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We investigate the special Kähler geometry of the base of the
Hitchin integrable system in terms of spectral curves and topo-
logical recursion. The Taylor expansion of the special Kähler met-
ric about any point in the base may be computed by integrating
the g = 0 Eynard-Orantin invariants of the corresponding spectral
curve over cycles. In particular, we show that the Donagi-Markman
cubic is computed by the invariant W

(0)
3 . We use topological re-

cursion to go one step beyond this and compute the symmetric
quartic of second derivatives of the period matrix.
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1. Introduction

The Hitchin integrable system [14, 15] ties together many seemingly differ-
ent branches of geometry and physics, including twistor theory, integrable
systems, mirror symmetry and supersymmetric Yang-Mills theory to name
just a few. The goal of this paper is to elucidate one particular aspect of this
rich story, namely the relation between the special Kähler geometry of the
base of the Hitchin system with the theory of Eynard-Orantin topological
recursion of the spectral curves.

Suppose that f : M → B is a complex integrable system, so M is a
complex manifold with a holomorphic symplectic form and f is a complex
Lagrangian fibration, whose generic fibres are complex tori. In general f
will have singular fibres so let f : Mreg → Breg denote the regular locus
consisting of the non-singular torus fibres of f . As we recall in §3, under
mild assumptions, there is a naturally defined metric gsk on the base Breg,
known as a special Kähler metric [4, 10, 16]. We recall the fundamentals of
special Kähler geometry in §2. In particular, Breg has a Kähler metric of the
form

(1.1) ω = −
i

2
Im(τij)dz

i ∧ dzj

where τij is a matrix of functions, the periods of the torus fibres of the
integrable system. It is well known that the special Kähler metric on Breg

can be combined with a metric along the fibres to produce a hyperkähler
metric gsf on Mreg, known as the semi-flat hyperkähler metric [3, 10, 16].
This metric is called “semi-flat” because its restriction to the fibres of f :
Mreg → Breg is flat.

In this paper we concentrate on the case that f : M → B is the Hitchin
system. Then M = Mn,d is the moduli space of Higgs bundles of given rank
n and degree d. In this case M is known to admit a complete hyperkähler
metric g [14]. The semi-flat metric on Mreg may be thought of as an ap-
proximation of the complete hyperkähler metric. The semi-flat metric fails
to extend over the singular fibres, however it is expected that g can be
recovered from gsf by incorporating instanton corrections [11].

To define the Hitchin system, one takes a compact Riemann surface Σ
of genus greater than 1 and M to be the moduli space of semistable Higgs
bundles of fixed rank n and degree d (see §4). In this case, the period matrices
τij(b) for b ∈ Breg are not arbitrary, in fact they are the periods of a Riemann
surface Sb, the spectral curve associated to the point b ∈ Breg. The spectral
curve Sb is a smooth compact Riemann surface Sb ⊂ T ∗Σ embedded in the
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cotangent bundle of Σ, such that the projection π : Sb → Σ is a branched
covering of degree n. We now give a brief summary of the special Kähler
geometry on Breg in terms of spectral curves. Let θ be the canonical 1-form
on T ∗Σ. A pair of local holomorphic coordinate systems (z1, . . . , zgS) and
(w1, . . . , wgS) for Breg are given by integrating the canonical 1-form over a
basis of 1-cycles in Sb:

zi =

∫

ai

θ, wi =

∫

bi

θ,

where a1, . . . , agS , b1, . . . , bgS is a symplectic basis of 1-cycles, which may be
defined over any sufficiently small neighbourhood in Breg. The monodromy
of the Hitchin system prevents us from choosing such a basis globally on
Breg. Having chosen such a basis of 1-cycles, we have the normalised basis
of holomorphic 1-forms ω1, . . . , ωgS characterised by

∫

ai
ωj = δij . The period

matrix of Sb is then given by τij =
∫

bi
ωj . With respect to the coordinate

system (z1, . . . , zgS), the special Kähler metric is given by Equation (1.1). Al-
ternatively, we have a real coordinate system (x1, . . . , xgS , y1, . . . , ygS) given
by:

xi = Re(zi) = Re

(∫

ai

θ

)

, yi = Re(wi) = Re

(∫

bi

θ

)

.

These coordinates are globally defined up to monodromy, which acts by lin-
ear transformations, hence they define an affine structure on Breg. Moreover
they are Darboux coordinates for the Kähler form:

ω = dx1 ∧ dy1 + · · ·+ dxgS ∧ dygS .

Recall the prepotential (see §2) is a locally defined holomorphic function F
on Breg such that wi =

∂F
∂zi . We will recall that the period matrix is given

by τij =
∂wi

∂zj and thus

τij =
∂2F

∂zi∂zj
.

From the prepotential F , one obtains a Kähler potential K by:

K = −
1

2
Im

(
∂F

∂zi
zi
)

.
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An important quantity in special Kähler geometry is the symmetric cu-
bic c ∈ H0(M, Sym3(TM)) which measures the variation of the period ma-
trix τij :

c = cijkdz
i ⊗ dzj ⊗ dzk, cijk =

∂τjk
∂zi

=
∂3F

∂zi∂zj∂zk
.

We call c the Donagi-Markman cubic, since in the case where M is the
base of a complex integrable system, c is the cubic studied by Donagi and
Markman [5]. One can for instance express the Riemann, Ricci and scalar
curvatures in terms of τij and cijk [10]. The following proposition (cf. [13] for
similar results) summarises the relation between the special Kähler geometry
on Breg and the spectral curves:

Proposition 1.1. We have the following relations:

(1) A (local) prepotential for the special Kähler structure on Breg is given
by:

F =
1

2
ziwi =

1

2
τijz

izj .

(2) A (global) Kähler potential is given by:

K = −
i

4

∫

S

θ ∧ θ.

(3) Let VC be the local system on Breg whose fibre over b is H1(Sb,C). We
may think of θ as a section of VC. The Donagi-Markman cubic is given
by the “Yukawa couplings”:

c(X,Y, Z) =

∫

S

∇X∇Y ∇Zθ ∧ θ,

where ∇ is the Gauss-Manin connection.

The above formula for the Donagi-Markman cubic involves differentia-
tion with respect to the Gauss-Manin connection. This requires knowledge
of the family of spectral curves. In §6 we give another formula for the c in
terms of the geometry of a single spectral curve. Our formula holds for any
smooth spectral curve, but in this section we will for simplicity consider the
case where π : S → Σ has only simple branching. Around each ramification
point a ∈ S we can thus find local coordinates x on Σ and q on S such
that π(q) = x = q2. Near a we have θ = ydx for some function y(q) with
y′(a) ̸= 0. We have:
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Theorem 1.2. The Donagi-Markman cubic is given by:

cijk = −2πi
∑

a

Res
a

(
ωiωjωk

dxdy

)

,

where the sum is over the ramification points of π.

Similar-looking formulas for the Donagi-Markman cubic have appeared
in [1, 13], however these formulas use cameral curves instead of spectral
curves and involve quadratic residues instead of ordinary residues. One ad-
vantage of our formula (in the form of Theorem 6.6) is that it applies even
when π has higher order ramification. Moreover, our formula looks very
similar to formulas appearing in the theory of Eynard-Orantin topological
recursion. This is not a coincidence, as we show in Section §7.

1.1. Relation to topological recursion

Eynard-Orantin topological recursion [7] is a recursive formula which takes
as input a Riemann surface S (which we assume is compact) with a pair
of meromorphic functions x, y and produces a series of symmetric multi-

differentials W
(g)
n , for g ≥ 0, n ≥ 1, the Eynard-Orantin invariants. More

precisely, W
(g)
n is a meromorphic section of the n-th exterior tensor product

K⊠n
S = KS ⊠KS ⊠ · · ·⊠KS on Sn, where KS denotes the canonical bun-

dle of S, which is symmetric under interchange of factors. The function x,
viewed as a map x : S → P1 is assumed to be a branched covering with only
simple branching. The topological recursion formula has been extended to
Hitchin spectral curves S ⊂ T ∗Σ in [6], which gives an interpretation of the
Eynard-Orantin invariants in terms of quantisation of spectral curves. Our
paper gives another interpretation of these invariants, at least in the case
of g = 0. To make sense of the Eyndard-Orantin invariants in this setting,
first note that the projection π : S → Σ plays the role of x. As we will recall
in §7, the topological recursion formula continues to makes sense as long as
π has only simple branching. They key point is that the recursion formula
does not directly involve the functions x, y but only the 1-form ydx. In the
case of a spectral curve S ⊂ T ∗Σ, the canonical 1-form θ plays the role of
ydx. We show that the variational formula for Eynard-Orantin invariants in
[7] holds in our setting and leads to the following formula for derivatives of
the period matrix τij about any point b ∈ Breg.
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Theorem 1.3. For any b ∈ Breg, we have:

∂i1∂i2 · · · ∂im−2
τim−1im(b) = −

(
i

2π

)m−1 ∫

p1∈bi1

· · ·

∫

pm∈bim

W (0)
m (p1, . . . , pm)

where on the right hand side, W
(0)
m (p1, . . . , pm) is the W

(0)
m Eynard-Orantin

invariant of the corresponding spectral curve Sb. One can show that W
(0)
m in

each variable only has poles with zero residue, so the above expression does
not depend on the choice of paths representing the given cycles.

This formula shows that the g = 0 Eynard-Orantin invariantsW
(0)
k for a

spectral curve Sb compute the Taylor series expansion of the period matrix
τij about b ∈ Breg. Since the special Kähler metric on Breg is given in terms

of the period matrix, the invariants W
(0)
k also compute the power series

expansion of the special Kähler metric. For instance, we consider the m = 1
case and show that it recovers our formula (Theorem 1.2) for the Donagi-
Markman cubic. Theorem 1.3 is remarkable in that the left hand side of the
equation is related to geometry of the family of spectral curves, while the
right hand side is given by invariants of a single spectral curve Sb ⊂ T ∗Σ.
In a sense, any single spectral curve Sb “knows” about the geometry of the
entire family {Sb}b∈Breg .

Let us remark that Theorem 1.3 is certainly not surprising, as it is
essentially a consequence of the well known variational formula for Eynard-
Orantin invariants given in [7]. The main point we would like to emphasise
is that this formula is applicable to Hitchin spectral curves. This is not
immediately obvious as one needs to check that the proof of the variational
formula in [7] holds for Hitchin spectral curves. Ultimately, this boils down
to proving a version of the so-called “Rauch variational formula”, which we
prove in Proposition 7.1:

Proposition 1.4. Let ∂ ∈ TbB
reg. Assume p, r are distinct and are not

ramification points. Then:

δB(p, r) = −
∑

a

Res
u→a

δθ(u)B(u, p)B(u, r)

dx(u)dy(u)
,

where the sum is over the ramification points of π and for each ramification
point a ∈ Sb, we choose coordinate functions x on Σ and q on S with x = q2

and write θ = ydx.
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In this proposition, B is the Bergman kernel (see §7). For the meaning
of the variational operator δ, see Definition 6.1. Versions of this formula are
well known in the literature, but we could not find a proof that holds in the
setting of Hitchin spectral curves, so we give a proof in §7.

