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A variational principle for Kaluza–Klein

type theories

Frédéric Hélein

For any positive integer n and any Lie group G, given a definite
symmetric bilinear form on R

n and an Ad-invariant scalar product
on the Lie algebra ofG, we construct a variational problem on fields
defined on an arbitrary oriented (n+ dimG)-dimensional manifold
Y. We show that, if G is compact and simply connected, any global
solution of the Euler–Lagrange equations leads, through a sponta-
neous symmetry breaking, to identify Y with the total space of a
principal bundle over an n-dimensional manifold X . Moreover X
is then endowed with a (pseudo-)Riemannian metric and a con-
nection which are solutions of the Einstein–Yang–Mills system of
equations with a cosmological constant.

1. Introduction

1.1. Motivations

In 1919 T. Kaluza [10] (after an earlier attempt by G. Nordström [14] in
1914) discovered that solutions of the Einstein equations of gravity in vac-
uum on a 5-dimensional manifold could modelize Einstein equations coupled
with Maxwell equations on a 4-dimensional space-time manifold, provided
one assumes that the 5-dimensional manifold is a circle fiber bundle over
space-time and that the metric is constant along these fibers. This was re-
discovered more or less independentely by O. Klein [12] in 1926 (and also
by H. Mandel [13]), who proposed to assume that the size of the extra fifth
dimension is sufficientely tiny in order to explain why this dimension is not
directly observed. Since then this fascinating observation has been an impor-
tant source of inspiration and questioning (see e.g. [5]). It has been extended
to include non Abelian gauge theories [2–4, 11], in order to unify the Ein-
stein equations with the Yang–Mills equations on a curved space-time and,
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in particular, it becomes an important ingredient of the 11-dimensional su-
pergravity and the superstrings theories. It remains today a subject of ques-
tioning (see e.g. [1, 16]).

However some difficulties plag this beautiful idea:
The Kaluza–Klein ansatz is indeed based on the assumption that the

metric is covariantly constant along the fibers. But this raises the question
of finding physical reasons for that. Moreover the initial proposal by Kaluza
and Klein led to inconsistency. This point was raised by P. Jordan [9] and Y.
Thiry [15], who allowed the coefficient of the metric along the fifth dimension
to be an extra scalar field. However this scalar field is a source of difficulties
as to its physical interpretation.

A way to avoid the assumption that the metric is covariantly constant
along the fibers is, as proposed by Klein, to assume that the extra dimension
is tiny. Then by expanding the fields in harmonic modes on each fiber one
finds that, as a consequence of the Heisenberg uncertainty principle, all
modes excepted the zero one should be extremely massive. This would hence
explain why we cannot observe their quantum excitations. This idea is at
the origin of the current hypothesis.

But this does not answer the fundamental question of understanding
why these extra dimensions are fibered and compact (and tiny if we want to
support the above hypothesis or, alternatively, if the smallness assumption
is not true, why the metric is constant along the fiber): could a dynamical
mechanism explain these assumptions ?

In the following we address these questions and we present a variational
principle which satisfies the following properties: provided that the involved
structure Lie group is compact and simply connected, the Euler–Lagrange
equations satisfied by the critical points lead to a mechanism which forces a
spontaneous fibration of the higher dimensional manifold over an emerging
space-time, forces the metric to be covariantly constant along the fibers and
one can build out of these critical points a metric and a connection over
the space-time which are solutions of the Einstein–Yang–Mills system of
equations.

Note that our results work partially for e.g. U(1), for which our mech-
anism fails to imply the compactness of the fibers without extra ad hoc
hypotheses. Hence either there is a need to improve our theory (for example
by taking into account semi-classical or quantum effects), or one may argue
that our results could be sufficient in an Grand Unified Theory, where all
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structure gauge groups are supposed to arise from a single compact, simply
connected one, by a symmetry breaking.

1.2. The main result

To introduce our model let us first remind the higher dimension general-
ization of the so-called Palatini (see [6]) formulation of gravity: Let N ≥ 2
be an integer and E be an oriented N -dimensional real vector space en-
dowed with a non degenerate bilinear form h (in most cases the Minkowski
scalar product) and let so(E, h) be the Lie algebra of the group of isome-
tries of (E, h). We identify so(E, h) with Λ2E = E ∧ E (with a Lie bracket
denoted by [·, ·]2, see the next section for details). The N -dimensional gen-
eralization of the Palatini action on an oriented N -dimensional manifold Y
is a functional defined on pairs (θ, φ) where θ is a (soldering) 1-form on Y
with coefficient in E and φ is a (connection) 1-form on Y with coefficient in
so(E, h) ≃ Λ2E. This functional reads

AP [θ, φ] =

∫

Y
⋆θ(N−2) ∧

(

dφ+
1

2
[φ ∧ φ]2

)

,

or AP [θ, φ] =
∫

Y ⋆θ
(N−2) ∧ Φ by denoting Φ := dφ+ 1

2 [φ ∧ φ]2. Here ⋆θ
(N−2)

is the (N − 2)-form with coefficient in so(E, h)∗ ≃ Λ2E∗, with components

θ
(N−2)
A1A2

= 1
(N−2)!ϵA1···AN

θA3 ∧ · · · ∧ θAN , where ϵA1···AN
is the completely an-

tisymmetric tensor such that ϵ1···N = 1 and, in the product ⋆θ(N−2) ∧ Φ,
the duality pairing between Λ2E∗ and Λ2E is implicitely assumed so that

⋆θ(N−2) ∧ Φ = 1
2θ

(N−2)
AB ∧ ΦAB (see the next section for more details).

Then, as it is well-known, the critical points (θ, φ) of AP such that the
rank of θ is equal to N everywhere correspond to solutions of the Einstein
equations of gravity in vacuum (with a metric θ∗h on Y).

