ψ +∆Ψ : H → C0(M,SM) .

At this point, the complication arises that the local correlation operators
defined in analogy to (6.4) by F̂ (x) = −Ψ̂(x)∗Ψ̂(x) (see [8, eq. (1.4.12)]) will
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in general violate our trace condition (6.1). In order to resolve this problem,
we rescale the local correlation operators similar as in (6.5) by setting

(6.8) Ĥ(x) :=
c

tr
(
Ψ̂(x)∗Ψ̂(x)

) Ψ̂(x)∗Ψ̂(x) .

We now introduce the corresponding universal measure ρ̂ as the push-forward
of Ĥ,

(6.9) ρ̂ := Ĥ∗ρ .

Now we are back in the setting of Section 4.5. We remark that the rescal-
ing (6.8) seems unproblematic because in physical applications it affects only
the higher orders in ε relative to the length scale of macroscopic physics (for
details on this point see [8, Section 2.5]).

7. Example: Perturbation expansion in the continuum limit

7.1. Preliminaries

We now recall a few constructions of the continuum limit analysis in [8]
which will be of relevance here. In [8, §1.4.1] the EL equations are written
in a form which is particularly convenient for a detailed analysis. These EL
equations are obtained by considering a special class of variations of the
wave evaluation operator Ψ:

Definition 7.1. A variation of the physical wave functions
(Ψτ )τ∈(−τmax,τmax) with τmax > 0 and Ψ0 = Ψ is smooth and compact if
the family of operators has the following properties:

(a) The variation is trivial on the orthogonal complement of a finite-
dimensional subspace I ⊂ H, i.e.

Ψτ |I⊥ = Ψ for all τ ∈ (−τmax, τmax) .

(b) There is a compact subset K ⊂M outside which the variation is trivial,
i.e.

(
Ψτ (u)

)∣
∣
M\K

=
(
Ψ(u)

)∣
∣
M\K

for all τ ∈ (−τmax, τmax) and u ∈ H .
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(c) The Lagrangian is continuously differentiable in the sense that the
derivative

d

dτ
L
(
x, Fτ (y)

)∣
∣
τ=0

with Fτ (x) :=
c

tr(Ψτ (x)∗Ψτ (x))
Ψτ (x)

∗Ψτ (x)

exists and is continuous on M ×M .

For clarity, we point out that, similar to (6.5), the factor

c/ tr(Ψτ (x)
∗Ψτ (x))

is again needed in order to the trace condition (6.1). For the derivation of
the EL equations, it is more convenient to disregard this condition in the
variation, and to realize it instead by a Lagrange multiplier term. Then,
according to (6.4), the first variation δΨ = ∂τΨ|τ=0 defines a corresponding
variation of the kernel of the fermionic projector given by

(7.1) δP (x, y) = −δΨ(x)Ψ(y)∗ −Ψ(x) δΨ(y)∗ .

The resulting first variation of the Lagrangian can be written as (see [4,
Section 5.2] and [8, eq. (1.4.16)])

(7.2) δL(x, y) = TrSy

(
Q(y, x) δP (x, y)

)
+TrSx

(
Q(x, y) δP (x, y)∗

)

with a kernel Q(x, y) : Sy → Sx which is symmetric in the sense that

Q(x, y)∗ = Q(y, x)

(a more explicit formula for Q(x, y) is given in [8, Lemma 3.6.2]). Then the
EL equations corresponding to the above variations can be written as (see [8,
Proposition 1.4.3])

(7.3)

ˆ

M

Q(x, y)ψu(y) dρ(y) =
λ

2
ψu(x) for all u ∈ H and x ∈M ,

where λ is the Lagrange multiplier needed in order to arrange the trace
condition (6.1). The connection to the weak EL equations (3.4) is not obvious
and will be explained in Section 7.2 below.