We finish the paper by using topological recursion to go beyond the
Donagi-Markman cubic and compute the symmetric quartic of second deriva-
tives of the periods in terms of geometry of the spectral curve. Around
any ramification point a ∈ Sb, we may write the normalised 1-forms as
ωi = ωi(q)dq for some functions ωi(q). Our result is:

Theorem 1.5. The second derivatives of the period matrix are given by:

∂i∂jτkl = 2πi
∑

a ̸=b

B(a, b)

(
ωi(a)ωj(a)

2y′(a)

)(
ωk(b)ωl(b)

2y′(b)

)

+ cycj,k,l

+ 2πi
∑

a

1

8y′(a)2

(

SB(a)−
y′′′(a)

y′(a)

)

ωi(a)ωj(a)ωk(a)ωl(a)

+ 2πi
∑

a

1

8y′(a)2
(
ω′′
i (a)ωj(a)ωk(a)ωl(a)

)
+ cyci,j,k,l,

where SB is the Bergman projective connection (see §7), the sum
∑

a ̸=b is
over distinct pairs of ramification points and cyc means to sum over cyclic
permutations of the specified indices.

1.2. On the g > 0 invariants

In this paper, we have established the relation between the g = 0 Eynard-
Orantin invariants of spectral curves and the special Kähler geometry of
Breg. An interesting problem would be to find a similar geometric interpre-
tation for the g > 0 invariants. In particular one may ask whether there is
a relation between the g > 0 invariants and the instanton corrections relat-
ing the semi-flat hyperkähler metric on Mreg to the complete hyperkähler
metric on M.

1.3. Summary of paper

A brief summary of the contents of this paper is as follows. In §2 we give a
review of special Kähler geometry. In §3 we recall a result of Hitchin showing
that the moduli space of deformations of a compact complex Lagrangian in a
complex symplectic manifoldM has a natural special Kähler metric (assum-
ing M admits a Kähler metric). In §4 we briefly review the relevant aspects
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of the moduli space of Higgs bundles and the Hitchin system f : Mn,d → B,
in particular the spectral curve construction. There are two possible ways
in which Breg inherits a special Kähler geometry: (i) view Breg as a family
of complex Lagrangians in Mn,d (the fibres of the map f), or (ii) view Breg

as a family of spectral curves Sb ⊂ T ∗Σ (clearly Sb is a complex Lagrangian
submanifold of T ∗Σ). We show in §5 that these two points of view give rise to
the same special Kähler geometry, and we describe this geometry in terms
of the family of spectral curves. In §6, we give a residue formula for the
Donagi-Markman cubic, essentially by a computation of Kodaira-Spencer
classes. In §7, we consider the Eynard-Orantin invariants of Hitchin spec-
tral curves and relate the g = 0 invariants to the special Kähler geometry
on Breg. We show that in this way, we recover our formula from §6 for the
Donagi-Markman cubic and then proceed to compute the quartic of second
derivatives of the periods by topological recursion.

2. Special Kähler geometry

2.1. Review of special Kähler geometry

Definition 2.1 ([10, 16]). A special Kähler manifold is a Kähler manifold
(M, g, I, ω) together with a torsion free, flat affine connection ∇ such that

• ∇ω = 0, and

• d∇I = 0

Here I ∈ Ω1(M,TM) is viewed as a TM -valued 1-form and d∇ : Ω1(M,TM)
→ Ω2(M,TM) is the differential induced by ∇.

Let us examine what the special Kähler condition implies in terms of
local coordinates, following Freed [10]. Since∇ is flat and torsion free, we can
find local coordinates in which ∇ becomes the trivial connection. Moreover,
since ∇ω = 0, we can choose these coordinates to be Darboux, that is, M
has local flat coordinates (x1, . . . , xn, y1, . . . , yn) for which

ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn.

Next, we observe that the 1-forms Idxi are closed, because

d(Idxi) = d∇(Idx
i) = (d∇I) ∧ dx

i + Id∇(dx
i) = 0,
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where in the first equality we used that ∇ is torsion free. It follows that lo-
cally there exist functions u1, . . . , un such that Idxi = dui. Let zi = xi − iui.
Then dzi = dxi − idui = dxi − iIdxi is a (1, 0)-form. This together with the
fact that Re(dzi) = dxi implies that (z1, . . . , zn) is a local holomorphic co-
ordinate system forM . Similarly, one can find functions v1, . . . , vn such that
Idyj = dvj and setting wj = yj − ivj gives another holomorphic coordinate
system (w1, . . . , wn)

1. A simple computation gives

∂

∂zi
=

1

2

(
∂

∂xi
+ τij

∂

∂yj

)

, where τij =
∂wj

∂zi
.

Compatibility of ω and I gives, after a short computation, the condition
τij = τji. So there is a local holomorphic function F , called the prepotential
such that

wi =
∂F

∂zi
, τij =

∂2F

∂zi∂zj
.

From symmetry of τij , we also deduce that

ω = −
i

2
Im(τij)dz

i ∧ dzj .

If we use the convention that g and ω are related by g(X,Y ) = ω(IX, Y ),
this means that τij is a symmetric, complex n× n matrix with Im(τij)
positive definite. That is, τij is a period matrix, a point in the Siegel upper
half-space. We note that a Kähler potential for ω is given by:

(2.1) K = −
1

2
Im(wiz

i) = −
1

2
Im

(
∂F

∂zi
zi
)

.

As in the introduction, we have the Donagi-Markman cubic

c ∈ H0(M,Sym3(TM ))

which measures the variation of the period matrix τij :

c = cijkdz
i ⊗ dzj ⊗ dzk, cijk =

∂τjk
∂zi

=
∂3F

∂zi∂zj∂zk
.

1Note that Freed uses a slightly different convention in which Re(wi) = −yi.
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2.2. Special Kähler manifolds as “bi-Lagrangians”

In [16], Hitchin establishes a close relation between special Kähler manifolds
and submanifolds of a complex symplectic vector space satisfying a “bi-
Lagrangian” condition. We recall the result. Let V be a real symplectic
vector space with symplectic form ω. Define VC = V ⊗R C = V ⊕ V with

complex structure I =

(
0 −1
1 0

)

. Define a complex symplectic form ωc =

ω1 + iω2 on VC as the C-bilinear extension of ω, that is:

ωc((x, y), (x′, y′)) = ω(x+ iy, x′ + iy′)

=
(
ω(x, x′)− ω(y, y′)

)

︸ ︷︷ ︸

ω1((x,y),(x′,y′))

+i
(
ω(x, y′)− ω(x′, y)

)

︸ ︷︷ ︸

ω2((x,y),(x′,y′))

.

Define in addition an (indefinite signature) inner product g on VC by

g((x, y), (x′, y′)) =
1

2

(
ω(x, y′) + ω(x′, y)

)
.

Note that g(α, β) = Re
(
i
2ω

c(α, β)
)
, where we define (x, y) = (x,−y).

Theorem 2.2 (Hitchin, [16]). Let M ⊂ VC be a submanifold which is
Lagrangian with respect to ω1 and ω2 and such that g|M is positive definite.
Then (M, g|M , I|M ) is special Kähler. The projection of M to the first factor
V ⊂ VC defines a system of local coordinates, and the flat affine connection
∇ is the trivial connection on TM with respect to these coordinates. In a
similar manner, the symplectic form ω on M is obtained by pullback of the
symplectic form ω on V . Conversely, any special Kähler metric is locally of
this form.

The relation between the local embeddingM ⊂ VC and the holomorphic
coordinates zi, wi is as follows: choose a symplectic bases a1, . . . , an, b1, . . . , bn

for V , giving an explicit isomorphism V ∼= R2n. Then the map s :M → VC =
V ⊕ V ∼= (Rn)4 is given by

(Re(z), Re(w), Im(z), Im(w)),

where we think of z = (z1, . . . , zn), w = (w1, . . . , wn) as vectors in Cn. Let
a1, . . . , an, b1, . . . , bn ∈ V ∗ be the dual basis and ⟨ , ⟩ : V ∗ ⊗ V → R the dual
pairing, which we extend to a pairing V ∗

C
⊗ VC → C by C-linearity. Then the
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coordinate systems zi, wi can be recovered as:

zi(m) = ⟨ai, s(m)⟩, wi(m) = ⟨bi, s(m)⟩.

A slight extension of Theorem 2.2 is to consider the following situation:
suppose M is an n-manifold and let (V, ω,∇) be a real symplectic vector
bundle of rank 2n equipped with a flat symplectic connection ∇. Let VC =
V ⊗R C be the complexification and as above, define a complex symplectic
form ωc = ω1 + iω2 and an inner product g. Let s :M → VC be a section of
VC satisfying the following conditions:

(SK1) The bundle map ρ : TM → VC given by ρ(X) = ∇Xs is injective.

(SK2) The image of ρ is Lagrangian with respect to ω1 and ω2.

(SK3) The image of ρ is positive definite with respect to g.

Then M inherits a special Kähler geometry. Indeed, locally on M we choose
a flat trivialisation V ∼=M × V . Then s defines an immersion s :M → VC
and we are back to the setting of Theorem 2.2.

3. Relation to moduli spaces of complex Lagrangians

We recall the relationship between moduli spaces of complex Lagrangians
and special Kähler geometry [16].

3.1. Deformations of complex Lagrangians

Let M be a complex manifold of complex dimension 2n and let Ω be a holo-
morphic symplectic form, by which we mean a closed (2, 0)-form such that
∧nΩ is non-vanishing. A complex Lagrangian in M is a complex submanifold
Y ⊂ M which is Lagrangian with respect to Ω, i.e. Y has complex dimension
n and Ω|Y = 0. A real submanifold Y ⊂ M of real dimension 2n such that
Ω|Y = 0 is in fact automatically a complex Lagrangian [16, Proposition 1].
If Y ⊂ M is a complex Lagrangian, then Ω yields an isomorphism NY → T ∗

Y

between the normal bundle of Y and the cotangent bundle, which sends a
normal vector field X to iXΩ|Y . In particular, this gives an isomorphism
H0(Y,NY ) ∼= H1(Y, T ∗

Y ) between normal vector fields and holomorphic 1-
forms. Recall that H0(Y,NY ) describes the space of infinitesimal deforma-
tions of Y as a complex submanifold of M. The infinitesimal deformations
as a complex Lagrangian are those for which the corresponding holomorphic
1-form is closed.
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Following Hitchin, we make the following two assumptions: (i) Y is com-
pact and (ii) M has a Kähler 2-form h. In this case, Y is also Kähler and
since Y is compact Kähler, it follows that all holomorphic 1-forms are closed.
Thus every infinitesimal deformation of Y respects the Lagrangian condition.
Furthermore, it follows from [20] that in the Lagrangian case, all deforma-
tions are unobstructed. Hence there exists a local moduli space B of complex
Lagrangian submanifolds parametrising (sufficiently small) deformations of
a given complex Lagrangian Y0 ⊂ M. A point [Y ] ∈ B is a complex La-
grangian Y ⊂ M which is deformation equivalent to Y0. Moreover there is
a natural isomorphism T[Y ]B ∼= H0(Y, T ∗

Y ).

We recall from [16] how B inherits a naturally defined special Kähler
structure. Let Z be a local universal family of deformations of the com-
plex Lagrangian submanifold Y0 ⊂ M, so Z is a complex manifold with
a proper holomorphic surjective submersion f : Z → B and a holomorphic
map j : Z → M such that the restriction of j to each fibre Lb = f−1(b) of
f gives an embedding j : Lb → M whose image is the complex Lagrangian
corresponding to the point b ∈ B. Let V = R1f∗R be the vector bundle on B
whose fibre over b ∈ B is given by the first cohomology H1(Lb,R) of the fibre
Lb. The bundle V is equipped with a natural flat connection ∇, the Gauss-
Manin connection. The Kähler form h on M yields a symplectic structure
ω on V by setting

ωb(α, β) =

∫

Lb

α ∧ β ∧ hn−1,

for all α, β ∈ Vb = H1(Lb,R). Clearly ω is preserved by the Gauss-Manin
connection.