Our model can be seen as a deformation of the previous one: we assume
that E is itself endowed with a Lie bracket [·, ·]1 and we denote by ĝ :=
(E, [·, ·]1) the resulting Lie algebra. We assume further that:

(i) ĝ = s⊕ g, where s is contained in the center of ĝ and g is a Lie subal-
gebra;

(ii) the Lie bracket [·, ·]1 : ĝ× ĝ −→ ĝ preserves the metric h;

(iii) s is orthogonal to g for the bilinear form h.
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We set n = dims and r = dimg so that N = n+ r. Note that (i) implies that
s is a trivial Lie subalgebra and (ii) means that ∀ξ ∈ ĝ, adξ ∈ so(ĝ, h). We
consider the following space of fields:

E := { (θ, φ, π); θ ∈ ĝ⊗ Ω1(Y), φ ∈ so(ĝ, h)⊗ Ω1(Y),
π ∈ ĝ∗ ⊗ ΩN−2(Y) }

and define on it the action functional A by:

(1) A [θ, φ, π] :=

∫

Y
π ∧

(

dθ +
1

2
[θ ∧ θ]1

)

+ ⋆θ(N−2) ∧

(

dφ+
1

2
[φ ∧ φ]2

)

where the duality pairing between, respectively, ĝ∗ and ĝ and so(ĝ, h)∗ and
so(ĝ, h) is implicitely used.

We decompose θ = θs + θg according to the splitting ĝ = s⊕ g and we
impose the constraint

(2) θs ∧ θs ∧ π = 0

(see the next section for more details) leading hence us to define the con-
strained subset:

C := {(θ, φ, π) ∈ E ; θs ∧ θs ∧ π = 0}.

Theorem 1.1. Assume Hypotheses (i), (ii), (iii). Let Y be a connected,
oriented N -dimensional manifold. Let (θ, φ, π) ∈ C be a smooth critical point
of the restriction of A on C . Let h := θ∗h, a pseudo Riemannian metric on
Y. Assume that:

(iv) g is the Lie algebra of a compact and simply connected Lie group G;

(v) the rank of θ is equal to N everywhere;

(vi) h := θ∗h is vertically complete (see §1.2.1).

Then

1) the manifold Y is the total space of a principal bundle over an n-
dimensional manifold X ;

2) the structure group of this bundle is a group G0, the universal cover of
which is G;

3) we can construct explicitely out of θ a pseudo Riemannian metric g

and a g-valued connection ∇ on X ;
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4) g and ∇ are solution of the Einstein–Yang–Mills system with cosmo-
logical constant equal to Λ = 1

8(K, h
∗), where K is the Killing form on

ĝ, h∗ is the metric on ĝ∗ and (·, ·) is the natural pairing between both
tensors.

1.2.1. About Hypothesis (vi). The pseudo Riemannian metric h :=
θ∗h is vertically complete if, for any continuous map v from [0, 1] to g ⊂ ĝ

and, for any point y ∈ Y, there exists an unique C 1 map γ : [0, 1] −→ Y,
which is a solution of (γ∗θ)t = v(t)dt, ∀t ∈ [0, 1], with the initial condition
γ(0) = y. Such curves γ can be interpreted a posteriori as being vertical
curves, i.e. contained in a fiber of the principal bundle over a point in the
space-time. This allows thus singular space-times with black holes.

1.2.2. Remark. Our action may alternatively be written as follows. We
endow the direct sum ĝ⊕ so(ĝ, h) with the product Lie bracket [·, ·] of, re-
spectively, (ĝ, [·, ·]1) and (so(ĝ, h), [·, ·]2). We consider the space of fields

Ẽ := { (θ + φ, π + ψ); θ ∈ ĝ⊗ Ω1(Y), φ ∈ so(ĝ, h)⊗ Ω1(Y),
π ∈ ĝ∗ ⊗ ΩN−2(Y), ψ ∈ so(ĝ, h)∗ ⊗ ΩN−2(Y) }

and we define

Ã [θ + φ, π + ψ] :=

∫

Y
(π + ψ) ∧

(

d(θ + φ) +
1

2
[θ + φ ∧ θ + φ]

)

.

We observe that, if the constraint

(3) ψ = ⋆θ(N−2)

is satisfied, then Ã [θ + φ, π + ψ] = A [θ, φ, π]. Hence the study of critical
points of A on C is equivalent to the study of critical points of Ã on:

C̃ := {(θ + φ, π + ψ) ∈ Ẽ ; ψ = ⋆θ(N−2) and θs ∧ θs ∧ π = 0}.

1.3. Outline of the proof

The action A [θ, φ, π] is the sum of the generalized Palatini action
∫

Y ⋆θ
(N−2) ∧ (dφ+ 1

2 [φ ∧ φ]2) and of the extra term
∫

Y π ∧ (dθ + 1
2 [θ ∧ θ]1).

In the latter term the coefficients of the (N − 2)-form π (constrained
by θs ∧ θs ∧ π = 0) play the role of Lagrange multipliers and, for a critical
point, it forces dθ + 1

2 [θ ∧ θ]1 to be a linear combination of components of
θs ∧ θs. One can thus use repeatedly Frobenius theorem: first to the Pfaffian



✐

✐

“3-Helein” — 2020/7/9 — 18:06 — page 310 — #6
✐

✐

✐

✐

✐

✐

310 Frédéric Hélein

system θs|f = 0, where f is an r-dimensional submanifold of Y, to obtain a
local foliation of Y, the leaves f that we show are actually the fibers of a
fibration Y −→ X thanks to the hypotheses; second by using the fact that
dθg + 1

2 [θ
g ∧ θg]1 is a linear combination of components of θs ∧ θs to deduce

that the geometric data associated with θ are covariantly constant along the
fibers.

On the other hand one uses the fact that the first variation of A with
respect to φ vanishes to show that the connection on TY associated to φ and
θ is the Levi-Civita connection for the metric h := θ∗h. Note that this step
is the same as in the standard derivation of the Palatini Euler–Lagrange
equation since φ is only present in the integral

∫

Y ⋆θ
(N−2) ∧ (dφ+ 1

2 [φ ∧
φ]2).

Lastly one exploits the fact that the first variation of A with respect to θ
vanishes. If the action would only be equal to

∫

Y ⋆θ
(N−2) ∧ (dφ+ 1

2 [φ ∧ φ]2)
one would find that the metric h on Y is a solution of the Einstein equation
in vacuum and consequently the equivariance of the metric along the fibers
derived previously would then give us a solution of an Einstein–Yang–Mills
system of equations on X . However the coupling of θ with π in the sec-
ond term

∫

Y π ∧ (dθ + 1
2 [θ ∧ θ]1) creates extra source terms in the Einstein–

Yang–Mills system which contains an a priori high degree of arbitrariness
and which could hence ruin our efforts.

