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The path integral for the partition function of Chern-Simons gauge
theory with a compact gauge group is evaluated on a general Seifert
3-manifold. This extends previous results and relies on abelian-
isation, a background field method and local application of the
Kawasaki Index theorem.

1. Introduction

The main determination of the Reshetikhin-Turaev-Witten (RWT) [19, 20,
22] invariants of a 3-manifold has been through the use of the Reshetikin-
Turaev construction or conformal field theory methods. A sampling of these
approaches is [10, 11, 13, 15, 21]. There are also path integral evaluations
such as semi-classical evaluations [13] as well as evaluations based on locali-
sation [1, 2] and those based on supersymmetric localisation [14]. Though it
must be said that the localisation approaches are not exact (so far) in case
there is a moduli space of flat connections that is not made up of isolated
points.

In a series of papers [4–8] two of us introduced the concept of diago-
nalisation as a gauge fixing condition in gauge theories. If one starts with
a trivial G-bundle over a manifold M1, with Lie algebra g, then in princi-
ple diagonalisation leaves one with a t (some Cartan sub algebra) bundle
and associated vector bundles. That procedure requires, however, that the
3-manifold be a principal bundle or fibration (over an orbifold) and that
one make non-smooth gauge transformations to achieve the required gauge.
The rationale for the first requirement is that, as explained in [5], this di-
agonalisation works “best” on 2-dimensional manifolds, since the resulting
diagonalised gauge fields have precisely the singularity structure that allows
them to be interpreted as non-singular connections on a non-trivial bundle.
Generically in more than 2 dimensions the required gauge transformations

1We have indicated how non trivial gauge bundles can be incorporated in [3].
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and resulting gauge fields are too singular to lend themselves to such an
intepretation, and thus diagonalisation can only be applied if it is possible
to reduce the calculations to 2 dimensions. In the case of 3-manifolds, this is
possible in principle if the 3-manifold has the structure of a fibration over a
2-dimensional orbifold, to which the calculation can be “pushed down”, and
this singles out Seifert 3-manifolds among all possible 3-manifolds as those
to which diagonalisation (at least as understood by us at present) can be
applied.

A notable feature of this approach to the calculation of the Chern-Simons
partition function of Seifert 3-manifolds [7] is that it completely bypasses
the (possibly arduous) task of having to integrate over some moduli space of
non-Abelian flat connections, as it essentially reduces the partition function
to that of an Abelian gauge theory on a 2-dimensional orbifold.

The singular gauge transformations “Abelianise” the theory so that the
fields are well defined but are now sections of non-trivial Abelian bundles.
The obstructions [5] to using smooth gauge transformations to accomplish
this are then reflected in the fact that one must sum over the Abelian bundles
that are generated in this way. In all of the cases considered thus far the non
trivial bundles that arise are always some power of a fixed line bundle LM ,
over the orbifold base, depending on the underlying 3-manifold M . Hence,
there has only ever been the need to sum over one integer (the first Chern
class of LM ) in the path integral. The general class of Seifert three manifolds
for which this is true we dubbed QHS[g] (genus g generalisations of rational
homology spheres) in [7].

Our aim here is to extend the diagonalisation method to general Seifert
3-Manifolds. In order to diagonalise on Seifert 3-manifolds, which are not
QHS[g], requires some new techniques. Firstly, we note that on a Riemann
surface with N orbifold points ΣV a general line V-bundle may be decom-
posed as

(1.1) L = Ln0

0 ⊗ Ln1

1 ⊗ · · · ⊗ LnN

N

with 0 ≤ ni < ai where ai is the order of the i’th orbifold point while L0 is
a smooth line bundle and n0 ∈ Z. By Theorem 2.3 in [9] for M a smooth
Seifert 3-manifold

(1.2) H2 (M, Z) ≃ Pict (ΣV ) /Z [LM ]⊕ Z2g

where Pict (ΣV ) is the topological Picard group of topological isomorphism
classes of line V bundles over ΣV . There is a more detailed statement namely
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Proposition 5.3 in [17] which explains the relationship between bundles on
M and those on ΣV .

As all such bundles arise on diagonalisation we will need, for each line
bundle, in the gauge bundle, to sum over the set of integers (n0, ni) (a
rk (G)’s set of such integers for structure group G). Consequently we will
need to incorporate into the path integral that we are integrating over con-
nections on such non-trivial bundles. To do this we introduce a background
connection in anticipation that the connection is, infact, non-trivial.

To describe the background connections in detail we need to explain
the orbifold construction on a Riemann surface and line V bundles in some
detail, the principal bundle structure of Seifert 3-manifolds and the relation-
ship between these. This is done in Section 2, Section 3 and in Section 3.4
respectively. One consequence of having an explicit background connection
is that one does not need to introduce such a background implicitly in the
evaluation of the determinants in Section 5.2 which is unlike the situation
in the original evaluation of such determinants given in [4]. The reason for
being so explicit is that one needs to keep to the fore the fact that on di-
agonalisation the smooth line bundles that are generated on the 3-manifold
come from line V bundles below as essentially all the calculations are done
on the orbifold.

The calculational part rests in Section 5.1. The original evaluation of
the determinants in [4] shows that one is really dealing with densities on
the underlying (V-) surface. The background fields localise the calculations
to their support. Once one realises that the only changes that need to be
made are to express the Kawasaki index theorem in a manner which takes
into account local information then the calculations in this paper become
essentially a commentary on [7] explaining where modifications need to be
made, especially as we have alreay incorporated the background connection.
The only point to be aware of is that we change our orientation and nor-
malisation conventions in Section 5.1 to make it easier to use the results
of [7].

