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We investigate contact magnetic curves in the real special linear
group of degree 2. They are geodesics of the Hopf tubes over the
projection curve. We prove that periodic contact magnetic curves
in SL2R can be quantized in the set of rational numbers. Finally,
we study contact homogeneous magnetic trajectories in SL2R and
show that they project to horocycles in H2(−4).
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1. Introduction

A magnetic field on a Riemannian manifold is defined by a closed 2-form.
This definition comes from the fact that a closed 2-form on a Riemannian
manifold can be regarded as a generalization of static magnetic fields on a
Euclidean 3-space. See e.g. [8, 30]. A magnetic curve is a trajectory of a mag-
netic field and it is a solution of a second order differential equation known as
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the Lorentz equation associated to the magnetic field. Lorentz equation gen-
eralizes the equation of geodesics under arc length parametrization. Hence,
we may say that magnetic trajectories are perturbations of geodesics. On
the other hand, magnetic curves derive also from the variational problem
of the Landau-Hall functional. See e.g. [5]. In the absence of a magnetic
field, this functional is nothing but the kinetic energy functional. It is well
known that geodesics are critical points of the energy functional. This is
another argument for saying that magnetic trajectories are generalizations
of geodesics. In this sense, the geometric properties of magnetic curves show
features of the underlying manifold, exactly how geodesics do.

The relation between geometry and magnetic fields have a long history.
As is well known, the notion of linking number can be traced back to Gauss’
work on terrestrial magnetism (see [27]). The linking number connects topol-
ogy and Ampère’s law in magnetism. De Turck and Gluck studied magnetic
curves and linking numbers in the 3-sphere S3 and hyperbolic 3-space H3

[9, 10].
On the other hand, contact structures play a important role in 3-dimen-

sional topology. In [11], we have studied magnetic trajectories in Sasakian
manifolds with respect to the magnetic field derived from the contact struc-
ture (contact magnetic field). Even that we employ physical terms, when
we study contact magnetic curves, only we need is to get perturbations of
geodesics obtained from the (almost) contact structure on the manifold. For
readers who are not familiar with magnetic fields, it is enough to consider
that these trajectories are special curves obtained as solutions of the Lorentz
equation, which generalizes the equation of geodesics.

In 2007, Taubes [31] proved the generalized Weinstein conjecture in di-
mension 3, namely, on a compact, orientable, contact 3-manifold the Reeb

vector field ξ has at least one closed integral curve. Linked to this problem it
is important to investigate the existence of periodic magnetic trajectories of
the contact magnetic field defined by ξ in Sasakian manifolds, in particular
in Sasakian space forms.

In 2009, Cabrerizo et al. [7] have been looked for periodic orbits of the
contact magnetic field on the unit sphere S3. See also [2]. The present authors
[18] studied periodicity of contact magnetic trajectories on the 3-dimensional
Berger sphere equipped with the canonical homogeneous Sasakian struc-
ture of constant φ-sectional curvature c > −3. The Berger 3-sphere M3(c)
equipped with Sasakian structure of constant φ-sectional curvature c has
the structure of a principal circle bundle. The base space of this fibering is
the 2-sphere S2(c+ 3) of curvature c+ 3. This fibering includes the classical
Hopf fibering S3(1) → S2(4).
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There are three classes of 3-dimensional simply connected Sasakian space
forms of constant φ-sectional curvature c:

• the Berger 3-sphere if c > −3; in particular the unit 3-sphere S3(1) if
c = 1;

• the Heisenberg group Nil3 if c = −3;

• the universal covering of SL2R if c < −3.

Note also that these spaces (with c=1, c≤−3) are model spaces of Thurston
geometries. As a hyperbolic counterpart of the Berger 3-sphere, the special
linear group SL2R admits a structure of principal circle bundle over the
hyperbolic 2-space H2(c+ 3) of curvature c+ 3 < 0. The special linear group
equipped with canonical left invariant Sasakian structure has constant φ-
sectional curvature c. This paper is a continuation of previous papers [11, 18].
Our aim is to study periodicity of contact magnetic trajectories of SL2R.

This paper is structured as follows. Firstly, considering the Hopf fibering
from SL2R to H2(−4), we show that contact magnetic curves in SL2R are
geodesics of the Hopf tubes over the projection curve. Then, we write the
differential equations satisfied by the magnetic trajectories in SL2R. The key
of this part is the use of Iwasawa decomposition. In the following, we find
a periodicity condition for contact magnetic curves in SL2R. We show that
periodic magnetic curves in SL2R can be quantized in the set of rational
numbers. Here we emphasize that periodic contact magnetic curves in SL2R

are knots in a solid torus. Knots in solid tori have been paid attention of
knots researchers, see e.g., [13]. For torus knots in ideal magnetohydrody-
namics, see [25]. Periodic magnetic curves in SL2R provides nice examples
of torus knots.

We pay a special attention on Legendre curves, that is those curves whose
contact angle is π/2. It should be remarked that the notion of Legendre curve
only depends on the contact structure of SL2R.

Finally, we are also interested in the study of magnetic trajectories in
SL2R, which project to horocycles in H2(−4). Thus, in Section 6, we study
homogeneous magnetic trajectories in SL2R, that is contact magnetic curves
which are obtained from one-parameter subgroups exp(tX), for X ∈ sl2R.
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2. Preliminaries

2.1. Magnetic curves

The motion of the charged particles in a Riemannian manifold under the
action of the magnetic fields are known as magnetic curves. More precisely,
a magnetic field F on a Riemannian manifold (M, g) is a closed 2-form F
and the Lorentz force associated to F is a tensor field ϕ of type (1, 1) such
that

(2.1) F (X,Y ) = g(ϕX, Y ), X, Y ∈ X(M).

A curve γ on M that satisfies the Lorentz equation

(2.2) ∇γ̇ γ̇ = ϕ(γ̇),

is calledmagnetic trajectory of F or simply amagnetic curve. Here∇ denotes
the Levi-Civita connection associated to the metric g. A magnetic field F is
said to be uniform if ∇F = 0.

It is well-known that the magnetic trajectories have constant speed.
When the magnetic curve γ(s) is arc length parametrized, it is called a
normal magnetic curve.

The dimension 3 is rather special, since it allows us to identify 2-forms
with vector fields via the Hodge ⋆ operator and the volume form dvg of
the (oriented) manifold. In this way, magnetic fields may be identified with
divergence free vector fields by

FV = ιV dvg.

Magnetic fields F corresponding to Killing vector fields are usually known
as Killing magnetic fields. Their trajectories, called Killing magnetic curves,
are of great importance since they are related to the Kirchhoff elastic rods.
See e.g., [3, 4].

2.2. Sasakian manifolds

A (φ, ξ, η) structure on a manifold M is defined by a field φ of endomor-
phisms of tangent spaces, a vector field ξ and a 1-form η satisfying

η(ξ) = 1, φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0.



✐

✐

“6-Munteanu” — 2020/5/15 — 12:43 — page 2165 — #5
✐

✐

✐

✐

✐

✐

Magnetic curves in the real special linear group 2165

If (M,φ, ξ, η) admits a compatible Riemannian metric g, namely

g(φX,φY ) = g(X,Y )− η(X)η(Y ), for all X,Y ∈ X(M),

thenM is said to have an almost contact metric structure, and (M,φ, ξ, η, g)
is called an almost contact metric manifold. Consequently, we have that ξ is
unitary and η(X) = g(ξ,X), for any X ∈ X(M).

We define a 2-form Ω on (M,φ, ξ, η, g) by

(2.3) Ω(X,Y ) = g(φX, Y ), for all X,Y ∈ X(M),

called the fundamental 2-form of the almost contact metric structure
(φ, ξ, η, g).

If Ω = dη, then (M,φ, ξ, η, g) is called a contact metric manifold. Here
dη is defined by dη(X,Y ) = 1

2

(
Xη(Y )− Y η(X)− η([X,Y ])

)
, for anyX,Y ∈

X(M). On a contact metric manifold M , the 1-form η is a contact form (see
Blair’s book [6]). The vector field ξ is called the Reeb vector field of M
and it is characterized by ιξη = 1 and ιξdη = 0. Here ι denotes the interior
product. In analytical mechanics, ξ is traditionally called the characteristic

vector field of M .
An almost contact metric manifold M is said to be normal if the nor-

mality tensor S(X,Y ) = Nφ(X,Y ) + 2dη(X,Y )ξ vanishes, where Nφ is the
Nijenhuis torsion of φ defined by

Nφ(X,Y ) = [φX,φY ] + φ2[X,Y ]− φ[φX, Y ]− φ[X,φY ],

for any X,Y ∈ X(M).
A Sasakian manifold is defined as a normal contact metric manifold.

Denoting by ∇ the Levi-Civita connection associated to g, the Sasakian
manifold (M,φ, ξ, η, g) is characterized by

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X, for any X,Y ∈ X(M).

