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Introduction

This paper deals with the BV-BFV approach to General Relativity (GR),
initiated in [CS15] and [Schi]. It is devoted to the Palatini–Cartan–Holst
formulation of GR, following the classical analysis of [CS17].

Elaborating on the ideas of Batalin, Fradkin and Vilkovisky (B(F)V)
[BV81, BF83, BV77], Cattaneo, Mnëv and Reshetikhin (CMR) [CMR14,
CMR15, CMRQ] suggested that in order to make sense of perturbative
quantisation for a gauge theory on a manifold with boundary, suitable com-
patibility conditions should hold between a Lagrangian theory in the bulk
manifold M and its relative Hamiltonian description on the boundary ∂M .

At the quantum level, the mentioned compatibility is required to ensure
that the state associated with the quantisation of the bulk be physical (i.e.
gauge invariant), and this is formalised by requiring that it be a cocycle in
a suitable complex induced by the boundary structure. At the semi-classical
level, instead, one requires that the bulk action fail to be the Hamiltonian
function of the BV-operator, by a term controlled by the boundary Noether
one-form. One then goes on by assuming that the differential of such a
boundary form be pre-symplectic (i.e. its kernel must be a subbundle), and
that symplectic reduction be smooth.

When this holds, some cohomological data (a BFV-manifold) is in-
duced on the boundary from the BV-data in the bulk, and both the al-
gebra of constraints in the geometrical sense of Kijowski and Tulczyjew
[KT] and the residual gauge symmetry on the boundary are recovered from
the induced boundary action (the BFV operator). More precisely, what hap-
pens is that the Chevalley–Eilenberg–Koszul–Tate resolution of (on-shell)
gauge-equivalent classes of fields, represented by the BV-data in the bulk
[BF83, BV77] (see also [Sta96]), gets surjectively mapped to the resolution of
the (reduced) coisotropic submanifold of canonical constraints on the bound-
ary (the BFV data [Scha09, Scha10, Sta97]). This produces a cohomological
resolution of the canonical constraints, with the crucial property of being
compatible with the original theory in the bulk. In most cases, this requires
no further input than the BV-data one assigns to the bulk.

To this aim, the symplectic analysis of [KT] has the great advantage,
with respect to the widely employed Dirac analysis of constraints [Dir, HT],
of being clean and of yielding a direct access to geometric or canonical
quantisation and to the BV-BFV construction.

This approach also goes in the direction of the axiomatisation of quan-
tum field theory [Ati, Seg]: the BV-BFV formalism admits a natural cutting-
gluing procedure that might allow one to understand the quantum theory
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on elementary building blocks, to be then glued together to obtain the quan-
tisation of a more complex space–time manifold.

After having analysed the Einstein-Hilbert formulation of General Rel-
ativity [CS15], and having shown that it does indeed satisfy the (classical)
BV-BFV axioms, we now turn to another classically equivalent formulation
of GR.

In Palatini–Cartan–Holst theory (PCH) the basic fields are a tetrad (a
co-frame field) and a connection in an SO(3, 1) bundle1. The equivalence
between EH and PCH theories is well established for closed manifolds, and
its extension to the boundary is discussed in [CS17].

In Section 3 we implement diffeomorphisms as gauge symmetries in the
BV setting, for all theories of differential forms valued in g-modules, and we
use it to define the BV-structure associated to PCH theory.

We find that this (natural) extension of PCH theory to the BV setting
does not satisfy the BV-BFV axioms, as it does not induce a bulk-compatible
BFV structure on the boundary, unless non-trivial strong requirements are
imposed on the fields. We stress that this is a remarkable deviation from the
Einstein–Hilbert case.

Recently, it has been shown [CSS, CaSc] that the analogous theory in
(2 + 1)-dimensions does not encounter such an obstruction, when inducing
BFV data associated to the boundary, which then appears to be a phe-
nomenon peculiar to dimension 4 (and possibly higher).

We plan to investigate possible solutions to this issue, e.g., by correcting
the BV-form by a boundary term, a strategy that turned out successful in
a similar, yet much simpler situation, when dealing with one dimensional
gravity coupled to matter [CS16].

However, we argue that the usual notion of classical equivalence of field
theories is insufficient to grasp differences that might arise where higher codi-
mension data (e.g. boundaries) are taken into account. In the mentioned case
of a one dimensional gravity model, a theory that is classically equivalent to
the Jacobi formulation of classical mechanics is shown to enjoy a much bet-
ter boundary structure than the latter, which induces a BV-BFV structure
only with a careful choice of a boundary term for the BV-form [CS16].

Another possibility is presented in Section 5, where we will replace the
natural assignment of symmetries in favour of vector fields which preserve
the boundary submanifold. This choice (tantamount to requiring that the
vector fields have zero transverse component on the boundary) will turn out
to have a great impact in the regularity of the theory. Theorems 32 and 33

1In the Euclidean case one uses SO(4).
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will state the existence of a BV-BFV correspondence when the new BV
input is considered.

This strategy is also related to what happens in the one-dimensional
examples of [CS16]. In this case, though, the BFV data we obtain by con-
sidering boundary-preserving diffeomorphism will be the resolution of a
coisotropic submanifold, larger than the one that defines GR.

This result poses an important question about what variational princi-
ples that describe the same Euler–Lagrange equations should be considered
truly equivalent in the presence of boundary. The BV-BFV axioms might
then be used as a criterion to determine whether a given variational princi-
ple has better chances than others to yield a sensible quantisation theory, if
we believe that whatever quantisation eventually turns out to be, it should
essentially be represented by a functorial association of a suitable category
of linear objects, to the category of space–time cobordisms with structure.

In other words, the naturality of the requirement of a bulk theory to be
compatible with its boundary data, makes it hard to think that a correct
notion of quantisation can be developed without taking this requirement
into account.

Note added in proof. For completeness we report that, recently, BFV
data for Palatini–Cartan–Holst theory has been constructed in [CCS20].
It was obtained by applying the standard BFV prescription to resolve the
reduced phase space of the theory as presented in [CS17], of which a more
handy presentation has been given in [CCS20]. We observe that a link to
the “bulk” BV data for PCH theory, presented in Section 3 below, is still
obstructed as a result of Theorem 32 of the present paper.

1. Classical BV and BFV formalisms

In this section we recall the general formalism for gravity theories, as in
Section 2 of [CS15].

Consider a space of fields, i.e., a (possibly infinite dimensional) Z-graded
symplectic manifold F with a symplectic form Ω of degree |Ω| = k together
with a local, degree k + 1 functional S of the fields and a finite number of
their derivatives.

The dynamical content of the theory is encoded in the Euler–Lagrange
variational problem for the functional S. The Z-grading is called ghost num-

ber, but it will be often replaced by the computationally friendly total degree,
which takes into account the sum of different gradings when the fields belong
to some graded vector space themselves (e.g. differential forms).
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The symmetries are encoded by an odd vector field Q ∈ Γ(T [1]F ) such
that [Q,Q] = 0. A vector field with such a property is said to be cohomo-

logical.
Among these pieces of data some compatibility conditions are required.

We give the following definitions for different values of k. According to the
convention that we adopt, ordinary symplectic manifolds are called (0)-
symplectic in the graded setting. Our model for a bulk theory will be given
by

Definition 1. A BV-manifold is the collection of data (F , S,Q,Ω) with
(F ,Ω) a Z-graded (−1)-symplectic manifold, and S and Q respectively a
degree 0 function and a degree 1 vector field on F such that

1) ιQΩ = δS, i.e. S is the Hamiltonian function of Q

2) [Q,Q] = 0, i.e. Q is cohomological.

Remark 2. The symplectic structure Ω defines an odd-Poisson bracket (, )
on F and the above conditions together imply

(1) (S, S) = 0

the Classical Master Equation (CME).