2. 2-dimensional orbifolds and Seifert 3-manifolds

For us a compact closed 2-dimensional orbifold or V manifold ΣV is a genus
g Riemann surface with N discs Di removed and replaced with the cones
Ui ≃ Di/Zai

for i = 1, . . . , N . The apex of the cone is the orbifold point and
we denote those points by xi. The local model is, for z ∈ Di,

(2.1) z ≃ ζ.z, ζ ∈ Zai
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so that local holomorphic coordinates on the Ui are z
ai and we think of ζ

as a complex ai’th root of unity.
Complex line V bundles L → ΣV are described in a similar fashion.

Around an orbifold point the local description is

(2.2) (z, w) ≃ (ζ.z, ζb.w), w ∈ C

where 0 < b < a and ρ(ζ) = ζb is thought of as a representation of Za. We
note that the circle V bundle S(L), with |w| = 1 in (2.2), is smooth as long
as the gcd (a, b) = 1 since there are no fixed points of the discrete action
ζb.w in this case (otherwise with a = cd and b = ce where c > 1 one could
take ζ = exp (2πid/a) so that ζb = 1).

Of special interest to us are the building blocks of such bundles which
we denote by Li. The Li are trivial outside of the local neighbourhood Ui
and have local data on Di × C

(2.3) (z, w) ≃ (ζi.z, ζi.w), ζi ∈ Zai

Such holomorphic ‘point’ V bundles can be described as follows [9]

(2.4) Li = (Σi × C) ∪ψ (Di × C) /Zai

where Σi is the smooth Riemann surface Σ with xi removed and the clutching
map is defined, away from z = 0, by

(2.5) ψ(z, w) = (zai , z−1.w)

and ψ can be thought of as a Zai
invariant map on D/{0} × C which de-

scends to (D/{0} × C)/Zai
. The ni-th tensor power of this bundle, L⊗ni

i has
clutching map

(2.6) ψ(z, w) = (zai , z−ni .w)

A general holomorphic V bundle L over ΣV is then obtained by performing
this construction at each of the N orbifold points and at one regular point.

We are also interested in the unit disc V bundle D(L) of L which is
obtained by taking |w| ≤ 1 in (2.2) and which is realated to the circle V
bundle S(L) by ∂D(L) = S(L).

A Seifert 3-manifold M [deg (LM ), g, (a1, b1), . . . , (aN , bN )] is a smooth
circle V bundle S (LM ) over a genus g Riemann surface with N orbifold
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points with Seifert data (ai, bi) such that

(2.7) 0 < bi < ai, gcd (ai, bi) = 1

The first condition means that we are using normalised Seifert invariants
while the second is the condition that, as we saw, the bundle is smooth.

Throughout we will have in mind a decomposition of the base space ΣV
into open sets Ui for i = 0, 1, . . . , N where U0 = Σ0 and the Ui i = 1, . . . , N
are the cones D/Zai

about the orbifold points xi, while Σ0 is just ΣV with
the cones excised and the line V-bundles Li will be ‘point’ bundles localised
on the Ui.

2.1. Sections and connections on V bundles over ΣV

There is a natural section of the L⊗ni

i namely on Di the section is

(2.8) si(z) = zni

which can be extended over the rest of Σ as the constant section 1 via the
clutching map (2.6). The first Chern class is

(2.9) c1
(
L⊗ni

i

)
=
ni
ai

A suitable local connection form on Di/{0} for L⊗ni

i is

(2.10) α⊗ni

i = g(zz) d ln (zni) + wdw

providing that g is the identity much of the way into Di (we always take
the Di to be unit discs). Having such a g is consistent with the clutching
map (2.6). On S

(
L⊗ni

i

)
this is, with w = exp (iσ), the connection

(2.11) α⊗ni

i = g(zz) d ln (zni) + idσ

so dα⊗ni

i is horizontal and

(2.12) dα⊗ni

i = ni dαi

with holonomy

(2.13) c1
(
L⊗ni

i

)
=

1

2πi

∫

Ui

dα⊗ni

i =
1

2πi

1

ai

∫

∂Di

α⊗ni

i =
ni
ai
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as required. The αi are also locally contact structures with

(2.14)
1

(2πi)2

∫

S(L⊗ni
i )

αi(L
⊗ni

i ) ∧ dαi(L
⊗ni

i ) =
ni
ai

Li is then the holomorphic line V bundle with first Chern class c1(Li) =
1/ai and with divisor at the i’th orbifold point with i ∈ 1, . . . , N and allow,
for i = 0, L0 to be the line bundle at a smooth point with first Chern class
c1(L0) = 1. Then we have that any smooth holomorphic line V bundle L is
given by

(2.15) L = L⊗n0

0 ⊗ L⊗n1

1 ⊗ · · · ⊗ L⊗nN

N

with

(2.16) n0 ∈ Z, 0 < ni < ai, i = 1, . . . , N

3. Surgery, connections and Chern classes

This section is meant to connect the line bundle view point of the previous
section with the direct construction of the Seifert 3-manifold. We begin
with a topological description of the circle V-bundles that we considered in
the previous section. This is followed by a surgery prescription on glueing
boundaries along tori relevant to creating Seifert 3-manifolds.