A miraculous cancellation: however, apart from a cosmological constant,
the extra sources just cancel! This cancellation is due to the fact that each of
the source terms is covariantly constant along each fiber and hence is equal
to its average value on the fiber, which is compact. But it turns out that
this average value is proportional to the integral of an exact r-form on the
fiber and hence vanishes. This phenomenon is similar to the one discovered
in [7] and [8].

2. Notations and description of the obtained equations

2.1. Intrinsic setting

Since our action and the resulting Euler–Lagrange equations mix forms with
coefficients in ĝ, so(ĝ, h) and their dual spaces it will be convenient to identify
so(ĝ, h) wih ĝ ∧ ĝ as follows.

For any finite dimensional real vector space E and any k ∈ N we let E⊗k

be the k-th tensorial power of E and ΛkE := E ∧ · · · ∧ E be the subspace
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of E⊗k of skewsymmetric tensors. If v1, . . . , vk ∈ E we set

v1 ∧ · · · ∧ vk :=
∑

σ∈S(k)

(−1)|σ|vσ(1) ⊗ · · · ⊗ vσ(k) ∈ ΛkE

and, for p ∈ N greater than or equal to k and λ ∈ ΛpE∗, we define the interior
product1 v1 ∧ · · · ∧ vk⌟λ to be the (p− k)-form in Λp−kE∗ such that:

(v1 ∧ · · · ∧ vk⌟λ) (wk+1, . . . , wp)

= λ(v1, . . . , vk, wk+1, . . . , wp), ∀, wk+1, . . . , wp ∈ E.

To any ξ ⊗ α in E ⊗ E∗ we associate the linear map from E to itself
defined by [η 7−→ ξα(η)]. By extending linearly this map, we get a linear iso-
morphism which allows us to identify E ⊗ E∗ with End(E). If furthermore
E is endowed with a non degenerate symmetric bilinear form h, it induces a
vector space isomorphism ζ 7−→ ζ⌟h := h(ζ, ·) from E to E∗. We hence get
an unique linear map L : E ⊗ E −→ E ⊗ E∗ ≃ End(E) such that, for any
ξ, ζ, η ∈ E,

L (ξ ⊗ ζ) = ξ ⊗ (ζ⌟h) ≃ [E ∋ η 7−→ ξh(ζ, η) ∈ E].

Then L is an isomorphism. We endow E ⊗ E with the unique product law
∗ such that L (α ∗ β) = L (α) ◦ L (β), ∀α, β ∈ E ⊗ E. We also get a Lie
algebra bracket [·, ·]2 on E ⊗ E defined by [α, β]2 = α ∗ β − β ∗ α.

The subspace Λ2E = E ∧ E ⊂ E ⊗ E is then a Lie subalgebra of (E ⊗
E, [·, ·]2) which coincides with the inverse image by L of the Lie subalgebra
so(E, h). This allows us to identify so(E, h) with Λ2E endowed with the
bracket [·, ·]2.

2.2. Introducing a basis of ĝ and using indices

We let (tA)1≤A≤N be a basis of ĝ such that (ta)1≤a≤n is a basis of s

and (tα)n+1≤α≤N is a basis of g. We will systematically use the following
conventions for the indices: 1 ≤ A,B,C, . . . ≤ N and 1 ≤ a, b, c, . . . ≤ n <
α, β, γ, . . . ≤ N .

We denote by b the restriction of h to s and k the restriction of h to
k and we set hAB := h(tA, tB), bab := b(ta, tb) and kαβ := k(tα, tβ), so that

1Note that, if we view v1 ∧ · · · ∧ vk and λ as elements of, respectively, E⊗k and
(E∗)⊗p, then v1 ∧ · · · ∧ vk⌟λ is 1/k! times the contraction of v1 ∧ · · · ∧ vk with λ.
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Hypothesis (iii) translates as

(hAB) =

(

hab haβ
hαb hαβ

)

=

(

bab 0
0 kαβ

)

.

We denote by cABC the structure constants of ĝ in the basis (tA)1≤A≤N ,
defined by [tB, tC ]1 = tAc

A
BC . We observe that, due to Hypothesis (i),

(

cABC

)

=

(

cabc cabγ caβγ
cαbc cαbγ cαβγ

)

=

(

0 0 0
0 0 cαβγ

)

.

For any A,B = 1, . . . , N , we let tAB := tA ∧ tB. Then (tAB)1≤A<B≤N is a

basis of Λ2ĝ = ĝ ∧ ĝ. Hence using the isomorphism L defined previously to
identify so(ĝ, h) with Λ2ĝ we can view (tAB)1≤A<B≤N as a basis of so(ĝ, h) as
well. Through this identification we have tAB(tC) = tAhBC − tBhAC . More-
over

[tA1B1
, tA2B2

]2 = tA1B2
hB1A2

− tA1A2
hB1B2

− tB1B2
hA1A2

+ tB1A2
hA1B2

.

We denote by (tA)1≤A≤N the basis of ĝ∗ which is dual to (tA)1≤A≤N and by
(

tAB
)

1≤A<B≤N
the basis of Λ2ĝ∗ ≃ (Λ2ĝ)∗ which is dual to (tAB)1≤A<B≤N .

If Φ is a form with coefficients in so(ĝ, h) with coordinates
(

ΦAB
)

1≤A<B≤N

we set ΦBA := −ΦAB, for A ≥ B, so that

Φ =
∑

1≤A<B≤N

tABΦ
AB =

1

2

N
∑

A,B=1

tABΦ
AB =

1

2
tABΦ

AB

and we will systematically use the last writing Φ = 1
2tABΦ

AB, where the
summation over 1 ≤ A,B ≤ N is implicitely assumed. Similarly if ψ is a
Λ2ĝ∗-valued form, we will use the same convention ψ = 1

2ψABt
AB for its

decomposition in the basis
(

tAB
)

1≤A<B≤N
. The duality pairing between a

Λ2ĝ-valued form Φ and a Λ2ĝ∗-valued form ψ then reads ψ ∧ Φ = 1
2ψAB ∧

ΦAB.
Lastly we use hAB and hAB to rise and lower the indices: φA

B=hBB′φAB′

,
φAB = φA

B′hB
′B, etc.

