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The Bartnik mass is a notion of quasi-local mass which is remark-
ably difficult to compute. Mantoulidis and Schoen [14] developed
a novel technique to construct asymptotically flat extensions of
minimal Bartnik data in such a way that the ADM mass of these
extensions is well-controlled, and thus, they were able to compute
the Bartnik mass for minimal spheres satisfying a stability con-
dition. In this work, we develop extensions and gluing tools, à la
Mantoulidis–Schoen, for time-symmetric initial data sets for the
Einstein–Maxwell equations that allow us to compute the value
of an ad-hoc notion of charged Barnik mass for suitable charged
minimal Bartnik data.
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1. Introduction and results

In [1], motivated by the notion of electrostatic capacity of a conducting body,
Bartnik proposed a new notion of quasi-local mass tailored to open sets Ω in
time-symmetric, asymptotically flat, initial data sets for the Einstein equa-
tions, satisfying the dominant energy condition. This notion of quasi-local
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mass is known as the Bartnik mass. We recall that initial data sets for the
Einstein equations correspond to spacelike slices of spacetimes and are de-
scribed by a Riemannian 3-manifolds (M,γ) together with a (0, 2)-tensor
field K playing the role of the second fundamental form. The dominant en-
ergy condition implies certain properties of (M,γ,K). When time-symmetry
(K = 0) is assumed, the dominant energy condition reduces to the scalar
curvature R(γ) being bounded below by 0.

We will consider the boundary version of Bartnik’s mass, in which it is
defined purely in terms of the boundary geometry Σ := ∂Ω of Ω. Hence, given
Bartnik data (Σ ∼= S

2, g,H), where g is a Riemannian metric on Σ andH ≥ 0
is a smooth function on Σ, we consider the following set A of admissible
extensions: an asymptotically flat Riemannian 3-manifold (M,γ), with non-
negative scalar curvature, is an admissible extension of (Σ ∼= S

2, g,H) if
∂M is isometric to (Σ, g) and has mean curvature H as a submanifold of
M ; moreover, we require ∂M to be outer-minimizing. Then we define the
Bartnik mass of (Σ ∼= S

2, g,H) as

mB(Σ ∼= S
2, g,H) := inf{mADM(M,γ) | (M,γ) ∈ A}.

The Bartnik mass is remarkably difficult to compute. However, recall that
the Riemannian Penrose inequality states that for an asymptotically flat
Riemannian manifold (M3, γ) with non-negative scalar curvature and outer-
minimizing minimal boundary ∂M , one has

(1.1) mADM(M,γ) ≥
√

|∂M |
16π

,

where |∂M | denotes the area of the boundary ∂M .
Equality holds if and only if (M3, γ) is isometric to a spatial Schwarz-

schild manifold. The Riemannian Penrose inequality was proven when ∂M

has a single connected component by Huisken and Ilmanen [12] using a weak
formulation of the inverse mean curvature flow, motivated by an argument
by Geroch in [10]. Bray [2] proved it allowing ∂M to be disconnected, using
the conformal flow.

It follows readily that the Hawking mass of (Σ ∼= S
2, g,H),

mH(Σ ∼= S
2, g,H) :=

√
|Σ|
16π

(
1− 1

16π

∫

Σ
H2 dσ

)
,
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where |Σ| denotes the area of Σ and dσ is the area form of Σ with respect
to g, provides a lower bound for the Bartnik mass when H ≡ 0:

mH(∂M, g,H ≡ 0) =

√
|∂M |
16π

≤ mB(∂M, g,H ≡ 0).

Mantoulidis and Schoen [14] computed the Bartnik mass for minimal
Bartnik data (Σ ∼= S

2, g,H ≡ 0), when g satisfies that the first eigenvalue λ1

of the operator −∆g +K(g), where K(g) denotes the Gaussian curvature
of g, is strictly positive. To do so, they developed a novel technique to
handcraft asymptotically flat extensions of such minimal Bartnik data, in
such a way that the ADM mass can be made arbitrarily close to the optimal
value in (1.1).

In the context of solutions to the Einstein–Maxwell equations, consider-
ing time-symmetric initial data sets amounts to study Riemannian manifolds
(M3, γ) together with a vector field E on M , acting as an electric field. The
dominant energy condition then translates to requiring R(γ) ≥ 2|E|2γ . In this
setting, the charged Riemannian Penrose inequality states [9, 13] that for
an asymptotically flat Riemannian manifold (M3, γ) with boundary ∂M ,
assumed to be minimal and outer-minimizing, and a vector field E acting
as an electric field satisfying R(γ) ≥ 2|E|2γ , we have

mADM(M,γ) ≥
√

|∂M |
16π

+

√
π

|∂M |Q
2,

where Q denotes the total charge of the time-symmetric initial data set.
Equality holds if and only if (M3, γ) is isometric to a spatial Reissner–
Nordström manifold (see Section 2 for the relevant definitions).

After defining an appropriate set of admissible extensions for charged
Bartnik data, that is for 4-tuples (Σ ∼= S

2, g,H,Q), where g is a Riemannian
metric on Σ, H ≥ 0 is a smooth function on Σ, and Q ∈ R, we formulate an
ad-hoc version of Bartnik mass in this context, denoted by m

CH
B , tailored to

time-symmetric initial data sets for the Einstein–Maxwell equations, satis-
fying the dominant energy condition. Our main result is Theorem 5.1 which
can be stated — somewhat imprecisely for now — as follows.

