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The characterization of positivity properties of Weyl operators is
a notoriously difficult problem, and not much progress has been
made since the pioneering work of Kastler, Loupias, and Miracle-
Sole (KLM). In this paper we begin by reviewing and giving simpler
proofs of some known results for trace-class Weyl operators; the
latter play an essential role in quantum mechanics. We then apply
time-frequency analysis techniques to prove a phase space version
of the KLM condition; the main tools are Gabor frames and the
Wigner formalism. Finally, discrete approximations of the KLM
condition, which are tractable numerically, are provided.
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1. Introduction

The characterization of positivity properties for trace class operators on
L2(Rn) is an important topic, not only because it is an interesting mathe-
matical problem which still is largely open, but also because of its potential
applications to quantum mechanics and even cosmology. It is a notoriously
difficult part of functional analysis which has been tackled by many au-
thors but there have been few decisive advances since the pioneering work
of Kastler [13] and Loupias and Miracle-Sole [15, 16]; see however Dias and
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Prata [4]. While some partial results have been obtained in connection with
the study of quantum density operators [18–22] when the operators under
consideration are expressed using the Weyl correspondence, very little is
known about them when they are given in terms of more general correspon-
dences (in [27] Srinivas and Wolf give such a condition, but the necessity
statement is false as already noted by Mourgues et al. [17]). It seems in fact
that the field, which was quite active in the late 1980s hasn’t much evolved
since; the open questions remain open.

We shall tackle the problem using techniques which come from both
quantum mechanics and time-frequency analysis. The phase space represen-
tation mainly employed is the η-cross-Wigner transform; for η ∈ R \ {0},
this is defined by

(1) Wη(ψ, ϕ)(z) =
(

1
2πη

)n
∫

Rn

e−
i

η
p·yψ(x+ 1

2y)ϕ(x− 1
2y)dy,

for ψ, ϕ ∈ L2(Rn).When η = ℏ > 0, (ℏ the Planck constant h divided by 2π)
we recapture the standard cross-Wigner function Wℏ(ψ, ϕ), simply denoted
by W (ψ, ϕ). Setting Wη(ψ, ψ) =Wηψ and λ = η/ℏ, we have

(2) Wηψ(x, p) = λ−nWψ(x, λ−1p).

In particular, a change of η into −η yields

(3) Wηψ = (−1)nW−ηψ.

Given a symbol a ∈ S ′(R2n) (the space of tempered distribution), the
Weyl pseudodifferential operator ÂW

η = OpWη (a) is weakly defined by

(4) ⟨ÂW
η ψ, ϕ⟩ = ⟨a,Wη(ψ, ϕ)⟩,

for all ψ, ϕ in the Schwartz class S(Rn) (Observe that Wη(ψ, ϕ) ∈ S(R2n)).

The function a is called the η-Weyl symbol of ÂW
η .

Consider now a trace-class operator Â on L2(Rn) (see the definition in
the subsequent Section 3). Then there exists an orthonormal basis (ψj) for

L2(Rn) and a sequence (αj) ∈ ℓ1 such that Â can be written as

Â =
∑

j

αjΠ̂j

with absolute convergence in B(L2(Rn)); here Π̂j is the rank-one orthogonal
projector of L2(Rn) onto the one-dimensional subspace Cψj generated by
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ψj (cf. Lemma 10). It turns out that, under the additional assumption Â

to be self-adjoint, that Â can be represented as a η-Weyl operator with
corresponding symbol

a = (2πη)n
∑

j

αjWηψj ∈ L2(R2n) ∩ L∞(R2n)

(see Proposition 11).
When Â is positive semidefinite and has trace equal to one, it is called

a density operator (or density matrix, or stochastic, operator in quantum
mechanics); it is usually denoted by ρ̂. If the Weyl symbol of ρ̂ is a, the
function ρ = (2πη)−na is called the Wigner distribution of ρ̂ in the quantum
mechanical literature. Given a trace class operator Â (positive or not), the
function

(5) ρ =
∑

j

αjWηψj

is called the η-Wigner distribution of Â. (Observe that ρ ∈ L2(R2n)).
We will henceforth assume that all the concerned operators are self-

adjoint and of trace class and denote them by ρ̂; such operators can always
be written as

(6) ρ̂ =
∑

j

αjΠ̂j = (2πη)nOpWη (ρ)

the real function ρ being given by formula (5). We are going to determine
explicit necessary and sufficient conditions on ρ ensuring the positivity of
ρ̂. To this goal, we will use the reduced symplectic Fourier transform F♦,
defined for a ∈ S(R2n) by

(7) a♦(z) = F♦a(z) =

∫

R2n

eiσ(z,z
′)a(z′)dz′

with σ being the standard symplectic form. For η ∈ R \ {0}, recall the sym-
plectic η-Fourier transform

(8) aσ,η(z) = Fσ,ηa(z) =
(

1
2πη

)n
∫

R2n

e−
i

η
σ(z,z′)a(z′)dz′.
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Obviously F♦ is related to the symplectic η-Fourier transform (8) by the
formula

(9) a♦(z) = (2πη)naσ,η(−ηz).

With the notation (7) Bochner’s theorem [3, 14] on Fourier transforms of
probability measures can be restated in the following way:

Proposition 1 (Bochner). A real function ρ ∈ L1(R2n) is a probability
density (i.e. ρ ≥ 0 a.e. and

∫
R2n ρ(z) dz = 1) if and only if ρ♦(0) = 1, and

for all z1, . . . , zN ∈ R2n the N ×N matrix Λ whose entries are the complex
numbers ρ♦(zj − zk) is positive semidefinite:

(10) Λ = (ρ♦(zj − zk))1≤j,k≤N ≥ 0.

When condition (10) is satisfied one says that ρ♦ is of positive type. The
notion of η-positivity, due to Kastler [13], generalizes this notion:

Definition 2. Let a ∈ L1(R2n) and η ∈ R \ {0}; we say that a♦ is of η-
positive type if for every integer N the N ×N matrix Λ(N) with entries

Λjk = e−
iη

2
σ(zj ,zk)a♦(zj − zk)

is positive semidefinite for all choices of (z1, z2, . . . , zN ) ∈ (R2n)N :

(11) Λ(N) = (Λjk)1≤j,k≤N ≥ 0.

The condition (11) is equivalent to the polynomial inequalities

(12)
∑

1≤j,k≤N

ζjζke
− iη

2
σ(zj ,zk)a♦(zj − zk) ≥ 0

for all N ∈ N, ζj , ζk ∈ C, and zj , zk ∈ R2n.
It is easy to see that this implies a♦(−z) = a♦(z) and therefore a is

real-valued.

Remark 3. If a is of η-positive type then it is also of (−η)-positive type.
This follows from the fact that the matrix (Λjk)1≤j,k≤N is still positive

semidefinite and taking into account the equality a♦(z) = a♦(−z).

We first present a result originally due to Kastler [13], and Loupias and
Miracle-Sole [15, 16] (the “KLM conditions”), who use the theory of C∗-
algebras; also see Parthasarathy [23, 24] and Parthasarathy and Schmidt
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[25]. The proof we give is simpler and is partially based on the discussions
in [19, 21, 28].

Theorem 4 (The KLM conditions). Let η∈R \ {0} and let Â=OpWη (a)
be a self-adjoint trace-class operator on L2(Rn) with symbol a ∈ L1(R2n). We
have Â ≥ 0 if and only if a♦ is of η-positive type.

