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Special Kahler geometry of the Hitchin

system and topological recursion

DAviD BARAGLIA AND ZHENXI HUANG

We investigate the special Kahler geometry of the base of the
Hitchin integrable system in terms of spectral curves and topo-
logical recursion. The Taylor expansion of the special Kéahler met-
ric about any point in the base may be computed by integrating
the g = 0 Eynard-Orantin invariants of the corresponding spectral
curve over cycles. In particular, we show that the Donagi-Markman
cubic is computed by the invariant Wéo). We use topological re-
cursion to go one step beyond this and compute the symmetric
quartic of second derivatives of the period matrix.
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1. Introduction

The Hitchin integrable system [I4} [I5] ties together many seemingly differ-
ent branches of geometry and physics, including twistor theory, integrable
systems, mirror symmetry and supersymmetric Yang-Mills theory to name
just a few. The goal of this paper is to elucidate one particular aspect of this
rich story, namely the relation between the special Kahler geometry of the
base of the Hitchin system with the theory of Eynard-Orantin topological
recursion of the spectral curves.

Suppose that f: M — B is a complex integrable system, so M is a
complex manifold with a holomorphic symplectic form and f is a complex
Lagrangian fibration, whose generic fibres are complex tori. In general f
will have singular fibres so let f: M"™& — B™ denote the regular locus
consisting of the non-singular torus fibres of f. As we recall in §3] under
mild assumptions, there is a naturally defined metric ¢°¢ on the base B8,
known as a special Kdhler metric [4, [10, [16]. We recall the fundamentals of
special Kahler geometry in In particular, B**® has a Kéahler metric of the
form

(1.1) w= —%Im(nj)dzi A dZ

where 7;; is a matrix of functions, the periods of the torus fibres of the
integrable system. It is well known that the special Kahler metric on B8
can be combined with a metric along the fibres to produce a hyperkahler
metric ¢*f on M™8 known as the semi-flat hyperkihler metric [3, 10, [16].
This metric is called “semi-flat” because its restriction to the fibres of f :
M8 — B8 is flat.

In this paper we concentrate on the case that f : M — B is the Hitchin
system. Then M = M,, 4 is the moduli space of Higgs bundles of given rank
n and degree d. In this case M is known to admit a complete hyperkéhler
metric g [I4]. The semi-flat metric on M™8 may be thought of as an ap-
proximation of the complete hyperkahler metric. The semi-flat metric fails
to extend over the singular fibres, however it is expected that g can be
recovered from ¢*' by incorporating instanton corrections [I1].

To define the Hitchin system, one takes a compact Riemann surface X
of genus greater than 1 and M to be the moduli space of semistable Higgs
bundles of fixed rank n and degree d (see . In this case, the period matrices
7;5(b) for b € B™® are not arbitrary, in fact they are the periods of a Riemann
surface Sy, the spectral curve associated to the point b € B8, The spectral
curve Sy is a smooth compact Riemann surface S, C T*Y embedded in the
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cotangent bundle of ¥, such that the projection 7 : S, — 3 is a branched
covering of degree n. We now give a brief summary of the special Kahler
geometry on B™® in terms of spectral curves. Let 8 be the canonical 1-form
on T*¥. A pair of local holomorphic coordinate systems (z!,...,295) and
(wi,...,wgy,) for B™® are given by integrating the canonical 1-form over a

basis of 1-cycles in Sp:
2t = / 0, w; = / a,
@ b,

i i

where a1, ...,a44,b1,...,by is a symplectic basis of 1-cycles, which may be
defined over any sufficiently small neighbourhood in B™&. The monodromy
of the Hitchin system prevents us from choosing such a basis globally on
B¢, Having chosen such a basis of 1-cycles, we have the normalised basis
of holomorphic 1-forms wy, ..., wy, characterised by fai wj = 0;;. The period
matrix of Sp is then given by 7;; = fbi wj. With respect to the coordinate
system (z', ..., 295), the special Kéhler metric is given by Equation (1.1]). Al-
ternatively, we have a real coordinate system (z!,..., 295 yq,... . Ygs) given

by:
xi:Re(zi)zRe</me>, yi:Re(wi):Re(/me>.

These coordinates are globally defined up to monodromy, which acts by lin-
ear transformations, hence they define an affine structure on B™&. Moreover
they are Darboux coordinates for the Kéhler form:

w=dz' Ndyy + -+ da95 A dyg,.

Recall the prepotential (see is a locally defined holomorphic function F

on B'® such that w; = gﬁ . We will recall that the period matrix is given

g’;"; and thus

by 7 =

O*F

Tii = ———.
Y 921029

From the prepotential F, one obtains a Kéhler potential K by:

K = —llm ((%Ei) )

2 07% 5
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An important quantity in special Kéhler geometry is the symmetric cu-
bic ¢ € H°(M, Sym3(Tr)) which measures the variation of the period ma-
trix 7;;:

o — 87‘jk o 63]-"
Uk T 920 T 021020028

We call ¢ the Donagi-Markman cubic, since in the case where M is the
base of a complex integrable system, c is the cubic studied by Donagi and
Markman [5]. One can for instance express the Riemann, Ricci and scalar
curvatures in terms of 7;; and c;ji, [10]. The following proposition (cf. [13] for
similar results) summarises the relation between the special Kahler geometry
on B™¢ and the spectral curves:

c= cl-jkdzi ® dz? @ dzF,

Proposition 1.1. We have the following relations:

(1) A (local) prepotential for the special Kdihler structure on B ™8 is given

by:
1 . 1 ..
F = iz’wi = §Tijz’z].
(2) A (global) Kdihler potential is given by:
K=" / ON0
=1/, _

(3) Let Ve be the local system on B 8 whose fibre over b is H'(Sy, C). We
may think of 6 as a section of Vc. The Donagi-Markman cubic is given
by the “Yukawa couplings”:

C(X,Y,Z)_/vayvze/\a,
S

where V is the Gauss-Manin connection.

The above formula for the Donagi-Markman cubic involves differentia-
tion with respect to the Gauss-Manin connection. This requires knowledge
of the family of spectral curves. In §6| we give another formula for the ¢ in
terms of the geometry of a single spectral curve. Our formula holds for any
smooth spectral curve, but in this section we will for simplicity consider the
case where 7 : § — ¥ has only simple branching. Around each ramification
point a € S we can thus find local coordinates z on ¥ and ¢ on S such
that m(q) = 2 = ¢%. Near a we have 6 = ydx for some function y(g) with
y'(a) # 0. We have:
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Theorem 1.2. The Donagi-Markman cubic is given by:
, Wi W,
ik = —2 E R ,
Cigh m - 0 < dxdy )

where the sum is over the ramification points of .

Similar-looking formulas for the Donagi-Markman cubic have appeared
in [T, 13], however these formulas use cameral curves instead of spectral
curves and involve quadratic residues instead of ordinary residues. One ad-
vantage of our formula (in the form of Theorem is that it applies even
when 7 has higher order ramification. Moreover, our formula looks very
similar to formulas appearing in the theory of Eynard-Orantin topological
recursion. This is not a coincidence, as we show in Section §7}

1.1. Relation to topological recursion

Eynard-Orantin topological recursion [7] is a recursive formula which takes
as input a Riemann surface S (which we assume is compact) with a pair
of meromorphic functions z,y and produces a series of symmetric multi-
differentials Wég), for ¢ > 0, n > 1, the FEynard-Orantin invariants. More
precisely, W,gg )is a meromorphic section of the n-th exterior tensor product
K?” =KgNKKgKX.-.--XK Kg on S, where Kg denotes the canonical bun-
dle of S, which is symmetric under interchange of factors. The function =z,
viewed as a map x : S — P! is assumed to be a branched covering with only
simple branching. The topological recursion formula has been extended to
Hitchin spectral curves S C T*¥ in [6], which gives an interpretation of the
Eynard-Orantin invariants in terms of quantisation of spectral curves. Our
paper gives another interpretation of these invariants, at least in the case
of g = 0. To make sense of the Eyndard-Orantin invariants in this setting,
first note that the projection 7 : S — 3 plays the role of x. As we will recall
in §7] the topological recursion formula continues to makes sense as long as
7 has only simple branching. They key point is that the recursion formula
does not directly involve the functions x,y but only the 1-form ydz. In the
case of a spectral curve S C T*3, the canonical 1-form 6 plays the role of
ydx. We show that the variational formula for Eynard-Orantin invariants in
[7] holds in our setting and leads to the following formula for derivatives of
the period matrix 7;; about any point b € B8,
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Theorem 1.3. For any b € B™&, we have:

. m—1
0, 0h, - 05y sTi i (0) = — = / / W (p1,....pm)
B 2m peb,  Jpmeb

im

where on the right hand side, W#?) (p1,---,Pm) 1s the Wr(r?) Eynard-Orantin
inwvariant of the corresponding spectral curve Sy. One can show that Wﬁlo) mn
each variable only has poles with zero residue, so the above expression does
not depend on the choice of paths representing the given cycles.

This formula shows that the ¢ = 0 Eynard-Orantin invariants W,EO) for a
spectral curve S, compute the Taylor series expansion of the period matrix
7i; about b € B™%. Since the special Kahler metric on B*® is given in terms
of the period matrix, the invariants W,go) also compute the power series
expansion of the special Kahler metric. For instance, we consider the m = 1
case and show that it recovers our formula (Theorem for the Donagi-
Markman cubic. Theorem [[.3]is remarkable in that the left hand side of the
equation is related to geometry of the family of spectral curves, while the
right hand side is given by invariants of a single spectral curve Sy C T*3.
In a sense, any single spectral curve S, “knows” about the geometry of the
entire family {Sp}pepres.