Definition 3. Whenever the data (F , S,Q,Ω) satisfies only (2) but not (1)
we say that the BV-manifold is broken2.

On the other hand, the model for a boundary theory, induced in some
sense to be explained, will be given by

Definition 4. A BFV-manifold is the collection of data (F∂ , S∂ , Q∂ , ω∂)
with (F∂ , ω∂) a Z-graded 0-symplectic manifold, and S∂ and Q∂ respectively
a degree 1 function and a degree 1 vector field on F∂ such that

1) ιQ∂ω∂ = δS∂ , i.e. S∂ is the Hamiltonian function of Q∂

2) [Q∂ , Q∂ ] = 0, i.e. Q∂ is cohomological.

This implies that S∂ satisfies the CME. If ω∂ is exact, we will say that the
BFV-manifold is exact.

2Sometimes one requires that Ω be only closed, allowing it to be degenerate. In
this case one speaks of (F ,Ω, S,Q) as a relaxed BV-manifold.
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These definitions abstract from the following prototype. Usually one
starts from a classical theory, that is, for each manifold M of a fixed di-
mension, the assignment of a local action functional S0

M on some space of
classical fields FM and a distribution in the bulk D ⊂ TFM encoding the
symmetries, i.e. LX(S0

M ) = 0 for all X ∈ Γ(D). The only requirement on
D for the formalism to make sense is that D be involutive on the critical
locus of S0

M . Notice that D can be the distribution induced by a Lie algebra
(group) action, in which case it is involutive on the whole space of fields.
When this is the case we will talk of BRST formalism, even though the
setting will be slightly different from the original one (for another account
on the relationship between the BV and BRST formalism see, e.g. [Mn]).

To construct a BV-manifold on a closed manifold M starting from clas-
sical data we must first extend the space of fields to accommodate the sym-
metries: FM ⇝ FM = T ∗[−1]D[1]. Symmetries are considered with a degree
shift of +1, whereas the dualisation introduces a different class of fields
(called anti-fields) with opposite parity to their conjugate fields, owing to
the −1 shift in the cotangent functor. This yields a (−1)-symplectic man-
ifold, which is a good candidate to be the space of fields we want to work
with3.

The classical action has to be extended as well to a new local functional
on FM , and if we want this to satisfy the axioms of the BV-manifold we
must impose the CME on the extended action. This process of extension
goes through co-homological perturbation theory [BV81, Sta96, Sta97, FK,
CMR15] and it will ensure us to end up with a BV-manifold. However, for
a theory which is BRST-like, the extension is determined by the following
straightforward result [BV81]:

Theorem 5. If D comes from a Lie algebra action, the functional SBV =
S0
M + ⟨Φ†, QΦ⟩ on the space of fields FM = T ∗[−1]D[1] satisfies the CME,

where Φ is a multiplet of fields in D[1], Φ† denotes the corresponding mul-
tiplet of conjugate (anti-)fields and Q is the degree 1 vector field encoding
the symmetries of D.

FM is then a (−1)-symplectic manifold and, together with SBV and
QBV satisfying ιQBV

Ω = δS, with Ω the standard symplectic structure on
cotangent bundles, it yields a BV-manifold corresponding to a (minimal)
extension of the classical theory.

3Here we assume for simplicity thatD can also be described in terms of local data.
In more general situations, one may have to resolve D into a complex described in
terms of local data (ghost for ghosts).
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1.1. BV-BFV formalism for gauge theories

We will explain here in which sense Definition 4 is a boundary model for
Definition 1.

Definition 6. An exact BV-BFV pair is the quintuple (F ,Ω, S,Q;π) given
by a broken BV-manifold, together with the exact BFV-manifold (F∂ , ω∂ =
δα∂ , S∂ , Q∂) and a surjective submersion π : F −→ F∂ such that the BV-
BFV formula:

(2) ιQΩ = δS + π∗α∂

is satisfied. Such a pair will be denoted by (F ,F∂)π

In field theory there are natural examples of BV-BFV pairs as in the
following prototypical construction. Say that we start from the data defin-
ing a BV-manifold, but this time we allow M to have a boundary ∂M : the
requirement that ιQΩ = δS is (in general) no longer true. What will hap-
pen is that the integration by parts one usually has to take into account
when computing δS will leave some non zero terms on the boundary. More
precisely, consider the map

(3) π̃M : FM −→ F̃∂M

that takes all fields and their jets to their restrictions to the boundary (it
is a surjective submersion). We can interpret the boundary terms as the
pullback of a one form α̃ on F̃ , namely

(4) ιQΩ = δS + π̃∗
M α̃

We will call α̃ the pre-boundary one form. In full generality α̃ is a connection
on a line bundle, yet when S is a function on the space of fields, α̃ is a globally
well defined 1-form.

Notice that if we are given this data, we can interpret this as a broken

BV-manifold, with some relation to the boundary. We can in fact consider
the pre-boundary two form ω̃ := δα̃ and if it is pre-symplectic (i.e. its kernel
is a subbundle) then we can define the true space of boundary fields F∂

∂M

to be the symplectic reduction of the space of pre-boundary fields, namely:

(5) F∂
∂M = F̃∂M

/
ker(ω̃)
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with projection to the quotient denoted by ϖ : F̃∂M −→ F∂
∂M . If all of the

above assumptions are satisfied and the quotient F∂
∂M is smooth, the map

πM := ϖ ◦ π̃ is a surjective submersion, the reduced two form ω∂ := ω̃ is a
0-symplectic form, and the key result is

Proposition 7 ([CMR11]). The cohomological vector field Q projects
to a cohomological vector field Q∂ on the space of boundary fields F∂

∂M .
Moreover Q∂ is Hamiltonian for a function S∂ , the boundary action.

When this construction goes through, it associates to a manifold with
boundary (M,∂M) a BV-BFV pair that depends on the manifold data. We
will say that

Definition 8. A d-dimensional BV-BFV theory is an association of a
BV-BFV pair (FM ,F∂

∂M )πM
to a d-dimensional manifold with boundary

(M,∂M).

To summarise the construction and rephrase Proposition 7 we have the
following

Theorem 9 ([CMR14]). Whenever the space F∂
∂M of Equation (5) is

smooth, we are given the BV-BFV pair (FM ,F∂
∂M )πM

. The construction of
a BV-manifold for a local field theory on a closed manifold M extends to a
(possibly exact) BV-BFV theory on the manifold with boundary (M,∂M).

Remark 10. Notice that in Definition 4 it is possible to relax the require-
ment that the BFV 2-form ω̃ be nondegenerate and introduce the notion of
pre-BFV manifolds. When that is the case we may define pre-BV-BFV pairs
to be modelled over these more general pre-BFV-manifolds. Observe that a
pre-BV-BFV pair (F , F̃)π̃ such that the form ker(ω̃) is a subbundle gives nat-
urally rise to a BV-BFV pair on the symplectic reduction F∂ = F̃

/
ker(ω̃),

if smooth, by composing π̃ with the symplectic reduction map.

Some compatibility between bulk and boundary can always be achieved
in terms of the space of pre-boundary fields, on which the differential of the
Noether 1-form is degenerate. The crucial assumption is that the symplectic
reduction of this 2-form should be smooth.

The advantage of such a point of view is at least twofold. First of all, as
we just saw, the formalism is large enough to be able to describe consistently
what happens both in the bulk and in the boundary. On the other hand it
is flexible enough to allow for symmetries that are more general than a
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Lie group action. For instance it is possible to accomodate symmetries that
close only on shell (e.g. Poisson sigma model) or symmetries whose local
generators are not linearly independent, where higher relations among the
relations are required (e.g. BF theory or other theories involving (d > 1)-
differential forms.