The KLM conditions are difficult to use in practice since they involve
the simultaneous verification of an uncountable set of conditions. We are
going to prove that they can be replaced with a countable set of conditions
in phase space. The key idea from time-frequency analysis is to use Gabor
frames.

Definition 5. Given a lattice Λ ⊂ R2n and a non-zero function g ∈ L2(Rn),
the system

G(g,Λ) = {T (λ)g(x) = ei(λ2x−
1

2
λ1λ2)g(x− λ1), λ = (λ1, λ2) ∈ Λ}

is called a Gabor frame or Weyl-Heisenberg frame if it is a frame for L2(Rn),
that is there exist constants 0 < A ≤ B such that

(13) A∥f∥22 ≤
∑

z∈Λ

|⟨f, T (λ)g⟩|2 ≤ B∥f∥22, ∀f ∈ L2(Rn).

Hence, the L2-norm of the function f is equivalent to the ℓ2 norm
of the sequence of its coefficients {⟨f, T1/(2π)(λ)g⟩}λ∈Λ (cf. Section 2 for
more details). Consider a Gabor frame G(ϕ,Λ) for L2(Rn), with window
ϕ ∈ L2(Rn) and lattice Λ ⊂ Rn. Let a ∈ S ′(R2n) be a symbol and denote
by aλ,µ its “twisted” Gabor coefficient with respect to the Gabor system
G(Wηϕ,Λ× Λ), defined for λ, µ ∈ Λ× Λ by

(14) aλ,µ =

∫

R2n

e−
i

η
σ(z,λ−µ)a(z)Wηϕ(z − 1

2(λ+ µ))dz,

where Wηψ =Wη(ψ,ψ) is the η-Wigner transform of ψ.
Our main result characterizes the positivity of Hilbert–Schmidt opera-

tors (and hence of trace class operators). It reads as follows:

Theorem 6. Let a ∈ L2(R2n) be real-valued and Âη = OpWη (a).
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(i) We have Âη ≥ 0 if and only if for every integer N ≥ 0 the matrix
M(N) with entries

(15) Mλ,µ = e−
i

2η
σ(λ,µ)aλ,µ , |λ|, |µ| ≤ N

is positive semidefinite.
(ii) One obtains an equivalent statement replacing the matrix M(N) with

the matrix M ′
(N) where

(16) M ′
λ,µ =Wη(a, (Wηϕ)

∨)(14(λ+ µ), 12J(µ− λ))

with (Wηϕ)
∨(z) =Wηϕ(−z).

The conditions in Theorem 6 only involve a countable set of matrices,
as opposed to the KLM ones. In addition, they are well-organized because
the matrix of size N is a submatrix of that of size N + 1.

The KLM conditions can be recaptured by an averaging procedure from
the ones in Theorem 6. To show this claim, we make use of another well-
known time-frequency representation: the short-time Fourier transform
(STFT). Precisely, for a given function g ∈ S(Rn) \ {0} (called window),
the STFT Vgf of a distribution f ∈ S ′(Rn) is defined by

(17) Vgf(x, p) =

∫

Rn

e−ip·yf(y)g(y − x) dy, (x, p) ∈ R
2n.

If we define the modulation operator Mp and translation operator Tx of a
function f on Rn by

Mpf(y) = eip·yf(y) Txf(y) = f(x− y), x, p ∈ R
n,

then we can write

Vgf(x, p) = ⟨f,MpTxf⟩, (x, p) ∈ R
2n.

This implies that the STFT makes sense for any pair of dual spaces. For
example, Vgf is well-defined if g ∈ L∞(Rn) and f ∈ L1(Rn) (cf. the proof of
the subsequent Theorem 7).

Let ϕ0(x)=(πη)−n/4e−|x|2/2η be the standard Gaussian and ϕν=T (ν)ϕ0,
ν ∈ R2n. We shall consider the STFT VWϕν

a, with window given by the
Wigner function Wϕν and symbol a. Then we establish the following con-
nection:
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Theorem 7. Let a ∈ L1(R2n) and λ, µ ∈ R2n. We set

M
(KLM)
λ,µ = e−

i

2η
σ(λ,µ)aσ,η(λ− µ)

Mϕν

λ,µ = e−
i

2η
σ(λ,µ)VWϕν

a(12(λ+ µ), J(µ− λ)).(18)

We have

(19) M
(KLM)
λ,µ = (2πη)−n

∫

R2n

Mϕν

λ,µ dν.

If the symbol a ∈ L1(R2n) ∩ L2(R2n) and choosing the lattice Λ such that
G(ϕ0,Λ) is a Gabor frame for L2(Rn), we obtain the following consequence:
If the matrix (Mϕ0

λ,µ)λ,µ∈Λ,|λ|,|µ|≤N is positive semidefinite for every N , then

so is the matrix (M
(KLM)
λ,µ )λ,µ∈Λ,|λ|,|µ|≤N (cf. Corollary 24).

Finally, if the symbol a is as before and Âη = OpWη (a) ≥ 0, then for every

finite subset S ⊂ R2n the matrix (M
(KLM)
λ,µ )λ,µ∈S is positive semidefinite.

That is, the KLM conditions hold (see Corollary 25).
The paper is organized as follows:

• In Section 2 we briefly recall the main definitions and properties of the
Wigner–Weyl–Moyal formalism.

• In Section 3 we discuss the notion of positivity for trace class operators;
we also prove a continuous version of the positivity theorem using the
machinery of Hilbert–Schmidt operators.

• In Section 4 we characterize positivity using the Kastler–Loupias–
Miracle-Sole (KLM) conditions of which we give a simple proof. We
give a complete description of trace class operators with Gaussian Weyl
symbols using methods which simplify and put on a rigorous footing
older results found in the physical literature.

• In Section 5 we show that the KLM conditions, which form an un-
countable set of conditions can be replaced with a set of countable
conditions involving the Wigner function. We thereafter study the no-
tion of “almost positivity” which is an useful approximation of the
notion of positivity which can be easily implemented numerically.

Notation 8. We denote by z = (x, p) the generic element of R2n ≡ Rn ×
Rn. Equipping R2n with the symplectic form σ =

∑
j dpj ∧ dxj we denote

by Sp(n) the symplectic group of (R2n, σ) and by Mp(n) the corresponding
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metaplectic group. J =

(
0n×n In×n

−In×n 0n×n

)
is the standard symplectic matrix,

and we have σ(z, z′) = Jz · z′. The L2-scalar product is given by

(ψ|ϕ)L2 =

∫

Rn

ψ(x)ϕ(x)dx.

The distributional pairing between ψ ∈ S ′(Rm) and ϕ ∈ S(Rm) is denoted
by ⟨ψ, ϕ⟩ regardless of the dimension m.

For A,B ∈ GL(m), we use the notation A ∽ B to denote the equality of
two square matrices A,B of same size m×m up to conjugation: A ∽ B if
and only if there exists C ∈ GL(m) such that A = C−1BC.

2. Weyl operators and Gabor frames

2.1. The Weyl–Wigner formalism

In what follows η denotes a real parameter different from zero.
Given a symbol a ∈ S ′(R2n) the Weyl pseudodifferential operator ÂW

η =

OpWη (a) is defined in (4), whereas the η-cross-Wigner transform Wη(ψ, ϕ) is
recalled in (1).