Let us remark that Theorem is certainly not surprising, as it is
essentially a consequence of the well known variational formula for Eynard-
Orantin invariants given in [7]. The main point we would like to emphasise
is that this formula is applicable to Hitchin spectral curves. This is not
immediately obvious as one needs to check that the proof of the variational
formula in [7] holds for Hitchin spectral curves. Ultimately, this boils down
to proving a version of the so-called “Rauch variational formula”, which we
prove in Proposition [7.1}

Proposition 1.4. Let 0 € T,B™8. Assume p,r are distinct and are not
ramification points. Then:

B 36(uw)B(u,p)B(u, )
B = L T iy

a

where the sum is over the ramification points of ™ and for each ramification
point a € Sy, we choose coordinate functions x on Y and g on S with x = ¢°
and write § = ydzx.
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In this proposition, B is the Bergman kernel (see . For the meaning
of the variational operator §, see Definition [6.1] Versions of this formula are
well known in the literature, but we could not find a proof that holds in the
setting of Hitchin spectral curves, so we give a proof in

We finish the paper by using topological recursion to go beyond the
Donagi-Markman cubic and compute the symmetric quartic of second deriva-
tives of the periods in terms of geometry of the spectral curve. Around
any ramification point a € Sp, we may write the normalised 1-forms as
w; = w;(q)dq for some functions w;(q). Our result is:

Theorem 1.5. The second derivatives of the period matrix are given by:

—omi Y wi(a)wj(a) ) (wk(b)wi(b)
aiakal = 2mi gt B(aa b) < 2y’(a) ) < 2y’(b) > + CYCj kil
' 1 y///(a)
+ 2mi ga Sy (a)? (SB(a) ~ > wi(a)w;(a)wy(a)w(a)

+ 271 Z W (wg/(a)wj (a)wk(a)wl(a)) + CYCi ks

where Sp is the Bergman projective connection (see @, the sum Zaib s
over distinct pairs of ramification points and cyc means to sum over cyclic
permutations of the specified indices.

1.2. On the g > 0 invariants

In this paper, we have established the relation between the g = 0 Eynard-
Orantin invariants of spectral curves and the special Kéahler geometry of
B™&. An interesting problem would be to find a similar geometric interpre-
tation for the g > 0 invariants. In particular one may ask whether there is
a relation between the g > 0 invariants and the instanton corrections relat-
ing the semi-flat hyperkéhler metric on M*® to the complete hyperkéhler
metric on M.

1.3. Summary of paper

A brief summary of the contents of this paper is as follows. In §2| we give a
review of special Kahler geometry. In §3|we recall a result of Hitchin showing
that the moduli space of deformations of a compact complex Lagrangian in a
complex symplectic manifold M has a natural special K&hler metric (assum-
ing M admits a Kéhler metric). In §4 we briefly review the relevant aspects
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of the moduli space of Higgs bundles and the Hitchin system f : M,, ¢ = B,
in particular the spectral curve construction. There are two possible ways
in which B™# inherits a special Kéhler geometry: (i) view B™2 as a family
of complex Lagrangians in M,, 4 (the fibres of the map f), or (ii) view B*®
as a family of spectral curves S, C T*Y (clearly Sy is a complex Lagrangian
submanifold of 7%3). We show in that these two points of view give rise to
the same special Kéhler geometry, and we describe this geometry in terms
of the family of spectral curves. In we give a residue formula for the
Donagi-Markman cubic, essentially by a computation of Kodaira-Spencer
classes. In g7 we consider the Eynard-Orantin invariants of Hitchin spec-
tral curves and relate the g = 0 invariants to the special Kéhler geometry
on B*8. We show that in this way, we recover our formula from §6| for the
Donagi-Markman cubic and then proceed to compute the quartic of second
derivatives of the periods by topological recursion.

2. Special Kahler geometry
2.1. Review of special Kahler geometry

Definition 2.1 ([10} 16]). A special K&hler manifold is a Kéhler manifold
(M, g,I,w) together with a torsion free, flat affine connection V such that

e Vw=0, and
e dyl =0

Here I € QY (M, TM) is viewed as a T M-valued 1-form and dy : Q' (M, TM)
— Q2(M,TM) is the differential induced by V.

Let us examine what the special Kahler condition implies in terms of
local coordinates, following Freed [10]. Since V is flat and torsion free, we can
find local coordinates in which V becomes the trivial connection. Moreover,
since Vw = 0, we can choose these coordinates to be Darboux, that is, M
has local flat coordinates (x!,...,2", y1,...,yn) for which

w=dx' ANdyy + -+ dz™ A dyy.
Next, we observe that the 1-forms Idz® are closed, because

d(Idx") = dy(Idz') = (dvI) A dz' + Idy(dz') = 0,
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where in the first equality we used that V is torsion free. It follows that lo-
cally there exist functions u', ..., u" such that Idz® = du’. Let 2* = z* — ju’.
Then dz* = dx® — idu’ = dx® — ildx® is a (1,0)-form. This together with the
fact that Re(dz') = dz® implies that (z!,...,2") is a local holomorphic co-

ordinate system for M. Similarly, one can find functions v, ..., v, such that
Idy; = dv; and setting w; = y; — iv; gives another holomorphic coordinate
system (wq, ... 7wn)ﬂ A simple computation gives
0 1/ 0 n 0 here ow;
== — 47—, W Tii = =
9z 2\ 9zt Y oy; G

Compatibility of w and I gives, after a short computation, the condition
Tij = Tji- S0 there is a local holomorphic function F, called the prepotential
such that

_OF o 0*F

T 02 T T 950

From symmetry of 7;;, we also deduce that

Wi

w= —%Im(nj)dzi AdF

If we use the convention that g and w are related by ¢(X,Y) =w(IX,Y),
this means that 7;; is a symmetric, complex n x n matrix with Im(7;;)
positive definite. That is, 7;; is a period matrix, a point in the Siegel upper
half-space. We note that a Kahler potential for w is given by:

1 - 1 OF _;
(2.1) K = fglm(wi?) =——Im < }—.zz> .
As in the introduction, we have the Donagi-Markman cubic
ce HO(M, Sym?(Ty))

which measures the variation of the period matrix 7;;:

P aTjk . 83}—
TR T 020 T 02102002F

c= cijkdzi Rdy ® dzk,

!Note that Freed uses a slightly different convention in which Re(w;) = —y;.
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2.2. Special Kihler manifolds as “bi-Lagrangians”

In [16], Hitchin establishes a close relation between special Kéhler manifolds
and submanifolds of a complex symplectic vector space satisfying a “bi-
Lagrangian” condition. We recall the result. Let V' be a real symplectic
vector space with symplectic form w. Define Ve =V g C =V &V with
0 —1
1 0
w1 + iwe on V¢ as the C-bilinear extension of w, that is:

complex structure I = . Define a complex symplectic form w® =

w((x,y), (2, y)) = w(ﬂfﬂy,x +iy’)
= (w(= w(y,y)) +i (w(z,y) —w(@',y)) .

-~

M((z,y),(w/,y’)) wg((ac,y),(;t’,y’))

Define in addition an (indefinite signature) inner product g on V¢ by

(2,0, (& 9')) = 5 (@l y)) + (e 0).

Note that g(«, 5) = Re (%wc(a,B)), where we define (z,y) = (z, —y).

Theorem 2.2 (Hitchin, [16]). Let M C V¢ be a submanifold which is
Lagrangian with respect to wy and wo and such that g|ps is positive definite.
Then (M, g|ar, I|ar) is special Kihler. The projection of M to the first factor
V C Vi defines a system of local coordinates, and the flat affine connection
V s the trivial connection on T M with respect to these coordinates. In a
similar manner, the symplectic form w on M is obtained by pullback of the
symplectic form w on V. Conversely, any special Kdhler metric is locally of
this form.

The relation between the local embedding M C V¢ and the holomorphic
coordinates 2%, w; is as follows: choose a symplectic bases a', ..., a™, b, ..., b"
for V, giving an explicit isomorphism V =2 R?". Then the map s : M — V¢ =
V@V (R is given by

(Re(z), Re(w), Im(z), Im(w)),

where we think of z = (z1,...,2"), w = (w1, ...,w,) as vectors in C". Let
A1y ..y Gp,b1,. .., by € V* be the dual basisand (, ) : V*® V — R the dual

pairing, which we extend to a pairing VZ ® Vo — C by C-linearity. Then the
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coordinate systems z*,w; can be recovered as:
2(m) = (@i, s(m)),  wi(m) = (bi, s(m)).

A slight extension of Theorem is to consider the following situation:
suppose M is an n-manifold and let (V,w, V) be a real symplectic vector
bundle of rank 2n equipped with a flat symplectic connection V. Let V¢ =
Y ®r C be the complexification and as above, define a complex symplectic
form w® = wy + iws and an inner product g. Let s : M — V¢ be a section of
Ve satisfying the following conditions:

(SK1) The bundle map p : TM — V¢ given by p(X) = Vxs is injective.
(SK2) The image of p is Lagrangian with respect to w; and ws.
(SK3) The image of p is positive definite with respect to g.

Then M inherits a special Kahler geometry. Indeed, locally on M we choose
a flat trivialisation V = M x V. Then s defines an immersion s : M — V¢
and we are back to the setting of Theorem

3. Relation to moduli spaces of complex Lagrangians

We recall the relationship between moduli spaces of complex Lagrangians
and special Kéhler geometry [16].

