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We apply the recent proposal for mirrors of nonabelian (2,2) su-
persymmetric two-dimensional gauge theories to make predictions
for two-dimensional supersymmetric gauge theories with excep-
tional gauge groups G2, F4, E6, E7, and E8. We compute the
mirror Landau-Ginzburg models and predict excluded Coulomb
loci and Coulomb branch relations (quantum cohomology). We
also discuss the relationship between weight lattice normalizations
and theta angle periodicities in the proposal, and explore differ-
ent conventions for the mirrors. Finally, we discuss the behavior
of pure gauge theories with exceptional gauge groups under RG
flow, and describe evidence that any pure supersymmetric two-
dimensional gauge theory with connected and simply-connected
semisimple gauge group flows in the IR to a free theory of as many
twisted chiral superfields as the rank of the gauge group, extending
previous results for SU , SO, and Sp gauge theories.
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1. Introduction

Mirror symmetry is a well-known duality of string theory, whose original
form has been extended in a variety of ways. For two-dimensional abelian
gauged linear sigma models, constructive proofs and various aspects thereof
were described in [1, 2]. In particular, the paper [1] gave an explicit con-
struction of a Landau-Ginzburg model mirror to many abelian gauged linear
sigma models. However, one open problem for many years has been to find
an analogous construction for two-dimensional supersymmetric nonabelian
gauged linear sigma models.

Recently, a proposal was made in [3] for mirrors to two-dimensional su-
persymmetric nonabelian gauge theories. Specifically, it gave a construction
of Landau-Ginzburg orbifolds for supersymmetric nonabelian gauge theo-
ries. That work checked the proposal against a wide variety of results for
two-dimensional theories with classical gauge groups. To further develop
the underlying machinery, in this paper we will apply the proposed mir-
ror construction of [3] to two-dimensional supersymmetric nonabelian gauge
theories with the exceptional gauge groups G2, F4, E6,7,8, to make predic-
tions for excluded loci and Coulomb branch relations (analogues of quantum
cohomology relations).

Working through these computations will also allow us to explore some
properties of those mirror superpotentials, which take the form

W =

r
∑

a=1

σa





N
∑

i=1

ρai Yi −
n−r
∑

µ̃=1

αa
µ̃ lnXµ̃ − ta



(1.1)

+

N
∑

i=1

exp (−Yi) +

n−r
∑

µ̃=1

Xµ̃.

In the expression above, ρai are components of weight vectors for matter
representations of the original gauge theory, and αa

µ̃ are root vectors (here
taken to form a sublattice of the weight lattice). As described in [3], the σs
encode theta angles in the Cartan subalgebra of the original gauge theory,
and have periodicities reflecting the weight lattice, or at least the sublattice
generated by the matter representations. However, the weight lattice need
not be normalized in the same way as a charge lattice. It is always possible
to find a basis for the weight lattice (in terms of fundamental weights) so
that the coefficients in the σ terms are all integers, reflecting 2π theta angle
periodicities and standard charge lattice conventions, but one can also con-
sistently work in other bases as well. For the case of G2 gauge theories, we
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will use a naive basis which results in nonstandard theta angle periodicities
and charge lattices. For F4, we explain in detail how to use instead a basis
of fundamental weights, which results in standard theta angle periodicities
and charge lattice normalizations, and we will use that convention for all of
the other gauge theories discussed in this paper (except G2, which we retain
as an illustrative example).

In each case, we shall also study the mirror to the pure gauge theory, to
follow up observations in [4]. In particular, [4] argued that two-dimensional
pure (2,2) supersymmetric SU(k) gauge theories flow in the IR to a free
theory of k − 1 twisted chiral multiplets, which [3] checked at the level of
topological field theory computations and extended to SO(n) theories with
discrete theta angles and to Sp(k) gauge theories. In each case, for one dis-
crete theta angle, evidence in TFT computations was given that the theory
flowed to a pure gauge theory of as many twisted chiral multiplets as the
rank of the gauge group. We shall check the analogous claim for pure gauge
theories with exceptional gauge groups in this paper, at the level of topo-
logical field theory computations, and will find evidence for the same result
– that the pure gauge theories (for simply-connected gauge groups) flow in
the IR to a theory of as many twisted chiral multiplets as the rank of the
gauge group.

Combining the results of this paper with those in [3], a simple conjecture
emerges: a pure two-dimensional (2,2) supersymmetric gauge theory with
connected and simply-connected semisimple gauge group flows in the IR to
a free theory of as many twisted chiral superfields as the rank of the gauge
group. A check of this conjecture for Spin gauge theories can be derived from
the results for SO gauge theories in [3]. Now, SO groups are not simply-
connected; however, we can apply two-dimensional decomposition [5, 6] and
the results for SO theories with various discrete theta angles to argue that
a pure Spin gauge theory flows in the IR to a free theory of as many twisted
chiral superfields as the rank. Combined with the results in this paper for1

pure two-dimensional supersymmetric G2, F4, and E6,7,8 gauge theories, we
have the conjecture above.

We begin in Section 2 by reviewing the nonabelian mirror proposal of
[3], which will be applied in this paper to theories with exceptional gauge
groups. In Section 3 we compute the mirror Landau-Ginzburg orbifold of G2

1G2, F4, and E8 have no center, but E6 has center Z3 and E7 has center Z2, so
for those groups we must specify the simply-connected cover. See [8, appendix A]
for further details on centers.
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gauge theories with matter in copies of the fundamental 7 dimensional rep-
resentation. In Section 4 we compute the mirror Landau-Ginzburg orbifold
of F4 gauge theories with matter in copies of the fundamental 26 repre-
sentation. In Section 5, we compute the mirror Landau-Ginzburg orbifold
of E6 with matter in copies of the 27 representation. In Sections 6, 7 we
perform the same analysis for E7 and E8 with matter fields in copies of the
56 representation of E7 and 248 of E8.

In the published version of this paper, we have omitted a number of
extremely lengthy expressions for superpotentials and ring relations from
the analyses of E6,7,8 gauge theories, which are straightforward to derive
using the same methods as for G2 and F4 gauge theories. Those expressions
can be found in the online version of this article, at [7].

2. Brief review of the nonabelian mirror proposal

The nonabelian mirror proposal of [3] is a generalization of the abelian
duality described in [1] (see also [2]). It takes the following form. For an A-
twisted two-dimensional (2,2) supersymmetric gauge theory with connected
gauge group G, the mirror is a B-twisted Landau-Ginzburg orbifold, defined
by (twisted) chiral multiplets

• Yi, corresponding to the N matter fields of the original gauge theory,

• Xµ̃, corresponding to nonzero roots µ̃ of the Lie algebra g of G, of
dimension n,

• σa = D+D−Va, as many as the rank r of G, corresponding to a choice
of Cartan subalgebra of g, the Lie algebra of G,

with superpotential

W =

r
∑

a=1

σa





N
∑

i=1

ρai Yi −
n−r
∑

µ̃=1

αa
µ̃ lnXµ̃ − ta



(2.1)

+

N
∑

i=1

exp (−Yi) +

n−r
∑

µ̃=1

Xµ̃ −
∑

i

m̃iYi,

In the expression above, the ρai are components of weight vectors for the
matter representations appearing in the original gauge theory, and αa

µ̃ are
components of nonzero roots (here viewed as defining a sublattice of the
weight lattice). (Also, sometimes one uses Z = − lnX for simplicity.) The ta
are constants, corresponding to Fayet-Iliopoulos parameters of the original
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gauge theory, and the m̃i are twisted masses in the original gauge theory. One
then orbifolds by the Weyl group, which acts naturally on all the fields above,
and leaves the superpotential invariant. The expression above was written for
A-twisted gauge theories without a superpotential, but can be generalized
to mirrors of gauge theories with superpotentials by assigning suitable R-
charges and changing the fundamental fields accordingly, as explained in [3].

In the analysis of this theory, it was argued that some loci are dynami-
cally excluded – specifically, loci where any Xµ̃ vanishes. These loci turn out
to reproduce excluded loci on Coulomb branches of the original gauge the-
ories. Furthermore, critical loci of the superpotential above obey relations
which correspond to relations in the OPE ring of the original A-twisted
gauge theory. For gauge theories with U(1) factors in G, one has continu-
ous Fayet-Iliopoulos parameters, so one can speak of weak coupling limits,
and those OPE relations are known as quantum cohomology relations. In
cases in which G has no U(1) factors, so that there are no continuous Fayet-
Iliopoulos parameters, there is no weak coupling limit, and so referring to
such relations as ‘quantum cohomology’ relations is somewhat misleading.
In such cases, we refer to the relations as defining the Coulomb ring or
Coulomb branch ring.

The work [3] checked the predictions of this proposal for excluded loci
and Coulomb branch and quantum cohomology relations against known re-
sults for two-dimensional gauge theories in e.g. [9–12], and gave general ar-
guments for why correlation functions in this B-twisted theory should match
correlation functions in corresponding A-twisted gauge theories, such as in
e.g. [13–15]. It also studied mirrors to pure gauge theories, to test and refine
predictions for IR behavior described in [4]. In this paper, we will apply
this mirror construction to make predictions for two-dimensional (2,2) su-
persymmetric gauge theories with exceptional gauge groups. To make all of
these comparisons, the paper [3] utilized the following operator mirror map:

exp(−Yi) = −m̃i +

r
∑

a=1

σaρ
a
i ,(2.2)

Xµ̃ =

r
∑

a=1

σaα
a
µ̃,(2.3)

which we shall also use in this paper.
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3. G2

In this section we will consider the mirror Landau-Ginzburg orbifold of G2

gauge theory with matter fields in copies of the 7 representation, and then
we compute quantum cohomology ring.

3.1. Mirror Landau-Ginzburg orbifold

The mirror Landau-Ginzburg model has fields

• Yiβ , i ∈ {1, . . . , n}, β ∈ {0, . . . , 6}, corresponding to the matter fields
in n copies of the 7 of G2,

• Xm, X̃m, m ∈ {1, . . . , 6}, corresponding to the short, respectively long
roots of G2,

• σa, a ∈ {1, 2}.

We associate the roots and weights to fields as listed in Table 1 and
Figures 1, 2.

Field Short root Field Long root Field Weight

X1 (1, 0) X̃1 (−3/2,
√
3/2) Yi1 (1, 0)

X2 (−1, 0) X̃2 (3/2,−
√
3/2) Yi2 (−1, 0)

X3 (1/2,
√
3/2) X̃3 (3/2,

√
3/2) Yi3 (1/2,

√
3/2)

X4 (−1/2,−
√
3/2) X̃4 (−3/2,−

√
3/2) Yi4 (−1/2,−

√
3/2)

X5 (−1/2,
√
3/2) X̃5 (0,

√
3) Yi5 (−1/2,

√
3/2)

X6 (1/2,−
√
3/2) X̃6 (0,−

√
3) Yi6 (1/2,−

√
3/2)

Yi0 (0, 0)

Table 1: Roots and weights for G2 and associated fields.

The mirror superpotential takes the form

W = σ1

(

∑

i

(Yi1 − Yi2 + (1/2)Yi3 − (1/2)Yi4 − (1/2)Yi5 + (1/2)Yi6)(3.1)

+ (Z1 − Z2 + (1/2)Z3 − (1/2)Z4 − (1/2)Z5 + (1/2)Z6)

+
(

−(3/2)Z̃1 + (3/2)Z̃2 + (3/2)Z̃3 − (3/2)Z̃4

)

)

+
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+ σ2

(

(
√
3/2)

∑

i

(Yi3 − Yi4 + Yi5 − Yi6) + (
√
3/2) (Z3 − Z4 + Z5 − Z6)

+ (
√
3/2)

(

Z̃1 − Z̃2 + Z̃3 − Z̃4 + 2Z̃5 − 2Z̃6

)

)

+
∑

i

6
∑

α=0

exp (−Yiα) +

6
∑

m=1

Xm +

6
∑

m=1

X̃m −
∑

i,α

m̃iYiα,

where Xm = exp(−Zm), X̃m = exp(−Z̃m), with Xm, X̃m the fundamental
fields and m̃i are the twisted masses.

X1X2

X̃5

X̃6

X̃3X3X5X̃1

X̃4 X4 X6 X̃2

Figure 1: Roots of G2.

The logic of the assignments above is that Xodd, X̃odd correspond to
positive roots, Xeven, X̃even correspond to their opposites, and the weight
vectors are associated to matter fields similarly. We follow the conventions
of [16, chapter 22]: short roots are given by

(±1, 0), ±(+1/2,
√
3/2), ±(−1/2,

√
3/2),

long roots are given by

±(−3/2,
√
3/2), ±(+3/2,

√
3/2), ±(0,

√
3),
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Yi1Yi2

Yi3Yi5

Yi4 Yi6

Yi0

Figure 2: Weights of 7 of G2.

and the weights of the 7 are given by

±(1, 0), ±(1/2,
√
3/2),±(−1/2,

√
3/2), (0, 0).

Before moving on, there is an important subtlety in the expression for
the mirror superpotential above, involving the theta angle periodicities. As
described in [3], the factors multiplied by σs are not single-valued, reflecting
the fact that the σ terms encode theta angles in the abelian subgroup de-
termined by the choice of Cartan subgroup of the original gauge group. The
periodicities2 of these theta angles are determined by 2π times the weight
lattice, or at least the sublattice generated by the matter representations.
However, the weight lattice need not be normalized in the same way as
a charge lattice. For example, in our conventions for the weight lattice of
G2 above, the σ1 terms determine a theta angle periodicity of 2π/2 = π
rather than 2π, and the σ2 terms determine a theta angle periodicity of
(
√
3/2)(2π) =

√
3π rather than 2π.

Now, on the one hand, the normalization of the charge lattice is ulti-
mately a convention, and so long as one is consistent, one can work with
alternative conventions. On the other hand, it is also often helpful to work
with standard conventions.

For the case of G2, we shall use the normalization above, hence a non-
standard charge lattice normalization. However, it is always possible to ro-
tate to a conventional charge lattice normalization by writing the weights

2On a noncompact worldsheet, the theta angles generate electric fields with peri-
odicities determined by the matter representations – as theta increases, the electric
field density eventually becomes strong enough to allow pair creation of matter
fields.



✐

✐

“3-Sharpe” — 2020/5/16 — 23:12 — page 75 — #9
✐

✐

✐

✐

✐

✐

Two-dimensional supersymmetric gauge theories 75

in a basis of fundamental weights, for which any other weight is an integer
linear combination. In terms of that mathematical basis, the theta angle pe-
riodicities determined by σs are all 2π, reflecting a standard charge lattice
normalization. We will discuss this alternative basis in more detail for F4,
and in fact will use that alternative basis (and standard charge normaliza-
tion) to study all the other gauge theories in this paper, after G2. We study
G2 in nonstandard conventions for illustrative purposes.

3.2. Weyl group

Now, let us explicitly describe the action of the Weyl group on the fields of
this theory and outline explicitly why the superpotential is invariant in this
case. (General arguments appeared in [3], but as the Weyl group action is
more complicated here than in the examples in that paper, a more detailed
verification seems in order.)

For any root α, recall that the Weyl group reflection generated by α acts
on a weight µ as follows:

(3.2) µ 7→ µ− 2(α · µ)
α2

α.