Also notice that, even if we started with a Lie group action on the space
of bulk fields, the BFV symmetries on the boundary may be of a more
general type. This is actually the case in GR.

The BV-manifold that we have constructed in Theorem 5 when a gauge
theory of the BRST-kind was given is sometimes called the minimal BV-

extension of the gauge theory. When a non trivial boundary is allowed,
we will use this minimal extension as the starting point for the BV-BFV
analysis.

Note that the pre BV-BFV structure constructed above is not invariant
under the extension to manifold with boundary of local BV diffeomorphisms.
In addition, one may change the structure by changing the BV-form by a
boundary contribution (which sometimes may be absorbed by a BV sym-
plectomorphism). The different pre boundary 2-forms may have different
kernels [CS16]. In this paper we focus on the natural description of PCH
theory and show that the kernel does not have constant rank ; the possibility
that modifications as above might solve the problem remains open.

In what follows we will check the BV-BFV axioms for the Palatini–
Cartan–Holst theory of gravity and we will see that when diffeomorphisms
are considered, the condition on ω̃ does indeed become an obstruction. In
[CS15] we proved that this step works in the Einstein–Hilbert formulation
of GR, in the ADM decomposition near the boundary.

Throughout the paper we will assume that M is an oriented manifold
that admits a Lorentzian structure.

2. General Relativity in the Palatini–Cartan–Holst

formalism

It is possible to cast General Relativity as a theory of connections on a
principal bundle, independent of the metric field. The definitions that follow
are based on [CS17].

Let V −→ M be the Minkowski bundle over a 4-dimensional manifold
M , with fibre the Minkowski space (V, η), and let P −→ M the associated
principal SO(3, 1) bundle.
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Definition 11. Let Fω be the curvature of a connection ω ∈ AP , regarded
as a

∧2V -valued two-form under the identification so(3, 1) ≃
∧2V , and

let e : TM −→ V be a bundle isomorphism covering the identity, i.e. e ∈
Ω1
nd(M,V), where nd stands for nondegenerate.
The Palatini–Cartan–Holst theory is the assignment of the pair

(F0
PCH , S0

PCH)M to every 4 dimensional manifold M such that

(6) F0
PCH = Ω1

nd(M,V)×AP ;

(7) S0
PCH =

∫

M

T̂γ

[
1

2
e ∧ e ∧ Fω +

Λ

4
e4
]
,

where the map

(8) T̂γ :
∧2V ⊗

∧2V−→R

acts as T̂ (α⊗ β) = Tr [(1 + ⋆)α ∧ β], with ⋆ the hodge operator defined by
η, and the constants γ,Λ ∈ R are respectively called Barbero–Immirzi pa-
rameter and cosmological constant.

PCH theory depends on the Barbero–Immirzi parameter γ and the cos-
mological constant Λ. The role of the parameter γ has been debated at
length. We shall retain it for the sake of generality, as it will have no tangi-
ble effect in what follows, although it generates ambiguities in quantisation
(see [RT] and references therein).

We have constructed a field theory whose basic fields are a tetrad e and
an independent so(3, 1) connection ω. To recover the standard Einstein–
Hilbert metric formulation of GR one pulls back η to g := e∗η and ω to
A := e∗ω, and using the field equations imposes that ω = ω(e) is the (unique)
connection satisfying dωe = 0, which is equivalent to ∇Ag = 0 and A is the
Levi–Civita connection.

Remark 12. Notice that tetrads have more local degrees of freedom than
metrics (16 local against 10), but we have the gauge freedom to rotate a
tetrad with a local Lorentz transformation without changing the action and
the equations of motion. In addition to the usual space–time diffeomor-
phisms, we will take into account an internal SO(3, 1)-symmetry as well.

The Einstein–Hilbert and Palatini–Cartan–Holst theories are then equiv-
alent on-shell, that is they describe the same Euler–Lagrange locus, modulo
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symmetries. This is the content of the classical equivalence of field theories
with vanishing boundary conditions.

2.1. Classical boundary structure

Let us summarise some of the results of the classical analysis of the boundary
structure of PCH gravity presented in [CS17].

The adjective classical, here and anywhere else in this paper, just means
degree-0. The basic procedure is equivalent to the one outlined in Section 1.1,
without BV-extension.

Denote V∂ := ι∗V the induced vector bundle on the boundary, ι : ∂M −→
M , we also denote by Ω1

nd(∂M,V∂) the space of V∂-valued 1-forms that span
a 3-dimensional subspace W ⊂ V and by P ∂ ≡ ι∗P the induced principal
bundle on the boundary. The space of restrictions of fields to the boundary
projects to the (reduced) space of boundary fields, obtained as the quotient
by the kernel of the map

W(1,2)
e : Ω1(∂M,

∧2V∂) −→ Ω2(∂M,
∧3V∂)

v 7→ e ∧ v

which acts on the affine space AP ∂ , the natural space of restrictions of
connections to the boundary and is surjective. More precisely, we have:

Lemma 13 ([CS17]). The map

W(p,k)
e : Ωp

(
∂M,

k∧
V∂

)
−→ Ωp+1

(
∂M,

k+1∧
V∂

)

defined by W
(p,k)
e (X) = X ∧ e, where e is the restriction of the tetrad to the

boundary ι : ∂M → M , is injective for p = k = 1 and it is surjective when
(p, k) = (1, 2) or (p, k) = (2, 1).

This is used to prove

Theorem 14 ([CS17]). The classical space of boundary fields for the
Palatini–Cartan–Holst theory is the symplectic manifold given by the fibre
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bundle:

(9) F0∂
PCH −→ Ω1

nd(∂M,V∂) ≃ T ∗Ω1
nd(∂M,V∂)

with fibre over e ∈ Ω1
nd(∂M,V∂) given by the reductionAred

P ∂ := AP ∂

/
∼ with

respect to the equivalence relation ω ∼ ω′ ⇐⇒ ω − ω′ ∈ Ker(W
(1,2)
e ) and

the symplectic form reads

(10) ϖ0∂
PCH =

∫

∂M

T̂γ [e ∧ δe ∧ δω] =

∫

∂M

Tr [δeδtγ ] .

with ω denoting an equivalence class in Ared
P ∂ , and tγ := e ∧ Tγ [ω].

Remark 15. The global Darboux chart requires choice of a reference con-

nection and follows from the surjectivity of W
(1,2)
e . If we denote by W :=

ker(W
(1,2)
e ) we can choose a complement in

Ω1(∂M,
∧2V∂) = W ⊕ C

and split ω = ω̃ + v, with v ∈ W. Fields in AP ∂ are then equivalence classes
of P ∂-connections, modulo W.

The algebra of constraints has the following structure

Theorem 16 ([CS17]). In the symplectic manifold

F∂
PCH −→ Ω1

nd(∂M,V∂)

with symplectic form ϖ∂
PCH as in Eq. (10), the vanishing locus CPCH of the

functions:

(11) Lα =

∫

∂M

T̂γ [α ∧ e ∧ dωe]; Jµ =

∫

∂M

T̂γ [µ ∧ e ∧ Fω] + Tr
[
Λµ ∧ e3

]

with µ ∈ Ω0(∂M,V∂) and α ∈ Ω0(M,
∧2 V∂) is coisotropic. We have the al-

gebraic structure:

{Lα,Lα′} = L[α′,α](12a)

{Jµ,Jµ′} = LXµµ′(12b)

{Lα,Jµ} = J[α,µ] + LHµα(12c)
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where Xµµ and Hµ,α are functions of the fields e,ω and depend on a choice

of a complement of Ker(W
(1,2)
e ).