3.1. Deformations of complex Lagrangians

Let M be a complex manifold of complex dimension 2n and let €2 be a holo-
morphic symplectic form, by which we mean a closed (2,0)-form such that
A"} is non-vanishing. A complex Lagrangian in M is a complex submanifold
Y C M which is Lagrangian with respect to €2, i.e. Y has complex dimension
n and Q]y = 0. A real submanifold Y C M of real dimension 2n such that
Qly =0 is in fact automatically a complex Lagrangian [16, Proposition 1].
IfY € M is a complex Lagrangian, then € yields an isomorphism Ny — 75
between the normal bundle of Y and the cotangent bundle, which sends a
normal vector field X to ixQ|y. In particular, this gives an isomorphism
HY(Y,Ny) = HY(Y,T}) between normal vector fields and holomorphic 1-
forms. Recall that H°(Y, Ny) describes the space of infinitesimal deforma-
tions of Y as a complex submanifold of M. The infinitesimal deformations
as a complex Lagrangian are those for which the corresponding holomorphic
1-form is closed.
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Following Hitchin, we make the following two assumptions: (i) Y is com-
pact and (ii) M has a Kéhler 2-form h. In this case, Y is also Kahler and
since Y is compact Kéahler, it follows that all holomorphic 1-forms are closed.
Thus every infinitesimal deformation of Y respects the Lagrangian condition.
Furthermore, it follows from [20] that in the Lagrangian case, all deforma-
tions are unobstructed. Hence there exists a local moduli space B of complex
Lagrangian submanifolds parametrising (sufficiently small) deformations of
a given complex Lagrangian Yy C M. A point [Y] € B is a complex La-
grangian Y C M which is deformation equivalent to Yy. Moreover there is
a natural isomorphism Tjy B = HO(Y, Ty).

We recall from [16] how B inherits a naturally defined special Kéhler
structure. Let Z be a local universal family of deformations of the com-
plex Lagrangian submanifold Yy C M, so Z is a complex manifold with
a proper holomorphic surjective submersion f: Z — B and a holomorphic
map j : Z — M such that the restriction of j to each fibre Ly = f~1(b) of
f gives an embedding j : L, — M whose image is the complex Lagrangian
corresponding to the point b € B. Let V = R! f,R be the vector bundle on B
whose fibre over b € B is given by the first cohomology H'(Ls, R) of the fibre
Ly. The bundle V is equipped with a natural flat connection V, the Gauss-
Manin connection. The Kéhler form h on M yields a symplectic structure
w on V by setting

wh(a, B) :/L anB AR,

for all a, 3 € V, = H'(Ly,R). Clearly w is preserved by the Gauss-Manin
connection.

The natural isomorphism T, B =2 HO(Ly, 17, ) together with the inclusion
HO(Ly, 17,)C H L(Ly,C) (recall L, is compact Kihler) yields a bundle map
¢:TB — Ve

TyB_=~ HYL,,T;) c H'(L,,C) = (Vc),

o
More explicitly, let X € T, B be a tangent vector at b. Let X be a lift of X
to Ly, that is, X is a section of T'Z|, such that f.(X(y)) = X for all y € L.
Then ¢(X) is given by:

(3.1) ¢(X) =izi" L,
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which is a closed 1-form on L representing a class in H!(L;, C). The map
¢ can be viewed as a V¢-valued 1-form on B. We then have:

Theorem 3.1 (Hitchin, [16]). The Vc-valued 1-form ¢ is dy-closed, so
locally we can write ¢ = Vs for a section s of V. Then s satisfies the con-
ditions (SK1)-(SK3) and hence locally defines a special Kdhler structure on
B. The special Kahler structure is independent of the choice of s, hence this
construction gives rise to a globally defined special Kdahler structure on B.

Proof. We give only a sketch of the proof here and refer the reader to [16] for
further details. We have that j*(Q) is a closed 2-form on Z. The complex La-
grangian condition means that j*Q|z, = 0 for any fibre L. If we consider the
Leray-Serre spectral sequence for f : Z — B, we see that j*(Q) yields a class in
E;’l = HY(B, R'f.C) = H'(B,Vc), which is represented by the Vc-valued
1-form ¢. This explains why ¢ is closed. Condition (SK1) follows from the
isomorphism T, B = HO(Ly, T7,) and the inclusion HO(Ly, T7.) C H(Ly,C).
Condition (SK2) follows from the fact that H°(Ly, T},) C H'(Ly,C) is La-
grangian with respect to w. Condition (SK3) follows from

gp(a, ) = Re (Z/ a/\oz/\h"_1>,
2 )L,

which is positive definite, since h is a Kéahler form. O

We give another way of understanding the Vc-valued 1-form ¢. The
fibre of the dual local system V¢ over b € B is given by the homology group
(Vé)y = Hi(Lp, C). Let (, ) : VE ® Ve — C be the dual pairing:

(7, @) :[/a.

mwzlfa

for all locally defined covariantly constant sections v of V¢, where the integral
on the right hand side is fibrewise integration. More precisely, for any b € B,
choose an open neighborhood U of b over which f: Z — B is trivialisable:
Y U)= Ly x U. Let 4 € H" (L, C) be the Poincaré dual of . Then
f,y 7*Q is given by the integration over the fibres of Ly, x U — U of j*Q A A.

Then ¢ is determined by
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Proposition 3.2. Suppose that = du, where p is a holomorphic 1-form
on M. Then ¢ = dys, where s : B — V¢ is the section defined by

s(b) = [ulz,] € H'(Ly, C).

Proof. First of all, note that the restriction p|r, is a closed 1-form because
dp = and Q|z, = 0, so the section s is well-defined. Let 7 be a local con-
stant section of V¢. Then

(v, dvs) = d{v,s) — (dy", s)
(v,s) (as v is constant)

(/)

[an=[ 2=,

where we have used the fact that exterior differentiation commutes with
fibre integration. This shows ¢ = dys. ([

d
d

Suppose we are in the situation of Proposition[3.2] For any b € B, choose
a symplectic basis a1, ..., an,b1,...,by of Hi(Ly, C). If U is any simply con-
nected neighborhood of b, we can extend a;,b; to be covariantly constant
sections of V* over U. Then the local holomorphic coordinates z* and w; of
the special Kéhler structure are given by

zi://x, wz:/u-
a; b;

i i

Example 3.3 (Holomorphic symplectic surfaces). Let M be a holo-
morphic symplectic surface, i.e. a complex surface with trivial canonical bun-
dle. Let €2 be the symplectic form on M. Then any complex 1-dimensional
submanifold S C M is automatically Lagrangian, because there are no (2, 0)-
forms on S. The moduli space B of deformations of S then carries a natural
special Kéhler structure. We note that in this case since n =1, it is not
necessary to assume the existence of a Kahler form A on M. Indeed, the
symplectic structure on V¢ is given by

Wb(a,ﬁ):A OZ/\,B,

which is defined without assuming the existence of h. Moreover, since S is
a Riemann surface it is automatically Kéahler. As we will see, this example
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is closely related to the Hitchin system, where M = T"*X is the cotangent
bundle of a Riemann surface ¥ and S C T*X is a spectral curve.

Example 3.4 (Complex integrable systems). Suppose that M admits
a proper holomorphic Lagrangian fibration f : M — B, by which we mean B
is a complex n-manifold and f : M — B is a proper, surjective, holomorphic
map whose fibres are Lagrangian with respect to 2. Assume further that the
fibres of f are connected. Then Liouville’s theorem implies that the fibres
of f are in fact complex tori. We shall refer to the data (M,Q, B, f) as a
complex integrable system. Since the normal bundle to the fibres is given
by f*(TB), it follows that the deformations of any given fibre L, C M are
precisely the other fibres of f. Hence B is the moduli space of deformations
of any given fibre. If we make the additional assumption that M admits a
Kéhler 2-form h, then B inherits a natural special Kéhler structure (which
depends on the choice of h).

4. Higgs bundles and the Hitchin system
4.1. Review of Higgs bundles

Let ¥ be a compact Riemann surface of genus g > 1 and let K denote the
canonical bundle of X.

Definition 4.1. A Higgs bundle on ¥ of rank n and degree d is a pair
(E,®), where E is a holomorphic vector bundle on ¥ of rank n, degree d
and @ is a holomorphic bundle map ¢ : F — F ® K, called the Higgs field.

Recall that the slope p(F) of a holomorphic vector bundle £ on ¥ is
defined to be the number u(E) = deg(E)/rank(FE).

Definition 4.2. A Higgs bundle (£, ®) is called semistable if for all proper,
non-zero subbundles F' C E such that ®(F) C F ® K, we have u(F) < p(E).

Using geometric invariant theory [18], one constructs a moduli space
M, 4 of rank n, degree d semistable Higgs bundles up to a suitable notion
of equivalence (called S-equivalence). Here we will recall only the details of
M, ¢ which are relevant to understanding the special Kéhler geometry of
the Hitchin system. The moduli space M,, 4 is a quasi-projective, complex
algebraic variety of dimension 2n2(g — 1) + 2. The moduli space is in gen-
eral singular, but the smooth locus MJ™ has a naturally defined holomor-
phic symplectic 2-form 2. The smooth locus ./\/lfln}i is a hyperkahler manifold
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with a triple of complex structures I, J, K and corresponding Kéhler 2-forms
wr,wy,wrk. The complex structure which arises from viewing M, 4 as the
moduli space of Higgs bundles is customarily taken to be I and it is the
only complex structure of relevance to us here. So we will regard MY, as
a Kahler manifold ( e 1 wr) equipped with a holomorphic symplectlc
form Q = wy + iwgk. One can also consider moduli spaces of Higgs bundles
(E, ®), where @ is trace-free and E has fixed determinant. This gives a sub-
variety of M,, 4. As the corresponding special Kahler geometry is obtained
by restriction, it is sufficient for our purposes to consider just the case of
M q.

Associated to M,, 4 is a complex integrable system, known as the Hitchin
system [15], which is defined as follows. If A is a complex n X n matrix, write
the characteristic polynomial of A as

det(A — A) = X" + p (AN L £ p(A).