The natural isomorphism TbB ∼= H0(Lb, T
∗
Lb
) together with the inclusion

H0(Lb, T
∗
Lb
) ⊂ H1(Lb,C) (recall Lb is compact Kähler) yields a bundle map

φ : TB → VC:

TbB ∼=

φb

55

H0(Lb, T
∗
Lb
) ⊂ H1(Lb,C) ∼= (VC)b

More explicitly, let X ∈ TbB be a tangent vector at b. Let X̃ be a lift of X
to Lb, that is, X̃ is a section of TZ|Lb

such that f∗(X̃(y)) = X for all y ∈ Lb.
Then φ(X) is given by:

(3.1) φ(X) = iX̃j
∗Ω|Lb

,
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which is a closed 1-form on Lb representing a class in H1(Lb,C). The map
φ can be viewed as a VC-valued 1-form on B. We then have:

Theorem 3.1 (Hitchin, [16]). The VC-valued 1-form φ is d∇-closed, so
locally we can write φ = ∇s for a section s of VC. Then s satisfies the con-
ditions (SK1)-(SK3) and hence locally defines a special Kähler structure on
B. The special Kähler structure is independent of the choice of s, hence this
construction gives rise to a globally defined special Kähler structure on B.

Proof. We give only a sketch of the proof here and refer the reader to [16] for
further details. We have that j∗Ω is a closed 2-form on Z. The complex La-
grangian condition means that j∗Ω|Lb

= 0 for any fibre Lb. If we consider the
Leray-Serre spectral sequence for f : Z → B, we see that j∗Ω yields a class in
E1,1

2 = H1(B,R1f∗C) = H1(B,VC), which is represented by the VC-valued
1-form φ. This explains why φ is closed. Condition (SK1) follows from the
isomorphism TbB ∼= H0(Lb, T

∗
Lb
) and the inclusionH0(Lb, T

∗
Lb
) ⊂ H1(Lb,C).

Condition (SK2) follows from the fact that H0(Lb, T
∗
Lb
) ⊂ H1(Lb,C) is La-

grangian with respect to ω. Condition (SK3) follows from

gb(α, α) = Re

(
i

2

∫

Lb

α ∧ α ∧ hn−1

)

,

which is positive definite, since h is a Kähler form. □

We give another way of understanding the VC-valued 1-form φ. The
fibre of the dual local system V∗

C
over b ∈ B is given by the homology group

(V∗
C
)b = H1(Lb,C). Let ⟨ , ⟩ : V

∗
C
⊗ VC → C be the dual pairing:

⟨γ, α⟩ =

∫

γ

α.

Then φ is determined by

⟨γ, φ⟩ =

∫

γ

j∗Ω,

for all locally defined covariantly constant sections γ of V∗
C
, where the integral

on the right hand side is fibrewise integration. More precisely, for any b ∈ B,
choose an open neighborhood U of b over which f : Z → B is trivialisable:
f−1(U) ∼= Lb × U . Let γ̂ ∈ Hn−1(Lb,C) be the Poincaré dual of γ. Then
∫

γ
j∗Ω is given by the integration over the fibres of Lb × U → U of j∗Ω ∧ γ̂.
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Proposition 3.2. Suppose that Ω = dµ, where µ is a holomorphic 1-form
on M. Then φ = d∇s, where s : B → VC is the section defined by

s(b) = [µ|Lb
] ∈ H1(Lb,C).

Proof. First of all, note that the restriction µ|Lb
is a closed 1-form because

dµ = Ω and Ω|Lb
= 0, so the section s is well-defined. Let γ be a local con-

stant section of VC. Then

⟨γ, d∇s⟩ = d⟨γ, s⟩ − ⟨d∇γ, s⟩

= d⟨γ, s⟩ (as γ is constant)

= d

(∫

γ

µ

)

=

∫

γ

dµ =

∫

γ

Ω = ⟨γ,Ω⟩,

where we have used the fact that exterior differentiation commutes with
fibre integration. This shows φ = d∇s. □

Suppose we are in the situation of Proposition 3.2. For any b ∈ B, choose
a symplectic basis a1, . . . , an, b1, . . . , bn of H1(Lb,C). If U is any simply con-
nected neighborhood of b, we can extend ai, bi to be covariantly constant
sections of V∗ over U . Then the local holomorphic coordinates zi and wi of
the special Kähler structure are given by

zi =

∫

ai

µ, wi =

∫

bi

µ.

Example 3.3 (Holomorphic symplectic surfaces). Let M be a holo-
morphic symplectic surface, i.e. a complex surface with trivial canonical bun-
dle. Let Ω be the symplectic form on M. Then any complex 1-dimensional
submanifold S ⊂ M is automatically Lagrangian, because there are no (2, 0)-
forms on S. The moduli space B of deformations of S then carries a natural
special Kähler structure. We note that in this case since n = 1, it is not
necessary to assume the existence of a Kähler form h on M. Indeed, the
symplectic structure on VC is given by

ωb(α, β) =

∫

Lb

α ∧ β,

which is defined without assuming the existence of h. Moreover, since S is
a Riemann surface it is automatically Kähler. As we will see, this example
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is closely related to the Hitchin system, where M = T ∗Σ is the cotangent
bundle of a Riemann surface Σ and S ⊂ T ∗Σ is a spectral curve.

Example 3.4 (Complex integrable systems). Suppose that M admits
a proper holomorphic Lagrangian fibration f : M → B, by which we mean B
is a complex n-manifold and f : M → B is a proper, surjective, holomorphic
map whose fibres are Lagrangian with respect to Ω. Assume further that the
fibres of f are connected. Then Liouville’s theorem implies that the fibres
of f are in fact complex tori. We shall refer to the data (M,Ω, B, f) as a
complex integrable system. Since the normal bundle to the fibres is given
by f∗(TB), it follows that the deformations of any given fibre Lb ⊂ M are
precisely the other fibres of f . Hence B is the moduli space of deformations
of any given fibre. If we make the additional assumption that M admits a
Kähler 2-form h, then B inherits a natural special Kähler structure (which
depends on the choice of h).

4. Higgs bundles and the Hitchin system

4.1. Review of Higgs bundles

Let Σ be a compact Riemann surface of genus g > 1 and let K denote the
canonical bundle of Σ.

Definition 4.1. A Higgs bundle on Σ of rank n and degree d is a pair
(E,Φ), where E is a holomorphic vector bundle on Σ of rank n, degree d
and Φ is a holomorphic bundle map Φ : E → E ⊗K, called the Higgs field.

Recall that the slope µ(E) of a holomorphic vector bundle E on Σ is
defined to be the number µ(E) = deg(E)/rank(E).

Definition 4.2. A Higgs bundle (E,Φ) is called semistable if for all proper,
non-zero subbundles F ⊂ E such that Φ(F ) ⊆ F ⊗K, we have µ(F ) ≤ µ(E).

Using geometric invariant theory [18], one constructs a moduli space
Mn,d of rank n, degree d semistable Higgs bundles up to a suitable notion
of equivalence (called S-equivalence). Here we will recall only the details of
Mn,d which are relevant to understanding the special Kähler geometry of
the Hitchin system. The moduli space Mn,d is a quasi-projective, complex
algebraic variety of dimension 2n2(g − 1) + 2. The moduli space is in gen-
eral singular, but the smooth locus Msm

n,d has a naturally defined holomor-
phic symplectic 2-form Ω. The smooth locus Msm

n,d is a hyperkähler manifold
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with a triple of complex structures I, J,K and corresponding Kähler 2-forms
ωI , ωJ , ωK . The complex structure which arises from viewing Mn,d as the
moduli space of Higgs bundles is customarily taken to be I and it is the
only complex structure of relevance to us here. So we will regard Msm

n,d as
a Kähler manifold (Msm

n,d, I, ωI) equipped with a holomorphic symplectic
form Ω = ωJ + iωK . One can also consider moduli spaces of Higgs bundles
(E,Φ), where Φ is trace-free and E has fixed determinant. This gives a sub-
variety of Mn,d. As the corresponding special Kähler geometry is obtained
by restriction, it is sufficient for our purposes to consider just the case of
Mn,d.

Associated toMn,d is a complex integrable system, known as the Hitchin
system [15], which is defined as follows. If A is a complex n× n matrix, write
the characteristic polynomial of A as

det(λ−A) = λn + p1(A)λ
n−1 + · · ·+ pn(A).

The coefficients p1, . . . , pn of the characteristic polynomial can be viewed as
maps gl(n,C) → C which are are well known to be a basis for the ring of
conjugation-invariant polynomial functions on gl(n,C). The Hitchin system
is the analogue of this where the matrix A is replaced by a Higgs field. If
(E,Φ) is a rank n Higgs bundle, then by conjugation invariance, pj(Φ) is a
well-defined section of Kj . Define

B =

n⊕

j=1

H0(Σ,Kj).

Then we have a natural map f : Mn,d → B, called the Hitchin map, which
sends a Higgs bundle (E,Φ) to (p1(Φ), p2(Φ), . . . , pn(Φ)). It is known [14, 19]
that f is a proper, surjective, holomorphic map whose non-singular fibres
are Lagrangian submanifolds with respect to Ω. Let Breg ⊂ B denote the
regular locus, i.e. the locus of points b ∈ B over which f is a submersion. Let
Mreg

n,d ⊂ Mn,d denote the locus of points in Mn,d lying over Breg, so that

f : Mreg
n,d → Breg is a proper, holomorphic surjective submersion of complex

manifolds (since B is smooth and f : Mreg
n,d → Breg is a submersion, it follows

that Mreg
n,d is contained in the smooth locus Msm

n,d). As seen in Theorem 4.3
below, the fibres of f over Breg are connected and hence, as in Example 3.4,
the fibres are complex tori. We then have that Breg can be identified with the
moduli space of deformations of any given fibre inMreg

n,d and thus Breg carries
a natural special Kähler geometry. The complement D = B \Breg, called the
discriminant locus, is the locus of all singular fibres of f : Mn,d → B. It is
known that D is an irreducible hypersurface of B [17].
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4.2. Spectral curves

The fibres of the Hitchin system can be described using the notion of spectral
curves [2, 15]. Let π : T ∗Σ → Σ be the projection from T ∗Σ to Σ. Observe
that T ∗Σ is the total space of the canonical bundle K → Σ. Therefore the
pullback π∗(K) has a natural section λ, the tautological section, defined by
the property that if p ∈ Kx, then

λ(p) = p ∈ (π∗(K))p = Kx.

Let b = (p1, p2, . . . , pn) ∈ B, so pj ∈ H0(Σ,Kj). To the point b, we associate
a section p = pb ∈ H0(T ∗Σ, π∗(Kn)), given by

pb = λn + π∗(p1)λ
n−1 + · · ·+ π∗(pn).

The spectral curve Sb associated to b ∈ B is defined as the zero divisor of pb
in T ∗Σ. Thus Sb is defined as a subscheme of T ∗Σ. Bertini’s theorem implies
that for generic points b ∈ B, the spectral curve Sb ⊂ T ∗Σ is smooth. In
fact, it can be shown that Sb is smooth if and only if b ∈ Breg [17]. Thus,
the discriminant locus D is also the locus of singular spectral curves.