With these conventions, if θ ∈ ĝ⊗ Ω1(Y) we write θ = tAθ
A and [θ ∧

θ]1 = tA[θ ∧ θ]
A
1 with [θ ∧ θ]A1 := cABCθ

B ∧ θC and hence

dθA +
1

2
[θ ∧ θ]A1 = dθA +

1

2
cABCθ

B ∧ θC
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If φ ∈ so(ĝ, h)⊗ Ω1(Y) ≃ Λ2ĝ⊗ Ω1(Y) we write φ = 1
2tABφ

AB and
[φ ∧ φ]2 =

1
2tAB[φ ∧ φ]AB

2 with [φ ∧ φ]AB
2 := 2hA′B′φAA′

∧ φB′B = 2φA
A′ ∧

φA′B and hence

dφAB +
1

2
[φ ∧ φ]AB

2 = dφAB + φA
A′ ∧ φA′B.

Constraint (2) then reads θa ∧ θb ∧ π = 0, ∀a, b = 1, . . . , n.

2.3. Useful relations

Assume that the rank of θ ∈ ĝ⊗ Ω1(Y) is equal to N everywhere and de-
compose θ = tAθ

A. Then (θ1, . . . , θN ) is a coframe on Y. We denote by
( ∂
∂θ1 , . . . ,

∂
∂θN ) its dual frame. We define recursively

θ
(N−1)
A :=

∂

∂θA
⌟θ(N), θ

(N−2)
AB :=

∂

∂θB
⌟θ

(N−1)
A ,(4)

θ
(N−3)
ABC :=

∂

∂θC
⌟θ

(N−2)
AB .

Using the fact that θ(N) = 1
N !ϵA1···AN

θA1 ∧ · · · ∧ θAN one may prove that

θ
(N−1)
A =

1

(N − 1)!
ϵAA2···AN

θA2 ∧ · · · ∧ θAN ,(5)

θ
(N−2)
AB =

1

(N − 2)!
ϵABA3···AN

θA3 ∧ · · · ∧ θAN ,(6)

θ
(N−3)
ABC =

1

(N − 3)!
ϵABCA4···AN

θA4 ∧ · · · ∧ θAN , etc.(7)

Moreover we have the following

θA ∧ θ
(N−1)
A′ = δAA′θ(N),(8)

θA ∧ θ
(N−2)
A′B′ = δAB′θ

(N−1)
A′ − δAA′θ

(N−1)
B′(9)

and

(10) θA ∧ θ
(N−3)
A′B′C′ = δAC′θ

(N−2)
A′B′ + δAB′θ

(N−2)
C′A′ + δAA′θ

(N−2)
B′C′ .

Indeed (8) can be proved by developping the relation 0= ∂
∂θA′ ⌟0= ∂

∂θA′ ⌟(θA∧

θ(N)). Computing the interior product by ∂
∂θB′ to both sides of (8) leads to

(9) and computing the interior product by ∂
∂θC′ to both sides of (9) leads

to (10).
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Lastly we have the following formulas

dθ
(N−1)
A = dθB ∧ θ

(N−2)
AB ,(11)

dθ
(N−2)
AB = dθC ∧ θ

(N−3)
ABC ,(12)

which can be proved, e.g., by using (5), (6) and (7).

As an application, assuming that the rank of θ ∈ ĝ⊗ Ω1(Y) is equal to
N , we have

⋆θ(N−2) =
1

2
θ
(N−2)
AB tAB.

(Thus Condition (3) reads ψ = 1
2θ

(N−2)
AB tAB or, equivalentely, θA ∧ θB ∧ ψ =

tABθ(N), ∀A,B = 1, . . . , N .)

2.4. More precisions on the proof

In the proof of the Theorem, once we prove the existence of a fibration of
Y over X and once a local trivialization of this bundle has been chosen
(characterized by a projection map from Y to X and a map g from an open
subset of Y to G0), one can write that θa = ea and θα = (gAg−1 + g−1dg)α,
where ea and A = tαA

α are pull-back forms of 1-forms on X . Then a metric
g on X is defined by g = (θs)∗b = babe

aeb and A is the expression of the
connection ∇ in the trivialization. We then set F := dA+ 1

2 [A ∧A], the
curvature 2-form of A. The variation with respect to θ leads to the equation

1

2
θ
(−3)
ABC ∧

(

dφAB + φA
D ∧ φDB

)

= −dπC − cBCAθ
A ∧ πB mod[θ(N−1)

γ ].

One can recognize on the left hand side the Einstein tensor of h on Y. After a
gauge transformation eα = Sα

β θ
β and ωα

β = Sα
α′φα′

β′(S−1)β
′

β − dSα
β′(S−1)β

′

β ,
where S = Adg (see Section 5), the previous equation translates as

1

2
e
(−3)
ABC ∧

(

dωAB + ωA
D ∧ ωDB

)

= −dpC mod[e(−1)
γ ]

The key observations are that the left hand side is constant on any fiber,
whereas the restriction of the right hand side to any fiber is an exact form.
Both observations lead to the conclusion that

1

2
e
(−3)
ABC ∧

(

dωAB + ωA
C ∧ ωCB

)

= 0 mod[e(−1)
γ ],

i.e. the two blocks Ein(h)ac and Ein(h)aγ of the Einstein tensor of ω vanish.
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The final equations, after a long computation (see Section 6) then read

(13)

{

Ein(g)ad +
1
2

(

F γ
acFγdc −

1
4F γ

bcFγbc)δ
a
d

)

+ Λδad = 0

∇cF γ
ca − cβαγAα

c F β
ca = 0

where Ein(g)ad := Ric(g)ad −
1
2R(g)δ

a
d is the Einstein tensor of g, F :=

dA+ 1
2 [A ∧A] and Λ := −1

8c
α
βγc

β
αϵh

γϵ = −1
8(K, h

∗), where K is the Killing
form on g.