Theorem. Let (Σ ∼= S
2, go, Ho ≡ 0, Qo) be minimal charged Bartnik data

satisfying λ1 := λ1(−∆go +K(go)) > 0, where λ1 denotes the first eigenvalue
of the operator −∆go +K(go), and K(go) denotes the Gaussian curvature
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of go. Let 4πr
2
o := |Σ|. Suppose that

Q2
o < r2o

and assume furthermore that

κ >
Q2

o

r4o
,

where κ is a real number depending only on (Σ, go). Then

m
CH
B (Σ ∼= S

2, go, Ho ≡ 0, Qo) =

√
|Σ|go
16π

+

√
π

|Σ|go
Q2

o.

The threshold κ appearing in this Theorem will be given by the infimum
of the first eigenvalue of the operator −∆+K along a precise smooth path
of metrics on Σ connecting the metric go to a round metric, see Section 5.
The proof of our main Theorem 5.1 is inspired by the Mantoulidis–Schoen
construction [14]. This construction has proven to be useful to obtain Bartnik
mass estimates. Relevant and related results include those in [4–6, 16, 17];
for a survey on this topic see [3].

Remark. In this work, we construct time-symmetric initial data sets for
the Einstein–Maxwell equations. To relate these initial data sets with horizon
inner boundary to the Cauchy problem in general relativity, suppose that
they can be suitably regularly geodesically completed by a fill-in consisting of
a Riemannian ball together with a source-free electric field in such a way that
the dominant energy condition is satisfied in the completion. The evolution
result of Choquet-Bruhat and Friedrich [7] for compact charged dust matter
should then apply to the completed initial data set and lead to short time
existence of a unique spacetime satisfying the Einstein–Maxwell equations
for charged dust. We do not know whether the procedure to construct initial
data sets presented here can be carried out in a way that gives an electro-
vacuum solution, as it is in [14].

This article is organized as follows. In Section 2, we introduce basic
notions for time-symmetric initial data sets for the Einstein–Maxwell equa-
tions and formulate the definition of a boundary charged Bartnik mass. In
Section 3, we study collar extensions for minimal charged Bartnik data, de-
fine the electric fields to consider along these collar extensions, and describe
their interaction. Independent gluing tools for rotationally symmetric Rie-
mannian manifolds with electric fields are obtained in Section 4. The main
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theorem is then obtained in Section 5 as a corollary from a more general
result in the same spirit as Mantoulidis–Schoen’s result.

Acknowledgements. We extend sincere thanks to Alejandro Peñuela
Dı́az for a thorough reading of the draft of this paper. All three authors
thank the Erwin Schrödinger Institute for hospitality and support during
our visits in 2017 in the context of the program Geometry and Relativity
and the Banff International Research Station for hospitality and support
during the workshop Asymptotically hyperbolic manifolds in 2018. AA ac-
knowledges the support of NSERC Postdoctoral Fellowship, the Gordon and
Betty Moore Foundation, and the John Templeton Foundation. AJCP and
CC thank the Carl Zeiss foundation for its generous support. The work of
CC is supported by the Institutional Strategy of the University of Tübingen
(Deutsche Forschungsgemeinschaft, ZUK 63).

2. Time-symmetric initial data sets for the Einstein-Maxwell

equations

Consider a time-symmetric initial data set for Einstein–Maxwell equations,
that is, a triplet (M,γ,E), where (M,γ) is a Riemannian manifold and E

is a vector field, to be interpreted as an electric field. This corresponds to
considering a spacelike slice of a spacetime satisfying the Einstein–Maxwell
equations with second fundamental form K ≡ 0. We will always assume
that the charge density vanishes, that is, divγE = 0, and thus charges are
conserved, and that the magnetic field B vanishes. By the Gauss–Codazzi
equations, it then follows that (M,γ,E) satisfies

R(γ)− 2|E|2γ = 16πµ,

divγE = 0,

where µ is the energy density of the non-electromagnetic matter fields. Ad-
ditionally, we will always assume that the dominant energy condition µ ≥ 0
holds. In particular, this implies that we will be interested in Riemannian
manifolds with scalar curvature bounded below by 2|E|2γ .

Definition 2.1. We say that (M,γ,E) is an electrically charged Rieman-
nian manifold if (M,γ) is a Riemannian manifold and E a smooth vector
field on M , to be interpreted as an electric field. We say that the electri-
cally charged Riemannian manifold (M,γ,E) satisfies the dominant energy
condition if

R(γ) ≥ 2|E|2γ .
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An electrically charged Riemannian manifold (M,γ,E) is asymptotically
flat if (M,γ) is asymptotically flat and E → 0 asymptotically and suitably
fast in the asymptotically flat end. In this context we will sometimes simply
refer to the vector field E in Definition 2.1 as the electric field.

The total charge of an asymptotically flat, electrically charged Rieman-
nian manifold (M,γ,E) is given by

(2.1) Q(M,γ,E) := lim
r→∞

1

4π

∫

S2
r

γ(E, ν) dσr,

where S2r is the coordinate sphere with radius r and outer unit normal ν and
dσr denotes its area form (see, for example, [8] and the references therein).

Using Stokes’ theorem and our assumption that the charge density divγE
vanishes, we can define the total charge contained in Σ ⊂ M , where Σ is a
closed surface (homologous to the 2-sphere S

2
∞ := lim

r→∞
S
2
r in the asymptoti-

cally flat end) as

(2.2) QΣ :=
1

4π

∫

Σ
γ(E, ν) dσ,

where dσ denotes the area form on Σ with respect to the induced metric.
Note that by our assumptions this quantity is the same for all 2-surfaces
homologous to Σ.