3.1. Solid tori with S1 action of (a, b) type

We fix an element of SL(2,Z) in this section

(3.1)

(
a b

−r −s

)
, br = 1 + as, gcd (a, b) = 1, 0 < b < a, 0 < r < a

Consider a solid torus D2 × S1, where D2 is a unit disc in C with center at
the origin and with local coordinates (ρeiφ, eiψ). The standard S1 action of
type (a, b) is

(3.2)
(
ρ e iφ, e iψ

)
.e iθ =

(
ρ e (iφ+ irθ), e (iψ + iaθ)

)

We can quotient with this action (use θ to set ψ = 0 and we still have
those transformations generated by ζ = exp (iθ) where θ = 2π/a as these
do not change the value of exp (iψ) = 1) to be left with D2/Za. Denote
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the solid torus with this action by V(a,b) then we have the S1 V-bundle
V(a,b) −→ D2/Za.

The vector field corresponding to the generator of the U(1) action on
V(a,b) is

(3.3) ξ = r
∂

∂φ
+ a

∂

∂ψ

and the ‘vertical’dual one-form is

(3.4) dθ = bdφ− sdψ

while the horizontal 1-forms, the space of which we quite generally denote
by Ω1

H , are spanned by

(3.5) dρ, and dχ = adφ− rdψ

3.2. Surgery to obtain Seifert 3-manifolds

The exposition here partially follows that of Jankins and Neumann [12] and
of Orlik [16].

A solid torus is D2 × S1 where D2 is a unit disc in C with center at the
origin. Let λ be a longitude, that is a simple non contractible curve on the
T 2 boundary of D2 × S1, and for definiteness, fix the point {1} ∈ ∂D and
take λ to be {1} × S1. We also set µ to be a meridian, that is a contractible
loop in D2 × S1 lying on the boundary of D2 × S1 with unit intersection
with λ, which we take to be ∂D × {1}.

We wish to perform surgery on Σ× S1 where Σ is a compact closed Rie-
mann surface. Let Σ0 = Σ/D2

1 ∪ · · · ∪D2
N be the surface with the interiors

of N disjoint discs excised and, with obvious notation, ∂Σ0 = S1
1 ∪ · · · ∪ S1

N .
We consider the manifold Σ0 × S1. Denote the boundary curve in Σ0 × S1

of the i’th excised disc in Σ0 by ci = S1
i × {1} ⊂ S1

i × S1. Likewise, denote
hi = {1} × S1 ⊂ S1

i × S1.
Clearly we can regain Σ× S1 by glueing solid tori to all of the boundaries

of Σ0 × S1 where we simply identify the ci with the meridian µi and hi with
the longitude λi of the i’th solid torus at the i’th boundary.

More generally we could glue in the N solid tori with the identification,
a homeomorphism f ,

(3.6) f∗ :

(
µi
λi

)
−→

(
ai bi

−ri −si

)
.

(
ci
hi

)
, biri = 1 + aisi
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so that, in homology,

µi = ai ci + bi hi

λi = −ri ci − si hi(3.7)

which reads, µi wraps bi times around hi and ai times about ci while λi
wraps si times around −hi and ri times around −ci. The image of {0} × S1

is called the singular fibre. Inverting the relationship (3.7) we have

ci = −si µi − bi λi

hi = ri µi + ai λi(3.8)

The manifolds that have just been created, M [g, (a1, b1), . . . , (aN , bN )], are
Seifert manifolds but with non-normalised Seifert invariants (so that bi is
not necessarily smaller than ai).

The S1 action (3.2) is designed to coincide with the wrapping of hi on
∂V(ai,bi). To see this in detail let the coordinate on hi be θi then by (3.8) the
map S1 → T 2 with coordinates (φi, ψi) on T

2 sends θi to (rθi, aiθi) and the
dual 1-form (3.4) pulls back to dθi. Notice that this means that the solid tori
V(ai,bi) come complete with their surgery data, that is one glues the solid
torus to the rest of the manifold with the data (3.1) which is used in (3.7)
and (3.8).

As an example take M = S2 × S1 =
(
D2 ∪D2

)
× S1 and take out the

right hand D2 × S1 (leaving us with another solid torus namely the left
D2 × S1) now glue back according to (3.6). The 3-manifold obtained in this
way is the Lens space L(b, a) and in particular S3 = L(1, 0) is obtained with
f given by

(3.9)

(
0 1
−1 0

)

The prescription (3.6) is not the one required when one takes out the
tubular neighbourhood of a knot or link in S3 and then glues back2.

2Rather, one uses instead a homeomorphism f̂ ,

(
b −a
r −s

)
=

(
a b
s r

)
.

(
0 −1
1 0

)
which first undoes the first glueing to get S3 from

S2 × S1. In this case we have f̂∗(µ) = b.c+ a.h.
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3.3. Fractional monopole bundles, flat connections and surgery

Now we would like to provide connections for the principal bundle struc-
ture of the Seifert 3-Manifold as well as connections on bundles over M . In
the first case we wish to provide smooth 1-forms on the Seifert 3-Manifold
obeying the usual conditions.

A natural connection one form on V(ai,bi) is (there is no sum over a
repeated index unless explicitely shown)

σi = if(ρi) (bi dφi − si dψi) + i
1− f(ρi)

ai
dψi

dσi = i
bi
ai
df(ρi) ∧ (aidφi − ridψi)(3.10)

where f(0) = 0 and f(1) = 1. The σi satisfy

(3.11) ιξi . σi = i, and ιξi . dσi = 0.