3. The Euler–Lagrange equations

In the following we assume that (θ, φ, π) ∈ C is a critical point of A such
that rankθ = N (Hypothesis (v)). We denote by h = babθ

aθb + kαβθ
αθβ the

induced metric on Y and we assume that h is vertically complete (Hypoth-
esis (vi)).

3.1. Variations with respect to coefficients of π

Since rankθ = N , the family (θ1, . . . , θN ) is a coframe on Y, there exists
unique coefficients HA

BC such that dθA + 1
2c

A
BCθ

B ∧ θC = 1
2H

A
BCθ

B ∧ θC and

HA
BC+H

A
CB = 0. We decompose π = πAt

A and each πA as πA = 1
2π

BC
A θ

(N−2)
BC ,

where πBC
A + πCB

A = 0. The constraint (2) then reads πabA = 0 or

(14) πA = πbγA θ
(N−2)
bγ +

1

2
πβγA θ

(N−2)
βγ

A first order variation of (θ, φ, π) keeping θ and φ constant and respecting

(14) thus induces a variation of π of the form δπA = χbγ
A θ

(N−2)
bγ + 1

2χ
βγ
A θ

(N−2)
βγ .

The fact that the action A is stationary with respect to such variations of
π thus reads

∫

Y
δπA ∧

(

dθA +
1

2
[θ ∧ θ]A

)

=

∫

Y

(

χbγ
AH

A
bγ +

1

2
χβγ
A HA

βγ

)

θ(N) = 0, ∀χbγ
A , χ

βγ
A

and lead to the Euler–Lagrange equations HA
bγ = HA

βγ = 0, ∀A, b, β, γ. We
thus deduce that

(15) ΘA := dθA +
1

2
cABCθ

B ∧ θC =
1

2
HA

bcθ
b ∧ θc
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or equivalentely

(16)

{

dθa = 1
2H

a
bcθ

b ∧ θc

dθα + 1
2c

α
βγθ

β ∧ θγ = 1
2H

α
bcθ

b ∧ θc

3.2. Variations with respect to ϕ

Keeping θ and π fixed we look at first order variations δφ = λ of φ. This
induces the condition that, for all λ,

1

2

∫

Y
d
(

λAB ∧ θ
(N−2)
AB

)

+ λAB ∧
(

dθ
(N−2)
AB − φA′

A ∧ θ
(N−2)
A′B − φB′

B ∧ θ
(N−2)
AB′

)

= 0

Assuming that λ has compact support and using (10) and (12) we deduce
the relation

(

dθC + φC
C′ ∧ θC

′

)

∧ θ
(N−3)
ABC

= dθ
(N−2)
AB − φA′

A ∧ θ
(N−2)
A′B − φB′

B ∧ θ
(N−2)
AB′ = 0

which implies that the torsion 2-form dθA + φA
A′ ∧ θA

′

vanishes. Hence the
connection on TY associated to φ coincides with the Levi-Civita connection
of (Y,h), where h = hABθ

AθB.

3.3. Variations with respect to θ

We first observe that, through a variation δθ = τ of θ keeping φ and the
coefficients πbγA and πβγA fixed, we have

δ
(

θ
(N−2)
AB

)

= τC ∧ θ
(N−3)
ABC ,

plus the relation δΘA = dτA + cABCτ
B ∧ θC which implies

πA ∧ δΘA = d
(

τA ∧ πA
)

+ τA ∧
(

dπA + cCABθ
B ∧ πC

)

and lastly

δπA = πbγA

(

τd ∧ θ
(N−3)
bγd + τ δ ∧ θ

(N−3)
bγδ

)

+
1

2
πβγA

(

τd ∧ θ
(N−3)
βγd + τ δ ∧ θ

(N−3)
βγδ

)



✐

✐

“3-Helein” — 2020/7/9 — 18:06 — page 317 — #13
✐

✐

✐

✐

✐

✐

A variational principle for Kaluza–Klein type theories 317

which, thanks to ΘA ∧ θ
(N−3)
bγδ = ΘA ∧ θ

(N−3)
βγd = ΘA ∧ θ

(N−3)
βγδ = 0 by (15),

leads to

(δπA) ∧ΘA = −πbγA H
A
bdτ

d ∧ θ(N−1)
γ .

In conclusion, by assuming that τ has compact support, we obtain

∫

Y
τC ∧

(

1

2
θ
(N−3)
ABC ∧ ΦAB − πbγA H

A
bCθ

(N−1)
γ + dπC − cBACθ

A ∧ πB

)

= 0

where we set Φ := dφ+ 1
2 [φ ∧ φ]. Hence we deduce the Euler–Lagrange

equation

(17)
1

2
θ
(N−3)
ABC ∧ ΦAB + dπC − cBACθ

A ∧ πB = 0 mod[θ
(N−1)
g ]

where, for any 3-form λ, λ = 0 mod[θ
(N−1)
g ] means that there exists coeffi-

cients λα such that λ = λαθ
(N−1)
α .

4. The fibration

From the first equation in (16) we deduce that dθa=0 mod[θb], ∀a=1, . . . , n.
Since the rank of (θ1, . . . , θn) is equal to n everywhere, Frobenius’ theorem
implies that, for any point y ∈ Y, there exists a neighbourhood of y in which
there exists a unique submanifold f of dimension r crossing y such that
θa|f = 0, ∀a = 1, . . . , n. Hence Y is foliated by integral leaves of dimension r.

Consider on the product manifold Y ×G the g-valued 1-form τ :=
h−1dh− θg, where (y, h) denotes a point in Y ×G and where θg := tαθ

α.
It satisfies the identity dτ + dθg + 1

2 [θ
g ∧ θg] + [θg ∧ τ ] + 1

2 [τ ∧ τ ] = 0. How-
ever the second equation in (16) implies that, for any integral leaf f, dθg +
1
2 [θ

g ∧ θg]|f = 0 and thus d(τ |f×G) = 0 mod[τ ]. Hence, again by Frobenius’
theorem, for any (y0, g0) ∈ f×G, there exist a unique r-dimensional subman-
ifold Γ ⊂ f×G which is a solution of τ |Γ = 0 and which contains (y0, g0).
This implies the existence of a unique map g (the graph of which is Γ) from
a neighbourhood of y0 in f to G such that g(y0) = g0 and dg − gθg|f = 0.
Moreover g is clearly invertible.