For example, for the Weyl reflection generated by α = (1, 0), it is straight-
forward to compute that the group action on fields corresponding to roots
is given by

X1 ↔ X2, X3 ↔ X5, X4 ↔ X6,(3.3)

X̃1 ↔ X̃3, X̃2 ↔ X̃4,(3.4)

and X̃5,6 are invariant. The action on matter fields is

(3.5) Yi1 ↔ Yi2, Yi3 ↔ Yi5, Yi4 ↔ Yi6,

with Yi7 invariant. This is just a reflection about the y axis, which multiplies
the first coordinate by −1 but leaves the second invariant. It is straightfor-
ward to check that the superpotential will be invariant under this reflection
so long as

(3.6) σ1 ↔ −σ1,

and σ2 is invariant.
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For another example, for Weyl reflections generated by α = (3/2,
√
3/2),

it is straightforward to compute that the group action on fields corresponding
to roots is given by

(3.7) X1 ↔ X4, X2 ↔ X3,

with X5,6 invariant, and

(3.8) X̃1 ↔ X̃5, X̃2 ↔ X̃6, X̃3 ↔ X̃4.

The action on matter fields is the same as on the mirrors to the short roots:

(3.9) Yi1 ↔ Yi4, Yi2 ↔ Yi3,

with Yi5, Yi6 invariant. The σa fields are similarly rotated:

σ1 7→ −1

2
σ1 −

√
3

2
σ2,

σ2 7→ −
√
3

2
σ1 +

1

2
σ2.

(Note that if we describe the action above as mapping ~σ 7→ A~σ for a 2× 2
matrix A, then for the choice of A implicit above, it is straightforward to
check A = A−1.) It is straightforward to check that the superpotential is
invariant under the action above. For example, the terms

σ1 (Z1 − Z2 + (1/2)Z3 − (1/2)Z4 − (1/2)Z5 + (1/2)Z6)

+ σ2(
√
3/2) (Z3 − Z4 + Z5 − Z6)

7→
(

−(1/2)σ1 − (
√
3/2)σ2

)

× (Z4 − Z3 + (1/2)Z2 − (1/2)Z1 − (1/2)Z5 + (1/2)Z6)

+
(

−(
√
3/2)σ1 + (1/2)σ2

)

(
√
3/2) (Z2 − Z1 + Z5 − Z6) ,

which is easily checked to be the same as the starting point,

σ1 (Z1 − Z2 + (1/2)Z3 − (1/2)Z4 − (1/2)Z5 + (1/2)Z6)

+ σ2(
√
3/2) (Z3 − Z4 + Z5 − Z6) .

Similar statements are true of other terms, and so the superpotential is
preserved.
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To be thorough, we will consider one more example of a Weyl group
action, this time a reflection defined by a short root, specifically α =
(1/2,

√
3/2). It is straightforward to compute that the group action on fields

corresponding to roots is given by

(3.10) X1 ↔ X6, X2 ↔ X5, X3 ↔ X4,

and

(3.11) X̃3 ↔ X̃6, X̃4 ↔ X̃5,

with X̃1,2 invariant. The action on the matter fields is the same as on the
mirrors to the short roots:

(3.12) Yi1 ↔ Yi6, Yi2 ↔ Yi5, Yi3 ↔ Yi4.

This is another reflection about the axis pass through X5 and X6. The σa
fields are similarly rotated:

σ1 7→
1

2
σ1 −

√
3

2
σ2,

σ2 7→ −
√
3

2
σ1 −

1

2
σ2.

It is straightforward to check that the superpotential is invariant.

3.3. Coulomb ring relations

Integrating out the sigma fields in the superpotential (3.1), we obtain two
constraints:

∑

i

(2Yi1 − 2Yi2 + Yi3 − Yi4 − Yi5 + Yi6)

+ (2Z1 − 2Z2 + Z3 − Z4 − Z5 + Z6)

+
(

−3Z̃1 + 3Z̃2 + 3Z̃3 − 3Z̃4

)

= 0,
∑

i

(Yi3 − Yi4 + Yi5 − Yi6) + (Z3 − Z4 + Z5 − Z6)

+
(

Z̃1 − Z̃2 + Z̃3 − Z̃4 + 2Z̃5 − 2Z̃6

)

= 0.
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With the two constraints above, we are free to eliminant two fundamental
fields, which we will take to be Yn3 and Yn6:

−Yn3 =

n
∑

i=1

(Yi1 − Yi2 − Yi4) +

n−1
∑

i=1

Yi3 + (Z1 − Z2 + Z3 − Z4)

+
(

−Z̃1 + Z̃2 + 2Z̃3 − 2Z̃4 + Z̃5 − Z̃6

)

,

−Yn3 =

n
∑

i=1

(Yi1 − Yi2 − Yi5) +

n−1
∑

i=1

Yi6 + (Z1 − Z2 − Z5 + Z6)

+
(

−2Z̃1 + 2Z̃2 + Z̃3 − Z̃4 − Z̃5 + Z̃6

)

.

For convenience, let’s define:

Π3 ≡ exp (−Yn3) ,(3.13)

=

n
∏

i=1

exp (Yi1 − Yi2 − Yi4)

n−1
∏

i=1

exp (Yi3)
X2X4

X1X3

X̃1X̃
2
4 X̃6

X̃2X̃2
3 X̃5

,

Π6 ≡ exp (−Yn6) ,(3.14)

=

n
∏

i=1

exp (Yi1 − Yi2 − Yi5)

n−1
∏

i=1

exp (Yi6)
X2X5

X1X6

X̃2
1 X̃4X̃5

X̃2
2 X̃3X̃6

.

Then, the superpotential (3.1) reduces to

W =

n
∑

i=1

[

exp (−Yi0) + exp (−Yi1) + exp (−Yi2) + exp (−Yi4) + exp (−Yi5)
]

+

n−1
∑

i=1

[

exp (−Yi3) + exp (−Yi6)
]

+Π3 +Π6 +

6
∑

m=1

(

Xm + X̃m

)

−
n
∑

i=1

m̃i (Yi0 + Yi1 + Yi2 + Yi4 + Yi5)

−
n−1
∑

i=1

m̃i (Yi3 + Yi6) + m̃n(lnΠ3 + lnΠ6).
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Notice that the superpotential has poles at X1 6= 0, X3 6= 0, X6 6= 0, X̃2 6= 0,
X̃3 6= 0, X̃5 6= 0 and X̃6 6= 0. With the mirror maps,

(3.15)

exp(−Yiβ) = −m̃i +
∑

a=1,2

σaρ
a
iβ ,

Xm =
∑

a=1,2

σaα
a
m, X̃m =

∑

a=1,2

σaα̃
a
m,

one can get the excluded loci:

σ1σ2(σ
2
1 − 3σ2

2)(3σ
2
1 − σ2

2) 6= 0,(3.16)

∏

i

(−mi + σ1)(−mi − σ1)

(

−mi +
1

2
σ1 +

√
3

2
σ2

)

(3.17)

×
(

−mi −
1

2
σ1 −

√
3

2
σ2

)(

−mi −
1

2
σ1 +

√
3

2
σ2

)

×
(

−mi +
1

2
σ1 −

√
3

2
σ2

)

6= 0.

The critical locus is given by

∂W

∂Yi0
: exp (−Yi0) = −m̃i, for i = 1, . . . , n,

∂W

∂Yi1
: exp (−Yi1) = Π3 +Π6 − m̃i + 2m̃n, for i = 1, . . . , n,

∂W

∂Yi2
: exp (−Yi2) = −Π3 −Π6 − m̃i − 2m̃n, for i = 1, . . . , n,

∂W

∂Yi3
: exp (−Yi3) = Π3 − m̃i + m̃n, for i = 1, . . . , n− 1,

∂W

∂Yi4
: exp (−Yi4) = −Π3 − m̃i − m̃n, for i = 1, . . . , n,

∂W

∂Yi5
: exp (−Yi5) = −Π6 − m̃i − m̃n, for i = 1, . . . , n,

∂W

∂Yi6
: exp (−Yi6) = Π6 − m̃i + m̃n, for i = 1, . . . , n− 1,

∂W

∂X1

: X1 = Π3 +Π6 + 2m̃n,

∂W

∂X2

: X2 = −Π3 −Π6 − 2m̃n,
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∂W

∂X3

: X3 = Π3 + m̃n,

∂W

∂X4

: X4 = −Π3 − m̃n,

∂W

∂X5

: X5 = −Π6 − m̃n,

∂W

∂X6

: X6 = Π6 + m̃n,

∂W

∂X̃1

: X̃1 = −Π3 − 2Π6 − 3m̃n,

∂W

∂X̃2

: X̃2 = Π3 + 2Π6 + 3m̃n,

∂W

∂X̃3

: X̃3 = 2Π3 +Π6 + 3m̃n,

∂W

∂X̃4

: X̃4 = −2Π3 −Π6 − 3m̃n,

∂W

∂X̃5

: X̃5 = Π3 −Π6,

∂W

∂X̃6

: X̃6 = −Π3 +Π6,

Plug the above equations back to (3.13), (3.14), one obtains the Coulomb
branch relations:

Π3 =

n−1
∏

i=1

(Π3 − m̃i + m̃n)
−1

n
∏

i=1

(Π3 +Π6 − m̃i + 2m̃n)
−1(3.18)

× (−Π3 −Π6 − m̃i − 2m̃n)(−Π3 − m̃i − m̃n),

Π6 =

n−1
∏

i=1

(Π6 − m̃i + m̃n)
−1

n
∏

i=1

(Π3 +Π6 − m̃i + 2m̃n)
−1(3.19)

× (−Π3 −Π6 − m̃i − 2m̃n)(−Π6 − m̃i − m̃n).

With the mirror map (3.15), on the critical locus relations, one finds

Π3 =
1

2
σ1 +

√
3

2
σ2 − m̃n, Π6 =

1

2
σ1 −

√
3

2
σ2 − m̃n.
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Plugging them back in, one obtains the Coulomb (quantum cohomology)
ring relations for G2,

n
∏

i=1

(−σ1 − m̃i)

(

−1

2
σ1 −

√
3

2
σ2 − m̃i

)

(3.20)

=

n
∏

i=1

(σ1 − m̃i)

(

1

2
σ1 +

√
3

2
σ2 − m̃i

)

,

n
∏

i=1

(−σ1 − m̃i)

(

−1

2
σ1 +

√
3

2
σ2 − m̃i

)

(3.21)

=

n
∏

i=1

(σ1 − m̃i)

(

1

2
σ1 −

√
3

2
σ2 − m̃i

)

.

Combining the above two relations, one gets

n
∏

i=1

(−σ1 − m̃i)
2

(

−1

2
σ1 −

√
3

2
σ2 − m̃i

)(

−1

2
σ1 +

√
3

2
σ2 − m̃i

)

(3.22)

=

n
∏

i=1

(σ1 − m̃i)
2

(

1

2
σ1 +

√
3

2
σ2 − m̃i

)(

1

2
σ1 −

√
3

2
σ2 − m̃i

)

,

n
∏

i=1

(

1

2
σ1 +

√
3

2
σ2 − m̃i

)(

−1

2
σ1 +

√
3

2
σ2 − m̃i

)

(3.23)

=

n
∏

i=1

(

−1

2
σ1 −

√
3

2
σ2 − m̃i

)(

1

2
σ1 −

√
3

2
σ2 − m̃i

)

.

3.4. Vacua

In this section, we will count the number of vacua in cases with small num-
bers n of fundamental fields. To solve the Coulomb branch (quantum co-
homology) relations (3.20), (3.21) in general is not easy. However, since the
superpotential is invariant under the Weyl group, the Coulomb ring rela-
tions (3.20), (3.21) will be covariant under the Weyl group action, which we
check explicitly.

The Weyl group of G2 is the dihedral group D12 of degree 6 and order
12, which can be described as [17, Section 7]

D12 =
{

aixj | a6 = 1 = x2, xax = a−1
}

.
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(See e.g. [17, Section 47] for a discussion of representations of the dihedral
groups.) Among the twelve elements of the Weyl group, there are six reflec-
tions, and below we list group elements and the field corresponding to the
root about which the reflection takes place:

X1 ↔ a3x, X3 ↔ a5x, X5 ↔ ax,

X̃1 ↔ a2x, X̃3 ↔ a4x, X̃5 ↔ x.

Notice that the reflections are also generated by the Weyl group reflec-
tion (3.2) and we denote the reflection matrices by the fields correspond
to the positive simple roots. There are also five nontrivial rotations, corre-
sponding to 〈a〉 ⊂ D12.

Now we can start to solve for the vacua (solutions of the Coulomb ring
relations (3.20), (3.21)) begining with the case of small number of funda-
mental matter fields.

• n = 1, the only solution is σ1 = σ2 = 0 and it is excluded by the con-
straints (3.16), (3.17),

• n = 2, there are seven solutions but all of them are excluded by the
constraints (3.16), (3.17),

• n = 3, there are ninteen solutions but all of them are excluded by the
constraints (3.16), (3.17).

Starting with the case n = 4, we begin to obtain non-trivial solutions.
First, let us analyze the case of n = 4 in detail. For simplicity, from now on,
we will take mi = mj = m, ∀i 6= j and will rescale the σi fields to σi = σi/m.
There are thirty-seven solutions in total and twelve of them are true vacua
(meaning, not on the excluded locus):

i = 1, . . . , 4, si =

{

σ1 = ±i
√
5, σ2 = ±i

√
3

}

,

i = 5, . . . , 8, si =







σ1 = ±i

√

7

2
− 3

√
5

2
, σ2 = ±i

√

3

2
(3 +

√
5)







,

i = 9, . . . , 12, si =







σ1 = ±i

√

7

2
+

3
√
5

2
, σ2 = ±i

√

3

2
(3−

√
5)







.
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e X1 X3 X5 X̃1 X̃3 X̃5 a5 a4 a3 a2 a1

1 1 3 8 9 5 12 2 7 11 4 6 10
2 2 4 10 7 11 6 1 9 5 3 12 8
3 3 1 11 6 10 7 4 12 8 2 9 5
4 4 2 5 12 8 9 3 6 10 1 7 11
5 5 7 4 10 1 11 6 3 12 8 2 9
6 6 8 9 3 12 2 5 10 1 7 11 4
7 7 5 12 2 9 3 8 11 4 6 10 1
8 8 6 1 11 4 10 7 2 9 5 3 12
9 9 11 6 1 7 4 10 5 3 12 8 2
10 10 12 2 5 3 8 9 1 7 11 4 6
11 11 9 3 8 2 5 12 4 6 10 1 7
12 12 10 7 4 6 1 11 8 2 9 5 3

Table 2: Weyl group actions on the vacua of the case n = 4.

Signs are assigned in each group of four solutions in the order {−,−}, {−,+},
{+,−}, {+,+}. For example,

X1 = {σ1 = −i
√
5, σ2 = −i

√
3}, X2 = {σ1 = −i

√
5, σ2 = +i

√
3},

X3 = {σ1 = +i
√
5, σ2 = −i

√
3}, X4 = {σ1 = +i

√
5, σ2 = +i

√
3}.

Under the Weyl group actions, the solutions transform as in Table 2.3 One
can see that the twelve vacua are covariant and form one Weyl orbit under
the Weyl group action.

