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On entropy for general quantum systems

W. A. Majewski and L. E. Labuschagne

In these notes we will give an overview and road map for a defi-
nition and characterization of (relative) entropy for both classical
and quantum systems. In other words, we will provide a consistent
treatment of entropy which can be applied within the recently de-
veloped Orlicz space based approach to large systems. This means
that the proposed approach successfully provides a refined frame-
work for the treatment of entropy in each of classical statistical
physics, Dirac’s formalism of Quantum Mechanics, large systems
of quantum statistical physics, and finally also for Quantum Field
Theory.
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Despite the efforts of many authors over a very long period of time, gain-
ing a deeper understanding of entropy remains one of the most important
and intriguing challenges in the physics of large systems — a challenge still
receiving the close attention of many prominent authors. See for example
[35]. In this endeavour the techniques available for the quantum framework
still lack the refinement of those available for classical systems. On this point,
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Dirac’s formalism for Quantum Mechanics and von Neumann’s definition of
entropy in the context of B(H), does however provide a “template” for de-
veloping techniques for the description and study of entropy in the context
of tracial von Neumann algebras. One possible way in which von Neumann’s
ideas could be refined to provide a “good” description of states with well-
defined entropy in the tracial case, was fully described in [22]. As is shown in
that paper, a successful description of states with entropy can be achieved
on condition that the more common framework for quantum theory based on
the pair of spaces ⟨L∞, L1⟩, is replaced with a formalism based on the pair of
Orlicz spaces ⟨Lcosh−1, L log(L+ 1)⟩. An important point worth noting (also
pointed out in [22]), is that this axiomatic shift leaves Dirac’s formalism in-
tact! However not all quantum systems correspond to tracial von Neumann
algebras. (Note for example that the local algebras of Quantum Field The-
ory are type III1.) Hence no formalism for describing and studying entropy
is complete, if it cannot also find expression in a type III context. In these
notes we will provide a formalism for describing (relative) entropy for the
most general quantum systems. Our approach is to describe relative entropy
in terms of modular dynamics, for which a common input stemming from
the concept of Radon-Nikodym derivatives is crucial. As we shall show in
Section 4, the theory achieved dovetails well with existing concepts of rela-
tive entropy [1, 2], and also allows for a “density based” description which
faithfully mimics the classical formula. Then in Section 5 we use the theory
thus developed as a guideline for introducing a concept of entropy for single
states of type III von Neumann, before concluding by indicating the way
forward. As shall be seen, the definition for entropy achieved in Section 5
harmonises perfectly with the above-mentioned Orlicz space formalism, and
is a natural extension of the descriptions given in [22]. We emphasize that
the aforementioned extension demands a regularization procedure which has
recently been shown to fit the operator algebraic approach to Quantum Field
Theory very naturally, cf [21].

1. Boltzmann’s H-functional and (classical) entropy

Let Γ be a phase space associated with a system. We fix a reference measure
λ on Γ; usually it will be the Lebesgue measure. A function f such that
f ∈ {g; g ∈ L1(Γ, dλ), g ≥ 0,

∫
Γ gdλ = 1} ≡ S defines a probability measure

dµ = fdλ. In the Boltzmann theory, such an f has the interpretation of a
velocity distribution function, cf [33] see also [29] . On the other hand we
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note that g ∈ S can be written as

(1.1) g =
dµ

dλ

where dµ
dλ stands for the Radon-Nikodym derivative. Hence, the Boltzmann

H-functional can be written as

(1.2) H(g) ≡

∫
g log(g)dλ =

∫
dµ

dλ
log

(
dµ

dλ

)
dλ = µ

(
log

(
dµ

dλ

))
,

provided that the above integrals exist. In [20], [22], [23] we have argued
that for states (probability measures) µ such that dµ

dλ ∈ L log(L+ 1) ∩ L1,
the functional H(·) is well defined.

Remark 1.1. As the (classical) continuous entropy S differs from the func-
tionalH only by sign, the above means that the entropy S(dµdλ ) is well defined

if dµdλ ∈ L log(L+ 1) ∩ L1.

Let µ and ν be probability measures over a set X, and assume that µ is
absolutely continuous with respect to ν. The relative entropy (also known
as Kullback-Leibner divergence) is defined as

(1.3) S(µ|ν) =

∫

X
log

(
dµ

dν

)
dµ =

∫

X

dµ

dν
log

(
dµ

dν

)
dν ≡

〈
log

dµ

dν

〉

µ

,

provided that the integrals in the above formulas exist, where dµ
dν is the

Radon-Nikodym derivative of µ with respect to ν. Assume additionally that
ν (so also µ is absolutely continuous with respect to the reference measure
λ). Then

(1.4)
dµ

dν
=
dµ

dλ
·
dλ

dν
,

and under some additional assumptions one has the more familiar formula
for the relative entropy

(1.5) S(µ|ν) =

∫

X
p log

p

q
dλ,

where p = dµ
dλ and q = dν

dλ .
Intuitively, it is easily seen that for a discrete case, the entropy of a

random variable f on X with a probability distribution p(x) is related to
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how much p(x) diverges from the uniform distribution on the support of f .
In particular, putting q = 1 in the formula 1.5 one gets

(1.6) S(µ|τ) = H(p),

where the (non-normalized) functional τ is defined by the reference mea-
sure λ. As “uniformity” can be related to the “most chaotic” state (each
microstate is equally probable), the basic property of statistical entropy ex-
pressing how far the given state is from the most chaotic, is recovered.

To clarify this point as well as to gain some intuition for a noncommu-
tative generalization, we turn to the algebraic approach to the just defined
concepts. For a fixed measure space (X,Σ, λ), let L∞(X,Σ, λ) ≡ L∞ denote
the set of all λ-measurable, essentially bounded functions on X. The abso-
lute continuity of µ with respect to λ is equivalent to the condition that µ
can be regarded as a normal functional on L∞(X,Σ, λ), cf [5] Theorem 1,
p. 167. Since L∞(X,Σ, λ) is the prototype of abelian von Neumann alge-
bras, one can rewrite definitions as well as the basic properties of the above
concepts in (abelian) von Neumann algebraic terms.

To this end, let ϑµ(f) =
∫
X f · (dµdλ )dλ(x) denote the functional over

L∞(X,Σ, λ), for the reference measure λ. In particular, the trace τ over
L∞(X,Σ, λ) is given by

(1.7) τ(f) =

∫

X
fdλ(x).

It is worth pointing out that the existence of such a trace affords the
possibility of dealing with uniform distribution (as was indicated above). In
other words, such existence affords the possibility of discussing the relation
between entropy and relative entropy! Consequently, the entropy formula
can be given as

S(µ) ≡ S(ϑµ) = τ

((
Dϑµ
Dτ

)
log

(
Dϑµ
Dτ

))
(1.8)

≡

∫

X

(
Dϑµ
Dτ

)
log

(
Dϑµ
Dτ

)
dλ(x) =

〈
log

(
Dϑµ
Dτ

)〉

µ

,

while the relative entropy formula reads

(1.9) S(ϑµ|ϑν) =

〈
log

(
Dϑµ
Dϑν

)〉

µ

,
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where Dϑµ

Dϑν
stands for the Radon-Nikodym derivative of functional ϑµ with

respect to the functional ϑν — see the next section.

Remark 1.2. Classical equilibrium thermodynamics. To get some better
intuition, let us consider the specific case when the velocity distribution
function dµ

dλ is given by the Maxwell-Boltzmann distribution

(1.10)
dµ

dλ
= Ze−βH = elogZ−βH ≡ eK ,

where Z is the normalization constant, β > 0 (usually interpreted as “the
inverse temperature”), and H is the Hamiltonian of the system under con-
sideration.

For such cases, the above formulas for entropies read

(1.11) S

(
dµ

dλ

)
≡ S

(
Dυµ
Dτ

)
= ⟨log(eK)⟩µ = ⟨K⟩µ,

while for the relative entropy of dµ
dλ = Z1e

−β1H1 ≡ eK1 , dν
dλ = Z2e

−β2H2 ≡
eK2 , one has

(1.12) S

(
dµ

dλ
|
dν

dλ

)
=

〈
log

eK1

eK2

〉

µ

= ⟨K1⟩µ − ⟨K2⟩µ.

It is important to note that (1.11) is in perfect agreement with the second
law of thermodynamics; see Section 32 in [17]. The above formulas can be
rewritten as

(1.13) S

(
dµ

dλ

)
= −i

d

dt
⟨eitK⟩µ|t=0

and

(1.14) S

(
dµ

dλ
|
dν

dλ

)
= −i

d

dt
⟨eitK1e−itK2⟩µ|t=0

As it will be seen in the next Sections, the above recipe can easily be
generalized and quantized.

To clarify the significance of derivatives and to proceed with our exposi-
tion we need some preliminaries, which for the reader’s convenience will be
given in a separate section.
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2. Algebraic preliminaries

As the concepts of entropy and relative entropy involve Radon-Nikodym
derivatives, for the reader’s convenience, we here provide the relevant mate-
rial on noncommutative Radon-Nikodym and cocycle derivatives, thus mak-
ing our exposition self-contained. The theory of such cocycles goes back to
[9], [10], [11]. In particular, Connes proved, see [9]

Theorem 2.1. Let M be a von Neumann algebra and ϕ, ψ faithful semifi-
nite normal weights on M. Then there exists a σ-strongly continuous one
parameter family {ut} of unitaries in M with the following properties:

• ut+t′ = utσ
ϕ
t (ut′), for all t, t′ ∈ R,

•

(2.1) σψt (x) = utσ
ϕ
t (x)u

∗
t , for all x ∈ M, t ∈ R,

• a unitary u ∈ M satisfies ψ(x) = ϕ(uau∗) for all x ∈ M, if and only if
ut = u∗σϕt (u) for all t ∈ R,

where σφt (σψt ) stands for the modular evolution determined by φ (ψ respec-
tively).