If Sb is a spectral curve, we denote by π : Sb → Σ the restriction of π to
Sb. Let d̃ = d+ (g − 1)n(n− 1). For b ∈ Breg, let Jacd̃(Sb) denote the degree

d̃ component of the Picard variety of Sb, which is a torsor for the Jacobian
of Sb. If L ∈ Jacd̃(Sb), then by Grothendieck-Riemann-Roch, one sees that
the push-forward E = π∗L is a rank n, degree d vector bundle on Σ. The
tautological section λ, viewed as a map λ : L→ L⊗ π∗K pushes down to
a map Φ : E → E ⊗K and hence the pair (E,Φ) is a Higgs bundle. Since
pb = 0 on Sb, it follows that:

Φn + π∗(p1)Φ
n−1 + · · ·+ π∗(pn) = 0.

Since b ∈ Breg, Sb is smooth and it follows that pb is irreducible. Thus pb
must be the characteristic polynomial of Φ, in other words (E,Φ) belongs
to the fibre of Mn,d over b ∈ B. In this way, we obtain all Higgs bundles in
the fibre over b:

Theorem 4.3 ([2, 15]). Let b ∈ Breg. The map sending L ∈ Jacd̃(Sb) to
(E,Φ) described above gives an isomorphism between Jacd̃(Sb) and the fibre
of Mn,d over b ∈ B.
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4.3. On deformations of spectral curves

Let θ ∈ Ω1,0(T ∗Σ) denote the canonical 1-form on T ∗Σ. Then dθ is the
canonical holomorphic symplectic 2-form on T ∗Σ and gives a trivialisation
of the canonical bundle of T ∗Σ. Now let S ⊂ T ∗Σ be a non-singular spec-
tral curve. We denote by KS the canonical bundle of S and NS the normal
bundle. By definition of NS , we have a short exact sequence

0 → K−1
S → T(T ∗Σ)|S → NS → 0.

Taking determinants and using dθ, we get an isomorphism NS
∼= KS . Ex-

plicitly, the isomorphism is given by

ϕ : NS → KS , ϕ(V ) = iV dθ|S

which sends a normal vector field V to the contraction of dθ with V . Next,
since S is by definition a divisor of the linear system of sections of π∗(Kn),
we have by the adjunction formula that NS

∼= π∗(Kn)|S . We will make this
isomorphism explicit as follows. Suppose that S is the zero divisor of p ∈
H0(T ∗Σ, π∗(Kn)). Choose an open covering {Ui} of T ∗Σ over which π∗(Kn)
is trivial. Let gij : Ui ∩ Uj → C∗ be the transition functions, so p corresponds
to a collection of functions si : Ui → C such that si = gijsj on Ui ∩ Uj and
si|S = 0 for all i. Now let V be a normal vector field along S. Denote by ∂V si
the derivative of si in the direction V . Then ∂V (si)|S = gij∂V (sj)|S , because
sj |S = 0. Therefore, {∂V (si)|S}i is a well-defined section of π∗(Kn)|S , which
we denote simply as ∂V p|S . The desired isomorphism is

ϕ′ : NS → π∗(Kn), ϕ′(V ) = ∂V p|S .

Lemma 4.4. Let b ∈ Breg. The map

ρ : B =

n⊕

j=1

H0(Σ,Kj) → H0(Sb, π
∗(Kn))

given by

ρ(b1, b2, . . . , bn) = π∗(b1)λ
n−1 + π∗(b2)λ

n−2 + · · ·+ π∗(bn)

is an isomorphism.
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Proof. From [2], we have

π∗OS = OΣ ⊕K−1 ⊕ · · · ⊕K−(n−1).

Multiplying both sides byKn and taking global sections gives the result. □

Let b ∈ Breg and pb ∈ H0(T ∗Σ, π∗(Kn)) the corresponding section of
π∗(Kn). A tangent vector X ∈ TbB

reg ∼= B gives rise to a deformation of
pb and hence to a deformation of the divisor Sb ⊂ T ∗Σ of pb. Such a defor-
mation is described by a section of NSb

, hence we get a map, known as the
characteristic map (cf., [12]):

(4.1) χ : TbB
reg ∼= B =

n⊕

j=1

H0(Σ,Kj) → H0(Sb, NSb
).

Proposition 4.5. The characteristic map is given by χ = −(ϕ′)−1 ◦ ρ.

Proof. Let b(t) be a 1-parameter family in Breg with b(0) = b, and b′(0) ∈
TbB

reg ∼= B a tangent vector at t = 0. The derivative of pb(t) at t = 0 is
clearly given by ρ(b′(0)). Let x(t) denote a 1-parameter family of points
in T ∗Σ such that x(t) lies on Sb(t) for all times t, i.e. pb(t)(x(t)) = 0. Note
that the projection of x′(0) to the normal bundle is given by V (x), where
V = χ(b′(0)) ∈ H0(Sb, NSb

) is the normal vector field describing the defor-
mation of Sb in T ∗Σ. Expanding pb(t)(x(t)) = 0 to first order at t = 0, we
get ρ(b′(0))(x) + ∂V (x)pb = 0, or ϕ′(V (x)) = −ρ(b′(0))(x). So V = χ(b′(0)) =
−(ϕ′)−1ρ(b′(0)), as required. □

Note that −(ϕ′)−1 ◦ ρ : TbB
reg → H0(Sb, NSb

) is an isomorphism. Thus
as a consequence of Proposition 4.5, we see that Breg can also be identified
with the moduli space of deformations of Sb ⊂ in T ∗Σ.

5. Special Kähler geometry of the Hitchin system

5.1. Two special Kähler geometries

We now have two possible ways of obtaining a special Kähler geometry on
Breg:

(1) View Breg as parametrising a family of spectral curves S ⊂ T ∗Σ, which
are complex Lagrangians, or

(2) View Breg as parametrising a family of complex Lagrangians in Mreg
n,d,

the fibres of the Hitchin system.
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We will show that both of these give rise to the same special Kähler
geometry on Breg.

Definition 5.1. Let (V, ω,∇) and (V ′, ω′,∇′) denote the flat symplectic
bundles on Breg corresponding to (1) and (2) above. Let φ : TBreg → VC

and φ′ : TBreg → V ′
C
) denote the VC and V ′

C
-valued 1-forms corresponding

to (1) and (2).

Consider first the special Kähler geometry on Breg given by (V, ω,∇, φ).
Recall that θ is the canonical 1-form on T ∗Σ and dθ is the symplectic form on
T ∗Σ. The map Breg ∋ b 7→ [θ|Sb

] ∈ H1(Sb,C) defines a section of VC which by
abuse of notation we will denote by θ. Then Proposition 3.2 gives φ = d∇θ,
and hence the section θ determines a special Kähler geometry on Breg.

Next consider the special Kähler geometry on Breg by (V ′, ω′,∇′, φ′).
For this we need to introduce the canonical 1-form on Mn,d. Let (E,Φ) be
a semistable Higgs bundle in the non-singular locus of Mn,d. The tangent

space to (E,Φ) is given by the hypercohomology group H1(Σ, End(E)
adΦ−→

End(E)⊗K). Thus tangent vectors to (E,Φ) are represented by pairs
(Ȧ, Φ̇) ∈ Ω0,1(Σ, End(E))⊕ Ω0,0(Σ, End(E)⊗K) satisfying ∂EΦ̇ + [Ȧ,Φ] =
0. Here Ȧ represents a deformation of holomorphic structure of E and Φ̇ rep-
resents a deformation of the Higgs field Φ. The natural map

H
1(Σ, End(E)

adΦ−→ End(E)⊗K) → H1(Σ, End(E)),

sending a deformation to (E,Φ) to a deformation of E alone is given in
terms of Dolbeault representatives by (Ȧ, Φ̇) 7→ Ȧ.

The holomorphic symplectic form Ω on Mn,d is of the form Ω = dµ,
where µ is a holomorphic (1, 0)-form, the canonical 1-form. Up to an overall
scale factor, which is not important for us, the canonical 1-form is given by

µ(E,Φ)(Ȧ, Φ̇) =

∫

Σ
Tr(ΦȦ).

By abuse of notation, let µ denote the section of V ′
C
on Breg given by

Breg ∋ b 7→ [µ|Lb
] ∈ H1(Lb,C), where Lb = f−1(b) ∼= Jacd̃(Sb) is the fibre of

the Hitchin map over b. Then by Proposition 3.2, φ′ = d∇′µ. Hence the
section µ defines a special Kähler geometry on Breg.

Proposition 5.2. There is a natural isomorphism of local systems u :
(V,∇) → (V ′,∇′). Under this isomorphism, ω and ω′ agree up to a posi-
tive constant factor.
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Proof. Let Zreg denote the universal moduli space of spectral curves, which
may be defined as

Zreg = {(x, b) ∈ T ∗Σ×Breg | pb(x) = 0}.

Thus Zreg is a fibre bundle q : Zreg → Breg over Breg whose fibre over b ∈
Breg is the spectral curve Sb. Let j : Z

reg → T ∗Σ be given by j(x, b) = x.
Then V = R1q∗R is the local system Vb = H1(Sb,R) equipped with the
Gauss-Manin connection and ω is given by

ωb(α, β) =

∫

Sb

α ∧ β.

Recall the Hitchin map f : Mreg
n,d→Breg whose fibre over b∈Breg is Jacd̃(Sb).

Then V ′ = R1f∗R is the local system V ′
b = H1(Jacd̃(Sb),R) with the Gauss-

Manin connection and ω′ given by

ω′
b(α

′, β′) =

∫

Jacd̃(Sb)
α′ ∧ β′ ∧ hn−1.

Recall that Jacd̃(Sb) is a torsor over Jac(Sb). Hence there is a canonical iso-
morphismH1(Jacd̃(Sb),R)

∼= H1(Jac(Sb),R). We may identify the Jacobian
Jac(Sb) with H1(Sb,R)/H1(Sb,Z), hence we have a canonical isomorphism
H1(Jac(Sb),R) ∼= H1(Sb,R). By composing we get a canonical isomorphism
H1(Sb,R) ∼= H1(Jacd̃(Sb),R). Clearly this isomorphism can be carried out
fibrewise over Breg to give an isomorphism of flat vector bundles V ∼= V ′. Fur-
thermore, the natural Kähler form h = ωI on Mn,d restricted to the fibre
Jacd̃(Sb) gives a multiple of the usual principal polarisation on Jacd̃(Sb).
It follows that ω and ω′ agree up to a positive constant factor (which is
independent of b). □

Proposition 5.3. Let b ∈ Breg. Under the canonical isomorphism
H1(Jacd̃(Sb),C)

∼= H1(Sb,C), we have µ|Jacd̃(Sb)
∼= θ|Sb

.

Proof. The restriction of µ to the fibre Jacd̃(Sb) over b is a holomorphic
1-form, which is necessarily translation invariant, since this is true of all
holomorphic 1-forms on a complex torus. The tangent space to Jacd̃(Sb) at
a point [L] ∈ Jacd̃(Sb) is canonically isomorphic to H1(Sb,O). Under the
isomorphism H1(Jacd̃(Sb),C)

∼= H1(Sb,C), the pairing of a tangent vec-
tor with a holomorphic 1-form coincides with the Serre duality pairing
H0(Sb,KSb

)⊗H1(Sb,O) → C. In other words, let X ∈ T[L]Jacd̃(Sb) and let
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αX be the corresponding element of H1(Sb,O). Then the statement of the
proposition is equivalent to showing:

µ(X) =

∫

Sb

θ ∧ αX .