When there are five fundamental matter multiplets, there are sixty-one
solutions and twenty-four of them are non-trivial. Following the same con-
ventions, those non-trivial vacua are

i = 1, . . . , 4, si =

{

σ1 = ±i

√

5− 6√
5
, σ2 = ±i

√

3− 6√
5

}

,

i = 5, . . . , 8, si =

{

σ1 = ±i

√

5 +
6√
5
, σ2 = ±i

√

3 +
6√
5

}

,

3Note that the Weyl group acts on σs by the inverse of the group elements. In
the table, we denote the action by the original group elements instead of the inverse
of the elements. Table 3 adopts the same notation.
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i = 9, . . . , 12, si =

{

σ1 = ±i

√

(1/10)(35 + 12
√
5 + 3(185 + 80

√
5)1/2,

σ2 = ±i

√

(3/10)(15 + 4
√
5− (185 + 80

√
5)1/2

}

,

i = 13, . . . , 16, si =

{

σ1 = ±i

√

(1/10)(35 + 12
√
5− 3(185 + 80

√
5)1/2,

σ2 = ±i

√

(3/10)(15 + 4
√
5 + (185 + 80

√
5)1/2

}

,

i = 17, . . . , 20, si =

{

σ1 = ±i

√

(1/10)(35− 12
√
5 + 3(185 + 80

√
5)1/2,

σ2 = ±i

√

(3/10)(15− 4
√
5− (185 + 80

√
5)1/2

}

,

i = 21, . . . , 24, si =

{

σ1 = ±i

√

(1/10)(−35 + 12
√
5 + 3(185 + 80

√
5)1/2,

σ2 = ±i

√

(3/10)(15− 4
√
5 + (185 + 80

√
5)1/2

}

.

The vacua form two Weyl orbits, each of which contains twelve elements.
The first orbit consists of the first through fourth solutions, the seventeenth
through twentieth solutions, and the twenty-first through twenty-fourth so-
lutions. The rest of the solutions form the second Weyl orbit. We summarize
the results for the Weyl group actions in Table 3.

We checked one more case, n = 6. In this case, there are ninety-one
solutions in total, of which forty-eight solutions are not on the excluded
locus. As expected, these vacua form four Weyl orbits under the Weyl group
action and each orbit contain twelve vacua. The solutions in this case are
much more complicated, and so we do not list them explicitly.

3.5. Pure gauge theory

In this section, we will check (at the level of topological field theory com-
putations) that the pure G2 theory flows in the IR to a free theory of two
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e X1 X3 X5 X̃1 X̃3 X̃5 a5 a4 a3 a2 a1
1 1 3 22 17 23 20 2 21 19 4 24 18
2 2 4 18 21 19 24 1 17 23 3 20 22
3 3 1 19 24 18 21 4 20 22 2 17 23
4 4 2 23 20 22 17 3 24 18 1 21 19
17 17 19 24 1 21 4 18 23 3 20 22 2
18 18 20 2 23 3 22 17 1 21 19 4 24
19 19 17 3 22 2 23 20 4 24 18 1 21
20 20 18 21 4 24 1 19 22 2 17 23 3
21 21 23 20 2 17 3 22 19 4 24 18 1
22 22 24 1 19 4 18 21 2 17 23 3 20
23 23 21 4 18 1 19 24 3 20 22 2 17
24 24 22 17 3 20 2 23 18 1 21 19 4
5 5 7 16 9 13 12 6 15 11 8 14 10
6 6 8 10 15 11 14 5 9 13 7 12 16
7 7 5 11 14 10 15 8 12 16 6 9 13
8 8 6 13 12 16 9 7 14 10 5 15 11
9 9 11 14 5 15 8 10 13 7 12 16 6
10 10 12 6 13 7 16 9 5 15 11 8 14
11 11 9 7 16 6 13 12 8 14 10 5 15
12 12 10 15 8 14 5 11 16 6 9 13 7
13 13 15 8 10 5 11 14 7 12 16 6 9
14 14 16 9 7 12 6 13 10 5 15 11 8
15 15 13 12 6 9 7 16 11 8 14 10 5
16 16 14 5 11 8 10 15 6 9 13 7 12

Table 3: Weyl group actions on the vacua of five fundamental matter mul-
tiplets.

chiral multiplets. The superpotential of the pure gauge theory is

W =

2
∑

a=1

σa

(

αa
mZm + α̃a

mZ̃m

)

+
∑

m

(Xm + X̃m),

= σ1

[

(

Z1 − Z2 + (1/2)Z3 − (1/2)Z4 − (1/2)Z5 + (1/2)Z6

)

+
(

− (3/2)Z̃1 + (3/2)Z̃2 + (3/2)Z̃3 − (3/2)Z̃4

)

]

+ σ2(
√
3/2)

(

Z3 − Z4 + Z5 − Z6 + Z̃1 − Z̃2 + Z̃3 − Z̃4 + 2Z̃5 − 2Z̃6

)

+

6
∑

m=1

(Xm + X̃m).
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Integrating out Xm and X̃m, one obtains the constraints,

Xm =
∑

a

σaα
a
m, X̃m =

∑

a

σα̃a
m.

The point is that all the Xm fields and X̃m fields correspond to the nonzero
roots of G2 which come in pairs, positive roots and their negatives. As a
result, pluging the constraints above back into the superpoential, one gets
W = 0. Therefore, the pure gauge theory indeed flows to a free theory of
two twisted chiral multiplies in the IR limit.

On the other hand, integrating out σ1 and σ2, one obtains the con-
straints,

− lnX1 + lnX2 − (1/2) lnX3 + (1/2) lnX4 + (1/2) lnX5 − (1/2) lnX6

+ (3/2) ln X̃1 − (3/2) ln X̃2 − (3/2)X̃4 + (3/2)X̃4 = 0,

−
√
3

2
(lnX3 − lnX4 + lnX5 − lnX6)

−
√
3

2
(X̃1 − X̃2 + X̃3 − X̃4 + 2X̃5 − 2X̃6) = 0

With those two constraints, one can eliminate two fields in the superpoten-
tial,

X4 = a
X1X3X̃2X̃

2
3 X̃5

X2X̃1X̃2
4 X̃6

, X5 = b
X1X6X̃

2
2 X̃3X̃6

X2X̃2
1 X̃4X̃5

,

with a = ±1 and b = ±1. Plugging this back into the superpotential, we get

W = X1 +X2 +X3 +X6 + X̃1 + X̃2 + X̃3 + X̃4 + X̃5 + X̃6(3.24)

+ a
X1X3X̃2X̃

2
3 X̃5

X2X̃1X̃2
4 X̃6

+ b
X1X6X̃

2
2 X̃3X̃6

X2X̃2
1 X̃4X̃5

.

The critical loci are given by

a = b = 1,

X1 = −X2 = X3 +X6,

X̃1 = −X̃2 = −X3 − 2X6,

X̃3 = −X̃4 = 2X3 +X6,

X̃5 = −X̃6 = X3 −X6.
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One can easily see that, on the critical locus, the above superpotential (3.24)
vanishes with two free fields X3 and X6. Therefore, the pure gauge theory
again flows to free theories of two chiral multiplies in the IR.

3.6. Comparison with A model results

In this section, we will discuss the A-twisted gauge theory with gauge group
G2 and n chiral superfields in the 7, and compare it to results from our pro-
posed mirror, as a check of our methods. In principle, this should necessarily
work, for reasons discussed in [3, Section 3]; however, we will check for the
special case of G2 that indeed everything works as it should, which will also
give us the opportunity to discuss the role of theta angle periodicities and
charge lattice normalizations.

The one-loop effective twisted superpotential W̃eff of the A-twisted gauge
theory is given by [13, equ’ns (2.17), (2.19)], [14, equ’ns (3.16), (3.17)]

W̃eff = −
∑

i,α

(σ1ρ
′1
i,α + σ2ρ

′2
i,α − m̃i)

(

ln(σ1ρ
′1
i,α + σ2ρ

′2
i,α − m̃i)− 1

)

+
∑

m

(σ1α
′1
m + σ2α

′2
m)
(

ln(σ1α
′1
m + σ2α

′2
m)− 1

)

+
∑

m

(σ1α̃
′1
m + σ2α̃

′2
m)
(

ln(σ1α̃
′1
m + σ2α̃

′2
m)− 1

)

.

Since the logarithm branch cuts in the expressions above are supposed to
reflect (standard) theta angle periodicities of 2π, we have rescaled ρ and α
to ρ′ and α′. Specifically, we have rescaled all the charges under σ1 by a
factor of 2 and all the charges under σ2 by a factor of 2/

√
3.

Since the roots and weights of G2 come in positive/negative pairs, we
can further simplify the effective superpotential:

W̃eff = −
∑

i,α

(σ1ρ
′1
i,α + σ2ρ

′2
i,α − m̃i) ln(σ1ρ

′1
i,α + σ2ρ

′2
i,α − m̃i)

− 7
∑

i

m̃i + 6πi(σ1 + σ2).
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The vacua are given by

∏

i,α

(σ1ρ
′1
i,α + σ2ρ

′2
i,α − m̃i)

ρ
′
1

i,α = 1,

∏

i,α

(σ1ρ
′1
i,α + σ2ρ

′2
i,α − m̃i)

ρ
′
2

i,α = 1.

Plugging in the charges, we get

∏

i

(2σ1 − m̃i)
2(σ1 + σ2 − m̃i)(σ1 − σ2 − m̃i)

=
∏

i

(−2σ1 − m̃i)
2(−σ1 − σ2 − m̃i)(−σ1 + σ2 − m̃i),

∏

i

(σ1 + σ2 − m̃i)(−σ1 + σ2 − m̃i)

=
∏

i

(−σ1 − σ2 − m̃i)(σ1 − σ2 − m̃i).

The relations above are the same as the Coulomb ring relations (3.22), (3.23)
we derived from the B model with a suitable rescaling of the σ fields,

σ1 →
1

2
σ1, σ2 →

√
3

2
σ2.

Thus, we see that A model results match those of the B model mirror,
as expected, after correctly taking into account subtleties in theta angle
periodicities.

3.7. Comparison to other bases for weight lattice

So far in this section, we have used a particular basis for the weight lattice
for G2. In principle, other bases are related by field redefinitions. To make
this more explicit, in this section we will outline corresponding results in
a different basis for the weight lattice, specifically a basis of fundamental
weights. We will describe this basis in greater detail in the section on F4,
as it will be used for the rest of the exceptional gauge groups in this paper,
but for the moment, will content ourselves to briefly outline results.

In terms of that basis of fundamental weights, it can be shown that the
roots and pertinent weights of G2 are expanded as given in Table 4.
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Field Short root Field Long root Field Weight

X1 (1, 0) X̃1 (0, 1) Yi1 (1, 0)

X2 (− 1, 1) X̃2 (3,−1) Yi2 (− 1, 1)

X3 (2,−1) X̃3 (− 3, 2) Yi3 (2,−1)

X4 (− 1, 0) X̃4 (0,−1) Yi4 (− 1, 0)

X5 (1,−1) X̃5 (− 3, 1) Yi5 (1,−1)

X6 (− 2, 1) X̃6 (3,−2) Yi6 (− 2, 1)
Yi0 (0, 0)

Table 4: Roots and weights for G2 and associated fields.

Repeating the same mirror analysis as described earlier in this section,
we derive the Coulomb branch relations

n
∏

i=1

(σ′

1 − m̃i)(2σ
′

1 − σ′

2 − m̃i)(3.25)

=

n
∏

i=1

(−σ′

1 − m̃i)(−2σ′

1 + σ′

2 − m̃i),

n
∏

i=1

(σ′

1 − σ′

2 − m̃i)(2σ
′

1 − σ′

2 − m̃i)(3.26)

=

n
∏

i=1

(−σ′

1 + σ′

2 − m̃i)(−2σ′

1 + σ′

2 − m̃i),

and excluded loci

σ′

1σ
′

2(σ
′

1 − σ′

2)(2σ
′

1 − σ′

2)(3σ
′

1 − σ′

2)(3σ
′

1 − 2σ′

2) 6= 0,(3.27)
n
∏

i=1

(σ′

1 − m̃i)(−σ′

1 + σ′

2 − m̃i)(2σ
′

1 − σ′

2 − m̃i)(3.28)

× (−σ′

1 − m̃i)(σ
′

1 − σ′

2 − m̃i)(−2σ′

1 + σ′

2 − m̃i) 6= 0.

Comparing with earlier reuslts for the critical locus (3.20), (3.21) and
excluded loci (3.16), (3.17), computed in the earlier basis, we find that the
results above are related by the following linear field redefinitions

σ′

1 =
1

2
σ1 +

√
3

2
σ2,(3.29)

σ′

2 =
√
3σ2,(3.30)



✐

✐

“3-Sharpe” — 2020/5/16 — 23:12 — page 90 — #24
✐

✐

✐

✐

✐

✐

90 Z. Chen, W. Gu, H. Parsian, and E. Sharpe

or equivalently

σ1 = 2σ′

1 − σ′

2,(3.31)

σ2 =
1√
3
σ′

2.(3.32)

4. F4

In this section we will consider the mirror Landau-Ginzburg orbifold of an F4

gauge theory with matter fields in the 26 fundamental representation, and
then compute Coulomb branch relations. We also consider the pure gauge
theory without matter fields.

4.1. Mirror Landau-Ginzburg orbifold

The mirror Landau-Ginzburg model has fields

• Yi,β , i ∈ {1, . . . , n}, β ∈ {1, . . . , 26}, corresponding to the matter fields
in n copies of the fundamental 26 dimensional representation of F4,

• Xm, m ∈ {1, . . . , 48}, corresponding to the roots of F4,

• σa, a ∈ {1, 2, 3, 4}.

We associate the roots, αa
m, to Xm fields and the weights, ρai,β , of the

fundamental 26 representation to Yi,β .
Now, previously for G2, we worked with a basis in which the θ-angle

periodicities were unusual: θ1 ∼ θ1 + πi, θ2 ∼ θ2 + 4πi/
√
3. This essentially

just corresponded to a nonstandard charge lattice normalization. This was
convenient for relating to Lie algebras, but, is rather unusual for physics.

Here, for F4 and all the later examples we will discuss in this paper,
we would like instead to work with a basis for the roots and weights that
corresponds to an integer charge lattice, so that the θ-angle periodicities take
a more nearly standard form. In particular, the superpotential is invariant
under such basis changes, since its terms are tensor contractions such as

∑

a

σaρ
a
i Y

i.

We can pick any basis we like, so long as we consistently change coordinates
in the tensors above. In particular, the superpotential (for this B-twisted
Landau-Ginzburg model) does not depend explicitly upon e.g. the Cartan
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matrix, so the metric on the Lie algebra is not directly relevant in the pre-
sentation above. Thus, we have the flexibility to pick a basis such that the
weights have integer coordinates, which yields standard θ-angle periodicities.

To be specific, we will write the weights and roots in terms of a basis of
fundamental weights. Recall the fundamental weights are defined as follows.
First, let {αµ} be a basis of simple roots, normalized so that the Cartan
matrix Cµν is given as

(4.1) Cµν = 2
αµ · αν

α2
ν

.

The fundamental weights {ωµ} are then defined by the property that [18,
Section 13.1]

(4.2) 2
αµ · ων

α2
µ

= δµν .

Furthermore, the fundamental weights form an integer basis for the weight
lattice – every element of the weight lattice is a linear combination of funda-
mental weights with integer coefficients [18, Section 13.1]. This is perfect for
our purposes, as this basis yields standard θ-angle periodicities, and we will
use this basis for all computations in this and later sections. To compute
root and weight vectors as linear combinations of the fundamental weights,
as displayed in tables in this and later sections, we used the Mathematica
package LieART [19].

The long roots and associated fields are listed in Table 5. The short
roots and associated fields are listed in Table 6. The weights of the 26 and
associated fields are listed in Table 7.