Definition 2.2. The family of unitaries described by the above theorem is
called the cocycle derivative of φ with respect to ψ and is denoted by

(2.2) (Dφ : Dψ)t = ut.

To fully understand the next remark we need, cf [8], Theorem 5.3.10.

Theorem 2.3. (Takesaki) Let M be a von Neumann algebra, and ω a
normal state on M. The following are equivalent:

1) ω is faithful as a state on πω(M), i.e. there exists a projector E ∈
M ∩M

′ such that ω(I− E) = 0 and ω|ME is a faithful state.

2) There exists a σ-weakly continuous one-parameter group σ of ∗-auto-
morphisms of M such that ω is σ-KMS state.

Moreover, σ|ME is the modular group of ME associated with ω.

This theorem legitimises the application of KMS theory to our approach
to quantum entropy. In other words, our scheme is related to quantum equi-
librium thermodynamics. Now we are in position to present
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Remark 2.4. We note that u0 = I (see the proof of Theorem 3.3, Chapter
VIII in [31]). Further, let us take (formally) a derivation of (2.1) at t = 0.
Then, denoting the infinitesimal generator of σψt (σφt ) by Lψ (Lφ respec-
tively) one gets

(2.3) Lψ(x) =
dut
dt

t=0
x+ Lφ(x) + x

(
dut
dt

t=0

)∗

,

or equivalently

(2.4) Lψ(x)− Lφ(x) =
dut
dt

t=0
x+ x

(
dut
dt

t=0

)∗

.

Theorem 2.3 implies that the modular evolution for a fixed faithful normal
state φ on M, can be interpreted as Hamilton type dynamics for the equi-
librium (KMS) state on M. This means that the derivative of ut at t = 0
determines the difference of two “equilibrium” type generators Lψ and Lφ.
The important point to note here, is the fact that in general, Lψ and Lφ are
unbounded derivations. Thus, the equality (2.3) is not well defined for each
x. This clearly indicates that derivatives of ut should be studied carefully,
and this will be done in the ensuing sections.

To say more, let ψ be a perturbed φ-state, so ψ ≡ φP ; for all details see
Section 5.4.1 in [8]. In particular, for P ∈ M there exists an explicit form of
ut. Furthermore, it is easy to note that Lφ

P

x− Lφx = i[P, x], which is well
defined. Consequently, comparing two states which differ by a finite energy
perturbation, does not lead to any problem.

Finally, we note that KMS states can be characterized by passivity, see
[28] and/or Section 5.4.4 in [8]. We remind that among other things passiv-
ity ensures compatibility with the second law of thermodynamics. Therefore,
our scheme based on Tomita-Takesaki theory, seems to be a natural quanti-
zation of the classical case presented in Remark 1.2.

The Radon-Nikodym theorem used in the previous section has gener-
alizations to general von Neumann algebras. The first generalization, for
traces, is extracted from Pedersen’s book [27], see Theorem 5.3.11 and the
remarks in 5.3.12 from that reference.

Theorem 2.5. Let τ be a normal semifinite trace over M. For each normal
semifinite weight ψ on M which is absolutely continuous with respect to τ in
the sense that for any a ∈ M, the fact that τ(a∗a) = 0 implies ψ(a∗a) = 0,
there exists a unique positive operator h on Hτ (Hτ is GNS space for (M, τ))
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such that

(2.5) ψ(x) = τ(hx).

For a general von Neumann algebraM and two normal faithful semifinite
weights such that one dominates the other, one has (see Theorem VIII.3.17
in [31])

Theorem 2.6. For a pair ϑ, ψ of faithful semifinite normal weights on M,
the following conditions are equivalent:

1) There exists M > 0 such that

(2.6) ϑ(x) ≤Mψ(x), x ∈ M+,

2) The cocycle derivative (Dψ : Dϑ)t ≡ ut can be extended to an M-valued
σ-weakly continuous bounded function on the horizontal strip D 1

2

=

{z ∈ C;−1
2 ≤ Im(z) ≤ 0}, which is holomorphic in the interior of the

strip.

If these conditions hold, then

(2.7) ϑ(x) = ψ
(
u∗
− i

2

xu− i

2

)
, x ∈

{
n∑

i

y∗i xi; xi, yj ∈ nψ

}
,

where nψ = {x ∈ M;ψ(x∗x) <∞}.

Remark 2.7. We emphasize that the domination of one weight by another
is a stronger property than “absolute continuity” described in Theorem 2.5,
but the domination condition is nevertheless still in the same vein as the
condition of absolute continuity. Also notice from part (2) of the above
theorem, that |u∗−i/2|

2 in a very real sense fulfills the role of the “density”
of ψ with respect to ϑ.

One may ask whether there is a relation, based on the Connes charac-
terization of unitary Radon-Nikodym cocycles, between cocycle derivatives
and the relative modular operator. More precisely, see [1], [3], let ϕ, ϑ be
normal semifinite weights on M, and ϕ be faithful. Then

(2.8) ut ≡ (Dϑ : Dϕ)t = ∆it
ϑ,ϕ∆

−it
ϕ .

In particular, if M is semifinite von Neumann algebra, ψ and ϑ faithful
semifinite normal weights, τ a faithful, normal semifinite trace on M, then
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one has (see [12], p.470) that there exist positive operators affiliated with
M such that ψ(x) = τ(ϱψx), ϑ(x) = τ(ϱϑx) for each x ∈ M, and

(2.9) (Dϑ : Dψ)t = ϱitϑϱ
−it
ψ .

Hence, on applying this equality to the abelian von Neumann algebra L∞

(cf. the discussion at the end of the previous section), one has

(2.10)
d

dt
(Dφµ : Dφν) |t=0 = i log fµ − i log fν ,

where µ = fµdλ, ν = fνdλ, and fµ > 0, fν > 0. Thus

−i

〈
d

dt
(Dφµ : Dφν)

t=0

〉

µ

=

∫
fµ log

fµ
fν
dλ(2.11)

=

∫
(fµ log fµ − fµ log fν) dλ,

which is in perfect agreement with the definition of relative entropy, cf. for-
mula 1.3.

We remind the reader that the proper basic structure for a description of
large quantum systems, is a von Neumann algebra of type III. In other words,
one is forced to deal with a von Neumann algebra which is not equipped with
a nontrivial trace. Consequently, to be able to study entropy, access to the
type of functional calculus required for an effective description of uniform
distribution would be a powerful tool, which can be accessed by passing to
a larger super-algebra, i.e. to the crossed-product M. It is in this larger
super-algebra that we have access to the functional calculus for τ -measurable
operators. If M together with a canonical faithful normal semifinite weight
ω is given on a Hilbert space H, then M is the von Neumann algebra on
the Hilbert space L2(R,H) generated by the following operators:

(π(x)ξ)(t) = σ−t(x)ξ(t), ξ ∈ L2(R,H), t ∈ R, x ∈ M,(2.12)

(λ(s)ξ)(t) = ξ(t− s), ξ ∈ L2(R,H), t ∈ R, x ∈ M,(2.13)

where σt = σωt stands for the modular automorphism.

Remark 2.8. 1) M can be identified with its image π(M) in M.

2) IfM is type III thenM is a semifinite. Thus, onM there is a semifinite
normal faithful trace!
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We wish to close this section with a deep result of Haagerup, see [15]
Theorem 4.7 or/and [32] pp. 26–27. Let ψ, ϑ be normal, faithful semifinite
weights on M. ψ̃ and ϑ̃ stand for the corresponding dual weights on M.
Then, for any t ∈ R

(2.14)
(
Dψ̃ : Dϑ̃

)

t
= (Dψ : Dϑ)t .

3. The von Neumann entropy and Dirac’s formalism

In Dirac’s formalism, a (small) quantum system is described by an infinite
dimensional Hilbert space H and the von Neumann algebra B(H). A normal
state ψ on B(H) has the form ψ(a) = Trϱψa where ϱψ is a positive trace
class operator, with trace equal to 1, i.e. Trϱψ = 1. Here the set of states
S is given by S = {ϱ ∈ B(H); ϱ∗ = ϱ, ϱ ≥ 0,Trϱ = 1}. Applying the non-
commutative Radon-Nikodym theorem, see Theorem 1, pp. 469–470 in [12],
one has

(3.1) ϱitψ = (Dψ : DTr)t

We remind that von Neumann entropy S(ϱψ) was defined as

(3.2) S(ϱψ) = Tr(ϱψ log ϱψ).

This definition can be rewritten in Radon-Nikodym terms in the follow-
ing way

S(ϱψ) = −iTr

(
ϱψ

d

dt
(Dψ : DTr)

t=0

)
(3.3)

≡ −iψ

(
d

dt
(Dψ : DTr)

t=0

)
,

and, for ψ(·) = Tr(ϱψ·), φ(·) = Tr(ϱφ·)

(3.4) S(ψ|φ) = Tr (ϱψ log ϱψ − ϱψ log ϱφ) = −iψ

(
d

dt
(Dψ : Dφ)

t=0

)
,

where we assumed that the states are faithful.

