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Projections, modules and connections for

the noncommutative cylinder

Joakim Arnlind and Giovanni Landi

We initiate a study of projections and modules over a noncommu-
tative cylinder, a simple example of a noncompact noncommutative
manifold. Since its algebraic structure turns out to have many sim-
ilarities with the noncommutative torus, one can develop several
concepts in a close analogy with the latter. In particular, we exhibit
a countable number of nontrivial projections in the algebra of the
noncommutative cylinder itself, and show that they provide con-
crete representatives for each class in the corresponding K0 group.
We also construct a class of bimodules endowed with connections of
constant curvature. Furthermore, with the noncommutative cylin-
der considered from the perspective of pseudo-Riemannian calculi,
we derive an explicit expression for the Levi-Civita connection and
compute the Gaussian curvature.
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1. Introduction

In the rapidly developing and conceptually growing field of noncommutative
geometry it has been of paramount importance to have at least one tractable
example exhibiting many of the nontrivial subtleties of the theory. In this

527



✐

✐

“1-Arnlind” — 2020/8/4 — 0:10 — page 528 — #2
✐

✐

✐

✐

✐

✐

528 J. Arnlind and G. Landi

respect, the noncommutative torus is perhaps the most studied object in
noncommutative geometry, and it has served as a inspirational source (as
well as testing ground) for many results and concepts in more general situ-
ations. However, to explore the notion of noncompact manifolds, the torus
is not equally well suited.

In this paper, we set out to study the noncommutative cylinder as a sim-
ple manageable example of a noncompact noncommutative manifold which
still exhibits nontrivial features. Inspired by the algebraic similarities with
the torus, we follow the same lines of thought in order to see to what extent
known concepts apply in this noncompact situation as well.

Starting from a known description in terms of Fourier transforms, we
choose a particular presentation of the noncommutative cylinder and intro-
duce a (commuting) set of hermitian derivations as well as a trace. After
providing basic results about these structures, we proceed to construct a
class of projections in the algebra itself, and show that they are classified
by the integers. Moreover, by showing that the corresponding projective
modules respect the group structure of the integers, we conclude that these
projections provide concrete representatives for each class in the K0 group
of the noncommutative cylinder (which is known to be Z). A corresponding
“Chern number” can be computed for each projective module by evaluating
the projections against a cyclic 2-cocycle.

Next, in analogy with the torus modules defined by Connes and Rief-
fel [Con80, Rie81], we find a class of bimodules for the noncommutative
cylinder, on which connections of constant curvature are defined. Interest-
ingly, these modules turn out to be isomorphic to copies of the algebra itself.
Although the details of the bimodule structure depend on a choice of pa-
rameters, it is the case that the curvature only depends on the deformation
parameters ℏ and ℏ′ defining the left and right algebras, respectively.

Finally, we recall the framework of pseudo-Riemannian calculi, and show
that for a given choice of metric, there exists a calculus over the noncommu-
tative cylinder with a unique torsion-free and metric connection, for which
one may explicitly compute the Gaussian curvature. Moreover, we illustrate
a Gauss-Bonnet type theorem where the total curvature (that is, the integral
of the Gaussian curvature with respect to the Riemannian volume form) is
shown to be independent of a class of metric perturbations.

2. The algebra of the noncommutative cylinder

Let us start by recalling the definition of the algebra of the noncommutative
cylinder. Let S(R× S1) denote the space of Schwartz functions on R× S1.



✐

✐

“1-Arnlind” — 2020/8/4 — 0:10 — page 529 — #3
✐

✐

✐

✐

✐

✐

Projections, modules and connections 529

Every f ∈ S(R× S1) may be written as

f(u, t) =
∑

n∈Z

fn(u)e
2πint,(2.1)

with fn ∈ S(R) and we introduce the Fourier transform of the coefficients
fn as

f̂n(x) =

∫

R

fn(u)e
−2πiuxdu.

Thus any function as in (2.1), is written as

f(u, t) =
∑

n∈Z

∫

R

f̂n(x)e
2πi(nt+ux)dx.

Following the general strategy of [Rie93], we define a twisted convolution
product on S(R× S1) via

̂(f •ℏ g)n(x) =
∑

k∈Z

∫

R

f̂k(y)ĝn−k(x− y)σℏ(y⃗, x⃗− y⃗)dy(2.2)

where x⃗ = (x, n), y⃗ = (y, k) and σℏ is a cocycle fulfilling the condition

σℏ(x⃗, y⃗)σℏ(x⃗+ y⃗, z⃗) = σℏ(x⃗, y⃗ + z⃗)σℏ(y⃗, z⃗),

ensuring associativity of the product. For our purposes we will choose a
particular cocycle given by

σℏ
(
(x, n), (y, k)

)
= e2πiℏyn.(2.3)

Note that this cocycle is cohomologous to its antisymmetrization

σℏ(x⃗, y⃗) = eπiℏ(yn−xk),

giving the corresponding twisted convolution as defined in [vS04]; the two
corresponding algebras are thus isomorphic.

Definition 2.1. Let C∞
ℏ

= (S(R× S1), •ℏ) be the algebra defined by the
vector space S(R× S1) together with the product •ℏ in (2.2) for the cocycle

σℏ
(
(x, n), (y, k)

)
= e2πiℏyn.
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As the product in C∞
ℏ

is defined on the level of Fourier transforms, let us
derive a more explicit expression in the following form.

Proposition 2.2. Let f, g ∈ C∞
ℏ

be such that

f(u, t) =
∑

n∈Z

fn(u)e
2πint and g(u, t) =

∑

n∈Z

gn(u)e
2πint.

Then

(f •ℏ g)(u, t) =
∑

n∈Z

[∑

k∈Z

fk(u)gn−k(u+ kℏ)

]
e2πint.

Proof. The proof consists of a straight-forward computation:

(f •ℏ g)n(u) =

∫

R

f̂ •ℏ gn(x)e
2πixudx

=
∑

k∈Z

∫

R

∫

R

f̂k(y)ĝn−k(x− y)e2πiℏ(x−y)ke2πixudydx

=
∑

k∈Z

∫

R

f̂k(y)

[ ∫

R

ĝn−k(x− y)e2πix(u+kℏ)dx

]
e−2πiykℏdy

=
∑

k∈Z

∫

R

f̂k(y)e
2πiy(u+kℏ)

[ ∫

R

ĝn−k(x)e
2πix(u+kℏ)dx

]
e−2πiykℏdy

=
∑

k∈Z

∫

R

f̂k(y)gn−k(u+ kℏ)e2πiyudy =
∑

k∈Z

fk(u)gn−k(u+ kℏ).

□

From Proposition 2.2 one infers the simple commutation rule

f(u)e2πint •ℏ g(u) = f(u)g(u+ nℏ) •ℏ e
2πint(2.4)

which we shall often use in the following. To slightly simplify the notation,
let us introduce W = e2πit such that every f ∈ S(R× S1) may be written
as

f(u, t) =
∑

n∈Z

fn(u)W
n.

In particular, (2.4) now reads

Wn •ℏ f(u) = f(u+ nℏ) •ℏ W
n.(2.5)
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Remark 2.3. As a side remark, we note that the relation (2.4) can formally
be derived from the canonical commutation relation [u, t] = iℏ/2π via

e2πitu =
∑

n≥0

(2πit)nu

n!
=

∑

n≥0

(2πi)n(utn − inℏtn−1/2π)

n!

= ue2πit + ℏ
∑

k≥1

(2πit)n−1

(n− 1)!
= (u+ ℏ)e2πit,

which is in close analogy with the noncommutative catenoid defined in
[AH18].

One may readily introduce a ∗-algebra structure on C∞
ℏ
.

Proposition 2.4. For f =
∑

n∈Z fn(u)W
n ∈ C∞

ℏ
, set

f∗ =
∑

n∈Z

fn(u− nℏ)W−n =
∑

n∈Z

f−n(u+ nℏ)Wn.

Then it follows that (f∗)∗ = f and (f •ℏ g)
∗ = g∗ •ℏ f

∗.

Proof. Just compute

(f∗)∗ =
∑

n∈Z

f∗−n(u+ nℏ)Wn

=
∑

n∈Z

f−(−n)(u+ nℏ− nℏ)Wn =
∑

n∈Z

fn(u)W
n = f.