As a consequence, we have

(2.4) ∇Xξ = φX, ∀X ∈ X(M).

A contact metric structure (φ, ξ, η, g) is called K-contact if ξ is a Killing
vector field. Due to (2.4) and the fact that φ is skew-symmetric, it follows
that a Sasakian manifold is K-contact. The converse is not true in general.
Yet, a 3-dimensional manifold is Sasakian if and only if it is K-contact.
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A plane section Π at p ∈M2n+1 is called a φ-section if it is invariant un-
der φp. The sectional curvature K(Π) of a φ-section is called the φ-sectional
curvature of M2n+1 at p. A Sasakian manifold (M2n+1, φ, ξ, η, g) is said to
be a Sasakian space form if it has constant φ-sectional curvature.

Take a positive constant a and define a new Sasakian structure (φ, ξ̂, η̂, ĝ)
on M by

ξ̂ :=
1

a
ξ, η̂ := aη, ĝ := ag + a(a− 1)η ⊗ η.

This structure is called a D-homothetic deformation of (φ, ξ, η, g). In par-
ticular, if M(c) is a Sasakian space form of constant φ-sectional curvature
c, then deforming the structure we obtain also a Sasakian space form M(ĉ),
where ĉ = c+3

a
− 3. For every value of c there exists Sasakian space forms, as

follows: the elliptic Sasakian space forms, also known as the Berger spheres

if c > −3, the Heisenberg space R2n+1(−3), if c = −3, and B2n × R when
c < −3. See also [6, Theorem 7.15]. Note that the case c > −3 includes the
standard unit sphere S2n+1(1).

Example 2.1. Let us identify the complex ball B2 of curvature −c2 (c > 0)
with the upper half plane

H2(−c2) = {(x, y) ∈ R2 | y > 0}

equipped with the Poincaré metric ḡ = (dx2 + dy2)/(c2y2) of constant cur-
vature −c2. Then we have a global orthonormal frame field

cy
∂

∂x
, cy

∂

∂y
.

The standard complex structure J of H2(−4) is defined by

J
∂

∂x
=

∂

∂y
, J

∂

∂y
= − ∂

∂x
.

Then H2(−c2) = (H2(−c2), J) is a Kähler manifold.
The Kähler form Ω̄ of H2(−c2) is defined by

Ω̄(X,Y ) = ḡ(JX, Y ).

Define the one-form ω on H2(−c2) by ω = 2dx/(c2y) then the Kähler
form of H2(−c2) is dω.



✐

✐

“6-Munteanu” — 2020/5/15 — 12:43 — page 2167 — #7
✐

✐

✐

✐

✐

✐

Magnetic curves in the real special linear group 2167

On the product manifold H2(−c2)× R, we equip the contact metric
structure (φ, ξ, η, g) by

η = dt+ π∗ω = dt+
2dx

c2y
, g = π∗gB + η ⊗ η =

dx2 + dy2

c2y2
+

(
dt+

2dx

c2y

)2

,

ξ =
∂

∂t
, φ

∂

∂x
=

∂

∂y
, φ

∂

∂y
= − ∂

∂x
+

2

c2y

∂

∂t
, φ

∂

∂t
= 0.

Then the resulting Sasakian manifold is a simply connected Sasakian space
form of constant φ-sectional curvature −c2 − 3.

Note that this Sasakian space form is the universal covering of SL2R.

Remark 2.1. On the product manifold H2(−c2)× R, we may consider the
following one-parameter family of Riemannian metrics:

gν :=
dx2 + dy2

c2 y2
+

(
dt+

ν dx

c2 y

)2

, ν ∈ R, ν ≥ 0.

For ν = 2, we recover the metric of the Sasakian space form of constant
φ-sectional curvature −c2 − 3. On the other hand, for ν = 0, we obtain the
Riemannian product H2(−c2)× E1. Moreover, when ν = c2, we obtain the
Sasaki-lift metric of the universal covering of the unit tangent sphere bundle
UH2(−c2) of H2(−c2).

2.3. Magnetic curves in Sasakian manifolds

Let (M,φ, ξ, η, g) be a contact metric manifold and let Ω be the fundamental
2-form defined by (2.3). Since Ω = dη on a contact metric manifold, Ω is a
closed 2-form, thus we can define a magnetic field on M by

Fq(X,Y ) = qΩ(X,Y ),

whereX,Y ∈ X(M) and q is a real constant. We call Fq the contact magnetic

field with the strength q. Notice that if q = 0, then the contact magnetic field
vanishes identically and the magnetic curves are the geodesics of M . In the
sequel we assume q ̸= 0.

The Lorentz force ϕq associated to the contact magnetic field Fq may be
easily determined combining (2.3) and (2.1), namely

ϕq = qφ,

where φ is the field of endomorphisms of the contact metric structure.
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In this setting, the Lorentz equation (2.2) can be written as

(2.5) ∇γ′γ′ = qφγ′,

where γ : I ⊆ R →M2n+1 is a smooth curve parametrized by arc length. The
solutions of (2.5) are called normal magnetic curves or trajectories for Fq.

2.4. Contact magnetic curves in 3-dimensional Sasakian
manifolds

Now we assume thatM is a 3-dimensional Sasakian manifold. A curve γ(u),
parametrized by arclength, is said to be slant if it makes constant angle with
the Reeb vector flow, that is the contact angle σ(u), defined by cosσ(u) =
g(γ′(u), ξγ(u)), is constant along γ.

Proposition 2.1 ([11], [17]). Let M be a 3-dimensional Sasakian man-

ifold. Then a contact magnetic curve γ(u), parametrized by arclength, is

a slant helix with first curvature κ1 = |q| sinσ and second curvature κ2 =
|q cosσ − 1|. The principal normal N and binormal B are given by

N =
ε

| sinσ|φγ
′, B =

ε

| sinσ|(ξ − cosσ γ′).

Here ε is the signature of q.

3. The special linear group

3.1. Iwasawa decomposition

Let SL2R be the real special linear group of degree 2:

SL2R =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ R, ad− bc = 1

}
.

By using the Iwasawa decomposition SL2R = NAK of SL2R;

N =

{(
1 x
0 1

) ∣∣∣∣ x ∈ R

}
, (Nilpotent part)

A =

{( √
y 0
0 1/

√
y

) ∣∣∣∣ y > 0

}
, (Abelian part)

K =

{(
cos θ sin θ
− sin θ cos θ

) ∣∣∣∣ 0 ≤ θ < 2π

}
= SO(2), (Maximal torus)
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we can introduce the following global coordinate system (x, y, θ) of SL2R:

(3.1) (x, y, θ) 7−→
(

1 x
0 1

)( √
y 0
0 1/

√
y

)(
cos θ sin θ
− sin θ cos θ

)
.

The mapping

ψ : H2(−4)× S1 → SL2R;

ψ(x, y, θ) :=

(
1 x
0 1

)(√
y 0
0 1/

√
y

)(
cos θ sin θ
− sin θ cos θ

)

is a diffeomorphism onto SL2R. Hereafter, we shall refer (x, y, θ) as a global
coordinate system of SL2R. Hence SL2R is diffeomorphic to R× R+ × S1

and hence diffeomorphic to R3 \ R. Since R× R+ is diffeomorphic to open
unit disk D, SL2R is diffeomorphic to open solid torus D× S1.

Proposition 3.1. The Iwasawa decomposition of an element p = (pij) ∈
SL2R is given explicitly by p = n(p)a(p)k(p), where

n(p) =

(
1 x
0 1

)
, a(p) =

( √
y 0
0 1/

√
y

)
, k(p) =

(
cos θ sin θ
− sin θ cos θ

)

with

x =
p11p21 + p12p22
(p21)2 + (p22)2

, y =
1

(p21)2 + (p22)2
, eiθ =

p22 − ip21√
(p21)2 + (p22)2

.

3.2. Left invariant vector fields

As is well known, the Lie algebra sl2R of SL2R is given explicitly by

sl2R =

{
X ∈ M2R

∣∣∣∣ trX = 0

}
.

We take the following basis of sl2R:

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

This basis satisfies the commutation relations:

[E,F ] = H, [F,H] = 2F, [H,E] = 2E.
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The Lie algebra n, a and k of closed groups N , A and K are given by

n = RE, a = RH, k = R(E − F ).

The left invariant vector fields obtained by left translating E, F and H
are denoted by the same letter E, F and G, respectively. These left invariant
vector fields are given by

E = y cos(2θ)
∂

∂x
+ y sin(2θ)

∂

∂y
+ sin2 θ

∂

∂θ
,

F = y cos(2θ)
∂

∂x
+ y sin(2θ)

∂

∂y
− cos2 θ

∂

∂θ
,

H = −2y sin(2θ)
∂

∂x
+ 2y cos(2θ)

∂

∂y
+ sin(2θ)

∂

∂θ
.