Remark 3.1. As was pointed out at the end of [22, Section 6], within
Dirac’s formalism the Orlicz space scheme for selecting “good” states with
well defined entropy, agrees with the standard approach to elementary quan-
tummechanics. Specifically in this setting the space L1∩L(log(L+1))(B(H))
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is precisely the trace class operators L1(B(H)). In fact for B(H), all non-
commutative measurable operators are already bounded; for details see cf
[22], and [24]. This behaviour is not unexpected as on the one hand Dirac’s
formalism is designed for small systems, and on the other hand, restricting
to B(H), noncommutative integration theory is oversimplified. The entropy
for large systems will be examined in the next section.

4. General quantum case

Let us consider a general quantum system and let M be a von Neumann
algebra associated with the system. In general, for large systems, M is a type
III von Neumann algebra. Let ω be a normal semifinite faithful weight on M.
The weight ω will play the role of a noncommutative probability reference
measure. We denote by M the crossed product of M associated with the
modular morphism σω produced by ω, cf. Section 2. By ω̃ we denote the
dual (and hence normal semifinite faithful) weight on M, and τ stands for
the canonical trace on M. We remind that the modular automorphism σ̃
produced by the dual weight ω̃ has the form σ̃t(·) = λ(t) · λ(t)∗ — for details
see [30], [32] and [21]. By Stone’s theorem one has λ(t) = hit. We note that
log h can be identified with −i ddt(Dω̃ : Dτ)t|t=0 where τ is the canonical
trace on M. Based on the foregoing analysis we propose:

Definition 4.1. Let ϑ, ψ be faithful states on M. We define the relative en-
tropy S(ϑ|ψ) to be S(ϑ|ψ) = limt→0

−i
t ϑ[(Dϑ : Dψ)t − 1] if the limit exists,

and assign a value of ∞ to S(ϑ|ψ) otherwise.

Let M be a σ-finite von Neumann algebra in standard form [16], and
let ψ and ϕ be two faithful normal states with unit vector representatives
Ψ,Φ ∈ H. The basic theory of Tomita-Takesaki theory easily extends to
show that the densely defined anti-linear operator Sϕ,ψ(aΨ) = a∗Φ is in fact
closable. The operator ∆ϕ,ψ is then defined to be the modulus of the closure
of Sϕ,ψ. In the same way that the “standard” modular operator may be
used to generate the modular automorphism group of a given state, this
operator in a very real sense encodes the manner in which the dynamics
determined by the modular automorphism group of one state, differs from
other. Using this fact, Araki then defined the relative entropy of ψ and
ϕ to be −⟨Ψ, log(∆ϕ,ψ)Ψ⟩. We refer the interested reader to [1, 2] and the
references therein for a survey of the basic properties of this entropy. However
despite the success of Araki’s approach, we prefer the above definition, since
on the one hand it is more overtly based on modular dynamics, and on
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the other it more easily allows for the incorporation of crossed product
techniques in the study of this entropy — as we shall subsequently see.
The two approaches turn out to be equivalent — a fact which is the content
of the next theorem. One of the crucial facts which help to establish this link,
is the fact that the Connes cocycle derivative (Dψ : Dϕ)t may be described
in terms of ∆ϕ,ψ and ∆ϕ (see Appendix B of [3] for details). Another is that
any normal state ϑ on a σ-finite von Neumann algebra M in standard form
[16], must have a vector representative [8, Theorem 2.5.31]. A version of this
theorem appears in the book of Ohya and Petz [26, Theorem 5.7], but under
the assumption that −⟨Ψ, log(∆ϕ,ψ)Ψ⟩ is finite. Our proof is quite different
from the one used by Ohya and Petz — a fact which enables us to make
the more general conclusion stated below. In particular we are able to apply
the Dominated Convergence theorem directly to the functions |1t (λ

it − 1)|,
rather than to | log λ− 1

it(λ
it − 1)|.

Theorem 4.2. Let M be a σ-finite von Neumann algebra in standard form
[16], and let ψ and ϕ be two faithful normal states with unit vector represen-
tatives Ψ,Φ ∈ H. Then S(ψ|ϕ) as defined in Definition 4.1 agrees exactly
with Araki’s definition of relative entropy [1].

Proof. To start the proof we recall that in this case (Dψ : Dϕ)t = ∆it
ψ,ϕ∆

−it
ϕ .

The chain rule for cocycle derivatives informs us that 1 = (Dψ : Dψ)t =
(Dψ : Dϕ)t(Dϕ : Dψ)t, and hence that we also have that

(Dψ : Dϕ)t = (Dϕ : Dψ)−1
t = (∆it

ϕ,ψ∆
−it
ψ )−1 = ∆it

ψ∆
−it
ϕ,ψ.

Note that by construction we have that Ψ is an eigenvector of ∆ψ corre-
sponding to the eigenvalue 1. Hence Ψ must then be an eigenvector of ∆−it

ψ

corresponding to the eigenvalue 1−it = 1. So for any t we must then have
that

⟨Ψ, (Dψ : Dϕ)tΨ⟩ = ⟨Ψ,∆it
ψ∆

−it
ϕ,ψΨ⟩

= ⟨∆−it
ψ Ψ,∆−it

ϕ,ψΨ⟩ = ⟨Ψ,∆−it
ϕ,ψΨ⟩.

It is therefore trivially clear that

lim
t→0

1

t
ψ[(Dψ : Dϕ)t − 1] = lim

t→0

1

t
⟨Ψ, (∆−it

ϕ,ψ − 1)Ψ⟩.

Recall that Araki’s definition of entropy is

S(ψ|ϕ) = −⟨Ψ, log(∆ϕ,ψ)Ψ⟩
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where the latter term is understood to be

−

∫ ∞

0
log(λ) d⟨Ψ, eλΨ⟩

(here λ→ eλ is the spectral resolution of ∆ϕ,ψ). As Araki points out, the
value of this integral is either real (in the case where log is integrable), or ∞
otherwise. In the case where log is not integrable, it once again follows from
[1] that in this setting log is always integrable on [1,∞), and hence that the
non-integrability of log is derived from the fact that −

∫ 1
0 log(λ) d⟨Ψ, eλΨ⟩ =

∞.
First suppose that log is integrable. For any t > 0 and any λ > 0, we

have that
∣∣∣∣
1

t
(λit − 1)

∣∣∣∣ ≤
∣∣∣∣
1

t
(λit/2 − 1)(λit/2 + 1)

∣∣∣∣ ≤
∣∣∣∣
2

t
(λit/2 − 1)

∣∣∣∣ .

Carrying on inductively, leads to the conclusion that |1t (λ
it − 1)| ≤

|2
k

t (λ
it/2k

− 1)| for any k ∈ N. If now we let k → ∞, we obtain the inequality
|1t (λ

it − 1)| ≤ | log(λ)|, which holds for any t > 0 and any λ > 0. Hence we
may apply the dominated convergence theorem to see that for any sequence
{tn} converging to 0, we have that

lim
n→∞

−i

tn
⟨Ψ, (∆−itn

ϕ,ψ − 1)Ψ⟩ = lim
n→∞

−i

tn

∫ ∞

0
(λ−itn − 1) d⟨Ψ, eλΨ⟩

= −

∫ ∞

0
log(λ) d⟨Ψ, eλΨ⟩.

This fact is enough to enable us to conclude that

lim
t→0

−i

t
⟨Ψ, (∆−it

ϕ,ψ − 1)Ψ⟩ = −

∫ ∞

0
log(λ) d⟨Ψ, eλΨ⟩.

Next suppose that log is not integrable. As was noted earlier, the fact
that in this setting log is always integrable on [1,∞), ensures that non-
integrability of log is equivalent to the statement that

−

∫ 1

0
log(λ) d⟨Ψ, eλΨ⟩ =

∫ 1

0
log(λ−1) d⟨Ψ, eλΨ⟩ = ∞.

In fact a slight modification of the above argument shows that for any se-
quence {tn} decreasing to 0, we then always have that

lim
n→∞

−i

tn

∫ ∞

1
(λ−itn − 1) d⟨Ψ, eλΨ⟩ = −

∫ ∞

1
log(λ) d⟨Ψ, eλΨ⟩ ∈ R.
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We therefore need to investigate this type of behaviour on the interval [0, 1].
For any sequence {tn} decreasing to 0, we may use Fatou’s lemma to

conclude that

∞ = lim inf
n

∫ 1

0

sin(tn log(λ
−1))

tn
d⟨Ψ, eλΨ⟩.

Since for any n we have that

ℜ[−i(λ−itn − 1)] = sin(−tn log(λ)) = sin(tn log(λ
−1),

this fact ensures that in this case limn→∞

∫ 1
0 ℜ

[
−i
tn
(λ−itn − 1)

]
d⟨Ψ, eλΨ⟩

does not exist as a real number. Hence neither does

lim
tn→0

ℜ

[
−i

tn
⟨Ψ, (∆−itn

ϕ,ψ − 1)Ψ⟩

]
= lim

n→∞

∫ ∞

0
ℜ

[
−i

tn
(λ−itn − 1)

]
d⟨Ψ, eλΨ⟩.

This suffices to prove the theorem. □

Remark 4.3. If M is commutative, then M = L∞(X,µ), in which case ψ
and ϕ correspond to positive measures on X. In particular (cf Theorem 2.1)
there exists a Radon-Nikodym derivative h = dψ

dϕ , and hit = (Dψ : Dϕ)t.
Therefore, the definition of classical relative entropy also stems from Defini-
tion 4.1. Finally, the definition of relative entropy for Dirac’s formalism also
follows from Definition 4.1 (cf formula (3.4)).