Recall that the Reissner–Nordström spacetime is a static solution to
the Einstein–Maxwell field equations, representing a gravitational field sur-
rounding a static spherical black hole with charge. The spatial Reissner–
Nordström manifold with charge Q ∈ R and mass m ≥ |Q| arises as the
time-symmetric slice {t = 0} of the Reissner–Nordström spacetime, and can
be described as the Riemannian manifold MRN

m,Q = (r+,∞)× S
2, with met-

ric γm,Q given by

(2.3) γm,Q :=

(
1− 2m

r
+

Q2

r2

)−1

dr2 + r2g∗,

where r+ = m+
√

m2 −Q2, and g∗ denotes the standard round metric on
S
2. The metric γm,Q is not defined when r = r+, but as we will see later,

this is just a coordinate singularity. The electric field Em,Q on (MRN
m,Q, γm,Q)

given by

(2.4) Em,Q :=
Q

r2

√
1− 2m

r
+

Q2

r2
∂r
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satisfies the source-free condition divγm,Q
Em,Q = 0 and the time-symmetric,

electro-vacuum constraint equation R(γm,Q) = 2|Em,Q|2γm,Q
. In particular,

(MRN
m,Q, γm,Q, Em,Q) is an asymptotically flat, electrically charged Rieman-

nian manifold satisfying the dominant energy condition. If m = |Q|, the
spacetime is called an extremal Reissner–Nordström black hole and its ini-
tial data set (M,γm,Q, Em,Q) has a cylindrical end geometry, which is often
thought of as an infinite ‘throat’ region. This extreme geometry appears as
the rigidity case in the area-charge inequality and the positive mass the-
orem for charge black holes (for a comprehensive review, see [8]). In this
work, we will only be interested in the case when m > |Q| which is called
the sub-extremal case.

By performing the change of variables

s(r) :=

∫ r

r+

(
1− 2m

t
+

Q2

t2

)−1/2

dt,

we can extend the (sub-extremal) metric γm,Q given in (2.3) to include the
horizon boundary {s = 0}, and write it as

γm,Q = ds2 + um,Q(s)
2g∗

on [0,∞)× S
2.

The radial profile function um,Q : [0,∞) → [r+,∞) satisfies

1) um,Q(0) = r+,

2) u′m,Q(s) =
(
1− 2m

um,Q(s) +
Q2

um,Q(s)2

)1/2
, and

3) u′′m,Q(s) =
mum,Q(s)−Q

um,Q(s)3 .

The electric field Em,Q in these coordinates is given by

Em,Q =
Q

u2m,Q

∂s,

and we have

(2.5) R(γm,Q) = 2|Em,Q|2γm,Q
=

2Q2

u4m,Q

.

The well-known Penrose inequality relates the total mass of a spacetime
with the area of the black holes contained in it, its general form is still
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an open problem. At the level of time-symmetric initial data sets for the
Einstein–Maxwell equations, the following version was first discussed by and
proved by Jang in [13], assuming smoothness of the solution of the inverse
mean curvature flow equation (IMCF). This assumption is now superfluous
if one exchanges the smooth IMCF equation for Huisken–Ilmanen’s weak
IMCF formulation [12], see [15]. The corresponding rigidity statement was
proved by Disconzi and Khuri in [9]. A closed 2-surface in an asymptotically
flat Riemannian manifold (M,γ) is called a horizon if its mean curvature
vanishes. We say that it is outer-minimizing if it minimizes area among all
surfaces enclosing it and homologous to it. In the terminology introduced
above, these results can be summarized as follows.

Theorem 2.1 (Riemannian Penrose inequality with charge). Let
(M,γ,E) be an asymptotically flat, electrically charged Riemannian 3-
manifold with a connected outer-minimizing horizon boundary ∂M . Assume
further that the charge density is zero, i.e., divγE = 0, and that the domi-
nant energy condition R(γ) ≥ 2|E|2γ is satisfied. Then,

(2.6) mADM(M,γ) ≥
√

A

16π
+

√
π

A
Q2,

where Q := Q(M,γ,E). Equality holds if and only if (M,γ,E) is isometric to
a sub-extremal Reissner-Nordström manifold.

Given an electrically charged Riemannian 3-manifold (M,γ,E) and a
closed 2-surface Σ ⊂ M , following [9] we define the charged Hawking mass
of Σ, mCH

H (Σ) as

(2.7) m
CH
H (Σ) :=

√
|Σ|
16π

(
1 +

4πQ2

|Σ| − 1

16π

∫

Σ
H2 dσ

)
,

where |Σ| denotes the area of Σ with respect to the metric induced on Σ
by γ, Q is the charge contained in Σ, H is the mean curvature of Σ and
σ is the area form on Σ with respect to the metric induced by γ. Notice
that when H = 0 (i.e., at a horizon), we recover the right hand side of the
Penrose inequality (2.6).

2.1. Charged Bartnik mass

We now proceed to formulate an ad-hoc definition of charged Bartnik mass.
We start by defining what we will be referring to as charged Bartnik data.
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Definition 2.2. A 4-tuple (Σ ∼= S
2, g,H,Q) is called charged Bartnik data,

if g is a Riemannian metric on Σ, H ≥ 0 is a smooth function on Σ, and Q

is a real number.