The first Chern class can be determined by integrating over the disc in V(ai,bi)

defined by ψ = 0,

(3.12) c1 =
1

ai

1

2πi

∫

D
ibi df(ρi) ∧ dφi =

bi
ai

Note that

(3.13)

∫

V(ai,bi)

σi ∧ dσi = (2πi)2
bi
ai

If one adds i nif(ρi)(aidφi − ridψi) then we have a connection with c1 =
bi/ai + n.

The holonomies for this connection along the meridian and longitude
(that is at ρ = 1) are

(3.14) holσi
(µi) = exp (2πibi) = 1, holσi

(λi) = exp (−2πisi) = 1

so looking from the outside, as far as the boundary is concerned, one is
dealing with a flat connection. Consequently, if we glue the i-th solid torus
into Σ0 with (3.8) and demand that the holonomy match we may extend
the connection into Σ0 as a flat connection. From our previous discussion
the extension into Σ0 × S1 is as dθ. Consequently, we define a continuous
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global 1-form κ which on Σ0 × S1 is dθ and

(3.15) σ|V (ai,bi)
= σi

With any suitable choice of f(ρi), so that all its derivatives vanish at ρi = 1,
f (n)(1) = 0 when n ≥ 1, we obtain a smooth connection one form. Indeed
with such a choice the curvature 2-form, dσi, vanishes at ρi = 1. With these
choices σ is a well defined smooth connection 1-form, such that

(3.16)

∫

M
σ ∧ dσ =

N∑

i=0

∫

V(ai,bi)

σi ∧ dσi = (2πi)2

(
b0 +

N∑

i=1

bi
ai

)

Notice that, in this way, we have defined a ‘global’ principal bundle structure
on M .

This bundle description can be made to be trivial away from the fibres
over the orbifold points, since we may choose f to be one almost all the way
into the center of the disc so that dσi eventually has delta function support
at the orbifold point. In particular we have, suggestively in that limit,

(3.17)
dσ

2πi
= b0 δ(x0) +

N∑

i=1

bi
ai
δ(xi),

with the δ(xi) being 2-form de-Rham currents.

3.4. Holomorphic description and connections on L
⊗ni

i

Now we wish to connect the surgery prescription with that of complex line
V-bundles of the previous section.

Let U(1) act on C by the character eiθ 7→ e−inθ. There are associated
complex line V-bundles L⊗nbi

i over the orbifold D2/Za

(3.18) L⊗nbi
i = V(ai,bi) ×n C

meaning that L⊗bi
i is the quotient of V(ai,bi) × C according to (p, w).eiθ =

(p.eiθ, eimθ.w). As before we can use the S1 action to set ψ = 0 but we are
left with a Za action

(3.19) (z, w) ≃ (ζr.z, ζn.w)

and z = ρ .eiφ. On using ζbi as the generator rather than ζ we get (z, w) ≃
(ζ.z, ζnbi .w) which agrees with (2.2). The associated bundle construction
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(3.18) allows us to identify a holomorphic connection on the line bundle
given the connection (3.10). We are tasked to make the identification

(3.20) (z, t, w) ≃ (z.e iriθ, t.e iaiθ, e−inθ.w)

which we do by taking e iθ = t−1/ai (and we still have to make the identifi-
cation under Zai

). This provides us with a map from V(ai,bi) to L⊗nibi
i given

by

(ρi exp iφi, exp iψi)
τ

−→ (ρi. exp (iφi − iriψi/ai), exp (iniψi/ai))(3.21)

= (zi, wi)

The connection (2.10) on L⊗nibi
i pulls back as

τ∗
(
α⊗nibi
i

)
= inibig(ρ

2
i )(dφi − ridψi/ai)(3.22)

+ inidψi/ai + nibig(ρ
2
i )d ln ρi

If we set g(ρ2i ) = f(ρi), which we do, then we have the equality

(3.23) τ∗
(
α⊗nibi
i

)
= niσi + dΛ(ρi)

We are really interested in the ‘classes’ that these forms represent and so we
simply substitute α⊗nibi

i with niσi. In particular we have that the curvature
2-forms agree,

(3.24) τ∗
(
dα⊗nibi

i

)
= nidσi

4. Chern-Simons theory on a Seifert 3-manifold

The Chern-Simons action is

(4.1) S =
1

4π

∫

M
Tr

(
AdA+

2

3
A3

)

where A is a connection on a trivializable (and trivialized) G-bundle overM .
We consider the class of 3-manifolds M as described in the previous

section, namely circle bundles S(L) of holomorphic line V bundles L over
an orbifold ΣV . As in [7], we take the gauge group G to be a compact,
semi-simple, connected and simply connected Lie group.

Given the principal bundle structure κ one can decompose fields in a
Fourier series along the fibre direction as done previously [6] and [7]. One
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cannot completely follow the derivation in those papers directly for reasons
that we explained in the Introduction though we will try to follow it as
closely as possible.

Our conventions in [7] had the vector field generating the U(1) action
denoted by ξ and the real dual 1-form κ satisfying

(4.2) ιξκ = 1, ιξdκ = 0

with

(4.3) dκ = −c1 (LM ) ω,

∫

M
κ ∧ dκ = −c1 (LM ) , where

∫

ΣV

ω = 1

We can achieve this be setting

(4.4) κ =
1

2πi
σ, κ|V (ai,bi)

= κi =
1

2πi
σi

and by understanding that the fibre has length 1 (rather than 2π). The
minus sign in (4.3) implies that we are using the opposite orientation for the
Seifert 3-manifold M to that in previous sections.