To say more, we are going to invoke some results from the theory of Lp-
spaces associated with von Neumann algebras. We note, cf. [32], Theorem 36,
that

(4.1)
(
λ(M), L2(M), J, L2(M)+

)

is a standard form of M, where the right action λ(·) is defined as λ(x)a =
xa, a ∈ L2(M) and J denotes the conjugate isometric involution a 7→ a∗ of
L2(M)

Next, we note, cf. [32] Proposition 4, that there is a bijection ϕ 7→ hϕ
of the set of all normal semifinite weights on M onto the set of all positive
selfadjoint operators h affiliated with M, and satisfying θs(h) = e−sh for
any s ∈ R. As we wish to deal with τ -measurable operators we must restrict
ourselves to normal functionals on M. Then, the mapping ϕ 7→ hϕ is an
isometry of M∗ onto L1(M). Consequently, fixing ϕ ∈ M∗,+, one gets hϕ ∈
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L1(M)+. In particular, h
1

2

ϕ ∈ L2(M)+, and

(4.2) ϕ(x) = tr(h
1

2

ϕxh
1

2

ϕ) ≡ ⟨h
1

2

ϕ , xh
1

2

ϕ⟩L2(M),

where tr stands for a linear functional (having the trace property) on L1(M),

see Definition II.13 and Proposition II.21 in [32]. In other words, h
1

2

ϕ is a

vector in the natural cone L2(M)+, and this vector represents the state ϕ.
Using the above framework, the proposed definition of entropy may be

written as the claim that S(ψ|ϕ) = limt→0
−i
t tr(h

1/2
ψ [(Dψ : Dϕ)t − 1]h

1/2
ψ )

whenever the limits exists, with S(ψ|ϕ) = ∞ otherwise. The next objective
in this section, is to show that this definition can very concretely be refor-
mulated in a manner which is a faithful noncommutative analogue of the
classical formula presented in Equation 1.5. However for this we will need
some additional technology which we now review.

The first factor that suggests that such a formula may well be within
reach is the fact that in the above framework we have that

(Dϑ : Dψ)t = hitϑh
−it
ψ

where hϑ = Dϑ̃
Dτ and hψ = Dψ̃

Dτ . To see that the above claim is true, we may
use Haagerup’s result and the cocycle chain rule to see that

1 = (Dψ̃ : Dψ̃)t = (Dψ̃ : Dτ)t(Dτ : Dψ̃)t.

Equivalently

(Dτ : Dψ̃)t = (Dψ̃ : Dτ)−1
t .

But from Section 2 we know that (Dψ̃ : Dτ)t = hitψ . Hence (Dτ : Dψ̃)t =

h−itψ . Since also (Dϑ̃ : Dτ)t = hitϑ , we may once again use Haagerup’s result
and the chain rule to see that

(Dϑ : Dψ)t = (Dϑ̃ : Dψ̃)t(4.3)

= (Dϑ̃ : Dτ)t(Dτ : Dψ̃)t

= hitϑh
−it
ψ

Another major factor to take into account is that tr is only defined on
L1(M). Thus, to proceed with our objective of developing a noncommuta-
tive version of formula (1.5) we must show that in some sense hϑ log hϑ −
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hϑ log hϕ is in L1. As we shall see below, this can indeed be achieved in a lim-
iting sense. Following Terp’s arguments, see [32] Lemma II.19, we consider
the function

(4.4) S0 ∋ α 7→ hαϑh
1−α
ϕ ∈ L1(M),

where obviously hϑ, hϕ ∈ L1(M), and S is the closed complex strip {α ∈
C; 0 ≤ ℜ(α) ≤ 1} and S0 stands for the corresponding open strip. Terp’s
Lemma II.19 easily adapts to show that the function (4.4) is analytic on S0.
Taking the derivative, in the Banach space language, one gets that

(4.5) α 7→ hαϑ · log hϑ · h
1−α
ϕ − hαϑ · log hϕ · h

1−α
ϕ ∈ L1(M)

inside S0. More importantly, the analyticity ensures that this derivative
varies continuously with respect to α in L1-norm. A fact which underlies the
above very regular behaviour on this strip, is that for any 0 < s, xs log(x)
is very well behaved continuous function which is 0 at 0, and for which
xs ≤ xs log(x) ≤ xs+1 whenever x ≥ e. This fact can be used to show that for
any positive τ -measurable operator g, gs log(g) will again be τ -measurable.

Using the above formula and letting α→ 1, leads us to the promised non-
commutative analogue of formula (1.5). To understand how this is achieved,
assume that α = s+ it where 0 < s < 1. Of course when computing a limit
of the form lim

∆α→0

f(α+∆α)−f(α)
∆α at such a point, we may as well assume that

∆α tends to 0 along the line ℜ(∆α) = 0. When we do this, it is then clear
that the fact that

hαϑh
1−α
ϕ = hsϑ[h

it
ϑh

−it
ϕ ]h1−sϕ

leads to the conclusion that

−i
d

dt
(hsϑ(Dϑ : Dϕ)th

1−s
ϕ ) = −i

d

dt
(hsϑ[h

it
ϑh

−it
ϕ ]h1−sϕ )

=
d

dα
hαϑh

1−α
ϕ

= hαϑ · log hϑ · h
1−α
ϕ − hαϑ · log hϕ · h

1−α
ϕ .

In particular for any α on the line segment {(s, t) : 0 < s < 1, t = 0}, we
always have that

− i
d

dt
(hsϑ(Dϑ : Dϕ)th

1−s
ϕ )

t=0

= hsϑ · log hϑ · h
1−s
ϕ − hsϑ · log hϕ · h

1−s
ϕ ∈ L1(M).
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With the groundwork having been done, we are now ready to present the
promised result.

The concept that is crucial in guaranteeing the validity of the theorem,
is the following ordering defined by Takesaki and Connes. (See [11, Defini-
tion 4.1].)

Definition 4.4. For two normal weights ϑ and ϕ on a von Neumann algebra
M, and some positive δ, we say that ϑ ≤ ϕ(δ) if the function t→ (Dϑ :
Dϕ)t = ut extends to an M-valued map z → uz which is point to weak*-
continuous and bounded on the closed strip {z ∈ C : −δ ≤ ℑ(z) ≤ 0}, and
analytic on the open strip {z ∈ C : −δ < ℑ(z) < 0}.

In the above ordering the case δ = 1
2 corresponds exactly to Theorem 2.6.

Theorem 4.5. Let M be a σ-finite von Neumann algebra in the standard
form described above, and let ϑ and ϕ be two faithful normal states with unit

vector representatives h
1/2
ϑ , h

1/2
ϕ ∈ L2(M). If ϕ ≤ ϑ(δ), then S(ϑ|ϕ) is finite

if and only if the limit

lim
s↗1

tr(hsϑ · log hϑ · h
1−s
ϕ − hsϑ · log hϕ · h

1−s
ϕ )

exists, in which case they are equal.

Proof. First suppose that S(ϑ|ϕ) is finite and let ϵ > 0 be given. This means

that limt→0
−i
t ϑ[(Dϑ : Dψ)t − 1] = limt→0

−i
t tr(h

1/2
ϑ [hitϑh

−it
ϕ − 1]h

1/2
ϑ ) exists.

Next let s be given with 1
2 < s < 1. So for tϵ > 0 small enough, we will have

that

• −i
tϵ
tr(h

1/2
ϑ [hitϵϑ h

−itϵ
ϕ − 1]h

1/2
ϑ ) is within ϵ of S(ϑ|ϕ),

• and −i
tϵ
hsϑ[h

itϵ
ϑ h

−itϵ
ϕ − 1]h1−sϕ is within ϵ of

−i
d

dt
(hsϑ(Dϑ : Dϕ)th

1−s
ϕ )

t=0
= hsϑ · log hϑ · h

1−s
ϕ − hsϑ · log hϕ · h

1−s
ϕ

with respect to L1-norm.

Notice that by the properties of the trace functional tr we have that

tr(hsϑ[h
itϵ
ϑ h

−itϵ
ϕ − 1]h1−sϕ ) = tr(h

1/2
ϑ [hitϵϑ h

−itϵ
ϕ − 1]h1−sϕ h

s−1/2
ϑ ).

By assumption ϕ ≤ ϑ(δ). This means that t→ (Dϕ : Dϑ)t extends to an
M-valued function f(z) which is point to weak*-continuous on the closed
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strip, {z ∈ C : −δ ≤ ℑ(z) ≤ 0}, and analytic on the open strip {z ∈ C : −δ <
ℑ(z) < 0}. For each z the value f(z) is essentially just an extension of
hizϕ h

−iz
ϑ . (For details of this construction see [18]). In view of this we will

simply write [hizϕ h
−iz
ϑ ] for f(z). So if we set z = −ir where 0 ≤ r ≤ δ, we

obtain that as r ↘ 0 we will have that [hrϕh
−r
ϑ ] → 1 in the weak* topology

on M.
Next notice that for 0 ≤ 1− s ≤ δ, we have that

h1−sϕ h
s−1/2
ϑ = [h1−sϕ h

−(1−s)
ϑ ]h

1/2
ϑ .

Therefore as s↗ 1 on the interval [1− δ, 1], we must have that

−i

tϵ
tr(h

1/2
ϑ [hitϵϑ h

−itϵ
ϕ − 1]h1−sϕ h

s−1/2
ϑ ) =

−i

tϵ
tr(hϑ[h

itϵ
ϑ h

−itϵ
ϕ − 1][h1−sϕ h

−(1−s)
ϑ ])

converges to −i
tϵ
tr(hϑ[h

itϵ
ϑ h

−itϵ
ϕ − 1]) = −i

tϵ
tr(h

1/2
ϑ [hitϵϑ h

−itϵ
ϕ − 1]h

1/2
ϑ ).