Corollary 1. The vanishing locus of the functions {Lα;Jιξe}, where ξ is a
vector field tangent to ∂M , defines a coisotropic submanifold CBP ⊃ CPCH .
The subalgebra structure is given by

{Jξ,Jξ′} = J[ξ,ξ′] + Lιξιξ′Fωγ
(13a)

{Jξ,Lα} = −J[α,ιξe](13b)

while the Hamiltonian vector field Jιξe reads

(14) (Jξ)e = −Lω
ξ e; (Jξ)ω = −ιξFω

Remark 17. We will recover the resolution of the submanifold CBP in the
BFV formalism in Section 5. It is important to observe that CBP does not
describe the correct structure of General Relativity, for we eliminated one of
the constraints, whereas CPCH does, as was shown in [CS17]. The resulting
reduced phase space has 3 local degrees of freedom, instead of 2.

3. Covariant BV theory

In this section we would like to promote Palatini–Cartan–Holst theory as
presented in Definition 11 to the data of a BV-manifold. The PCH descrip-
tion of gravity is a BRST-like gauge theory, and it admits a BV extension,
similarly to the Einstein–Hilbert version [CS15]. Differently from the EH
case, however, here we have to deal with an an internal so(3, 1) gauge free-
dom in addition to space–time diffeomorphisms.

We define a covariant BV operator that represents the action of (in-
finitesimal) diffeomorphisms for all theories of G-connections and sections
of G-associated bundles, and use it to define a solution of the Classical Mas-
ter Equation for PCH gravity.

For the results in this section we will need the following:

Lemma 18. Let P −→ M be a principal G-bundle and let A ∈ AP be a
connection on it. Let ξ ∈ X[1](M) be a degree-1 vector field on M , and V
an associated vector bundle with typical fibre the g module Vg. For any
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differential form Φ ∈ Ω•(M,V) define the covariant Lie derivative to be

(15) LA
ξ Φ = [ιξ, dA]Φ

with dA being the covariant derivative induced by the connection A. We
have the formula:

(16) LA
[ξ,ξ]Φ− [LA

ξ , L
A
ξ ]Φ + [ιξιξFA,Φ] = 0

Proof. The proof is just a straightforward computation:

LA
[ξ,ξ]Φ− [LA

ξ , L
A
ξ ]Φ

= L[ξ,ξ]Φ− [Lξ, Lξ]Φ + ι[ξ,ξ][A,Φ] + [A, ι[ξ,ξ]Φ]

− ιξd[ιξA,Φ]− ιξ[A,L
A
ξ Φ] + dιξ[ιξA,Φ] + [A, ιξL

A
ξ Φ]

= 2ιξdιξ[A,Φ]− ιξιξd[A,Φ− dιξιξ[A,Φ] + [A, 2ιξdιξΦ− ιξιξdΦ]

− 2ιξdιξ[A,Φ] + ιξd[A, ιξΦ]− ιξ[A, ιξdΦ− ιξ[A, [ιξA,Φ]]

+ ιξ[A, dιξΦ] + d[ιξA, ιξΦ] + [A, ιξιξΦ+ [ιξA, ιξΦ]− ιξdιξΦ] = 0

as it can be carefully checked by expanding all terms. We used the odd
version of the well known identity L[ξ,ξ]Φ− [Lξ, Lξ]Φ = 0 (ξ has degree 1),
of which this Lemma is some covariant generalisation. □

Lemma 19. Under the same assumptions of Lemma 18, we have that

(17) ιA[ξ,ξ]Φ := [LA
ξ , ιξ]Φ = ι[ξ,ξ]Φ

i.e. such a combination does not depend on the connection A.

Proof. First, one shows that

B := 2ιξ[A, ιξΦ]− ιξιξ[A,Φ]− [A, ιξιξΦ] = 0

since ιξ is a derivation of degree 0 on (Lie algebra valued) differential forms.
So we can write, adding B ≡ 0

ι[ξ,ξ]Φ = 2ιξdιξΦ− ιξιξdΦ− dιξιξΦ+ B

= 2ιξdAιξFA − ιξιξdAFA − dAιξιξFA = ιA[ξ,ξ]Φ

proving the statement. □

Moreover, we have
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Lemma 20. Let A be a connection on a principal bundle P −→ M and
FA its curvature form. Let ξ ∈ X[1](M) be a degree-1 vector field. Then we
have

(18) ιξL
A
ξ ιξFA = 0

Proof. Observe that the contraction w.r.t. an odd vector field ξ is an even
operator, therefore

(19) ι[ξ,ξ]ιξ = ιξι[ξ,ξ]

Using Lemma 19, which tells us that [LA
ξ , ιξ] = [Lξ, ιξ], and since (ιξ)

3FA =
0, together with the Bianchi identities dAFA = 0, applying (19) to FA we
infer

2ιξdAιξιξFA − ιξιξdAιξFA = 2ιξιξdAιξFA − ιξdAιξιξFA

leading to

ιξdAιξιξFA = ιξιξdAιξFA

which proves the statement. □

This will be used to prove the following

Theorem 21. Let P −→ M be a principal G bundle and let A ∈ AP be
a connection on it. Consider any degree 1 vector field ξ on M , and any
associated vector bundle V with typical fibre the g module Vg. Denote by
ρ the representation on Vg. Let c ∈ Ω0[1](M, adP ) be a degree 1 function
with adP the adjoint bundle to P , and define a vector field Q on the graded
manifold

FM = AP × Ω•(M,V)× X[1](M)× Ω0[1](M, adP )

through the assignment:

(20)
QA = ιξFA − dωc QΦ = Lω

ξΦ− ρ(c)Φ

Qc =
1

2
ιξιξFA −

1

2
[c, c] Qξ =

1

2
[ξ, ξ]

Then Q is cohomological, i.e. [Q,Q] = 0.
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Proof. We report the main steps of the various computations:

Q2c =
1

2
ι[ξ,ξ]ιξFA −

1

2
dA(ιξFA − dAc)−

1

2
[ιξιξFA, c]

= ιξdAιξιξFA −
1

2
ιξιξdAιξ − ιξιξdAιξFA +

1

2
ιξιξ[FA, c]− [ιξιξFA, c]

= −ιξL
A
ξ ιξFA = 0

where we used Lemma 20. Using Lemma 18 when applying Q2 to the field
Φ, we have

Q2Φ =
1

2
LA
[ξ,ξ]Φ− LA

ξ L
A
ξ Φ+ LA

ξ [c,Φ] + ιξ[ιξFA − dAc,Φ]

− [ιξFA − dAc, ιξΦ] + [c, LA
ξ Φ]− [c, [c,Φ]] +

1

2
[[c, c],Φ]

=
1

2
LA
[ξ,ξ]Φ− LA

ξ L
A
ξ Φ−

1

2
[ιξιξFA,Φ]

= 0

whereas applying it to the connection A we can use the Bianchi identity
dAFA = 0:

Q2A =
1

2
ι[ξ,ξ]FA − ιξdA (ιξFA − dAc)

+
1

2
dA (ιξιξFA − [c, c])− [ιξFA − dAc, c]

= −
1

2
ιξιξdFA − ιξ [A, ιξFA] +

1

2
[A, ιξιξFA] = −

1

2
ιξιξdAFA = 0

We are left with Q2ξ = 0, which follows from the Jacobi identity in
(X(M), [, ]). □

This result tells us how to implement diffeomorphisms as gauge symme-
tries for different theories involving differential forms with values in some
representation of the internal Lie algebra g. As we shall see below this is the
case of the Palatini formulation of General Relativity.