The coefficients p1, ..., p, of the characteristic polynomial can be viewed as
maps gl(n,C) — C which are are well known to be a basis for the ring of
conjugation-invariant polynomial functions on gl(n,C). The Hitchin system
is the analogue of this where the matrix A is replaced by a Higgs field. If
(E,®) is a rank n Higgs bundle, then by conjugation invariance, p;(®) is a
well-defined section of K7. Define

n
B=pH (S, K).
j=1

Then we have a natural map f : M,, 4 — B, called the Hitchin map, which
sends a Higgs bundle (E, @) to (p1(®), p2(P), ..., pn(P)). It is known [14], [19]
that f is a proper, surjective, holomorphic map whose non-singular fibres
are Lagrangian submanifolds with respect to . Let B™ C B denote the
reqular locus, i.e. the locus of points b € B over which f is a submersion. Let
Mreg C M,, 4 denote the locus of points in M,, 4 lying over B™, so that
f: Mreg B™® is a proper, holomorphic surjective submersion of complex
manlfolds (smce B is smooth and f : Mreg — B is a submersion, it follows
that M® is contained in the smooth locus MS™). As seen in Theorem
below, the fibres of f over B™® are connected and hence, as in Example (3.4
the fibres are complex tori. We then have that B can be identified with the
moduli space of deformations of any given fibre in ./\/lreg and thus B™® carries
a natural special Kéhler geometry. The complement D B\ B™¢, called the
discriminant locus, is the locus of all singular fibres of f: M, 4 — B. It is
known that D is an irreducible hypersurface of B [17].
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4.2. Spectral curves

The fibres of the Hitchin system can be described using the notion of spectral
curves [2, [15]. Let 7 : T*¥ — ¥ be the projection from 7% to ¥. Observe
that 773 is the total space of the canonical bundle K — Y. Therefore the
pullback 7*(K) has a natural section A, the tautological section, defined by
the property that if p € K, then

Ap) =p € (7(K)), = K.

Let b= (p1,p2,...,pn) € B, so p; € HY(Z, K7). To the point b, we associate
a section p = p, € HO(T*S, 7*(K™)), given by

po ="+ (PN -+ 7 (pn).

The spectral curve Sy associated to b € B is defined as the zero divisor of py
in T*3. Thus S is defined as a subscheme of T*3.. Bertini’s theorem implies
that for generic points b € B, the spectral curve S, C T*% is smooth. In
fact, it can be shown that S, is smooth if and only if b € B™® [I7]. Thus,
the discriminant locus D is also the locus of singular spectral curves.

If Sy is a spectral curve, we denote by 7 : S, — X the restriction of 7 to
Sy. Let d =d+ (g — 1)n(n — 1). For b € B™2, let Jac(Sy) denote the degree
d component of the Picard variety of Sy, which is a torsor for the Jacobian
of Sy. If L € Jacj(Sp), then by Grothendieck-Riemann-Roch, one sees that
the push-forward E = m,L is a rank n, degree d vector bundle on X. The
tautological section A, viewed as a map A : L — L ® 7*K pushes down to
amap ®: F — F® K and hence the pair (F,®) is a Higgs bundle. Since
pp, = 0 on Sy, it follows that:

D" 4 7 (p1) " -+ 7 (pn) = 0.

Since b € B, S, is smooth and it follows that pp is irreducible. Thus p,
must be the characteristic polynomial of ®, in other words (F, ®) belongs
to the fibre of M,, 4 over b € B. In this way, we obtain all Higgs bundles in
the fibre over b:

Theorem 4.3 ([2, 15]). Let b € B*®. The map sending L € Jaci(Sy) to
(E,®) described above gives an isomorphism between Jaci(Sy) and the fibre
of My q overb e B.
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4.3. On deformations of spectral curves

Let 6 € QY9(T*Y) denote the canonical 1-form on 7T*Y. Then df is the
canonical holomorphic symplectic 2-form on T*¥ and gives a trivialisation
of the canonical bundle of T*3. Now let S C T*X be a non-singular spec-
tral curve. We denote by Kg the canonical bundle of S and Ng the normal
bundle. By definition of Ng, we have a short exact sequence

0— Kg' = Tiresyls = Ng — 0.

Taking determinants and using df, we get an isomorphism Ng = Kg. Ex-
plicitly, the isomorphism is given by

¢:Ns— Kg, @V)=1iydf|s

which sends a normal vector field V' to the contraction of df with V. Next,
since S is by definition a divisor of the linear system of sections of 7*(K™),
we have by the adjunction formula that Ng = 7*(K™)|s. We will make this
isomorphism explicit as follows. Suppose that S is the zero divisor of p €
HO(T*Y, 7*(K™)). Choose an open covering {U;} of T*Y over which 7*(K™)
is trivial. Let g;; : U; N U; — C* be the transition functions, so p corresponds
to a collection of functions s; : U; — C such that s; = g;;s; on U; N U; and
si|ls = 0 for all . Now let V' be a normal vector field along S. Denote by dy s;
the derivative of s; in the direction V. Then 0y (s;)|s = gi;0v (;)|s, because
sjls = 0. Therefore, {0y (s;)|s}: is a well-defined section of 7*(K™)|g, which
we denote simply as dyp|s. The desired isomorphism is

¢ i Ng — m"(K™), ¢ (V)=0dyp|s.

Lemma 4.4. Let b € B™. The map

p:B=EHS, K7) — HO(S,, 7 (K™))
j=1

given by
p(bi,ba, ... by) = 7 (b)AN L+ 7 (b)) A2 4 oo 4 7 (by)

18 an isomorphism.
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Proof. From [2], we have
mn0s=0s @K '@ ..o KD,

Multiplying both sides by K™ and taking global sections gives the result. [J

Let b € B*™ and p, € H(T*X, 7*(K™)) the corresponding section of
7 (K™). A tangent vector X € T, B™® = B gives rise to a deformation of
pp and hence to a deformation of the divisor S, C T*X of pp. Such a defor-
mation is described by a section of Ng,, hence we get a map, known as the
characteristic map (cf., [12]):

n
(4.1) X :T,B"8 = B = P H'(S, K7) — H'(S), Ng,).
j=1

Proposition 4.5. The characteristic map is given by x = —(¢') "L o p.

Proof. Let b(t) be a 1-parameter family in B™® with b(0) = b, and ¥'(0) €
T,B™® = B a tangent vector at ¢ =0. The derivative of py;) at ¢ =0 is
clearly given by p(b'(0)). Let z(t) denote a l-parameter family of points
in 7% such that z(t) lies on Sy for all times ¢, i.e. py(z(t)) = 0. Note
that the projection of 2/(0) to the normal bundle is given by V(x), where
V = x(b'(0)) € H°(Sp, Ng,) is the normal vector field describing the defor-
mation of Sj in 7. Expanding py)(2(t)) = 0 to first order at ¢ = 0, we
get p(b'(0))(z) + Oy (@ypy = 0, or @' (V(x)) = —p(¥/(0))(x). So V' = x(b'(0)) =
—(")"Lp(¥'(0)), as required. O

Note that —(¢')"! o p: T, B*& — HY(S,, Ng,) is an isomorphism. Thus
as a consequence of Proposition we see that B2 can also be identified
with the moduli space of deformations of S, C in T*X.

5. Special Kahler geometry of the Hitchin system
5.1. Two special Kahler geometries

We now have two possible ways of obtaining a special Kéahler geometry on
Bres:

(1) View B™® as parametrising a family of spectral curves S C T*¥, which
are complex Lagrangians, or

(2) View B8 as parametrising a family of complex Lagrangians in M5,
the fibres of the Hitchin system.
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We will show that both of these give rise to the same special Kéhler
geometry on B'8.

Definition 5.1. Let (V,w,V) and (V',w’, V') denote the flat symplectic
bundles on B**® corresponding to (1) and (2) above. Let ¢ : TB™ — V¢
and ¢' : TB*™ — V(.) denote the V¢ and V(.-valued 1-forms corresponding
to (1) and (2).

Consider first the special Kéhler geometry on B**® given by (V,w, V, ¢).
Recall that 6 is the canonical 1-form on 7*3 and df is the symplectic form on
T*Y. The map B™8 > b+ [0|s,] € H'(Sp, C) defines a section of V¢ which by
abuse of notation we will denote by 6. Then Proposition [3.2] gives ¢ = dv¥0,
and hence the section 6 determines a special Kahler geometry on B8,

Next consider the special Kahler geometry on B™¢ by (V' W', V', ¢).
For this we need to introduce the canonical 1-form on M,, 4. Let (E, ®) be

a semistable Higgs bundle in the non-singular locus of M,, 4. The tangent
adq)

space to (E,®) is given by the hypercohomology group H'(X, End(E) =%
End(E) ® K). Thus tangent vectors to (E,®) are represented by pairs
(A, ®) € QV1(X, End(E)) ® Q%°(X, End(E) ® K) satisfying 0p® + [A, ®] =
0. Here A represents a deformation of holomorphic structure of E and ® rep-
resents a deformation of the Higgs field ®. The natural map

HY(S, End(E) “% End(E) ® K) — H'(S, End(E)),

sending a deformation to (E,®) to a deformation of E alone is given in
terms of Dolbeault representatives by (A, ®) — A.

The holomorphic symplectic form € on M, 4 is of the form Q = dp,
where 1 is a holomorphic (1, 0)-form, the canonical 1-form. Up to an overall
scale factor, which is not important for us, the canonical 1-form is given by

e (A &) = /ETT'(@A)-

By abuse of notation, let y denote the section of Vi on B™8 given by
B™8 5 b+ [u|r,] € HY(Ly, C), where Ly = f~(b) = Jac;(Sp) is the fibre of
the Hitchin map over b. Then by Proposition ¢' = dy/p. Hence the
section p defines a special Kahler geometry on B*°8.