Now we decompose fields as

(4.5) A = A+ κφ

with ιξA = 0 so that A is a horizontal field with respect to this fibration
and φ is the component that lies along the fibre. Note that both A and φ
are anti-Hermitian.

With this decomposition the Chern-Simons action becomes,

(4.6) SCS [A] =
1

4π

∫

M
Tr
(
A ∧ κ ∧ LφA+ 2φκ ∧ dA+ φ2 κ ∧ d κ

)
.

The Lie derivative is denoted by Lξ = {ιξ, d} and for the covariant Lie
derivative we set Lφ = Lξ + [φ,

4.1. Background gauge fields and patches

We know from the outset that once we try to impose the condition that φ
only takes values in the Cartan subalgebra that we will have to sum over all
possible non-trivial Abelian bundles that are ‘liberated’ in this procedure. In
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anticipation of this we will work directly with a connection plus a background
Abelian connection

(4.7) A → A+ AB

where A is a Lie algebra valued 1-form and AB will be specified in the next
section. To explain where these background fields come from, recall that
firstly we set ιξdφ = 0 with a well defined gauge transformation and then
we follow this by diagonalising φ with a ‘time’ independent gauge transfor-
mation ιξdg = 0 which is, necessarily, singular. All of this is now happening
on ΣV and so the singular gauge transformations give rise to non-trivial
bundles on ΣV so that one should be dealing with the connections we called
α in Section 2.1. However, we need to pull those back to our 3-manifold M
as in Section 3.4 and modulo a couple of caveats that pull back (a sum of
multiples of the κi) is our background connection.

Given that all the non-trivial bundles are encoded in the AB we de-
mand that A is a smooth globally defined form (actually section). As the
background is fixed gauge transformations act as follows

(4.8) Ag = g−1Ag + g−1dg + g−1ABg − AB

Next we impose the gauge condition that φ is constant along the fibre
ιξdφ = 0. The variation of this condition involves the operator

(4.9) Lφ+φB

where φB = ιξAB and it is this operator that appears in the ghost determi-
nant.

4.2. Abelianization on a Seifert manifold

As we still have gauge invariance under those gauge transformations g that
satisfy ιξdg = 0 we would like to Abelianize the field φ, that is set φk = 0
where we have decomposed the Lie algebra g = t⊕ k into a Cartan subal-
gebra and root spaces. If we do so then we must follow this by summing
over all available line V bundles on the orbifold ΣV . In previous works on
Abelianization in Chern-Simons theory this amounted to a sum over one
integer. The reason for that is that we had previously considered Seifert
3-manifolds M (the QHS[g]-manifolds of [7]) on which every line V bundle
on the base orbifold could be given as a tensor power of some unique line
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V bundle LM . We are certainly far away from that situation in the present
context where we will need to sum over all possible line V bundles.

To sum over all of these possibilities we add to the connection A an
Abelian background connection AB. The Chern-Simons action goes over to,

(4.10) SCS [A+ AB] = SCS [A] +
1

4π

∫

M
Tr
(
ABdAB + 2A ∧ FB + 2A2AB

)

The last term only involves the charged components of the connection A so
that, in particular, it does not involve the gauge fixed φ. One may wonder
why it is that 2A ∧ FB appears in the action rather than A ∧ dAB + dA ∧ AB
as, even though these two only differ by an exact term 2A ∧ FB = A ∧ dAB +
dA ∧ AB − d(A ∧ AB), for singular forms a naive application of Stokes the-
orem is not correct. Actually the Chern Simons Lagrangian is not invariant
under a gauge transformation

CS(Ag) = CS(A) + dTr
(
Ag ∧ g−1dg

)
−

1

3
Tr
(
g−1dg

)3

so, ignoring the winding number, we really should use

CS(A) = CS(Ag)− dTr
(
Ag ∧ g−1dg

)

the Ag are our new ‘quantum’ fields and g−1dg is essentially AB.
The background bundles which are available to us are all of those that

can appear in (2.15)

(4.11) L = L⊗n0

0 ⊗ L⊗n1

1 ⊗ · · · ⊗ L⊗nN

N

In the i-th patch the connection form σi is that for V(ai,bi) (or equivalently

L⊗bi
i ). We would like to represent connections of L⊗ni

i but it seems that the
best that we can do is have connections for L⊗nibi

i . In order to deal with this
situation we use (4.11) as follows

(4.12) L⊗niribi
i = L⊗ni

i ⊗ L⊗sini

0

from which we deduce that the connection that we require on L⊗ni

i pulls
back to niriσi − nisiσ0 or, somewhat more correctly, the curvature 2-forms
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satisfy

(4.13) ni[dσi] = niri[dσi]− sini[dσ0]

The line bundles that appear live inside the gauge bundle that we are
considering, so that the background connection is taken to be

AB = n0σ0 +

N∑

i=1

ni (riσi − siσ0)

= 2πi

(
n0κ0 +

N∑

i=1

ni (riκi − siκ0)

)
(4.14)

where the n are Hermitian. As the components of n0 range over the integers,
and as we will sum over these, we can shift to absorb the sini. With this
understood, and with an abuse of notation, we write the background as

(4.15) κφB = 2πi

(
n0κ0 +

N∑

i=1

niriκi

)

It is usually appropriate for an Abelian theory to write

(4.16)
1

4π

∫

M
Tr (ABdAB) =

1

4π

∫

X
Tr (FB ∧ FB)

where X is a 4-manifold that bounds M . Recall that M is itself the unit
circle V bundle, S(LM ) of some line V bundle LM . We are fortunate in that
there is a natural X available to us, namely we take X to be the unit disc
bundle D(LM ) whose boundary is S(LM ) ≡M . Even though though the
disc bundle is itself singular one could follow this through [18], however, we
are in the even happier situation that we are able to determine the left hand
side directly, which we now proceed to do.