Now, plugging the information above into the mirror superpotential with
twisted masses

W =

4
∑

a=1

σa





n
∑

i=1

26
∑

β=1

ρai,βYi,β +

48
∑

m=1

αa
mZm



(4.3)

−
n
∑

i=1

m̃i

26
∑

β=1

Yi,β +

n
∑

i=1

26
∑

β=1

exp(−Yi,β) +

48
∑

m=1

Xm,

where Xm = exp(−Zm) and Xm are the fundamental fields, we get

W =

4
∑

a=1

σaCa −
n
∑

i=1

m̃i

26
∑

β=1

Yi,β +

n
∑

i=1

26
∑

β=1

exp(−Yi,β) +

48
∑

m=1

Xm.(4.4)
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Field Positive root Field Negative root

X1 (1, 0, 0, 0) X25 (− 1, 0, 0, 0)
X2 (− 1, 1, 0, 0) X26 (1,−1, 0, 0)
X3 (0,−1, 2, 0) X27 (0, 1,−2, 0)
X4 (0, 1,−2, 2) X28 (0,−1, 2,−2)
X5 (1,−1, 0, 2) X29 (− 1, 1, 0,−2)
X6 (− 1, 0, 0, 2) X30 (1, 0, 0,−2)
X7 (0, 1, 0,−2) X31 (0,−1, 0, 2)
X8 (1,−1, 2,−2) X32 (− 1, 1,−2, 2)
X9 (− 1, 0, 2,−2) X33 (1, 0,−2, 2)
X10 (1, 1,−2, 0) X34 (− 1,−1, 2, 0)
X11 (− 1, 2,−2, 0) X35 (1,−2, 2, 0)
X12 (2,−1, 0, 0) X36 (− 2, 1, 0, 0)

Table 5: Long roots of F4 and associated fields.

Field Positive root Field Negative root

X13 (0, 0, 0, 1) X37 (0, 0, 0,−1)
X14 (0, 0, 1,−1) X38 (0, 0,−1, 1)
X15 (0, 1,−1, 0) X39 (0,−1, 1, 0)
X16 (1,−1, 1, 0) X40 (− 1, 1,−1, 0)
X17 (− 1, 0, 1, 0) X41 (1, 0,−1, 0)
X18 (1, 0,−1, 1) X42 (− 1, 0, 1,−1)
X19 (− 1, 1,−1, 1) X43 (1,−1, 1,−1)
X20 (1, 0, 0,−1) X44 (− 1, 0, 0, 1)
X21 (− 1, 1, 0,−1) X45 (1,−1, 0, 1)
X22 (0,−1, 1, 1) X46 (0, 1,−1,−1)
X23 (0,−1, 2,−1) X47 (0, 1,−2, 1)
X24 (0, 0,−1, 2) X48 (0, 0, 1,−2)

Table 6: Short roots of F4 and associated fields.

where the Ca are given as follows:

C1 =

n
∑

i=1

(

Yi,4 − Yi,5 + Yi,6 − Yi,7 + Yi,8 − Yi,9 + Yi,19

− Yi,20 + Yi,21 − Yi,16 + Yi,17 − Yi,18
)

+ Z1 − Z2 + Z5 − Z6 + Z16 − Z17 + Z8 + Z18 − Z9 − Z19 + Z20 − Z21

+ Z10 − Z11 + 2Z12 − Z25 + Z26 − Z29 + Z30 − Z40 + Z41 − Z32 − Z42

+ Z33 + Z43 − Z44 + Z45 − Z34 + Z35 − 2Z36,
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Field Weight Field Weight

Yi,1 (0, 0, 0, 1) Yi,13 (0, 0, 0,−1)
Yi,2 (0, 0, 1,−1) Yi,14 (0, 0,−1, 1)
Yi,3 (0, 1,−1, 0) Yi,15 (0,−1, 1, 0)
Yi,4 (1,−1, 1, 0) Yi,16 (− 1, 1,−1, 0)
Yi,5 (− 1, 0, 1, 0) Yi,17 (1, 0,−1, 0)
Yi,6 (1, 0,−1, 1) Yi,18 (− 1, 0, 1,−1)
Yi,7 (− 1, 1,−1, 1) Yi,19 (1,−1, 1,−1)
Yi,8 (1, 0, 0,−1) Yi,20 (− 1, 0, 0, 1)
Yi,9 (− 1, 1, 0,−1) Yi,21 (1,−1, 0, 1)
Yi,10 (0,−1, 1, 1) Yi,22 (0, 1,−1,−1)
Yi,11 (0,−1, 2,−1) Yi,23 (0, 1,−2, 1)
Yi,12 (0, 0,−1, 2) Yi,24 (0, 0, 1,−2)
Yi,25 (0, 0, 0, 0) Yi,26 (0, 0, 0, 0)

Table 7: Weights of 26 of F4 and associated fields.

C2 =

n
∑

i=1

(

Yi,3 − Yi,4 + Yi,7 + Yi,9 − Yi,10 − Yi,11 − Yi,19

− Yi,21 + Yi,22 + Yi,23 − Yi,15 + Yi,16
)

+ Z2 − Z3 + Z4 + Z15 − Z5 + Z7 − Z16 − Z8 + Z19 + Z21 − Z22 + Z10

+ 2Z11 − Z23 − Z12 − Z26 + Z27 − Z28 − Z39 + Z29 − Z31 + Z40 + Z32

− Z43 − Z45 + Z46 − Z34 − 2Z35 + Z47 + Z36,

C3 =

n
∑

i=1

(

Yi,2 − Yi,3 + Yi,4 + Yi,5 − Yi,6 − Yi,7 + Yi,10 + 2Yi,11 − Yi,12 + Yi,19

− Yi,22 − 2Yi,23 + Yi,24 − Yi,14 + Yi,15 − Yi,16 − Yi,17 + Yi,18
)

+ 2Z3 + Z14 − 2Z4 − Z15 + Z16 + Z17 + 2Z8 − Z18 + 2Z9 − Z19 + Z22

− 2Z10 − 2Z11 + 2Z23 − Z24 − 2Z27 − Z38 + 2Z28 + Z39 − Z40 − Z41

− 2Z32 + Z42 − 2Z33 + Z43 − Z46 + 2Z34 + 2Z35 − 2Z47 + Z48,

C4 =

n
∑

i=1

(

Yi,1 − Yi,2 + Yi,6 + Yi,7 − Yi,8 − Yi,9 + Yi,10 − Yi,11 + 2Yi,12

− Yi,19 + Yi,20 + Yi,21 − Yi,22 + Yi,23 − 2Yi,24 − Yi,13 + Yi,14 − Yi,18
)

+ Z13 − Z14 + 2Z4 + 2Z5 + 2Z6 − 2Z7 − 2Z8 + Z18 − 2Z9 + Z19 − Z20

− Z21 + Z22 − Z23 + 2Z24 − Z37 + Z38 − 2Z28 − 2Z29 − 2Z30 + 2Z31

+ 2Z32 − Z42 + 2Z33 − Z43 + Z44 + Z45 − Z46 + Z47 − 2Z48.
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Integrating out σa fields, we get four constraints Ca = 0. So we are free to
eliminate four fundamental fields. Our choice here will be Yn,1, Yn,2, Yn,3
and Yn,4.

−Yn,1 =

n−1
∑

i=1

Yi,1 +

n
∑

i=1

(

Yi,5 + Yi,7 − Yi,8 + Yi,10 + Yi,12 − Yi,19

+ Yi,20 − Yi,22 − Yi,24 − Yi,13 − Yi,17
)

+ Z2 + Z3 + Z13 + Z4 + Z5 + 2Z6 − Z7 + Z17 − Z8 + Z19 − Z20

+ Z22 − Z10 + Z24 − Z12 − Z26 − Z27 − Z37 − Z28 − Z29 − 2Z30

+ Z31 − Z41 + Z32 − Z43 + Z44 − Z46 + Z34 − Z48 + Z36,

−Yn,2 =

n−1
∑

i=1

Yi,2 +

n
∑

i=1

(

Yi,5 − Yi,6 + Yi,9 + Yi,11 − Yi,12 − Yi,21

− Yi,23 + Yi,24 − Yi,14 − Yi,17 + Yi,18
)

+ Z2 + Z3 + Z14 − Z4 − Z5 + Z7 + Z17 + Z8 − Z18 + 2Z9 + Z21

− Z10 + Z23 − Z24 − Z12 − Z26 − Z27 − Z38 + Z28 + Z29 − Z31

− Z41 − Z32 + Z42 − 2Z33 − Z45 + Z34 − Z47 + Z48 + Z36,

−Yn,3 =

n−1
∑

i=1

+

n
∑

i=1

(

− Yi,5 + Yi,6 + Yi,8 − Yi,10 − Yi,11 − Yi,20

+ Yi,22 + Yi,23 − Yi,15 + Yi,17 − Yi,18
)

+ Z1 − Z3 + Z4 + Z15 − Z6 + Z7 − Z17 + Z18 − Z9 + Z20 − Z22

+ 2Z10 + Z11 − Z23 + Z12 − Z25 + Z27 − Z28 − Z39 + Z30 − Z31

+ Z41 − Z42 + Z33 − Z44 + Z46 − 2Z34 − Z35 + Z47 − Z36,

−Yn,4 =

n−1
∑

i=1

Yi,4 +

n
∑

i=1

(

− Yi,5 + Yi,6 − Yi,7 + Yi,8 − Yi,9 + Yi,19

− Yi,20 + Yi,21 − Yi,16 + Yi,17 − Yi,18
)

+ Z1 − Z2 + Z5 − Z6 + Z16 − Z17 + Z8 + Z18 − Z9 − Z19 + Z20

− Z21 + Z10 − Z11 + 2Z12 − Z25 + Z26 − Z29 + Z30 − Z40 + Z41

− Z32 − Z42 + Z33 + Z43 − Z44 + Z45 − Z34 + Z35 − 2Z36.
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For convenience, we define:

Π1 ≡ exp(−Yn,1),

(4.5)

=

n
∏

i=1

exp(Yi,5 + Yi,7 − Yi,8 + Yi,10 + Yi,12 − Yi,19 + Yi,20

− Yi,22 − Yi,24 − Yi,13 − Yi,17)

×
n−1
∏

i=1

exp(Yi,1) ·
X7X8X20X10X12X26X27X37X28X29X

2
30X41X43X46X48

X2X3X13X4X5X2
6X17X19X22X24X31X32X44X34X36

,

Π2 ≡ exp(−Yn,2),
(4.6)

=

n
∏

i=1

exp(Yi,5 − Yi,6 + Yi,9 + Yi,11 − Yi,12 − Yi,21 − Yi,23

+ Yi,24 − Yi,14 − Yi,17 + Yi,18)

×
n−1
∏

i=1

exp(Yi,2) ·
X4X5X18X10X24X12X26X27X38X31X41X32X

2
33X45X47

X2X3X14X7X17X8X2
9X21X23X28X29X42X34X48X36

,

Π3 ≡ exp(−Yn,3),
(4.7)

=

n
∏

i=1

exp(−Yi,5 + Yi,6 + Yi,8 − Yi,10 − Yi,11 − Yi,20 + Yi,22

+ Yi,23 − Yi,15 + Yi,17 − Yi,18)

×
n−1
∏

i=1

exp(Yi,3) ·
X3X6X17X9X22X23X25X28X39X31X42X44X

2
34X35X36

X1X4X15X7X18X20X2
10X11X12X27X30X41X33X46X47

,

Π4 ≡ exp(−Yn,4),
(4.8)

=

n
∏

i=1

exp(−Yi,5 + Yi,6 − Yi,7 + Yi,8 − Yi,9 + Yi,19 − Yi,20

+ Yi,21 − Yi,16 + Yi,17 − Yi,18)

×
n−1
∏

i=1

exp(Yi,4) ·
X2X6X17X9X19X21X11X25X29X40X32X42X44X34X

2
36

X1X5X16X8X18X20X10X2
12X26X30X41X33X43X45X35

.
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Integrating out the sigma fields and eliminating the fields, Yn,1, Yn,2,
Yn,3 and Yn,4, the superpotential reduces to

W =

n−1
∑

i=1

26
∑

b=1

(

exp(−Yi,b)− m̃iYi,b
)

+
(

Π1 + m̃n lnΠ1

)

+
(

Π2 + m̃n lnΠ2

)

+
(

Π3 + m̃n lnΠ3

)

+
(

Π4 + m̃n lnΠ4

)

+

26
∑

a=5

(

exp(−Yn,a)− m̃nYn,a
)

+

48
∑

m=1

Xm

The superpotential is only well defined when the Xm fields in the denomi-
nator of Πa’s are non-zero.

The critical locus is given as follows:
For i < n:

∂W

∂Yi,1
: exp (−Yi,1) = Π1 + m̃n − m̃i,(4.9)

∂W

∂Yi,2
: exp (−Yi,2) = Π2 + m̃n − m̃i,(4.10)

∂W

∂Yi,3
: exp (−Yi,3) = Π3 + m̃n − m̃i,(4.11)

∂W

∂Yi,4
: exp (−Yi,4) = Π4 + m̃n − m̃i,(4.12)

For i ≤ n:

∂W

∂Yi,5
: exp (−Yi,5) = Π1 +Π2 −Π3 −Π4 − m̃i,(4.13)

∂W

∂Yi,6
: exp (−Yi,6) = −Π2 +Π3 +Π4 + m̃n − m̃i,(4.14)

∂W

∂Yi,7
: exp (−Yi,7) = Π1 −Π4 − m̃i,(4.15)

∂W

∂Yi,8
: exp (−Yi,8) = −Π1 +Π3 +Π4 + m̃n − m̃i,(4.16)

∂W

∂Yi,9
: exp (−Yi,9) = Π2 −Π4 − m̃i,(4.17)
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∂W

∂Yi,10
: exp (−Yi,10) = Π1 −Π3 − m̃i,(4.18)

∂W

∂Yi,11
: exp (−Yi,11) = Π2 −Π3 − m̃i,(4.19)

∂W

∂Yi,12
: exp (−Yi,12) = Π1 −Π2 − m̃i,(4.20)

∂W

∂Yi,13
: exp (−Yi,13) = −Π1 − m̃n − m̃i,(4.21)

∂W

∂Yi,14
: exp (−Yi,14) = −Π2 − m̃n − m̃i,(4.22)

∂W

∂Yi,15
: exp (−Yi,15) = −Π3 − m̃n − m̃i,(4.23)

∂W

∂Yi,16
: exp (−Yi,16) = −Π4 − m̃n − m̃i,(4.24)

∂W

∂Yi,17
: exp (−Yi,17) = −Π1 −Π2 +Π3 +Π4 − m̃i,(4.25)

∂W

∂Yi,18
: exp (−Yi,18) = Π2 −Π3 −Π4 − m̃n − m̃i,(4.26)

∂W

∂Yi,19
: exp (−Yi,19) = −Π1 +Π4 − m̃i,(4.27)

∂W

∂Yi,20
: exp (−Yi,20) = Π1 −Π3 −Π4 − m̃n − m̃i,(4.28)

∂W

∂Yi,21
: exp (−Yi,21) = −Π2 +Π4 − m̃i,(4.29)

∂W

∂Yi,22
: exp (−Yi,22) = −Π1 +Π3 − m̃i,(4.30)

∂W

∂Yi,23
: exp (−Yi,23) = −Π2 +Π3 − m̃i,(4.31)

∂W

∂Yi,24
: exp (−Yi,24) = −Π1 +Π2 − m̃i,(4.32)

∂W

∂Yi,25
: exp (−Yi,25) = −m̃i,(4.33)

∂W

∂Yi,26
: exp (−Yi,26) = −m̃i,(4.34)
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In the same way, ∂W/∂Xm gives:

X1 = Π3 +Π4, X25 = −Π3 −Π4,(4.35)

X2 = Π1 +Π2 −Π4, X26 = −Π1 −Π2 +Π4,(4.36)

X3 = Π1 +Π2 −Π3, X27 = −Π1 −Π2 +Π3,(4.37)

X4 = Π1 +Π3, X28 = −Π1 −Π3,(4.38)

X5 = Π1 −Π2 +Π4, X29 = −Π1 +Π2 −Π4,(4.39)

X6 = 2Π1 −Π4, X30 = −2Π1 +Π4,(4.40)