Proposition 5.2. There is a natural isomorphism of local systems wu :
WV, V) = (V',V'). Under this isomorphism, w and w' agree up to a posi-
tive constant factor.
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Proof. Let Z™® denote the universal moduli space of spectral curves, which
may be defined as

778 = {(z,b) € T*Y x B8 | py(z) = 0}

Thus Z'€ is a fibre bundle g : Z*°® — B'2 over B'® whose fibre over b €
B¢ is the spectral curve Sp. Let j: Z™8 — T*¥ be given by j(z,b) = z.
Then V = R'¢,R is the local system V, = H'(Sy,R) equipped with the
Gauss-Manin connection and w is given by

wb<a,6>=/s ang.

Recall the Hitchin map f : M} — B8 whose fibre over be B™8 is Jac;(Sh).
Then V' = R f,R is the local system V] = H*(Jacy(Sy),R) with the Gauss-
Manin connection and w’ given by

wy(, B') = /J - o AB ARV

Recall that Jacj(Sp) is a torsor over Jac(Sy). Hence there is a canonical iso-
morphism H'(Jac;(Sy),R) = H'(Jac(S,), R). We may identify the Jacobian
Jac(Sy) with Hi(Sy, R)/H1(Sp, Z), hence we have a canonical isomorphism
H'(Jac(Sp),R) = H(S,,R). By composing we get a canonical isomorphism
H'(Sy,R) = H'(Jacj(Sy), R). Clearly this isomorphism can be carried out
fibrewise over B'® to give an isomorphism of flat vector bundles V = V'. Fur-
thermore, the natural Kahler form h = w; on M,, 4 restricted to the fibre
Jacz(Sy) gives a multiple of the usual principal polarisation on Jacj(S).
It follows that w and w’ agree up to a positive constant factor (which is
independent of b). O

Proposition 5.3. Let b€ B™. Under the canonical isomorphism
HI(J(ZCJ(SZ,), C) = Hl(Sb,(C), we have M|Jac(;(.5'b) = 9|Sb'

Proof. The restriction of y to the fibre Jac;(Sp) over b is a holomorphic
1-form, which is necessarily translation invariant, since this is true of all
holomorphic 1-forms on a complex torus. The tangent space to Jacj(Sy) at
a point [L] € Jacy(Sy) is canonically isomorphic to H'(Sp, ©). Under the
isomorphism Hl(JacJ(Sb),(C) =~ H1(S,,C), the pairing of a tangent vec-
tor with a holomorphic 1-form coincides with the Serre duality pairing
H°(Sy, Ks,) ® H'(Sy, 0) — C. In other words, let X € TjzjJacg(Sy) and let
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ax be the corresponding element of H'(S,, ©). Then the statement of the
proposition is equivalent to showing;:

,u(X):/SbH/\aX.

The point [L] € Jacj(Sp) corresponds to a line bundle L — Sj. Under the
spectral data construction, the Higgs bundle (E, ®) corresponding to L is
given by E = m,(L) and ® by pushing forward the map \: L — L ® 7*K.
We view the holomorphic line bunde L as a C°°-line bundle together with
a 0-operator Or. Then the tangent vector X corresponds to the tangent
at t =0 of the 1-parameter family of deformations of L given by Jp, =
Or, + tax. Similarly view E as a C*-vector bundle with a d-operator Jg.
Let E; = m«(Lt). We will construct an explicit family of d-operators dg, on
the fixed C%°-vector bundle E such that (E,dg,) is isomorphic to Ej.

By the Dolbeault Lemma, adding a O-exact term to ax if necessary,
we can assume that ax vanishes identically in a neighborhood of each
point of Sy lying over a branch point. Now let U C ¥ be an open, simply-
connected subset containing no branch points. Then the pre-image 7~ (U) =
Uy UUs U---UU, is the disjoint union of n open subsets of Sp, and the re-
striction 7 : U; — U of 7 to each Uj is a diffeomorphism. Over U, we have a
canonical isomorphism E|y = L|y, @ L|y, @ - -+ ® L|y, . Define an End(E)-
valued (0,1)-form Aly on U by

Aly = diag () Hax|v,),- .-, (") (ax]v,)) -

Here 7* : Q%1 (U) — Q%(U;) denotes the pullback of (0, 1)-forms and (7*)~* :
QO (U;) — QON(U) the inverse map. The Ay defined in this way patch to-
gether to give an End(E)-valued (0, 1)-form on ¥ minus the branch points.
But since ax vanishes in a neighborhood of each point of S, lying over a
branch point, we have that A vanishes in a punctured neighborhood of each
branch point. We extend A by zero over each branch point to get a well-
defined A € Q%1(%, End(E)). Set Op, = O + tA. By construction of A, it
is clear that (F,dp,) is isomorphic to E;. Observe that A : Ly — L; ® 7K
pushes down to ® independent of ¢ and note that ® is holomorphic with
respect to O, for all t (because A and @ are simultaneuosly diagonalisable
away from the branch points). So (E, ®) is the 1-parameter family of Higgs
bundles corresponding to L;. In particular, differentiating at ¢ = 0, we have
that (A, ®) = (A4,0) € H(Z, End(E) ada, End(E) ® K) is the tangent vec-
tor corresponding to X € TizjJacj(Sy). Let U C X be a simply-connected
open subset of ¥ containing no branch points, as above, and let ¢ be a
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smooth compactly supported function on U. Over U, we have
® =diag (N|g, o™ !, .. Ay, o)

and so
/err(@A) = ;/U‘” (Mo, o 77) A ((7) " (ax]u,)
:j;/UjTr*(@Z))H/\OéX

:/ () 0 A ax.
-

Combining this with a partition of unity argument, we get

u(X)z/Tr((I)A):/H/\aX
% S
as required. O

Corollary 5.4. The special Kihler geometries on B™¢ given by (1) and
(2) coincide (up to a constant rescaling of the metric g and symplectic form

w).
5.2. Special Kahler geometry of B*¢8

We summarise our findings so far concerning the special Kéhler geome-
try of the Hitchin system and make some further observations. Recall that
B¢ is the regular locus of the Hitchin base, that is B™® = B\ D, where
D is the locus of singular spectral curves. On B'® we have the flat sym-
plectic bundle (V,w, V) whose fibre over b is Vj, = H'(S,,R). The flat con-
nection V is the Gauss-Manin connection and the symplectic structure w
is the intersection form w(a, ) = be a A B. Let 0 denote the canonical 1-
form on T*Y. We think of 6 as a section 8 : B8 — V¢ which sends b to
[0s,] € H'(Sy, C). For any b € B™8, let ay,...,a4,,b1,...,bys be a symplec-
tic basis for Hi(Sp, R) (where gs denotes the genus of the spectral curves).
We can extend ai,...,by, to covariantly constant sections of V* in any
simply connected open neighborhood U C B™® of b. Then the holomorphic
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coordinate systems (z!,...,295) and (w1, ..., wy,) are given by:
(5.1) 2 (u) = / 0, w;(u) = / 6.
a; b’L
For each u € U, let wi(u),...,wq,(u) be the corresponding normalised basis

of holomorphic 1-forms on S, which are characterised by:

(5.2 [ rtw) =3

The period matrix of S, with respect to the symplectic basis a1, ..., by, is

7ij(u) = /b wj(u).

In these coordinates the special Kahler metric is given in terms of its Kahler
form by

w= —%Im(rij)dzi AdZ.

Since 6 is a holomorphic 1-form, it can be written as a linear combination

of the w;. From Equations (5.1) and (5.2)), we immediately get
0= z'w;.

This equation holds not just at the level of cohomology classes, but as 1-
forms. Combining this with (5.1]), we also find

wi:/Gz/zjwj:ijij.

Such a relation between the z and w-coordinates does not hold for special
Kahler manifolds in general. We now deduce a simple formula for the Kéhler
potential:

Proposition 5.5. The Kdhler potential K in Equation s given by:

i _
K=— ] 0NM6.
AL



Special Kahler geometry and topological recursion 2005

Proof. This is a straightforward computation:

oL fo L)

) oo
:4—2<z wi—wizl)
1

i=1 O

Remark 5.6. An interesting feature of this formula is that is does not
depend on a choice of symplectic basis and K is thus a globally defined
Kahler potential on B"®&.

Recall that the moduli space of Higgs bundles has a natural C*-action
given by rescaling the Higgs field (E,®) — (E, c®), ¢ € C*. The C*-action
on M,, 4 is compatible with a C*-action on the base given by

c(a1,az, ..., a,) = (cay, Pas, ..., c"ay).

Let £ be the vector field on B generating this action.

Proposition 5.7. In terms of local special Kihler coordinates (21, ..., z95)
or (w,...,we,) on B™8, we have:
. 0 0
£=2

- = Wi
07" Zawi

Proof. In terms of spectral data, the C*-action on Higgs bundles corresponds
to the natural C* scaling action on the fibres of T*> — 3. It follows that
the C*-action scales 0 linearly. On the other hand, for any ¢ € C*, the ac-
tion of ¢ on T*Y induces an isomorphism of spectral curves c: Sp — Sgp.
Supose that U is an open simply connected subset of B containing b.
Then for all ¢ € C* sufficiently close to 1, we have ¢b € U and the isomor-
phism H;(Sp, R) = Hy(Sw, R) induced by multiplication by ¢ clearly agrees
With parallel translation by the Gauss- Manin connection. In particular, since
Z' = f 0, each of the coordlnate functions z* must scale linearly with the C*-
action and hence £(2%) = 2* for each 4. This gives & = 2 821 as required. The

same argument applied to B-cycles gives &(w;) = w;, hence £ = wi%. O
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From now on, whenever special Kihler coordinates (z1,...,295) are be-
ing used we will let 9; denote %.

Lemma 5.8. Let (z%,...,295) be local special Kéhler coordinates on B8,
Then (as cohomology classes) we have:

Vaﬁ = Wj.