There must therefore exist a δ̃ > 0 such that for any s with 1− δ̃ < s < 1,
the term

−i

tϵ
tr(h

1/2
ϑ [hitϵϑ h

−itϵ
ϕ − 1]h1−sϕ h

s−1/2
ϑ )

will be within ϵ of −i
tϵ
tr(h

1/2
ϑ [hitϵϑ h

−itϵ
ϕ − 1]h

1/2
ϑ ). If we combine all the above

observations, it follows that for any s with 1− δ̃ < s < 1, tr(hsϑ · log hϑ ·
h1−sϕ − hsϑ · log hϕ · h

1−s
ϕ ) will be within 3ϵ of S(ϑ|ϕ). This proves the “only

if” part of the theorem.
Next suppose that S(ϑ|ϕ) = ∞. From the proof of Theorem 4.2 it is clear

that given M > 0 we may in this case find some tϵ > 0 such that
∣∣∣∣
−i

tϵ
tr(h

1/2
ϑ [hitϵϑ h

−itϵ
ϕ − 1]h

1/2
ϑ )

∣∣∣∣ ≥M

with additionally (as before) −i
tϵ
hsϑ[h

itϵ
ϑ h

−itϵ
ϕ − 1]h1−sϕ within ϵ of

−i
d

dt
(hsϑ(Dϑ : Dϕ)th

1−s
ϕ )

t=0
= hsϑ · log hϑ · h

1−s
ϕ − hsϑ · log hϕ · h

1−s
ϕ

with respect to L1-norm. The constant δ̃ is selected as in the first part
of the proof. Combining these estimates, now leads to the conclusion that
|tr(hsϑ · log hϑ · h

1−s
ϕ − hsϑ · log hϕ · h

1−s
ϕ )| ≥M − 2ϵ for all s with 1− δ̃ < s <

1. Since bothM > 0 and ϵ > 0 were arbitrary, the limit lims↗1 tr(h
s
ϑ · log hϑ ·

h1−sϕ − hsϑ · log hϕ · h
1−s
ϕ ) can then clearly not exist. The theorem therefore

follows. □
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5. An alternative approach to the general quantum case

Here we propose a means for defining the entropy of a single state ϑ. This
definition turns out to be equivalent to von Neumann entropy in the tra-
cial case. Some careful preparation for and justification of this definition is
required. As a first step in identifying a suitable prescription for defining
entropy of a single state, we take some time to see what Theorem 4.5 looks
like when the states in question commute. A crucial tool in this endeavour,
is the recently developed theory of Orlicz spaces for type III algebras (see
[19]). A crucial construct in the development of this theory of “type III”
Orlicz spaces, is the concept of a fundamental function. The fundamental
function of a rearrangement invariant Banach function space on (R,BR, λ),
say Lρ(R), is defined on [0,∞) by the prescription φ(t) = ∥χE∥ρ, where E
is any measurable subset of R with λ(E) = t. The rearrangement invariance
of the space in question, ensures the well-definiteness of the corresponding
fundamental function. The interested reader may find a more detailed in-
troduction to fundamental functions on pages 65–73 of [4]. The two facts
regarding fundamental functions that we need, is that for an Orlicz space
LΨ(R), the fundamental function is given by the prescription t→ 1

Ψ−1(1/t)

when the Luxemburg norm is in view, and by t→ t(Ψ∗)−1(1/t) when the
Orlicz norm is in view. (See [4, II.5.2, IV.8.15 & IV.8.17].) We will need the
following lemma in our investigation. (The proof is contained in the proof
of [19, Theorem 2.2].)

Lemma 5.1. Let a, b ηM+ be commuting affiliated operators. Let Ψ be an
Orlicz function and let φψ be the fundamental function of LΨ(R) equipped
with the Luxemburg norm. Then

χ(1,∞)(aφΨ(b)) = χ(1,∞)(Ψ(a)b).

Proof. Let α, β > 0 be given. It is a known fact that αΨ(β) ≤ 1 ⇔ β ≤
Ψ−1( 1α). If we apply this fact to the Borel functional calculus for the commut-
ing positive operators a and b, we have that χ(1,∞)(aφΨ(b)) = χ(1,∞)(Ψ(a)b)
as required. □

The above lemma now enables us to make the following conclusion:

Proposition 5.2. Let ϑ, ϕ be faithful normal states on M with unit vec-

tor representatives h
1/2
ϑ , h

1/2
ϕ , which commute in the sense that they satisfy

one (and therefore all) of the criteria described in [31, Corollary VIII.3.6].
Assume in addition that ϕ ≤ ϑ(δ) for some δ > 0, . With φlog denoting the
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fundamental function of the space L log(L+ 1)(R) (equipped with the Lux-
emburg norm), we then have that

• hϑ and hϕ are commuting operators affiliated to M,

• f = hϑh
−1
ϕ extends uniquely to an element of M,

• and S(ϑ|ϕ)=ϕ(f log(f))=infϵ>0[ϵτ(χ(ϵ,∞)(φlog(hϕ)f)+log(ϵ)∥hϕf∥1].

Proof. The first step is to show that hϑ and hϕ commute.
It is clear from the proof of [31, Corollary VIII.3.6], that the commu-

tation of ϑ and ϕ, ensures the existence of an operator h affiliated to the
centraliser Mϕ of ϕ for which we have that (Dϕ : Dϑ)t = hit. But from the

discussion preceding Theorem 4.5 we know that (Dϑ : Dϕ)t = (Dϑ̃ : Dϕ̃)t =
hitϑh

−it
ϕ . In other words for each t, hit = hitϑh

it
ϕ .

On appealing to the properties of the cocycle derivative, we may now
conclude that

hi(t+s) = (Dϑ̃ : Dϕ̃)t+s

= (Dϑ̃ : Dϕ̃)sσ
ϕ
s ((Dϑ̃ : Dϕ̃)t)

= hishisϕ h
ith−isϕ

or equivalently, hit = hisϕ h
ith−isϕ . So each hit commutes with each hisϕ .

But we saw earlier that hit = hitϑh
−it
ϕ , or equivalently that hitϑ = hithitϕ .

Together these two facts ensure that each hitϑ commutes with each hisϕ . We
may now use the Borel functional calculus to conclude from these two facts
that hϕ and hϑ themselves also commute. This proves the first bullet.

To see the second bullet, we note from the proof of Theorem 4.5 that
the requirement that ϕ ≤ ϑ(δ), ensures that for r > 0 small enough, hrϑh

−r
ϕ

extends uniquely to an element of M. Since hϕ and hϑ commute, this clearly
ensures that the closure of (hrϑh

−r
ϕ )1/r = hϑh

−1
ϕ also belongs to M.

For the final bullet, note that by the Borel functional calculus, the com-
mutation of hϕ and hϑ, ensures that we may write the limit formula

lim
s↗1

tr(hsϑ · log hϑ · h
1−s
ϕ − hsϑ · log hϕ · h

1−s
ϕ )

as lims↗1 tr(f
s log(f)hϕ) where f = hϑh

−1
ϕ . It also follows from the proof of

Theorem 4.5, that there exists an interval [δ, 1] for which s→ f s is point-
weak* continuous. So given ρ with δ < ρ < 1, we may write the limit formula
as limr↗ρ tr(f

r[f (1−ρ) log(f)]hϕ). We may now use the continuous functional
calculus to see that since f ∈ M, we must have that f (1−ρ) log(f) ∈ M. But
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then [f (1−ρ) log(f)]hϕ ∈ L1(M). The point-weak* continuity of the map r →
f r on [δ, ρ], now ensures that

lim
r↗ρ

tr(f r[f (1−ρ) log(f)]hϕ) = tr(f log(f)hϕ) = ϕ(f log(f)).

To prove the final equality, one firstly uses a similar argument to the one
in [22, Proposition 6.8] to see that

tr(hϕf log(f)) = inf
ϵ>0

[ϵtr(hϕ(f/ϵ) log((f/ϵ) + 1)) + log(ϵ)tr(hϕf)].

On combining the preceding Lemma with [32, Lemma II.5 & Def II.13], we
then have that

tr(hϕ(f/ϵ) log((f/ϵ) + 1)) = τ(χ(1,∞)(hϕ(f/ϵ) log((f/ϵ) + 1))

= τ(χ(1,∞)(φlog(hϕ)f/ϵ)) = τ(χ(ϵ,∞)(φlog(hϕ)f)).

This proves the final claim. □

We are now finally ready to present the definition of the entropy S(ϑ) of
a faithful normal state ϑ. The basic idea is to use the above result as guide,
for the kind of technical prescription that might work. Tempting as it may be
to simply replace f = hϑh

−1
ϕ with hϑ, and ϕ with tr, to obtain tr(hϑ log(hϑ))

as a definition, this cannot possibly work. The problem with this prescrip-
tion is that tr is only defined on L1(M) where in the crossed product
setting, all the elements h of L1(M) have to satisfy the requirement that
θs(h) = e−sh for all s. Since hϑ ∈ L1(M) we do have that θs(hϑ) = e−shϑ,
But then θs(hϑ log(hϑ)) = e−shϑ log(e

−shϑ) ̸= e−shϑ log(hϑ). However the
final equality in the third bullet of Proposition 5.2, does present us with a
means for overcoming this difficulty for a subspace of L1(M). The subspace
in question is the noncommutative Orlicz space L1 ∩ L log(L+ 1)(M).