The operator Tη(z) is Heisenberg’s η-displacement operator

(20) Tη(z0)ψ(x) = e
i

η
(p0x−

1

2
p0x0)ψ(x− x0)

(see [6, 7]). The η-cross-ambiguity transform is defined by

(21) Ambη(ψ, ϕ)(z) =
(

1
2πη

)n
(ψ|Tη(z)ϕ)L2 ;

we have [5, 7] the relation

(22) Ambη(ψ, ϕ) = Fσ,ηWη(ψ, ϕ),

where Fσ,η is the symplectic η-Fourier transform already recalled in (8). The
functions Wηψ =Wη(ψ, ψ) and Ambη ψ = Ambη(ψ, ψ) are called, respec-
tively, the η-Wigner and η-ambiguity transforms. The explicit expression
of the η-Wigner transform is already given in (1), whereas the η-ambiguity
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transform is defined by

(23) Ambη(ψ, ϕ)(z) =
(

1
2πη

)n
∫

Rn

e
−

i
η p·yψ(y + 1

2x)ϕ(y − 1
2x)dy.

Let ÂW
η = OpWη (a) and B̂W

η = OpWη (b) and assume that ÂW
η B̂

W
η is de-

fined on some subspace of L2(Rn); then the twisted symbol cσ,η of ĈW
η =

ÂW
η B̂

W
η is given by the “twisted convolution” [5, 7] cσ,η = aσ,η ∗η bσ,η defined

by

(24) (aσ,η ⋆η bσ,η)(z) =
(

1
2πη

)n
∫

R2n

e
i

2η
σ(z,z′)aσ,η(z − z′)bσ,η(z

′)dz′.

Alternatively, the symbol c is given by the “twisted product” c = a×ℏ b
where

(25) (a×η b)(z) =
(

1
4πη

)2n
∫

R2n

e
i

2η
σ(z′,z′′)a(z + 1

2z
′)b(z − 1

2z
′′)dz′dz′′.

An important property of the η-Wigner transform is that it satisfies the
“marginal properties”

(26)

∫

Rn

Wηψ(z)dx = |Fηψ(p)|2 ,

∫

Rn

Wηψ(z)dp = |ψ(x)|2,

the first for every function ψ ∈ L1(Rn) ∩ L2(Rn), the second for every func-
tion ψ ∈ L2(Rn) such that ψ̂ ∈ L1(Rn); here

(27) Fηψ(p) =
(

1
2π|η|

)n/2
∫

Rn

e−
i

η
pxψ(x)dx

is the η-Fourier transform (see [5, 8]). Notice that Fηψ̄ and F−ηψ are related
by the trivial formula

(28) F−ηψ = Fηψ.

It follows that Fη extends into a topological unitary automorphism of L2(Rn)
for all values of η ̸= 0.

An important equality satisfied by the η-Wigner function is Moyal’s
identity1:

1It is sometimes also called the “orthogonality relation” for the Wigner function.
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Lemma 9. Let (ψ, ϕ) ∈ L2(Rn)× L2(Rn) and η ∈ R \ {0}. The function
Wηψ is real and we have

(29)

∫

R2n

Wηψ(z)Wηϕ(z)dz =
(

1
2π|η|

)n
|(ψ|ϕ)|2.

In particular

(30)

∫

R2n

Wηψ(z)
2dz =

(
1

2π|η|

)n
||ψ||4.

Proof. It is a standard result [5, 12] that (29) holds for all η > 0. The case
η < 0 follows using formula (3). □

In Section 5 we will use some concepts from time-frequency analysis. We
recall here the most important issues.

A Gabor frame G(ϕ,Λ) is defined in Definition (5). This implies that
any function f ∈ L2(Rn) can be represented as

f =
∑

λ∈Λ

cλT (λ)g,

with unconditional convergence in L2(Rn) and with suitable coefficients
(cλ)λ ∈ ℓ2(Λ).

A time-frequency representation closely related to the Wigner function
is the short-time Fourier transform (STFT), whose definition is in formula
(17). Using this representation, we can define the modulation space M∞,1

vs

[11, 26] in terms of the decay of the STFT as follows. For s ≥ 0, consider
the weight function vs(z) = ⟨z⟩s = (1 + |z|2)s/2, z ∈ R2n, then

M∞,1
vs

(Rn) = {f ∈ S ′(Rn) : ∥f∥M∞,1
vs

<∞}

where the norm ∥ · ∥M∞,1
vs

is defined by

∥f∥M∞,1
vs

=

∫

Rn

sup
x∈Rn

|Vgf(x, p)|vs(x, p) dp.

It can be shown that ∥f∥M∞,1
vs

is a norm on M∞,1
vs

(Rn), independent of
the window function g ∈ S(Rn) (different windows yield equivalent norms).
MoreoverM∞,1

vs
(Rn) is a Banach space. For s = 0 we simply writeM∞,1(Rn)

in place of M∞,1
vs

(Rn).
Generally, by measuring the decay of the STFT by means of the mixed-

normed spaces Lp,q
vs

(R2n), one can define a scale of Banach spaces known as
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modulation spaces. Here we will make use only of the so-called Feichtinger’s
algebra (unweighted case s = 0)

M1(Rn) = {f ∈ S ′(R2n) : ∥f∥M1 = ∥Vgf∥L1(R2n) <∞}.

Notice that in Section 5 we will work with spaces of symbols, hence the
dimension n of the space is replaced by 2n.

3. The positivity of trace-class Weyl operators

Trace class operators play an essential role in quantum mechanics. A positive
semidefinite self-adjoint operator with unit trace is called a density operator
(or density matrix in the physical literature). Density operators represent
(and are usually identified with) the mixed quantum states corresponding
to statistical mixtures of quantum pure states.

3.1. Trace class operators

A bounded linear operator Â on L2(Rn) is of trace class if for one (and
hence every) orthonormal basis (ψj)j of L

2(Rn) its modulus |Â| = (Â∗Â)1/2

satisfies

(31)
∑

j

(|Â|ψj |ψj)L2 <∞;

the trace of Â is then, by definition, given by the absolutely convergent
series Tr(Â) =

∑
j(Âψj |ψj)L2whose value is independent of the choice of

the orthonormal basis (ψj)j .
Trace class operators form a two-side ideal L1(L

2(Rn)) in the algebra
L(L2(Rn)) of all bounded linear operators on L2(Rn).

An operator Â ∈ L(L2(Rn)) is a Hilbert–Schmidt operator if and only if
there exists an orthonormal basis (ψj) such that

∑

j

(Âψj |Âψj)L2 <∞.

Hilbert–Schmidt operators form a two-sided ideal L2(L
2(Rn)) in L(L2(Rn))

and we have L1(L
2(Rn)) ⊂ L2(L

2(Rn)). A trace class operator can always
be written (non uniquely) as the product of two Hilbert–Schmidt operators
(and is hence compact). In particular, a positive (and hence self-adjoint)
trace-class operator can always be written in the form Â = B̂∗B̂ where B̂
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is a Hilbert–Schmidt operator. One proves ([2], §22.4, also [6, 7]) using the
spectral theorem for compact operators that for every trace-class operator
on L2(Rn) there exists a sequence (αj)j ∈ ℓ1(N) and orthonormal bases (ψj)j
and (ϕj)j of L2(Rn) (indexed by the same set) such that for ψ ∈ L2(Rn)

(32) Âψ =
∑

j

αj(ψ|ψj)L2ϕj ;

conversely the formula above defines a trace-class operator on L2(Rn). Ob-
serve that the series in (32) is absolutely convergent in L2(Rn) (hence un-
conditionally convergent), since

∑

j

∥αj(ψ|ψj)L2ϕj∥ =
∑

j

|αj ||(ψ|ψj)L2 |∥ϕj∥

≤
∑

j

|αj |∥ψ∥∥ψj∥ =
∑

j

|αj |∥ψ∥.