Proof. Recall that for any vector field X on B8 we have ¢(X) = V x0 where
#(X) is a (1,0)-form. We can determine the 1-form by integrating against

a-cycles:
/ Vo0 = ai/ 0= 0;(7) = by

J

Hence Vj,0 = w; as claimed. O

Proposition 5.9. Let XY, Z be vector fields on B™. We have:

(5.3) / VO A6=0,
S
(5.4) / VxVyO A0 =0,
S
(5.5) /vayVZe/\QZC(X,Y,Z),
S

where ¢(X,Y, Z) is the Donagi-Markman cubic.

Remark 5.10. The expression f s VxVyV 70O A0 is the analogue of Yukawa
couplings for moduli spaces of Calabi-Yau 3-folds.

Proof. Recall as above that ¢(X) = Vx60isa (1,0)-form. Thus Vx0 A0 =0,
since it is a (2,0)-form on S. This proves (5.3). Applying Vy to (5.3), we
get:

0:Y</Vxe/\9> :/VyVXH/\GJr/VXG/\VyH.
S S S

But fs VxO AVy0 =0, as Vx0 and Vy60 are both (1,0)-forms, so we get
(5.4). Observe now that the left hand side of (5.5)) is a symmetric cubic tensor
because of (5.4). Therefore it suffices to consider the case where X = 0;,
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Y = 0;, Z = 0. In this case we get

gs
/vaivajvakme_z (/ vaivajvake/ 9—/ vaivajvake/ 9)
S a; b, b, a

=1

gs
= Z <wlai3jak/ 0 — Zlalajak/ 9)
=1 @ by

gs
= Z (wlaié)jakzl — Zlaiajakwl)
=1

9gs
= — Z Zlaiakal
=1
gs
=— Z zlalakai ( by symmetry of 0;7y)
=1
= —£8j8kwi.

Then using the commutation relation [¢, 9;] = —0; and the fact that &(w;) =
w;, we see that —£0;0,w; = 0;0,w; = 0Tk = Cjki = Ciji- O

Proposition 5.11. A prepotential for the special Kdher structure on B™8
s given by

1 . 1 o
F = izlwi = injzzzj.
Proof. This is a simple calculation:
1 1. 1 1 1
O F = iwi + izj&-wj = §wi -+ 52’]7'1']' = §wi + §wi = W;.

6. Donagi-Markman cubic

The Donagi-Markman cubic measures the change in periods of the spectral
curve Sy as b varies. Since the periods are essentially given by the Hodge
structure on H!(Sp, C), this amounts to computing the variation of Hodge
structure, which is controlled by the Kodaira-Spencer class of the defor-
mation of Sp. Therefore, we need to compute the Kodaira-Spencer class
k(0) € H(Sy, Ts,) associated to a tangent vector d € Tj,B™8.
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6.1. Kodaira-Spencer class computation

Recall the characteristic map x : T, B8 — HY(Sy, Ng,) in which sends
a tangent vector in T B™® to the corresponding normal vector field on .Sp.
Let us write V' = x(9) for the normal vector field corresponding to 0. Next,
recall the universal moduli spaces of spectral curves:

77 = {(z,b) € T*S x B™® | py(z) = 0}.

Let q : Z™°® — B™® be the natural projection and j : 2" — T*Y the map
sending a spectral curve to its image in T*3. We denote the composition of j
with the natural projection T*¥ — ¥ simply as 7 : 2" — X. Forany b € B
we can find an open neighbourhood b € U C B™® over which the family Z"°®
can be differentiably trivialised:

78|y = ¢ HU) 2 U x S,

where S = Sp,. With respect to this trivialisation, the family Z"8|; consists
of a fixed topological surface S with a complex structure I(¢) that varies with
t € U. The map 7 : Z™8|yy — X corresponds to a family of maps m : S — %
such that 7; is holomorphic with respect to I(t). Given a tangent vector
0 € T,U, we use a dot to denote differentiation by 0. Differentiating the
condition that 7 is holomorphic with respect to I(t), we get

(6.1) 7 (K(9)) = Y,

where k(0) = —%I is the Kodaira-Spencer class of the deformation of I in
the direction d and Y = 7 € Q°(S, 7*(T%)) is the corresponding deformation
of the map 7. If a € S is a ramification point of m then Y (a) € (Tx)r(,) is a
tangent vector describing the motion of the branch point w(a) € X. Let D
be the ramification divisor of 7, that is D = )" (r(a) — 1)a where the sum
is over ramification points of 7 and r(a) is the ramification degree of 7 at a.
View m, as a section of T le 7*(Tx) and define

Y
W=—¢ QO(Sa TS(D))a
Tk

which is a vector field on S having poles at the ramification points. Then
Equation (6.1)) says
k(Q) = OW.
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Note that W depends on 0 and we will write W (0) if we wish to show this
dependence. Note also that W depends on the choice of local differentiable
trivialisation of the family of spectral curves.

Definition 6.1. Let 0 be a (1,0)-vector field on B*8. We denote by 0
the unique vector field on Z™¢\ D which is a lift of 9 (that is, ¢.(d) = 9),
satisfying m.(0) = 0 (i.e., m is constant along the integral curves of ¢). In a
local differentiable trivialisation Z™8|; = U x S, ¢ is given by:

(6.2) § =0 —W(d) € Q0(Z™8, TZ"8(D)).

Note that § aquires poles along the ramification divisor D and so it may be
regarded as a section of TZ"¢(D).

We use 4 to differentiate objects on the family Z'°® in a trivialisation-
independent manner. The only drawback of this is that differentiation with
respect to & produces poles at the ramification points.

Lemma 6.2. We have 00 = iy df|s, where V = x(0) is the normal vector
field corresponding to 0 € T B™®.

Proof. Choose a local differentiable trivialisation of the family of spectral
curves: Z"8|y = U x S. Define V = 5,(9) € Q0(S, Tr-x) and V = 4,(6) €
Q%(S, Tr-x;(D)). By this definition, V and V are lifts of V = x(9). Next,
we note that since 6 = 9 — W preserves 7o j: Z™8|y — 3, we have that
J«(9) preserves 7 in the sense that m,j.0 = 0. Thus, 7.V =0. Observing that
Js : T(U x S) — Tp-x, restricted to Tg acts as the identity j. : Tg — T, we
find V = j,.(6) = j.(0 — W) =V — W. We see that V is a lift of V to a
section of Tp-x(D) which is required to satisfy 7.V = 0. Applying 9 to
.V =mW, we get T, (5‘7) = T (OW) = T4k, but 7, : Tg — 7T is gener-
ically an isomorphism, so we deduce that K = OW = dV and V is meromor-
phic. The identity j,(8) = V means that our local differentiable trivialisation
of the family of spectral curves is given by integrating the flow lines of V.
This means that in our given trivialisation, the change in 6 is 00 = L 0|s.
Then:

30 =00 — L0 = Ly (0)]s = Lols = ipdd + d(iph)|s.

But 6 vanishes at the ramification points with order at least that of 7, so
i-0 is a holomorphic function, hence constant on S. Therefore d(iy6)|s = 0
and 660 = ipdf|s. But V is a lift of V', so iy,df|s = iy df|s. O
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Consider the natural C*-action on T*¥ given by scalar multiplication in
the fibres. Let £ € H(T*X, Tr-x) be the vector field generating this action.
In local coordinates (x,y), where z is a local coordinate on ¥ and (z,y)
corresponds to the point (z,ydx) € T*Y%, we have = yag. Note that in
these coordinates the canonical 1-form is given by # = ydx, hence 6(§) = 0,
iedf = 0.

Lemma 6.3. Let V,V be as in Lemma . Then V is given by:

~ «
V_§§7

where a = iy df|g, .

Proof. Recall that V is a lift of V satisfying W*(V) = 0. These conditions
uniquely determine V, because K er(ms) N Ts is generically zero. Let V* =
7§ By uniqueness, it is enough to check that V* satisfies the necessary
requirements, i.e. V* is a section of Tp.x;(D) which is a lift of V' and satisfies
mV* = 0. Clearly m,V* = 0, because ¢ € Ker(m,). We need to check that
V* is a section of Tp-x (D). Let (z,y) be local coordinates on T* as above
and let ¢ be a local coordinate on Sp. Then 7 is the map 7(q) = = = z(q)
and with respect to these coordinates dm = 3—2. The 1-form « has the form
a(q)dg for some holomorphic function a(g). Then:
a(q)dg 0

ydx yay
a(q)dg O

dr Oy
a(g) 0 a(q) 9

(%) Ay dr oy

Vi=t=

a
6

So the polar divisor of V* is at most D. To show that V* projects to V', we
just need to show that
ty-df = iydf = o,

where the second equality is the definition of «. This follows easily from
iedf) = 0, indeed:

o @
0 0
Hence V* = V. ([

iv*dﬁ = igd@ =—0=oq.

The following result relates the characteristic map to the Gauss-Manin
connection:
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Lemma 6.4. For any 0 € T, B™®, we have:
Vol = 60 = Z'X(a)d9|gb.

More precisely, the Tight hand side is the unique holomorphic 1-form repre-
senting the cohomology class V0 € H' (S, C).

Proof. The second equality is Lemma Moreover the right hand side is
clearly holomorphic. Thus it remains only to show that Va0 = i, (5 df|s,,
at the level of cohomology classes. For this we view B8 as a moduli space
of spectral curves, which are complex Lagrangians in the symplectic sur-
face (T*X, df). The Vc-valued 1-form ¢ is essentially by definition given by
#(X) = iy(x)df|s, (this is just a special case of Equation ) On the
other hand ¢ = dy#, and the lemma follows. O

Remark 6.5. By Lemma we have a = V6 and so V can be written

as
V_Laeg_ﬁg

where it is understood that by Vg#, we mean the holomorphic 1-form rep-
resenting V56 in cohomology.