Remark 22. Notice that Theorem 21 applies in the case of spin bundles
as well, and we can take Φ to be a section of the associated spin bundle,
thus extending the action of the diffeomorphisms in the tetrad formalism to
spinors. This requires the replacement of SO(3, 1) with its universal cover,
Spin(3, 1).
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3.1. BV-extension of Palatini–Cartan–Holst theory

In the literature, Piguet - Moritsch, Schweda and Sorella - and Baulieu and
Bellon [BB] all suggested a BRST operator for the PCH theory of gravity
that can be summarised by the following:

Proposition 23 ([Piguet, MSS, BB]). The assignment

(21)

s e′ = Lξ′e
′ + [θ′, e′]

sω′ = Lξ′ω
′ + dω′θ′

s ξ′ =
1

2
[ξ′, ξ′]

s θ′ = Lξ′θ
′ +

1

2
[θ′, θ′]

defines a cohomological vector field over

FPP := Ω1
nd(M,V)︸ ︷︷ ︸

e′

×Ω1(M,
∧2V)︸ ︷︷ ︸

ω′

×X[1](M)︸ ︷︷ ︸
ξ′

×Ω0[1](M, adP )︸ ︷︷ ︸
θ′

with ξ a vector field with ghost number gh(ξ) = 1 and θ a function with
values in Λ2V and ghost number gh(θ) = 1. The Hamiltonian vector field of
the BV-extension SPP of the Palatini–Cartan–Holst action by s is a coho-
mological vector field in F := T ∗[−1]FPP , thus the data (FPP ,ΩPP , SPP , š)
defines a BV-manifold.

Remark 24. Observe that, in order to make sense of the formulas in Propo-
sition 23 we have to consider ω′ as a global vector-valued one-form, instead
of a connection. Moreover, the Lie derivatives are not covariant. We show
that there exists a version of this involving covariant expressions, which is
close enough, in the following sense.

Theorem 25. The 4-tuple
(
FPCH := T ∗[−1]Fmin,Ω

γ
PCH , Q, Sγ

PCH

)
defines

a BV-manifold where Fmin is defined as

(22) Fmin := F0
PCH × X[1](M)× Ω0[1](M, adP ) ∋ (e, ω, ξ, c),
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Q is the Hamiltonian vector field of Sγ
PCH , namely ιQΩ

γ
PCH = δSγ

PCH , where
(23)

Sγ
PCH =

∫

M

T̂γ

[
1

2
e ∧ e ∧ Fω +

Λ

4
e4 + (ιξFω − dωc)ω

† − ([ιξ, dω]e− [c, e]) e†
]

+
1

2

∫

M

T̂γ

[
(ιξιξFω − [c, c]) c†

]
+

∫

M

1

2
ι[ξ,ξ]ξ

†,

Fω being the curvature of ω, Lω
ξ = [ιξ, dω] the covariant Lie derivative along

ξ with connection ω, and the standard (−1)-symplectic form Ωγ
PCH is

(24) Ωγ
PCH =

∫

M

T̂γ

[
δω†δω + δe†δe+ δc†δc

]
+ ιδξδξ

†.

The BV operator for the PCH formalism is then given by:

(25)
Qω = ιξFω − dωc Q e = Lω

ξ e− [c, e]

Qc =
1

2
ιξιξFω −

1

2
[c, c] Qξ =

1

2
[ξ, ξ].

Finally, there is a canonical transformation between the BV-manifold
just described and (FPP ,ΩPP , SPP , š) (cf. Proposition 23), i.e.

(26) ϕ : FPCH −→ FPP ,

whose generating function is given by

G[c†, ξ†, e†, ω†, e′, ω′, ξ′, θ′](27)

:=

∫

M

Tr
[
c†(ιξω

′ − θ′) + ιξξ
†′ − e†e′ − ω†ω′

]
.

Remark 26 (Graded canonical transformations). Observe that in the
graded setting the generating function of a canonical transformation might
incur in some nontrivial sign conventions.

Denote by (p, q) and (P,Q) two Darboux charts of an odd symplectic
manifold, e.g. Ω = δpδq and |p| = |q|+ 1. Now, a generating function of type

I is a function F (q,Q) such that

pδq = PδQ+ δF (q,Q) = PδQ+ δq
δF

δq
+ δQ

δF

δQ
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and since q δp = (−1)|q|+1δq p we have the equations

(28) p = −(−1)|q|
δF

δq
; P = (−1)|Q| δF

δQ
.

Alternatively, we may consider the class of generating functions of type II,
i.e. functions G(q, P ) that satisfy (we use the convention δ = δq δ

δq
+ δP δ

δP
)

pδq = PδQ+ δ
(
(−1)|P |+1P Q+G

)
= (−1)|P |+1δP Q+ δq

δG

δq
+ δP

δG

δP

and the associated equations become

(29) p = −(−1)|q|
δF

δq
; Q = (−1)|P | δF

δP
.

In particular, in this class we have the generating function for the identity
map, which can be easily shown to be

(30) Gid = (−1)|P |P q.

Observe that one might get rid of (some of) the signs by means of deriva-
tion from the right and by using them to define the operator δ. Hereinafter
we will assume that δ =

∑
φ δϕ

δ
δφ

and we will consider its total degree to
be 1.

Proof of Theorem 25. Q encodes the symmetries of the classical PCH action,
indeed QS0

PCH = 0 :

QS0
PCH =

1

2

∫
T̂γ [2[ιξ, dω]eeFω − 2[c, e]eFω − eedω(ιξFω − dωc)]

=
1

2

∫
T̂γ

[
− 2dωeιξeFω − 2dωeeιξFω − 2dωιξeeFω − eedωιξFω

+ ee[Fω, c]− 2[c, e]eFω + 2edωιξeFω + eιξedωFω − 2dωeeιξFω

− 2dωιξeeFω + 2dωeeιξFω − ⟨ee, adcFω⟩ − ⟨adc(ee), Fω⟩

]
= 0

On the other hand, Q is cohomological because of Theorem 21, where∧2 V ≃ g = so(3, 1), A = ω and (V, η) clearly bears a representation of g.
Since the symmetries are BRST-like we can use Theorem 5 to construct
SBV
PCH , which solves the Classical Master Equation w.r.t. Ωγ

BV .
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Now, let us turn to the generating function

G :=

∫

M

Tr
[
c†(ιξω

′ − θ′) + ιξξ
†′ − e†e′ − ω†ω′

]
,

from which we can deduce the following map (cf. Remark 26, where we set
q = (c†, ξ, e, ω†), P = (e†′, ω′, ξ†′, θ′))

(31)





e′ = e

ω′ = ω

ξ′ = ξ

θ′ = ιξω − c





e†′ = e†

ω†′ = ω† − ιξc
†

ξ†′ = ξ† + c†ω•

θ†′ = −c†

where c†ω• denotes a top-form valued one-form (so contractions act as
ιX(c†ω•) = c†ιXω). We can pullback SPP along ϕG as:

ϕ∗
GSPP = ϕ∗

G

∫

M

T̂γ

[
1

2
e′e′Fω′ +

Λ

4
e′4 + e†′

(
Lξ′e

′ + [θ′, e′]
)

(32)

+ ω†′
(
Lξ′ω

′ + dω′θ′
)
+ θ†′

(
1

2
[θ′, θ′] + Lξθ

′

)]
+

1

2
ι[ξ′,ξ′]ξ

†′

=

∫

M

T̂γ

[
1

2
eeFω+

Λ

4
e4+e† (Lξe+[ιξω, e]−[c, e])+ω† (Lξω+dωιξω−dωc)

+ c†
(
ιξLξω + ιξdωιξω −

1

2
[ιξω, ιξω]−

1

2
[c, c]− ιξdιξω +

1

2
ι[ξ,ξ]ω

)]

+
1

2
ι[ξ,ξ]ξ

†

=

∫

M

T̂γ

[
1

2
eeFω +

Λ

4
e4 + e†

(
Lω
ξ e− [c, e]

)
+ ω† (ιξFω − dωc)

+
1

2
c† (ιξιξFω − [c, c])

]
+

1

2
ι[ξ,ξ]ξ

†

And the last line coincides with SPCH . We used the fact that Lξω + dωιξω =
ιξdω + [ω, ιξω] = ιξFω, as well as (observe the difference between dω and d)

ιξLξω + ιξdωιξω −
1

2
[ιξω, ιξω]− ιξdιξω +

1

2
ι[ξ,ξ]ω =

1

2
ιξιξFω
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to conclude the argument. □

Remark 27. Observe that one can map c 7→ −c and promote this to a
canonical transformation by replacing, in the generating function of the
identity, the sign reversal term F = c†c.