One verifies that the adjoint Â∗ (which is also of trace class) is given by

(33) Â∗ψ =
∑

j

αj(ψ|ϕj)L2ψj .

where the series is absolutely convergent in L2(Rn).
The following issue is an easy consequence of the spectral theorem for

compact self-adjoint operators.

Lemma 10. Let Â be a trace-class operator on L2(Rn).
(i) If Â is self-adjoint there exists a real sequence (αj)j ∈ ℓ1(N) and an

orthonormal basis (ψj)j of L2(Rn) such that

(34) Âψ =
∑

j

αj(ψ|ψj)L2ψj

for every ψ ∈ L2(Rn), with absolute convergence in L2(Rn);
(ii) if Â ≥ 0 then (34) holds with αj ≥ 0 for all j.

Formula (34) can be rewritten for short as

(35) Â =
∑

j

αjΠ̂j

where Π̂j is a rank-one projector, namely the orthogonal projection operator
of L2(Rn) onto the one-dimensional subspace Cψj generated by ψj .
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Notice that the series (35) is absolutely convergent in B(L2(Rn)). Indeed,
∥Π̂j∥B(L2) = 1 for every j and

∑

j

∥αjΠ̂j∥B(L2) =
∑

j

|αj | <∞.

Proposition 11. Let Â be a self-adjoint trace-class operator on L2(Rn) as
in (34) and η > 0.

(i) The η-Weyl symbol a of Â is given by

(36) a = (2πη)n
∑

j

αjWηψj

where the series converges absolutely in L2(R2n);
(ii) The twisted symbol aσ,η is given by

(37) aσ,η = (2πη)n
∑

j

αj Ambη ψj .

with absolute convergence in L2(R2n).
(iii) In particular, the symbols a and aσ,η are in L2(R2n) ∩ L∞(R2n).

Proof. The distributional kernel of the orthogonal projection Π̂j is Kj =

ψj ⊗ ψj hence the Weyl symbol aj of Π̂j is given by the usual formula

aj(z) =

∫

Rn

e−
i

η
pyKj(x+ 1

2y, x− 1
2y)dy = (2πη)nWηψj(z).

the series (35) being absolutely convergent in B(L2(Rn)). Moyal’s identity

∥αjWηψj∥2 = |αj |
(

1
2πη

)n

2 ∥ψj∥22 =
(

1
2πη

)n

2 |αj |

and the assumption (αj)j ∈ ℓ1(N) guarantee that the series in (36) is abso-
lutely convergent in L2(R2n) and we infer that the symbol a is in L2(R2n).
Similarly, by Hölder’s inequality,

|Wηψj(z)| ≤ 22n

(2πη)n ∥ψj∥22

for all z ∈ R2n so that

∥αjWηψj∥∞ ≤
(

2
πη

)n
|αj |
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and the series in (36) is absolutely convergent in L∞(R2n), too. This proves
our claim (iii) for the symbol a. Formula (37) follows since Wηψj and
Ambη ψj are symplectic η-Fourier transforms of each other. Claim (iii) for
aσ,η is obtained in a similar way. □

Remark 12. From Proposition (11), the functions a and aσ,η are in
L2(R2n) ∩ L∞(R2n). Notice that in general the symbols a and aσ,η are not

in L1(R2n). For example, choose Â = Π̂0, with Π̂0 the orthogonal projection
onto a vector ψ0 ∈ L2(Rn) \ (L1(Rn) ∪ FL1(Rn)).

Recall that if Â is positive semidefinite and has trace equal to one, it is
called a density operator and denoted by ρ̂. We will from now on assume
that all the concerned operators are self-adjoint and of trace class, recalling
from (6) that they can be written as

ρ̂ =
∑

j

αjΠ̂j = (2πη)nOpWη (ρ)

the real function ρ being given by formula (5). We are going to determine
explicit necessary and sufficient conditions on ρ ensuring the positivity of ρ̂.
Let us first note the following result which shows the sensitivity of density
operators to changes in the value of ℏ.

Let us now address the following question: for given ψ ∈ L2(Rn), can we
find ϕ such that Wηϕ =Wψ for η ̸= ℏ? The answer is negative:

Proposition 13. Let ψ ∈ L1(Rn) ∩ L2(Rn) \ {0} and η ∈ R \ {0}, ℏ > 0.
(i) There does not exist any ϕ ∈ L1(Rn) ∩ L2(Rn) such that Wηϕ =Wψ

if |η| ≠ ℏ.
(ii) Assume that there exist orthonormal systems (ψj)j∈N, (ϕj)j∈N of

L2(Rn) and nonnegative sequences α = (αj)j∈N, β = (βj)j∈N ∈ ℓ1(N) such
that

(38)
∑

j

αjWηψj =
∑

j

βjWϕj

Then we must have

ℏ
n∥α∥2ℓ2 = |η|n∥β∥2ℓ2 .
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Proof. Observe that the series in (38) are absolutely convergent in L2(R2n).
(i) Assume that Wηϕ =Wψ; then, using the first marginal property (26),

|Fηϕ(p)|2 =
∫

Rn

Wηϕ(x, p)dx =

∫

Rn

Wψ(x, p)dx = |Fℏψ(p)|2

hence ϕ and ψ must have the same L2-norm: ||ϕ|| = ||ψ|| in view of Parseval’s
equality. On the other hand, using the Moyal identity (29) for, respectively,
Wψ and Wηϕ, the equality Wψ =Wηϕ implies that

∫

R2n

Wψ(z)2dz =
(

1
2πℏ

)n ||ψ||4
∫

R2n

Wηϕ(z)
2dz =

(
1

2π|η|

)n
||ϕ||4

hence we must have |η| = ℏ.
(ii) Squaring both sides of (38) and integrating over R2n we get, using

again Moyal’s identity and the orthonormality of the vectors ψj and ϕj ,

1

(2π|η|)n
∑

j

α2
j =

1

(2πℏ)n

∑

j

β2j ,

hence our claim. □

Remark 14. Assume in particular that β1 = 1 and βj = 0 for j ≥ 2. Then
(ii) tells us that if

∑
j αjWηψj =Wϕ then we must have ℏn∥α∥2ℓ2 = |η|n.

Assume that
∑

j αj = 1; then ∥α∥2ℓ2 ≤ 1 hence we must have |η| ≤ ℏ.

4. Positive trace class operators

4.1. A general positivity result for trace class operators

We are now going to give an integral description of the positivity of a trace
class operator on L2(Rn) of which Theorem 16 can be viewed as a discretized
version.