We can evaluate the second Chern-Simons contribution in (4.10) as fol-
lows (with r0 = 1)

1

4π

∫

M
Tr (ABdAB) = −π

N∑

i=0

r2i

∫

V(ai,bi)

Trn2
i κi ∧ dκi

= π

N∑

i=0

r2i bi
ai

Trn2
i(4.17)
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For a simply connected group G, πTrn2
i is an element of 2πZ. The order

of the normal point is 1 (a0 = 1, b0 = 1) so that the exponential of that
term gives unity and so may be neglected. Furthermore, on replacing ribi =
1 + aisi in (4.17), the only terms that will contribute in the exponential are

(4.18) π

N∑

i=1

ri
ai

Trn2
i

For a non-simply connected group one will also have to take into account
signs that depend on the length of each of the ni.

In the second last term of (4.10) only the φ component of A is present
as FB is horizontal,

(4.19)
1

2π

∫

(Di×S1)/Zai

Tr (κφ ∧ FB) = −i
biri
ai

Trφni

and we have made use of the fact that when we integrate over Cartan valued
A we have a delta function constraint on φ which implies it is constant and

(4.20) κ|Di
= dθ + βi

and the integral on the fibre for dθ is one.
The last piece of the puzzle is the

(4.21)
1

2π

∫

M
TrA2AB =

1

4π

∫

M
TrA ∧ κ ∧ [φB, A]

term where φB = ιξAB. This piece appears in the determinants that we have
still to evaluate.

4.3. Collecting terms in the action

The total action becomes

ikSCS =
ik

4π

∫

M
Tr
(
A ∧ κ ∧ L(φ+φB)A+ 2φκ ∧ dA+ φ2 κ ∧ d κ

)

+ ik

N∑

i=1

ri
ai

Tr
(
−ibiφni + πn2

i

)
+ kTr (φn0)(4.22)

Clearly integrating over At gives us the condition that d (κφ) = 0 which
together with the gauge condition on φ implies that φ is constant, dφ = 0.
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Now that φ is constant and noting that

(4.23)

∫

M
κ ∧ dκ = −c1(LM )

we may write

(4.24)
ik

4π

∫

M
κ ∧ dκTr

(
φ2
)
= −

ik

4π
c1(LM ) Tr

(
φ2
)

Consequently the partition function becomes

ZCS =
∑

n0∈Z

(
N∏

i=1

ai−1∑

ni=1

)

×

∫

t

dφ
DetΩ0(M,k) (iLφ+φB

)
√

DetΩ1
H(M,k) (∗κ ∧ Lφ+φB

)
. exp (ikI(φ,n))(4.25)

where

I(φ,n) =

N∑

i=1

ri
ai

Tr
(
−ibiφni + πn2

i

)

+Tr (φn0)−
1

4π
c1(LM ) Tr

(
φ2
)

(4.26)

5. One loop effects and the Kawasaki index theorem

We borrow heavily from the calculations in [7]. In order to make contact
with that work we will need to explain, along the way, how working locally
mimics the global calculations there. Furthermore, we need to take into
account that φB unlike φ is not constant on ΣV . Lastly, one needs to note
that the Kawasaki index theorem tells us that the number of holomorphic
sections of the line V bundle only depends on the desingularisation |L| over
the smooth manifold Σ ≡ |ΣV | of the holomorphic line V bundle L over ΣV ,

(5.1) χ(ΣV ,L) = 1− g + deg (L)

where deg (L) = c1(|L|).
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Firstly we write the ratio of determinants in terms of Fourier modes as
sections of powers, L⊗n

M of the line V bundle that defines M ,

(5.2)
DetΩ0(M,k) (Lφ+φB

)
√

DetΩ1
H(M,k) (∗κ ∧ Lφ+φB

)

We regularise both the absolute value and the phase of the ratio of
determinants as follows

(5.3)
√

DetQ =
√

|DetQ| exp

(
+iπ

2
η(Q)

)

where η(Q) = 1
2

∑
λ∈spec(Q) sign(λ)

|DetQ| (s) = exp
∑

λ∈spec(Q)

es∆ ln |λ|(5.4)

η(Q, s) =
1

2

∑

λ∈spec(Q)

sign(λ)

|λ|s
exp (s∆)(5.5)

for ∆ the Laplacian of the twisted Dolbeault operator.

5.1. The absolute value of the determinants and
Ray-Singer torsion

Had φB been constant then the regularisation would have led us to consider
[1]

(5.6) χ
(
Σ,L⊗n

M

)
+ χ

(
Σ,L⊗−n

M

)
= 2− 2g −N +

∑

i=1

φai
(n)

What φai
(n) measures are the number of ‘honest’ line bundles in the tensor

power L
⊗nbi(LM )
i , that survive in the sum degL⊗n

M + degL⊗−n
M , and these

line bundles are, by construction, at the i’th orbifold point. Note that we
always have gcd (ai, bi(LM )) = 1 so that an honest bundle only arises when
ai|n.