Next, consider

f =
∑

n∈Z

fn(u)W
n and g =

∑

n∈Z

gn(u)W
n
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and compute

(g •ℏ f)
∗ =

∑

n∈Z

(g •ℏ f)−n(u+ nℏ)Wn

=
∑

n,k∈Z

gk(u+ nℏ) f−n−k(u+ (n+ k)ℏ)Wn

=
∑

n,l∈Z

f−l(u+ lℏ) g−(n−l)(u+ nℏ)Wn

=
∑

n,l∈Z

f−l(u+ lℏ) g−(n−l)(u+ lℏ+ (n− l)ℏ)Wn

=
∑

n,l∈Z

f∗l (u)g
∗
n−l(u+ lℏ)Wn = f∗ •ℏ g

∗,

which proves the second statement. □

Thus, with respect to the involution defined in Proposition 2.4 the algebra
C∞
ℏ

is a ∗-algebra. By representing C∞
ℏ

as multiplication operators on L2(R×
S1), i.e. Tfψ(u, t) = f(u, t)ψ(u, t) for f ∈ C∞

ℏ
, one may complete C∞

ℏ
in the

operator norm to a C∗-algebra which we shall denote by Cℏ (cf. [vS04]).
Next, let us introduce a set of commuting derivations.

Proposition 2.5. For f ∈ C∞
ℏ

with

f(u, t) =
∑

n∈Z

fn(u)W
n

define

∂1f =
∑

n∈Z

f ′n(u)W
n and ∂2f = 2πi

∑

n∈Z

nfn(u)W
n.

Then ∂1 and ∂2 are hermitian derivations of C∞
ℏ

such that [∂1, ∂2] = 0.

Proof. It is clear that ∂1 and ∂2 are linear maps; let us show that they satisfy
Leibniz rule. One obtains

∂1(f •ℏ g) =
∑

n,k∈Z

(
f ′k(u)gn−k(u+ ℏk) + fk(u)g

′
n−k(u+ kℏ)

)
Wn

=
∑

n,k∈Z

f ′k(u)gn−k(u+ ℏk)Wn +
∑

n,k∈Z

fk(u)g
′
n−k(u+ kℏ)Wn

= (∂1f) •ℏ g + f •ℏ (∂1g),



✐

✐

“1-Arnlind” — 2020/8/4 — 0:10 — page 533 — #7
✐

✐

✐

✐

✐

✐

Projections, modules and connections 533

and

∂2(f •ℏ g) = 2πi
∑

n,k∈Z

nfk(u)gn−k(u+ kℏ)Wn

= 2πi
∑

n,k∈Z

kfk(u)gn−k(u+ kℏ)Wn

+ 2πi
∑

n,k∈Z

fk(u)(n− k)gn−k(u+ kℏ)Wn

= (∂2f) •ℏ g + f •ℏ (∂2g),

showing that ∂1, ∂2 are indeed derivations of C∞
ℏ
. Furthermore, it is easy to

see that

[∂1, ∂2](f) = 2πi∂1
∑

n∈Z

nfn(u)W
n − ∂2

∑

n∈Z

f ′n(u)W
n = 0.

Finally, let us show that ∂1 and ∂2 are hermitian derivations. One computes

(
∂1(f)

)∗
=

(∑

n∈Z

f ′n(u)W
n
)∗

=
∑

n∈Z

f ′−n(u+ nℏ)Wn

= ∂1
∑

n∈Z

f−n(u+ nℏ)Wn = ∂1(f
∗)

as well as

(
∂2(f)

)∗
=

(
2πi

∑

n∈Z

nfn(u)W
n
)∗

= −2πi
∑

n∈Z

(−n)f−n(u+ nℏ)Wn

= 2πi
∑

n∈Z

nf−n(u+ nℏ)Wn = ∂2
∑

n∈Z

f−n(u+ nℏ)Wn = ∂2(f
∗)

which proves that ∂1, ∂2 are hermitian. □

Remark 2.6. Clearly the function u does not belong to the algebra C∞
ℏ
.

In spite of this a direct computation shows that one can formally obtain a
commutation expression for the derivation ∂2, that is

∂2f =
2πi

ℏ
(fu− uf)(2.6)

for any f ∈ C∞
ℏ
.

On the algebra C∞
ℏ

we have a trace as well.



✐

✐

“1-Arnlind” — 2020/8/4 — 0:10 — page 534 — #8
✐

✐

✐

✐

✐

✐

534 J. Arnlind and G. Landi

Definition 2.7. For f ∈ C∞
ℏ

with

f(u, t) =
∑

n∈Z

fn(u)W
n

we set

τ(f) =

∫ ∞

−∞

f0(u)du.(2.7)

It is clear from the definition that τ is a linear map.

Proposition 2.8. The map τ is a positive invariant trace; that is, it has
the properties

1) τ(f∗) = τ(f),

2) τ(f∗ •ℏ f) ≥ 0,

3) τ(f •ℏ g) = τ(g •ℏ f),

4) τ(∂1f) = τ(∂2f) = 0,

for all f, g ∈ C∞
ℏ
.

Proof. It is immediate to see that τ(f∗) = τ(f). A direct computation yields

τ(f •ℏ g) =

∫

R

∑

k∈Z

fk(u)g−k(u+ kℏ)du =

∫

R

∑

k∈Z

gk(u− kℏ)f−k(u)du

=

∫

R

∑

k∈Z

gk(v)f−k(v + kℏ)dv = τ(g •ℏ f).

Furthermore, one finds that

τ(∂1f) =

∫

R

f ′0(u)du =
[
f0(u)

]∞
−∞

= 0

as well as

τ(∂2f) = τ

(∑

n∈Z

nfn(u)W
n

)
=

∫

R

0 · f0(u)du = 0.

Finally, we check that

τ(f∗ •ℏ f) =
∑

k∈Z

f∗kf−k(u+ kℏ) =
∑

k∈Z

|f−k(u+ kℏ)|2 ≥ 0,
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which completes the proof of the statements. □

From now on we shall drop the cumbersome notation f •ℏ g and simply write
fg when no confusion can arise.

For the noncommutative torus, there exists a convenient cyclic 2-cocycle
which can be evaluated on 2-forms. For the noncommutative cylinder, one
can make use of a similar construction. The cyclic 2-cocycle below will be
used in the next section in order to compute “Chern numbers” of a class of
projective modules.

Proposition 2.9. For f0, f1, f2 ∈ C∞
ℏ

we set

Ψ(f0, f1, f2) =
1

2πi
τ
(
f0(∂1f1)(∂2f2)− f0(∂2f1)(∂1f2)

)
.

Then Ψ is a cyclic,

Ψ(f2, f0, f1) = Ψ(f0, f1, f2),

Hochschild 2-cocycle,

Ψ(f0f1, f2, f3)−Ψ(f0, f1f2, f3) + Ψ(f0, f1, f2f3)−Ψ(f3f0, f1, f2) = 0,

for all f0, f1, f2, f3 ∈ C∞
ℏ
.

Proof. Let us first show that Ψ is cyclic. By using τ(fg) = τ(gf) one finds
that

2πiΨ(f2, f0, f1) = τ
[
f2(∂1f0)(∂2f1)− f2(∂2f0)(∂1f1)

]

= τ
[
(∂1f2f0)(∂2f1)− (∂2f2f0)(∂1f1)− (∂1f2)f0(∂2f1) + (∂2f2)f0(∂1f1)

]

= τ
[
(∂1f2f0)(∂2f1)− (∂2f2f0)(∂1f1)

]
+ 2πiΨ(f0, f1, f2),

and since τ(∂1f) = τ(∂2f) = 0 (by Proposition 2.8) it follows that

2πiΨ(f2, f0, f1) = 2πiΨ(f0, f1, f2)− τ
[
f2f0(∂1∂2f1 − ∂2∂1f1)

]

= 2πiΨ(f0, f1, f2)

since [∂1, ∂2] = 0. To show that Ψ is a cocycle, i.e.

Ψ(f0f1, f2, f3)−Ψ(f0, f1f2, f3) + Ψ(f0, f1, f2f3)−Ψ(f3f0, f1, f2) = 0,
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is a straight-forward computation where one expands all derivatives of prod-
ucts of functions, and uses the fact that τ(fg) = τ(gf). □

3. Projections in the algebra

For the noncommutative torus, it is well known that its algebra, in con-
trast to the commutative case, contains nontrivial projections which one
may explicitly describe [Rie81]. In this section, we will show that a similar
construction can be carried out for the noncommutative cylinder. Namely,
we shall construct projections p ∈ C∞

ℏ
of the following form:

p = g(u+ ℏ)W + f(u) + g(u)W−1.

Proposition 3.1. Let f, g ∈ S(R) be real-valued functions, and set

p = g(u+ ℏ)W + f(u) + g(u)W−1.

Then p∗ = p. Moreover p2 = p if the functions f and g satisfy

g(u)g(u+ ℏ) = 0(3.1)

g(u)
(
1− f(u)− f(u− ℏ)

)
= 0(3.2)

g(u)2 + g(u+ ℏ)2 = f(u)− f(u)2(3.3)

for all u ∈ R.

Proof. Since f and g are real-valued, using (2.5) one immediately obtains

p∗ =W−1g(u+ ℏ) + f(u) +Wg(u) = g(u)W−1 + f(u) + g(u+ ℏ)W = p.