X7 = −Π1 +Π2 +Π3, X31 = Π1 −Π2 −Π3,(4.41)

X8 = −Π1 +Π2 +Π4, X32 = Π1 −Π2 −Π4,(4.42)

X9 = 2Π2 −Π3 −Π4, X33 = −2Π2 +Π3 +Π4,(4.43)

X10 = −Π1 −Π2 + 2Π3 +Π4, X34 = Π1 +Π2 − 2Π3 −Π4,(4.44)

X11 = Π3 −Π4, X35 = −Π3 +Π4,(4.45)

X12 = −Π1 −Π2 +Π3 + 2Π4, X36 = Π1 +Π2 −Π3 − 2Π4,(4.46)

X13 = Π1, X37 = −Π1,(4.47)

X14 = Π2, X38 = −Π2,(4.48)

X15 = Π3, X39 = −Π3,(4.49)

X16 = Π4, X40 = −Π4,(4.50)

X17 = Π1 +Π2 −Π3 −Π4, X41 = −Π1 −Π2 +Π3 +Π4,(4.51)

X18 = −Π2 +Π3 +Π4, X42 = Π2 −Π3 −Π4,(4.52)

X19 = Π1 −Π4, X43 = −Π1 +Π4,(4.53)

X20 = −Π1 +Π3 +Π4, X44 = Π1 −Π3 −Π4,(4.54)

X21 = Π2 −Π4, X45 = −Π2 +Π4,(4.55)

X22 = Π1 −Π3, X46 = −Π1 +Π3,(4.56)

X23 = Π2 −Π3, X47 = −Π2 +Π3,(4.57)

X24 = Π1 −Π2, X48 = −Π1 +Π2.(4.58)

Now, plug these constraints back into (4.5)i–(4.8) to get:

Π1 =

n−1
∏

i=1

(Π1 + m̃n − m̃i)
−1

n
∏

i=1

(Π1 +Π2 −Π3 −Π4 − m̃i)
−1(Π1 −Π4 − m̃i)

−1

× (−Π1 +Π3 +Π4 + m̃n − m̃i)(Π1 −Π3 − m̃i)
−1(Π1 −Π2 − m̃i)

−1

× (−Π1 +Π2 − m̃i)(Π1 −Π3 −Π4 − m̃n − m̃i)
−1(−Π1 +Π3 − m̃i)

× (−Π1 +Π2 − m̃i)(−Π1 − m̃n − m̃i)(−Π1 −Π2 +Π3 +Π4 − m̃i),
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Π2 =

n−1
∏

i=1

(Π2 + m̃n − m̃i)
−1

n
∏

i=1

(Π1 +Π2 −Π3 −Π4 − m̃i)
−1

× (−Π2 +Π3 +Π4 + m̃n − m̃i)(Π2 −Π4 − m̃i)
−1

× (Π2 −Π3 − m̃i)
−1(Π1 −Π2 − m̃i)(−Π2 +Π4 − m̃i)

× (−Π2 +Π3 − m̃i)(−Π1 +Π2 − m̃i)
−1(−Π2 − m̃n − m̃i)

× (−Π1 −Π2 +Π3 +Π4 − m̃i)(Π2 −Π3 −Π4 − m̃n − m̃i)
−1,

Π3 =

n−1
∏

i=1

(Π3 + m̃n − m̃i)
−1

n
∏

i=1

(Π1 +Π2 −Π3 −Π4 − m̃i)

× (−Π2 +Π3 +Π4 + m̃n − m̃i)
−1(−Π1 +Π3 +Π4 + m̃n − m̃i)

−1

× (Π1 −Π3 − m̃i)(Π2 −Π3 − m̃i)(Π1 −Π3 −Π4 − m̃n − m̃i)

× (−Π1 +Π3 − m̃i)
−1(−Π2 +Π3 − m̃i)

−1(−Π3 − m̃n − m̃i)

× (−Π1 −Π2 +Π3 +Π4 − m̃i)
−1(Π2 −Π3 −Π4 − m̃n − m̃i),

Π4 =

n−1
∏

i=1

(Π4 + m̃n − m̃i)
−1

n
∏

1

(Π1 +Π2 −Π3 −Π4 − m̃i)

× (−Π2 +Π3 +Π4 + m̃n − m̃i)
−1(Π1 −Π4 − m̃i)

× (−Π1 +Π3 +Π4 + m̃n − m̃i)
−1(Π2 −Π4 − m̃i)

× (−Π1 +Π2 − m̃i)
−1(Π1 −Π3 −Π4 − m̃n − m̃i)

× (−Π2 +Π4 − m̃i)
−1(−Π4 − m̃n − m̃i)

× (−Π1 −Π2 +Π3 +Π4 − m̃i)
−1(Π2 −Π3 −Π4 − m̃n − m̃i).

The mirror maps are given by,

exp(−Yi,β) 7→ −m̃i +

4
∑

a=1

σaρ
a
i,β , Xm 7→

4
∑

a=1

σaα
a
m.

on the critical locus relations, one finds

Π1 = exp(−Yn,1) = σ4 − m̃n, Π2 = exp(−Yn,2) = σ3 − σ4 − m̃n,

Π3 = exp(−Yn,3) = σ2 − σ3 − m̃n, Π4 = exp(−Yn,4) = σ1 − σ2 + σ3 − m̃n.
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Plugging them back in, one obtains the Coulomb branch (quantum coho-
mology) ring relations for F4:

n
∏

i=1

(−σ1 + σ3 − m̃i)(−σ1 + σ2 − σ3 + σ4 − m̃i)(−σ2 + σ3 + σ4 − m̃i)

(4.59)

× (−σ3 + 2σ4 − m̃i)(−σ1 + σ4 − m̃i)(σ4 − m̃i)

=

n
∏

i=1

(σ1 − σ4 − m̃i)(σ1 − σ2 + σ3 − σ4 − m̃i)(σ2 − σ3 − σ4 − m̃i)

× (σ3 − 2σ4 − m̃i)(−σ4 − m̃i)(σ1 − σ3 − m̃i),

n
∏

i=1

(−σ1 + σ3 − m̃i)(−σ1 + σ2 − σ4 − m̃i)(−σ2 + 2σ3 − σ4 − m̃i)

(4.60)

× (σ3 − 2σ4 − m̃i)(−σ1 + σ3 − σ4 − m̃i)(σ3 − σ4 − m̃i)

=

n
∏

i=1

(σ1 − σ3 + σ4 − m̃i)(−σ3 + 2σ4 − m̃i)(σ1 − σ2 + σ4 − m̃i)

× (σ2 − 2σ3 + σ4 − m̃i)(−σ3 + σ4 − m̃i)(σ1 − σ3 − m̃i),

n
∏

i=1

(σ1 − σ3 + σ4 − m̃i)(σ1 − σ4 − m̃i)(σ2 − σ3 − σ4 − m̃i)

(4.61)

× (σ2 − 2σ3 + σ4 − m̃i)(σ1 − σ3 − m̃i)(σ2 − σ3 − m̃i)

=

n
∏

i=1

(−σ1 + σ3 − m̃i)(−σ2 + σ3 + σ4 − m̃i)(−σ2 + 2σ3 − σ4 − m̃i)

× (−σ1 + σ4 − m̃i)(−σ2 + σ3 − m̃i)(−σ1 + σ3 − σ4 − m̃i),

n
∏

i=1

(σ1 − σ3 + σ4 − m̃i)(σ1 − σ4 − m̃i)(σ1 − σ2 + σ3 − σ4 − m̃i)

(4.62)

× (σ1 − σ2 + σ4 − m̃i)(σ1 − σ3 − m̃i)(σ1 − σ2 + σ3 − m̃i)

=

n
∏

i=1

(−σ1 + σ3 − m̃i)(−σ1 + σ2 − σ3 + σ4 − m̃i)(−σ1 + σ2 − σ4 − m̃i)

× (−σ1 + σ4 − m̃i)(−σ1 + σ2 − σ3 − m̃i)(−σ1 + σ3 − σ4 − m̃i).
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Next, let us described the excluded locus on the Coulomb branch. As
discussed previously and in [3], part of the excluded locus is defined by the
condition Xm 6= 0 for all m. This gives

σ1(2σ1 − σ2)(−σ1 + σ2)(σ1 + σ2 − 2σ3)(−σ1 + 2σ2 − 2σ3)(4.63)

× (σ2 − σ3)(−σ1 + σ3)(σ1 − σ2 + σ3)(−σ2 + 2σ3)(σ2 − 2σ4)

× (−σ1 + 2σ3 − 2σ4)(σ1 − σ2 + 2σ3 − 2σ4)(σ1 − σ4)(−σ1 + σ2 − σ4)

× (σ3 − σ4)(−σ2 + σ3 − σ4)σ4(σ1 − σ3 + σ4)(−σ1 + 2σ4)

× (−σ1 + σ2 − σ3 + σ4)(−σ2 + σ3 + σ4)(σ1 − σ2 + 2σ4)

× (σ2 − 2σ3 + 2σ4)(−σ3 + 2σ4) 6= 0.

The second part of the excluded locus is determined by the condition
that exp(−Y ) 6= 0. From the mirror map

exp(−Yi,β) = −m̃i +

4
∑

a=1

σaρ
a
i,β ,

the excluded locus constraint becomes

−m̃i +

4
∑

a=1

σaρ
a
i,β 6= 0

which is encoded in the expression below:

n
∏

i=1

(σ1 − σ3 − m̃i) (σ2 − σ3 − m̃i) (−σ1 + σ2 − σ3 − m̃i)(4.64)

× (−σ1 + σ3 − m̃i) (−σ2 + σ3 − m̃i) (σ1 − σ2 + σ3 − m̃i)

× (σ3 − 2σ4 − m̃i) (−σ4 − m̃i) (σ1 − σ4 − m̃i) (−σ1 + σ2 − σ4 − m̃i)

× (σ2 − σ3 − σ4 − m̃i) (σ3 − σ4 − m̃i) (−σ1 + σ3 − σ4 − m̃i)

× (σ1 − σ2 + σ3 − σ4 − m̃i) (−σ2 + 2σ3 − σ4 − m̃i) (σ4 − m̃i)

× (−σ1 + σ4 − m̃i) (σ1 − σ2 + σ4 − m̃i) (−σ3 + 2σ4 − m̃i)

× (−σ3 + σ4 − m̃i) (σ1 − σ3 + σ4 − m̃i) (−σ1 + σ2 − σ3 + σ4 − m̃i)

× (−σ2 + σ3 + σ4 − m̃i) (σ2 − 2σ3 + σ4 − m̃i) 6= 0.
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4.2. Transformation under the Weyl group of F4

The Weyl group of F4 has 1152 = 27 · 32 elements4 [20, Table 2.2], so explic-
itly listing orbits of vacua, for example, is not feasible, unlike the case of G2.
(Similarly [20, Table 2.2], the order of the Weyl group of E6 is 27 · 34 · 5, the
order of the Weyl group of E7 is 210 · 34 · 5 · 7, and the order of the Weyl
group of E8 is 214 · 35 · 52 · 7, so we will not be tracking orbits of vacua un-
der the Weyl group in those cases either.) In this section, we will instead
merely check that the critical locus equations transform into one another
under Weyl reflections, a nontrivial check of our computations.

As reviewed earlier, the Weyl transformation acts on vectors, roots and
weights:

Sα(v
a) = va − 2

(α, v)

(α, α)
αa.(4.65)

The Euclidean inner product takes the following metric matrix in this coor-
dinate

(4.66) [gab] =









2 3 2 1
3 6 4 2
2 4 3 3/2
1 2 3/2 1









.

The σa transform as covectors under the same Weyl transformation. F4 has
four simple roots, which can be taken to be

A = (2,−1, 0, 0), B = (− 1, 2,−2, 0),

C = (0,−1, 2,−1), D = (0, 0,−1, 2).

4For the curious, information on the representation theory of the Weyl group of
F4 can be found in [21].
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so the Weyl group of F4 has four distinguished elements, SA, . . . , SD, whose
actions are given by

SA(v
1, v2, v3, v4) = (− v1, v1 + v2, v3, v4),

SA(σ1, σ2, σ3, σ4) = (σ2 − σ1, σ2, σ3, σ4),(4.67)

SB(v
1, v2, v3, v4) = (v1 + v2,−v2, 2v2 + v3, v4),

SB(σ1, σ2, σ3, σ4) = (σ1, σ1 − σ2 + 2σ3, σ3, σ4),(4.68)

SC(v
1, v2, v3, v4) = (v1, v2 + v3,−v3, v3 + v4),

SC(σ1, σ2, σ3, σ4) = (σ1, σ2, σ2 − σ3 + σ4, σ4),(4.69)

SD(v
1, v2, v3, v4) = (v1, v2, v3 + v4,−v4),

SD(σ1, σ2, σ3, σ4) = (σ1, σ2, σ3, σ3 − σ4).(4.70)

The superpotential is, by construction, invariant under Weyl reflections,
hence to be consistent, the critical locus equations should transform into one
another under these reflections. We check this below. For example, under
the action of SD, equation (4.59)

n
∏

i=1

(−σ1 + σ3 − m̃i)(−σ1 + σ2 − σ3 + σ4 − m̃i)(−σ2 + σ3 + σ4 − m̃i)

× (−σ3 + 2σ4 − m̃i)(−σ1 + σ4 − m̃i)(σ4 − m̃i)

=

n
∏

i=1

(σ1 − σ4 − m̃i)(σ1 − σ2 + σ3 − σ4 − m̃i)(σ2 − σ3 − σ4 − m̃i)

× (σ3 − 2σ4 − m̃i)(−σ4 − m̃i)(σ1 − σ3 − m̃i),

transforms into

n
∏

i=1

(−σ1 + σ3 − m̃i)(−σ1 + σ2 − σ4 − m̃i)(−σ2 + 2σ3 − σ4 − m̃i)

× (σ3 − 2σ4 − m̃i)(−σ1 + σ3 − σ4 − m̃i)(σ3 − σ4 − m̃i)

=

n
∏

i=1

(σ1 − σ3 + σ4 − m̃i)(σ1 − σ2 + σ4 − m̃i)(σ2 − 2σ3 + σ4 − m̃i)

× (−σ3 + 2σ4 − m̃i)(−σ3 + σ4 − m̃i)(σ1 − σ3 − m̃i),
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which is equation (4.60).
Table 8 schematically describes how other critical locus equations trans-

form under these Weyl reflections.

Initial equ’n Final equ’n

A (4.59) (4.59) × (4.62)
A (4.60) (4.60) × (4.62)
A (4.61) (4.61) × (4.62)
A (4.62) (4.62)

B (4.59) (4.59)
B (4.60) (4.60)
B (4.61) (4.62)
B (4.62) (4.61)

C (4.59) (4.59)
C (4.60) (4.61) × (4.62)
C (4.61) (4.60) × (4.62)
C (4.62) (4.62)

D (4.59) (4.60)
D (4.60) (4.59)
D (4.61) (4.61)
D (4.62) (4.62)

Table 8: Transformation of critical locus equations under four Weyl reflec-
tions.

The fact that the critical locus equations are closed under Weyl reflec-
tions associated to a set of simple roots provides a nontrivial consistency
check on our results.