However, φB is not constant. As explained between (6.16) and (6.19) in
[4] when dealing with a non constant φ the ratio of determinants takes the
form of an integral of the density representing the characteristic classes of
the Dolbeault operator and the, log of, the operator itself. Applying that in
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the orbifold case leads us to objects of the form

(5.7)

∫

ΣV

I (R, F0, . . . , FN ) lnM(φ+ φB)

in the effective action. Here I (R, F0, . . . , FN ) is the local density function
of the characteristic classes and M(φ+ φB) is essentially Detk (Lφ+φB

)|S1

(which varies over ΣV ).
We use the local decomposition (2.15) for line V bundles whose support

is about the specified points x0, x1, . . . , xN and we recall that contributions
to the index theorem are local to express (5.7) as

(5.8)

∫

Σ0

I (R, F0) lnM(φ+ φB) +

N∑

i=1

∫

Di/Zai

I (R, Fi) lnM(φ+ φB)

where Σ0 is ΣV with the N discs about the orbifold points removed. As
the Kawasaki index comes from the holomorphic Lefshetz fixed point for-
mula there are contributions coming from the orbifold points which we have
implicitly incorporated in the integrals over the Di/Zai

. Indeed as we saw
previously by appropriate choice of f in (3.10), we can have delta function
support for the curvature 2-forms and thus ‘localise’ the contribution to the
fixed points.

On each region φB is constant

(5.9) φB|Ui
= 2πirini

Over Σ0 there are only smooth line bundles which cancel out in the sum of
degrees which leaves us with the Euler characteristic which is 2− 2g −N
and following the discussion in Section 5.1 of [7] this leads us to a factor of

(5.10) TS1 (φ+ 2πin0)
1−g−N/2 = TS1 (φ)1−g−N/2

where TS1(ϕ) is the Ray-Singer torsion on S1 of a constant connection ϕdθ
(and all connections are gauge equivalent to such a connection). So, on Σ0,
M = TS1 and

(5.11) TS1(ϕ) = detk
(
1−Ad eϕ

)

where the right hand side is a determinant on the k part of the Lie algebra g.
As we saw before there can also be contributions of honest line bundles

at the orbifold points (though we will have to consider the orbifold points
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to be ‘smoothed out’). Recall that the φai
count those line bundles over Di

which cancel in the sum of Euler characteristics. Indeed φai
(n) arises as

(5.12) φai
(n) = 1−

1

ai

(
bi(L

⊗nbi
i ) + bi(L

⊗−nbi
i )

)

where the 1 is the Euler characteristic of the disc and the second term is 0
if ai|n and one otherwise. When ai|n then line V bundles are line bundles
and the second term vanishes (honest line bundles drop out in the sum).

In any case, once more following the discussion in Section 5.1 of [7] gives
us the factor

(5.13) TS1 ((φ+ 2πirini)/ai)
1/2

All together then we have that the absolute value is

(5.14) TM (φ; ni) = TS1 (φ)1−g−N/2 .

N∏

i=1

TS1 ((φ+ 2πirini)/ai)
1/2

5.2. The phase of the ratio of determinants and η invariants

We recall the regularised formulae for the phase with φB constant and then
take into account the fact that it is not so.

In Section 5 of [7] the phase is split into two pieces one depending on
the charges of the fields but not on the line V bundles defining M while the
second has dependence on LM but not on the smooth line bundles Vα,

η(Lφ+φB
, s) = σ(Lφ+φB

, Vk, s) + γ(Lφ+φB
,LM , s)

where

σ(Lφ+φB
, Vk, s) = −2

∑

α>0

deg (Vα)|iα(φ+ φB)|
−s

− 2
∑

α>0

deg (Vα)
∑

n≥1

(2πn+ iα(φ+ φB))
−s

+ 2
∑

α>0

deg (Vα)
∑

n≥1

(2πn− iα(φ+ φB))
−s(5.15)
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and

γ(Lφ+φB
,LM , s) = −

∑

n≥1

∑

α>0

[deg (L⊗n
M )− deg (L⊗−n

M )]

×
[
(2πn+ iα(φ+ φB))

−s + (2πn− iα(φ+ φB))
−s
]

(5.16)

However, here it is not the case that the bundle dependence neatly seperates.
Both terms depend on the background gauge field and we are in danger
of overcounting. It is straightforward to see that one generates equivalent
terms in σ(Lφ+φB

, Vk, s) and γ(Lφ+φB
,LM , s) if one allows both to have the

background field dependence. As we have extracted the background gauge
fields we understand the field strength associated with the Vα in the above
formula to be dA, and that the background field dependence should be
turned off. With this understood the contribution to (5.15) is

σ(Lφ, Vk, s) = −2
∑

α>0

deg (Vα)|iα(φ)|
−s

− 2
∑

α>0

deg (Vα)
∑

n≥1

(2πn+ iα(φ))−s

+ 2
∑

α>0

deg (Vα)
∑

n≥1

(2πn− iα(φ))−s(5.17)

In the limit as s→ 0

(5.18) σ(Lφ+φB
, Vk, s) = −2

∑

α>0

deg (Vα)

(
1 +

1

π
iα(φ)

)
+O(s)

The term
∑

α>0 deg (Vα) does not contribute to the phase, given our assump-
tion that the group is simply-connected, so we are left with

(5.19) σ(Lφ+φB
, Vk, 0) → −

2i

π

∑

α>0

c1 (Vα)α(φ)

In order to define and then evaluate (5.16) when φB is not constant we
must define what we mean by the right hand side of

(5.20) deg (L⊗n
M )− deg (L⊗−n

M ) = 2n.c1(LM )− 2

N∑

i=1

((
nbi(LM )

ai

))

The first Chern character c1(LM ) = c1(L
⊗b0
0 )⊕N

i=1 c1(L
⊗bi
i ) and each sum-

mand is supported on the corresponding open set. The terms involving
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the double bracket symbol ((nbi/ai)) come from densities that have support
on Ui.