Then, a straight-forward computation of p2 gives

p2 = g(u)g(u− ℏ)W−2 +
(
f(u)g(u) + g(u)f(u− ℏ)

)
W−1

+
(
f(u)g(u+ ℏ) + g(u+ ℏ)f(u+ ℏ)

)
W + g(u+ ℏ)g(u+ 2ℏ)W 2

+ g(u+ ℏ)2 + f(u)2 + g(u)2

which indeed equals p by using (3.1)–(3.3). □

Let us now construct a particular class of projections satisfying the require-
ments of Proposition 3.1. Let f0 be a function increasing smoothly from 0
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to 1 on the interval [0, ℏ], and define f, g : R → R as

f(u) =





0 if u ≤ 0 or u ≥ 2ℏ

f0(u) if 0 ≤ u ≤ ℏ

1− f0(u− ℏ) if ℏ ≤ u ≤ 2ℏ

(3.4)

g(u) =

{
0 if u ≤ ℏ or u ≥ 2ℏ√
f(u)− f(u)2 if ℏ ≤ u ≤ 2ℏ.

(3.5)

Next, for n ≥ 1 we set

fn(u) =

n∑

k=1

W−2kf(u)W 2k

gn(u) =

n∑

k=1

W−2kg(u)W 2k,

resulting in n shifted copies of the original functions, as depicted in Figure 1.
Note that fn and gn have compact support being defined on [0, 2ℏn], where
they are 2ℏ-periodic by construction.

Figure 1: The functions fn and gn as constructed from (3.4) and (3.5).

It is straightforward to check that fn and gn satisfy (3.1), (3.2) and (3.3).
For instance, for u ∈ [0, ℏ] it is immediate that (3.1) and (3.2) holds since
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g(u) = 0. Moreover,

g(u+ ℏ)2 = f(u+ ℏ)− f(u+ ℏ)2 = 1− f0(u)− (1− f0(u))
2

= f0(u)− f0(u)
2 = f(u)− f(u)2,

showing that (3.3) is satisfied as well. Thus, one may conclude from Propo-
sition 3.1 that

pn = gn(u+ ℏ)W + fn(u) + gn(u)W
−1(3.6)

is indeed a projection in C∞
ℏ
. Next, let us compute the trace of these pro-

jections.

Proposition 3.2. Let pn be defined as above. Then τ(pn) = nℏ.

Proof. Since fn is supported on [0, 2ℏn], where it is 2ℏ-periodic, it follows
that

τ(pn) = τ
(
gn(u+ ℏ)W + fn(u) + gn(u)W

−1
)
= n

∫ 2ℏ

0
fn(u)du,

and from the definition of fn one obtains

τ(pn) = n

∫
ℏ

0
f0(u)du+ n

∫ 2ℏ

ℏ

(
1− f0(u− ℏ)

)
du

= n

∫ 2ℏ

ℏ

du = nℏ.
□

The curvature 2-form related to the projection pn is given by Fn = pndpndpn,
which may be evaluated against the cyclic 2-cocycle defined in Proposi-
tion 2.9.

Proposition 3.3. For any projection pn as in (3.6), one has

Ψ(pn, pn, pn) = n.

Proof. As

Ψ(pn, pn, pn) =
1

2πi
τ
(
pn(∂1pn)(∂2pn)− pn(∂2pn)(∂1pn)

)
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we compute

pn = gn(u+ ℏ)W + fn(u) + gn(u)W
−1

∂1pn = g′n(u+ ℏ)W + f ′n(u) + g′n(u)W
−1

∂2pn = 2πign(u+ ℏ)W − 2πign(u)W
−1.

Writing

pn(∂1pn)(∂2pn)− pn(∂2pn)(∂1pn) =
∑

n∈Z

An(u)W
n

one finds that

−
1

2πi
A0 = fn(u)

(
gn(u+ ℏ)Wg′n(u)W

−1 − gn(u)W
−1g′n(u+ ℏ)W

)

− gn(u+ ℏ)Wgn(u)W
−1f ′n(u) + gn(u)W

−1gn(u+ ℏ)Wf ′n(u)

− fn(u)
(
− g′n(u+ ℏ)Wgn(u)W

−1 + g′n(u)W
−1gn(u+ ℏ)W

)

+ gn(u+ ℏ)Wf ′n(u)gn(u)W
−1 − gn(u)W

−1f ′n(u)gn(u+ ℏ)W

= fn(u)
(
2gn(u+ ℏ)g′n(u+ ℏ)− 2gn(u)g

′
n(u)

)
− gn(u+ ℏ)2f ′n(u)

+ gn(u)
2f ′n(u) + g′n(u+ ℏ)2f ′n(u+ ℏ)− gn(u)

2f ′n(u− ℏ)

=
(
fn(u)gn(u+ ℏ)2 − fn(u)gn(u)

2
)′
u
− 2gn(u+ ℏ)2f ′n(u)

+ 2gn(u)
2f ′n(u) + gn(u+ ℏ)2f ′n(u+ ℏ)− gn(u)

2f ′n(u− ℏ),

giving

Ψ(pn, pn, pn) =
1

2πi
τ(A0) = τ

[
2gn(u+ ℏ)2f ′n(u) + gn(u)

2f ′n(u− ℏ)

− 2gn(u)
2f ′n(u)− gn(u+ ℏ)2f ′n(u+ ℏ)

]

= 3

∫ ∞

−∞

gn(u)
2f ′n(u− ℏ)du−3

∫ ∞

−∞

gn(u)
2f ′n(u)du.

Since gn(u) = 0 for all u ∈ [2πk, 2πk + ℏ] and fn(u) = 1− fn(u− ℏ) for all
u ∈ [2kℏ+ ℏ, 2kℏ+ 2ℏ] for k = 0, . . . , n− 1,

∫ ∞

−∞

gn(u)
2f ′n(u)du = −

∫ ∞

−∞

gn(u)f
′
n(u− ℏ)du,
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and it follows that

Ψ(pn, pn, pn) = 6

∫ ∞

−∞

gn(u)
2f ′n(u− ℏ)du = 6n

∫ 2ℏ

ℏ

g(u)2f ′(u− ℏ)du.

Noting that for u ∈ [ℏ, 2ℏ]

g(u)2 = f(u)− f(u)2 = 1− f(u− ℏ)− (1− f(u− ℏ))2

= f(u− ℏ)− f(u− ℏ)2

one computes

Ψ(pn, pn, pn) = 6n

∫ 2ℏ

ℏ

(
f(u− ℏ)− f(u− ℏ)2

)
f ′(u− ℏ)du

= 6n

∫ 1

0
(s− s2)ds = 6n

[
1

2
−

1

3

]
= n,

which proves the statement. □

Considering the construction of the projection pn, and the results in Propo-
sition 3.2 and Proposition 3.3, it is natural to ask how the direct sum of the
projective modules defined by pn and pm is related to the module defined
by pm+n. The next result shows that they are indeed isomorphic.

Proposition 3.4. Let n,m be integers with n,m ≥ 1. Then

pnC
∞
ℏ ⊕ pmC∞

ℏ ≃ pn+mC∞
ℏ

as (right) C∞
ℏ
-modules.

Proof. Let pn and pm be given as

pn = gn(u+ ℏ)W + fn(u) + gn(u)W
−1

pm = gm(u+ ℏ)W + fm(u) + gm(u)W−1

and introduce

p̃m =W−2npmW
2n = gm(u+ ℏ− 2nℏ)W

+ fm(u− 2nℏ) + gm(u− 2nℏ)W−1.

Since p̃m is unitarily equivalent to pm, the modules pmC∞
ℏ

and p̃mC∞
ℏ

are
isomorphic and, furthermore, it is clear that pn + p̃m = pn+m. Next, let us
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show that pn and p̃m are orthogonal; i.e. that pnp̃m = 0. Introduce

g̃m(u) = gm(u− 2nℏ)

f̃m(u) = fm(u− 2nℏ)

and note that

gn(u)g̃m(u) = fn(u)f̃m(u) = gn(u)f̃m(u) = fn(u)g̃m(u) = 0

since supp(fn, gn) ⊆ (0, 2nℏ) and supp(f̃m, g̃m) ⊆ (2nℏ, 2(n+m)ℏ) are dis-
joint. Using these facts, one finds that

pnp̃m = gn(u+ ℏ)g̃m(u+ 2ℏ)W 2 + fn(u)g̃m(u+ ℏ)W

+ gn(u)f̃m(u− ℏ)W−1 + gn(u)g̃m(u− ℏ)W−2.