Consider any smooth path γ : [0, 1] −→ G such that γ(0) = 1G and a
point y0 ∈ Y. By Hypothesis (vi) we can associate to it a unique path
u : [0, 1] −→ f such that u(0) = y0 and (u, γ)∗τ = 0. The image of (u, γ) is
contained in some integral submanifold Γ which coincides locally with the
graph of an invertible map g as previously. Thus to any path homotopic to
γ in G with fixed extremities it corresponds a path homotopic to u in f with
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fixed extremities. Since G is simply connected we can thus define a unique
map T : G −→ f such that T (1G) = y0 and (T × Id)∗τ = 0. Hence G is a
universal cover of f and, in particular, since G is compact f is compact.

To any fixed x = (x1, . . . , xn) ∈ R
n we associated the vector field X on Y

defined by X = xa ∂
∂θa . Let f0 be some integral leaf. Let us assume that x is in

the unit ball Bn of Rn. Since f0 is compact there exists a neighbourhood T of
f0 in Y and some ε > 0 such that the flow map (t, y) 7−→ etX(y) is defined on
[−ε, ε]× T . We observe that, due to (16), LXθ

a = Ha
bcx

bθc, ∀a. Hence there
exists functionsMa

bc on Y (depending on x) such that
(

etX
)∗
θa =Ma

c θ
c, ∀a.

For any leaf f ⊂ T , let ι : f −→ Y its embedding map and ιt := etX ◦ ι. Note
that the image of ιt is e

tX(f). We have then

ι∗t θ
a =

(

etX ◦ ι
)∗
θa = ι∗

(

etX
)∗
θa = ι∗ (Ma

c θ
c) , ∀a.

Thus the 1-form taθ
a vanishes on etX(f) iff it vanishes on f, i.e. f is an integral

leaf iff etX(f) is also an integral leaf. As a consequence the map Bn × f0 ∋

(x, y) 7−→ eεx
a ∂

∂θa (y) is a local diffeomorphism onto a neighbourhood of f0,
which provides us with a local trivialization of the set of leaves. Hence the
set X of integral leaves has the structure of an n-dimensional manifold and
the quotient map P : Y −→ X is a bundle fibration.

Set ea := θa, for 1 ≤ a ≤ n. From ∂
∂θβ ⌟ea = ∂

∂θβ ⌟dea = 0 we deduce that
there exists a coframe (ea)1≤a≤n on X such that ea = P ∗ea, ∀a. Thus we

can equipp X with the pseudo Riemannian metric g := babe
aeb.

In the following we choose an n-dimensional submanifold Σ ⊂ Y trans-
verse to the fibration. Without loss of generality (replacing Y by an open sub-
set of Y if necessary) we can assume that Σ intersects all fibers of P and we
define the map g : Y −→ G which is constant equal to 1G on Σ and such that
dg − gθg|f = 0 for any integral leaf f. We then define A := gθgg−1 − dg · g−1.
The relation dg − gθg|f = 0 then translates as A|f = 0 and hence we have the
decomposition A = Aaθ

a. Moreover since

(18) θg = g−1Ag + g−1dg,

we have dθg + 1
2 [θ ∧ θ]

g = g−1(dA+ 1
2 [A ∧A])g = g−1Fg, where F := dA+

1
2 [A ∧A]. By using (16) we deduce that ∂

∂θα ⌟dA = 0, ∀α = n+ 1, . . . , N , i.e.
the coefficients Aa are constants on the fibers f. Moreover we have

(19) Fα =
1

2
Fα
bce

b ∧ ec,

where the coefficients Fbc = gHg

bcg
−1 are constant on the fibers.
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5. Trivialization of the bundle

Using the map g : Y −→ G defined previously we define the map S from Y
to End(ĝ) which, to any y ∈ Y, associates Adg(y). In other words, ∀(v, ξ) ∈
s× g, S(v + ξ) := g(v + ξ)g−1 = v + gξg−1. We remark that S takes values
in SO(ĝ, h) because of Hypothesis (ii). Let

(

SA
B

)

1≤A,B≤N
be the matrix of

S in the basis (tA)1≤A≤N , i.e. such that S(tA) = tBS
B
A . We define a new

coframe
(

eA
)

1≤A≤N
by eA = SA

Bθ
B. Equivalentely

{

ea := θa ∀a = 1, . . . , n

eα := Sα
β θ

β ∀α = n+ 1, . . . , N

Then eα = (gθgg−1)α and (18) imply

(20) eα = Aα + (dg g−1)α, ∀α = n+ 1, . . . , N.

We deduce that

deα −
1

2
[e ∧ e]α + [A ∧ e]α

= deα −
1

2
[e ∧ e]α + [(e− dg g−1) ∧ e]α

= deα +
1

2
[e ∧ e]α − [dg g−1 ∧ e]α

=
(

gdθg−1 + [dgg−1 ∧ e]
)α

+
1

2
[e ∧ e]α − [dgg−1 ∧ e]α

=

(

g

(

dθ +
1

2
[θ ∧ θ]

)

g−1

)α

from which we get the useful identity

(21) deα −
1

2
[e ∧ e]α + [A ∧ e]α = Fα :=

1

2
Fα
bce

b ∧ ec.

Let us translate the left hand side of (17) in the new coframe. First we
define e(N) := e1 ∧ · · · ∧ eN and note that e(N) = θ(N). Moreover defining

e
(N−1)
A := ∂

∂eA
⌟e(N), e

(N−2)
AB := ∂

∂eA
∧ ∂

∂eB
⌟e(N), we observe that, since ∂

∂θA =
∂

∂eB
SB
A , we have θ

(N−1)
A = e

(N−1)
A′ SA′

A , θ
(N−2)
AB = e

(N−2)
A′B′ SA′

A SB′

B and θ
(N−3)
ABC =

e
(N−3)
A′B′C′SA′

A SB′

B SC′

C .
Second let ω be the so(ĝ, h)-valued connection 1-form in the coframe

(eA)1≤A≤N , which is equal to ω := SφS−1 − dS S−1. Let Ω := dω + 1
2 [ω ∧

ω] = SΦS−1, where Φ = dφ+ 1
2 [φ ∧ φ]. Then ΦAB = (S−1)AA′(S−1)BB′ΩA′B′

.
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We deduce that θ
(N−3)
ABC ∧ ΦAB = e

(N−3)
ABC′ ∧ ΩABSC′

C . Hence (17) is equiv-
alent to

(22)
1

2
e
(N−3)
ABC ∧ ΩAB +

(

dπC′ − cBAC′θA ∧ πB
)

(S−1)C
′

C = 0 mod[e
(N−1)
g ],

where, for any (N − 1)-form λ, we write:

λ = 0 mod[e
(N−1)
g ]

iff there exists forms λα such that λ = λαe
(N−1)
α .