In the continuum limit (for details see [8, §3.5.2]), the EL equations (7.3)
are evaluated for a physical wave function ψu having the form of an ultra-
relativistic wave packet of negative energy, meaning that the wave packet
has frequency of the order |Ω| and is spatially localized on the scale δ (as
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measured in a chosen reference frame). Moreover, we assume that the spatial
distance of the ultrarelativistic wave packet from the space-time point x is
on the scale ℓ with (see [8, eq. (3.5.28) and Figure 3.1])

(7.4) ε≪ |Ω|−1 ≪ δ ≪ ℓ, ℓmacro,m
−1

(where m−1 is the Compton scale and ℓmacro denotes the length scales of
atomic or high energy physics). Moreover, the equations (7.3) are evaluated
weakly with a test function φ which is supported in a δ-neighborhood of
the point x (with Euclidean distances measured again in a chosen reference
frame). Then the supports of φ and ψu are disjoint, so that the right side
of (7.3) vanishes (see [8, eqs (3.5.24) and (3.5.29)])

(7.5)

ˆ

M

dρ(x)

ˆ

M

dρ(y)≺φ(x) |Q(x, y)ψu(y)≻x = 0 .

Written in this form, the main contribution to the EL equations comes from
the behavior of Q(x, y) on the light cone, making it possible to analyze the
equations in detail in the formalism of the continuum limit (for details see [8,
Section 2.4 and Chapters 3-5]).

In the resulting continuum description, the kernel of the fermionic pro-
jector is a solution of the Dirac equation in the presence of a classical gauge
field. In order to keep the setting as simple as possible, we here restrict
attention to one type of elementary particles and a U(1) gauge field (the
generalizations to several generations and more general gauge fields are car-
ried out in detail in [8, Chapters 3–5]). Then the Dirac equation reads

(7.6)
(
i∂/+ /A−m

)
P (x, y) = 0 ,

where A can be thought of as an electromagnetic potential, but it does not
need to satisfy Maxwell’s equations. In order to construct the kernel of the
fermionic projector in the presence of the electromagnetic potential, one
expands the Dirac equation (7.6) in powers of the potential and solves the
equations iteratively with the help of Dirac Green’s operators s defined by

(7.7) (i∂/−m) sm(x, y) = δ4(x− y) .

The resulting causal perturbation expansion becomes unique by making use
of the underlying causal structure (for details see [8, Section 2.1]).
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7.2. Choosing the jet spaces and the Green’s operator

In this section we explain how the weak EL equations (3.4) and the pertur-
bation expansion of Section 4 are related to the analysis in the continuum
limit. Our first task is to introduce the jet spaces. It is useful that, similar as
explained in (6.7) and (6.8) for finite variations, tangent vectors to F on M
can be described by infinitesimal variations of the wave evaluation operator.
Thus we describe a tangent vector u ∈ TxF at a space-time point x ∈M as

u = δĤ(x) = −δΨ(x)∗Ψ(x)−Ψ(x)∗ δΨ(x)(7.8)

+
x

c
tr
(
δΨ(x)∗Ψ(x) + Ψ(x)∗ δΨ(x)

)

(where we used that trx = − trΨ(x)∗Ψ(x) = c) with

(7.9) δΨ : H → C∞(M,SM) .

Our next goal is to introduce the space of test jets Jtest in such a way
that the weak EL equations (3.4) agree with the EL equations in the con-
tinuum limit (7.5) for ψu an ultrarelativistic wave packet (7.4). We say that
a physical wave function ψu is macroscopic if its energy and momentum is
much smaller than the Planck energy. We choose u such that ψu is macro-
scopic and is an ultrarelativistic wave packet as defined before (7.4). Next,
we choose δψu as a wave function with compact support such that its spatial
distance to the ultrarelativistic wave packet scales like

(7.10) ε≪ dist
(
supp δψu, suppψu

)
≪ ℓmacro .

We define the corresponding variation of the wave evaluation operator δΨ
as the unique linear mapping with the properties that

δΨ : v 7→
{

δψu if v = u

0 if v ⊥ u .