Let us begin by stating a general result:

Lemma 15. Let Â = OpWη (a) be a trace-class operator on L2(Rn), with

η > 0. We have Â ≥ 0 if and only Tr(ÂB̂) ≥ 0 for every positive trace class
operator B̂ ∈ L1(L

2(Rn)).
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Proof. Since L1(L
2(Rn)) is itself an algebra the product ÂB̂ is indeed of

trace class so the condition Tr(ÂB̂) ≥ 0 makes sense; setting B̂ = OpWη (b)
we have

b(z) = (2πη)n
∑

j

βjWηψj

where (βj) ∈ ℓ1(N) with βj ≥ 0 and ψj an orthonormal basis for L2(Rn).
Observing that trace class operators are also Hilbert–Schmidt operators, we
have [7, Prop. 284] since a, b ∈ L2(R2n)

(39) Tr(ÂB̂) =

∫

R2n

a(z)b(z)dz

and hence

Tr(ÂB̂) = (2πη)n
∑

j

βj

∫

R2n

a(z)Wηψj(z)dz

(the interchange of integral and series is justified by Fubini’s Theorem).
Assume that Tr(ÂB̂) ≥ 0. It is enough to check the positivity of Â on unit
vectors ψ in L2(Rn). Choosing all the βj = 0 except β1 and setting ψ1 = ψ
we have

(40)

∫

R2n

a(z)Wψ(z)dz ≥ 0;

since we can choose ψ ∈ L2(Rn) arbitrarily, this means that we have Â ≥ 0.
If, conversely, we have Â ≥ 0 then (40) holds for all ψj hence Tr(ÂB̂) ≥
0. □

Let us now prove:

Theorem 16. Let η > 0 and Â = OpWη (a) be a trace-class operator. We

have Â ≥ 0 if and only if

(41)

∫

R2n

Fσ,ηa(z)

(∫

R2n

e−
i

2η
σ(z,z′)c(z′ − z)c(z′)dz′

)
dz ≥ 0,

for all c ∈ L2(R2n).
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Proof. In view of Lemma 15 above we have Â ≥ 0 if and only if Tr(ÂB̂) ≥ 0
for all positive B̂ = OpWη (b) ∈ L1(L

2(Rn)) that is (formula (39))

(42)

∫

R2n

a(z)b(z)dz = (a|b)L2(R2n) ≥ 0.

(Recall that Weyl symbols of self-adjoint operators are real). Using
Plancherel’s Theorem

(43) (a|b)L2(R2n) =
(

1
2πη

)n
(Fσ,ηa|Fσ,ηb)L2(R2n).

Since B̂ ≥ 0 there exists Ĉ ∈ L2(L
2(Rn)) such that B̂ = Ĉ∗Ĉ and hence,

setting Ĉ = OpWη (c) (recall that Ĉ∗ = OpWη (c̄)), by the composition formula
for Weyl operators (24),

Fσ,ηb(z) =
(

1
2πη

)n
∫

R2n

e
i

2η
σ(z,z′)Fσ,η c̄(z − z′)Fσ,ηc(z

′)dz′

=
(

1
2πη

)n
∫

R2n

e
i

2η
σ(z,z′)Fσ,ηc(z

′ − z)Fσ,ηc(z
′)dz′.

Vice-versa, take any function c ∈ L2(R2n) then Ĉ = OpWη (c) is a Hilbert-

Schmidt operator and B̂ = Ĉ∗Ĉ is a positive operator. Hence, using the
fact that the operator Fσ,η is a topological automorphism of L2(R2n), con-
dition (42) and (43) are equivalent to

(44)

∫

R2n

Fσ,ηa(z)

(∫

R2n

e−
i

2η
σ(z,z′)c(z′ − z)c(z′)dz′

)
dz ≥ 0,

for every c ∈ L2(R2n), as claimed. □

4.2. Proof of the KLM condition

We are now going to prove the KLM conditions, that is Theorem 4. We will
need the following classical result from linear algebra. It says that the entry-
wise product of two positive semidefinite matrices is also positive semidefi-
nite.

Lemma 17 (Schur). LetM(N) = (Mjk)1≤j,k≤N be the Hadamard product
M ′

(N) ◦M ′′
(N) of the matricesM ′

(N)=(M ′
jk)1≤j,k≤N andM ′′

(N)=(M ′′
jk)1≤j,k≤N :

M(N) = (M ′
jkM

′′
jk)1≤j,k≤N . If M ′

(N) and M
′′
(N) are positive semidefinite then

so is M(N).
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Proof. See for instance Bapat [1]. □

We have now all the instruments to prove the KLM conditions.

Proof of Theorem 4. Assume that Â ≥ 0. In view of Lemma 10 and formula
(36) in Proposition 11 we have

(45) a = (2πη)n
∑

j

αjWηψj

for an orthonormal basis {ψj} in L2(Rn), the coefficients αj being ≥ 0 and
in ℓ1(N). It is thus sufficient to show that the Wigner transform Wηψ of an
arbitrary ψ ∈ L2(Rn) is of η-positive type. This amounts to show that for
all (z1, . . . , zN ) ∈ (R2n)N and all (ζ1, . . . , ζN ) ∈ CN we have

(46) IN (ψ) =
∑

1≤j,k≤N

ζjζke
− i

2η
σ(zj ,zk)Fσ,ηWηψ(zj − zk) ≥ 0

for every complex vector (ζ1, . . . , ζN ) ∈ CN and every sequence (z1, . . . , zN ) ∈
(R2n)N . Since the η-Wigner distribution Wηψ and the η-ambiguity function
are obtained from each other by the symplectic η-Fourier transform Fσ,η we
have

IN (ψ) =
∑

1≤j,k≤N

ζjζke
− i

2η
σ(zj ,zk)Ambη ψ(zj − zk).

Let us prove that

(47) IN (ψ) =
(

1
2πη

)n ∥∥∥
∑

1≤j≤N
ζjTη(−zj)ψ

∥∥∥
2

L2

;

the inequality (46) will follow. Taking into account the fact that Tη(−zk)∗ =
Tη(zk) and using the familiar relation [5–7]

(48) Tη(zk − zj) = e−
i

2η
σ(zj ,zk)Tη(zk)Tη(−zj)
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we have, expanding the square in the right-hand side of (47),

∥∥∥∥∥∥

∑

1≤j≤N

ζjTη(−zj)ψ

∥∥∥∥∥∥

2

L2

=
∑

1≤j,k≤N

ζjζk(Tη(−zj)ψ|Tη(−zk)ψ)L2

=
∑

1≤j,k≤N

ζjζk(Tη(zk)Tη(−zj)ψ|ψ)L2

=
∑

1≤j,k≤N

ζjζke
i
2η σ(zj ,zk)(Tη(zk − zj)ψ|ψ)L2

= (2πη)n
∑

1≤j,k≤N

ζjζke
i
2η σ(zj ,zk)Ambη ψ(zj − zk)

proving the equality (47).
Vice versa, we assume a♦ is of η-positive type and will show that

(Âψ|ψ)L2 ≥ 0 for all ψ ∈ L2(Rn). Since the operator Â is bounded on L2(Rn)
it is sufficient to prove this for ψ ∈ S(Rn), or equivalently (see formula (4))

(49)

∫

R2n

a(z)Wηψ(z)dz ≥ 0

for ψ ∈ S(Rn). Let us now write

Mjk = Ambη ψ(zk − zj)aσ,η(zj − zk);

we claim that the matrix M(N) = (Mjk)1≤j,k≤N is positive semidefinite.
In fact, M is the Hadamard product of the positive semidefinite matrices
M ′

(N) = (M ′
jk)1≤j,k≤N and M ′′

(N) = (M ′′
jk)1≤j,k≤N where

M ′
jk = e

i

2η
σ(zj ,zk)Ambη ψ(−(zj − zk))