The point [L] ∈ Jacd̃(Sb) corresponds to a line bundle L→ Sb. Under the
spectral data construction, the Higgs bundle (E,Φ) corresponding to L is
given by E = π∗(L) and Φ by pushing forward the map λ : L→ L⊗ π∗K.
We view the holomorphic line bunde L as a C∞-line bundle together with
a ∂-operator ∂L. Then the tangent vector X corresponds to the tangent
at t = 0 of the 1-parameter family of deformations of L given by ∂Lt

=
∂L + tαX . Similarly view E as a C∞-vector bundle with a ∂-operator ∂E .
Let Et = π∗(Lt). We will construct an explicit family of ∂-operators ∂Et

on
the fixed C∞-vector bundle E such that (E, ∂Et

) is isomorphic to Et.
By the Dolbeault Lemma, adding a ∂-exact term to αX if necessary,

we can assume that αX vanishes identically in a neighborhood of each
point of Sb lying over a branch point. Now let U ⊂ Σ be an open, simply-
connected subset containing no branch points. Then the pre-image π−1(U) =
U1 ∪ U2 ∪ · · · ∪ Un is the disjoint union of n open subsets of Sb, and the re-
striction π : Uj → U of π to each Uj is a diffeomorphism. Over U , we have a
canonical isomorphism E|U ∼= L|U1

⊕ L|U2
⊕ · · · ⊕ L|Un

. Define an End(E)-
valued (0, 1)-form Ȧ|U on U by

Ȧ|U = diag
(
(π∗)−1(αX |U1

), . . . , (π∗)−1(αX |Un
)
)
.

Here π∗ : Ω0,1(U)→Ω0,1(Uj) denotes the pullback of (0, 1)-forms and (π∗)−1 :
Ω0,1(Uj) → Ω0,1(U) the inverse map. The Ȧ|U defined in this way patch to-
gether to give an End(E)-valued (0, 1)-form on Σ minus the branch points.
But since αX vanishes in a neighborhood of each point of Sb lying over a
branch point, we have that Ȧ vanishes in a punctured neighborhood of each
branch point. We extend Ȧ by zero over each branch point to get a well-
defined Ȧ ∈ Ω0,1(Σ, End(E)). Set ∂Et

= ∂E + tȦ. By construction of Ȧ, it
is clear that (E, ∂Et

) is isomorphic to Et. Observe that λ : Lt → Lt ⊗ π∗K
pushes down to Φ independent of t and note that Φ is holomorphic with
respect to ∂Et

for all t (because Ȧ and Φ are simultaneuosly diagonalisable
away from the branch points). So (Et,Φ) is the 1-parameter family of Higgs
bundles corresponding to Lt. In particular, differentiating at t = 0, we have

that (Ȧ, Φ̇) = (Ȧ, 0) ∈ H1(Σ, End(E)
adΦ−→ End(E)⊗K) is the tangent vec-

tor corresponding to X ∈ T[L]Jacd̃(Sb). Let U ⊂ Σ be a simply-connected
open subset of Σ containing no branch points, as above, and let ψ be a
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smooth compactly supported function on U . Over U , we have

Φ = diag
(
λ|U1

◦ π−1, . . . , λ|Un
◦ π−1

)

and so

∫

U

ψTr(ΦȦ) =

n∑

j=1

∫

U

ψ
(
λ|Uj

◦ π−1
)
∧
(
(π∗)−1(αX |Uj

)
)

=

n∑

j=1

∫

Uj

π∗(ψ) θ ∧ αX

=

∫

π−1(U)
π∗(ψ) θ ∧ αX .

Combining this with a partition of unity argument, we get

µ(X) =

∫

Σ
Tr(ΦȦ) =

∫

S

θ ∧ αX

as required. □

Corollary 5.4. The special Kähler geometries on Breg given by (1) and
(2) coincide (up to a constant rescaling of the metric g and symplectic form
ω).

5.2. Special Kähler geometry of Breg

We summarise our findings so far concerning the special Kähler geome-
try of the Hitchin system and make some further observations. Recall that
Breg is the regular locus of the Hitchin base, that is Breg = B \ D, where
D is the locus of singular spectral curves. On Breg we have the flat sym-
plectic bundle (V, ω,∇) whose fibre over b is Vb = H1(Sb,R). The flat con-
nection ∇ is the Gauss-Manin connection and the symplectic structure ω
is the intersection form ω(α, β) =

∫

Sb
α ∧ β. Let θ denote the canonical 1-

form on T ∗Σ. We think of θ as a section θ : Breg → VC which sends b to
[θ|Sb

] ∈ H1(Sb,C). For any b ∈ Breg, let a1, . . . , agS , b1, . . . , bgS be a symplec-
tic basis for H1(Sb,R) (where gS denotes the genus of the spectral curves).
We can extend a1, . . . , bgS to covariantly constant sections of V∗ in any
simply connected open neighborhood U ⊂ Breg of b. Then the holomorphic
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coordinate systems (z1, . . . , zgS) and (w1, . . . , wgS) are given by:

(5.1) zi(u) =

∫

ai

θ, wi(u) =

∫

bi

θ.

For each u ∈ U , let ω1(u), . . . , ωgS(u) be the corresponding normalised basis
of holomorphic 1-forms on Su, which are characterised by:

(5.2)

∫

ai

ωj(u) = δij .

The period matrix of Su with respect to the symplectic basis a1, . . . , bgS is

τij(u) =

∫

bi

ωj(u).

In these coordinates the special Kähler metric is given in terms of its Kähler
form by

ω = −
i

2
Im(τij)dz

i ∧ dzj .

Since θ is a holomorphic 1-form, it can be written as a linear combination
of the ωi. From Equations (5.1) and (5.2), we immediately get

θ = ziωi.

This equation holds not just at the level of cohomology classes, but as 1-
forms. Combining this with (5.1), we also find

wi =

∫

bi

θ =

∫

bi

zjωj = zjτij .

Such a relation between the z and w-coordinates does not hold for special
Kähler manifolds in general. We now deduce a simple formula for the Kähler
potential:

Proposition 5.5. The Kähler potential K in Equation (2.1) is given by:

K = −
i

4

∫

S

θ ∧ θ.
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Proof. This is a straightforward computation:

−
i

4

∫

S

θ ∧ θ =
1

4i

gS∑

i=1

(∫

ai

θ

∫

bi

θ −

∫

bi

θ

∫

ai

θ

)

=
1

4i

gS∑

i=1

(

ziwi − wizi
)

=
1

2

gS∑

i=1

Im(ziwi)

= −
1

2

gS∑

i=1

Im(wizi) = K.
□

Remark 5.6. An interesting feature of this formula is that is does not
depend on a choice of symplectic basis and K is thus a globally defined
Kähler potential on Breg.

Recall that the moduli space of Higgs bundles has a natural C∗-action
given by rescaling the Higgs field (E,Φ) 7→ (E, cΦ), c ∈ C∗. The C∗-action
on Mn,d is compatible with a C∗-action on the base given by

c(a1, a2, . . . , an) = (ca1, c
2a2, . . . , c

nan).

Let ξ be the vector field on B generating this action.

Proposition 5.7. In terms of local special Kähler coordinates (z1, . . . , zgS)
or (w1, . . . , wgS) on B

reg, we have:

ξ = zi
∂

∂zi
= wi

∂

∂wi
.

Proof. In terms of spectral data, the C∗-action on Higgs bundles corresponds
to the natural C∗ scaling action on the fibres of T ∗Σ → Σ. It follows that
the C∗-action scales θ linearly. On the other hand, for any c ∈ C∗, the ac-
tion of c on T ∗Σ induces an isomorphism of spectral curves c : Sb → Scb.
Supose that U is an open simply connected subset of Breg containing b.
Then for all c ∈ C∗ sufficiently close to 1, we have cb ∈ U and the isomor-
phism H1(Sb,R) ∼= H1(Scb,R) induced by multiplication by c clearly agrees
with parallel translation by the Gauss-Manin connection. In particular, since
zi =

∫

ai
θ, each of the coordinate functions zi must scale linearly with the C∗-

action and hence ξ(zi) = zi for each i. This gives ξ = zi ∂
∂zi as required. The

same argument applied to B-cycles gives ξ(wi) = wi, hence ξ = wi
∂

∂wi
. □
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From now on, whenever special Kähler coordinates (z1, . . . , zgS) are be-
ing used we will let ∂i denote

∂
∂zi .

Lemma 5.8. Let (z1, . . . , zgS) be local special Kähler coordinates on Breg.
Then (as cohomology classes) we have:

∇∂i
θ = ωi.

Proof. Recall that for any vector fieldX on Breg we have φ(X) = ∇Xθ where
φ(X) is a (1, 0)-form. We can determine the 1-form by integrating against
a-cycles:

∫

aj

∇∂i
θ = ∂i

∫

aj

θ = ∂i(z
j) = δij .

Hence ∇∂i
θ = ωi as claimed. □

Proposition 5.9. Let X,Y, Z be vector fields on Breg. We have:

∫

S

∇Xθ ∧ θ = 0,(5.3)
∫

S

∇X∇Y θ ∧ θ = 0,(5.4)
∫

S

∇X∇Y ∇Zθ ∧ θ = c(X,Y, Z),(5.5)

where c(X,Y, Z) is the Donagi-Markman cubic.

Remark 5.10. The expression
∫

S
∇X∇Y ∇Zθ∧θ is the analogue of Yukawa

couplings for moduli spaces of Calabi-Yau 3-folds.

Proof. Recall as above that φ(X) = ∇Xθ is a (1, 0)-form. Thus∇Xθ ∧ θ = 0,
since it is a (2, 0)-form on S. This proves (5.3). Applying ∇Y to (5.3), we
get:

0 = Y

(∫

S

∇Xθ ∧ θ

)

=

∫

S

∇Y ∇Xθ ∧ θ +

∫

S

∇Xθ ∧∇Y θ.

But
∫

S
∇Xθ ∧∇Y θ = 0, as ∇Xθ and ∇Y θ are both (1, 0)-forms, so we get

(5.4). Observe now that the left hand side of (5.5) is a symmetric cubic tensor
because of (5.4). Therefore it suffices to consider the case where X = ∂i,
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Y = ∂j , Z = ∂k. In this case we get

∫

S

∇∂i
∇∂j

∇∂k
θ ∧ θ =

gS∑

l=1

(∫

al

∇∂i
∇∂j

∇∂k
θ

∫

bl

θ −

∫

bl

∇∂i
∇∂j

∇∂k
θ

∫

al

θ

)

=

gS∑

l=1

(

wl∂i∂j∂k

∫

al

θ − zl∂i∂j∂k

∫

bl

θ

)

=

gS∑

l=1

(

wl∂i∂j∂kz
l − zl∂i∂j∂kwl

)

= −

gS∑

l=1

zl∂i∂jτkl

= −

gS∑

l=1

zl∂l∂jτki ( by symmetry of ∂jτkl)

= −ξ∂j∂kwi.

Then using the commutation relation [ξ, ∂i] = −∂i and the fact that ξ(wi) =
wi, we see that −ξ∂j∂kwi = ∂j∂kwi = ∂jτki = cjki = cijk. □

Proposition 5.11. A prepotential for the special Käher structure on Breg

is given by

F =
1

2
ziwi =

1

2
τijz

izj .

Proof. This is a simple calculation:

∂iF =
1

2
wi +

1

2
zj∂iwj =

1

2
wi +

1

2
zjτij =

1

2
wi +

1

2
wi = wi.