Notice that for such data, it makes sense to consider its charged Hawking
mass as a number depending only on the given data via (2.7), as

(2.8) m
CH
H (Σ, g,H,Q) :=

√
|Σ|g
16π

(
1 +

4πQ2

|Σ|g
− 1

16π

∫

Σ
H2 dσ

)
.

Mimicking [1], we call a triplet (M,γ,E) an admissible extension of the
charged Bartnik data (Σ ∼= S

2, g,H,Q), if (M,γ) is an asymptotically flat
Riemannian manifold with outer-minimizing boundary ∂M isometric to
(Σ, g) and with mean curvature H, E is a smooth vector field on M , in-
terpreted as an electric field, such that

(2.9) R(γ) ≥ 2|E|2γ , divγE = 0,

and Q is the total charge of ∂M defined by (2.2). Denoting the set of admis-
sible extensions of (Σ ∼= S

2, g,H,Q) by Ag,H,Q, the charged Bartnik mass is
naturally defined as

(2.10) m
CH
B (Σ, g,H,Q) := inf{mADM(M,γ) | (M,γ,E) ∈ Ag,H,Q}.

Recall that in the usual setting, one could require instead of the outer-
minimizing boundary condition that there are no minimal surfaces in the
extensions (homologous to the boundary), except possibly the boundary.
For this work, it makes no difference which condition is chosen since the
extensions considered here will satisfy both.

It follows readily from Theorem 2.1 that in the case of minimal charged
Bartnik data (Σ ∼= S

2, g,H ≡ 0, Q), we have

m
CH
H (Σ, g,H ≡ 0, Q) ≤ m

CH
B (Σ, g,H ≡ 0, Q).

Let us remark that the definition of charged Bartnik mass used here is
an ad hoc analogy to the boundary version of the definition of Bartnik mass
in the uncharged context. To formulate in detail a definition for the Bartnik
mass for a connected domain Ω in an initial data set for the Einstein–
Maxwell equations as in [1], it would be necessary to consider extensions
satisfying a weak dominant energy condition (in the sense of low regularity).
The required analysis to do so would lead too far from the scope and goals
of this article.
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3. Collar extensions with an electric field

Given charged Bartnik data (Σ ∼= S
2, g,H,Q), we will be interested in con-

structing appropriate “collar extensions”. To be precise, a collar extension
will be a metric on [0, 1]× Σ of the form

(3.1) γ = v(t, ·)2dt2 + F (t)2g(t)

together with a suitable electric field E ∥ ∂t, where v is a positive smooth
function on [0, 1]× S

2, F is a positive smooth function on [0, 1], and
{g(t)}0≤t≤1 is a suitable smooth path of metrics connecting g to a round
metric on S

2. The functions and the path of metrics are chosen so that the
level t = 0 is isometric to the given charged Bartnik data.

In this work, we consider the case when the data (Σ ∼= S
2, g,H ≡ 0, Q)

is prescribed on the boundary of the collar extension (as a minimal surface).
The collar extensions are constructed inspired in the work of Mantoulidis
and Schoen [14].

The smooth path of metrics {g(t)}0≤t≤1 is chosen so that it preserves a
curvature condition of the given data (see Lemmas 5.1) and, in addition, it
is required to satisfy the following conditions:

(i) g(0) = g and g(1) is round,

(ii) g′(t) = 0 for t ∈ [θ, 1] where 0 < θ < 1, and

(iii) trg(t)g
′(t) = 0 for t ∈ [0, 1], i.e., the area-form is preserved.

Notice that by (iii), in particular the area is also preserved, so |Σ|g(t) = 4πr2o ,
for some ro > 0, which is called the area-radius. As a consequence g(1) =
r2og∗, where g∗ denotes the standard metric on S

2.
The existence of such a path follows from the uniformization theorem

together the procedure in [14, Lemma 1.2] to ensure that all conditions above
are satisfied.

Recall that the scalar curvature of the collar metric (3.1) is given (see
for example [3, 5]) by

R(γ) = 2v(t, ·)−1

[
−∆F (t)2g(t)v(t, ·) +

1

2
R(F (t)2g(t))v(t, ·)

](3.2)

+ v(t, ·)−2

[−2F ′(t)2 − 4F (t)F (t)′′

F (t)2
− 1

4
|g′(t)|2g(t) + 4

∂tv(t, ·)
v(t, ·)

F ′(t)

F (t)

]
,
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and the mean curvature of a t-constant slice Σt = {t} × Σ is given by

(3.3) H(t, ·) = 2F ′(t)

v(t, ·)F (t)
.

We will be interested in constructing collar extensions together with a
divergence free vector field E, playing the role of an electric field. The next
lemma gives a way to constructing them exploiting the properties of the
path {g(t)}.

Lemma 3.1. Let (Σ ∼= S
2, g) be Riemannian 2-manifold, v : [a, b]× S

2 → R

be a positive smooth function and F : [a, b] → R be a smooth positive func-
tion. Let γ be the metric on [a, b]× S

2 given by

(3.4) γ := v(t, ·)2dt2 + F (t)2g(t),

where {g(t)} is a smooth path of metrics as in satisfying (i)-(iii) above. Then
the vector field defined as

(3.5) E :=
Q

r2ov(t, ·)F (t)2
∂t,

where Q is any constant, satisfies

(3.6) divγE = 0.