M ′′
jk = e−

i

2η
σ(zj ,zk)aσ,η(zj − zk)

and Lemma 17 implies thatM(N) is also positive semidefinite. Hence for the
function b defined by

bσ,η(z) = Ambη ψ(−z)aσ,η(z)

we have that b♦ is of positive type. In particular |bσ,η(z)| ≤ bσ,η(0), which
implies bσ,η(0) > 0 or bσ,η(z) = 0 for every z. Moreover aσ,η ∈ FL1(R2n) and
Ambη ψ ∈ S(R2n), which implies bσ,η ∈ L1(R2n) ∩ FL1(R2n), and the same
holds for b itself.
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If bσ,η(z)(0) > 0 it follows from Bochner’s theorem that b is, up to a
positive constant, a probability density, hence b(z) ≥ 0 for a.e. z ∈ R2n and
therefore for every z ∈ R2n, because b is continuous. The same holds of course
if bσ,η(z) = 0 for every z. In either case, integrating the above equality we

get, using the fact that a is real (because Â is self-adjoint) and the Plancherel
formula for the symplectic η-Fourier transform,

(2πη)nb(0) =

∫

R2n

Ambη ψ(−z)aσ,η(z)dz

=

∫

R2n

Ambη ψ(z)aσ,η(−z)dz

=

∫

R2n

Ambη ψ(z)aσ,η(z)dz

=

∫

R2n

Wηψ(z)a(z)dz

hence the inequality (49) since b(0) ≥ 0. □

4.3. The Gaussian case

Let Σ be a positive symmetric (real) 2n× 2n matrix and consider the Gaus-
sian

(50) ρ(z) = (2π)−n
√
detΣ−1e−

1

2
Σ−1z2

.

Let us find for which values of η the function ρ is the η-Wigner distribution
of a density operator. Narcowich [18] was the first to address this question
using techniques from harmonic analysis using the approach in Kastler’s
paper [13]; we give here a new and simpler proof using the multidimensional
Hardy’s uncertainty principle, which we state in the following form:

Lemma 18. Let A and B be two real positive definite matrices and ψ ∈
L2(Rn), ψ ̸= 0. Assume that

(51) |ψ(x)| ≤ Ce−
1
2Ax2

and |Fηψ(p)| ≤ Ce−
1
2Bp2

for a constant C > 0. Then:
(i) The eigenvalues λj , j = 1, . . . , n, of the matrix AB are all ≤ 1/η2;

(ii) If λj = 1/η2 for all j, then ψ(x) = ke−
1

2
Ax2

for some constant k.

Proof. See de Gosson and Luef [9], de Gosson [7]. The η-Fourier transform
Fηψ in the second inequality (51) is given by (27). □
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We will also need the two following lemmas; the first is a positivity result.

Lemma 19. If R is a symmetric positive semidefinite 2n× 2n matrix, then

(52) P(N) = (Rzj · zk)1≤j,k≤N

is a symmetric positive semidefinite N ×N matrix for all z1, . . . , zN ∈ R2n.

Proof. There exists a matrix L such that R = L∗L (Cholesky decomposi-
tion). Denoting by ⟨z|z′⟩ = z · z′ the inner product on C2n we have, since
the zj are real vectors,

L∗zj · zk = ⟨L∗zj |zk⟩ = ⟨zj |Lzk⟩ = zj · Lzk

hence Rzj · zk = Lzj · Lzk. It follows that for all complex ζj we have

∑

1≤j,k≤N

ζjζkRzj · zk =
∑

1≤j≤N

ζjLzj


 ∑

1≤j≤N

ζjLzj


 ≥ 0

hence our claim. □

The second lemma is a well-known diagonalization result (Williamson’s
symplectic diagonalization theorem [5, 6]):

Lemma 20. Let Σ be a symmetric positive definite real 2n× 2n matrix.
There exists S ∈ Sp(n) such that Σ = STDS where

D =

(
Λ 0
0 Λ

)

with Λ = diag(λ1, . . . , λn), the positive numbers λj being the symplectic
eigenvalues of Σ (that is, ±iλ1, . . . ,±iλn are the eigenvalues of JΣ ∽

Σ1/2JΣ1/2).

Proof. See for instance [5–7]. □

We now have the tools needed to give a complete characterization of
Gaussian η-Wigner distributions:
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Proposition 21. Let η ∈ R \ {0}. The Gaussian function (50) is the η-
Wigner transform of a positive trace class operator if and only if

(53) |η| ≤ 2λmin

where λmin is the smallest symplectic eigenvalue of Σ; equivalently the self-
adjoint matrix Σ+ iηJ/2 is positive semidefinite:

(54) Σ +
iη

2
J ≥ 0.

Proof. Let us first show that the conditions (53) and (54) are equivalent.
Let Σ = STDS be a symplectic diagonalization of Σ (Lemma 20). Since
STJS = J condition (54) is equivalent to D + iη

2 J ≥ 0. Let z = (x, p) be an

eigenvector of D + iη
2 J ; the corresponding eigenvalue λ is real and ≥ 0. The

characteristic polynomial of D + iη
2 J is

P (λ) = det
[
(Λ− λI)2 − η2

4 I
]
= P1(λ) · · · Pn(λ)

where

Pj(λ) = (λj − λ)2 − η2

4

hence the eigenvalues λ ofD + iη
2 J are the numbers λ = λj ± 1

2η; since λ ≥ 0

the condition D + iη
2 J ≥ 0 is equivalent to λj ≥ sup{±1

2η} = 1
2 |η| for all j,

which is the condition (53). Let us now show that the condition (53) is
necessary for the function

(55) ρ(z) = (2π)−n
√
detΣ−1e−

1

2
Σ−1z2

to be η-Wigner transform of a positive trace class operator. Let ρ̂ =
(2πη)nOpWη (ρ) and set a(z) = (2πη)nρ(z). Let Ŝ ∈ Mp(n); the operator ρ̂ is

of trace class if only if Ŝρ̂Ŝ−1 is, in which case Tr(ρ̂) = Tr(Ŝρ̂Ŝ−1). Choose
Ŝ with projection S ∈ Sp(n) such that Σ = STDS is a symplectic diago-
nalization of Σ. This choice reduces the proof to the case Σ = D, that is
to

(56) ρ(z) = (2π)−n(det Λ−1)e−
1

2
(Λ−1x2+Λ−1p2).

Suppose now that ρ̂ is of trace class; then there exist an orthonormal basis
of functions ψj ∈ L2(Rn) (1 ≤ j ≤ n) such that

ρ(z) =
∑

j

αjWηψj(z)
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where the αj ≥ 0 sum up to one. Integrating with respect to the p and x
variables, respectively, the marginal conditions satisfied by the η-Wigner
transform and formula (56) imply that we have

∑

j

αj |ψj(x)|2 = (2π)−n/2(det Λ)1/2e−
1

2
Λ−1x2

∑

j

αj |Fηψj(p)|2 = (2π)−n/2(det Λ)1/2e−
1

2
Λ−1p2

.