□

6. Donagi-Markman cubic

The Donagi-Markman cubic measures the change in periods of the spectral
curve Sb as b varies. Since the periods are essentially given by the Hodge
structure on H1(Sb,C), this amounts to computing the variation of Hodge
structure, which is controlled by the Kodaira-Spencer class of the defor-
mation of Sb. Therefore, we need to compute the Kodaira-Spencer class
κ(∂) ∈ H1(Sb, TSb

) associated to a tangent vector ∂ ∈ TbB
reg.
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6.1. Kodaira-Spencer class computation

Recall the characteristic map χ : TbB
reg → H0(Sb, NSb

) in (4.1) which sends
a tangent vector in TbB

reg to the corresponding normal vector field on Sb.
Let us write V = χ(∂) for the normal vector field corresponding to ∂. Next,
recall the universal moduli spaces of spectral curves:

Zreg = {(x, b) ∈ T ∗Σ×Breg | pb(x) = 0}.

Let q : Zreg → Breg be the natural projection and j : Zreg → T ∗Σ the map
sending a spectral curve to its image in T ∗Σ. We denote the composition of j
with the natural projection T ∗Σ → Σ simply as π : Zreg → Σ. For any b ∈ B
we can find an open neighbourhood b ∈ U ⊂ Breg over which the family Zreg

can be differentiably trivialised:

Zreg|U = q−1(U) ∼= U × S,

where S = Sb. With respect to this trivialisation, the family Zreg|U consists
of a fixed topological surface S with a complex structure I(t) that varies with
t ∈ U . The map π : Zreg|U → Σ corresponds to a family of maps πt : S → Σ
such that πt is holomorphic with respect to I(t). Given a tangent vector
∂ ∈ TbU , we use a dot to denote differentiation by ∂. Differentiating the
condition that πt is holomorphic with respect to I(t), we get

(6.1) π∗(κ(∂)) = ∂Y,

where κ(∂) = − i
2 İ is the Kodaira-Spencer class of the deformation of I in

the direction ∂ and Y = π̇ ∈ Ω0(S, π∗(TΣ)) is the corresponding deformation
of the map π. If a ∈ S is a ramification point of π then Y (a) ∈ (TΣ)π(a) is a
tangent vector describing the motion of the branch point π(a) ∈ Σ. Let D
be the ramification divisor of π, that is D =

∑

a(r(a)− 1)a where the sum
is over ramification points of π and r(a) is the ramification degree of π at a.
View π∗ as a section of T−1

S ⊗ π∗(TΣ) and define

W =
Y

π∗
∈ Ω0(S, TS(D)),

which is a vector field on S having poles at the ramification points. Then
Equation (6.1) says

κ(∂) = ∂W.
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Note that W depends on ∂ and we will write W (∂) if we wish to show this
dependence. Note also that W depends on the choice of local differentiable
trivialisation of the family of spectral curves.

Definition 6.1. Let ∂ be a (1, 0)-vector field on Breg. We denote by δ
the unique vector field on Zreg \D which is a lift of ∂ (that is, q∗(δ) = ∂),
satisfying π∗(δ) = 0 (i.e., π is constant along the integral curves of δ). In a
local differentiable trivialisation Zreg|U ∼= U × S, δ is given by:

(6.2) δ = ∂ −W (∂) ∈ Ω0(Zreg, TZreg(D)).

Note that δ aquires poles along the ramification divisor D and so it may be
regarded as a section of TZreg(D).

We use δ to differentiate objects on the family Zreg in a trivialisation-
independent manner. The only drawback of this is that differentiation with
respect to δ produces poles at the ramification points.

Lemma 6.2. We have δθ = iV dθ|S, where V = χ(∂) is the normal vector
field corresponding to ∂ ∈ TBreg.

Proof. Choose a local differentiable trivialisation of the family of spectral
curves: Zreg|U ∼= U × S. Define Ṽ = j∗(∂) ∈ Ω0(S, TT ∗Σ) and V̂ = j∗(δ) ∈
Ω0(S, TT ∗Σ(D)). By this definition, Ṽ and V̂ are lifts of V = χ(∂). Next,
we note that since δ = ∂ −W preserves π ◦ j : Zreg|U → Σ, we have that
j∗(δ) preserves π in the sense that π∗j∗δ = 0. Thus, π∗V̂ = 0. Observing that
j∗ : T (U × S) → TT ∗Σ restricted to TS acts as the identity j∗ : TS → TS , we
find V̂ = j∗(δ) = j∗(∂ −W ) = Ṽ −W . We see that V̂ is a lift of V to a
section of TT ∗Σ(D) which is required to satisfy π∗V̂ = 0. Applying ∂ to
π∗Ṽ = π∗W , we get π∗(∂Ṽ ) = π∗(∂W ) = π∗κ, but π∗ : TS → π∗TΣ is gener-
ically an isomorphism, so we deduce that κ = ∂W = ∂Ṽ and V̂ is meromor-
phic. The identity j∗(∂) = Ṽ means that our local differentiable trivialisation
of the family of spectral curves is given by integrating the flow lines of Ṽ .
This means that in our given trivialisation, the change in θ is ∂θ = LṼ θ|S .
Then:

δθ = ∂θ − LW θ = LṼ−W (θ)|S = L
V̂
θ|S = i

V̂
dθ + d(i

V̂
θ)|S .

But θ vanishes at the ramification points with order at least that of π∗, so
i
V̂
θ is a holomorphic function, hence constant on S. Therefore d(i

V̂
θ)|S = 0

and δθ = i
V̂
dθ|S . But V̂ is a lift of V , so i

V̂
dθ|S = iṼ dθ|S . □
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Consider the natural C∗-action on T ∗Σ given by scalar multiplication in
the fibres. Let ξ ∈ H0(T ∗Σ, TT ∗Σ) be the vector field generating this action.
In local coordinates (x, y), where x is a local coordinate on Σ and (x, y)
corresponds to the point (x, ydx) ∈ T ∗Σ, we have ξ = y ∂

∂y
. Note that in

these coordinates the canonical 1-form is given by θ = ydx, hence θ(ξ) = 0,
iξdθ = θ.

Lemma 6.3. Let V, V̂ be as in Lemma 6.2. Then V̂ is given by:

V̂ =
α

θ
ξ,

where α = iV dθ|Sb
.

Proof. Recall that V̂ is a lift of V satisfying π∗(V̂ ) = 0. These conditions
uniquely determine V̂ , because Ker(π∗) ∩ TS is generically zero. Let V ∗ =
α
θ
ξ. By uniqueness, it is enough to check that V ∗ satisfies the necessary

requirements, i.e. V ∗ is a section of TT ∗Σ(D) which is a lift of V and satisfies
π∗V

∗ = 0. Clearly π∗V
∗ = 0, because ξ ∈ Ker(π∗). We need to check that

V ∗ is a section of TT ∗Σ(D). Let (x, y) be local coordinates on T ∗Σ as above
and let q be a local coordinate on Sb. Then π is the map π(q) = x = x(q)
and with respect to these coordinates dπ = dx

dq
. The 1-form α has the form

α(q)dq for some holomorphic function α(q). Then:

V ∗ =
α

θ
ξ =

α(q)dq

ydx
y
∂

∂y

=
α(q)dq

dx

∂

∂y

=
α(q)

(dx
dq
)

∂

∂y
=
α(q)

dπ

∂

∂y
.

So the polar divisor of V ∗ is at most D. To show that V ∗ projects to V , we
just need to show that

iV ∗dθ = iV dθ = α,

where the second equality is the definition of α. This follows easily from
iξdθ = θ, indeed:

iV ∗dθ =
α

θ
iξdθ =

α

θ
θ = α.

Hence V ∗ = V̂ . □

The following result relates the characteristic map to the Gauss-Manin
connection:
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Lemma 6.4. For any ∂ ∈ TbB
reg, we have:

∇∂θ = δθ = iχ(∂)dθ|Sb
.

More precisely, the right hand side is the unique holomorphic 1-form repre-
senting the cohomology class ∇∂θ ∈ H1(Sb,C).

Proof. The second equality is Lemma 6.2. Moreover the right hand side is
clearly holomorphic. Thus it remains only to show that ∇∂θ = iχ(∂)dθ|Sb

,
at the level of cohomology classes. For this we view Breg as a moduli space
of spectral curves, which are complex Lagrangians in the symplectic sur-
face (T ∗Σ, dθ). The VC-valued 1-form φ is essentially by definition given by
φ(X) = iχ(X)dθ|Sb

(this is just a special case of Equation (3.1)). On the
other hand φ = d∇θ, and the lemma follows. □

Remark 6.5. By Lemma 6.4, we have α = ∇∂θ and so V̂ can be written
as

V̂ =
∇∂θ

θ
ξ =

δθ

θ
ξ,

where it is understood that by ∇∂θ, we mean the holomorphic 1-form rep-
resenting ∇∂θ in cohomology.

6.2. Residue formula for the Donagi-Markman cubic

Theorem 6.6. The Donagi-Markman cubic is given by the following residue
formula:

c(X,Y, Z) = −2πi
∑

a

Res
a

(
(∇Xθ)(∇Y θ)(∇Zθ)ξ

θ

)

,

where the sum is over the ramification points of π. With respect to local
special Kähler coordinates (z1, . . . , zgS) this expression takes the form

(6.3) cijk = −2πi
∑

a

Res
a

(
ωiωjωkξ

θ

)

.

Remark 6.7. Before giving the proof we should comment on how to in-
terpret the right hand side of this formula. The vector field ξ is a section
of TT ∗Σ|Sb

which in general is not tangent to Sb. However, it is precisely at
the ramification points where we have that ξ is tangent to Sb. Let ζ be a
meromorphic section of T 2

S defined in a neighbourhood of a and such that,
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when viewed as a section of TS ⊗ TT ∗Σ, the difference ξ
θ
− ζ is holomorphic.

Then the right hand side of the formula can be read as:

−2πi
∑

a

Res
a

((∇Xθ)(∇Y θ)(∇Zθ)ζ) .

Note that such a ζ always exists. Indeed, in local coordinates (x, y) on T ∗Σ,
ξ
θ
= y∂y

ydx
= ∂y

dx
. If a is a ramification point of degree r(a) then dx|S vanishes

to order r(a)− 1. But y(a) is a zero of the characteristic polynomial p(y, x)
of order r(a), so (∂jyp)(a) = 0 for j = 0, . . . , r(a)− 1. In other words, ∂y is

tangent to S at a to order r(a)− 1, hence the polar part of ξ
θ
is tangent to

S. We will give a more explicit formula for this expression below, in the case
where π has simple branching only (Remark 6.8).

Proof. We start with Equation (5.4):

∫

S

∇Y ∇Zθ ∧ θ = 0.

Applying ∇X then gives
∫

S

∇X∇Y ∇Zθ ∧ θ +

∫

S

∇Y ∇Zθ ∧∇Xθ = 0.

Combined with Equation (5.5), we get:

c(X,Y, Z) = −

∫

S

∇Y ∇Zθ ∧∇Xθ.

Since ∇Xθ is a (1, 0)-form, this integral only depends on the (0, 1)-part
of ∇Y ∇Zθ. By the Griffiths transversality theorem for variations of Hodge
structure we know that:

(∇Y ∇Zθ)
(0,1) = κ(Y ) ∪∇Zθ ∈ H1(S,O),

where ∪ denotes the cup product ∪ : H1(S, TS)⊗H0(S,KS) → H1(S,O).
Thus

c(X,Y, Z) = −

∫

S

(κ(Y ) ∪∇Zθ) ∧∇Xθ.