Since by construction, ψu and δψu have disjoint supports, the trace in (7.8)
vanishes. Therefore, the vector field described by δΨ is given by

u = δĤ(x) = −δΨ(x)∗Ψ(x)−Ψ(x)∗ δΨ(x) .

We choose Γtest as the span of all the vector fields u for δΨ as specified above.
Since in the weak evaluation on the light cone, only variations of the wave
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functions are considered, we choose the scalar component of Jtest trivially,

(7.11) Jtest = {0} ⊕ Γtest ⊂ C∞(M,R)⊕ C∞(M,TF) .

We remark that there is no point in making (7.10) mathematically more
precise, because in the formalism of the continuum limit one also works
merely with the scaling behavior.

The next lemma gives the connection between the weak EL equations
(3.4) and their continuum limit (7.5).

Lemma 7.2. For any u ∈ Jtest and all x ∈M ,

∇uℓ(x) = −2Re

ˆ

M

tr
(
δΨ(x)∗Q(x, y)Ψ(y)

)
dρ(y) .

Proof. Since u has no scalar component, the term involving s in (3.1) drops
out. Using (7.1) together with the fact that the jet u acts only on x,

∇u(x)P (x, y) = −δΨ(x)Ψ(y)∗ .

Using this formula in (7.2), we obtain

∇u(x)L(x, y) = −TrSy

(
Q(y, x) δΨ(x)Ψ(y)∗

)
− TrSx

(
Q(x, y)Ψ(y) δΨ(x)∗

)

= −2 Re tr
(
δΨ(x)∗Q(x, y)Ψ(y)

)
,

where in the last step we cyclically commuted the factors inside the trace.
Integrating over y gives the result. �

We next turn attention to the jets used for perturbing the measure. The
abstract Definition 3.2 is intended to make J∞ as large as possible, giving
the largest possible freedom for the perturbations. But not all of the degrees
of freedom of J∞ are needed in the applications. Therefore, we must specify
those subspaces of J∞ which are of relevance here. We first consider jets
which are needed to describe particle and anti-particle states.

Definition 7.3. A vector field u of the form (7.8) where the variation δΨ
is a mapping of finite rank with the property that for every u ∈ H, either Ψu
or δΨu is macroscopic, is called fermionic vector field. The vector space
of fermionic vector fields is referred to as Γf. The fermionic jets are defined
by

Jf = {0} ⊕ Γf .
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In the next definition we introduce the jets describing the bosons, for sim-
plicity for an electromagnetic potential.

Definition 7.4. Let A ∈ C∞(M,T ∗M) be a smooth one-form. A vector
field u of the form (7.8) with

(7.12)
(
δΨ
)
(x) = −

ˆ

M

sm(x, y) /A(y)Ψ(y) dρ(y)

is called bosonic vector field (here sm(x, y) is a Dirac Green’s func-
tion (7.7)). The vector space of bosonic vector fields is referred to as Γb.
The bosonic jets are defined by

Jb = {0} ⊕ Γb .

Clearly, the fermionic and bosonic jets are subspaces of J∞,

Jf, Jb ⊂ J∞ .

We now explain how the perturbative description in the continuum limit
is described in our setting. In the formalism of Section 4.5, the particles and
anti-particles as introduced in [8, §3.4.3] correspond to a perturbation H of
the vacuum measure in (4.31). The corresponding jets in (4.32) are fermionic,

v(p) ∈ Jf .

The resulting contributions to the weak EL equations are compensated by
bosonic fields. Consequently, we here introduce the Green’s operator S (see
Definition 4.2) as a mapping to the bosonic jets,

(7.13) S : (Jtest)∗ → Jb ⊂ J∞ .