First of all, it is clear that gn(u)f̃m(u− ℏ) = 0 and gn(u)g̃m(u− ℏ) = 0 since
u− ℏ < 2nℏ whenever u ∈ supp gn ⊆ (0, 2nℏ). Furthermore, it also follows
that gn(u+ ℏ)g̃m(u+ 2ℏ) = 0 and fn(u)g̃m(u+ ℏ) = 0 since g̃m(u) = 0 for
u ∈ [2nℏ, (2n+ 1)ℏ]. Thus, we conclude that pnp̃m = 0. For orthogonal pro-
jections,

pnC
∞
ℏ ⊕ p̃mC∞

ℏ ≃ (pn + p̃m)C∞
ℏ ,

and in combination with the previous arguments one obtains

pnC
∞
ℏ ⊕ pmC∞

ℏ ≃ pnC
∞
ℏ ⊕ p̃mC∞

ℏ ≃ (pn + p̃m)C∞
ℏ ≃ pn+mC∞

ℏ ,

which proves the desired result. □

Let us discuss these results from the perspective of K-theory. In [vS04], K0

of the noncommutative cylinder was shown to be isomorphic to Z. Since the
algebra is nonunital, one then expects that there exists a countable class of
nontrivial projections . In this section we have constructed projections pn
(for each n ≥ 1), and Proposition 3.2 shows that if m ̸= n then pn and pm
are not equivalent. Moreover, from Proposition 3.4 it follows that the map
pn 7→ n respects the group structure of the integers, and we conclude that
pn represents the K0 class labeled by n. In this sense, one may consider the
projection p1 to be a generator of K0.
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4. Bimodules

We now construct C∞
ℏ
-modules on the space of Schwartz functions in one

discrete and one real variable in analogy with the noncommutative torus.
We show that one may construct left and right C∞

ℏ
-modules, as well as

bimodules, depending on a set of parameters. Furthermore, it turns out that
these modules are in fact isomorphic to a number of copies of the algebra
itself. To begin with, for ξ, η ∈ S(R× Z) set

(ξ, η)L =
∑

k∈Z

∫

R

ξ(x, k)η(x, k)dx

(ξ, η)R =
∑

k∈Z

∫

R

ξ(x, k)η(x, k)dx = (ξ, η)L.

The corresponding left module structure is given in the following result.

Proposition 4.1. Let λ0, λ1, ε, ℏ ∈ R and r ∈ Z be such that λ0ε+ λ1r =
−ℏ. For f =

∑
n∈Z fn(u)W

n set

(fξ)(x, k) =
∑

n∈Z

fn(λ0x+ λ1k)ξ(x− nε, k − nr)(4.1)

for ξ ∈ S(R× Z). Then S(R× Z) is a left C∞
ℏ
-module such that

(fξ, η)L = (ξ, f∗η)L

for all f ∈ C∞
ℏ
.

Proof. In order for (4.1) to define a module action, one has to check that it
respects the relations in the algebra; i.e.

(
(fg)ξ

)
(x, k) =

(
f(gξ)

)
(x, k). One

finds that

(
f(gξ)

)
(x, k) =

∑

nZ

fn(λ0x+ λ1k)(gξ)(x− nε, k − nr)

=
∑

n,m∈Z

fn(λ0x+ λ1k)gm
(
λ0(x− nε) + λ1(k − nr)

)

× ξ
(
x− (n+m)ε, k − (n+m)r

)

=
∑

n,l∈Z

fn(λ0x+ λ1k)gl−n

(
λ0x+ λ1k − n(λ0ε+ λ1r)

)
ξ
(
x− lε, k − lr

)

=
∑

n,l∈Z

fn(λ0x+ λ1k)gl−n

(
λ0x+ λ1k + nℏ

)
ξ
(
x− lε, k − lr

)
,
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by using that λ0ε+ λ1r = −ℏ. On the other hand

(
(fg)ξ

)
(x, k) =

( ∑

n,m∈Z

fm(u)gn−m(u+mℏ)Wnξ

)
(x, k)

=
∑

n,m∈Z

fm(λ0x+ λ1k)gn−m(λ0x+ λ1k +mℏ)ξ(x−mε, k −mr),

which is seen to equal
(
f(gξ)

)
(x, k). Next, let us show that (fξ, η)L =

(ξ, f∗η)L by first computing

(fξ, η)L =
∑

k∈Z

∫

R

(∑

n∈Z

fn(u)W
nξ

)
(x, k)η(x, k)dx

=
∑

k,n∈Z

∫

R

fn(λ0x+ λ1k)ξ(x− nε, k − nr)η(x, k)dx.

Let us compare this with

(ξ, f∗η)L =
∑

k∈Z

∫

R

ξ(x, k)

(∑

n∈Z

f−n(u+ nℏ)Wnη

)
(x, k)dx

=
∑

k,n∈Z

∫

R

ξ(x, k)f−n(λ0x+ λ1k + nℏ)η(x− nε, k − nr)dx.

Setting m = −n gives

(ξ, f∗η)L =
∑

k,m∈Z

∫

R

ξ(x, k)fm(λ0x+ λ1k −mℏ)η(x+mε, k +mr)dx

and changing the integration variable to y = x+mε yields

(ξ, f∗η)L =
∑

k,m∈Z

∫

R

ξ(y−mε, k)fm(λ0y+λ1k−λ0mε−mℏ)η(y, k+mr)dy.

Finally, we set l = k +mr and use that λ0ε+ λ1r = −ℏ to obtain

(ξ, f∗η)L =
∑

l,m∈Z

∫

R

ξ(y −mε, l − nr)fm(λ0y + λ1l)η(y, l)dy,

which equals (fξ, η)L. □

In the same way, one may construct a right module structure on S(R× Z).
The proof is analogous to that of Proposition 4.1.
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Proposition 4.2. Let µ0, µ1, ε
′, ℏ′ ∈ R and r′ ∈ Z such that µ0ε

′ + µ1r
′ =

ℏ′. For f =
∑

n∈Z fn(u)W
n set

(ξf)(x, k) =
∑

n∈Z

fn(µ0x+ µ1k − nℏ′)ξ(x− nε′, k − nr′)(4.2)

for ξ ∈ S(R× Z). Then S(R× Z) is a right C∞
ℏ′ -module such that

(ξf, η)R = (ξ, ηf∗)R

for all f ∈ C∞
ℏ′ .

A (left or right) C∞
ℏ
-module constructed as above will be denoted by Eℏ

with a suitable choice of parameters implicitly assumed. If the parameters
of the left and right module structures are compatible, S(R× Z) becomes a
(C∞

ℏ
, C∞

ℏ′ )-bimodule.

Proposition 4.3. Let λ0, µ0, λ1, µ1, ε, ε
′, ℏ, ℏ′ ∈ R and r, r′ ∈ Z such that

λ0ε+ λ1r = −ℏ µ0ε
′ + µ1r

′ = ℏ′

λ0ε
′ + λ1r

′ = 0 µ0ε+ µ1r = 0.

Then S(R× Z) is a (C∞
ℏ
, C∞

ℏ′ )-bimodule with respect to the left and right
actions defined in Proposition 4.1 and Proposition 4.2.

Proof. In order for S(R× Z) to be a (C∞
ℏ
, C∞

ℏ′ )-bimodule, it must hold that

(
g(ξf)

)
(x, k) =

(
(gξ)f

)
(x, k)

for all ξ ∈ S(R× Z), g ∈ C∞
ℏ

and f ∈ C∞
ℏ′ . One finds that

(
g(ξf)

)
(x, k) =

∑

n∈Z

gn(λ0x+ λ1k)(ξf)(x− nε, k − nr)

=
∑

n,m∈Z

gn(λ0x+ λ1k)fm
(
µ0(x− nε) + µ1(k − nr)−mℏ′

)

× ξ(x− nε−mε′, k − nr −mr′)

=
∑

n,m∈Z

gn(λ0x+ λ1k)fm(µ0x+ µ1k −mℏ′)ξ(x− nε−mε′, k − nr −mr′),
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by using that µ0ε+ µ1r = 0. On the other hand

(
(gξ)f

)
(x, k) =

∑

m∈Z

fm(µ0x+ µ1k −mℏ′)(gξ)(x−mε′, k −mr′)

=
∑

m,n∈Z

fm(µ0x+ µ1k −mℏ′)gn
(
λ0(x−mε′) + λ1(k −mr′)

)

× ξ(x−mε′ − nε, k −mr′ − nr)

=
∑

m,n∈Z

gn
(
λ0x+ λ1k

)
fm(µ0x+ µ1k −mℏ′)

× ξ(x−mε′ − nε, k −mr′ − nr),

since λ0ε
′ + λ1r

′ = 0. We conclude that
(
g(ξf)

)
(x, k) =

(
(gξ)f

)
(x, k). □

A bimodule defined as in Proposition 4.3 will be denoted by Eℏ,ℏ′ , again
tacitly assuming a choice of the parameters λ0, λ1, µ0, µ1, ε, ε

′ ∈ R and r, r′ ∈
Z satisfying the requirements in Proposition 4.3. Note that one can construct
bimodules for arbitrary choices of ℏ, ℏ′ by choosing e.g. ε, ε′, r, r′ such that
εr′ ̸= ε′r and setting

λ0 = −
ℏr′

εr′ − ε′r
λ1 =

ℏε′

εr′ − ε′r

µ0 = −
ℏ′r

εr′ − ε′r
µ1 =

ℏ′ε

εr′ − ε′r
.