In addition, for any t ∈ [a, b] we have

(3.7) QΣt
=

1

4π

∫

Σt

γ(E, ν) dAF (t)2g(t) = Q,

where Σt = {t} × Σ and ν is the unit normal vector to Σt pointing in the
direction of ∂t.

Proof. Fix a system of coordinates on S
2. In what follows, we use Latin

indices for the coordinates in [a, b]× S
2. From the definition of E we have

divγE =
1√
|γ|

∂i(E
i
√

|γ|)

= ∂tE
t +

Et

2
trace(γ−1∂tγ),
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where trace(γ−1∂tγ) denotes the trace of the matrix (γ−1∂tγ). Recalling that
trg(t)g

′(t) = 0, we have

Et

2
tr(γ−1∂tγ) =

Q

r2o

(
v′(t, ·)

v(t, ·)2F (t)2
+ 2

F ′(t)

v(t, ·)F (t)3

)
= −∂tE

t,

and (3.6) follows. To check (3.7), note that ν = v−1∂t and thus

QΣt
=

1

4π

∫

Σt

γ(E, ν) dVF (t)2g(t) =
Q

4πr2o

∫

Σt

dAg(t) = Q.

□

As pointed out by McCormick, Miao, and the second and third named
authors in [5], for time-symmetric initial data sets for the (uncharged) Ein-
stein equations, in order to glue a collar extension of given data to a Schwarz-
child manifold, it is useful to look at the growth of the Hawking mass along
the collar extension. However, in the minimal case this reduces to controlling
the area growth along the collar as in [14]; since we are dealing with minimal
charged Bartnik data, the collar extensions considered in [14] will suffice for
our goals (see Section 5). We remark that one could consider charged CMC
Bartnik data, i.e., when H is a positive constant, and use the type of collar
extensions constructed by Miao, Wang, and Xie in [16] (which improve those
in [17]), which are expected to provide good control of the charged Hawking
mass along the collar extension, to obtain the corresponding estimates to-
gether with the gluing tools developed in Sections 4. We do not pursue this
idea here.

4. Gluing methods for rotationally symmetric electrically

charged manifolds

In this section, we provide tools to glue two rotationally symmetric manifolds
with corresponding electric fields satisfying the dominant energy condition,
in such a way that the resulting manifold is an electrically charged Rieman-
nian manifold satisfying the dominant energy condition. The construction
is inspired on the Mantoulidis–Schoen construction and thus we follow the
general procedure in [14]. Since some of the results may have independent
interest, we prove them in general dimensions.

The following lemma characterizes a class of admissible electric fields
for a rotationally symmetric Riemannian manifold, in the context of initial
data sets with charge. Even though the choice of the electric field in the
following result is somewhat arbitrary, it is reasonable to impose this form
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since it resembles the symmetries of the electric field of an spatial Reissner–
Nordström manifold.

Lemma 4.1. Let f : [a, b] → R be a smooth positive function. Define the
Riemannian metric γf := ds2 + f(s)2g∗ on the manifold [a, b]× S

n, where
g∗ denotes the standard metric on S

n. Then, the following holds.

(a) The vector field

E :=
Q

f(s)n
∂s,

where Q is any constant, satisfies

divγE = 0.

(b) R(g) ≥ n(n− 1)|E|2γ if and only if

(4.1) f ′′ ≤ n− 1

2f

(
1− (f ′)2 − Q2

f2(n−1)

)

Proof. Note that the proof of (a) follows in the same way as the proof of (3.6)
in Lemma 3.1 (with v ≡ 1).

For (b), first note that

|E|2γ =
Q2

f(s)2n
.

The scalar curvature of γ (see e.g., [6, Equation (4.13)]) is given by

(4.2) R(γ) =
n

f2
[(n− 1)− (n− 1)(f ′)2 − 2ff ′′].

Imposing R(γ) ≥ n(n−1)Q2

f(s)2n leads to the inequality (4.1). □

Remark 4.1. When n = 2, part (b) in Lemma 4.1 means that the electri-
cally charged manifold ([a, b]× S

n, γf ) satisfies the dominant energy condi-
tion. Note that when f = um,Q we have equalities in (b).

The next lemma provides a way to smoothly glue two rotationally sym-
metric manifolds together with their respective electric fields. By adding
stronger hypotheses in [5, Lemma 2.1] (cf. [14, Lemma 2.2]), we are able
to construct a rotationally symmetric bridge between the two manifolds to-
gether with an electric field.
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Lemma 4.2. Let fi : [ai, bi] → R (for i = 1, 2) be two smooth positive func-
tions, Qi (i = 1, 2) be two constants and let n ≥ 2. Suppose that

1) The metrics γi := ds2 + fi(s)
2g∗ on [ai, bi]× S

n satisfy

R(γi) > n(n− 1)|Ei|2γi
,

where Ei :=
Qi

f(s)n
∂s,

2) f1(b1) < f2(a2) and f ′
2(a2) ≤ f ′

1(b1),

3) f1(b1)
n−1 > |Q1|, and 1 + Q2

1

f1(b1)2(n−1) − 2|Q1|
f1(b1)

> f ′
1(b1)

2, and

4) f2(a2)
n−1 > |Q2|, and 1 + Q2

2

f2(a2)2(n−1) − 2|Q2|
f2(a2)

> f ′
2(a2)

2.