Some analysis is necessary before we are able to present the definition.
Note that classically L1 ∩ L log(L+ 1) is an Orlicz space produced by the
Young’s function

Ψent(t) = max(t, t log(t+ 1)) =

{
t 0 ≤ t ≤ e− 1

t log(t+ 1) e− 1 ≤ t

We start by describing how to construct the type III analogue of the space
L1 ∩ L log(L+ 1). We will for simplicity of computation assume that each of
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L log(L+ 1)(0,∞) and L1 ∩ L log(L+ 1)(0,∞) are equipped with the Lux-
emburg norm. It is then an exercise to see that the fundamental function
of L1 ∩ L log(L+ 1)(0,∞) is of the form φent(t) = max(t, φlog(t)). It is this
fundamental function that one uses to construct the type III analogue of
L1 ∩ L log(L+ 1) in accordance with the prescriptions given in [19, 21]. Let
us for the sake of brevity denote this space by Lent(M). We now show that
this space canonically embeds into both L1(M) and L log(L+ 1)(M).

From the above computations, it is clear that the functions ζ1(t) =
t

φent(t)
, and ζlog(t) =

φlog(t)
φent(t)

are both continuous and bounded above (by

1) on (0,∞). Hence for h = Dω̃
Dτ , the operators ζ1(h) and ζlog(h) are both

contractive elements of M. It is now an exercise to see that the prescrip-
tions x→ ζ1(h)

1/2xζ1(h)
1/2 and x→ ζlog(h)

1/2xζlog(h)
1/2 respectively yield

continuous embeddings of Lent(M) into L1(M) and L log(L+ 1)(M). Using
these embeddings, we now make the following definition:

Definition 5.3. A state ϑ on the von Neumann algebra M is called regular

if for some element g of [L log(L+ 1) ∩ L1](M)+ = Lent(M)+, Dϑ̃Dτ is of the

form ζ1(h)
1/2gζ1(h)

1/2. For such a regular state we then define the entropy
to be

S̃(ϑ) = inf
ϵ>0

[ϵτ(χ(ϵ,∞)(ζlog(h)
1/2gζlog(h)

1/2)) + log(ϵ)∥ζ1(h)
1/2gζ1(h)

1/2∥1].

(Here h is the density Dω̃
Dτ of the dual weight ω̃.)

Remark 5.4. What we must clarify is the meaning of the term “regu-
larization” used in the above definition. The density h = Dω̃

Dτ is related, by
Bisognano-Wichmann results [6], [7], to the equilibrium hamiltonian, cf Re-
mark 2.11 in [21]. This gives a relation to thermodynamics of equilibrium
states, cf Remark 2.4. Further, Dω̃Dτ is in L1(M) space. This and Definition 5.3
imply that the regularization procedure stems from the prescription leading
to the construction of Lent(M) space, see Definition 3.4 in [19].

On the other hand, it is worth noting that the same procedure was used
to define τ -measurability of quantum field operators, see [21]. Consequently,
the regularization procedure is based on the selection of such measurable
operators which are good candidates for representing states using a selection
process which is compatible with the new formalism of statistical mechanics.
We remind that this new formalism is based on the distinguished pair of
Orlicz spaces ⟨Lcosh−1(M), L log(L+ 1)(M)⟩, for details see [22], [23].

One has (cf [21])
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Corollary 5.5. If ϑ is a regular state, then S̃(ϑ) is well defined (although
possibly infinite valued).

We proceed to prove a result establishing criteria under which a version
of Equation 1.6 holds in the present setting. Note that in this result, the
faithful KMS state ω plays the role of the reference measure λ.

Theorem 5.6. Let ϑ be a regular state with Dϑ̃
Dτ of the form

ζ1(h)
1/2gζ1(h)

1/2,

where

g ∈ [L log(L+ 1) ∩ L1](M)+ = Lent(M)+

commutes with h. Then

S̃(ϑ) = S(ϑ|ω).

Proof. We will write k for Dϑ̃Dτ . By assumption g and h, and therefore k and h,
are commuting affiliated operators. Hence so are p = kh−1 and h. The proof
makes extensive use of the kinds of techniques employed in Theorem 4.2.
Given a ∈ M and b ∈ L1(M)+, we will for this reason once again employ
the notational device (validated by Terp’s description of the standard form)
of writing ⟨b1/2, ab1/2⟩ for tr(ba).

In this case let λ→ eλ be the spectral resolution of p. The fact that both
h and k belong to L1(M) ensures that θs(p) = θs(k)θs(h

−1) = kh−1 = p for
every s ∈ R. This in turn is enough to ensure that p is actually affiliated to
the “subalgebra” M of the crossed product M. Hence the spectral projec-
tions eλ are all elements of M. The first stage of the proof is to show that in
general S(ϑ|ω) is finite if and only if the integral

∫∞
0 λ log(λ) d⟨h1/2, eλh1/2⟩

converges, in which case they are equal. Additionally the only way the in-
tegral can diverge is by diverging to ∞. To see this observe that it is an
easy consequence of the Borel functional calculus that p log(p)χ[0,1](p) ∈

M. In other words we will always have that
∫ 1
0 λ log(λ) d⟨h

1/2, eλh1/2⟩ =

⟨h1/2, p log(p)χ[0,1](p)h
1/2⟩ = ω(p log(p)χ[0,1](p)) is a well defined complex

number. Thus the integral
∫∞
0 λ log(λ) d⟨h1/2, eλh1/2⟩ converges if and only

if
∫∞
1 λ log(λ) d⟨h1/2, eλh1/2⟩ converges. In the case of divergence, we may

then justifiably assign a value of ∞ to the integral. We proceed with justi-
fying the claimed equality.

Observe that we may use Equation 4.3 and the Borel functional calculus
for commuting affiliated operators to see that for any t > 0 we have that
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−i

t
ϑ[(Dϑ : Dω)t − 1] =

−i

t
ϑ[kith−it − 1] =

−i

t
ϑ[pit − 1]

=
−i

t
tr(k[pit − 1]) =

−i

t
⟨k1/2, (p−it − 1)k1/2⟩

=
−i

t
⟨p1/2h1/2, (p−it − 1)p1/2h1/2⟩

=
−i

t

∫ ∞

0
λ(λit − 1) d⟨h1/2, eλh1/2⟩.

Using this fact, it is now a not too onerous exercise to modify the proof
of Theorem 4.2 to obtain the fact that S(ϑ|ω) = limt→0

−i
t ϑ[(Dϑ : Dω)t −

1] is finite if and only if the integral
∫∞
0 λ log(λ) d⟨h1/2, eλh1/2⟩ converges.

We briefly pause to indicate how this argument works. In the case where
λ log(λ) is integrable, we once again use the inequality |1t (λ

it − 1)| ≤ | log(λ)|
established earlier, to invoke an application of the dominated convergence
theorem, from which the claim will then follow for this case.

In the case where λ log(λ) is not integrable, it must as noted earlier fail to
be integrable on [1,∞). As in Theorem 4.2, we may then use Fatou’s lemma
to see that in this case the limit limt→0

1
t

∫∞
1 λ(λit − 1) d⟨h1/2, eλh1/2⟩ will

fail to exist. On the other hand the integrability of λ log(λ) on [0, 1] combined
with yet another application of the dominated convergence theorem, ensures
that limt→0

1
t

∫ 1
0 λ(λ

it−1) d⟨h1/2, eλh1/2⟩=
∫ 1
0 λ log(λ) d⟨h

1/2, eλh1/2⟩. Com-
bining these two facts yields the conclusion that the limit limt→0

1
t

∫∞
1 λ(λit −

1) d⟨h1/2, eλh1/2⟩ will in this case fail to exist. This concludes the first part
of the proof.

The next part of the proof is to show that (infinite values included), we
have that

inf
ϵ>0

∫ ∞

0
λ log(λ+ ϵ) d⟨h1/2, eλh1/2⟩ =

∫ ∞

0
λ log(λ) d⟨h1/2, eλh1/2⟩

from which we will then be able to deduce the claim. To see this next fact
observe that for any λ > 0 and ϵ > 0, we have that log(λ+ ϵ) > log(λ), and
that

0 < λ(log(λ+ ϵ)− log(λ)) = λ log(1 + (ϵ/λ)) ≤ ϵ.
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This ensures that
∫ ∞

0
λ log(λ) d⟨h1/2, eλh1/2⟩ ≤

∫ ∞

0
λ log(λ+ ϵ) d⟨h1/2, eλh1/2⟩

≤

∫ ∞

0
(λ log(λ) + ϵ) d⟨h1/2, eλh1/2⟩

=

∫ ∞

0
λ log(λ) d⟨h1/2, eλh1/2⟩+ ϵω(1)

=

∫ ∞

0
λ log(λ) d⟨h1/2, eλh1/2⟩+ ϵ,

which establishes the claim.
If we combine the two facts we have proved thus far, it yields the con-

clusion that (infinite values included) we always have that

S(ϑ|ω) = inf
ϵ>0

∫ ∞

0
λ log(λ+ ϵ) d⟨h1/2, eλh1/2⟩.

We now use this formula to show that S(ϑ|ω) = S̃(ϑ). This claim will follow
if we can show that for any ϵ > 0, the equality

ϵτ(χ(ϵ,∞)(ζlog(h)
1/2gζlog(h)

1/2)) + log(ϵ)∥ζ1(h)
1/2gζ1(h)

1/2∥1

=

∫ ∞

0
(λ log(λ) + ϵ) d⟨h1/2, eλh1/2⟩

holds true. Let ϵ > 0 be given. Firstly observe that by the definition of ζ1
and ζlog, we have that ζlog(h) = φlog(h)φent(h)

−1 = φlog(h)h
−1ζ1(h). Thus

by the commutation assumption, we have that

ζlog(h)
1/2gζlog(h)

1/2 = φlog(h)h
−1ζ1(h)

1/2gζ1(h)
1/2

= φlog(h)h
−1k = φlog(h)p.