Let us now point out some obvious isomorphisms between modules defined
by different sets of parameters. To simplify the description, we make the
following definition.

Definition 4.4. The vectors (x1, . . . , xn) ∈ Rn and (y1, . . . , yn) ∈ Rn are
called 0-compatible if either xi = yi = 0 or xi, yi ̸= 0 for i = 1, . . . , n.

Proposition 4.5. Let Eℏ and Ẽℏ be left C∞
ℏ
-modules (as in Proposition 4.1)

defined by the parameters (λ0, ε, λ1, r) and (λ̃0, ε̃, λ1, r), respectively. If
(λ0, ε) and (λ̃0, ε̃) are 0-compatible then Eℏ ≃ Ẽℏ as left C∞

ℏ
-modules.

Proof. Note that since λ0ε+ λ1r = −ℏ = λ̃0ε̃+ λ1r, it follows that λ0ε =
λ̃0ε̃. We shall proceed by defining module homomorphisms ϕτ : Eℏ → Ẽℏ as

ϕτ (ξ)(x, k) = ξ(τx, k)

for τ ∈ R. Note that ϕτ is a linear map and if τ ̸= 0 then ϕτ is invertible.
Now, let us derive conditions for ϕτ to be a module homomorphism; thus,
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we demand that ϕτ (fξ) = fϕτ (ξ) for all f ∈ C∞
ℏ
. To this end one computes

ϕτ (fξ)(x, k) =
∑

n∈Z

fn(λ0τx+ λ1k)ξ(τx− nε, k − nr)

(
fϕτ (ξ)

)
(x, k) =

∑

n∈Z

fn(λ̃0x+ λ1k)ϕτ (ξ)(x− nε̃, k − nr)

=
∑

n∈Z

fn(λ̃0x+ λ1k)ξ
(
τ(x− nε̃), k − nr

)
.

The above expressions are equal if

λ0τ = λ̃0 and ε = τ ε̃.(4.3)

Note that since (λ0, ε) and (λ̃0, ε̃) are 0-compatible, either both sides of
each equation are zero (i.e. trivially giving a solution) or both sides are
non-zero (as long as τ ̸= 0). Thus, if λ0 = λ̃0 = 0 and ε = ε̃ = 0, then ϕτ
is an isomorphism for any τ ̸= 0. If λ0, λ̃0 ̸= 0 and ε = ε̃ = 0, one can set
τ = λ̃0/λ0, solving (4.3) (and similarly in the case when ε, ε̃ ̸= 0 but λ0 =
λ̃0 = 0). Now, for the case when λ0, λ̃0, ε, ε̃ ̸= 0 one sets τ = λ̃0/λ0 and notes
that

τ ε̃ =
λ̃0ε̃

λ0
=
λ0ε

λ0
= ε

giving a solution of (4.3). Thus, it follows that under the assumptions given
in the proposition, there exists a module isomorphism ϕτ : Eℏ → Ẽℏ. □

Somewhat surprisingly, it turns out that these modules are in fact isomorphic
(as modules) to copies of the algebra itself. More precisely, we formulate the
statement as follows.

Proposition 4.6. Let Eℏ be a left C∞
ℏ
-module defined by the parameters

λ0, λ1, ε, r such that λ0ε+ λ1r = −ℏ and λ0 ̸= 0. For arbitrary F ∈ (C∞
ℏ
)r

(considered as a left C∞
ℏ
-module) we write F = (F 0, F 1, . . . , F r−1) with F k ∈

C∞
ℏ

for k = 0, 1, . . . , r − 1, and introduce the components F k
n (u) via

F k =
∑

n∈Z

F k
n (u)W

n.

Furthermore, for an integer k we let k0 ∈ Z and 0 ≤ k1 ≤ r − 1 be defined
by k = k0r + k1. Then the map ϕ :

(
C∞
ℏ

)r
→ Eℏ, defined as

ϕ(F )(x, k) = F k1

k0

(λ0x+ λ1k),
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is an isomorphism of left C∞
ℏ
-modules.

Proof. First of all, it is clear that ϕ(F + F ′) = ϕ(F ) + ϕ(F ′). Furthermore,
one finds that

ϕ(fF )(x, k) = (fF )k1

k0

(λ0x+ λ1k)

=
∑

n∈Z

fn(λ0x+ λ1k)F
k1

k0−n(λ0x+ λ1k + nℏ)

as well as

(
fϕ(F )

)
(x, k) =

∑

n∈Z

f(λ0x+ λ1k)ϕ(F )(x− nε, k − nr)

=
∑

n∈Z

f(λ0x+ λ1k)ϕ(F )(x− nε, (k0 − n)r + k1)

=
∑

n∈Z

f(λ0x+λ1k)F
k1

k0−n

(
λ0(x−nε)+λ1(k0r+k1)−nλ1r

)

=
∑

n∈Z

f(λ0x+ λ1k)F
k1

k0−n

(
λ0x+ λ1k + nℏ

)
= ϕ(fF )(x, k)

by using that−n(λ0ε+ λ1r) = nℏ. Hence, ϕ is a left module homomorphism.
One may readily construct the inverse

ϕ−1(ξ) = (F 0, . . . , F r−1) : F k =
∑

n∈Z

ξ
(

1
λ0

(u− λ1(nr + k)), nr + k
)
Wn

and check that

ϕ
(
ϕ−1(ξ)

)
(x, k) =

(
ϕ−1(ξ)

)k1

k0

(λ0x+ λ1k)

= ξ
(
x− λ1(k0r + k1) + λ1k, k0r + k1

)
= ξ(x, k).

We conclude that ϕ is indeed a left module isomorphism. □

In the case when r = 1 and, moreover, Eℏ is a C∞
ℏ
-bimodule, one can

strengthen the result to obtain a bimodule isomorphism.

Proposition 4.7. For ℏ > 0, let Eℏ,ℏ be a C∞
ℏ
-bimodule (as in Proposi-

tion 4.3) with λ0 ̸= 0 and r = r′ = 1. The map ϕ : C∞
ℏ

→ Eℏ,ℏ, defined as

ϕ(f)(x, k) = fk
(
λ0x+ λ1k

)
(4.4)
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for f =
∑

n∈Z fn(u)W
n, is a bimodule isomorphism with inverse

ϕ−1(ξ) =
∑

n∈Z

ξ
(

1
λ0

(u− λ1n), n
)
Wn.

for ξ ∈ Eℏ,ℏ.

Proof. The fact that ϕ is a left module isomorphism with

ϕ−1(ξ) =
∑

n∈Z

ξ
(

1
λ0

(u− λ1n), n
)
Wn

follows immediately from Proposition 4.6 (and its proof). Before showing
that ϕ is a also a right C∞

ℏ
-module homomorphism, let us derive a few

properties of the parameters defining the module. For a bimodule with ℏ =
ℏ′ > 0 and r = r′ = 1 one necessarily has ε ̸= ε′ (otherwise implying ℏ = 0).
Hence, one may solve for λ0, µ0 and λ1, µ1 to obtain

λ0 = µ0 =
ℏ

ε′ − ε
λ1 = −

ℏε′

ε′ − ε
µ1 = −

ℏε

ε′ − ε

and we note that

µ1 − ℏ =
−ℏε− (ε′ − ε)ℏ

ε′ − ε
= −

ℏε′

ε′ − ε
= λ1.(4.5)

Now, one computes for f, g ∈ C∞
ℏ

ϕ(fg)(x, k) = (fg)k(λ0x+ λ1k)

=
∑

n∈Z

fn(λ0x+ λ1k)gk−n(λ0x+ λ1k + nℏ)

and

(
ϕ(f)g

)
(x, k) =

∑

l∈Z

gl(µ0x+ µ1k − lℏ)ϕ(f)
(
x− lε′, k − l

)

=
∑

l∈Z

fk−l

(
λ0(x− lε′) + λ1(k − l)

)
gl(µ0x+ µ1k − lℏ)

=
∑

n∈Z

fk−l

(
λ0x+ λ1k − l(λ0ε

′ + λ1)
)
gl(µ0x+ µ1k − lℏ)

=
∑

n∈Z

fk−l

(
λ0x+ λ1k

)
gl(µ0x+ µ1k − lℏ)
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since 0 = λ0ε
′ + λ1r

′ = λ0ε
′ + λ1. Moreover, changing the summation index

to n = k − l gives

(
ϕ(f)g

)
(x, k) =

∑

n∈Z

fn
(
λ0x+ λ1k

)
gk−n(µ0x+ (µ1 − ℏ)k + nℏ)

=
∑

n∈Z

fn
(
λ0x+ λ1k

)
gk−n(λ0x+ λ1k + nℏ) = ϕ(fg)(x, k),

by using that λ0 = µ0 and µ1 − ℏ = λ1, as shown in (4.5). □

4.1. Hermitian structures

Continuing the analogy with the noncommutative torus, we show there exist
hermitian structures on the (Cℏ, Cℏ′)-bimodule Eℏ,ℏ′ .