One notices that

∂

∂θ
= E − F

is left invariant. On the other hand we have

E + F =cos(2θ)

(
2y

∂

∂x
− ∂

∂θ

)
+ sin(2θ)

(
2y

∂

∂y

)
,

H =− sin(2θ)

(
2y

∂

∂x
− ∂

∂θ

)
+ cos(2θ)

(
2y

∂

∂y

)
.

Here we introduce a frame field {ϵ1, ϵ2, ϵ3} by

(3.2) ϵ1 = 2y
∂

∂x
− ∂

∂θ
, ϵ2 = 2y

∂

∂y
, ϵ3 =

∂

∂θ
.

This frame field is related to {E + F,H,E − F} by

(E + F,H,E − F ) = (ϵ1, ϵ2, ϵ3)




cos(2θ) − sin(2θ) 0
sin(2θ) cos(2θ) 0

0 0 1


 .

Remark 3.1. The Lie algebra h is the Cartan subalgebra of sl2R. Moreover
n and RF are root spaces with respect to h. The decomposition
sl2R = h⊕ n⊕ RF is the root space decomposition (known also as Gauss
decomposition) of sl2R.
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3.3. Linear fractional transformations

The special linear group SL2R acts transitively and isometrically on the
upper half plane:

H2(−4) =

(
{(x, y) ∈ R2 | y > 0}, dx

2 + dy2

4y2

)

of constant curvature −4 by the linear fractional transformation as

(
a b
c d

)
· z = az + b

cz + d
.

Here we regard a point (x, y) ∈ H2(−4) as a complex number z = x+ yi.

Remark 3.2. A linear fractional transformation determined by a matrix(
a b
c d

)
̸= ± Id with ad− bc = 1 is said to be

• elliptic if |a+ d| < 2;

• parabolic if |a+ d| = 2;

• hyperbolic if |a+ d| > 2.

The isotropy subgroup of SL2R at i = (0, 1) is the rotation group SO(2).
The natural projection π : (SL2R, g) → SL2R/SO(2) = H2(−4) is given ex-
plicitly by

π(x, y, θ) = (x, y) ∈ H2(−4)

in terms of the global coordinate system (3.1).
The tangent space TiH

2(−4) at the origin i = (0, 1) is identified with the
vector subspace m defined by

m = {X ∈ sl2R | tX = X}.

The Lie algebra g = sl2R has the orthogonal splitting g = k⊕m. This split-
ting can be carried out explicitly as

X = Xk +Xm, Xk =
1

2
(X − tX), Xm =

1

2
(X + tX).



✐

✐

“6-Munteanu” — 2020/5/15 — 12:43 — page 2172 — #12
✐

✐

✐

✐

✐

✐

2172 J. Inoguchi and M. I. Munteanu

3.4. Left invariant metrics

Define a one-parameter family of inner products {⟨·, ·⟩λ | λ ∈ R∗} on sl2R so
that {E, F, H/λ} is orthonormal with respect to ⟨·, ·⟩λ. By left-translating
these inner products, we equip a one parameter family {gλ} of left invariant
Riemannian metrics on SL2R. This family {gλ}λ∈R∗ is different from the
family {gν}ν≥0 in Remark 2.1. With respect to the global coordinate system
(x, y, θ), each gλ is expressed as

1

2y2



2(cos4 θ + sin4 θ + λ2 sin2 θ cos2 θ) (1− λ2/2) sin 2θ cos 2θ 2y

(1− λ2/2) sin 2θ cos 2θ sin2 2θ + (λ2/2) cos2 2θ 0
2y 0 4y2


 .

In particular the x and the y-coordinate curves are orthogonal if and only
if λ = ±

√
2.

The left invariant metric g√2 is given by

g√2 = 2

{
dx2 + dy2

4y2
+

(
dθ +

dx

2y

)2
}
.

Here we would like to remark that one-forms

dx

2y
,
dy

2y
, dθ +

dx

2y

are globally defined on SL2R.

For simplicity we shall restrict our attention to g√2. In addition, to adapt
our computations to Sasakian geometry, we use the following homothetical
change of g√2.

g :=
1

2
g√2 =

dx2 + dy2

4y2
+

(
dθ +

dx

2y

)2

.

It is easy to see that the projection π : (SL2R, g) → SL2R/SO(2) = H2(−4)
is a Riemannian submersion with totally geodesic fibres. This submersion
π : (SL2R, g) → H2(−4) is called the hyperbolic Hopf fibering of H2(−4).
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On the Lie algebra g = sl2R, the inner product ⟨·, ·⟩ at the identity induced
from g is written as

⟨X,Y ⟩ = 1

2
tr (tXY ), X, Y ∈ sl2R.

By using this formula, we can see that the metric g is not only invariant
by SL2R-left translation but also right translations by SO(2). Hence the Lie
group SL2R× SO(2) with multiplication:

(a, b)(a′, b′) = (aa′, bb′)

acts isometrically on SL2R via the action:

(SL2R× SO(2))× SL2R → SL2R; (a, b) ·X = aXb−1.

Furthermore, this action of SL2R× SO(2) on SL2R is transitive, hence SL2R

is a Riemannian homogeneous space of SL2R× SO(2). The isotropy sub-
group of SL2R× SO(2) at the identity matrix Id is the diagonal subgroup

∆K = {(k, k) | k ∈ K} ∼= K

of K ×K. The coset space (SL2R× SO(2))/SO(2) is a naturally reductive
homogeneous space.

The tangent space TIdSL2R is the Lie algebra g = sl2R. This tangent
space is identified with the vector subspace p defined by

p = {(V +W, 2W ) | V ∈ m, W ∈ k}.

The Lie algebra of the product group G×K is g⊕ k. On the other hand the
Lie algebra of ∆K is

∆k = {(W,W ) |W ∈ k} ∼= k.

The Lie algebra g⊕ k is decomposed as g⊕ k = ∆(k)⊕ p.
Every (X,Y ) ∈ g⊕ k is decomposed as

(X,Y ) = (2Xk − Y, 2Xk − Y ) + (Xm + (Y −Xk), 2(Y −Xk)).
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3.5. Levi-Civita connection

We choose an orthonormal basis of (sl2R, ⟨·, ·⟩) by

E1 =
√
2E, E2 =

√
2F, E3 = H.

Then the commutation relations are

[E1, E2] = 2E3, [E2, E3] = 2E2, [E3, E1] = 2E1.

Let us denote the Levi-Civita connection of (SL2R, g) by ∇. By using the
Koszul formula:

2⟨∇XY, Z⟩ = −⟨X, [Y, Z]⟩+ ⟨Y, [Z,X]⟩+ ⟨Z, [X,Y ]⟩, X, Y, Z ∈ g,

one can obtain the following formulas:

∇E1
E1 = 2E3, ∇E1

E2 = E3, ∇E1
E3 = −2E1 − E2,

∇E2
E1 = −E3, ∇E2

E2 = −2E3, ∇E2
E3 = E1 + 2E2,

∇E3
E1 = −E2, ∇E3

E2 = E1, ∇E3
E3 = 0.

The bi-invariance obstruction U defined by

2⟨U(X,Y ), Z⟩ = −⟨X, [Y, Z]⟩+ ⟨Y, [Z,X]⟩, X, Y ∈ g

is given by

U(E1, E1) = 2E3, U(E1, E2) = 0, U(E1, E3) = −E1 − E2,(3.3)

U(E2, E2) = −2E3, U(E2, E3) = E1 + E2, U(E3, E3) = 0.

The Levi-Civita connection is rewritten as

(3.4) ∇XY =
1

2
[X,Y ] + U(X,Y ), X, Y ∈ g.

3.6. Curvature

We take the following orthonormal coframe field of SL2R:

ω1 =
dx

2y
, ω2 =

dy

2y
, ω3 = dθ +

dx

2y
.
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The dual frame field of {ω1, ω2, ω3} is the frame field {ϵ1, ϵ2, ϵ3} introduced
by (3.2). Note that this orthonormal frame field is not left invariant with
respect to the Lie group structure.

The Levi-Civita connection ∇ of g is given by the following formulas:

∇ϵ1ϵ1 = 2ϵ2, ∇ϵ1ϵ2 = −2ϵ1 − ϵ3, ∇ϵ1ϵ3 = ϵ2,

∇ϵ2ϵ1 = ϵ3, ∇ϵ2ϵ2 = 0, ∇ϵ2ϵ3 = −ϵ1,
∇ϵ3ϵ1 = ϵ2, ∇ϵ3ϵ2 = −ϵ1, ∇ϵ3ϵ3 = 0.

The commutation relations of the basis are given by

[ϵ1, ϵ2] = −2ϵ1 − 2ϵ3, [ϵ1, ϵ3] = 0, [ϵ2, ϵ3] = 0.