The condition (4.17) means that the potential B in (7.12) satisfies the in-
homogeneous classical field equations. In the example of an electromagnetic
potential (7.6) a Maxwell field, these equations become

∂jk(Sv)
k −�(Sv)j = −c vj

(or equivalently with differential forms δd S v = −c v, where the constant c
depends on the detailed form of the regularization parameters in [8, Chap-
ter 3]). This is the usual equation for the Maxwell propagator. It involves
the freedom in choosing a gauge. For example, in the Lorenz gauge, one may
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choose S as the multiplication operator in momentum space S(k) = c/k2.
But S can also be given in any other gauge. More generally, the choice of
the Green’s operator (7.13) always involves a choice of gauge.

7.3. Discussion and remarks

We now clarify the previous constructions by a few remarks. We first note
that, in order to simplify the computations, it is often convenient to assume
that the rescaling term in (7.8) vanishes, i.e.

(7.14) tr
(
Ψ(x)∗ δΨ(x)

)
= 0 for all x ∈M .

This can be arranged for example by the transformation

δΨ → δΨ+ tr
(
Ψ(x)∗ δΨ(x)

) Ψ

c
.

Thinking in terms of the charts constructed in Section 6.2, with the condi-
tion (7.14) one restricts attention to a special class of charts around x.

We next point out that, as explained in [8, Section 2.5], the rescaling
terms in (7.8) give rise to terms of higher order in ε/lmacro. With this in
mind, in many applications it is admissible to simply leave out the rescaling
and to ignore the condition (7.14).

We also remark that all the above jet spaces have a natural complex
structure. In order to understand how this comes about, we recall that ac-
cording to (7.8) the vector fields on M were described by variations of the
wave evaluation operator (7.9). Since the spin spaces are complex vector
spaces, pointwise multiplication by complex scalars gives a natural complex
structure on δΨ. Using the notation (7.8), we thus obtain a corresponding
almost complex structure J on TxF given by

J δF̂ [δΨ](x) = δF̂ [iδΨ](x)(7.15)

= iδΨ(x)∗Ψ(x)− iΨ(x)∗ δΨ(x)

+
x

c
tr
(
− iδΨ(x)∗Ψ(x) + iΨ(x)∗ δΨ(x)

)
.

This also gives rise to a complex structure on the vector spaces of vecto-
rial jets on M like Jf and Jb. This complex structure is of no relevance
for the constructions in [8] but might be of importance for future develop-
ments. Indeed, in [13] an almost-complex structure was constructed on the
jet spaces in the more general setting of causal variational principles. It was
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used to deduce a unitary time evolution on bosonic Fock spaces. The detailed
connection to the almost-complex structure in (7.15) and generalization to
fermionic Fock spaces still need to be worked out.

We finally point out that the choice of test jets in (7.11) is very restric-
tive. In other words, the analysis of the continuum limit only uses very little
of the information contained in the EL equations. On the other hand, this
information seems to capture precisely what is needed in order to describe
the effective macroscopic interaction. One shortcoming of the analysis in the
continuum limit is that the test jets do not contain the bosonic jets,

Jtest ∩ Jb = ∅ .

This implies that the symplectic form as introduced in [15] is undefined for
the bosonic jets. Moreover, since the intersection of the test jets with the
fermionic jets only contains the very restrictive class of jets formed of ul-
trarelativistic wave packets, also the conserved surface layer integrals in [16]
cannot be evaluated for interesting fermionic jets. This last shortcoming is
closely related to the fact that the Green’s operator (7.13) is purely bosonic,
whereas the fermionic dynamics is encoded in the Dirac equation (7.6). Tak-
ing into account that in [8, Section 3.10] the validity of the Dirac equation is
justified from the causal action principle by ruling out nonlocal potentials,
this procedure is conceptually convincing as a first step. But eventually, one
would like to have more general test jets, giving rise to a unified description
of the interaction in terms of Green’s operators composed of a fermionic
and a bosonic component. A first step in this direction is the computation
of surface layer integrals for bosonic and fermionic jets in [9].

8. Example: Perturbation expansion with microscopic

mixing

8.1. Preliminaries

The method of microscopic mixing of wave functions was introduced in [7]
(based on preliminary considerations in [6]). Using our present notation, the
basic construction is summarized as follows. One first decomposes space-time
into disjoint subsystems M1, . . . ,ML,

M =M1 ∪ · · · ∪ML and Ma ∩Mb = ∅ if a 6= b .