In particular, since αj ≥ 0 for every j = 1, 2, . . . , n, . . . ,

|ψj(x)| ≤ Cje
− 1

4
Λ−1x2

, |Fηψj(p)| ≤ Cje
− 1

4
Λ−1p2

here, if αj ̸= 0, Cj = (2π)−n/4(det Λ)1/4/α
1/2
j . Applying Lemma 18 with

A = B = η
2Λ

−1 we must have |η| ≤ 2λj for all j = 1, . . . n, which is condi-
tion (53); this establishes the sufficiency statement. (iii) Let us finally show
that, conversely, the condition (54) is sufficient. It is again no restriction to

assume that Σ is the diagonal matrix D =

(
Λ 0
0 Λ

)
; the symplectic Fourier

transform of ρ is easily calculated and one finds that ρ♦(z) = e−
1

4
Dz2

. Let
Λ(N) = (Λjk)1≤j,k≤N with

Λjk = e−
iη

2
σ(zj ,zk)ρ♦(zj − zk);

a simple algebraic calculation shows that we have

Λjk = e−
1

4
Dz2

j e
1

2
(D+iηJ)zj ·zke−

1

4
Dz2

k

and hence

Λ(N) = ∆(N)Γ(N)∆
∗
(N)

where ∆(N) = diag(e−
1

4
Dz2

1 , . . . , e−
1

4
Dz2

N ) and Γ(N) = (Γjk)1≤j,k≤N with

Γjk = e
1

2
(D+iηJ)zj ·zk . The matrix Λ(N) is thus positive semidefinite if and

only if Γ(N) is, but this is the case in view of Lemma 19. □

Remark 22. Setting 2λmin = ℏ and writing Σ in the block-matrix form(
Σxx Σxp

Σpx Σpp

)
where Σxx = (σxj ,xk

)1≤j,k≤n, Σxp = (σxj ,pk
)1≤j,k≤n and so on,

one shows [10] that (54) is equivalent to the generalized uncertainty relations
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(“Robertson–Schrödinger inequalities”, see [10])

(57) σ2xj
σ2pj

≥ σ2xj ,pj
+ 1

4ℏ
2

where, for ≤ j ≤ n, the σ2xj
= σxj ,xj

, σ2pj
= σpj ,pj

are viewed as variances and

the σ2xj ,pj
as covariances.

5. The KLM conditions in phase space

5.1. The main result

We now consider a Gabor (or Weyl–Heisenberg) frame G(ϕ,Λ) for L2(Rn),
with window ϕ ∈ L2(Rn) and lattice Λ ⊂ Rn (cf. (13)). Time-frequency anal-
ysis and the Wigner formalism are the main ingredients for proving our main
result.

Proof of Theorem 6. (i) Let ψ ∈ L2(Rn). Since G(ϕ,Λ) is a Gabor frame, we
can write

(58) ψ =
∑

λ∈Λ

cλT (λ)ϕ

for some (cλ) ∈ ℓ2(Λ). Let us prove that

(59)

∫

R2n

a(z)Wηψ(z)dz =
∑

λ,µ∈Λ
cλcµe

− i

2η
σ(λ,µ)aλ,µ.

In view of the sesquilinearity of the cross-Wigner transform and its con-
tinuity as a map L2(Rn)× L2(Rn) → L2(R2n) we have

Wη

(∑
λ∈ΛcλT (λ)ϕ

)
=

∑
λ∈ΛcλcµWη(T (λ)ϕ, T (µ)ϕ).

Using the relation (formula (9.23) in [7])

Wη(T (λ)ϕ, T (µ)ϕ) = e−
i

2η
σ(λ,µ)e−

i

η
σ(z,λ−µ)Wηϕ(z − 1

2(λ+ µ))

we obtain
∫

R2n

a(z)Wηψ(z)dz

=
∑

λ,µ∈Λcλcµe
− i

2η
σ(λ,µ)

∫

R2n

a(z)e−
i

η
σ(z,λ−µ)Wηϕ(z − 1

2(λ+ µ))dz

=
∑

λ,µ∈Λ
cλcµe

− i

2η
σ(λ,µ)aλ,µ.
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Suppose now Âη ≥ 0, that is

(60)

∫

R2n

a(z)Wηψ(z)dz ≥ 0

for every ψ ∈ L2(Rn). For any given sequence (cλ)λ∈Λ with cλ = 0 for |λ| >
N we take ψ as in (58) and apply (59); we obtain that the finite matrix in
(15) is positive semidefinite.

Assume conversely that the matrix in (15) is positive semidefinite for
every N ; then the right-hand side of (59) is nonnegative, whenever the se-
ries converges (unconditionally). Now, every ψ ∈ L2(Rn) has a Gabor ex-
pansion as in (58), with cλ = (ψ|T (λ)γ)L2 in ℓ2(Λ), for some dual window
γ ∈ L2(Rn). Hence from (59) and (60) we deduce Âη ≥ 0.

(ii) The desired result follows from the following calculation: we have

M ′
λ,µ =Wη(a, (Wηϕ)

∨)(14(λ+ µ), 12J(µ− λ))

that is, by definition of the Wigner transform,

M ′
λ,µ =

(
1

2πη

)2n
∫

R2n

e−
i

2η
σ(µ−λ,u)a(14(λ+ µ) + 1

2u)

×Wηϕ(−1
4(λ+ µ) + 1

2u)du;

setting z = 1
4(λ+ µ) + 1

2u we have u = 2z − 1
2(λ+ µ) and hence

M ′
λ,µ =

(
1

2πη

)2n
2n

∫

R2n

e−
i

2η
σ(µ−λ,2z−

1
2 (λ+µ))a(z)Wηϕ(z − 1

2(λ+ µ))dz.

Using the bilinearity and antisymmetry of the symplectic form σ we have

σ(µ− λ, 2z − 1
2(λ+ µ)) = 2σ(z, λ− µ) + σ(λ, µ)

so that

M ′
λ,µ =

(
1

2πη

)2n
2ne−

i

2η
σ(λ,µ)

∫

R2n

e−
i

η
σ(z,λ−µ)a(z)Wηϕ(z − 1

2(λ+ µ))dz

that is M ′
λ,µ = 2n(2πη)−2nMλ,µ, hence our claim. □

Remark 23. Let us observe that Theorem 6 extends to other classes of
symbols, essentially with the same proof. For example the results hold for
a ∈M∞,1(R2n) (the so-called Sjöstrand class) if the window ϕ belongs to
M1(Rn). Other choices are certainly possible.
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5.2. The connection with the KLM conditions

In what follows we prove Theorem 7, which shows that the KLM condi-
tions can be recaptured by an averaging procedure from the conditions in
Theorem 6.

Proof of Theorem 7. Let us first observe that we can write

M
(KLM)
λ,µ = (2πη)−ne−

i

2η
σ(λ,µ)VΦa(

1
2(λ+ µ), J(µ− λ))

where Φ(z) = 1 for all z ∈ R2n. Now we have

Wϕν(z) =
(

1
πη

)n
e−

1

η
|z−ν|2

and therefore
∫

R2n

Wϕν(z) dν =
(

1
πη

)n
∫

R2n

e−
1

η
|z−ν|2dν = 1 = Φ(z) ∀z ∈ R

2n.

Hence (19) follows by exchanging the integral with respect to ν in (19) with
the integral in the definition of the STFT in (18). Fubini’s theorem can be
applied because the function

a(z)Wϕν(z − ζ)

belongs to L1(R2n × R2n) with respect to z, ν, for every fixed ζ ∈ R2n. □

Corollary 24. Suppose a ∈ L1(Rn) ∩ L2(Rn). With the notation in The-
orem 7, suppose that G(ϕ0,Λ) is a Gabor frame for L2(Rn). If the matrix
(Mϕ0

λ,µ)λ,µ∈Λ,|λ|,|µ|≤N is positive semidefinite for every N , then so is the ma-

trix (M
(KLM)
λ,µ )λ,µ∈Λ,|λ|,|µ|≤N .