Let V = χ(Y ), and let Ṽ be a lift of V to a smooth section of TT ∗Σ|Sb
. Let

V̂ be as in Lemma 6.3, which by the Remark 6.5 is given by

V̂ =
∇Y θ

θ
ξ.
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Recall that W = Ṽ − V̂ is a smooth section of TSb
(D) and that ∂(W ) =

∂(Ṽ ) is a representative for the Kodaira-Spencer class κ(Y ). Let ζ be as in
Remark 6.7. It follows that W = −(∇Y θ)ζ +W ′, where W ′ is smooth. We
then have

c(X,Y, Z) = −

∫

S

(
∂W ∪∇Zθ

)
∧∇Xθ

= −

∫

S

∂ (iW (∇Zθ) ∧∇Xθ)

= −2πi
∑

a

Res
a

(
i(∇Y θ)ζ(∇Zθ) ∧∇Xθ

)

= −2πi
∑

a

Res
a

((∇Xθ)(∇Y θ)(∇Zθ)ζ) ,

= −2πi
∑

a

Res
a

(
(∇Xθ)(∇Y θ)(∇Zθ)ξ

θ

)

,

where the sum is over the ramification points of S. □

Remark 6.8. We may re-write Equation 6.3 in terms of local coordinates
as follows. For this, we will assume π has only simple ramification points. Let
a ∈ S be a ramification point. Let x be a local coordinate on Σ centered at
π(a), q a local coordinate on S centered at a chosen so that π(q) = x = q2.
Lastly, let (x, y) be local coordinates on T ∗Σ with θ = ydx the canonical
1-form and ξ = y∂y. At the point a, we have ∂y = dq

dy
∂q. Therefore we may

choose ζ in Remark 6.7 to be

(6.4) ζ =
y dq
dy
∂q

ydx
=

1

dxdy
.

Then the residue contribution to cijk at a is:

Res
q→0

(ωiωjωkζ) = Res
q→0

(
ωiωjωk

dxdy

)

.

We will assume that coordinates x, q have been chosen around each ramifi-
cation point and so we will write Equation (6.3) as:

cijk = −2πi
∑

a

Res
a

(
ωiωjωk

dxdy

)

.



✐

✐

“2-Baraglia” — 2020/5/15 — 12:38 — page 2014 — #34
✐

✐

✐

✐

✐

✐

2014 D. Baraglia and Z. Huang

7. Relation to topological recursion

7.1. Topological recursion for Hitchin spectral curves

Topological recursion, as introduced in [7], is a recursive procedure which
takes a Riemann surface S (we assume S is compact) with meromorphic
functions x, y such that dx has only simple zeros, and produces a collection

of symmetric multidifferentialsW
(g)
n , for g ≥ 0, n ≥ 1, known as the Eynard-

Orantin invariants. By “multidifferential” we mean thatW
(g)
n is a meromor-

phic section of the n-th exterior tensor product K⊠n
S = KS ⊠KS ⊠ · · ·⊠KS

on Sn. By symmetric we mean invariant under the action of the permuta-
tion group on Sn. The recursion formula requires a choice of symplectic basis
a1, . . . , agS , b1, . . . , bgS . The two base cases2 are:

W
(0)
1 (p) = 0,

W
(0)
2 (p1, p2) = B(p1, p2),

where B(p1, p2) is the Bergman kernel3 on S × S. Recall (eg, [8]) that this
is the unique meromorphic symmetric bi-differential which is holomorphic
away from the diagonal and which, in a local coordinate q(p), has an expan-
sion around the diagonal of the form:

B(q(p1), q(p2)) =
dq(p1)dq(p2)

(q(p1)− q(p2))2
+O(1)dq(p1)dq(p2)

and such that B is normalised with respect to the symplectic basis in the
sense that

∫

p1∈ai
B(p1, p2) = 0 for i = 1, . . . , gS . To define the recursion for-

mula we need some further notation. By assumption the map x : S → P1

is simply branched. Thus, for any ramification point a ∈ S, we can find a
neighbourhood a ∈ U ⊂ S and a non-trivial involution σ : U → U such that
x ◦ σ = x. If q ∈ U one writes q = σ(q). Thus x(q) = x(q). Let ω(q) denote
the 1-form on U given by

ω(q) = (y(q)− y(q)dx(q) = (θ − σ∗θ)(q),

2An alternative convention is to define W
(0)
1 = ydx, but all other W

(g)
n ’s are

unchanged.
3One can extend topological recursion by replacing B with a modified version of

the Bergman kernel, however we will not make use of this generalisation.
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where θ = ydx. For p ∈ S and q ∈ U , we define dEq(p) as follows. We assume
the neighbourhood U is chosen to be simply-connected and set

dEq(p) =
1

2

∫ q

ξ∈q
B(ξ, p),

where the path of integration is taken to lie in U . Clearly this is independent
of the choice of path of integration.

Now we are ready to state the recursion formula. Let p1, . . . , pn be points
on S. If K = {i1, . . . , ik} is a subset of {1, 2, . . . , n}, we let pK be the k-tuple
pK = (pi1 , pi2 , . . . , pik). Then for 2g − 2 + k > 0 we define

(7.1) W
(g)
k+1(p, pK) =

Res
q→a

dEq(p)

ω(q)





g
∑

m=0

∑

J⊆K

W
(m)
|J |+1(q, pJ)W

(g−m)
k−|J |+1(q, pK\J) +W

(g−1)
k+2 (q, q, pK)





where the sum
∑

J⊆K is over all subsets J ⊆ K. Notice that all non-zero

terms on the right hand side involve only terms W
(g′)
k′ with 2g′ − 2 + k′ <

2g − 2 + k. Therefore, this gives a recursive definition of the W
(g)
k .

The topological recursion formula was adapted to the case of Hitchin
spectral curves in [6]. Here the map x : S → P1 is replaced by π : S → Σ.
To make sense of the recursion formula (7.1) on a spectral curve S ⊂ T ∗Σ,
note that the formula does not directly involve the functions x, y only the
1-form θ = ydx. For the recursive formula, we only need the Bergman kernel
B, the local involutions σ about each ramification point, and the 1-forms
ω = θ − σ∗θ, defined around each ramification point. The local involutions
σ are well-defined in a neighbourhood of each ramification point provided
π : S → Σ has only simple branching. We will assume for the rest of this
paper that this is the case.

7.2. Variational formulas

Our goal in this section is to relate the g = 0 Eynard-Orantin invariants
of spectral curves to the special Kähler geometry of Breg. The key result
which ties these together is the following variational formula for the Bergman
kernel:
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Proposition 7.1 (Rauch variational formula). Let ∂ ∈ TbB
reg. Assume

p, r are distinct and are not ramification points. Then:

δB(p, q) = −
∑

a

Res
u→a

δθ(u)B(u, p)B(u, r)

dx(u)dy(u)
,

where the sum is over the ramification points of π and for each ramification
point a ∈ Sb, we choose coordinate functions x, q as in Remark 6.8.

Proof. Although this formula is well known, we were unable to find a sat-
isfactory proof in the literature that applies to our setting, so we provide
a proof here. Choose a local differentiable trivialisation in a neighborhood
U of b: Zreg|U ∼= U × S, so that δ = ∂ −W . Since δ is independent of the
choice of local trivialisation, we are free to choose such a trivialisation at
our convenience. Changing a given local trivialisation by a suitably chosen
diffeomorphism yields a change in W of the form W 7→W +X, where X is
an arbitrary smooth vector field on S (X has no poles). From this it is clear
that, for a fixed choice of points p, r distinct from the ramification points,
we can assume W vanishes in a neigbourhood of p and r. Then

δB(p, r) = ∂B(p, r)− LW (p)B(p, r)− LW (r)B(p, r) = ∂B(p, r),

because W vanishes around p and r. Next, we have the following variational
formula for B(p, r) [9, page 57]:

∂B(p, r) = κ(p)B(p, r) + κ(r)B(r, p)

−
1

2πi
p.v.

∫

S

(κ( · )B( · , p)) ∧B( · , r),

where p.v. denotes the Cauchy principal value of the integral. Using κ = ∂W ,
we obtain

∂B(p, r) = κ(p)B(p, r) + κ(q)B(r, p)

+
1

2πi

∑

a

∫

u∈γa

W (u)B(u, p)B(u, r),

=
1

2πi

∑

a

∫

u∈γa

W (u)B(u, p)B(u, r),

where we obtain the last line because κ = 0 at p and r by our assumption on
W . The sum

∑

a is taken over all poles of W (u)B(u, p)B(u, r), namely a is
a ramification point, a = p or a = r and γa is a contour around the point a.
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However, we again have by our assumptions on W that there are no residue
contributions from the points p, r and therefore we can take the sum to just
be over the ramification points of π. Now, as in the proof of Theorem 6.6, we
may write W = −(δθ)ζ +W ′, where W ′ is smooth and ζ is given by (6.4).
Then

δB(p, r) =
1

2πi

∑

a

∫

u∈γa

(−(δθ)(u)ζ(u) +W ′(u))B(u, p)B(u, r),

= −
∑

a

Res
u→a

(δθ)(u)ζ(u)B(u, p)B(u, r)

= −
∑

a

Res
u→a

δθ(u)B(u, p)B(u, r)

dx(u)dy(u)
.

□

Let (z1, . . . , zgS) be local special Kähler coordinates on Breg. Let ∂i de-
note the vector field ∂

∂zi and let δi denote δ(∂i). We have:

Theorem 7.2 (Variational formula [7]). For g + k > 1,

δiW
(g)
k (p1, . . . , pk) = −

1

2πi

∫

p∈bi

W
(g)
k+1(p, p1, . . . , pk).

Proof. This is essentially Theorem 5.1 of [7]. Since we are working in a
setting where θ is not globally of the form θ = ydx, one needs to check the
proof of Theorem 5.1 in [7] holds in this setting. In fact the proof in [7,
pages 32-34] essentially only relies on the Rauch variational formula (which
we have proven in Proposition 7.1) and the diagrammatic representation of

W
(g)
k [7, Theorem 4.8], the proof of which only uses the recursive definition

ofW
(g)
k and does not involve any global properties of the spectral curve. □

Remark 7.3. Note that the poles of W
(g)
k , in any one of its variables, have

zero residues. This can easily be deduced from symmetry and the diagram-

matic representation of W
(g)
k [7, Theorem 4.8]. Therefore the integration of

W
(g)
k over a cycle γ (chosen so as to avoid the poles) depends only on the

homology class of γ in S. Similarly one can also show that the integration

of W
(g)
k over an a-cycle is zero.

Consider the case (g, k) = (0, 2), where W
(0)
2 (p1, p2) = B(p1, p2) is the

Bergman kernel. Applying the variational formula, we obtain

δiB(p1, p2) = −
1

2πi

∫

p∈bi

W
(0)
3 (p, p1, p2).
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Recall that
∫

p1∈bj
B(p1, p2) = 2πiωj(p2) [8] and thus

∫

p1∈bj

∫

p2∈bk
B(p1, p2) =

2πiτjk. The variational formula then gives

cijk = ∂iτjk =
1

2πi
∂i

∫

p1∈bj

∫

p2∈bk

B(p1, p2)

=
1

2πi

∫

p1∈bj

∫

p2∈bk

δiB(p1, p2)

= −

(
1

2πi

)2 ∫

p∈bi

∫

p1∈bj

∫

p2∈bk

W
(0)
3 (p, p1, p2).