Proposition 4.8. Let Eℏ,ℏ′ be a (Cℏ, Cℏ′)-bimodule, as in Proposition 4.3,
and define •⟨·, ·⟩ : Eℏ,ℏ′ × Eℏ,ℏ′ → Cℏ and ⟨·, ·⟩• : Eℏ,ℏ′ × Eℏ,ℏ′ → Cℏ′ as

•⟨ξ, η⟩ =
∑

n∈Z

[ ∫

R

(
ξ, e2πix̂uWnη

)
L
e2πix̂udx̂

]
Wn

⟨ξ, η⟩• =
∑

n∈Z

[ ∫

R

(
ξe2πix̂uWn, η

)
R
e2πix̂udx̂

]
Wn.

Then it follows that

•⟨aξ, η⟩ = a
(
•
⟨ξ, η⟩

)
⟨ξ, ηb⟩• =

(
⟨ξ, η⟩•

)
b

as well as the compatibility condition

•⟨ξ, η⟩ψ = ξ⟨η, ψ⟩•

for a ∈ Cℏ, b ∈ Cℏ′ and ξ, η, ψ ∈ Eℏ,ℏ′.

Remark 4.9. Strictly speaking, e2πix̂uWnη is not defined since e2πix̂u does
not decay as u→ ∞ (and, hence, does not belong to the algebra). However,
having in mind the left action (4.1), we interpret the above expression as

(ξ, e2πix̂uWnη)L =
∑

k∈Z

∫

R

ξ(x, k)η(x− nε, k − nr)e−2πix̂(λ0x+λ1k)dx

and allow ourselves a formulation as in Proposition 4.8 since it more clearly
reflects the idea behind the construction. Similarly for the right structure.
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Proof. Let us start by showing that •⟨aξ, η⟩ = a(•⟨ξ, η⟩). Thus, we set

a =
∑

k

ak(u)W
k

and write

•⟨aξ, η⟩ =
∑

k,n

∫

R

(
ak(u)W

kξ, e2πix̂uWnη
)
L
e2πix̂uWndx̂

=
∑

k,n

∫

R

(
ξ,W−kak(u)e

2πix̂uWnη
)
L
e2πix̂uWndx̂

=
∑

k,n

∫

R

(
ξ, ak(u− kℏ)e2πix̂(u−kℏ)Wn−kη

)
L
e2πix̂uWndx̂.

=
∑

k,n

∫

R

(
ξ, ak(u− kℏ)e2πix̂Wn−kη

)
L
e2πix̂kℏe2πix̂uWndx̂.

Now, let us replace ak(u− kℏ) by its Fourier integral:

•⟨aξ, η⟩ =
∑

k,n

∫∫

R2

(
ξ, âk(x)e

−2πix(u−kℏ)e2πix̂uWn−kη
)
L
e2πix̂kℏe2πix̂uWndxdx̂

=
∑

k,n

∫∫

R2

(
ξ, e2πiu(x̂−x)Wn−kη

)
L
âk(x)e

2πi(x̂−x)kℏe2πix̂uWndxdx̂.

By a change of variables we set l = n− k and y = x̂− x, giving

•⟨aξ, η⟩ =
∑

k,l

∫∫

R2

(
ξ, e2πiuyW lη

)
L
âk(x)e

2πiykℏe2πi(x+y)uW k+ldxdy

=
∑

k,l

∫

R

âk(x)e
2πixudx

∫

R2

(
ξ, e2πiuyW lη

)
L
e2πiykℏe2πiyuW k+ldy

=
∑

k,l

ak(u)W
k

∫

R

(
ξ, e2πiuyW lη

)
L
e2πiyuW ldy = a

(
•
⟨ξ, η⟩

)
.

The proof of the statement ⟨ξ, ηa⟩• = (⟨ξ, η⟩•)a is completely analogous.
Finally, we need to show compatibility of the two products; namely, that

•⟨ξ, η⟩ψ = ξ⟨η, ψ⟩•
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for ξ, η, ψ ∈ Eℏ,ℏ′ . One writes

(•⟨ξ, η⟩ψ)(x, k) =
∑

n

∫

R

(
ξ, e2πix̂uWnη

)
L
e2πix̂(λ0x+λ1k)ψ(x− nε, k − nr)dx̂

=
∑

n,l

∫∫

R2

ξ(y, l)e−2πix̂(λ0y+λ1l)η(y − nε, l − nr)

× e2πix̂(λ0x+λ1k)ψ(x− nε, k − nr)dydx̂

=
∑

n,l

∫

R

∫

R

e2πix̂(λ0(x−y)+λ1(k−l))

× ξ(y, l)η(y − nε, l − nr)ψ(x− nε, k − nr)dydx̂

=
∑

n,l

∫

R

δ(λ0(x− y) + λ1(k − l))ξ(y, l)

× η(y − nε, l − nr)ψ(x− nε, k − nr)dy

=
∑

n,l

ξ
(
x+ (k − l)λ1/λ0, l

)

× η
(
x+ (k − l)λ1/λ0 − nε, l − nr

)
ψ(x− nε, k − nr).

A similar computation for ξ⟨η, ψ⟩• gives

(
ξ⟨η, ψ⟩•

)
(x, k) =

∑

n′,l′

ξ(x− n′ε′, k − n′r′)

× η
(
x+ (k − l′)µ1/µ0 − n′ε′, l′ − n′r′

)

× ψ
(
x+ (k − l′)µ1/µ0, l

′
)

To prove that the expressions for (•⟨ξ, η⟩ψ)(x, k) and
(
ξ⟨η, ψ⟩•

)
(x, k) are

equal for all x and k, we compare the sums term by term. Let us proceed as
follows: We fix arbitrary n in the expression for (•⟨ξ, η⟩ψ)(x, k) and arbitrary
n′ in the expression for

(
ξ⟨η, ψ⟩•

)
(x, k). Now, for every such choice we will

prove that there exists l and l′ such that the corresponding terms are equal.
Setting

l = k − n′r′ and l′ = k − nr,
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one finds (by comparing the arguments of ξ, η and ψ) that the corresponding
terms in the two sums are equal if

λ1
λ0

(k − l) = −n′ε′

λ1
λ0

(k − l)− nε =
µ1
µ0

(k − l′)− n′ε′

l − nr = l′ − n′r′

− nε =
µ1
µ0

(k − l′)

Inserting l = k − n′r′ and l′ = k − nr into these equations yields

λ0ε
′ + λ1r

′ = 0 and µ0ε+ µ1r = 0

as the remaining conditions. However, these conditions are true due to the
fact that Eℏ,ℏ′ is assumed to be a bimodule fulfilling the requirements of
Proposition 4.3. □

4.2. Bimodule connections

Let us now turn to the question of finding connections ∇ on the bimodule
Eℏ,ℏ′ , of the form

∇1ξ(x, k) = αξ′x(x, k) ∇2ξ(x, k) = βxξ(x, k) + γkξ(x, k),(4.6)

for α, β, γ ∈ C, and we start by working out the conditions for ∇ to be a left
connection; that is, such that

∇k(fξ) = f∇kξ + (∂kf)ξ

for k = 1, 2, ξ ∈ Eℏ,ℏ′ and f ∈ C∞
ℏ
.

Proposition 4.10. Let Eℏ be a left C∞
ℏ
-module with respect to a choice of

λ0, λ1, ε, r (as in Proposition 4.1) with λ0 ̸= 0. If α = 1/λ0 and βε+ γr =
2πi then ∇, as defined in (4.6), is a left module connection.

Proof. One finds that

∇1(fξ)(x, k) = α
(
fξ′x

)
(x, k) + αλ0

(
(∂1f)ξ

)
(x, k)

= (f∇1ξ)(x, k) +
(
(∂1f)ξ

)
(x, k)
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since αλ0 = 1. Furthermore,

∇2(fξ)(x, k) =
(
f(∇2ξ)

)
(x, k) +

βε+ γr

2πi

(
(∂2f)ξ

)
(x, k)

=
(
f(∇2ξ)

)
(x, k) +

(
(∂2f)ξ

)
(x, k)

since βε+ γr = 2πi, showing that ∇ is a left module connection. □

Remark 4.11. By using the isomorphism ϕ : C∞
ℏ

→ Eℏ in (4.4) one may
induce connections on the algebra itself via

∇̃kf = ϕ−1
(
∇kϕ(f)

)

for f ∈ C∞
ℏ
, giving

∇̃1f = ∂1f

and

∇̃2f =

(
αβℏ

2πi
+ 1

)
∂2f + αβ uf = ∂2f + αβfu ,

using the expression (2.6) for ∂2.