Hence we may apply Lemma 5.1 to see that

ϵτ(χ(ϵ,∞)(ζlog(h)
1/2gζlog(h)

1/2)) + log(ϵ)∥ζ1(h)
1/2gζ1(h)

1/2∥1

= ϵτ(χ(ϵ,∞)(φlog(h)p)) + log(ϵ)tr(hp)

= ϵτ(χ(1,∞)(φlog(h)(p/ϵ)) + log(ϵ)tr(hp)

= ϵτ(χ(1,∞)(h(p/ϵ) log((p/ϵ) + 1))) + log(ϵ)tr(hp).

Since h ∈ L1(M) with p affiliated to M, the operator b = h(p/ϵ) log((p/ϵ) +
1) is a positive operator affiliated to the crossed product for which we have



✐

✐

“6-Labuschagne” — 2020/7/9 — 18:11 — page 516 — #26
✐

✐

✐

✐

✐

✐

516 W. A. Majewski and L. E. Labuschagne

that θs(b) = e−sb for each s ∈ R. By [32, Proposition II.4], b corresponds to
a normal weight Φb on M. If we now apply [32, Lemma II.5], it follows that
Φb(1) = τ(χ(1,∞)(h(p/ϵ) log((p/ϵ) + 1))). Writing eN for χ[0,N ](p), we next
again appeal to [32, Proposition II.4] to see that for each N > 0, the weight
f → Φb(eNfeN ) corresponds to the density eNbeN . All of these observations
may now be combined with the normality of Φb, and [32, Definition II.13]
to see that

ϵτ(χ(1,∞)(h(p/ϵ) log((p/ϵ) + 1))) + log(ϵ)tr(hp)

= ϵΦb(1) + log(ϵ)tr(hp)

= ϵ lim
N→∞

Φb(eN ) + log(ϵ)tr(hp)

= ϵ lim
N→∞

τ(χ(1,∞)(h(eNp/ϵ) log((eNp/ϵ) + 1))) + log(ϵ)tr(hp)

= ϵ lim
N→∞

tr(h(eNp/ϵ) log((eNp/ϵ) + 1)) + log(ϵ)tr(hp)

= ϵ lim
N→∞

⟨h1/2, (eNp/ϵ) log((eNp/ϵ) + 1)h1/2⟩+ log(ϵ)⟨h1/2, ph1/2⟩

= lim
N→∞

∫ N

0
λ log((λ/ϵ) + 1) d⟨h1/2, eλh1/2⟩+ log(ϵ)

∫ ∞

0
λ d⟨h1/2, eλh1/2⟩

=

∫ ∞

0
λ log((λ/ϵ) + 1) d⟨h1/2, eλh1/2⟩+ log(ϵ)

∫ ∞

0
λ d⟨h1/2, eλh1/2⟩

=

∫ ∞

0
λ log(λ+ ϵ) d⟨h1/2, eλh1/2⟩.

This proves the claim required to establish the theorem. To obtain the final
equality, we silently used the facts that

∫∞
0 λ log((λ/ϵ) + 1) d⟨h1/2, eλh1/2⟩

either converges, or diverges to ∞, and that we always have that

∫ ∞

0
λ d⟨h1/2, eλh1/2⟩ = tr(hp) = tr(k) = ϑ(1) = 1 <∞.

□

Remark 5.7. The full significance of Theorem 5.6 will be discussed in Sec-
tion 6. For now the important point to note here is that to define entropy for
large systems (so for type III von Neumann algebras) we were here working
within the new formalism, which is based on the distinguished pair of Orlicz
spaces

〈
Lcosh−1, L log(L+ 1)

〉
— for details see [20], [22], [23]. In particular,

the superalgebra M was employed. In that way it is possible to define en-
tropy for non-semifinite von Neumann algebras, and consequently to study
thermodynamics for such systems. Furthermore, this should make clear in
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which way we avoided the problems discussed in [26] — see Theorem 6.10
of that monograph.

Now let M be a semifinite von Neumann algebra and ω = τω a tracial
state. Let ϑ be a faithful normal state for which the Radon-Nikodym deriva-
tive a described in Theorem 2.5 belongs to the tracial space [L log(L+ 1) ∩
L1](M, τω) (see the prescription in for example Section 1 of [19] to see how
this space is defined. When passing to the crossed product, it is known that
in the case of semifinite algebras equipped with a trace (as is the case here),
the crossed product M of M with the modular automorphism group of
τω, is essentially just a copy of M⊗ L∞(R) [34, Part II, Proposition 4.2].
In particular, under this correspondence the canonical trace τ on M, may
be identified with τω ⊗

∫
R
·e−t dt (see Section 2 of [19]). This identification

forms the background for the analysis in Section 2 of [19], where certain
quantities described by the pair (M, τ), may alternatively be described
by the pair (M, τω). By Proposition 2.5 and Definition 3.4 of [19], a cor-
responds to an element g of [L log(L+ 1) ∩ L1](M)+ = Lent(M)+, which
is of the form g = a⊗ φent(e

t). Again by [19, Proposition 2.5], the opera-
tors ζlog(h)

1/2gζlog(h)
1/2 and ζ1(h)

1/2gζ1(h)
1/2 are respectively of the form

a⊗ φlog(e
t) and a⊗ et. Using the fact that τω ⊗

∫
R
·e−t dt, we may therefore

apply [13, Proposition 1.7] and [19, Theorem 2.2] to see that we will for any
ϵ > 0 have that

ϵτ(χ(ϵ,∞)(ζlog(h)
1/2gζlog(h)

1/2)) + log(ϵ)∥ζ1(h)
1/2gζ1(h)

1/2∥1

= ϵτ(χ(ϵ,∞)(ζlog(h)
1/2gζlog(h)

1/2)) + log(ϵ)τ(χ(1,∞)(ζ1(h)
1/2gζ1(h)

1/2))

= τω(a log(a/ϵ+ 1)) + log(ϵ)τω(a)

= τω(a log(a+ ϵ1))

So in this case the formula in Definition 5.3 corresponds exactly to the more
familiar formula S̃(ϑ) = infϵ>0 τω(a log(a+ ϵ1)) = τω(a log(a)).

6. Discussion

As was noted in the introduction, the standard framework of classical sta-
tistical mechanics is based on the pair

(6.1) ⟨L∞(Γ, µ), L1(Γ, µ)⟩,

for a measure space (Γ, µ). Let us consider this point in detail. There are
two “extremal cases” of measure spaces which are employed in Physics. The
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first case is a countably totally atomic measure space while the second one
is based on non-atomic measure.

Let us consider the first case. Then (6.1) reads

(6.2) ⟨l∞(N), l1(N)⟩

and the states are described by

(6.3)

{
f ≡ (f1, f2, . . . ) ∈ l1; f ≥ 0,

∑

i

fi = 1

}
⊂ l1.

It is important to note that in (6.3) one has pure states and a general state
is a convex combination of pure states. Furthermore, if in l1 there are only
finite sequences, so when l1 ≡ l1(1, 2, . . . , N), then Boltzmann’s W -entropy
follows from the recipe for the H-functional, provided that the probability
distribution is uniform.

On the other hand, the second case leads to

(6.4) ⟨L∞(Γ, dµ), L1(Γ, dµ)⟩

with the states then given by

(6.5) {f ∈ L1(Γ, dµ); f ≥ 0,

∫
fdµ = 1},

where the reference measure µ is non-atomic. It is crucial to note that in
(6.5) there do not exist pure normal states. Therefore, if as in Boltzmann’s
theory, the reference measure is akin to Lebesgue measure in the sense of
being non-atomic, an examination of the behaviour of the H-functional with
respect to pure normal states is an example of an “ill posed” problem.

Turning to quantization, the von Neumann entropy (based on Dirac’s
formalism) uses pure states and hence is related to (6.3). Contrariwise, a
general quantum system, cf Sections 4 and 5, needs to allow for type III von
Neumann algebras. It is known that a type III factorM does not have normal
pure states. Therefore, type III factors have that mathematical feature in
common with the abelian von Neumann algebra L∞(Γ, dµ) given in (6.4)
which also has no pure normal states.

Consequently the entropy S̃(ϑ) defined in Definition 5.3 in the previ-
ous section, has more in common with the H-functional, than with the von
Neumann entropy. Before proceeding further let us pause to make some
important remarks on the nature of states.
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Remark 6.1. • Although in (6.5) there are no pure normal states, any
probability measure is an accumulation point of the convex hull of
Dirac measures. This property of classical measure theory (the weak-∗

Riemann approximation property) implies that for a continuous classi-
cal system all states are separable, see [25]. Furthermore, interpreting
a Dirac measure as a pure state, one can again say that a convex
combination of pure states leads to a state.

• A non-commutative integral, does not in general have the weak-∗ Rie-
mann approximation property. Thus, there is “room” for entangled
states, see [25].

• As a type III von Neumann algebra has no pure normal states, the
question of whether S̃(ϑ) is zero only for pure normal states has no
sense.

• Finally, to avoid any confusion, we note that each W ∗ algebra is also
a C∗ algebra with unit. So, the set of all states of such algebras has
pure states (by the Krein-Milmann theorem) but these states are not
normal!