For each subsystem, one introduces a unitary operator Va with the property
that 11− Va is an operator of finite rank which maps particle and anti-particle
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states to sea states and vice versa (for details see [7, Section 2.2]). Then the
kernel of the fermionic projector with microscopic mixing is introduced by

P ε(x, y) =

L∑

a,b=1

χMa
(x)P a,b(x, y)χMb

(y)(8.1)

P a,b(x, y) = −Ψ(x)Va V
∗
b Ψ(y)∗(8.2)

(where χMa
is the characteristic function). In [7], this kernel of the fermionic

projector is used as the starting point for a perturbative treatment based
on the methods of the analysis in the continuum limit. It is shown that
in a suitable limiting case, one obtains an effective interaction in terms of
bosonic and fermionic field operators acting on Fock spaces.

8.2. A synchronization mechanism

In preparation for getting a connection to the setting of Section 5, we recast
microscopic mixing in terms of the universal measure (for a similar construc-
tion see [8, §1.5.3]). To this end, for a unitary operator V ∈ U(H) we define
the measure V (ρ) by

(8.3) (V ρ)(Ω) = ρ
(
V ΩV −1

)
.

We introduce the measure ρ̂ as the convex combination

ρ̂ =
1

L

L∑

a=1

ρa with ρa = Vaρ .

Then the resulting space-time M̂ := supp ρ̂ is given by

M̂ =

L⋃

a=1

Ma with Ma := VaM V −1
a .

Comparing the unitary transformation x→ V xV −1 in (8.3) with the first
equation in (6.4), one sees that the wave evaluation operator (6.3) is trans-
formed to

Ψ̂ : H → C0
(
M̂, SM̂

)
, Ψ̂(xa) = Ψ(x)Va .

Applying this relation in the second equation in (6.4), one recovers (8.2).
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Figure 5: Synchronization of fluctuations.

Next, we rewrite the wave evaluation operator of the ath subsystem as

Ψ̂a = Ψ+∆Ψa with ∆Ψa = Ψ(x)
(
Va − 11

)
.

Exactly as explained in Section 6.3, the resulting transformation of the uni-
versal measure can be written as (cf. (6.7) and (6.9))

ρa = (Ha)∗ρ .

Expanding Ha in a given chart on F similar to (4.32), one obtains inhomo-

geneities v
(p)
a in the EL equations which depend on the subsystem. Following

the constructions in Section 5.1 for the linearized inhomogeneity v = v(1),
one gets a corresponding linearized solution of the field equations w(1) which
involves fluctuations. The higher orders in perturbation theory are obtained
just as in Section 5.3. The crucial condition for the construction to work is
that the resulting fragmentation must be well-posed (see Definition 5.4).

Choosing the jet spaces as in the continuum limit in Section 7.2, the
above construction simplifies because the jet spaces do not have a scalar
component. In this limiting case, one recovers the perturbation expansion
in [7] with one important exception: the perturbation expansion with frag-
mentation gives rise to an additional synchronization mechanism. Indeed,
according to Definition 5.2, the Green’s operators SF acts on each subsys-
tem separately,

(8.4)
(
SF

)a

b
= δab SF .

From (5.9) one sees that it couples only to the current generated by Dirac
wave functions in the subsystem a (see the Feynman diagrams in Figure 5).
This seems to make it unnecessary to consider the stochastic background
field in [7, Section 4] for synchronization. Also, the recombination of sub-
systems in [7, Section 7] needs to be reconsidered. The consequences of this
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synchronization mechanism will be analyzed in detail in a separate publica-
tion [2].

8.3. Gauge potentials are subsystem-diagonal

The previous constructions yield an interaction described by a Dirac equa-
tion which, according to (8.4), is coupled to an electromagnetic potential for
each subsystem, i.e.