It is straightforward to compute the curvature of ∇ in (4.6):

F12ξ(x, k) = (∇1∇2 −∇2∇1)ξ(x, k) = αβ ξ(x, k)

showing that ∇ has a constant curvature equal to αβ. Note that the curva-
ture does not depend on γ, which implies that one may construct connections
with arbitrary constant curvature. Namely, let R ∈ C and set

α =
1

λ0
β = λ0R γ =

2πi− λ0εR

r

clearly fulfilling the requirements of Proposition 4.10, giving a connection of
constant curvature αβ = R.

Moreover, one easily shows that the curvature is C∞
ℏ
-linear, that is

F12(fξ(x, k)) = f(F12ξ(x, k))

for ξ ∈ Eℏ and f ∈ C∞
ℏ
, implying that the curvature F12 is an element of

EndC∞

ℏ
(Eℏ) = {T : Eℏ → Eℏ) | T (fξ(x, k)) = f(Tξ(x, k))}

for ξ ∈ Eℏ and f ∈ C∞
ℏ
; this is an algebra under composition.
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Given a left connection on Eℏ, one can define associated derivations on
EndC∞

ℏ
(Eℏ) from the commutators

δk(T ) = ∇k ◦ T − T ◦ ∇k(4.7)

for k = 1, 2 and T ∈ EndC∞

ℏ
(Eℏ). If Eℏ is also a right C∞

ℏ′ -module, then C∞
ℏ′

(acting on the right) is a subalgebra of EndC∞

ℏ
(Eℏ). On the algebra C∞

ℏ′ ,
with the connection ∇ as in (4.6) one recovers a rescaling of the natural
derivations from (4.7), as stated in the following result.

Proposition 4.12. Let Eℏ,ℏ′ be a (C∞
ℏ
, C∞

ℏ′ )-bimodule with and let ∇ be a
left module connection as defined in (4.6). Then on f ∈ C∞

ℏ′ the derivations
in (4.7) are given by

δ1(f) = (αµ0)∂1f δ2(f) =
βε′ + γr′

2πi
∂2f.

Proof. With the right structure as in (4.2), one computes

(ξδ1f)(x, k) = ∇1(ξf)(x, k)− ((∇1ξ)f)(x, k)

= (αµ0)
∑

n∈Z

f ′n(µ0x+ µ1k − nℏ′)ξ(x− nε′, x− nr′)

= (αµ0)(ξ∂1f)(x, k),

as well as

(ξδ2f)(x, k) = ∇2(ξf)(x, k)− ((∇2ξ)f)(x, k)

= (βε′ + γr′)
∑

n∈Z

nfn(µ0x+ µ1k − nℏ′)ξ(x− nε′, x− nr′)

=
βε′ + γr′

2πi
(ξ∂2f)(x, k),

which establish the results. □

As a corollary we have the condition for ∇ to be a right module connection.

Proposition 4.13. Let Eℏ,ℏ′ be a (C∞
ℏ
, C∞

ℏ′ )-bimodule with and let ∇ be a
left module connection as defined in (4.6). If α = 1/µ0 and βε′ + γr′ = 2πi
then ∇ is a right module connection; that is,

∇k(ξf) = (∇kξ)f + ξ(∂kf)

for k = 1, 2, ξ ∈ Eℏ,ℏ′ and f ∈ C∞
ℏ′ .
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Proof. With the restriction on the parameters one has δk(f) = ∂k(f) for
k = 1, 2 and f ∈ C∞

ℏ′ . With T = f (acting on the right), (4.7) becomes

ξ(∂kf) = ∇k(ξf)− (∇kξ)f,

showing that ∇ is indeed a (right) connection. □

In order for ∇ to be a bimodule connection on Eℏ,ℏ′ the parameters, apart
from satisfying the requirements of a bimodule, need to satisfy the require-
ments of Proposition 4.10 and Proposition 4.13. Let us work out what this
implies for the parameters.

Proposition 4.14. For λ0 ̸=0 and ℏ, ℏ′>0, let Eℏ,ℏ′ be a (C∞
ℏ
, C∞

ℏ′ )-bimodule
with parameters λ0, λ1, ε, r and λ0, µ1, ε

′, r′ respectively, satisfying the re-
quirements of Proposition 4.3, and assume that β, γ ∈ R are such that

βε+ γr = βε′ + γr′ = 2πi.

1) If ℏ = ℏ′ then β = 0, r = r′ ̸= 0, ε ̸= ε′ and

λ0 =
ℏ

ε′ − ε
λ1 = −

ℏε′

r(ε′ − ε)
µ1 = −

ℏε

r(ε′ − ε)
γ =

2πi

r
.

2) If ℏ ̸= ℏ′ then ℏ/ℏ′ = r/r′ ∈ Q and

µ1 =
ℏ′ − ℏ

r′ − r
+ λ1 ε = −

1

λ0
(ℏ+ λ1r) ε′ = −

λ1r
′

λ0

β = 2πiλ0
ℏ− ℏ′

ℏℏ′
γ =

2πi

r′
+ 2πiλ1

ℏ− ℏ′

ℏℏ′

Proof. The requirements on the parameters can be summarized as:

λ0ε+ λ1r = −ℏ(4.8)

λ0ε
′ + λ1r

′ = 0(4.9)

λ0ε
′ + µ1r

′ = ℏ′(4.10)

λ0ε+ µ1r = 0(4.11)

βε+ γr = βε′ + γr′ = 2πi,(4.12)

and we note that (4.8) and (4.11) imply (λ1 − µ1)r = −ℏ, and (4.9) and
(4.10) imply that (λ1 − µ1)r

′ = −ℏ′, giving

(λ1 − µ1)(r − r′) = ℏ′ − ℏ.(4.13)
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Let us first consider the case when ℏ = ℏ′, which implies by (4.13) that
λ1 = µ1 or r = r′. However, if λ1 = µ1 then (4.8) and (4.11) imply that ℏ = 0,
which contradicts the assumption that ℏ > 0. Hence, one must have that
r = r′. Next, we note that r = r′ ̸= 0 since otherwise (4.8) and (4.11) imply
that ℏ = 0. The same kind argument shows that ε′ ̸= ε if r = r′ (otherwise
(4.8) and (4.9) imply that ℏ = 0). Thus, the following equations remain to
be solved:

λ0ε+ λ1r = −ℏ

λ0ε
′ + λ1r = 0

λ0ε
′ + µ1r = ℏ

λ0ε+ µ1r = 0

βε+ γr = βε′ + γr = 2πi.

The last equation implies that β(ε′ − ε) = 0 which gives β = 0 since ε ̸= ε′.
Solving the above system for the variables λ0, λ1, µ1, γ immediately gives
the claimed result.

Next, let us consider the case when ℏ ̸= ℏ′. Equation (4.13) then implies
that λ1 ̸= µ1 and r ̸= r′, giving

µ1 =
ℏ′ − ℏ

r − r′
+ λ1.

Equations (4.8) and (4.11) imply that µ1r − λ1r = ℏ which, by inserting the
above expression, gives

ℏ′

ℏ
=
r′

r
(4.14)

which in particular implies that ℏ′ℏ ∈ Q. With µ1 = (ℏ′ − ℏ)/(r − r′) + λ1
and ℏ′/ℏ = r′/r, (4.8)–(4.12) are equivalent to

λ0ε+ λ1r = −ℏ

λ0ε
′ + λ1r

′ = 0

βε+ γr = βε′ + γr′ = 2πi.

Solving the first to equations for ε, ε′ gives

ε = −
1

λ0

(
ℏ+ λ1r

)
and ε′ = −

λ1r
′

λ0
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which, furthermore, gives

β(ε− ε′) = γ(r′ − r) ⇒ γ =
β

λ0

(
λ1 −

ℏ

r′ − r

)
.

Inserting the expression for γ into βε+ γr = 2πi gives

β = 2πi
λ0(r − r′)

ℏr′
= 2πiλ0

r/r′ − 1

ℏ
= 2πiλ0

ℏ− ℏ′

ℏℏ′

(using ℏ′/ℏ = r′/r) and finally

γ =
2πi

r′
+ 2πiλ1

ℏ− ℏ′

ℏℏ′
,

completing the proof. □

Thus, if ℏ = ℏ′ then β = 0 which implies that a (C∞
ℏ
, C∞

ℏ
)-bimodule connec-

tion of the type (4.6) has zero curvature

(∇1∇2 −∇2∇1)ξ = αβ ξ = 0.