Turning to the H-functional, we note that it is an easy observation that
H(χ

Γ0
) = 0, where χ

Γ
is a characteristic function given by a measurable

subset Γ0 ⊂ Γ. Clearly, χ
Γ0

is a projector in L∞(Γ, dµ). However, we are
again not able to simplistically translate this property of the H-functional
to general quantum systems. To see this, let us assume that a projector P
is in L1(M). This means that θs(P ) = e−sP , for any s, where θs stands for
the dual action of R on M. But, one has also

θs(P ) = θs(P · P ) = θs(P )θs(P ) = e−2sP,

which is only possible for s = 0. The problem here is that the entropy defined
in the previous section only makes sense for elements of Lent(M). So to make
sense of the “entropy” of a projector P , we first have to embed P into the
space Lent(M). If indeed ω(P ) <∞ (where ω is the a priori given faithful

normal semifinite weight onM), then g = φ
1/2
ent(h)(P )φ

1/2
ent(h) (where h = dω̃

dτ )
belongs to Lent(M) whenever ω(P ) <∞ [19, Proposition 3.3]. The quantum
analogue of H(χ

Γ0
) would then be given by applying the prescription in

Definition 5.3 with g as above. Hence, to sum up:

Some basic properties of classical entropy S as well as of the H-functional
have no quantum counterparts in the theory based on type III von Neumann
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algebras. In particular, the entropy S̃(ϑ) does not exhibit some of the prop-
erties typical of its classical counterparts. This is not surprising as entropy
being a function of states, should at some level reflect the structure of the
state space of the considered system.

However, despite the above differences between the classical and quan-
tum descriptions, the new approach presented here offers a solution to old
open problems. It is well known that in classical statistical mechanics, the
Gibbs Ansatz Z−1e−βH , is designed to describe a classical canonical equi-
librium state and that essential thermodynamical information is contained
in the partition function Z =

∫
e−βHdΓ. Here H stands for the Hamiltonian

of the considered system, and β for the “inverse” temperature. The quanti-
zation of e−βH means that now H is the Hamiltonian operator, and hence
to have a quantum state within Dirac’s formalism, we require that e−βH

should then be a trace class operator. But this is only the case when, at the
very least, H has a pure point spectrum with accumulation point at infinity.
Unfortunately, even the Hamiltonian of the Hydrogen atom does not fulfill
this requirement.

To see that this question has an easy solution in the presented framework
we note:

1) As we have seen in Section 4, there is hω = dω̃
dτ where we are using

the “language” of non-commutative integration theory, cf the previous
sections and/or see [32].

2) hitω can be identified with λ(t).

3) θs(λ(t)) = e−istλ(t)

4) Writing λ(t) = e−iHt one has:

θs(e
−iHt) = e−iste−iHt = e−i(H+sI)t

5) Thus θs(H) = H + sI

6) Consequently θs(e
−H) = e−se−H and e−H ∈ L1(M)!

7) In the above β = 1, which follows from the standard scaling of tem-
perature in the KMS theory, cf Chapter 5 in [8].

Consequently, the quantum analogue of the Gibbs Ansatz is well defined as
an element of L1(M). Furthermore, as there is a linear bijective isometry
between L1(M) and M∗, we obtain a well defined normal functional on M.
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In particular, the quantum analogue of the partition function is also well
defined.

Turning to the entropy S̃(ϑ), we wish to get a better understanding
of its nature. To this end we will consider the important case when ϑ is
the reference state ω. We remind that ω is a faithful normal state and by
Takesaki’s theorem, cf Section 2, ω is a KMS state in terms of the modular
dynamics. In other words, ω describes the given equilibrium state and we
wish to compute the entropy of such a state. Furthermore, S̃(ω) being related
to the equilibrium state ω is a candidate for quantum thermodynamical
entropy.

We have just seen that e−H is in L1(M). But S̃(ϑ) was defined for
functionals of the form ζ1(h)gζ1(h), where h ≡ e−H , and g ∈ Lent(M). So
we must examine what this requirement would mean for e−H .

We remind, cf. Definition 5.3, that a state ϑ is regular if Dϑ̃
Dτ is of the

form ζ1(h)gζ1(h), where h ≡ e−H , and g ∈ Lent(M). Hence we wish to have

(6.6) e−H ≡ h =

(
h

φent(h)

) 1

2

g

(
h

φent(h)

) 1

2

.

Thus g = φent(h), and hence

S̃(ω) = inf
ϵ>0

[
ϵ τ

(
χ(ϵ,∞)(ζlog(h))

1

2φent(h)(ζlog(h))
1

2

)
(6.7)

+ log ϵ ||ζ1(h)
1

2φent(h)ζ1(h)
1

2 ||1

]

We note that (see [13]),

(6.8) τ
(
χ(ϵ,∞)(|T |)

)
= ϵ−1||T ||1,

for T ∈ L1(M). Thus

S̃(ω) = inf
ϵ>0

[
ϵ τ

(
χ(ϵ,∞)(ζlog(h))

1

2φent(h)(ζlog(h))
1

2

)

+ϵ log ϵ τ
(
χ(ϵ,∞)(ζ1(h)

1

2φent(h)ζ1(h)
1

2 )
)]

= inf
ϵ>0

[
ϵ τ

(
χ(ϵ,∞)(φlog(h))

)
+ ϵ log ϵ τ

(
χ(ϵ,∞)(h)

)]

Now observe that φlog is a continuous strictly increasing function which is
0 at 0. So t ≥ ϵ > 0 if and only if φlog(t) ≥ φlog(ϵ) > 0, with φlog(t) → ∞ as
t→ ∞. If we combine this fact with the Borel functional calculus, it is clear
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that χ(ϵ,∞)(φlog(h)) = χ(φ−1
log(ϵ),∞)(h). Consequently

S̃(ω) = inf
ϵ>0

[
ϵ τ

(
χ(φ−1

log(ϵ),∞)(h)
)

(6.9)

+ ϵ log ϵ τ
(
χ(ϵ,∞)(h)

) ]

= inf
ϵ>0

[
ϵ

φ−1
log(ϵ)

+ log(ϵ)

]
.∥h∥1

As φlog(t) =
1

Ψ−1
log(

1

t
)
where Ψlog(t) = t log(t+ 1), we have

(6.10) φ−1
log(t) =

1

Ψlog(
1
t )

=
t

log(1t + 1)
.

So

(6.11) S̃(ω) = inf
ϵ>0

[
log

(
1

ϵ
+ 1

)
+ log ϵ

]
||h||1 =

[
inf
ϵ>0

log(1 + ϵ)

]
||h||1 = 0.

In commenting on this result, we note that in classical Physics, the
entropy is an extensive thermodynamical quantity. The central question then
becomes: whether the quantum entropy S̃(ϑ) has the same property. To
answer this question we begin by taking a closer look at techniques used in
the definition of S̃(ϑ). The first observation is that, from the very beginning,
we employed an approach relevant to a description of large systems, i.e. those
systems of statistical physics which can be obtained by thermodynamical
limit. The next observation is that Tomita-Takesaki theory was the basic
ingredient of our analysis.

It is crucial to note that in the representation induced by a KMS state,
basic relations of Tomita-Takesaki theory for finite volume systems survive
the thermodynamical limit. In particular, the equilibrium state vector is an
eigenvector of h corresponding to eigenvalue 1 — for more details see Sec-
tions V.1.4 and V.2.3 in [14]. Furthermore, we have already noted, cf. remark
given prior to Theorem 5.6, that in the presented approach, the state ω (so
a quantum counterpart of probability measure) was used as a reference mea-
sure. On the other hand, in classical statistical physics, the entropy per unit
volume is given by S(ϱΛ)

V (Λ) , where V (Λ) stands for the volume of the region Λ.

Note that V (Λ) is taken with respect to the reference measure (in classical
statistical physics, it is the Lebesgue measure). However, having a proba-
bility measure as the reference measure one gets V (Λ) = 1. In other words,
S̃(ϑΛ) can be considered as the entropy per unit volume. Consequently, the
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definition of entropy proposed in the paper together with the regularization
procedure, incorporates some basic ideas of thermodynamic limits.

Thus, the entropy S̃(ϑ), defined in terms suitable for large systems,
should share its properties with the density of entropy. All of this points to
the fact that S̃(ϑ) can be considered as an intensive quantity.

To get some intuition about entropy density properties, it seems to be
useful to note that the density of entropy for quantum lattice systems is
taking its values in the interval [0, N <∞], where N is the dimension of
Hilbert space associated with each site of quantum spin system— see Section
6.2.4 in [8]. Finally, the important point to note here is that the result
S̃(ω) = 0, is compatible with the interpretation of the relative entropy as a
“measure” of distance between two states, cf Theorem 5.6. To sum up, we
can say that the obtained result S̃(ω) = 0 is expected.

With a suitable concept of entropy for regular states of general quan-
tum systems thus having been identified, the challenge now is to develop
computational algorithms for this entropy.

7. Conclusions

One of the challenges of contemporary physics is to derive the macroscopic
properties of matter from the quantum laws governing the microscopic de-
scription of a system. On the other hand, thermodynamics being a prerequi-
site for (quantum) statistical physics, provides laws governing the behaviour
of macroscopic variables. It is well known that entropy is a crucial concept
for this scheme.

Knowing that statistical physics deals with large systems (so systems
with infinite degrees of freedom) we proposed a concise approach to entropy.
It was done in operator algebraic language. This language is indispensable
as on the one hand it is the basis for noncommutative integration theory,
and on the other von Neumann algebra of type III are acknowledged to
be the correct formalism for large quantum systems. Consequently, using
the algebraic approach, a consistent dynamical description of entropy was
achieved.

It is worth pointing out that our results can be considered as the first step
in getting genuine quantum thermodynamics for general quantum systems.
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