4.3. Pure gauge theory

In this section, we will consider the mirror to the pure supersymmetric F4

gauge theory. The mirror superpotential is

W = σ1

(

Z1 − Z2 + Z5 − Z6 + Z16 − Z17 + Z8 + Z18 − Z9 − Z19 + Z20

(4.71)

− Z21 + Z10 − Z11 + 2Z12 − Z25 + Z26 − Z29 + Z30 − Z40 + Z41

− Z32 − Z42 + Z33 + Z43 − Z44 + Z45 − Z34 + Z35 − 2Z36

)

+
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+σ2

(

Z2 − Z3 + Z4 + Z15 − Z5 + Z7 − Z16 − Z8 + Z19 + Z21 − Z22 + Z10

+ 2Z11 − Z23 − Z12 − Z26 + Z27 − Z28 − Z39 + Z29 − Z31 + Z40

+ Z32 − Z43 − Z45 + Z46 − Z34 − 2Z35 + Z47 + Z36

)

+σ3

(

2Z3 + Z14 − 2Z4 − Z15 + Z16 + Z17 + 2Z8 − Z18 + 2Z9 − Z19 + Z22

− 2Z10 − 2Z11 + 2Z23 − Z24 − 2Z27 − Z38 + 2Z28 + Z39 − Z40 − Z41

− 2Z32 + Z42 − 2Z33 + Z43 − Z46 + 2Z34 + 2Z35 − 2Z47 + Z48

)

+σ4

(

Z13 − Z14 + 2Z4 + 2Z5 + 2Z6 − 2Z7 − 2Z8 + Z18 − 2Z9 + Z19 − Z20

− Z21 + Z22 − Z23 + 2Z24 − Z37 + Z38 − 2Z28 − 2Z29 − 2Z30 + 2Z31

+ 2Z32 − Z42 + 2Z33 − Z43 + Z44 + Z45 − Z46 + Z47 − 2Z48

)

+

48
∑

m=1

Xm.

Now, let us consider the critical locus of the superpotential above. For
each root µ, the fields Xµ and X−µ appear paired with opoosite signs cou-
pling to each σ. Therefore, one impliciation of the derivatives

∂W

∂Xµ
= 0

is that, on the critical locus,

(4.72) Xµ = −X−µ.

(Furthermore, on the critical locus, each Xµ is determined by σs.) Next,
each derivative

∂W

∂σa
is a product of ratios of the form

Xµ

X−µ
= −1.
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It is straightforward to check in the superpotential above that each σa is mul-
tiplied by an even number of such ratios (i.e. the number of Z’s is a multiple
of four). For example, the sum of the absolute values of the coefficients of the
Z’s multiplying σ1 and σ2 is 32 = 4 · 8, and the sum of the absolute values
of the coefficients of the Z’s multiplying σ3 and σ4 is 44 = 4 · 11. Thus, the
constraint implied by the σ’s is automatically satisfied.

As a result, following the same analysis in [3], we see in this case, that
the critical locus is nonempty, and in fact is determined by four σs. In other
words, at the level of these topological field theory computations, we have
evidence that the pure supersymmetric F4 gauge theory in two dimensions
flows in the IR to a theory of four free twisted chiral superfields.

5. E6

In this section we will consider the mirror Landau-Ginzburg orbifold su-
perpotential of E6 gauge theory when matter fields are in 27 fundamental
representation of it and then we compute quantum cohomology ring of it.
Also we will consider the pure theory without matter field.

5.1. Mirror Landau-Ginzburg orbifold

The mirror Landau-Ginzburg model has fields

• Yi,β , i ∈ {1, . . . , n}, β ∈ {1, . . . , 27}, corresponding to the matter fields
in n copies of the 27 representation 27,

• Xm, m ∈ {1, . . . , 72}, corresponding to the roots of E6,

• σa, a ∈ {1, 2, 3, 4, 5, 6}.

We associate the roots, αa
m, to Xm fields and the wights, ρai,β , of funda-

mental 27 representation of E6 to Yi,β .

The roots of E6 and associated fields are listed in Tables 9, 10. The
weights associated to the 27 of E6 and their associated fields are listed in
Table 11.

The weights in the tables in this section are written as linear combina-
tions of the fundamental weights, computed with LieART [19], as discussed
earlier, so as to get conventional θ-angle periodicities.
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Field Positive root Field Negative root

X1 (0, 0, 0, 0, 0, 1) X37 (0, 0, 0, 0, 0,−1)
X2 (0, 0, 1, 0, 0,−1) X38 (0, 0,−1, 0, 0, 1)
X3 (0, 1,−1, 1, 0, 0) X39 (0,−1, 1,−1, 0, 0)
X4 (0, 1, 0,−1, 1, 0) X40 (0,−1, 0, 1,−1, 0)
X5 (1,−1, 0, 1, 0, 0) X41 (− 1, 1, 0,−1, 0, 0)
X6 (− 1, 0, 0, 1, 0, 0) X42 (1, 0, 0,−1, 0, 0)
X7 (0, 1, 0, 0,−1, 0) X43 (0,−1, 0, 0, 1, 0)
X8 (1,−1, 1,−1, 1, 0) X44 (− 1, 1,−1, 1,−1, 0)
X9 (− 1, 0, 1,−1, 1, 0) X45 (1, 0,−1, 1,−1, 0)
X10 (1,−1, 1, 0,−1, 0) X46 (− 1, 1,−1, 0, 1, 0)
X11 (1, 0,−1, 0, 1, 1) X47 (− 1, 0, 1, 0,−1,−1)
X12 (− 1, 0, 1, 0,−1, 0) X48 (1, 0,−1, 0, 1, 0)
X13 (− 1, 1,−1, 0, 1, 1) X49 (1,−1, 1, 0,−1,−1)
X14 (1, 0,−1, 1,−1, 1) X50 (− 1, 0, 1,−1, 1,−1)
X15 (1, 0, 0, 0, 1,−1) X51 (− 1, 0, 0, 0,−1, 1)
X16 (− 1, 1,−1, 1,−1, 1) X52 (1,−1, 1,−1, 1,−1)
X17 (− 1, 1, 0, 0, 1,−1) X53 (1,−1, 0, 0,−1, 1)
X18 (0,−1, 0, 0, 1, 1) X54 (0, 1, 0, 0,−1,−1)

Table 9: First set of roots of E6 and associated fields.

5.2. Superpotential

In this section, we describe the superpotential of the mirror Landau-Ginzburg
orbifold. It is given by

W =

6
∑

a=1

σa





n
∑

i=1

27
∑

β=1

ρai,βYi,β +

72
∑

m=1

αa
mZm





−
n
∑

i=1

m̃i

27
∑

b=1

Yi,β +

n
∑

i=1

27
∑

β=1

exp(−Yi,β) +

72
∑

m=1

Xm.

whereXm = exp(−Zm) andXm are the fundamental fields. Using the results
of the previous section we get

W =

6
∑

a=1

σaCa −
n
∑

i=1

m̃i

27
∑

β=1

Yi,β +

n
∑

i=1

27
∑

β=1

exp(−Yi,β) +

72
∑

m=1

Xm.(5.1)
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Field Positive root Field Negative root

X19 (1, 0, 0,−1, 0, 1) X55 (− 1, 0, 0, 1, 0,−1)
X20 (1, 0, 0, 1,−1,−1) X56 (− 1, 0, 0,−1, 1, 1)
X21 (− 1, 1, 0,−1, 0, 1) X57 (1,−1, 0, 1, 0,−1)
X22 (− 1, 1, 0, 1,−1,−1) X58 (1,−1, 0,−1, 1, 1)
X23 (0,−1, 0, 1,−1, 1) X59 (0, 1, 0,−1, 1,−1)
X24 (0,−1, 1, 0, 1,−1) X60 (0, 1,−1, 0,−1, 1)
X25 (1, 0, 1,−1, 0,−1) X61 (− 1, 0,−1, 1, 0, 1)
X26 (− 1, 1, 1,−1, 0,−1) X62 (1,−1,−1, 1, 0, 1)
X27 (0,−1, 1,−1, 0, 1) X63 (0, 1,−1, 1, 0,−1)
X28 (0,−1, 1, 1,−1,−1) X64 (0, 1,−1,−1, 1, 1)
X29 (0, 0,−1, 1, 1, 0) X65 (0, 0, 1,−1,−1, 0)
X30 (1, 1,−1, 0, 0, 0) X66 (− 1,−1, 1, 0, 0, 0)
X31 (− 1, 2,−1, 0, 0, 0) X67 (1,−2, 1, 0, 0, 0)
X32 (0,−1, 2,−1, 0,−1) X68 (0, 1,−2, 1, 0, 1)
X33 (0, 0,−1, 0, 0, 2) X69 (0, 0, 1, 0, 0,−2)
X34 (0, 0,−1, 2,−1, 0) X70 (0, 0, 1,−2, 1, 0)
X35 (0, 0, 0,−1, 2, 0) X71 (0, 0, 0, 1,−2, 0)
X36 (2,−1, 0, 0, 0, 0) X72 (− 2, 1, 0, 0, 0, 0)

Table 10: Second set of roots of E6 and associated fields.

Field Weight Field Weight Field Weight

Yi,1 (1, 0, 0, 0, 0, 0) Yi,2 (− 1, 1, 0, 0, 0, 0) Yi,3 (0,−1, 1, 0, 0, 0)
Yi,4 (0, 0,−1, 1, 0, 1) Yi,5 (0, 0, 0,−1, 1, 1) Yi,6 (0, 0, 0, 1, 0,−1)
Yi,7 (0, 0, 0, 0,−1, 1) Yi,8 (0, 0, 1,−1, 1,−1) Yi,9 (0, 0, 1, 0,−1,−1)
Yi,10 (0, 1,−1, 0, 1, 0) Yi,11 (0, 1,−1, 1,−1, 0) Yi,12 (1,−1, 0, 0, 1, 0)
Yi,13 (− 1, 0, 0, 0, 1, 0) Yi,14 (0, 1, 0,−1, 0, 0) Yi,15 (1,−1, 0, 1,−1, 0)
Yi,16 (− 1, 0, 0, 1,−1, 0) Yi,17 (1,−1, 1,−1, 0, 0) Yi,18 (− 1, 0, 1,−1, 0, 0)
Yi,19 (1, 0,−1, 0, 0, 1) Yi,20 (− 1, 1,−1, 0, 0, 1) Yi,21 (1, 0, 0, 0, 0,−1)
Yi,22 (− 1, 1, 0, 0, 0,−1) Yi,23 (0,−1, 0, 0, 0, 1) Yi,24 (0,−1, 1, 0, 0,−1)
Yi,25 (0, 0,−1, 1, 0, 0) Yi,26 (0, 0, 0,−1, 1, 0) Yi,27 (0, 0, 0, 0,−1, 0)

Table 11: Weights of 27 of E6 and associated fields.

where Ca are listed in [7].
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5.3. Coulomb ring relations

Integrating out the σa fields, we obtain six constraints Ca = 0. Exponen-
tiating these constraints, we obtain a series of equations from which the
Coulomb ring relations will be derived. For reasons of notational sanity, we
will also slightly simplify these expressions, as follows. To make predictions
for the A model, we will evaluate the ring relations on the critical locus,
where

Xm

Xm+63

= −1.

It is straightforward to see that each of the constraints Ca contains 22 dif-
ferences of corresponding Z’s, so that the exponential of the constraints
contains 22 factors of the form Xm/Xm+63 – an even number of factors of
−1, which will cancel out. Therefore, since on the critical locus those fac-
tors will cancel out, we will omit them, and solely relate the exponentiated
constraints in terms of Y s.

The exponentiated constraints are listed in [7].
The mirror maps are given by

exp(−Yi,β) 7→ −m̃i +

6
∑

a=1

σaρ
a
i,β , Xm 7→

6
∑

a=1

σaα
a
m.

Applying the operator mirror maps, the Coulomb ring relations are straight-
forward to derive and are listed in [7].

Part of the excluded locus is defined by the vanishing locus of the Xm,
and is given by

(2σ1 − σ2) (σ1 + σ2 − σ3) (−σ1 + 2σ2 − σ3) (σ4 − σ1) (σ1 − σ2 + σ4)
(5.2)

× (σ2 − σ3 + σ4) (σ2 − σ5) (−σ1 + σ3 − σ5) (σ1 − σ2 + σ3 − σ5)

× (−σ3 + 2σ4 − σ5) (σ2 − σ4 + σ5) (−σ1 + σ3 − σ4 + σ5)

× (σ1 − σ2 + σ3 − σ4 + σ5) (−σ3 + σ4 + σ5) (2σ5 − σ4) (σ3 − σ6)

× (σ1 + σ3 − σ4 − σ6) (−σ1 + σ2 + σ3 − σ4 − σ6) (−σ2 + 2σ3 − σ4 − σ6)

× (σ1 + σ4 − σ5 − σ6) (−σ1 + σ2 + σ4 − σ5 − σ6) (−σ2 + σ3 + σ4 − σ5 − σ6)

× (σ1 + σ5 − σ6) (−σ1 + σ2 + σ5 − σ6) (−σ2 + σ3 + σ5 − σ6)σ6 (σ1 − σ4 + σ6)

× (−σ1 + σ2 − σ4 + σ6) (−σ2 + σ3 − σ4 + σ6) (−σ2 + σ4 − σ5 + σ6)

× (σ1 − σ3 + σ4 − σ5 + σ6) (−σ1 + σ2 − σ3 + σ4 − σ5 + σ6) (−σ2 + σ5 + σ6)

× (σ1 − σ3 + σ5 + σ6) (−σ1 + σ2 − σ3 + σ5 + σ6) (2σ6 − σ3) 6= 0.
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Similarly,

exp(−Yi,β) = −m̃i +

6
∑

a=1

σaρ
a
i,β

on the critical locus, so

−m̃i +

6
∑

a=1

σaρ
a
i,β 6= 0

which determines the remainder of the excluded locus:

(σ1 − m̃i) (−σ1 + σ2 − m̃i) (−σ2 + σ3 − m̃i) (σ2 − σ4 − m̃i)
(5.3)

× (−σ1 + σ3 − σ4 − m̃i) (σ1 − σ2 + σ3 − σ4 − m̃i) (−σ3 + σ4 − m̃i)

× (−σ5 − m̃i) (−σ1 + σ4 − σ5 − m̃i) (σ1 − σ2 + σ4 − σ5 − m̃i)

× (σ2 − σ3 + σ4 − σ5 − m̃i) (−σ1 + σ5 − m̃i) (σ1 − σ2 + σ5 − m̃i)

× (σ2 − σ3 + σ5 − m̃i) (−σ4 + σ5 − m̃i) (σ1 − σ6 − m̃i)

× (−σ1 + σ2 − σ6 − m̃i) (−σ2 + σ3 − σ6 − m̃i) (σ4 − σ6 − m̃i)

× (σ3 − σ5 − σ6 − m̃i) (σ3 − σ4 + σ5 − σ6 − m̃i) (−σ2 + σ6 − m̃i)

× (σ1 − σ3 + σ6 − m̃i) (−σ1 + σ2 − σ3 + σ6 − m̃i) (−σ3 + σ4 + σ6 − m̃i)

× (−σ5 + σ6 − m̃i) (−σ4 + σ5 + σ6 − m̃i) 6= 0.

5.4. Pure gauge theory

In this part we will consider the mirror to the pure supersymmetric E6 gauge
theory. The mirror Landau-Ginzburg superpotential is given in [7].

We can analyze this mirror in the same way as previous pure gauge
theory mirrors. As discussed previously, for each root µ, the fields Xµ and
X−µ appear paired with opoosite signs coupling to each σ. Therefore, one
impliciation of the derivatives

∂W

∂Xµ
= 0

is that, on the critical locus,

(5.4) Xµ = −X−µ.
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(Furthermore, on the critical locus, each Xµ is determined by σs.) Next,
each derivative

∂W

∂σa

is a product of ratios of the form

Xµ

X−µ
= −1.