(i∂/+ /Aa −mY )ψa(x) = 0 for all a = 1, . . . , L .

More generally, one could consider a matrix potential which mixes the sub-
systems, i.e.

(8.5)

L∑

b=1

(i∂/+ /A
a

b −mY )ψb = 0 for all a = 1, . . . , L .

We now give an independent general argument which conveys a good in-
tuitive understanding for why such subsystem-mixing potentials must not
occur.

The matrix potential in (8.5) can be regarded as a U(L) gauge potential.
To leading degree on the light cone, this gauge potentials affects the kernel
of the fermionic projector via generalized phase transformations (for details
see [3] or [8, §3.6.2 and §4.3.2]). Considering for simplicity the special case
of a gauge transformation, the Dirac wave functions transforms according
to

ψa(x) →
L∑

b=1

Ua

b (x)ψb(x) .

Using this transformation law in (8.2) in the special case with trivial mix-
ing matrices V1 = · · · = VL = 11, one finds that the kernel of the fermionic
projector transforms according to

P a,b(x, y) → (U(x) v)a P (x, y) (U(y) v)b ,

where

v = (1, . . . , 1) ∈ C
L .



✐

✐

“2-Finster” — 2020/8/19 — 19:06 — page 614 — #52
✐

✐

✐

✐

✐

✐

614 Felix Finster

Since the Lagrangian is homogeneous of degree four in P (x, y), it transforms
like

L(x, y) →
L∑

a,b=1

∣
∣(U(x) v)a

∣
∣4
∣
∣(U(y) v)b

∣
∣4 L(x, y) .

Thus, seeking for minimizers of the causal action, one must

(8.6) minimize

L∑

a=1

∣
∣(Uv)a

∣
∣4 .

We would like to show that the minimizers of this functional are precisely
the subsystem-diagonal potentials. However, the situation is not quite so
simple, as the following counter example shows:

Example 8.1. Choose L = 2 and consider the one-parameter group of uni-
tary matrices (Ut)t∈R

Ut = exp

(
it

2

(
1 1
1 1

))

.

Using that the matrix in the exponent is twice a projection operator, a short
computation yields

Ut =
1

2

(
1 −1
−1 1

)

+
eit

2

(
1 1
1 1

)

.

Thus

Ut v = eit
(
1
1

)

Hence the relations

∣
∣(Ut v)

a
∣
∣ = 1 for all a = 1, 2

hold, although the unitary operators Ut are not diagonal. This shows that
the diagonal unitary matrices cannot be singled out by minimizing (8.6).
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We now enter the general analysis. Given a compact connected Lie sub-
group G ⊂ U(L), we set

Gv := {Uv |U ∈ G} ⊂ C
L .

Moreover, we introduce the diagonal and orthogonal subgroups by

Gd =
{

U ∈ G

∣
∣
∣U =

(
eiϕ1 , . . . , eiϕL

)
with ϕa ∈ R

}

(8.7)

G⊥ =
{

U ∈ G

∣
∣
∣U |Gv = 11Gv

}

.(8.8)

The vector v is called cyclic if Gv = CL. Clearly, if v is cyclic, then G⊥ is
trivial.

Proposition 8.2. The infimum of the functional in (8.6) is given by

(8.9) inf
U∈G

L∑

a=1

∣
∣(Uv)a

∣
∣4 = inf

U∈U(L)

L∑

a=1

∣
∣(Uv)a

∣
∣4 = L .

Moreover, if this functional is minimal on all of G, i.e.

∑

a=1L

∣
∣(Uv)a

∣
∣4 = L for all U ∈ G ,

then every U ∈ G has a unique decomposition into a diagonal and an orthog-
onal element,

(8.10) U = Ud U⊥ with Ud ∈ Gd and U⊥ ∈ G⊥ .