The Riemannian curvature tensor R of the metric g defined by

R(X,Y ) := ∇X∇Y −∇Y ∇X −∇[X,Y ], X, Y ∈ X(SL2R)

is described by the following formulas:

R(ϵ1, ϵ2)ϵ1 = 7ϵ2, R(ϵ1, ϵ2)ϵ2 = −7ϵ1,
R(ϵ1, ϵ3)ϵ1 = −ϵ3, R(ϵ1, ϵ3)ϵ3 = ϵ1,
R(ϵ2, ϵ3)ϵ2 = −ϵ3, R(ϵ2, ϵ3)ϵ3 = ϵ2.

The other significant components are zero.

3.7. Canonical Sasakian structure of SL2R

The one-form η = dθ + dx/(2y) is a contact form on SL2R, i.e., dη ∧ η ̸= 0.
The Reeb vector field of η is ξ = ϵ3. The contact distribution determined
by η coincides the horizontal distribution of the Riemannian submersion
π : G→ H2(−4).

Remark 3.3. Under the identification k ∼= R, the contact form η is regarded
as a connection form of the principal circle bundle SL2R → H2(−4).

Let us define an endomorphism field φ by

φ ϵ1 = ϵ2, φ ϵ2 = −ϵ1, φ ϵ3 = 0.

Then (φ, ξ, η, g) satisfies the following relations:

φ2 = −I + η ⊗ ξ, dη(X,Y ) = g(φX, Y ),
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g(φX,φY ) = g(X,Y )− η(X)η(Y ),

∇Xξ = φX,

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X

for all X, Y ∈ X(SL2R). Thus the structure (φ, ξ, η) is an almost contact
structure compatible to the metric g. In other words, structure (φ, ξ, η, g)
is an almost contact metric structure associated to the the contact man-
ifold (SL2R, η) [16]. Since all the structure tensor fields are left invariant,
the resulting almost contact metric manifold (SL2R, φ, ξ, η, g) is a homoge-
neous Sasakian manifold of constant φ-sectional curvature −7. The structure
(φ, ξ, η, g) is called the canonical Sasakian structure of SL2R.

Remark 3.4. The Riemannian curvature tensor R of (SL2R, g) is given
explicitly by

R(X,Y )Z =− g(Y, Z)X + g(Z,X)Y

− 2 {η(Z)η(X)Y − η(Y )η(Z)X

+ g(Z,X)η(Y )ξ − g(Y, Z)η(X)ξ

− g(Y, φZ)φX − g(Z,φX)φY + 2g(X,φY )φZ }

in terms of the canonical Sasakian structure.
For more informations on the canonical Sasakian structure of SL2R, we

refer to [16].

4. Hopf tubes

4.1. Fundamental equations of Hopf tubes

Let π : (SL2R, g) → (H2(−4), ḡ) be the hyperbolic Hopf fibering. Consider a
regular curve β : R −→ H2(−4), u 7→ β(u). As usual, β will be parametrized
by the arc length and let β̂ be a horizontal lift of β. This means that
π(β̂(u)) = β(u) for all u ∈ R and ⟨β̂(u)−1β̂′(u), ϵ3⟩ = 0. If we represent β(u)
as β(u) = (x(u)), y(u)), then the horizontal lift β̂(u) is given by β̂(u) =
(x(u), y(u), θ(u)) whose third coordinate θ(u) is determined by the ordinary
differential equation

dθ

du
= − 1

y(u)

dx

du

with initial condition θ(0) = θ0.
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The complete lift of β, namely π−1(β) is a flat surface in SL2R and it is
usually called the Hopf tube over β.

Denote π−1(β) byHβ . The Hopf tubeHβ is represented as an immersion:

F : R× R −→ SL2R, (t, u) 7−→ F (t, u) = β̂(u)k(t),

where

k(t) =

(
cos t sin t
− sin t cos t

)
.

In other words,

F (t, u) = (x(u), y(u), θ(u) + t).

The derivatives are

Fu =
x′

2y
ϵ1 +

y′

2y
ϵ2, Ft = ϵ3.

Hence the induced metric gHβ
is computed as

gHβ
= dt2 + du2.

Let us compute the second fundamental form of Hβ . Let {T (u), N(u)} the
Frenet frame field of β(u). As usual

T (u) = β′(u), N(u) = JT (u).

The signed curvature κβ is defined by

∇β′T = κβN.

Let us denote by T̂ the horizontal lift of T . Then T tangents toHβ . Moreover

{T̂ , ξ} is an orthonormal frame field of Hβ . The horizontal lift N̂ of N is

a unit normal vector field of Hβ . One can check that N̂ = φT̂ . The Gauss
formula of Hβ is given by [15, §1.3]:

∇
T̂
T̂ = (κβ ◦ π) N̂ , ∇

T̂
ξ = ∇ξT̂ = N̂ , ∇ξξ = 0.

These formula imply that Hβ is flat and the second fundamental form h

derived from N̂ is

h(T̂ , T̂ ) = κβ ◦ π, h(T̂ , ξ) = 1, h(ξ, ξ) = 0.

Thus, the mean curvature of Hβ is (κβ ◦ π)/2.
Hence we have proved the following fact.
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Proposition 4.1. If β is a curve on H2(−4) of length L, then the corre-

sponding Hopf tube Hβ is isometric to S1(1)× [0, L], where S1(1) is the unit

circle endowed with the metric dt2. Moreover, its mean curvature in SL2R

is (κβ ◦ π)/2, where κβ is the signed curvature of β in H2(−4).

If β is a closed curve, i.e., β(u+ L) = β(u) for all u ∈ R, then the relation
F (t, u) = β̂(u)k(t) defines a covering of the (t, u) plane onto an immersed
torus in SL2R, called the Hopf torus corresponding to β.

Remark 4.1. The Hopf tube Hβ can be parametrized by the following
immersion.

F1(u, v) = (x(u), y(u), v), u ∈ R, v ∈ S1.

Then by using the Iwasawa decomposition, the Hopf tube over β can be
parametrized as an immersion F1 : R× S1 → SL2R:

(4.1) F1(u, v) =

(
1 x(u)
0 1

)( √
y(u) 0

0 1/
√
y(u)

)(
cos v sin v
− sin v cos v

)
.

Under this parametization the induced metric is computed as:

(
dv +

x′(u)

2y(u)
du

)2

+ du2.

One can check that the induced metric on Hβ is flat. This parametization
is used in [14, 22].

For later use we recall here the classification of Hopf tubes with constant
mean curvature [22] (see also Appendix A).

Proposition 4.2 (Classification of CMC Hopf tubes). Let β be a

unit speed curve in H2(−4) with curvature κ and Hβ the Hopf tube over

β in SL2R. Then Hβ is of constant mean curvature if and only if β is a

Riemannian circle in H2(−4).
The Hopf cylinder Hβ is classified in the following way:

(1) If κβ = 0, then Hβ is a minimal Hopf tube over a geodesic.

(2) If 0 < κ2β < 4, then Hβ is a Hopf tube over an open circle or a Hopf

tube over a line segment y = ±(
√
1− 4κ2/(2κ))x.

(3) If κ2β = 4, then Hβ is a Hopf tube over a horocycle or a Hopf tube

over y = constant.
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(4) If κ2β > 4, then Hβ is a Hopf tube over a closed circle. In this case,

Hβ is an embedded Hopf torus.

4.2. Contact magnetic curves and Hopf tubes

We investigate the projection image of contact magnetic curves. First we
recall the following fundamental fact.

Proposition 4.3. Let γ(u) be an arclength parametrized contact magnetic

curve in a 3-dimensional Sasakian manifold (M,φ, ξ, η, g). Then, the contact
angle σ(u), defined by cosσ(u) = g(ξ, γ′(u)), is constant along γ.

Contact magnetic curves are included in some Hopf tubes. Moreover, we
have the following.

Theorem 4.1. A contact magnetic curve γ in SL2R is a geodesic of the

Hopf tube Hβ over β = π ◦ γ.

Proof. Let γ(u) be a contact magnetic curve with strength q parametrized
by arclength u. Set β = π ◦ γ then γ is contained in the Hopf tube Hβ .

Remark that u is not, in general, the arclength parameter of β. Now let N̂
the unit normal vector field along Hβ as before, then we have π∗N̂ = N .
The Gauss-formula of Hβ implies

(4.2) ∇γ′γ′ = ∇̇γ′γ′ + h(γ′, γ′)N̂ .

Here ∇̇ is the Levi-Civita connection of Hβ and h is as before.
Let us express γ as γ(u) = (x(u), y(u), θ(u)), then the velocity vector

field γ′ is given by

(4.3) γ′ =
x′

2y
ϵ1 +

y′

2y
ϵ2 + η(γ′)ϵ3, η(γ′) = θ′ +

x′

2y
.