It is straightforward to check that, just as in the previous examples, in
the superpotential above each σ multiplies a number of Zs that is divisible
by four, i.e. an even number of ratios Xµ/X−µ. Specifically, the sum of the
absolute values of the coefficients of the Z’s multiplying each σ is 44 = 4 · 11.
Thus, the constraint implied by integrating out the σ’s is automatically
satisfied.

As a result, following the same analysis as earlier and [3], the critical
locus is nonempty, and is determined by the six σs. Thus, at the level of
these topological field theory computations, we have evidence that the pure
supersymmetric E6 gauge theory in two dimensions flows in the IR to a
theory of six free twisted chiral superfields.

6. E7

In this section we will consider the mirror Landau-Ginzburg orbifold to an
E7 gauge theory with matter fields in the 56 fundamental representation.
As before, we will compute Coulomb branch (quantum cohomology) ring
relations and excluded loci. We will also study the pure E7 gauge theory
without matter.

6.1. Mirror Landau-Ginzburg orbifold

The mirror Landau-Ginzburg model has superfields

• Yi,β , i ∈ {1, . . . , n}, β ∈ {1, . . . , 56}, corresponding to the matter fields
in n copies of the fundamental 56 representation of E7,

• Xm, m ∈ {1, . . . , 126}, corresponding to the nonzero roots of E7,

• σa, a ∈ {1, . . . , 7}.

We associate the roots, αa
m, to Xm fields and the weights, ρai,β to the Yi,β .
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The nonzero roots of E7 are listed in Tables 12, 13, and 14. The weights
of the 56 of E7 are listed in Table 15. All weights are given as linear com-
binations of fundamental weights, as discussed earlier, and computed with
LieART [19], so as to have conventional θ-angle periodicites.

Field Positive root Field Negative root

X1 (1, 0, 0, 0, 0, 0, 0) X64 (− 1, 0, 0, 0, 0, 0, 0)
X2 (− 1, 1, 0, 0, 0, 0, 0) X65 (1,−1, 0, 0, 0, 0, 0)
X3 (0,−1, 1, 0, 0, 0, 0) X66 (0, 1,−1, 0, 0, 0, 0)
X4 (0, 0,−1, 1, 0, 0, 1) X67 (0, 0, 1,−1, 0, 0,−1)
X5 (0, 0, 0,−1, 1, 0, 1) X68 (0, 0, 0, 1,−1, 0,−1)
X6 (0, 0, 0, 1, 0, 0,−1) X69 (0, 0, 0,−1, 0, 0, 1)
X7 (0, 0, 0, 0,−1, 1, 1) X70 (0, 0, 0, 0, 1,−1,−1)
X8 (0, 0, 1,−1, 1, 0,−1) X71 (0, 0,−1, 1,−1, 0, 1)
X9 (0, 0, 0, 0, 0,−1, 1) X72 (0, 0, 0, 0, 0, 1,−1)
X10 (0, 0, 1, 0,−1, 1,−1) X73 (0, 0,−1, 0, 1,−1, 1)
X11 (0, 1,−1, 0, 1, 0, 0) X74 (0,−1, 1, 0,−1, 0, 0)
X12 (0, 0, 1, 0, 0,−1,−1) X75 (0, 0,−1, 0, 0, 1, 1)
X13 (0, 1,−1, 1,−1, 1, 0) X76 (0,−1, 1,−1, 1,−1, 0)
X14 (1,−1, 0, 0, 1, 0, 0) X77 (− 1, 1, 0, 0,−1, 0, 0)
X15 (− 1, 0, 0, 0, 1, 0, 0) X78 (1, 0, 0, 0,−1, 0, 0)
X16 (0, 1,−1, 1, 0,−1, 0) X79 (0,−1, 1,−1, 0, 1, 0)
X17 (0, 1, 0,−1, 0, 1, 0) X80 (0,−1, 0, 1, 0,−1, 0)
X18 (1,−1, 0, 1,−1, 1, 0) X81 (− 1, 1, 0,−1, 1,−1, 0)
X19 (− 1, 0, 0, 1,−1, 1, 0) X82 (1, 0, 0,−1, 1,−1, 0)
X20 (0, 1, 0,−1, 1,−1, 0) X83 (0,−1, 0, 1,−1, 1, 0)
X21 (1,−1, 0, 1, 0,−1, 0) X84 (− 1, 1, 0,−1, 0, 1, 0)
X22 (1,−1, 1,−1, 0, 1, 0) X85 (− 1, 1,−1, 1, 0,−1, 0)
X23 (− 1, 0, 0, 1, 0,−1, 0) X86 (1, 0, 0,−1, 0, 1, 0)
X24 (− 1, 0, 1,−1, 0, 1, 0) X87 (1, 0,−1, 1, 0,−1, 0)
X25 (0, 1, 0, 0,−1, 0, 0) X88 (0,−1, 0, 0, 1, 0, 0)
X26 (1,−1, 1,−1, 1,−1, 0) X89 (− 1, 1,−1, 1,−1, 1, 0)

Table 12: First set of roots of E7 and assocaited fields.
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Field Positive root Field Negative root

X27 (1, 0,−1, 0, 0, 1, 1) X90 (− 1, 0, 1, 0, 0,−1,−1)
X28 (− 1, 0, 1,−1, 1,−1, 0) X91 (1, 0,−1, 1,−1, 1, 0)
X29 (− 1, 1,−1, 0, 0, 1, 1) X92 (1,−1, 1, 0, 0,−1,−1)
X30 (1,−1, 1, 0,−1, 0, 0) X93 (− 1, 1,−1, 0, 1, 0, 0)
X31 (1, 0,−1, 0, 1,−1, 1) X94 (− 1, 0, 1, 0,−1, 1,−1)
X32 (1, 0, 0, 0, 0, 1,−1) X95 (− 1, 0, 0, 0, 0,−1, 1)
X33 (− 1, 0, 1, 0,−1, 0, 0) X96 (1, 0,−1, 0, 1, 0, 0)
X34 (− 1, 1,−1, 0, 1,−1, 1) X97 (1,−1, 1, 0,−1, 1,−1)
X35 (− 1, 1, 0, 0, 0, 1,−1) X98 (1,−1, 0, 0, 0,−1, 1)
X36 (0,−1, 0, 0, 0, 1, 1) X99 (0, 1, 0, 0, 0,−1,−1)
X37 (1, 0,−1, 1,−1, 0, 1) X100 (− 1, 0, 1,−1, 1, 0,−1)
X38 (1, 0, 0, 0, 1,−1,−1) X101 (− 1, 0, 0, 0,−1, 1, 1)
X39 (− 1, 1,−1, 1,−1, 0, 1) X102 (1,−1, 1,−1, 1, 0,−1)
X40 (− 1, 1, 0, 0, 1,−1,−1) X103 (1,−1, 0, 0,−1, 1, 1)
X41 (0,−1, 0, 0, 1,−1, 1) X104 (0, 1, 0, 0,−1, 1,−1)
X42 (0,−1, 1, 0, 0, 1,−1) X105 (0, 1,−1, 0, 0,−1, 1)
X43 (1, 0, 0,−1, 0, 0, 1) X106 (− 1, 0, 0, 1, 0, 0,−1)
X44 (1, 0, 0, 1,−1, 0,−1) X107 (− 1, 0, 0,−1, 1, 0, 1)
X45 (− 1, 1, 0,−1, 0, 0, 1) X108 (1,−1, 0, 1, 0, 0,−1)
X46 (− 1, 1, 0, 1,−1, 0,−1) X109 (1,−1, 0,−1, 1, 0, 1)
X47 (0,−1, 0, 1,−1, 0, 1) X110 (0, 1, 0,−1, 1, 0,−1)
X48 (0,−1, 1, 0, 1,−1,−1) X111 (0, 1,−1, 0,−1, 1, 1)
X49 (0, 0,−1, 1, 0, 1, 0) X112 (0, 0, 1,−1, 0,−1, 0)
X50 (1, 0, 1,−1, 0, 0,−1) X113 (− 1, 0,−1, 1, 0, 0, 1)
X51 (− 1, 1, 1,−1, 0, 0,−1) X114 (1,−1,−1, 1, 0, 0, 1)
X52 (0,−1, 1,−1, 0, 0, 1) X115 (0, 1,−1, 1, 0, 0,−1)

Table 13: Second set of roots of E7 and associated fields.
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Field Positive root Field Negative root

X53 (0,−1, 1, 1,−1, 0,−1) X116 (0, 1,−1,−1, 1, 0, 1)
X54 (0, 0,−1, 1, 1,−1, 0) X117 (0, 0, 1,−1,−1, 1, 0)
X55 (0, 0, 0,−1, 1, 1, 0) X118 (0, 0, 0, 1,−1,−1, 0)
X56 (1, 1,−1, 0, 0, 0, 0) X119 (− 1,−1, 1, 0, 0, 0, 0)
X57 (− 1, 2,−1, 0, 0, 0, 0) X120 (1,−2, 1, 0, 0, 0, 0)
X58 (0,−1, 2,−1, 0, 0,−1) X121 (0, 1,−2, 1, 0, 0, 1)
X59 (0, 0,−1, 0, 0, 0, 2) X122 (0, 0, 1, 0, 0, 0,−2)
X60 (0, 0,−1, 2,−1, 0, 0) X123 (0, 0, 1,−2, 1, 0, 0)
X61 (0, 0, 0,−1, 2,−1, 0) X124 (0, 0, 0, 1,−2, 1, 0)
X62 (0, 0, 0, 0,−1, 2, 0) X125 (0, 0, 0, 0, 1,−2, 0)
X63 (2,−1, 0, 0, 0, 0, 0) X126 (− 2, 1, 0, 0, 0, 0, 0)

Table 14: Third set of roots of E7 and associated fields.

6.2. Superpotential

Plugging into the general expression for the mirror superpotential, we find
for this case that the mirror superpotential is given by

W =

7
∑

a=1

σa





n
∑

i=1

56
∑

β=1

ρai,βYi,β +

126
∑

m=1

αa
mZm





−
n
∑

i=1

m̃i

56
∑

β=1

Yi,β +

n
∑

i=1

56
∑

β=1

exp(−Yi,β) +

126
∑

m=1

Xm.

where Xm = exp(−Zm) and Xm are the fundamental fields, we get:

W =

7
∑

a=1

σaCa −
n
∑

i=1

m̃i

56
∑

β=1

Yi,β +

n
∑

i=1

56
∑

β=1

exp(−Yi,β) +

126
∑

m=1

Xm.(6.1)

where Ca are given in [7].

6.3. Coulomb ring relations

Integrating out the σa fields, we obtain seven constraints Ca = 0. Exponen-
tiating these constraints, we obtain a series of equations from which the
Coulomb ring relations will be derived. For reasons of notational sanity, we
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Field Weight Field Weight

Yi,1 (0, 0, 0, 0, 0, 1, 0) Yi,29 (0, 0, 0, 0, 0,−1, 0)
Yi,2 (0, 0, 0, 0, 1,−1, 0) Yi,30 (0, 0, 0, 0,−1, 1, 0)
Yi,3 (0, 0, 0, 1,−1, 0, 0) Yi,31 (0, 0, 0,−1, 1, 0, 0)
Yi,4 (0, 0, 1,−1, 0, 0, 0) Yi,32 (0, 0,−1, 1, 0, 0, 0)
Yi,5 (0, 1,−1, 0, 0, 0, 1) Yi,33 (0,−1, 1, 0, 0, 0,−1)
Yi,6 (0, 1, 0, 0, 0, 0,−1) Yi,34 (0,−1, 0, 0, 0, 0, 1)
Yi,7 (1,−1, 0, 0, 0, 0, 1) Yi,35 (− 1, 1, 0, 0, 0, 0,−1)
Yi,8 (− 1, 0, 0, 0, 0, 0, 1) Yi,36 (1, 0, 0, 0, 0, 0,−1)
Yi,9 (1,−1, 1, 0, 0, 0,−1) Yi,37 (− 1, 1,−1, 0, 0, 0, 1)
Yi,10 (− 1, 0, 1, 0, 0, 0,−1) Yi,38 (1, 0,−1, 0, 0, 0, 1)
Yi,11 (1, 0,−1, 1, 0, 0, 0) Yi,39 (− 1, 0, 1,−1, 0, 0, 0)
Yi,12 (− 1, 1,−1, 1, 0, 0, 0) Yi,40 (1,−1, 1,−1, 0, 0, 0)
Yi,13 (1, 0, 0,−1, 1, 0, 0) Yi,41 (− 1, 0, 0, 1,−1, 0, 0)
Yi,14 (− 1, 1, 0,−1, 1, 0, 0) Yi,42 (1,−1, 0, 1,−1, 0, 0)
Yi,15 (0,−1, 0, 1, 0, 0, 0) Yi,43 (0, 1, 0,−1, 0, 0, 0)
Yi,16 (1, 0, 0, 0,−1, 1, 0) Yi,44 (− 1, 0, 0, 0, 1,−1, 0)
Yi,17 (− 1, 1, 0, 0,−1, 1, 0) Yi,45 (1,−1, 0, 0, 1,−1, 0)
Yi,18 (0,−1, 1,−1, 1, 0, 0) Yi,46 (0, 1,−1, 1,−1, 0, 0)
Yi,19 (1, 0, 0, 0, 0,−1, 0) Yi,47 (− 1, 0, 0, 0, 0, 1, 0)
Yi,20 (− 1, 1, 0, 0, 0,−1, 0) Yi,48 (1,−1, 0, 0, 0, 1, 0)
Yi,21 (0,−1, 1, 0,−1, 1, 0) Yi,49 (0, 1,−1, 0, 1,−1, 0)
Yi,22 (0, 0,−1, 0, 1, 0, 1) Yi,50 (0, 0, 1, 0,−1, 0,−1)
Yi,23 (0,−1, 1, 0, 0,−1, 0) Yi,51 (0, 1,−1, 0, 0, 1, 0)
Yi,24 (0, 0,−1, 1,−1, 1, 1) Yi,52 (0, 0, 1,−1, 1,−1,−1)
Yi,25 (0, 0, 0, 0, 1, 0,−1) Yi,53 (0, 0, 0, 0,−1, 0, 1)
Yi,26 (0, 0,−1, 1, 0,−1, 1) Yi,54 (0, 0, 1,−1, 0, 1,−1)
Yi,27 (0, 0, 0,−1, 0, 1, 1) Yi,55 (0, 0, 0, 1, 0,−1,−1)
Yi,28 (0, 0, 0, 1,−1, 1,−1) Yi,56 (0, 0, 0,−1, 1,−1, 1)

Table 15: Weights of 56 of E7 and associated fields.

will also slightly simplify these expressions, as follows. To make predictions
for the A model, we will evaluate the ring relations on the critical locus,
where

Xm

Xm+63

= −1.

It is straightforward to see that each of the constraints Ca contains 34 dif-
ferences of corresponding Z’s, so that the exponential of the constraints
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contains 34 factors of the form Xm/Xm+63 – an even number of factors of
−1, which will cancel out. Therefore, since on the critical locus those fac-
tors will cancel out, we will omit them, and solely relate the exponentiated
constraints in terms of Y s.

The exponentiated constraints are listed in [7].
The mirror map is given by,

exp(−Yi,β) 7→ −m̃i +

7
∑

a=1

σaρ
a
i,β , Xm 7→

7
∑

a=1

σaα
a
m.

After applying the mirror map, the constraints adopt the form listed in [7].
Part of the excluded locus is defined by the condition that the Xm 6= 0.

This part of the excluded locus is encoded by a relation listed in [7]. The
other part of the excluded locus is determined by the fact that exp(−Y ) 6= 0.
Since on the critical locus,

exp(−Yi,β) = −m̃i +

7
∑

a=1

σaρ
a
i,β ,

so

−m̃i +

7
∑

a=1

σaρ
a
i,β 6= 0,

which is given more explicitly in [7].