2. Residue formula for the Donagi-Markman cubic

Theorem 6.6. The Donagi-Markman cubic is given by the following residue
formula:

oX,Y,Z) = —27TZZR63 < (Vx0) (Vge)(vz9)£> 7

where the sum is over the ramification points of w. With respect to local
special Kdhler coordinates (2',. .., 295) this expression takes the form

(6.3) Cijk = —2mZRe (“’“Jw’“5> .

Remark 6.7. Before giving the proof we should comment on how to in-
terpret the right hand side of this formula. The vector field £ is a section
of T'r+x|s, which in general is not tangent to Sp. However, it is precisely at
the ramification points where we have that £ is tangent to Sp. Let ¢ be a
meromorphic section of Tg defined in a neighbourhood of a and such that,
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when viewed as a section of Tg ® Ty, the difference % — ( is holomorphic.
Then the right hand side of the formula can be read as:

~2mi ) Res ((Vx0)(Vy0)(V20)().

Note that such a ¢ always exists. Indeed, in local coordinates (z,y) on T*%,
% = zda; = %. If @ is a ramification point of degree r(a) then dz|s vanishes
to order r(a) — 1. But y(a) is a zero of the characteristic polynomial p(y, x)
of order r(a), so (3p)(a) =0 for j =0,...,r(a) — 1. In other words, 9, is
tangent to S at a to order r(a) — 1, hence the polar part of g is tangent to
S. We will give a more explicit formula for this expression below, in the case
where 7 has simple branching only (Remark .

Proof. We start with Equation ((5.4):
/ VyVz0 NG =0.
S
Applying Vx then gives
/ VxVyVz0 N0+ / VyVz0 AV x6 =0.
S S
Combined with Equation ([5.5)), we get:
C(X, Y, Z) = —/ VyVz0 AV x0.
S

Since Vx#6 is a (1,0)-form, this integral only depends on the (0,1)-part
of VyVz0. By the Griffiths transversality theorem for variations of Hodge
structure we know that:

(VyVz0)OD = k(Y)Y UV40 € H'(S,0),

where U denotes the cup product U: H(S,Ts) @ H(S, Kg) — H'(S, O).
Thus
X,Y,Z) = —/ (k(Y)UVz0) AVx0.
S
Let V' = x(Y), and let V be a lift of V to a smooth section of Tr-x;
V be as in Lemma which by the Remark is given by

Sy - Let
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Recall that W =V —V is a smooth section of Tg,(D) and that 9(W) =
O(V) is a representative for the Kodaira-Spencer class #(Y). Let ¢ be as in
Remark It follows that W = —(Vy8)( + W', where W’ is smooth. We
then have

c(X,Y,Z) = —/ (OW UV z0) AV xb
S

_ /S 3 (iw (V26) A Vx6)
= —2m Z Raes (i(vyg)C(VZe) A VXG)
= 273 Z Raes (Vx0)(Vy0)(Vz0)(),

_ _27TZ~ZRG€S <(VX9)(VY9)(VZ<9)§> ’

0

where the sum is over the ramification points of S. 0

Remark 6.8. We may re-write Equation [6.3]in terms of local coordinates
as follows. For this, we will assume 7 has only simple ramification points. Let
a € S be a ramification point. Let x be a local coordinate on X centered at
m(a), q a local coordinate on S centered at a chosen so that 7(q) = z = ¢°.
Lastly, let (x,y) be local coordinates on T*% with 6 = ydz the canonical
1-form and & = yd,. At the point a, we have J, = Z—Zaq. Therefore we may
choose ¢ in Remark [6.7] to be

d
yals 1

4 = = i
(6:4) ¢ ydx dxdy

Then the residue contribution to c;; at a is:

o B Wi ;W
{1%3(8) (wiwjwi() = qR_eﬁ ( dxdy ) '

We will assume that coordinates x,q have been chosen around each ramifi-
cation point and so we will write Equation (6.3)) as:

Cijk = —27TiZR§s (%) .
a
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7. Relation to topological recursion
7.1. Topological recursion for Hitchin spectral curves

Topological recursion, as introduced in [7], is a recursive procedure which
takes a Riemann surface S (we assume S is compact) with meromorphic
functions x,y such that dx has only simple zeros, and produces a collection
of symmetric multidifferentials Wy(,,g), for g > 0, n > 1, known as the Eynard-
Orantin invariants. By “multidifferential” we mean that W,Eg ) is a meromor-
phic section of the n-th exterior tensor product K?” =KsXKKgXK---KKg
on S™. By symmetric we mean invariant under the action of the permuta-
tion group on S™. The recursion formula requires a choice of symplectic basis

ai,...,aq45,b1,...,by,. The two base caseﬂ are:
0
W) =0,

WQ(O) (p1,p2) = B(p1, p2),

where B(pi,p2) is the Bergman kernef’| on S x S. Recall (eg, [§]) that this
is the unique meromorphic symmetric bi-differential which is holomorphic
away from the diagonal and which, in a local coordinate ¢(p), has an expan-
sion around the diagonal of the form:

dq(p1)dq(p2)
(q(p1) — q(p2))?

and such that B is normalised with respect to the symplectic basis in the
sense that fplea' B(p1,p2) =0fori=1,...,gs. To define the recursion for-

B(q(p1),q(p2)) = + O(1)dq(p1)dq(p2)

mula we need some further notation. By assumption the map z : S — P!
is simply branched. Thus, for any ramification point a € S, we can find a
neighbourhood ¢ € U C § and a non-trivial involution ¢ : U — U such that
xoo =uwx. If ¢ €U one writes ¢ = o(q). Thus z(q) = 2(g). Let w(q) denote
the 1-form on U given by

w(q) = (y(q) — y(@)dz(q) = (6 — a70)(q),

2An alternative convention is to define Wl(o) = ydxz, but all other W5 are
unchanged.

30ne can extend topological recursion by replacing B with a modified version of
the Bergman kernel, however we will not make use of this generalisation.
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where § = ydz. For p € S and g € U, we define dE,(p) as follows. We assume
the neighbourhood U is chosen to be simply-connected and set

) =3 [ pEn,

€q

where the path of integration is taken to lie in U. Clearly this is independent
of the choice of path of integration.

Now we are ready to state the recursion formula. Let p1, ..., p, be points
on S.If K = {iy,...,ix} is asubset of {1,2,...,n}, we let px be the k-tuple
Pk = (DiysDiyy- -+, i, )- Then for 2g — 2 4+ k > 0 we define

(7.1) W,if?l(p,pK) =

m —-m — -1 —
?jg ol Z > W|f,|+1 (¢,p.) W,ﬁ‘(iwll(q,pxw) + W (0,3 px)
m=0JCK

where the sum ) -, is over all subsets J C K. Notice that all non-zero

terms on the right hand side involve only terms WY with 2¢ —2+k <

2g — 2 + k. Therefore, this gives a recursive definition of the W]gg ),

The topological recursion formula was adapted to the case of Hitchin
spectral curves in [6]. Here the map x : S — P! is replaced by 7 : S — X.
To make sense of the recursion formula on a spectral curve S C T*3,
note that the formula does not directly involve the functions x,y only the
1-form 6 = ydx. For the recursive formula, we only need the Bergman kernel
B, the local involutions ¢ about each ramification point, and the 1-forms
w = 6 — 0*0, defined around each ramification point. The local involutions
o are well-defined in a neighbourhood of each ramification point provided
m:8 — X has only simple branching. We will assume for the rest of this
paper that this is the case.

7.2. Variational formulas

Our goal in this section is to relate the g = 0 Eynard-Orantin invariants
of spectral curves to the special Kahler geometry of B™&. The key result
which ties these together is the following variational formula for the Bergman
kernel:
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Proposition 7.1 (Rauch variational formula). Let 0 € T, B™®. Assume
p,r are distinct and are not ramification points. Then:

B(u,p)B(u, )
z(u

where the sum is over the ramification points of ™ and for each ramification
point a € Sy, we choose coordinate functions x,q as in Remark[6.8.

00(u
0B(p,q) =) Res ( c)l

Proof. Although this formula is well known, we were unable to find a sat-
isfactory proof in the literature that applies to our setting, so we provide
a proof here. Choose a local differentiable trivialisation in a neighborhood
U of b: Z™8|y =2 U x S, so that 6 =9 — W. Since § is independent of the
choice of local trivialisation, we are free to choose such a trivialisation at
our convenience. Changing a given local trivialisation by a suitably chosen
diffeomorphism yields a change in W of the form W — W + X, where X is
an arbitrary smooth vector field on S (X has no poles). From this it is clear
that, for a fixed choice of points p,r distinct from the ramification points,
we can assume W vanishes in a neigbourhood of p and r. Then

6B(p,r) = 0B(p,7) = Lw ) B(p,r) — Lw(rBlp,r) = 0B(p,7),

because W vanishes around p and r. Next, we have the following variational
formula for B(p,r) [9, page 57

9B(p,r) = k(p)B(p,r) + k(r)B(r, p)
1
- B, NB( - B(-
57 0 [ (6()BCp) A B0,
where p.v. denotes the Cauchy principal value of the integral. Using x = OW,
we obtain

9B(p,r) = k(p)B(p,r) + k(q)B(r,p)
. W () B(u,p) B, 7),

UEYa

=_— W (u)B(u,p)B(u,r),
UEYq

where we obtain the last line because £ = 0 at p and r by our assumption on
W. The sum ) is taken over all poles of W (u)B(u,p)B(u,r), namely a is
a ramification point, a = p or a = r and 7y, is a contour around the point a.
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However, we again have by our assumptions on W that there are no residue
contributions from the points p,r and therefore we can take the sum to just
be over the ramification points of 7. Now, as in the proof of Theorem [6.6], we
may write W = —(66)¢ + W', where W’ is smooth and ¢ is given by (6.4).
Then

SB(p.r) = = Z/e (=(60)(u)¢(w) + W'(w)) B(u, p) B(u, ),

211
a

=y Res (60)(u)¢(u)B(u, p) B(u,r)
00(w) B(u, p) B(u,r)

=—>» R
wa de(u)dy(u)
a O
Let (2%,...,295) be local special Kihler coordinates on B 8. Let 9; de-

note the vector field % and let 0; denote §(0;). We have:

Theorem 7.2 (Variational formula [7]). Forg+k > 1,

5iW;§g)(p1,---,pk)=—% W;ﬁ‘i)l(p,pl,---,pk)-

i Jpeb,

Proof. This is essentially Theorem 5.1 of [7]. Since we are working in a
setting where 6 is not globally of the form 6 = ydz, one needs to check the
proof of Theorem 5.1 in [7] holds in this setting. In fact the proof in [7
pages 32-34] essentially only relies on the Rauch variational formula (which
we have proven in Proposition and the diagrammatic representation of
W,Eg) [T, Theorem 4.8], the proof of which only uses the recursive definition
of Wég ) and does not involve any global properties of the spectral curve. [

Remark 7.3. Note that the poles of W,E,g ), in any one of its variables, have
zero residues. This can easilg/ be deduced from symmetry and the diagram-

matic representation of W,gg [7, Theorem 4.8]. Therefore the integration of

W,Eg) over a cycle v (chosen so as to avoid the poles) depends only on the
homology class of v in S. Similarly one can also show that the integration
of W]Eg ) over an a-cycle is zero.