In the situation when ℏ ̸= ℏ′, Proposition 4.14 shows that in order for such a
bimodule connection to exist, the ratio between ℏ and ℏ′ has to be rational
(note that, they need not themselves be rational). Moreover, in this case
one may always find module parameters guaranteeing that ∇ is a bimodule
connection. The curvature then becomes

(∇1∇2 −∇2∇1)ξ = αβ ξ = 2πi
ℏ− ℏ′

ℏℏ′
ξ.(4.15)

It is noteworthy that the curvature is independent of the particular pa-
rameters defining the bimodule structure, since it only depends on ℏ and
ℏ′. Moreover, since ℏ/ℏ′ is rational from (4.14), the curvature is a rational
multiple of 2πi.

5. A pseudo-Riemannian calculus

In [AW17a, AW17b] the concept of pseudo-Riemannian calculi was intro-
duced in order to discuss Levi-Civita connections on vector bundles over
noncommutative manifolds. In this particular setting, one can prove that
there exists at most one metric and torsion-free connection on a vector bun-
dle which is equipped with a soldering map; that is a linear map which maps
derivations into sections of the bundle. In this section, we shall construct a
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pseudo-Riemannian calculus for the noncommutative cylinder and explicitly
compute the Levi-Civita connection as well as the corresponding curvature.

We first recall a few definitions. For the time being, we assume that A
is an arbitrary ∗-algebra.

Definition 5.1. LetM be a (right)A-module and let h be a non-degenerate
A-valued hermitian form on M . Furthermore, let g ⊆ Der(A) be a real Lie
algebra of hermitian derivations of A and let φ : g →M be a R-linear map.
The data (M,h, g, φ) is called a real metric calculus over A if

1) the image Mϕ = φ(g) generates M as an A-module,

2) h(E,E′)∗ = h(E,E′) for all E,E′ ∈Mϕ.

An affine connection ∇ on (M, g) is a map ∇ : g×M →M such that (with
the notation ∇(∂, U) = ∇∂(U)), one has

1) ∇∂(U + V ) = ∇∂U +∇∂V ,

2) ∇λ∂+∂′U = λ∇∂U +∇∂′U ,

3) ∇∂(Ua) =
(
∇∂U

)
a+ U∂(a),

for all U, V ∈M , ∂, ∂′ ∈ g, a ∈ A and λ ∈ R.

Definition 5.2. Let (M,h, g, φ) be a real metric calculus and let ∇ denote
an affine connection on (M, g). If

h(∇∂E,E
′) = h(∇∂E,E

′)∗

for all E,E′ ∈Mϕ and ∂ ∈ g then (M,h, g, φ,∇) is called a real connection
calculus.

Definition 5.3. Let (M,h, g, φ,∇) be a real connection calculus over M .
The calculus is metric if

∂
(
h(U, V )

)
= h

(
∇∂U, V

)
+ h

(
U,∇∂V

)

for all ∂ ∈ g, U, V ∈M , and torsion-free if

∇∂φ(∂
′)−∇∂′φ(∂)− φ

(
[∂, ∂′]

)
= 0

for all ∂, ∂′ ∈ g. A metric and torsion-free real connection calculus over A is
called a pseudo-Riemannian calculus over A.
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Within this framework, the uniqueness of a metric and torsion-free connec-
tion can be stated in the following way.

Theorem 5.4 ([AW17b]). Let (M,h, g, φ) be a real metric calculus over
A. Then there exists at most one affine connection ∇ on (M, g), such that
(M,h, g, φ,∇) is a pseudo-Riemannian calculus.

Let us now return to the noncommutative cylinder. The algebra C∞
ℏ

consists of smooth functions on R× S1 that fall off rapidly at infinity. Of
course, there are many more smooth functions on R× S1 and in this section
we allow ourselves to consider a different algebra Ĉ∞

ℏ
consisting of elements

f(u, t) =
∑

n∈Z

fn(u)e
2πint

where fn ∈ C∞(R) is such that fn ̸= 0 only for a finite number of terms.
The product is defined as before as

(f •ℏ g)(u, t) =
∑

n∈Z

[∑

k∈Z

fk(u)gn−k(u+ kℏ)

]
e2πint

and the ∗-algebra structure is again given as in Proposition 2.4. Note that
whenever f, g ∈ C∞

ℏ
∩ Ĉ∞

ℏ
the products of the two algebras coincide (as well

as the involution). In what follows, we shall construct a pseudo-Riemannian
calculus over Ĉ∞

ℏ
.

Let g denote the real (abelian) Lie algebra generated by the hermitian
derivations ∂1, ∂2, and let T Ĉ∞

ℏ
denote the free (right) Ĉ∞

ℏ
-module of rank

2, with basis e1, e2. Moreover, we introduce the hermitian form h : T Ĉ∞
ℏ

×

T Ĉ∞
ℏ

→ Ĉ∞
ℏ

h(X,Y ) = (Xi)∗hijY
j

for X = Xiei and Y = Y iei and hij ∈ Ĉ∞
ℏ

such that h∗ij = hji = hij . (Here
and in the following we sum over up-down repeated indices from 1 to 2.) We
shall assume that h is invertible in the sense that there exists hij ∈ Ĉ∞

ℏ
such

that hijhjk = hkjh
ji = δik. (For instance, one might choose hij = e2k(u)δij

for arbitrary (real) k(u) ∈ Ĉ∞
ℏ
.) Clearly, h is nondegenerate in the sense

that h(X,Y ) = 0 for all Y ∈ T Ĉ∞
ℏ

implies that X = 0.

Finally, we define φ : g → T Ĉ∞
ℏ

as φ(∂k) = ek (for k = 1, 2) extended linearly

to all of g. It is immediate that the image of φ generate T Ĉ∞
ℏ

and that
h(E,E′) is hermitian for all E,E′ in the image of φ. These considerations
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imply that (T Ĉ∞
ℏ
, h, g, φ) is a real metric calculus over Ĉ∞

ℏ
. The (unique)

Levi-Civita connection can be computed via Koszul’s formula (cf. [AW17a,
AW17b]) which, since [∂i, ∂j ] = 0, becomes

h(∇iej , ek) =
1

2

(
∂ih(ej , ek) + ∂jh(ek, ei)− ∂kh(ei, ej)

)
,

where ∇i = ∇∂i
. Writing ∇iej = elΓ

l
ij gives

(Γl
ij)

∗hlk =
1

2

(
∂ihjk + ∂jhki − ∂khij

)
,

and one finds that

Γl
ij =

1

2
hlk

(
∂ihjk + ∂jhki − ∂khij

)
.

Let us exemplify this construction for hij = e2k(u)δij . In this case, one obtains

Γ1
11 = Γ2

12 = Γ2
21 = −Γ1

22 = k′(u)

Γ2
11 = Γ1

12 = Γ1
21 = Γ2

22 = 0

giving

∇1e1 = e1k
′(u) ∇1e2 = ∇2e1 = e2k

′(u) ∇2e2 = −e1k
′(u).

We immediately note that

h(∇iej ,∇kel)
∗ = h(∇iej ,∇kel)

since both ∇iej and hij depend only on u. This implies that the curvature of
the connection will have all the classical symmetries [AW17b]; hence, there
is only one independent component of the curvature, and one finds

R(∂1, ∂2)e1 = ∇1∇2e1 −∇2∇1e1 = e2k
′′(u)

R(∂1, ∂2)e2 = ∇1∇2e2 −∇2∇1e2 = −e1k
′′(u)

R1212 = h
(
e1, R(∂1, ∂2)e2

)
= −e2k(u)k′′(u),

giving the Gaussian curvature as

K =
1

2
hijRikjlh

kl = −e−2k(u)k′′(u).

For a metric of the above form, a natural integration measure corresponding
to the volume form is given by τh(f) = τ(fe2k(u)). For the sake of illustration,
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let us compute the total curvature (when it exists)

τh(K) = −

∫ ∞

−∞

e−2k(u)k′′(u)e2k(u)du = −

∫ ∞

−∞

k′′(u)du

= lim
u→−∞

k′(u)− lim
u→∞

k′(u)

Here one notes a certain independence of the total curvature with respect
to perturbations of the metric; i.e. for k̃(u) = δ(u) + k(u) one finds that
τh(K̃) = τh(K) whenever

lim
u→∞

δ′(u) = lim
u→−∞

δ′(u).

For instance, for k(u) = ln(cosh(u)), corresponding to the induced metric on
the catenoid (cf. [AH18]), one obtains

τh(K) = lim
u→−∞

tanh(u)− lim
u→∞

tanh(u) = −2

which, in the geometrical situation where the trace naturally gains a factor
of 2π (from the integration along S1), gives the expected value of −4π for
the total curvature of the catenoid.
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Via A.Valerio, 12/1, 34127 Trieste, Italy

Institute for Geometry and Physics (IGAP) Trieste, Italy

and INFN, Trieste, Italy

E-mail address: landi@units.it


	Introduction
	The algebra of the noncommutative cylinder
	Projections in the algebra
	Bimodules
	A pseudo-Riemannian calculus
	References