Then, after an appropriate translation of the interval [a2, b2] so that

(4.3)





(a2 − b1)f
′
1(b1) = f2(a2)− f1(b1),

if f ′
1(b1) = f ′

2(a2),

(a2 − b1)f
′
1(b1) > f2(a2)− f1(b1) > (a2 − b1)f

′
2(a2),

if f ′
1(b1) ≥ f ′

2(a2),

there exists a smooth positive function f : [a1, b2] → R such that

(i) f ≡ f1 on [a1,
a1+b1

2 ],

(ii) f ≡ f2 on [a2+b2
2 , b2],

(iii) the scalar curvature of γ := ds2 + f(s)2g∗ satisfies

R(γ) > n(n− 1)|E|2γ ,

where E :=
Q

f(s)n
∂s, where Q is any number such that Q2≤min{Q2

1, Q
2
2}.

Proof. Let ζ : [b1, a2] → R be a smooth function such that

1) ζ(b1) = f ′
1(b1),

2) ζ(a2) = f ′
2(a2),

3) ζ ′ ≤ 0, and

4)
∫ a2

b1
ζ(x) dx = f2(a2)− f1(b1).
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Define the function f̂ : [b1, a2] → R by

f̂(s) := f1(b1) +

∫ s

b1

ζ(x) dx.

Then the function

f̃(s) =:





f1 on [a1, b1]

f̂ on [b1, a2]

f2on [a2, b2]

is C1,1 on [a1, b2].
Our goal is to consider an appropriate mollification fε of f̃ so that

γε := ds2 + fε(s)
2g∗,

satisfies R(γε) > n(n− 1)|Eε|2γε
, for the vector field Eε defined as Eε :=

Qf−n
ε ∂s, where the charge Q satisfies Q2 ≤ min{Q2

1, Q
2
2}. By Lemma 4.1,

we know that for a smooth metric γ = ds2 + f(s)2g∗ and a vector field
E = Qf−n∂s, we have R(γ) > n(n− 1)|E|2γ if and only if

f ′′ <
n− 1

2f

(
1− (f ′)2 − Q2

f2(n−1)

)
.

We now define

Ω[f ] :=
n− 1

2f

(
1− (f ′)2 − Q2

f2(n−1)

)
.

Note that since f̃ = fi on [ai, bi] (i = 1, 2), we have

Ω[f̃ ] =
n− 1

2fi

(
1− (f ′

i)
2 − Q2

f
2(n−1)
i

)

= Ω[fi]

> f ′′
i

= f̃ ′′.
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on [a1, b1) ∪ (a2, b2]. Notice that conditions (3) and (4) imply that Ω[f̃ ](b1) >
0 and Ω[f̃ ](a2) > 0, respectively. Indeed, using the fact thatQ2 < Q2

1 we have

2f1(b1)

n− 1
Ω[f1](b1) = 1− f ′

1(b1)
2 − Q2

f1(b1)2(n−1)

> 1−
(
1 +

Q2
1

f1(b1)2(n−1)
− 2|Q1|

f1(b1)

)
− Q2

f1(b1)2(n−1)

= − Q2
1

f1(b1)2(n−1)
+

2|Q1|
f1(b1)

− Q2
1

f1(b1)2(n−1)

=
2|Q1|

f1(b1)2(n−1)

(
f1(b1)

(n−1) − |Q1|
)
> 0.

Similarly, one can check that Ω[f̃ ](a2) > 0.
On (b1, a2), f̃

′′ ≤ 0, then f̃ ′ is non-increasing. Moreover, the infimum of
f̃ on [b1, a2] is f1(b1) and its maximum is attained at some s∗ in (b1, a2]. It
follows that f ′

1(b1) ≥ f̃ ′(s) ≥ 0 on (b1, s∗], using the positivity of Ω[f̃ ](b1),
we have

Q2

f̃(t)2(n−1)
≤ Q2

1

f1(b1)2(n−1)
< 1− f ′

1(b1)
2 ≤ 1− f̃ ′(s)2,

for b1 < s ≤ s∗. On the other hand,if s∗ < a2, on [s∗, a2), we have 0 ≥ f̃ ′(s) ≥
f ′
2(a2), and hence using the positivity of Ω[f̃ ](a2), we have

Q2

f̃(t)2(n−1)
≤ Q2

2

f2(a2)2(n−1)
< 1− f ′

2(a2)
2 ≤ 1− f̃ ′(s)2,

for s∗ ≤ s < a2. This shows that Ω[f̃ ] > 0 on (b1, a2). Therefore, Ω[f̃ ] > f̃ ′′

on [a1, b2] \ {b1, a2}.
Let d > 0 be given by

3d := inf
[a1,b2]\{b1,a2}

(
Ω[f̃ ]− f̃ ′′

)
,

so that

f̃ ′′ + 3d ≤ Ω[f̃ ],

where f̃ ′′ is defined. Consider now a mollification of f̃ , fε, fixing a neighbor-
hood of the boundaries, say

fε ≡ f1 on

[
a1,

a1 + b1

2

]
, and fε ≡ f2 on

[
a2 + b2

2
, b2

]
.
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One can explicitly define this mollification as in [6, Equation (4.19)]. In
addition, one can check that fε → f̃ in C1([a2, b2]) as ε → 0+, which in turns
implies that Ω[fε] → Ω[f̃ ] in C0([a2, b2]) as ε → 0+. Then, for ε sufficiently
small, we have

sup
[a1,b2]

∣∣∣Ω[f̃ ]− Ω[fε]
∣∣∣ < d,

and consequently,

f ′′
ε (s) < Ω[fε](s) =

n− 1

2fε(s)

(
1− f ′

ε(s)
2 − Q2

fε(s)2(n−1)

)
,

as desired. Note that the electric field is then given by Eε :=
Q

fε(s)n
∂s. □

Remark 4.2. Note that by Remark 4.1, the vector fields considered in the
hypothesis and conclusion of Lemma 4.2 are divergence-free.