Thus we get

φγ′ = − y′

2y
ϵ1 +

x′

2y
ϵ2.

On the other hand N̂ is expressed as

N̂ =
1√

(x′)2 + (y′)2

(
−y′ϵ1 + x′ϵ2

)
.

It follows that qφγ′ is collinear to ν. Comparing with the magnetic equation
∇γ′γ′ = qφγ′ and (4.2) we find ∇̇γ′γ′ = 0. □
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Let γ(u) be an arclength parametrized contact magnetic curve in SL2R,
then the projection curve β(u) = π(γ(u)) has the velocity β′(u) = π∗γ

′. Since
π is a Riemannian submersion, we have

|β′(u)|2 = |γ′(u)|2 − η(γ′)2 = sin2 σ.

4.3. Kähler magnetic curves

Let us consider the magnetic curve in H2(−4) with respect to the mag-
netic field F̄q := q̄Ω̄. Here Ω̄ is the Kähler form of H2(−4) defined by Ω̄ =
(dx ∧ dy)/(2y2) as in Example 2.1. The corresponding Lorentz equation is
∇β′β′ = q̄Jβ′. Here ∇ is the Levi-Civita connection of H2(−4). Comparing
the Lorentz equation with the Frenet equation, we obtain that β is a Rieman-
nian circle in H2(−4) satisfying q̄ = κβ . Hence normal magnetic trajectories
are closed if and only if |q| > 2.

By the fundamental equation of Riemannian submersion one can check
the following result.

Proposition 4.4. The projection image β(u) = π(γ(u)) of a contact mag-

netic curve is a Kähler magnetic curve in H2(−4). More precisely, β satisfies

the Lorentz equation ∇β′β′ = (q − 2 cosσ)Jβ′. Hence γ(u) is a geodesic in

a Hopf tube over a Riemannian circle.

5. Magnetic trajectories in SL2R

In our previous paper [11], we have proved that the classification of contact
magnetic curves in Sasakian space forms of arbitrary dimension reduces to
that in 3-dimensional Sasakian space forms. More precisely, we have the
following results.

Theorem 5.1. Let (M2n+1, φ, ξ, η, g) be a Sasakian manifold and consider

Fq, q ̸= 0, the contact magnetic field onM2n+1. Then γ is a normal magnetic

curve associated to Fq in M2n+1 if and only if γ belongs to the following list:

a) geodesics, obtained as integral curves of ξ;

b) non-geodesic φ-circles of curvature κ1 =
√
q2 − 1, for |q| > 1, and of

constant contact angle σ = arccos 1
q
;

c) Legendre φ-curves in M2n+1 with curvatures κ1 = |q| and κ2 = 1, i.e.
1-dimensional integral submanifolds of the contact distribution;
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d) φ-helices of order 3 with axis ξ, having curvatures κ1 = |q| sinσ and

κ2 = |q cosσ − 1|, where σ ̸= π
2 is the constant contact angle.

Theorem 5.2 ([11]). Let γ : I ⊆ R → B2n(−4)× R, be a smooth curve

parametrized by arclength s and let Fq = qΩ, q ̸= 0 be the contact magnetic

field. Then γ is a normal magnetic curve associated to Fq if and only if it

belongs to the following list:

a) a geodesic obtained as integral curve of ξ;

b) the horizontal lift of a magnetic trajectory in B2(−4) corresponding

to the Kähler magnetic field F̄ = q̄Ω̄;

c) a helix in the 3-dimensional Sasakian space form P̃SL2R identified

with B2(−4)× R as totally geodesic submanifold in B2n(−4)× R.

Moreover, γ is a geodesic on a Hopf tube over a curve of constant

curvature in H2(−4).

Let us now take a contact magnetic curve γ(s) = (x(s), y(s), θ(s)) in
SL2R. Then the velocity vector field is given by (4.3).

The acceleration vector field is computed as

∇γ′γ′ =

{
x′′y − x′y′

2y2
− x′y′

2y2
− y′

y
η(γ′)

}
ϵ1

+

{
y′′y − (y′)2

2y2
+

(x′)2

2y2
+
x′

y
η(γ′)

}
ϵ2 + {η(γ′)}′ϵ3.

The the magnetic equation ∇γ′γ′ = qφγ′ with strength q is the following
system:

x′′y − x′y′

2y2
− x′y′

2y2
− y′

y
η(γ′) = −qy

′

2y
,

y′′y − (y′)2

2y2
+

(x′)2

2y2
+
x′

y
η(γ′) =

qx′

2y
,

{η(γ′)}′ =
[
θ′ +

x′

2y

]′
= 0.

The third equation confirms that γ is a slant curve, that is γ′ makes constant
angle σ with the Reeb vector field ξ. By definition of σ, we notice that
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η(γ′) = cosσ ∈ [−1, 1]. The equations of magnetic trajectory become

x′′y − x′y′

2y2
− x′y′

2y2
− (cosσ)

y′

y
= −qy

′

2y
,

y′′y − (y′)2

2y2
+

(x′)2

2y2
+ (cosσ)

x′

y
=
qx′

2y
.

Put

X =
x′

2y
, Y =

y′

2y
.

Then we have X2 + Y 2 + cos2 σ = 1, which implies that X2 + Y 2 = sin2 σ.
Moreover, we find

X ′ =
x′′y − x′y′

2y2
, Y ′ =

y′′y − (y′)2

2y2
.

Hence, the equations of magnetic trajectory yield the system

(5.1)




X ′ − Y (2X + 2 cosσ − q) = 0,

Y ′ +X(2X + 2 cosσ − q) = 0,

together with

(5.2) θ′ +
x′

2y
= cosσ.

It should be remarked that the system (5.1) is nothing but the Kähler mag-
netic curves in H2(−4) with strength q̄ = q − 2 cosσ.

Example 5.1 (Reeb flows). According to item a) of Theorem 5.1, Reeb
flows are magnetic curves. Choose θ = 0 or π in the magnetic equations, we
have x(s) = constant and y(s) = constant. The coordinate θ is determined
by θ′ = ±1. Hence θ is an affine function of s.

Example 5.2 (Legendre φ-curves). According to item c) of Theorem 5.1,
Legendre φ-curves with κ1 = |q| and κ2 = 1 are magnetic curves. The mag-
netic curve γ(s) is a horizontal lift of a Riemannian circle β(s) = (x(s), y(s))
with |κβ | = |q|. The third coordinate θ(s) is determined by the horizontal
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lift condition (Legendre condition):

θ′(s) = − x′(s)

2y(s)

under the prescribed initial condition.
To look for periodic trajectories, we restrict our attention to horizontal

lifts of closed Riemannian circles. See also [21, Example 5.5].
For |κβ | > 2, β(s) is a closed circle parametrized as (see Appendix A):

(x(s), y(s)) =

(
r sinµ(s) + x0, r

( |q|
2

− cosµ(s)

))
,

where r is a positive constant and µ(s) is a solution of the following ODE

µ′(s) = |q| − 2 cosµ(s).

Under the initial condition µ(0) = 0, the solution µ(s) is given explicitly by

tan
µ(s)

2
=

√
|q| − 2

|q|+ 2
tan

√
q2 − 4 s

2
,

which implies

sinµ(s) =

√
q2 − 4 sin(

√
q2 − 4 s)

|q|+ 2 cos(
√
q2 − 4 s)

, cosµ(s) =
2 + |q| cos(

√
q2 − 4 s)

|q|+ 2 cos(
√
q2 − 4 s)

.

Thus β(s) has the fundamental period T = 2π/
√
q2 − 4. The θ-coordinate

is given by

θ(s) =
1

2
µ(s)− |q|

2
s,

under the initial condition θ(0) = 0.
The horizontal lift is closed if and only if there exists a positive integer

m such that

θ

(
s+

2mπ√
q2 − 4

)
≡ θ(s) mod 2π.

Hence, the periodicity condition is equivalent to

|q| = 2√
1− (m/k)2
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for some relatively prime positive integers m and k satisfying m/k < 1. This
is precisely the criterion found by Kajigaya in [21]. Thus there exist count-
ably many closed Legendre magnetic curves in SL2R.

In the following we draw some pictures for a better understanding of
periodic Legendre magnetic curves in SL2R.

From the previous computations we have

µ(s) = 2 arctan

(√
|q| − 2

|q|+ 2
tan

√
q2 − 4 s

2

)
+ 2hπ,

if s ∈
(
−T

2 ,
T

2

)
+ hT, where h ∈ Z.

Fix the integers m and k as in the periodicity condition. We are looking
now for a positive integer h such that θ

(
T

2 + hT
)
≡ θ

(
−T

2

)
(mod 2π).

This means that γ has (h+ 1) ”branches” to be periodic. The condition is
equivalent to (h+ 1)

(
1− k

m

)
is an even number.