6.4. Pure gauge theory

In this part we will consider the mirror to the pure E7 gauge theory. The
mirror superpotential is given in [7].

Now, we can proceed as in previous sections. For the reasons discussed
there, since each σ is multiplied by both Zµ and Z−µ with opposite signs,
the critical locus equations

∂W

∂Xµ
= 0

imply that on the critical locus,

(6.2) Xµ = −X−µ.
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(Furthermore, on the critical locus, each Xµ is determined by σs.) In addi-
tion, each derivative

∂W

∂σa

is a product of ratios of the form

Xµ

X−µ
= −1.

It is straightforward to check in the superpotential above that each σa is
multiplied by an even number of such ratios (i.e. the number of Z’s is a
multiple of four). Specifically, the sum of the absolute values of the Z’s
multiplying each σ is 68 = 4 · 17. Thus, the constraint implied by the σ’s is
automatically satisfied.

As a result, following the same analysis in [3], we see in this case, that the
critical locus is nonempty, and in fact is determined by the seven σs. In other
words, at the level of these topological field theory computations, we have
evidence that the pure supersymmetric E7 gauge theory in two dimensions
flows in the IR to a theory of seven free twisted chiral superfields.

7. E8

In this section, we will discuss the mirror theory to a two-dimensional 8 gauge
theory. The group E8 and its algebra are the largest and most complicated
exceptional groups, we shall only list results.

7.1. Mirror Landau-Ginzburg orbifold

We will consider an E8 gauge theory with n matter fields in the 248, the
lowest-dimensional representation, which also happens to be the adjoint rep-
resentation. The mirror Landau-Ginzburg model has fields

• Yiα, i ∈ {1, . . . , n}, α ∈ {1, . . . , 248}
• Xm, m ∈ {1, 2, . . . , 120}, correponding to positive roots, and X120+m,
associated with the negative roots of those associated to Xm,

• σa, a ∈ {1, 2, . . . , 8}.

As before, we work with an integer-lattice-basis for the roots and weights,
corresponding to standard theta angle periodicities. We associate the roots
and weights to fields as listed in the Tables 16, 17, and 18.
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For the rest of the fields, the roots and weights are given by

Xa+120 = −Xa, a = 1, . . . , 120,

Yi,a+120 = −Yi,120, a = 1, . . . , 120.

Field Positive root/weight Field Positive root/weight

X1, Yi,1, (0, 0, 0, 0, 0, 0, 1, 0) X2, Yi,2 (0, 0, 0, 0, 0, 1,−1, 0)
X3, Yi,3 (0, 0, 0, 0, 1,−1, 0, 0) X4, Yi,4 (0, 0, 0, 1,−1, 0, 0, 0)
X5, Yi,5 (0, 0, 1,−1, 0, 0, 0, 0) X6, Yi,6 (0, 1,−1, 0, 0, 0, 0, 1)
X7, Yi,7 (0, 1, 0, 0, 0, 0, 0,−1) X8, Yi,8 (1,−1, 0, 0, 0, 0, 0, 1)
X9, Yi,9 (−1, 0, 0, 0, 0, 0, 0, 1) X10, Yi,10 (1,−1, 1, 0, 0, 0, 0,−1)
X11, Yi,11 (−1, 0, 1, 0, 0, 0, 0,−1) X12, Yi,12 (1, 0,−1, 1, 0, 0, 0, 0)
X13, Yi,13 (−1, 1,−1, 1, 0, 0, 0, 0) X14, Yi,14 (1, 0, 0,−1, 1, 0, 0, 0)
X15, Yi,15 (−1, 1, 0,−1, 1, 0, 0, 0) X16, Yi,16 (0,−1, 0, 1, 0, 0, 0, 0)
X17, Yi,17 (1, 0, 0, 0,−1, 1, 0, 0) X18, Yi,18 (−1, 1, 0, 0,−1, 1, 0, 0),
X19, Yi,19 (0,−1, 1,−1, 1, 0, 0, 0) X20, Yi,20 (1, 0, 0, 0, 0,−1, 1, 0)
X21, Yi,21 (−1, 1, 0, 0, 0,−1, 1, 0) X22, Yi,22 (0,−1, 1, 0,−1, 1, 0, 0)
X23, Yi,23 (0, 0,−1, 0, 1, 0, 0, 1) X24, Yi,24 (1, 0, 0, 0, 0, 0,−1, 0)
X25, Yi,25 (−1, 1, 0, 0, 0, 0,−1, 0) X26, Yi,26 (0,−1, 1, 0, 0,−1, 1, 0)
X27, Yi,27 (0, 0,−1, 1,−1, 1, 0, 1) X28, Yi,28 (0, 0, 0, 0, 1, 0, 0,−1)
X29, Yi,29 (0,−1, 1, 0, 0, 0,−1, 0) X30, Yi,30 (0, 0,−1, 1, 0,−1, 1, 1)
X31, Yi,31 (0, 0, 0,−1, 0, 1, 0, 1) X32, Yi,32 (0, 0, 0, 1,−1, 1, 0,−1)
X33, Yi,33 (0, 0,−1, 1, 0, 0,−1, 1) X34, Yi,34 (0, 0, 0,−1, 1,−1, 1, 1)
X35, Yi,35 (0, 0, 0, 1, 0,−1, 1,−1) X36, Yi,36 (0, 0, 1,−1, 0, 1, 0,−1)
X37, Yi,37 (0, 0, 0,−1, 1, 0,−1, 1) X38, Yi,38 (0, 0, 0, 0,−1, 0, 1, 1)
X39, Yi,39 (0, 0, 0, 1, 0, 0,−1,−1) X40, Yi,40 (0, 0, 1,−1, 1,−1, 1,−1)
X41, Yi,41 (0, 1,−1, 0, 0, 1, 0, 0) X42, Yi,42 (0, 0, 0, 0,−1, 1,−1, 1)
X43, Yi,43 (0, 0, 1,−1, 1, 0,−1,−1) X44, Yi,44 (0, 0, 1, 0,−1, 0, 1,−1)
X45, Yi,45 (0, 1,−1, 0, 1,−1, 1, 0) X46, Yi,46 (1,−1, 0, 0, 0, 1, 0, 0)
X47, Yi,47 (−1, 0, 0, 0, 0, 1, 0, 0) X48, Yi,48 (0, 0, 0, 0, 0,−1, 0, 1)

Table 16: First set of roots of E8 and associated fields.
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Field Positive root/weight Field Positive root/weight

X49, Yi,49 (0, 0, 1, 0,−1, 1,−1,−1) X50, Yi,50 (0, 1,−1, 0, 1, 0,−1, 0)
X51, Yi,51 (0, 1,−1, 1,−1, 0, 1, 0) X52, Yi,52 (1,−1, 0, 0, 1,−1, 1, 0)
X53, Yi,53 (−1, 0, 0, 0, 1,−1, 1, 0) X54, Yi,54 (0, 0, 1, 0, 0,−1, 0,−1)
X55, Yi,55 (0, 1,−1, 1,−1, 1,−1, 0) X56, Yi,56 (0, 1, 0,−1, 0, 0, 1, 0)
X57, Yi,57 (1,−1, 0, 0, 1, 0,−1, 0) X58, Yi,58 (1,−1, 0, 1,−1, 0, 1, 0)
X59, Yi,59 (−1, 0, 0, 0, 1, 0,−1, 0) X60, Yi,60 (−1, 0, 0, 1,−1, 0, 1, 0)
X61, Yi,61 (0, 1,−1, 1, 0,−1, 0, 0) X62, Yi,62 (0, 1, 0,−1, 0, 1,−1, 0)
X63, Yi,63 (1,−1, 0, 1,−1, 1,−1, 0) X64, Yi,64 (1,−1, 1,−1, 0, 0, 1, 0)
X65, Yi,65 (−1, 0, 0, 1,−1, 1,−1, 0) X66, Yi,66 (−1, 0, 1,−1, 0, 0, 1, 0)
X67, Yi,67 (0, 1, 0,−1, 1,−1, 0, 0) X68, Yi,68 (1,−1, 0, 1, 0,−1, 0, 0)
X69, Yi,69 (1,−1, 1,−1, 0, 1,−1, 0) X70, Yi,70 (1, 0,−1, 0, 0, 0, 1, 1)
X71, Yi,71 (−1, 0, 0, 1, 0,−1, 0, 0) X72, Yi,72 (−1, 0, 1,−1, 0, 1,−1, 0)
X73, Yi,73 (−1, 1,−1, 0, 0, 0, 1, 1) X74, Yi,74 (0, 1, 0, 0,−1, 0, 0, 0)
X75, Yi,75 (1,−1, 1,−1, 1,−1, 0, 0) X76, Yi,76 (1, 0,−1, 0, 0, 1,−1, 1)
X77, Yi,77 (1, 0, 0, 0, 0, 0, 1,−1) X78, Yi,78 (−1, 0, 1,−1, 1,−1, 0, 0)
X79, Yi,79 (−1, 1,−1, 0, 0, 1,−1, 1) X80, Yi,80 (−1, 1, 0, 0, 0, 0, 1,−1)
X81, Yi,81 (0,−1, 0, 0, 0, 0, 1, 1) X82, Yi,82 (1,−1, 1, 0,−1, 0, 0, 0)
X83, Yi,83 (1, 0,−1, 0, 1,−1, 0, 1) X84, Yi,84 (1, 0, 0, 0, 0, 1,−1,−1)
X85, Yi,85 (−1, 0, 1, 0,−1, 0, 0, 0) X86, Yi,86 (−1, 1,−1, 0, 1,−1, 0, 1)
X87, Yi,87 (−1, 1, 0, 0, 0, 1,−1,−1) X88, Yi,88 (0,−1, 0, 0, 0, 1,−1, 1)
X89, Yi,89 (0,−1, 1, 0, 0, 0, 1,−1) X90, Yi,90 (1, 0,−1, 1,−1, 0, 0, 1)
X91, Yi,91 (1, 0, 0, 0, 1,−1, 0,−1) X92, Yi,92 (−1, 1,−1, 1,−1, 0, 0, 1)
X93, Yi,93 (−1, 1, 0, 0, 1,−1, 0,−1) X94, Yi,94 (0,−1, 0, 0, 1,−1, 0, 1)

Table 17: Second set of roots of E8 and associated fields.

7.2. Superpotential

In this section, we give the superpotential for the Landau-Ginzburg orbifold
mirror to the theory above.

W =

8
∑

a=1

σaCa −
n
∑

i=1

m̃i

248
∑

α=1

Yi,α +

n
∑

i=1

248
∑

α=1

exp(−Yi,α) +

240
∑

m=1

Xm,(7.1)

where the Ca are given in [7].
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Field Positive root/weight Field Positive root/weight

X95, Yi,95 (0,−1, 1, 0, 0, 1,−1,−1) X96, Yi,96 (0, 0,−1, 1, 0, 0, 1, 0)
X97, Yi,97 (1, 0, 0,−1, 0, 0, 0, 1) X98, Yi,98 (1, 0, 0, 1,−1, 0, 0,−1)
X99, Yi,99 (−1, 1, 0,−1, 0, 0, 0, 1) X100, Yi,100 (−1, 1, 0, 1,−1, 0, 0,−1)
X101, Yi,101 (0,−1, 0, 1,−1, 0, 0, 1) X102, Yi,102 (0,−1, 1, 0, 1,−1, 0,−1)
X103, Yi,103 (0, 0,−1, 1, 0, 1,−1, 0) X104, Yi,104 (0, 0, 0,−1, 1, 0, 1, 0)
X105, Yi,105 (1, 0, 1,−1, 0, 0, 0,−1) X106, Yi,106 (−1, 1, 1,−1, 0, 0, 0,−1)
X107, Yi,107 (0,−1, 1,−1, 0, 0, 0, 1) X108, Yi,108 (0,−1, 1, 1,−1, 0, 0,−1)
X109, Yi,109 (0, 0,−1, 1, 1,−1, 0, 0) X110, Yi,110 (0, 0, 0,−1, 1, 1,−1, 0)
X111, Yi,111 (0, 0, 0, 0,−1, 1, 1, 0) X112, Yi,112 (1, 1,−1, 0, 0, 0, 0, 0)
X113, Yi,113 (−1, 2,−1, 0, 0, 0, 0, 0) X114, Yi,114 (0,−1, 2,−1, 0, 0, 0,−1)
X115, Yi,115 (0, 0,−1, 0, 0, 0, 0, 2) X116, Yi,116 (0, 0,−1, 2,−1, 0, 0, 0)
X117, Yi,117 (0, 0, 0,−1, 2,−1, 0, 0) X118, Yi,118 (0, 0, 0, 0,−1, 2,−1, 0)
X119, Yi,119 (0, 0, 0, 0, 0,−1, 2, 0) X120, Yi,120 (2,−1, 0, 0, 0, 0, 0, 0)
Yi,241,Yi,242 (0, 0, 0, 0, 0, 0, 0, 0) Yi,243,Yi,244 (0, 0, 0, 0, 0, 0, 0, 0)
Yi,245,Yi,246 (0, 0, 0, 0, 0, 0, 0, 0) Yi,247,Yi,248 (0, 0, 0, 0, 0, 0, 0, 0)

Table 18: Third set of roots of E8 and associated fields.

7.3. Coulomb ring relations

For the group E8, we obtain eight Coulomb ring relations, using the same
methods as before. The results for these ring relations are listed in [7].

7.4. Pure gauge theory

In this part we will consider the mirror to the pure E8 gauge theory. For
brevity, we will not rewrite the superpotential here, explicitly omitting Y
fields, but instead merely refer to the expression (7.1) given earlier, leaving
the reader to omit Y fields.

Now, let us consider the critical locus of the superpotential above. For
each root µ, the fields Xµ and X−µ appear paired with opoosite signs cou-
pling to each σ. Therefore, one impliciation of the derivatives

∂W

∂Xµ
= 0

is that, on the critical locus,

(7.2) Xµ = −X−µ.
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(Furthermore, on the critical locus, each Xµ is determined by σs.) Next,
each derivative

∂W

∂σa
is a product of ratios of the form

Xµ

X−µ
= −1.

It is straightforward to check that in the superpotential above that each σa
is multiplied by an even number of such ratios (i.e. the number of Z’s is a
multiple of four). Specifically, for each σ, the sum of the absolute values of
the coefficients of the Z’s multiplying it is 116 = 4 · 29. Thus, the constraint
implied by the σ’s is automatically satisfied.

As a result, following the same analysis as in [3] and previous sections, we
see that the critical locus is nonempty, and in fact is determined by eight σs.
In other words, at the level of these topological field theory computations,
we have evidence that the pure supersymmetric E8 gauge theory in two
dimensions flows in the IR to a theory of eight free twisted chiral superfields.

8. Conclusions

In this paper we applied the recent nonabelian mirrors proposal [3] to ex-
amples of two-dimensional A-twisted gauge theories with exceptional gauge
groups G2, F4, E6,7,8. In each case, we explicitly compute the proposed mir-
ror Landau-Ginzburg orbifold and derived the Coulomb ring relations (the
analogue of quantum cohomology ring relations). In the cases of the G2 and
F4 gauge theories, we studied the action of the Weyl group on the criti-
cal locus equations, which allowed us to perform consistency checks on the
results here, and in the case of G2, performed a detailed analysis of Weyl
group orbits of the critical locis (vacua).

We also studied pure gauge theories with each gauge group, and provided
evidence (at the level of these topological-field-theory-type computations)
that each pure gauge theory (with simply-connected gauge group) flows in
the IR to a free theory of as many twisted chiral multiplets as the rank of
the gauge group.
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