In the following we use extensively Relations (8), (9), (10), (11) and (12).

Lemma 5.1. We have

(23)
(

dπC′ − cBAC′θA ∧ πB
)

(S−1)C
′

C = d
(

πC′(S−1)C
′

C

)

mod[e
(N−1)
g ].

Proof. From the definition of S we deduce that, ∀ξ ∈ ĝ,

d(S−1(ξ)) = [g−1ξg, g−1dg] = g−1[ξ, tα(e
α −Aα)]g = −S−1([e−A, ξ]),

where, in the last equality we used the fact that [ξ, tae
a] = 0 because of Hy-

pothesis (i). Thus we can write d(S−1)C
′

C = −(S−1)C
′

A c
A
BC(e

B −AB). Hence

d
(

(S−1)C
′

C πC′

)

= −(S−1)C
′

A c
A
BC(e

B −AB) ∧ πC′ + (S−1)C
′

C (dπC′)

= −(S−1)C
′

A c
A
BCS

B
B′θB

′

∧ πC′ + (S−1)C
′

A c
A
BCA

B ∧ πC′

+ (S−1)C
′

C (dπC′)

But because of [Adg(ξ),Adg(η)] = Adg([ξ, η]), ∀ξ, η ∈ g, which is equivalent
to cAB′C′SB′

B SC′

C = SA
A′cA

′

BC , we have (S−1)C
′

A c
A
BCS

B
B′ = cC

′

B′C′′(S−1)C
′′

C . Thus
for the first term on the r.h.s.,

(S−1)C
′

A c
A
BCS

B
B′θB

′

∧ πC′ = cC
′

B′C′′(S−1)C
′′

C θB
′

∧ πC′ = cBAC′θA ∧ πB(S
−1)C

′

C

and hence

d
(

(S−1)C
′

C πC′

)

=
(

dπC′ − cBAC′θA ∧ πB
)

(S−1)C
′

C + (S−1)C
′

A c
A
BCA

B ∧ πC′

However it follows from (14) that πC′ = Sγ
γ′π

bγ′

C′ e
(N−2)
bγ + 1

2S
β
β′S

γ
γ′π

β′γ′

C′ e
(N−2)
βγ

and, since AB = AB
c e

c, we get

(S−1)C
′

A c
A
BCA

B ∧ πC′ = −(S−1)C
′

A c
A
BCA

B
b S

γ
γ′π

bγ′

C′ e
(N−1)
γ = 0 mod[e

(N−1)
g ].
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Hence (23) follows. □

Thus if we define pC := πC′(S−1)C
′

C we deduce from (23) that (22) is equiv-
alent to

(24)
1

2
e
(N−3)
ABC ∧ ΩAB + dpC = 0 mod[e

(N−1)
g ].

We need to compute dpC . For that purpose we use the a priori decompo-

sition pC = pbγC e
(N−2)
bγ + 1

2p
βγ
C e

(N−2)
βγ . We first compute using (9), (10), (16)

and (21)

de
(N−2)
bγ = dea ∧ e

(N−3)
bγa + deα ∧ e

(N−3)
bγα

= Ha
abe

(N−1)
γ + cαγαe

(N−1)
b − cαβγ(A

β)be
(N−1)
γ

=
(

Ha
ab − cαβγ(A

β)b

)

e(N−1)
γ = 0 mod[e

(N−1)
g ],

where we have used the fact that, since G is compact, its Lie algebra g is
unimodular, which reads cαγα = 0. Similarly

de
(N−2)
βγ = dea ∧ e

(N−3)
βγa + deα ∧ e

(N−3)
βγα

= 0 + cαγαe
(N−1)
β + cααβe

(N−1)
γ + cαβγe

(N−1)
α

= 0 mod[e
(N−1)
g ],

Thus by writing dpbγC = pbγC,ce
c + pbγC,γe

γ and dpβγC = pβγC,ce
c + pβγC,δe

δ, we get

dpC = pbγC,γe
(N−1)
b − pbγC,be

(N−1)
γ + pβγC,γe

(N−1)
β mod[e

(N−1)
g ]

= pbγC,γe
(N−1)
b mod[e

(N−1)
g ]

Lastly by decomposing ΩAB = 1
2Ω

AB
CDe

C ∧ eD, we find that

1

2
e
(N−3)
ABC ∧ ΩAB = −Ein(ω)ACe

(N−1)
A ,

where Ein(ω)AC := Ric(ω)AC − 1
2R(ω)δ

A
C , Ric(ω)

A
C := ΩAB

CB and R(ω)
:= Ric(ω)AA. Obviously Ric(ω)AC is the Ricci curvature, R(ω) the scalar
curvature and Ein(ω)AC the Einstein tensor of h in the coframe

(

eA
)

1≤A≤N
.
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Hence we find that (24) is equivalent to

(

Ein(ω)aC − paγC,γ

)

e(N−1)
a = 0 mod[e

(N−1)
g ],

or

(25) Ein(ω)aC = paγC,γ , ∀a = 1, . . . , n, ∀C = 1, . . . , N.

We will come back to this equation later on.