In the following we give some examples and draw the corresponding
pictures on SL2R thought as a solid torus S1 × D2. The pictures are drawn
up to a homothetic deformation of the circle S1. Here D2 is obtained from
the Poincaré half plane H2 via the Cayley transformation

f : H2 → D2, f(z) =
z − i

z + i
, where z ∈ C, ℑm(z) > 0.

Every figure in the next three examples is composed by four images:

• the first one represents the curve β represented in the upper half-
plane;

• the second one represents the same curve β in the unit disc D2;

• the last two pictures represent the same curve γ on the solid torus
S1 × D2 from different viewpoints.
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Figure 1: m = 1, k = 3, h = 0.

Figure 2: m = 3, k = 5, h = 2.
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Figure 3: m = 2, k = 7, h = 3.

Our main interest is to classify periodic trajectories. Therefore, we con-
sider magnetic curves whose projection images are closed circles. Neverthe-
less, we are also interested in other kinds of magnetic trajectories like contact
magnetic trajectories over horocycles. This study will be done in the next
section.

In the following we study periodicity of contact magnetic curves which
are neither Reeb, nor Legendre. With this aim in view, we need to solve the
system

X ′ − Y (2X − q̄) = 0, Y ′ +X(2X − q̄) = 0, θ′ +X = cosσ,

where we put q̄ := q − 2 cosσ.
Since X2 + Y 2 = sin2 σ, we represent X and Y as

X = sinσ cosU, Y = sinσ sinU,

for a certain function U . Then we have

X ′ = −(sinσ sinU) U ′, Y ′ = (sinσ cosU) U ′,
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The first equation of the system is

−(sinσ sinU) U ′ − sinσ sinU(2 sinσ cosU − q̄) = 0

As γ is neither Reeb, nor Legendre, we assume that sinσ ̸= 0 and cosσ ̸= 0,
so

{U ′ + (2 sinσ cosU − q̄)} sinU = 0

The second equation becomes

{U ′ + 2 sinσ cosU − q̄)} cosU = 0.

Hence we obtain

(5.3) U ′ + 2 sinσ cosU − q̄ = 0.

This ODE can be solved directly. With the new variable t = tan(U/2),
the equation (5.3) can be rewritten as

2
dt

ds
= (q̄ + 2 sinσ)t2 + (q̄ − 2 sinσ).

We have to distinguish several cases:
Case 1. q̄ + 2 sinσ = 0
This is equivalent to q = 2

√
2 sin(σ − π/4). Under the initial condition

U(0) = 0, we get t(s) = −2s sinσ. Thus we obtain

U(s) = −2 arctan (2s sinσ) .

Case 2. q̄ − 2 sinσ = 0
In this case, we have q = 2

√
2 sin(σ + π/4) and dt = (2 sinσ)t2 ds. The

solution of this ODE with initial condition U(0) = π/2 is t(s) = 1
1−2s sinσ

.
Thus

U(s) = 2 arctan
1

1− 2s sinσ
.

Case 3. q̄2 − 4 sin2 σ > 0

We need to solve the ODE:
dt

ds
=
q̄ + 2 sinσ

2

(
t2 +

q̄ − 2 sinσ

q̄ + 2 sinσ

)
, where

q̄−2 sinσ
q̄+2 sinσ

> 0. Solving this equation with the initial condition U(0) = 0, we
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obtain

U(s) = 2 arctan

(√
q̄ − 2 sinσ

q̄ + 2 sinσ
tan

s
√
q̄2 − 4 sin2 σ

2

)
.

Case 4. q̄2 − 4 sin2 σ < 0

We need to solve the ODE:
dt

ds
=

2 sinσ + q̄

2

(
t2 − 2 sinσ − q̄

2 sinσ + q̄

)
, where

2 sinσ−q̄
2 sinσ+q̄

> 0. Setting the initial condition U(0) = 0, we find

U(s) = −2 arctan

(√
2 sinσ + q̄

2 sinσ − q̄
tanh

s
√

4 sin2 σ − q̄2

2

)
.

To look for closed trajectories, we need to demand that

|q̄| = |q − 2 cosσ| > 2.

This condition immediately implies that cases 1, 2 and 4 cannot occur.
Let γ(s) = (x(s), y(s), θ(s)) be a periodic contact magnetic curve which

is neither Reeb nor Legendre. Let us denote by T the fundamental period
of a periodic contact magnetic curve γ(s) = (x(s), y(s), θ(s)). Namely

x(s+ T) = x(s), y(s+ T) = y(s) and θ(s+ T) ≡ θ(s) mod 2π.

The projected curve of β(s) = (x(s), y(s)) is a closed Riemannian circle de-
termined by

x′(s)

2y(s)
= sinσ cosU(s),

y′(s)

2y(s)
= sinσ sinU(s).

The second equation implies that

d

ds
log y(s) = 2 sinσ sinU(s).

Since
dU

ds
= −2 sinσ cosU + q̄,

we have

log y(s) =

∫
2 sinσ sinU

q̄ − 2 sinσ cosU
dU = log |q̄ − 2 sinσ cosU(s)|+ constant.
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Thus we obtain

y(s) = r̄
(
q̄ − 2 sinσ cosU(s)

)

for some r̄ ̸= 0. From this we have

x′(s) = (2 sinσ) cosU(s) · (r̄U ′(s)),

which leads to

x(s) =

∫
(2r̄ sinσ) cosU dU = (2r̄ sinσ) sinU + x0.

We notice that s̄ = (sinσ)s is the arclength parameter of β. The curvature
of β is κβ = q̄

sinσ
.

The θ-coordinate is determined by

θ′(s) = cosσ − x′(s)

2y(s)
= cosσ − sinσ cosU(s).

Since U ′(s) = −(2 sinσ) cosU(s) + q̄, we get

θ′(s) = cosσ − q̄

2
+
U ′(s)

2
.

Thus, the solution satisfying θ(0) = θ0, is given by

θ(s) =
(
cosσ − q̄

2

)
s+

U(s)

2
+ θ0.

The periodicity of x(s) and y(s) implies that

x(s+ T)− x(s) = 2r̄ sinσ
[
(sinU(s+ T)− sinU(s)

]
,

y(s+ T)− y(s) = −2r̄ sinσ
[
cosU(s+ T)− cosU(s)

]
,

for all s. These formulas yield

sinU(s+ T) = sinU(s) and cosU(s+ T) = cosU(s), for all s.

Thus we obtain

U(s+ T) ≡ U(s) mod 2π.

Under the hypothesis U(0) = 0, we have

(5.4) U(T) = 2kπ
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for some integer k. Since

(5.5) tan
U(s)

2
=

√
q̄ − 2 sinσ

q̄ + 2 sinσ
tan

(√
q̄2 − 4 sin2 σ

2
s

)
,

we have

tan

(
T

√
q̄2 − 4 sin2 σ

2

)
= 0.

This is equivalent to

T

√
q̄2 − 4 sin2 σ

2
= mπ

for some integer m.
The periodicity of θ(s) implies

(5.6) θ(s+ T)− θ(s) =
(
cosσ − q̄

2

)
T+

U(s+ T)− U(s)

2
≡ 0 mod 2π.

From (5.4) and (5.6), we get

(
cosσ − q̄

2

)
T+ kπ ≡ 0 mod 2π.

which leads

(5.7) T =
2kπ

q̄ − 2 sinσ
,

(possible for other integer k). From (5.5) and (5.7), we find

√
q̄2 − 4 sin2 σ =

m

k
(q̄ − 2 cosσ).

Solving this equation we have

(5.8) q =
2a cosσ ±

√
2(1− a cos(2σ))
1+a
2

,

where

(5.9) a = 1− 2
(m
k

)2
.

We now state the following result.
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Theorem 5.3. The set of all periodic magnetic curves on the special linear

group SL2R can be quantized in the set of rational numbers.

Proof. The proof is a consequence of equations (5.8) and (5.9). □

Remark 5.1. When cosσ = 0, the strength q has the form

q =
±2√

1− (m/k)2
.

This expression coincides with the Kajigaya’s criterion.

In the following we draw some pictures of periodic non-Reeb and non-
Legendre magnetic curves in SL2R. Every figure in the next three examples
is composed by four images, keeping the same convention as before.

Figure 4: m = 1, k = 3, σ = 2π
5 .
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Figure 5: m = 3, k = 5, σ = π
3 .

Remark 5.2. As we have mentioned in Remark 2.1, we may consider the
one-parameter family of homogenous metrics gν . In [12], we have studied
contact magnetic curves in cosymplectic manifolds. In particular, Nistor in-
vestigated contact magnetic curves in [24]. According to [24], contact mag-
netic curves in H2(−4)× R are classified as follows:

• a geodesic line (x0, y0, t0 ± s) through a point (x0, y0, t0).