For the sake of clarity we summarise the nature of the fields, anti-fields,
ghosts and anti-ghosts in FPCH = T ∗[−1]Fmin in the following table:

(33)

Field Ω•(M) Λ•V Ghost Total Degree

ω 1 2 0 3
e 1 1 0 2
c 0 2 1 3
ξ n.a. n.a. 1 1
ω† 3 2 −1 4
e† 3 3 −1 5
c† 4 2 −2 4
ξ† 1⊗ 4 n.a. −2 3

The ghost field ξ is a vector field on M , and its dual anti-ghost is a one form
with values in top forms, i.e. with χ ∈ Ω1(M)[−2] and v a top form:

(34) ξ† = χv.

4. BV-BFV approach to Palatini–Cartan–Holst theory

We are now ready to establish whether the BV theory (23) obtained by
minimally extending the Palatini–Cartan Holst action does satisfy the BV-
BFV axioms or not.

Theorem 28. The BV data (FPCH , SPCH , Q,Ωγ
BV ) on a (3 + 1)-dimen-

sional pseudo-Riemannian manifold M with boundary ∂M does not yield
a BV-BFV theory for any value of γ, including the limiting case γ → ∞,
which yields the usual Palatini–Cartan formulation of gravity.
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Proof. The variation of SPCH reads as follows:

δSBV
PCH =

∫

∂M

T̂γ

[
−
1

2
eeδω + δω(ιξω

†) + δcω† + δe(ιξe
†) + (ιδξe)e

†

]
(35)

+

∫

∂M

T̂γ

[
−(ιξδe)e

† −
1

2
δω(ιξιξc

†)

]

+

∫

∂M

(ιδξχ)ιξv +

∫

M

Bulk Terms

In fact, the variation of the ξ-ghost part is computed as:

δ

∫

M

1

2
ι[ξ,ξ]ξ

† =

∫

M

δ

(
ιξdιξ −

1

2
ιξιξd

)
ξ† −

1

2
ι[ξ,ξ]δξ

†(36)

=

∫

M

ιδξ

(
dιξξ

† − ιξdξ
†
)
− ιξdιδξξ

† −
1

2
ι[ξ,ξ]δξ

†

= −

∫

M

ιδξLξ (χv) +
1

2
ι[ξ,ξ]δξ

† +

∫

∂M

ιδξχιξv

If we denote by ξn the transversal part of ξ with respect to the boundary,
and with v∂ a volume form on the boundary, we may rewrite ιξv = v∂ξn =
−ξnv∂ , since dim(∂M) = 3.

To obtain the pre-boundary one form α̃ we must consider the restric-
tion of the fields to the boundary and their possible residual transver-
sal components. With an abuse of notation, the restriction of the fields
to the boundary will be denoted by the same symbol, whereas an apex
n will be assigned to the transversal components. For instance, we will
write ιξϕ

∣∣
∂M

= ιξ∂ϕ
∂ + ϕnξ

n ≡ ιξϕ+ ϕnξ
n by renaming the restrictions to

the boundary ϕ∂ ≡ ϕ where ϕ is any field, and ξ∂ ≡ ξ. We obtain

α̃ =

∫

∂M

T̂γ

[
−
1

2
eeδω + δω(ιξω

†) + δω ω†
nξ

n + δc ω† − δe e†nξ
n − δe(ιξe

†)

](37)

+

∫

∂M

T̂γ

[
−δ(enξ

n)e† − δ(ιξe)e
† − δω (ιξc

†
n)ξ

n
]
− ξnιδξχ v∂
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and we may compute the pre-boundary 2-form ϖ̃ = δα̃ to be (ρ = 1, 2, 3, n)

ϖ̃ =

∫

∂M

T̂γ

[
− δeeδω − δω(ω†

ρδξ
ρ) + δωδω†

ρξ
ρ + δcδω† + δeδ(e†nξ

n)

(38)

+ δ(enξ
n)δe† + δ(eae

†)δξa + δω δξnιξc
†
n − δω ξnιδξc

†
n − δω ξnιξδc

†
n

]

+ (ξnδξnδχn − δξnδξnχn − δξnχaδξ
a + ξnδχaδξ

a) v∂

The kernel of ϖ̃ is defined by the equations:

(Xω†) = 0(39a)

(Xc) = ιξ(Xω)(39b)

(Xξρ)eρ + (Xen)ξ
n = 0(39c)

together with

(Xω) ∧ e = Ω(40)

(Xe) ∧ e = E(41)

where

(42) Ω :=
[
(Xξn)e

†
n + (Xe

†
n
)ξn + ι(Xξ)e

†
]

(43) E :=
[
(Xω

†
n
)ξn − (Xξρ)ω

†
ρ + (Xξn)ιξc

†
n − ι(Xξ)c

†
nξ

n − ιξ(Xc
†
n
)ξn
]

with Ω ∈ Ω2(∂M,
∧

3V) and E ∈ Ω2(∂M,
∧

2V). In addition we have

T̂γ

[
(Xe)e

†
n − (Xω)ω

†
n − (Xe†)en + (Xω)c

†
naξ

a
]

(44)

− (2(Xξn)χn + (Xχn
)ξn + (Xξa)χa) v

∂ = 0

T̂γ

[
(Xe)e

†
a − (Xω)ω

†
a − (Xω)c

†
naξ

n − (Xe†)ea

]
(45)

− ((Xξn)χa + (Xχa
)ξn) v∂ = 0
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where the latter is valid for all a = 1, 2, 3. Finally, for all ρ = 1 . . . 4

(Xω)ξ
n = 0(46a)

(Xe)ξ
n = 0(46b)

ιξ(Xω)ξ
n = 0(46c)

(Xξ)
ρξn = 0(46d)

Equation (41) is singular. As a matter of fact, counting the number
of unknowns (the (Xe)

i
a are 12, independent fields) against the number of

equations (the δωij
a are 18 independent variations) it is easy to gather that

the system admits solutions only when relations among the E coefficients
(43) are imposed. On the other hand, such relations are singular for they
involve polynomial expressions of odd fields only.

A more direct way to see this is by using the splitting ω = ω̃ + v of

Remark 15, where v ∈ W ≡ kerW
(1,2)
e . Then, equation (41) splits into an

invertible part (the coefficient of δω̃), and a singular part (the coefficient of
δv). In fact, from the splitting

U ≡ Ω1(∂M,
∧2V) = W ⊕ C

we induce the dual splitting U∗ = W∗ ⊕W0, with W0 the annihilator of W
and the identification W0 ≃ imW(1,1) ≃ e ∧ Ω1(∂M,V). We can then project
E onto C∗, and solve for (Xω̃). Observe that (Xω̃) is proportional to ξn.
However, the equation coming from the vanishing of the coefficient of δv
enforces a singular relation in the E ’s.

Moreover, consider equations (46a) and (46c), and use again the split-
ting. Since (Xω̃) ∝ ξn the respective parts of (46a) and (46c) are automat-
ically satisfied, while (Xv)ξ

n and ιξ(Xv)ξ
n are singular, for (Xv) is a free

parameter.
Thus, the kernel of ϖ̃ does not define a sub-bundle of the tangent space

to the space of fields, and symplectic reduction cannot be performed. □

Remark 29. This result is hinting at the fact that, for the BV-extended
theory to be compatible with the boundary, we would need to require some
conditions on the fields (e.g. v = 0, that is ω

∣∣
∂M

∈ C).