From [7, Theorem 4.1], we have:

W
(0)
3 (p, p1, p2) =

∑

a

Res
q→a

(
B(p, q)B(p1, q)B(p2, q)

dx(q)dy(q)

)

.

Therefore, we obtain

cijk = −

(
1

2πi

)2∑

a

∫

p∈bi

∫

p1∈bj

∫

p2∈bk

Res
q→a

(
B(p, q)B(p1, q)B(p2, q)

dx(q)dy(q)

)

= −2πi
∑

a

Res
q→a

(
ωi(q)ωj(q)ωj(q)

dx(q)dy(q)

)

,

which agrees with Theorem 6.6 (see Remark 6.8). In a similar manner, start-

ing with W
(0)
2 (p1, p2) = B(p1, p2) and applying the variational formula mul-

tiple times, we obtain:

Theorem 7.4. We have:

∂i1∂i2 · · · ∂im−2
τim−1im = −

(
i

2π

)m−1 ∫

p1∈bi1

· · ·

∫

pm∈bim

W (0)
m (p1, . . . , pm).

Therefore, the g = 0 Eynard-Orantin invariantsW
(0)
k for a spectral curve

Sb compute the power series expansion of the period matrix τij about b ∈
Breg. Since the special Kähler metric on Breg is given in terms of the period

matrix, the invariants W
(0)
k also compute the power series expansion of the

special Kähler metric.
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7.3. Second derivatives of the period matrix by topological
recursion

We will use Theorem 7.4 to compute the symmetric quartic ∂i∂jτkl of second
derivatives of the period matrix. From the diagrammatic representation of
Eynard-Orantin invariants, one finds ([7, Equation (4-46)]):

W
(0)
4 (p, p1, p2, p3)

=
∑

a,b

Res
q→a

Res
r→b

dEq(p)

ω(q)

dEr(q)

ω(r)

[
B(q, p1)B(r, p2)B(r, p3) + perm1,2,3

]

+
∑

a,b

Res
q→a

Res
r→b

dEq(p)

ω(q)

dEr(q)

ω(r)

[
B(q, p1)B(r, p2)B(r, p3) + perm1,2,3

]
,

where perm1,2,3 means we sum over all permutations of p1, p2, p3. To this,

we apply
(

1
2πi

)4 ∫

p∈bi

∫

p1∈bj

∫

p2∈bk

∫

p3∈bl
, giving

(7.2)
1

2πi

∫

p∈bi

∑

a,b

Res
q→a

Res
r→b

dEq(p)

ω(q)

dEr(q)

ω(r)

[
ωj(q)ωk(r)ωl(r) + permj,k,l

]

+
1

2πi

∫

p∈bi

∑

a,b

Res
q→a

Res
r→b

dEq(p)

ω(q)

dEr(q)

ω(r)

[
ωj(q)ωk(r)ωl(r) + permj,k,l

]
.

Around each ramification point, choose coordinates x, q as usual. Then
dx(q) = 2qdq, dy = y′(q)dq and we have:

Res
q→b

dEq(p)f(q)

ω(q)
= −

1

2
Res
q→b

B(q, p)f(q)

dx(q)dy(q)
= −

B(b, p)

4y′(0)
f(b),

where f(q) is any local section of K2
S , holomorphic in a neighbourhood of b.

Using this, (7.2) simplifies to:

(7.3)
1

4πi

∫

p∈bi

∑

a,b

Res
q→a

B(q, b)
dEq(p)

ω(q)
ωj(q)

(
ωk(b)ωl(b)

2y′(b)

)

+ permj,k,l

+
1

4πi

∫

p∈bi

∑

a,b

Res
q→a

B(q, b)
dEq(p)

ω(q)
ωj(q)

(
ωk(b)ωl(b)

2y′(b)

)

+ permj,k,l.
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Consider first the terms where a ̸= b. Then B(q, b) and B(q, b) have no pole
at q = a, so these terms give, on further simplification:

1

4πi

∫

p∈bi

∑

a ̸=b

B(a, b)
B(a, p)ωj(a)

2y′(a)

(
ωk(b)ωl(b)

2y′(b)

)

+ permj,k,l

=
1

2

∑

a ̸=b

B(a, b)

(
ωi(a)ωj(a)

2y′(a)

)(
ωk(b)ωl(b)

2y′(b)

)

+ permj,k,l

=
∑

a ̸=b

B(a, b)

(
ωi(a)ωj(a)

2y′(a)

)(
ωk(b)ωl(b)

2y′(b)

)

+ cycj,k,l

where cycj,k,l means a sum over cyclic permutations of j, k, l. Now let us
consider the terms where a = b. In this case we must compute the residue
as q → a of 1

2πi

∫

p∈bi
B(q, a)dEq(p)

ω(q) ωj(q) and of 1
2πi

∫

p∈bi
B(q, a)dEq(p)

ω(q) ωj(q).
Both of these have poles of third order. We have the following expansions
near q = 0:

y(q) = y(0) + y′(0)q +
1

2
y′′(0)q2 +

1

6
y′′′(0)q3 + · · ·

ω(q) = (y(q)− y(−q))2qdq = 4q2(y′(0) +
1

6
y′′′(0)q2 + · · · )dq

ωj(q) =

(

ωj(0) + ω′
j(0)q +

1

2
ω′′
j (0)q

2 +
1

6
ω′′′
j (0)q

3 + · · ·

)

dq

B(q, a) =

(
1

q2
+

1

6
SB(a) + · · ·

)

dqda

where SB(a) is the Bergman projective connection [8]. Also, we may compute
the expansion of 1

2πi

∫

p∈bi
dEq(p):

1

2πi

∫

p∈bi

dEq(p) =
1

2πi

∫

p∈bi

1

2

∫ q

ξ=q

B(ξ, p)

=
1

2

∫ q

ξ=q

ωi(ξ)

=
1

2

∫ −q

ξ=q

(

ωi(0) + ω′
i(0)q +

1

2
ω′′
i (0)q

2 + · · ·

)

= −q

(

ωi(0) +
1

6
ω′′
i (0)q

2 + · · ·

)

.
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Therefore, the expansion of 1
2πi

∫

p∈bi
B(q, a)dEq(p)

ω(q) ωj(q) has the form

1

2πi

∫

p∈bi

B(q, a)
dEq(p)

ω(q)
ωj(q)

=

(
1

q2
+

1

6
SB(a) + · · ·

)
q
(
ωi(0) +

1
6ω

′′
i (0)q

2 + · · ·
)

4q2(y′(0) + 1
6y

′′′(0)q2 + · · · )

×

(

ωj(0)− ω′
j(0)q +

1

2
ω′′
j (0)q

2 + · · ·

)

dqda

=

(
1

q2
+

1

6
SB(a) + · · ·

) (
ωi(0) +

1
6ω

′′
i (0)q

2 + · · ·
)

4q(y′(0) + 1
6y

′′′(0)q2 + · · · )

×

(

ωj(0)− ω′
j(0)q +

1

2
ω′′
j (0)q

2 + · · ·

)

dqda.

Adding this to the corresponding expansion for 1
2πi

∫

p∈bi
B(q, a)dEq(p)

ω(q) ωj(q),
we get

1

2πi

∫

p∈bi

B(q, a)
dEq(p)

ω(q)
ωj(q) +

1

2πi

∫

p∈bi

B(q, a)
dEq(p)

ω(q)
ωj(q)

=

(
1

q2
+

1

6
SB(a) + · · ·

) (
ωi(0) +

1
6ω

′′
i (0)q

2 + · · ·
)

2q(y′(0) + 1
6y

′′′(0)q2 + · · · )

×

(

ωj(0) +
1

2
ω′′
j (0)q

2 + · · ·

)

dqda.

The coefficient of dq
q

in this is:

1

12y′(0)

(

SB(a)−
y′′′(0)

y′(0)

)

ωi(0)ωj(0)+
1

2y′(0)

(
1

2
ωi(0)ω

′′
j (0)+

1

6
ω′′
i (0)ωj(0)

)

.

Therefore, the a = b terms in (7.3) are given by:

1

2

∑

a

1

24y′(a)2

(

SB(a)−
y′′′(a)

y′(a)

)

ωi(a)ωj(a)ωk(a)ωl(a) + permj,k,l

+
1

2

∑

a

1

4y′(a)2

(
1

2
ωi(a)ω

′′
j (a)ωk(a)ωl(a) +

1

6
ω′′
i (a)ωj(a)ωk(a)ωl(a)

)

+ permj,k,l

=
∑

a

1

8y′(a)2

(

SB(a)−
y′′′(a)

y′(a)

)

ωi(a)ωj(a)ωk(a)ωl(a)

+
∑

a

1

8y′(a)2
(
ω′′
i (a)ωj(a)ωk(a)ωl(a)

)
+ cyci,j,k,l.
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Putting this all together we have shown:

Theorem 7.5. The second derivatives of the period matrix are given by:

∂i∂jτkl =

(
1

2πi

)3 ∫

p∈bi

∫

p1∈bj

∫

p2∈bk

∫

p3∈bl

W
(0)
4 (p, p1, p2, p3)(7.4)

= 2πi
∑

a ̸=b

B(a, b)

(
ωi(a)ωj(a)

2y′(a)

)(
ωk(b)ωl(b)

2y′(b)

)

+ cycj,k,l

+ 2πi
∑

a

1

8y′(a)2

(

SB(a)−
y′′′(a)

y′(a)

)

ωi(a)ωj(a)ωk(a)ωl(a)

+ 2πi
∑

a

1

8y′(a)2
(
ω′′
i (a)ωj(a)ωk(a)ωl(a)

)
+ cyci,j,k,l.

Remark 7.6. Let us verify that the right hand side of (7.4) is independent
of the choice of local coordinates q, x satisfying x = q2, as it must be, since
∂i∂jτkl is independent of such choices. Consider a change of variables x̂ =
h(x), q̂ = f(q), where x = q2 and x̂ = q̂2. If h(x) = h′x+ 1

2h
′′x2 + 1

6h
′′′x3 +

· · · and f(q) = f ′q + 1
2f

′′q2 + 1
6f

′′′q3 + · · · then the relation x̂ = q̂2 implies

f ′′(0) = 0. Let SB(a), ŜB(a) denote the Bergman projective connection in
the q and q̂-coordinates. The property of being a projective connection means

SB(a) = (f ′)2ŜB(a) +

(
f ′′′

f ′
−

3

2

f ′′2

f ′2

)

,

where
(
f ′′′

f ′
− 3

2
f ′′2

f ′2

)

= S(f) is the Schwarzian derivative of f at q = 0. From

θ = y(q)dx = ŷ(q̂)dx̂, one finds

(7.5) y′(0) = ŷ′(0)(f ′)3

and

y′′′(0)

y′(0)
=
ŷ′′′(0)

ŷ′(0)
(f ′)2 + 5

f ′′′

f ′
.

Then since f ′′ = 0, we get

(7.6)

(

SB(a)−
y′′′(0)

y′(0)

)

= (f ′)2
(

ŜB(a)−
ŷ′′′(0)

ŷ′(0)

)

− 4
f ′′′

f ′
.
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But using ωi(q)dq = ω̂i(q̂)dq̂, we also find

ωi(a) = (f ′)ω̂i(a)(7.7)

ω′′
i (a) = (f ′)3ω̂′′

i (a) + ω̂i(a)f
′′′.(7.8)

Substituting (7.5)–(7.8) into (7.4), we see that the result is coordinate inde-
pendent.
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