• a horocycle β0 × {t0} in every point t0 ∈ R, where β0 denotes a (open)
circle tangent to the ideal boundary or a horizontal line in H2(−4),
of constant curvature κ2 = 4;

• a non-degenerate cylindrical helix on β × R, where β denotes both a
Euclidean and a hyperbolic circle in H2(−4).

One can unify the results in this paper and those in [24].

6. One-parameter subgroups

Let G be a Lie group equipped with a left invariant Riemannian metric and
let g be its Lie algebra. Then an arclength parametrized curve γ in G is said
to be homogenous if there exists a one-parameter subgroup {exp(tX)} such
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that γ(t) is expressed as γ(t) = a exp(tX) for some a ∈ G and unit vector
X ∈ g. In this section we investigate homogeneous magnetic trajectories.

6.1. Homogeneous geodesics

In Lie groups with bi-invariant Riemannian metric, all the geodesics starting
at the identity are one parameter subgroups. However, if the metric is only
left invariant, one-parameter subgroups are not necessarily geodesics. Here
we study geodesic in SL2R which are one-parameter subgroups of SL2R.

Proposition 6.1. The one-parameter subgroup exp(tX) of an element

X =

(
X11 X12

X21 −X11

)

of sl2R is given explicitly by as follows:

• If detX = 0, then

exp(tX) =

(
1 + tX11 tX12

tX21 1− tX11

)
.

Every exp(tX) induces a parabolic transformation on H2(−4).

• detX = δ2 > 0, then

exp(tX) =

(
cos(δt) + X11

δ
sin(δt) X12

δ
sin(δt)

X21

δ
sin(δt) cos(δt)− X11

δ
sin(δt)

)
.

Every exp(tX) induces an elliptic transformation on H2(−4).

• detX = −δ2 < 0

exp(tX) =

(
cosh(δt) + X11

δ
sinh(δt) X12

δ
sinh(δt)

X21

δ
sinh(δt) cosh(δt)− X11

δ
sinh(δt)

)
.

Every exp(tX) induces a hyperbolic transformation on H2(−4).

Take an element X ∈ sl2R, then the acceleration vector field ∇γ′γ′ of
γ(t) = exp(tX) at the origin is U(X,X) because of (3.4). Thus we obtain
the following well known criterion:

Proposition 6.2. A one parameter subgroup {exp(tX)}t∈R, X ∈ sl2R is a

geodesic if and only if U(X,X) = 0.
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Now we apply this criterion for X = aE1 + bE2 + cE3 ∈ sl2R. By using
(3.3), U(X,X) is computed as

U(X,X) = 2c(b− a)E1 + 2c(b− a)E2 + 2(a2 − b2)E3.

Thus we obtain

Corollary 6.1. A one-parameter subgroup {exp(tX)} of X = aE1 + bE2 +
cE3 is a geodesic in SL2R if and only if either

• a = b or

• c = 0 and a = −b.

In particular exp(tE3) is the only geodesic among exp(tEi), (i = 1, 2, 3).
Here we describe the spurs of exp(tEi). Direct computations show the fol-
lowing formula:

exp(tE1) =

(
1

√
2t

0 1

)
.

Thus the coordinate expression of exp(tE1) is

x(t) =
√
2t, y = 1, θ(t) = 0.

Hence the spur of exp(tE1) in the universal covering S̃L2R = H2(−4)× R is
the line through (0, 1, 0) parallel to the x-axis. The contact angle of exp(tE1)
is π/4.

Note that for all t ∈ R,

(6.1)

(
1 x
0 1

)
= exp

( x√
2
E1

)
.

Hence the mapping

exp
( •√

2
E1

)
: (R(x),+) −→ N

is a Lie group isomorphism.
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Next the trace of exp(tE2) is given by

(6.2) exp(tE2) =

(
1 0√
2t 1

)
.

This curve has the parametrization

x(t) =

√
2t

1 + 2t2
, y(t) =

1

1 + 2t2
, θ(t) = arctan(−

√
2t)

and contact angle 3π/4. The projected curve (x(t), y(t)) of exp(tE2) in
H2(−4) is the horocycle

x2 +

(
y − 1

2

)2

=
1

4
.

These two one-parameter subgroups {exp(tE1)} and {exp(tE2)} are not

geodesics. However as we will see later, they are contact magnetic curves.
The one-parameter subgroup

exp(tE3) =

(
et 0
0 e−t

)

is a Legendre geodesic with parametrization

x(t) = 0, y(t) = et, θ(t) = 0.

The spur of exp(tE3) is the y-axis in the universal covering H2(−4)× R.
The projected curve (x(t), y(t)) is a vertical line, i.e., a horocycle with base
point ∞.

Remark 6.1. A homogeneous Riemannian manifold M = G/K is called
a space with homogeneous geodesics or a Riemannian g.o. space if every
geodesic γ(t) of M is an orbit of a one-parameter subgroup of G [23]. Natu-
rally reductive homogenous spaces are typical examples of Riemannian g.o.
spaces. (For more informations, we refer to [1]).

Explicit parametrization of geodesics in H2(−1)× R have been obtained

in [29] (see also [26]). Note that in [26, 29], S̃L2R is realized as the product
manifold of unit disk and the real line.
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6.2. Homogeneous magnetic trajectories

Let us consider magnetic equation for one-parameter subgroups. First we
prepare the following proposition.

Proposition 6.3. The endomorphism field φ satisfies

φ(aE1 + bE2 + cE3) = − c√
2
(E1 + E2) +

1√
2
(a+ b)E3

for any X = aE1 + bE2 + cE3 ∈ sl2R.

From this proposition, the magnetic equation ∇γ′γ′ = qφγ′ for γ(t) =
exp(tX) may be rewritten as

2c(b− a) = − cq√
2
, 2(a2 − b2) =

q√
2
(a+ b).

Proposition 6.4. The one parameter subgroup exp(tX) of X = aE1 +
bE2 + cE3 ∈ sl2R is a magnetic curve with strength q ̸= 0 if and only if

a− b = q/(2
√
2).

Remark 6.2. If b = −a, in order to have a non-geodesic magnetic curve
with strength q, we need to ask that c ̸= 0. In this situation, a = q/(4

√
2).

Since the Reeb vector field is

ξ =
1√
2
(E1 − E2),

the contact angle σ of the one parameter subgroup exp(tX) of X = aE1 +
bE2 + cE3 ∈ sl2R defined by

cosσ =
a− b√

2
√
a2 + b2 + c2

.

Therefore, if exp(tX) is a Legendre curve, it necessarily should be a geodesic.

Example 6.1. Let X = aE1 + bE2 + cE3 ∈ sl2R such that detX = 0. We
shall emphasize two situations: (i) b = −a and c ̸= 0 and (ii) c = 0. In the
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first case (i), c = ±
√
2a and

exp(tX) =

(
1±

√
2at

√
2at

−
√
2at 1∓

√
2at

)
.

The Iwasawa decomposition of exp(tX) is given by

x(t) =
∓4a2t2

2a2t2 + (1∓
√
2at)2

, y(t) =
1

2a2t2 + (1∓
√
2at)2

,

eiθ(t) =
1∓

√
2at+ i

√
2at√

2a2t2 + (1∓
√
2at)2

.

The contact angle σ satisfies cosσ = sgn(a)/
√
2, thus σ = π/4 or 3π/4. The

projected curve is the horocycle (x± 1)2 + (y − 1)2 = 1. The curve exp(tX)
is a contact magnetic curve with strength q if and only if a = q/(4

√
2).

In the second case (ii), we consider Y = aE1 + bE2 ̸= 0. Then detY =
0 if and only if a = 0 or b = 0, namely Y = aE1 or Y = bE2.

(ii.1) In the case Y = aE1, from (6.1), we obtain that exp(taE1) is
parametrized as (x(t), y(t), θ(t)) = (a

√
2t, 1, 0). It is a contact magnetic curve

with strength q if and only if a = q/(2
√
2).

The trajectory lies in the nilpotent subgroup N . The contact angle is
cosσ = ±1/

√
2. Thus σ = π/4 or 3π/4. The projected curve is the horizontal

line y = 1 (horocycle with base point ∞).
(ii.2) In the case Y = bE2, using (6.2), it follows that exp(tbE2) is

parametrized as

x =

√
2bt

2b2t2 + 1
, y =

1

2b2t2 + 1
, eiθ =

1− i
√
2bt√

2b2t2 + 1
.

From these relations we obtain x2 +
(
y − 1

2

)2
= 1

4 . Thus (x(t), y(t)) is a horo-
cycle. Note that exp(tY ) has contact angle π/4 or 3π/4. It is a contact
magnetic curve with strength q if and only if b = −q/(2

√
2).