There are examples of classically equivalent theories that fail to be equiv-
alent at the BV level when boundaries are included, see for instance [CS16].
This is another nontrivial example of a similar phenomenon.
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Remark 30. Observe that the choice of BV extension we make here is
natural. As a matter of fact, looking at the three-dimensional analogue of
Palatini–Cartan theory4 one can show not only that it is strongly equivalent
to BF theory [CSS], but that the same general BV extension we present in
Theorem 21 and Theorem 25, extends to boundaries, corners and vertices
[CaSc].

To overcome the problem encountered with Theorem 28, one could try
to look at a different BV input, following Corollary 1, in the spirit of what
was done for the reparameterisation invariant Jacobi theory. This is done in
Section 5.

Remark 31. Another option might be to find a correction of the BV-form
by a boundary term that changes the kernel of the pre-boundary two-form.
Note that one problem are equations (46a), (46c), which put extra, singular
constraints on the kernel of ϖ̃ in the omega directions, whereas from the
classical analysis [CS17] we expect Xω to be the kernel of the map e∧. One
might look for a boundary term for the BV-form that removes precisely
these extra constraints.

5. Boundary-preserving BV-data

In this section we will adopt a different point of view when looking at the
symmetry distribution for the Palatini–Holst formulation of GR. Differently
from what we have done in the previous section, and in the case of GR in
the Einstein–Hilbert formalism [CS15], we will now consider the symmetry
distribution given by the action of all the spacetime diffeomorphism of the
manifold with boundary M that preserve the boundary submanifold ∂M .
At the infinitesimal level this means considering all vector fields in M that
are tangent at the boundary. In other words, we will assume that ξn

∣∣
∂M

= 0.
Let us denote by X(M,∂M) the space of such vector fields, the new space
of fields we will consider is simply given by FPCH∂ := T ∗[−1]FBP where

(47) FBP := Ω1
nd(M,V)︸ ︷︷ ︸

e

× AP︸︷︷︸
ω

×X[1](M,∂M)︸ ︷︷ ︸
ξ

×Ω0[1](M, adP )︸ ︷︷ ︸
c

4The Holst term does not apply in dimension three, but this fact has no bearing
on the argument we are making here.
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Using the same BV-extended action (23) we analysed in Section 3 we
can consider the BV-manifold obtained by choosing the boundary-preserving
space of fields (47). We obtain the following

Theorem 32. The BV-manifold defined by the data (FPCH∂ , SPCH , Q,ΩM )
satisfies the CMR axioms and yields an exact BV-BFV theory.

Proof. Since we required ξn
∣∣
∂M

= 0 the space of pre-boundary fields will
only contain the restrictions of fields to the boundary, without the residual
normal directions coming from the contractions with the ghost vector field,
i.e.

(ιξe)
∣∣
∂M

= (eaξ
a + enξ

n)
∣∣
∂M

= (eaξ
a)
∣∣
∂M

Starting from the expression for the pre-boundary one-form found in Theo-
rem 28 and omitting the components of the fields along the normal direction
we obtain:

(48) α̃ =

∫

∂M

T̂γ

[
1

2
eeδω − ιξδωω

† + δcω† − ιδξee
†

]

and

(49) ϖ̃ =

∫

∂M

T̂γ

[
δeeδω − ιδξδωω

† − ιξδωδω
† + δcδω† + ιδξδee

† + ιδξeδe
†
]

Collecting the various terms along the field directions we get the following
equations

δe† : (Xξ)
aea = 0(50)

δc : (Xω†) = 0(51)

Solving (50) we obtain that (Xξ) = 0, which together with (51) will simplify
the remaining kernel equations to yield:

δe : Tγ [(Xω)]e = 0(52)

δω : (Xe)e = 0(53)

δξa : (Xe†)ea = (Xe)e
†
a + (Xω)aω

†(54)

δω† : (Xc) = ιξ(Xω)(55)

Equations (52) and (53) are the statement that Tγ [(Xω)] ∈ kerW
(1,2)
e and

(Xe) ∈ kerW
(1,1)
e , while the remaining equations (54) and (55) are deter-

mined by the values of (Xe) and (Xω).
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Recalling Lemma 13 and using the splitting defined in Remark 15, we
have that

(56) (Xe) = 0; (Xω) ∈ C.

It is possible to see that some of the components of (Xe†) are free: expand
the left hand side of equation (54) in the basis {eµ} to get the simplification

(Xe†)
µνρeµeνeρea = (Xe†)

ncbenecebea

The components (Xe†)
abc, for a total of 3 functions, do not appear anywhere

in the kernel equations and are therefore free. The residual condition on the
(Xe†) reads then ∀c = 1, 2, 3

(57) (Xe†)
nabeneaebec = (Xω)

µνω†
c
ρσeµeνeρeσ

We define a new field by e†a = eae
† = eae

†nbcenebec, which can be thought
of as e† = e⊗ e† ∈ Ω1(∂M)⊗ Ωtop(∂M,

∧4 V), and the equation reads

(Xe†)a = (Xω)aω
†

The kernel of the pre-boundary 2-form ϖ is then generated by the vector
fields:

E
† = (Xe†abc)

δ

δe†abc
(58a)

Ω = Tγ [(Xv)]
δ

δTγ [v]
+ ιξ(Xω)

δ

δc
+ (Xω)aω

† δ

δe†a
,(58b)

where we used the splitting Tγ [(Xω)] = Tγ [(Xω̃) + (Xv)], with Tγ [(Xv)] in

Ker(W
(2,1)
e ), and it is then a smooth subbundle of T F̃ . It is a matter of an

easy check to show

ιE†α̃ = ιΩα̃ = 0

and prove that α̃ is basic. □

We can push our understanding of the boundary structure a little bit
further and obtain the explicit expressions of the BFV data.
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Theorem 33. The BV-BFV pair (FPCH∂ ,F∂
PCH∂ )πPCH∂

is such that the
space of boundary fields F∂

PCH∂ is the exact symplectic manifold

(59) F∂
PCH∂ = F0∂

PCH × T ∗
(
X[1](∂M)× Ω0(∂M, ι∗adP )

)
,

the surjective submersion πPCH∂ reads

(60) πPCH∂ :





E = −1
2e ∧ e+ ιξω

†

ξ = ξ

ω† = ω†

c = c− ιξv

e† = e⊗ e† − v ⊗ ω†

ω = ω − v

where Tγ [v] ∈ ker(W
(1,2)
e ), and ω ∈ Ared

ι∗P := Aι∗P
/
Ker(W

(1,2)
e ) is a connec-

tion on the boundary. In this chart, the boundary 2-form reads

(61) ϖ∂ =

∫

∂M

Tr
[
δEδω + δcδω† + ιδξδe

†
]

and the boundary action:
(62)

S∂ =

∫

∂M

Tr

[
−cdωE+ ιξ(Fω − ΛE)E+

1

2
(ιξιξFω − [c, c])ω† −

1

2
ι[ξ,ξ]e

†

]

Proof. The proof goes through by finding an explicit expression for the map
πPCH∂ through the flows of the vertical vector fields (58). We can use E† to
set e†abceaebec to zero, and Tγ [Ω] to set Tγ [v] = 0.