Proof. Observing that G(ϕν ,Λ) is also a Gabor frame for every ν ∈ R2n,
it follows from the assumptions and Theorem 6 that the matrices
(Mϕν

λ,µ)λ,µ∈Λ,|λ|,|µ|≤N are positive semidefinite for all ν ∈ R2n. The result
therefore follows from (19). □

Corollary 25. Suppose a ∈ L1(Rn) ∩ L2(Rn) and Âη = OpWη (a) ≥ 0. Then,
with the notation in Theorem 7, for every finite subset S ⊂ R2n the matrix

(M
(KLM)
λ,µ )λ,µ∈S is positive semidefinite (that is, the KLM conditions hold).
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Proof. Since G(ϕ0,Λ) is a frame for L2(Rn) for every sufficiently dense lattice

Λ, as a consequence of Corollary 24 the matrix (M
(KLM)
λ,µ )λ,µ∈Λ,|λ|,|µ|≤N is

positive semidefinite for all such lattices Λ and every integer N . By restrict-

ing the matrix to subspaces we see that the submatrices (M
(KLM)
λ,µ )λ,µ∈S

are positive semidefinite for every finite subset S ⊂ Λ. Since a ∈ L1(Rn) the
symplectic Fourier transform aσ,η is continuous and therefore the same holds
for every finite subset S ⊂ R2n. □

5.3. Almost positivity

We now address the following question: suppose that G(ϕ,Λ) is a Gabor
frame for L2(Rn) and assume that the matrix (Mλ,µ)λ,µ∈Λ,|λ|,|µ|≤N in (15),
(14) is positive semidefinite for a fixed N . What can we say about the posi-
tivity of the operator Âη? Under suitable decay condition on the symbol a

it turns out that Âη is “almost positive” in the following sense.
Let G(ϕ,Λ) be a Gabor frame in L2(Rn), with ϕ ∈ S(Rn).

Theorem 26. Let a ∈M∞,1
vs

(R2n) be real valued and s ≥ 0; we use the
notation vs(ζ) = ⟨ζ⟩s for ζ ∈ R4n. Suppose that the matrix

(Mλ,µ)λ,µ∈Λ,|λ|,|µ|≤N

in (15) is positive semidefinite for some integer N . Then there exists a
constant C > 0 independent of N such that

(Âηψ|ψ)L2 ≥ −CN−s||ψ||2L2

for all ψ ∈ L2(Rn).

Proof. Let ψ ∈ L2(Rn), and write its Gabor frame expansion as

ψ =
∑

λ∈Λ,|λ|≤N
cλT (λ)ϕ+

∑
λ∈Λ,|λ|>N

cλT (λ)ϕ;

denoting the sums in the right-hand side by, respectively, ψ′ and ψ′′ we get

(Âηψ|ψ)L2 = (Âηψ
′|ψ′)L2 + (Âηψ

′|ψ′′)L2 + (Âηψ
′′|ψ′)L2 + (Âηψ

′′|ψ′′)L2 .

We have, by (59) and the positivity assumption

(Âηψ
′|ψ′)L2 =

∑
λ,µ∈Λ,|λ|,|µ|≤N

cλcµMλ,µ ≥ 0
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hence it is sufficient to show that

(61) |(Âηψ
′|ψ′′)L2 | ≤ CN−s||ψ||2L2

and similar inequalities for the other terms. Now

(62) |(Âηψ
′|ψ′′)L2 | = |(ψ′|Âηψ

′′)L2 | ≤ ||ψ′||L2 ||Âηψ
′′||L2 .

Observe that the function ψ′′ has a Gabor expansion with coefficients cλ = 0
for |λ| ≤ N . By the frame property and the same computation as in the proof
of (59) we have

||Âηψ
′′||L2 ≍ ∥(Âηψ

′′|T (µ)ϕ)L2∥ℓ2
= ∥

∑
λ∈Λ,|λ|>NMλ,µcλ∥ℓ2 .

Observe that (14) can be rewritten in terms of the short-time Fourier trans-
form (STFT) on R2n as

(63) aλ,µ = VWηϕa(
1
2(λ+ µ), J(µ− λ)).

Now, from (15) and (63) we have

|Mλ,µ| = |VWηϕa(
1
2(λ+ µ), J(µ− λ))|.

In view of the assumption a ∈M∞,1
vs

we have, by [12, Theorem 12.2.1], that

∑

ν∈Λ′

sup
z∈R2n

(1 + |z|+ |ν|)s|VWηϕa(z, ν)| <∞

for every lattice Λ′ ⊂ R2n. Now we apply this formula with Λ′ = J(Λ); using

1 + |λ|+ |µ| ≍ 1 +
1

2
|λ+ µ|+ |J(µ− λ)|

we obtain, for |λ| > N

N s|Mλ,µ| ≤ C

(
1 +

1

2
|λ+ µ|+ |J(µ− λ)|

)s

|VWηϕa(
1
2(λ+ µ), J(µ− λ))|

≤ H(µ− λ)

for some H ∈ ℓ1(Λ). By Schur’s test we can continue the above estimate as

∥
∑

λ∈Λ,|λ|>NMλ,µcλ∥ℓ2 ≤ CN−s∥cλ∥ℓ2 ,
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which combined with (62) gives (61), because

∥cλ∥ℓ2 ≍ ||ψ′′||L2 ≤ C ′||ψ||L2

and ||ψ′||L2 ≤ C ′′||ψ||L2 . □
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[17] G. Mourgues, M. R. Feix, and J. C. Andrieux, Not necessary but suf-
ficient condition for the positivity of generalized Wigner functions, J.
Math. Phys. 26 (1985), no. 10, 2554–2555.

[18] F. J. Narcowich, Conditions for the convolution of two Wigner distri-
butions to be itself a Wigner distribution, J. Math. Phys., 29 (1988),
no. 9, 2036–2041.

[19] F. J. Narcowich, Distributions of η-positive type and applications, J.
Math. Phys. 30 (1989), no. 11, 2565–2573.

[20] F. J. Narcowich, Geometry and uncertainty, J. Math. Phys. 31 (1990),
no. 2, 354–364.

[21] F. J. Narcowich and R. F. O’Connell, Necessary and sufficient condi-
tions for a phase-space function to be a Wigner distribution, Phys. Rev.
A. 34 (1986), no. 1, 1–6.



✐

✐

“4-Cordero” — 2020/5/15 — 12:42 — page 2091 — #31
✐

✐

✐

✐

✐

✐

On the positivity of trace class operators 2091

[22] F. J. Narcowich and R. F. O’Connell, A unified approach to quantum
dynamical maps and Gaussian Wigner distributions, Phys. Lett. A 133
(1988), no. 4, 167–170.

[23] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus,
Springer Science & Business Media, (2012).

[24] K. R. Parthasarathy, What is a Gaussian state? Commun. Stoch. Anal.
4 (2010), no. 2, 143–160.

[25] K. R. Parthasarathy, and K. Schmidt, Positive Definite Kernels, Con-
tinuous Tensor Products, and Central Limit Theorems of Probability
Theory, Lecture Notes in Mathematics, Vol. 272, Springer, (1972).
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