Remark 4.3. If in addition we require f ′
i > 0 on [ai, bi] for i = 1, 2 in

Lemma 4.2, the resulting bridging function f satisfies f ′ > 0, which im-
plies that the resulting manifold [a1, b2]× S

n with metric γ = dt2 + f(s)2g∗
is foliated by positive constant mean curvature spheres.

Remark 4.4. We can relate conditions (2) and (3) of Lemma 4.2 to a
Reissner–Nordström manifold as follows. Suppose that n = 2, then condi-
tions (2) and (3) for f = um,Q translate to

um,Q(s) > |Q| and 1 +
Q2

um,Q(s)2
− 2|Q|

um,Q(s)
> u′m,Q(s)

2.

The first statement is always true in a sub-extremal Reissner–Nordström
manifold of mass and chargem > |Q|, since um,Q(0) > |Q|. Moreover, by def-
inition of charged Hawking mass for the sub-extremal Reissner–Nordström
we have m

CH
H (Σs) = m > |Q| which is the second statement.

Recall that we are interested in smoothly gluing two electrically charged
Riemannian manifolds satisfying the dominant energy condition. Lemma 4.2
gives a way to smoothly glue two rotationally symmetric manifolds with
electric fields satisfying certain conditions. The following lemma gives a way
to modify a manifold with R(γ) ≥ n(n− 1)|E|2γ to achieve strict inequality
in a small region (cf. [4, Lemma 3.2]). It will be applied to a 3-dimensional
Reissner–Nordström manifold, where R(γ) = 2|E|2γ holds.
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Lemma 4.3 (Bending lemma). Let γ = ds2 + f(s)2g∗ be a metric on a
cylinder [a,∞)× S

n, where f(s) is a smooth positive function and g∗ is the
standard round metric on S

n. Assume that the scalar curvature of γ satis-
fies R(γ) ≥ n(n− 1)|E|2γ for the vector field E = Q

f(s)n∂s, where Q is a con-

stant. Then for any s0 > a with f ′(s0) > 0, there exists a δ > 0 and a metric
γ̃ = ds2 + f̃(s)2g∗, such that γ̃ = γ on [s0,∞)× S

n and R(γ̃) > n(n− 1)|Ẽ|2γ
on [s0 − δ, s0]× S

n, where Ẽ = Q

f̃(s)n
∂s. If in addition, f(s0) > α for some

positive constant α and f ′′(s0) > 0, then f̃(s0 − δ) > α and f̃ ′(s− δ) < f̃ ′(s0).

Proof. The proof uses the main idea for the deformation used in [14,
Lemma 2.3]. Notice that the result holds trivially if at s = s0 we have
R(γ) > n(n− 1)|E|2γ . Otherwise, we need to deform the metric to increase
scalar curvature. Consider the function σ on s ∈ [s0 − δ, s0), for some δ ≤
s0 − a to be determined, defined as

(4.4) σ(s) =

∫ s

s0−δ

(
1 + e−(t−s0)−2

)
dt+Kδ,

where Kδ is a positive constant so that σ(s0) = s0, and let σ(s) = s for s ≥
s0. Define the metric γ̃ = ds2+f(σ(s))2g∗ =: ds2+f̃(s)2g∗. Using again (4.2)
together with R(γ) ≥ n(n− 1)|E|2γ , we obtain

R(γ̃)− n(n− 1)|Ẽ|2γ̃

=
n

f̃(s)2

(
(n− 1)− (n− 1)

[
f̃ ′(s)

]2
− 2f̃(s)f̃ ′′(s)

)
− n(n− 1)Q2

f̃(s)2n

=
n

f(σ(s))2
(
(n− 1)− (n− 1)σ̇(s)2 − 2f(σ(s))f ′(σ(s))σ̈(s)

)

+
nσ̇2

f(σ(s))2

(
(n− 1)− (n− 1)

[
f ′(σ(s))

]2 − 2f(σ(s))f ′′(σ(s))
)

− n(n− 1)Q2

f(σ(s))2n

≥ n

f(σ(s))2
(
(n− 1)− (n− 1)σ̇(s)2 − 2f(σ(s))f ′(σ(s))σ̈(s)

)

+ (σ̇2 − 1)
n(n− 1)Q2

f(σ(s))2n
,
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where s-derivatives and σ-derivatives are denoted by ˙and ′, respectively. For
s ∈ [s0 − δ, s0), we then have

R(γ̃)− n(n− 1)|Ẽ|2γ̃

≥ e−(s−s0)−2

(
n(n− 1)Q2

f(σ(s))2n
− n(n− 1)

f(σ(s))2

)(
e−(s−s0)−2

+ 2
)

+
e−(s−s0)−2

4nf(σ(s))f ′(σ(s))

(s0 − s)3
.