We get:

(Xc) = ιξ(Xω) =⇒ ċ = −ιξv(0) =⇒ c(t) = c(0)− ιξv(0)t

since ω(t) = ω(0) + (Xω)t can be fixed at time t = 1 to ω(1) = ω̃, implying
that (Xω) = v(0). Similarly

(Xe†) = ιξ(Xω)ω
† =⇒ ė† = −v(0)ω† =⇒ e†(t) = e†(0)− v(0)ω†t

from which we can set at time t = 1 the transformations of the fields: ẽ† =
e†(1) = e⊗ e† − v ⊗ ω† and c̃ = c(1) = c− ιξv. Notice that v ∈ TωAP∂M

is a
global one-form.
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The field Tγ [ω] is transformed as in the classical case [CS17], while ξ and
e are projected verbatim. Pre-composing with the obvious restriction map
FPCH∂ −→ F̃PCH∂ yields the temporary expression

(63) πPCH∂ :





ẽ = e

ξ̃ = ξ

ω̃† = ω†

c̃ = c− ιξv

ẽ† = e⊗ e† − v ⊗ ω†

ω̃ = ω − v

and in the dynamical basis {eµ} we have ω̃ ∈ C(1,2). The correct ansatz for
the boundary one-form in this coordinate chart reads

(64) α∂ =

∫

M

T̂γ

[
−ẽẽδω̃ + δc̃ω̃† − δω̃ι

ξ̃
ω̃† − ι

δξ̃
ẽ†
]

as we can easily check that πPCH∂
∗α∂ = α̃. We can then introduce new fields

redefinitions through a symplectomorphism ϕ : F∂
PCH∂ −→ F∂

PCH∂ as

(65)

E = −1
2 ẽ ∧ ẽ+ ι

ξ̃
ω̃† ω = ω̃

c = c̃ ω† = ω̃†

ξ = ξ̃ e† = ẽ†

With a simple computation, using that ω = ω + v, it is possible to check
that the boundary one form

(66) α∂ :=

∫

∂M

Tr
[
Eδω + δcω† − ιδξe

†
]

satisfies

(67) α̃ = π∗
PCH∂α∂

where πPCH∂ = ϕ ◦ πPCH∂ .
To compute the boundary action we adopt the same procedure that

was shown in [CS15], following Roytenberg [Roy], namely we will compute
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the pre-boundary action first, by computing S̃ := ι
Q̃
ι
Ẽ
ϖ̃, where the pre-

boundary graded Euler vector field Ẽ reads5:

(68) Ẽ =

∫

∂M

c
δ

δc
+ ξ

δ

δξ
− ω† δ

δω†
− e†

δ

δe†

This yields the explicit expression

S̃ =

∫

∂M

T̂γ

[
1

2
cdω(ee) +

1

2
Fωιξ(ee) + ιξdωcω

†

−
1

2
[c, c]ω† −

1

2
ιξιξFωω

† −
1

2
ι[ξ,ξ]e

†

]

and it can be checked that ι
Q̃
ϖ̃ = δS̃. Then, using the ansatz

S∂ =

∫

∂M

T̂γ

[
−cdωE+ ιξFωE+

1

2
(ιξιξFω − [c, c])ω† −

1

2
ι[ξ,ξ]e

†

]

we compute

π∗
PCH∂S∂ =

∫

∂M

T̂γ

[
1

2
cdω̃ee−

1

2
ιξvdω̃(ee)− (c− ιξv)dω̃(ιξω

†)(69)

− ιξFω̃

(
1

2
ee− ιξω

†

)
+

1

2
ιξιξFω̃ −

1

2
[c, c]ω† + [c, ιξv]ω

†

−
1

2
[ιξv, ιξv]ω

† −
1

2
ι[ξ,ξ]e

† +
1

2
ι[ξ,ξ]vω

†

]
.

We then use that (omitting T̂γ)
∫

∂M

ιξvdω̃ιξω
† = −

∫

∂M

ιξdω̃ιξvω
† = −

∫

∂M

1

2
ι[ξ,ξ]vω

† +
1

2
ιξιξdω̃vω

†

together with
∫

∂M

−cdω̃ιξω
† + [c, ιξv]ω

† =

∫

∂M

ιξdω̃cω
† + [c, ιξv]ω

† =

∫

∂M

ιξdωcω
†

5Observe that we only consider the ghost number, and not the grading in Ω•(M)
or
∧

•

V .
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and
1

2
(ιξιξdω̃v + [ιξv, ιξv] + ιξιξdω̃ω̃)ω

† =
1

2
ιξιξFωω

†

to conclude that π∗
PCH∂S∂ = S̃, concluding the proof. □

Observe that the Hamiltonian vector field of S∂ is given by the following:

(70)

Q∂E = −[c,E]− dωιξE+
1

2
dωιξιξω

† Q∂ω = ιξFω − dωc

Q∂c =
1

2
(ιξιξFω − [c, c]) Q∂ω† = −dωE− [c,ω†]

Q∂ξ =
1

2
[ξ, ξ] Q∂e†a = −(Fω)aE− ιξ(Fω)aω

† + Lξe
†
a

The general Theorems presented in [CMR14] ensure us that [Q∂ , Q∂ ] = 0,
but it is worth the while unpacking these expressions.

Since e ∧ e = ιξω
† −E we can easily compute:

eQ∂e =
1

2
ι[ξ,ξ]ω

† + ιξQ
∂ω† −Q∂E(71)

= ιξdωιξω
† −

1

2
ιξιξdωω

† −
1

2
dωιξιξω

†

+ ιξ

(
−dωE− [c,ω†]

)
+ [c,E]− dωιξE+

1

2
dωιξιξω

†

=
1

2
Lω
ξ (e ∧ e)−

1

2
[c, e ∧ e] = e

(
Lω
ξ e− [c, e]

)

showing that the action of Q on the (non-Darboux) field e is essentially the
action of diffeomorphism twisted by the so(3, 1) action, as we expect.

Moreover, with a simple computation we get

(72) Q∂(Q∂E) =
1

2

{
dωιξL

ω
ξ ιξω

† +
[
Fω, ιξιξιξω

†
]
+ [ιξFω, ιξιξω

†]
}
.

One can easily prove the following useful identity on differential forms:

− dωιξL
ω
ξ ιξ − ιξιξdωιξdω + ιξdωιξιξdω + [ιξιξFω, ιξ] + [ιξFω, ιξιξ]

= −dιξLξιξ − ιξιξdιξd+ 2ιξdιξιξd =
1

2
ι[[ξ,ξ],ξ] = 0,

the application of which to the top-form ω† yields:

−dωιξL
ω
ξ ιξω

† + [ιξιξFω, ιξω
†] + [ιξFω, ιξιξω

†] ≡ 0
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Considering now that Fω ∧ ιξω
† is a 4-form and therefore vanishes on the

boundary, using all of the above we conclude

0 = ιξιξ[Fω, ιξω
†]

= [ιξιξFω, ιξω
†] + 2[ιξFω, ιξιξω

†] + [Fω, ιξιξιξω
†]

≡ Q∂(Q∂E).

Remark 34. The BFV-manifold obtained in Theorem 33 is the resolution
of the coisotropic submanifold CBP of Theorem 16, defined by the equations
(compare with [CS15, CS17]):

Ce : Q
∂ω†

∣∣
gh=0

≡ dωe ∧ e = 0(73)

Cω : Q∂e†
∣∣
gh=0

≡ Fω ∧ e ∧ e = 0(74)

As a matter of fact, observe that the degree 0 part of the action of Q∂ on
E coincides with the Hamiltonian vector field of the constraint Jιξe, namely
(cf. with Eq. (14))

e ∧ (Jιξe)e ≡ (Jιξe)e∧e =
1

2
dωιξ(e ∧ e) = Q∂E

∣∣
gh=0

and similarly for the action on ω. However, this is inequivalent to the
Einstein–Hilbert phase space for, as we mentioned, the Hamiltonian con-
straint is not taken into account.
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[Car] E. Cartan, Sur une généralisation de la notion de courbure de Rie-
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