6. Computation of the connection and the curvature forms

We need to compute the connection 1-form ω and its curvature 2-form. As
a preliminary we first set γac to be the connection 1-form on (X ,g) in the

coframe ea, i.e. which satisfies γac + γca = 0 and dea + γac ∧ e
b = 0. Then

we set γac := P ∗γac which satisfies similar relations, which, together with
(21), leads to

(26)

{

dea + γac ∧ e
c = 0

deα − 1
2F

α
bce

b ∧ ec − 1
2c

α
βγ(e

β − 2Aβ) ∧ eγ = 0

Now the connexion 1-form ω is uniquely characterized by the condition
ωAB + ωBA = 0 (preservation of the metric) and deA + ωA

C ∧ eC = 0 (the
torsion vanishes), which can be written

(27)

{

dea + ωa
c ∧ e

c + ωa
γ ∧ e

γ = 0

deα + ωα
c ∧ e

c + ωα
γ ∧ e

γ = 0

Comparing with (26) we are tempted to assume that ωα
γ = −1

2c
α
βγ(e

β −

2Aβ), which fulfills the condition ωαβ + ωβα = 0, since cαβγ′k
γ′γ + cγβα′k

α′α =
0 because the metric k is preserved by the adjoint action of g. We also
guess that ωα

c = −1
2F

α
bce

b, which forces automatically ωa
γ = 1

2kγγ′F γ′

bc′g
c′ceb,

in order to satisfy ωαb + ωbα = 0. Then in order to fulfill the first relation of
(27), one needs to assume that ωa

c = γac −
1
2kγγ′F γ′

a′cb
a′aeγ . We then check

that ωac = γac − 1
2kγγ′F γ′

a′c′b
a′abc

′ceγ is skew symmetric in (a, c). Thus we
see that the forms ωAC defined by:

(

ωa
c ωa

γ

ωα
c ωα

γ

)

=

(

γac −
1
2kγγ′F γ′

a′cb
a′aeγ 1

2kγγ′F γ′

ba′b
a′aeb

−1
2F

α
bce

b −1
2c

α
βγ(e

β − 2Aβ)

)
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satisfy (27) and ωAC + ωCA = 0. Hence this is the Levi-Civita connection 1-
form of (Y,h). In the following it will convenient to set F γ

bc := F γ
bc, F γ

a
c :=

kγγ′F γ′

a′cb
a′a and F γb

c := kγγ′F γ′

bc′b
c′c. Then

(

ωa
c ωa

γ

ωα
c ωα

γ

)

=

(

γac −
1
2F γ

a
ce

γ 1
2F γb

aeb

−1
2F

α
bce

b −1
2c

α
βγ(e

β − 2Aβ)

)

We can thus compute the curvature 2-form ΩA
C = dωA

C + ωA
B ∧ ωB

C .

Ωa
c = d

(

γac −
1

2
F γ

a
ce

γ

)

+

(

γab −
1

2
F β′

a
be

β′

)

∧

(

γbc −
1

2
F γ′

b
ce

γ′

)

−
1

4
F βb′

aF β
c′ce

b′ ∧ ec
′

,

Ωa
γ = d

(

F γb
aeb
)

+
1

2

(

γab −
1

2
F β′

a
be

β′

)

∧
(

F γb′
aeb

′

)

+
1

4
F βb′

acββ′γe
b′ ∧ (2Aβ′

− eβ
′

),

Ωα
c = −d

(

Fα
bce

b
)

−
1

2

(

Fα
b′be

b′
)

∧

(

γbc −
1

2
F γ′

b
ce

γ′

)

−
1

4
F β

bcc
α
β′β(2A

β′

− eβ
′

) ∧ eb,

Ωα
γ =

1

2
d
(

cαβγ(2A
β − eβ)

)

−
1

4

(

Fα
b′be

b′
)

∧
(

F γc′
bec

′

)

+
1

4
cαβ′βc

β
γ′γ(2A

β′

− eβ
′

) ∧ (2Aγ′

− eγ
′

).

Lastly we obtain the components of the Ricci tensor Ric(ω) through a
lengthy computation.

(28) Ric(ω)ad = Ric(γ)ad −
1

2
F β

acF β
dc

where Ric(γ)ad :=
(

dγac + γab ∧ γ
b
c

)

de
bce is the Ricci curvature of γ, and

using the decompositions dFδ
ac = Fδ

ac
,ce

c and γab = (γab)ce
c,

Ric(ω)aδ =
1

2

(

Fδ
ac

,c + (γab)cF δ
bc + (γcb)cF δ

ab − cγαδA
α
c F γ

ac
)

(29)

Ric(ω)αδ =
1

4
F δ

bcFα
bc −

1

4
cαβγc

β
δϵk

γϵ(30)
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We deduce the scalar curvature R(ω) of ω in function of the scalar curvature
R(γ) := Ric(γ)aa:

(31) R(ω) = R(γ)−
1

4
Fα

abFα
ab −

1

4
cαβγc

β
αδk

γδ

Hence the Einstein tensor of ω is

Ein(ω)ad = Ein(γ)ad −
1

2

(

F β
acF β

dc −
1

4
Fα

bcFα
bcδ

a
d

)

(32)

+
1

8
cαβγc

β
αδk

γδδad

and Ein(ω)aδ = Ric(ω)aδ is given by (29).
An important observation is that the components of Ein(ω)ad and

Ein(ω)aδ are constant on the fibers f.

7. The Einstein–Yang–Mills equations

We conclude by exploiting the fact that the fibers f are compact without

boundary. Let µ(r) := en+1 ∧ · · · eN and set µ
(r−1)
α := ∂

∂eα
⌟µ(r), ∀α. By inte-

grating both sides of (25) on a fiber f we obtain

∫

f

Ein(ω)aCµ
(r) =

∫

f

paγC,γµ
(r) =

∫

f

d
(

paγC µ
(r−1)
γ

)

= 0.

But on the one hand, the components of Ein(ω)aC are constant on the fiber
f, as seen in the previous section. Hence

(33) Ein(ω)aC =

∫

f
Ein(ω)aCµ

(r)

∫

f
µ(r)

= 0.

Thus, using (29) and (32) we deduce that γ and A are solutions of the
Einstein–Yang–Mills system

{

Ein(γ)ad −
1
2

(

F β
acF β

dc −
1
4Fα

bcFα
bcδ

a
d

)

+ 1
8c

α
βγc

β
αδk

γδδad = 0

Fδ
ac

,c + (γab)cF δ
bc + (γcb)cF δ

ab − cγαδA
α
c F γ

ac = 0
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