Consider the case (g,k) = (0,2), where WQ(O) (p1,p2) = B(p1,p2) is the
Bergman kernel. Applying the variational formula, we obtain

1

3iB(p1,p2) = —27”./ . W?fo)(p,phpz)-
pPEL;
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Recall that fplebj B(p1,p2) = 2miw;(p2) [8] and thus fplebj pach, B(P1:p2) =
27i7j,. The variational formula then gives

1
Cijk = OiTjr, = =—0; / B(p1,p2)
2mi p1Eb; Jpa€by

1
= i / 0;B (pl ) p2>
T Jp, €b; Jpa€by,

1)? 0
== <2> / / ng )(pap17p2)~
™ pebi, plebj pQEbk

From [7, Theorem 4.1], we have:

Wi (p, p1,pa) = ﬁjg

(B(p, q)B(p1, q)B(pe, q)>
dx(q)dy(q) '

Therefore, we obtain

Cijk = — (217W)2 Za: /peb,, /plebj /paebk {1%52 <B<]D7 qzlf((g)lc}gzg(p% q)>
= -ami Y e (AT,

which agrees with T heorem (see Remark . In a similar manner, start-
ing with WQ(O) (p1,p2) = B(p1,p2) and applying the variational formula mul-
tiple times, we obtain:

Theorem 7.4. We have:

. m—1
7
01,0y + -+ Oi 3 Tiy i = — () / / W1, .., pm)-
2 P1Eby, PmEb

tm

Therefore, the g = 0 Eynard-Orantin invariants W,EO) for a spectral curve
Sy compute the power series expansion of the period matrix 7;; about b €
Bres. Since the special Kéhler metric on B'® is given in terms of the period
matrix, the invariants W}go) also compute the power series expansion of the
special Kahler metric.



Special Kahler geometry and topological recursion 2019

7.3. Second derivatives of the period matrix by topological
recursion

We will use Theorem[7.4]to compute the symmetric quartic 9;0;7x of second
derivatives of the period matrix. From the diagrammatic representation of
Eynard-Orantin invariants, one finds (|7, Equation (4-46)]):

W4(0)(p7p11p27p3)
_ N" ResRes MEa(P) dE(9)

g—ar—b w(q) w(r)

E E,.(q
+ ResResd o(p) 45 (7)
g—ar—b w(q) w(r)

[B(q,p1)B(r, p2) B(T, p3) + perm, 3]

[B(qvpl)B(rv p2)B(?7 p3) + perm1,2,3} 3

a,

where perm, o 3 means we sum over all permutations of py, ps, p3. To this,
we apply (27rz) fpeb fp1€b P2Eby, fpsEbL giving

Around each ramification point, choose coordinates x,q as usual. Then
dz(q) = 2qdq, dy = y'(q)dq and we have:

Res
a—b  w(q

dEq(p)fla) _ 1, Bla,p)f(a) _ _B(b,p)f( )
) 2 ¢—b da(q)dy(q) 4y'(0) "+

where f(q) is any local section of K%, holomorphic in a neighbourhood of b.
Using this, ((7.2) simplifies to:

Eq(P) [ wi(b)w(b)
Ami /pEb Z?jg B(q,b (q) w;(q) (2,;) + perm; 1

(b)
: g Ba@) o (®a®)
+‘W/pebz;b§£§ B(q,b) o0) wj(q) < 2/ 0) >+p .y
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Consider first the terms where a # b. Then B(q,b) and B(q,b) have no pole
at ¢ = a, so these terms give, on further simplification:

4;L@§¥W“ D0 (OB |
GZ#B ( )O(LZ)(a)) 2(22:2)@)) R
- az;,éb sl ( )(;)(a)> ( Q(y)zzl)(b)> +CyC; ki

where cyc;;; means a sum over cyclic permutations of j, k,l. Now let us

consider the terms where a = b. In this case we must compute the( 1)re81due
dE

as q —a of 27r7, fpeb B(Qa )df((g))wj(q) and of 27rz fpeb B(57 ) w(q) Wi (q)

Both of these have poles of third order. We have the following expansions
near q = 0:

9(@) = 9(0) + 5/ 0)a + 25" (O) + 2y ()" +
w(q) = (y(q) — y(—q))2qdq = 4¢°(y'(0) + éy’”(O) 24..0)dg
w;i(q) = (wj(()) +wj(0)g + ; wj '(0)g° + é ;”(o)q3 4+ .. ) dq

1 1
B(q,a) = ((]2 + ESB(G) + - ) dgda

where Sp(a) is the Bergman projective connection [8]. Also, we may compute
the expansion of 5L fpeb/ dE4(p):

L amw= g [ 3 B
P pb)=-— 5 » D
270 J pew, 1 270 Jpeb, 2 Je=q

:;L:M@)

:;lﬂﬁmm+@mm+%ﬂ@f+“>

=q

:—q(<m+é%mmﬁw~)
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Therefore, the expansion of 5L Joes, B(a,a) df‘(‘q(f ) w;j(g) has the form

1 B(q,a) qu(p)

S w;(q
2mi Jpe, w(q) i(@)

(11 q(wi(0)+%w£’(0)q2+...)
_< 5 T Sp(a) + )4q2(y’(0)+éy”’(O)q2+~--)

1
X <wj(0) —wi(0)q + Qw;-’(O)(f + - > dgda

(11 O\ (@i0) + Bl 0+ )
__< Tttt )4«ya»+6ymwm +oee)

« <wj(0) W0+ ](O)qQ—i—---)dqda.

Adding this to the corresponding expansion for 2m fpebi B(q, )dE(lg’ ) w;(q),
we get
1 dE 1 _ dE4(p
| B <>+/ B o)1)
g peb w(q) 20 Jpep, w(q)
1 +1uw)2+
< +‘% ) (0)¢* +---)
q ///(0)q _j’_ )

« ( S(0) + ;w (0)¢? + - >dqda.

The coefficient of % in this is:

1 a_y”’(()) w;i(0)w; ! lw‘ w! }w{’ w;
a7 (570~ L) a0y 0+ s (501 0)+ sl 000).

Therefore, the a = b terms in (7.3) are given by:

D (850 - 28 ) wsf@hs@n(aliate) + permy,

“3 2 @Ma)wé-’(a)wk(a)wz(a) T éw;%a)wj(a)wk(a)wz(a))
+ perm; ;. ;

= # G*M wila)w;(a)wg(a)w;(a
=2 5ar (SBU y,(a)) i(a)u; (@) (@)or(a)

! ; 81/’2602 (wi' (@)wj(@)wr(a)wr(a)) + cye; j p-
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Putting this all together we have shown:

Theorem 7.5. The second derivatives of the period matriz are given by:

1 3
(7.4) 0,01 = (2> / / / W (p,p1, p2, p3)
™ peb; Jp; ebj p2Eby J p3EDY;

= 271 ;B(a, b) <wi(;;),c(u;)(a)> (wkz(zz?g;b)) + CYCk

) 71 a —y”/(a) wila)wi;la)wepla)wila
#omi Y s (S0~ ) el wntarane

4 27 Z 8y’2a)2 (wi (a)wj(a)wk(a)wl(a)) + ey j -

Remark 7.6. Let us verify that the right hand side of is independent
of the choice of local coordinates ¢,z satisfying x = ¢2, as it must be, since
0;0;71; is independent of such choices. Consider a change of variables & =
h(z), § = f(q), where x = ¢* and & = ¢*. If h(z) = W'a + h"z* + $h"a® +

- and f(q) = flq+ 35/"¢* + %f’”q?’ + --- then the relation & = ¢% implies
f"(0) = 0. Let Sg(a),Sp(a) denote the Bergman projective connection in
the g and ¢-coordinates. The property of being a projective connection means

R " "2
o) = (PPSsl + (57 - 325 ).

% > ) = S(f) is the Schwarzian derivative of f at ¢ = 0. From
0 = y(q)dz = y(§)dz, one finds

(7.5) /(0) = 7 O)(f)?

and
0 30, s S
70 ~ gy T

Then since f” =0, we get

a0 (sslw- 58 =07 (S0 - L) -4l
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But using w;(q)dq = ©;(§)dq, we also find

(7.7) wi(a) = (f)@i(a)
(7.8) wi(a) = ()] (a) + @ia) /.

Substituting (7.5)—(7.8) into (7.4), we see that the result is coordinate inde-
pendent.
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