Remark 6.3. We can write the projection curve β for the general situation
exp(tX) with X = aE1 + bE2 + cE3 with detX = −(c2 + 2ab) = 0:

x(t) =

√
2{(a+ b)t+ c(b− a)t2}

2b2t2 + (1− tc)2
, y(t) =

1

2b2t2 + (1− tc)2
.

If the parameter t us eliminated, we obtain the following equation for β:
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(1) If b = 0 (and hence also c = 0), then y − 1 = 0.

(2) If b ̸= 0, then

(
x− c

b
√
2

)2

+

(
y − b− a

2b

)2

=
(b− a)2

4b2
.

These formulas actually show that β is a horocycle.
Note that t is not, in general, the arc length parameter for exp(tX).

In case t is the arc length parameter for exp(tX), then a2 + b2 + c2 = 1.
The condition detX = 0 implies |a− b| = 1 and thus, the contact angle σ
is obtained as cosσ = ±1/

√
2 meaning that σ = π/4 or 3π/4. The magnetic

condition is q = 2sgn(a− b)
√
2. Computing q̄ = q − 2 cosσ =

√
2sgn(a− b).

Hence the necessarily condition for periodicity, namely |q̄| > 2 fails. The
curvature κβ = q̄/ sinσ = 2 sgn(a− b).

Example 6.2. Let us assume that detX > 0. First we considerX = a(E1 −
E2) + cE3. The one-parameter subgroup is given by

exp(tX) =

(
cos(δt) + c

δ
sin(δt)

√
2a
δ

sin(δt)

−
√
2a
δ

sin(δt) cos(δt)− c
δ
sin(δt)

)
.

Note that δ2 = 2a2 − c2. We perform the Iwasawa decomposition.

x(t) =
−2

√
2ac
δ2

sin2(δt)
2a2

δ2
sin2(δt) + (cos(δt)− c

δ
sin(δt))2

,

y(t) =
1

2a2

δ2
sin2(δt) + (cos(δt)− c

δ
sin(δt))2

,

eiθ(t) =
cos(δt)− c

δ
sin(δt) +

√
2ai
δ

sin(δt)√
2a2

δ2
sin2(δt) + (cos(δt)− c

δ
sin(δt))2

.

The projected curve β is expressed as

(
x+

c

a
√
2

)2

+ (y − 1)2 =
c2

2a2
.

Next we treat the case Y = aE1 + bE2, for which detY = −2ab = δ2 > 0.
We have

exp(tY ) =

(
cos(δt)

√
2a
δ

sin(δt)√
2b
δ

sin(δt) cos(δt)

)
.
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Hence the projected curve β is

x(t) =

√
2(a+ b) sin(δt) cos(δt)

2b2

δ
sin2(δt) + δ cos2(δt)

, y(t) =
1

2b2

δ2
sin2(δt) + cos2(δt)

.

The implicit form of β is

x2 +

(
y − b− a

2b

)2

=

(
a+ b

2b

)2

.

Comparing this with (A.1), we obtain κβ =
2(b− a) sgn(b)

|b+ a| . The contact

angle satisfies cosσ =
a− b√

2
√
a2 + b2

. In both cases, the magnetic curves are

periodic.

Example 6.3. Assume now that detX = −δ2 < 0, for X = aE1 + bE2 +
cE3. In this case we have

exp(tX) =

(
cosh(δt) + c

δ
sinh(δt)

√
2a
δ

sinh(δt)√
2b
δ

sinh(δt) cosh(δt)− c
δ
sinh(δt)

)
.

Let us compute the coordinates (x, y, θ) of exp(tX).

x(t) =

√
2(a+b)
δ

sinh(δt) cosh(δt) +
√
2(b−a)c
δ2

sinh(δt) cosh(δt)

2b2

δ2
sinh2(δt) +

(
cosh(δt)− c

δ
sinh(δt)

)2 ,

y(t) =
1

2b2

δ2
sinh2(δt) +

(
cosh(δt)− c

δ
sinh(δt)

)2 .

Then the projected curve β is described as follows:

(1) If b ̸= 0, then β is a part of an open circle:

(
x− c

b
√
2

)2

+

(
y +

a− b

2b

)2

=
(a+ b)2 + 2c2

4b2
.

(2) If b = 0, then β is

√
2δx+ sgn(c)a(1− y) = 0.

In both cases, the signed curvature of β is

κβ =
2 sgn(b)(b− a)√
(a+ b)2 + 2c2

.
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Appendix A. Curve theory in H2(−4)

A.1. Frenet formula in H2(−4)

Let β(s) = (x(s), y(s)) be an arclength parametrized curve in H2(−4). Take
a global orthonormal frame field

ϵ̄1 = 2y
∂

∂x
, ϵ̄2 = 2y

∂

∂y
,

then the unit tangent vector field T (s) = β′(s) is represented by

β′(s) =
1

2y(s)

(
x′(s)ϵ̄1 + y′(s)ϵ̄2

)
.

The unit normal vector field N(s) is

N(s) = JT (s) =
1

2y(s)

(
−y′(s)ϵ̄1 + x′(s)ϵ̄2

)
.

Then we obtain

∇β′T =
1

2y2
{
(x′′y − 2x′y′)ϵ̄1 + (y′′y + (x′)2 − (y′)2)ϵ̄2

}
= κβJT (s).

Thus the (signed) curvature κβ is

κβ =
x′y′′ − x′′y′

4y2
+
x′

y
.

A.2. Riemannian circles in H2(−4)

In a Euclidean space, Riemannian circles are nothing but usual circles.
Hence, every Riemannian circle in a Euclidean space is simple and closed.
Besides, Riemannian circles in spheres are small circles and hence, every
Riemannian circle in spheres is simple and closed, too. Nevertheless, in hy-
perbolic spaces, Riemannian circles are not necessarily closed.

Proposition A.1. Every Riemannian circle β of curvature κβ = k in

H2(−4) is a horizontal line, a vertical line or a part of a circle, given by
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the following formula:

(A.1) (x− a)2 + (y − rk)2 = 4r2.

In particular, a Riemannian circle is closed if and only if |k| > 2.

Sketch of proof. We solve the following equation:

(A.2)
x′y′′ − x′′y′

4y2
+
x′

y
= k,

for nonzero constant k. Setting

X :=
x′

2y
, Y :=

y′

2y
,

the equation (A.2) becomes

k = XY ′ −X ′Y + 2X.

Since β is parametrized by arclength parameter, then X and Y satisfies
X2 + Y 2 = 1. Consequently, we have to solve the following system

X2 + Y 2 = 1, XY ′ −X ′Y + 2X = k.

To do this, we introduce the function µ = µ(s), as follows

X = cosµ(s), Y = sinµ(s),
dµ

ds
= k − 2 cosµ.

In case µ is constant, we have |k| ≤ 2 and sinµ = ±
√
4− k2/2.

If k2 = 4, then Y = 0 and hence y is constant. Thus β is a horizontal
line.

If k2 ̸= 4, then the system

dx

ds
=2y cosµ,(A.3)

dy

ds
=2y sinµ(A.4)

is solved as

x = (cotµ)y + x0.

Thus β is an Euclidean line and it is usually known as a hypercycle or
and equidistant line. Of course, the particular situation cosµ = 0 leads to a
vertical (half) line, which is a geodesic.
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Next we consider the case µ is non-constant. Then the derivative of x
and y are given by

dx

ds
=
dx

dµ
(k − 2 cosµ),

dy

ds
=
dy

dµ
(k − 2 cosµ).

From these, we get

(A.5)
dy

y
=

2 sinµ

k − 2 cosµ
dµ.

Solving (A.5), we get

(A.6) y = r(k − 2 cosµ), r > 0.

Next, inserting (A.6) to (A.3), we have dx = 2r cosµ dµ, which implies

x = 2r sinµ+ a, a ∈ R.

Hence the Riemannian circle of curvature κβ ̸= 0 is a horizontal line, an
equidistant line or a part of the Euclidean circle:

(x− a)2 + (y − rk)2 = 4r2.

It is straightforward that β is closed if and only if the circle lies entirely above
the boundary line, equivalently to |k| > 2. Furthermore, β is a horocycle if
and only if |k| = 2. When |k| < 2, the curve β is a portion of an Euclidean
circle that makes non-right angles with the boundary line. □

Conclusion. We investigate periodic contact magnetic curves in SL2R and
give a criterion to have periodicity. In such a way, we obtain a quantization
principle for periodic contact magnetic curves in SL2R over the set of rational
numbers. This conclusion is similar to that for closed geodesics on a torus T2

and has a physical meaning: every closed geodesic corresponds to a discrete
set of energy levels, ”mirroring the analogous quantization of energy levels
in the model of an atom” [20]. On the other hand, it is proved [19, 28] that
every closed L-minimal Legendre curve in the 3-sphere S3 is a magnetic
curve. These curves are known as torus knots and Kajigaya [21] proved that
they are L-unstable.
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