Before giving the proof, we explain what this result means. Gener-
ally speaking, this proposition gives strong constraints for the form of the
subsystem-mixing gauge potentials. Indeed, such potentials may be nontriv-
ial only if the vector v is not cyclic. But the vector v will be cyclic whenever
each subsystem has its own dynamics. Namely, in this case, the subsystem-
diagonal gauge potentials will be different in each subsystems, giving rise
to different U(1)-phases in each subsystem. As a consequence, the group G

will contain the abelian subgroup of all diagonal unitary matrices, implying
that v is cyclic.
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Proof of Proposition 8.2. We first prove (8.9). Since the rows of a unitary
matrix are unit vectors, we know that

L∑

b=1

|Ua

b |2 = 1 .

As a consequence, using the Schwarz inequality,

(8.11) L =

L∑

a,b=1

∣
∣Ua

b

∣
∣2 =

L∑

a=1

∣
∣(Uv)a

∣
∣2 ≤

√
L

( L∑

a=1

∣
∣(Uv)a

∣
∣4
) 1

2

,

implying that
L∑

a=1

∣
∣(Uv)a

∣
∣4 ≥ L .

Equality is attained in the case U = 11, proving (8.9). More generally, equal-
ity holds if and only if all the summands in (8.11) coincide, i.e.

(8.12)
∣
∣(Uv)a

∣
∣ = 1 for all a = 1, . . . , L .

Next, we prove uniqueness of the decomposition (8.10). Suppose that a
unitary operator U has the representation (8.10). Then, using (8.8), we know
that Uv = Udv. This relation uniquely determines all the phases ϕ1, . . . , ϕL
in (8.7). Hence Ud is unique, which also determines U⊥ uniquely by U⊥ =
(Ud)−1U .

It remains to construct the decomposition (8.10). Let A ∈ g ⊂ u(L) be a
vector of the Lie algebra of G. Then (8.12) implies that for any vector w ∈ Gv,
the equation

∣
∣(eitAw)a

∣
∣ = 1 holds for all t ∈ R and all a = 1, . . . , L .

Employing a spectral decomposition of the Hermitian matrix A,

A =

K∑

k=1

λk Ek , eitA =

K∑

k=1

eiλktEk ,

we obtain

(8.13) 1 =
∣
∣(eitAw)a

∣
∣2 =

K∑

k,k′=1

ei(λk−λk′ )t
(
Ek′w

)a(
Ekw

)a
.
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We want to conclude that at most one summand is non-zero, i.e.

(
Ekw

)a
= 0 for all k 6= ℓ

and a suitable ℓ = ℓ(a, w). To this end, assume conversely that (Ekw)
a

and (Ek′w)a are both non-zero for k 6= k′. We choose k and k′ such that λk −
λk′ is maximal. Then the right side of (8.13) involves non-zero Fourier terms
∼ e±i(λk−λ′

k)t, a contradiction.
Let us show that ℓ can be chosen independent of w. We proceed indirectly

and assume that k := ℓ(a, w1) 6= ℓ(a, w2) =: k′. Then, evaluating (8.13) for
w = w1 + w2, one gets a non-zero contribution

Re

(

ei(λk−λk′ )t
(
Ek′w2

)a(
Ekw1

)a

)

.

Varying the phase of w2, one again gets a contradiction. We conclude that

(8.14)
(
Ekw

)a
= 0 for all k 6= ℓ(a) and all w ∈ Gv .

Using the completeness of the spectral projectors, we obtain

wa =

L∑

j=1

(
Ejw

)a
=
∑

j=ℓ(a)

(
Ejw

)a
=
(
Eℓ(a)w

)a
.

Combining this relation with (8.14), it follows that

(Ekw)
a = δk,ℓ(a)w

a .

Since w ∈ Gv is arbitrary, we can also write this relation as

Ek
∣
∣
Gv

= Ed
k

∣
∣
Gv

with
(
Ed
k

)a

b
= δab δk,ℓ(a) .

As a consequence, the matrix

Ud :=

K∑

k=1

eiλktEd
k

is diagonal. Moreover, the matrix U⊥ := (Ud)−1U is trivial on Gv, giving
the desired decomposition (8.10). �
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