In Section 5, Equation (5.26) of [7] the phase proportional to c1(LM ) is
determined to be

(5.21) c1(LM )
∑

α>0

(
1

3
+

1

2π2
α(φ)2

)
+O(s)

which now goes over to

N∑

i=0

c1(L
⊗bi
i )

∑

α>0

(
1

3
+

1

2π2
α(φ+ 2πirini)

2

)
+O(s)

−→
∑

α>0

(
c1(LM )

2π2
α(φ)2 +

2i

π
α(φ)α(n0)

+
2

π

N∑

i=1

biri
ai

[
iα(φ)α(ni)− πriα(ni)

2
]
)

+ dim (G/T )
c1(LM )

6
(5.22)

The determination of the phase coming from the double bracket symbol
is presented between (5.26) and (5.27) in [7]. As one can see there that
calculation is done for each line V bundle Li independently and does not
depend on φ consequently (5.27) there immediately goes over to

2
∑

α>0

∑

n≥0

∑

±

((
nbi
ai

))
.

1

(2πn± iα(φ+ φB))s

= −2 dim (G/T ) s(bi, ai) +O(s)

without change.
Collecting all the contributions including one from the T valued fields

we have (mod 4Z)

η(0) =
∑

α>0

(
c1(LM )

2π2
α(φ)2 −

2c1(Vα)

π
iα(φ) +

2i

π
α(φ)α(n0)

)

+
∑

α>0

2

π

N∑

i=1

biri
ai

(
iα(φ)α(ni)− πriα(ni)

2
)

+ dimG

(
c1(LM )

6
− 2

N∑

i=1

s(bi, ai)

)
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so that we have finally determined the phase to be

−
iπ

2
η(0) = 4πiΦ(LM )−

icg
4π
c1(LM ) Tr (φ2) +

icg
2π

∫

Σ
TrφFA

+ cgTr (φn0) + icg

N∑

i=1

biri
ai

Tr
(
−iφni + πrin

2
i

)
(5.23)

The term
∫
ΣTrφFA should not really be considered as we have already

taken φ constant and all the non-trivial bundle structure resides in the
background fields. This is unlike previous works on abelianisation where∫
Σ FA ̸= 0. However, thinking of the gauge field A in (4.22) as a background
field, for the purposes of this calculation, then we indeed get the appropriate
shift in k for this term too.

5.3. The partion function

The net effect of the phase is to give us the famous shift k → kg = k + cg as
well as the framing term

(5.24) Φ(LM ) = −
dimG

48

(
c1(LM )− 12

N∑

i=1

s(bi, ai)

)

Consequently the partition function becomes

ZCS =
∑

n0∈Z

(
N∏

i=1

ai−1∑

ni=1

)∫

t

dφ
√
TM (φ; ni) . exp (4πiΦ(LM ) + ikgI(φ,n))

(5.25)

There is still a large symmetry available to us. The first Chern class is
a rational number so we set3 c1(LM ) = d/P where P = a1 . . . aN

(5.26) φ→ φ− 2πP s, n0 → n0 + ds

Just as in [7] (2.4) one may use this symmetry to write the partition function
in various forms. To write the partition function completely as a sum one
only needs to note that using the symmetry we may constrain the φ integrals

3We are not claiming that there exists an L0 for which LM is the d’th tensor
power.
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to lie between zero and 2πP while performing the sum over n0 sets

(5.27) φ = 2πn/kg

Note that if c1(LM ) = 0, there is still the symmetry one must set d = 0.
On setting φ to be as in (5.27) then every occurrance of the product biri

in the exponential in (5.25) can be taken to be unity thanks to an argument
we have used a number of times. With this substitution understood then
these formulae agree well (up to an overall factor, which can be determined)
with [10, 11, 21].

6. Odds and ends

It might seem that the introduction of the background fields changes the
fibre Wilson loop observables that we are able to evaluate. However, this
is not the case. Depending over which open set Ui we are the observable
becomes, on abelianisation and noting that φ is gauge fixed to be constant
on the fibre,

TrR

(
P exp

(∮
κ(φ+ φB)

))
= TrR (exp (φ+ 2πb∗ini))

= TrR (exp (φ))(6.1)

This shows us that for such loops it is not important which smooth point
on the base they go through in the fibration S1 →M → ΣV . To evaluate
the expectation value of products of such knots one may simply insert the
appropriate operators with representations in (5.25).

As explained in [2] and developed in detail for complex Chern Simons
theory in [8] one can use different Seifert representations of the same mani-
fold to obtain the invariants of different knots.

The same arguments that we have given apply to other theories such as
BF theory and Chern Simons theory with a complex gauge group.
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