If we select δ sufficiently small, the second term in right-hand side dominates
as δ → 0 and we obtain

(4.5) R(γ̃)− n(n− 1)|Ẽ|2γ̃ > 0,

on [s0 − δ, s0). This complete the first part of the claim. Moreover, if in
addition f(s0) > α > 0, choosing δ sufficiently small gives f̃(s0 − δ) > α, by
continuity. Finally, observe that

(4.6)
d2

ds2
f̃(s) = f ′′(σ(s))σ̇(s)2 + f ′(σ(s))σ̈(s)

on [s0 − δ, s0]. Then, if
d2

ds2 f(s0) > 0, by selecting δ sufficiently small, we have
d2

ds2 f̃(s) > 0. As a result, d
ds f̃(s) is increasing on [s0 − δ, s0], which implies

d
ds f̃(s0 − δ) < d

ds f̃(s0) = f ′(s0). □

4.1. Smooth gluing to a Reissner–Nordström space

The next proposition will allow us to glue a rotationally symmetric manifold
with an electric field to an exterior region of a Reissner–Nordström manifold,
in such a way that the ADM mass of the resulting manifold is controlled.
For simplicity and since we will apply this result to obtain 3-dimensional
electrically charged Riemannian manifolds, we set n = 2.

Proposition 4.1. Let γf = ds2 + f(s)2g∗ be a metric on [a, b]× S
2 and

Σs = {s} × S
2. Suppose that

(i) the scalar curvature of γf satisfies

R(γf ) > 2|Ef |2γf
,

where Ef = Qf−2∂s for some constant Q,
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(ii) f(b) > |Q|,
(iii) the mean curvature of Σb is positive, and

(iv) m
CH
H (Σb) > |Q| .

Then, for any me > m
CH
H (Σb), there exists a rotationally symmetric,

asymptotically flat, electrically charged Riemannian manifold (M,γ,E) with
divergence-free vector field E and R(γ) ≥ |E|2γ such that

(I) its boundary ∂M has a neighborhood which is isometric to (
[
a, a+b

2

]
, γf )

(II) (M,γ,E) is isometric to a sub-extremal Reissner–Nordström space of
mass me and charge Q outside a neighborhood of the inner boundary,
and

(III) if f ′ > 0, M can be foliated by mean convex spheres that eventually
coincide with the coordinate spheres in the Reissner–Nordström space.

Proof. Recall that the Reissner–Nordström metric of charge Q and mass
m > |Q| can be written as

(4.7) γm,Q = ds2 + um,Q(s)
2g∗,

where s ∈ [0,∞) and um,Q : [0,∞) → [m+
√

m2 −Q2,∞) satisfies

• um,Q(0) = m+
√

m2 −Q2 and |Q| < m,

• u′m,Q(s) =
√

1− 2m
um,Q(s) +

Q2

um,Q(s)2 < 1, and

• u′′m(s) = mum,Q(s)−Q2

um,Q(s)3 .

According to (2.7), the charged Hawking mass of Σb = {b} × S
2 in ([a, b]×

S
2, γf , Ef ) is

(4.8) m∗ := m
CH
H (Σb) =

f(b)

2

(
1 +

Q2

f(b)2
− f ′(b)2

)

Fix me > m∗. In order to apply Lemma 4.2 to glue ([a, b]× S
2, γf ) to

a Reissner–Nordström manifold of mass me and charge Q, we require that
ume,Q(s0) > f(b) and u′me,Q

(s0) ≤ f ′(b), for some s0 > 0. Both are auto-

matically satisfied for small s0 > 0 if f(b) < me +
√

m2
e −Q2 = ume,Q(0),

since f ′(b) > 0 = u′me,Q
(0), by (ii) and (3.3). Consider now the case f(b) >

me +
√

m2
e −Q2. Since the range of ume,Q is [me +

√
m2

e −Q2,∞), for given
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ϵ > 0 there is an sϵ > 0 such that ume,Q(sϵ) = f(b) + ϵ. Thus we have

u′me,Q(sϵ)
2 = 1− 2me

f(b)
+

Q2

f(b)2
+O(ϵ)(4.9)

= 1− 2me

f(b)
− 2m∗

f(b)
+

2m∗

f(b)
+

Q2

f(b)2
+O(ϵ)

= f ′(b)2 − µ+O(ϵ)

where µ := 2me−m∗

f(b) > 0, by the definition of m∗. Therefore, also in this case,

for a sufficiently small ϵ > 0, 0 ≤ u′me,Q
(sϵ) < f ′(b).

We now perform the deformation procedure of Lemma 4.3 to obtain
ũme,Q, so that we have R(ũme,Q) > 2|Ẽme,Q|2ũme,Q

in a small region and
ũme

= ume
outside a compact set. Using the last part of Lemma 4.3, notice

that for δ > 0 small we have ũme
(sϵ − δ) > f(b) and ũ′me

(sε − δ) < f ′(b),
where ũme

= ume
(σ(s)) (σ as in Lemma 4.3 with s0 = sϵ).

Since by definition ũme
(sϵ − δ) > |Q|, to apply Lemma 4.2, it remains

to check that 1 + Q2

ũme (sϵ−δ)2 − 2|Q|
ũme (sϵ−δ) > ũ′me

(sϵ − δ)2. As pointed out in

Remark 4.4, this condition is equivalent to mCH
H (Σsϵ−δ) > |Q|. Compute

σ̇(sε − δ)2 =: 1 + pδ, where pδ > 0 and pδ → 0 as δ → 0.

mCH(Σsϵ−δ)

=
ũme,Q(sϵ − δ)

2

(
1 +

Q2

ũme,Q(sϵ − δ)2
− ũ′me,Q(sϵ − δ)2

)

=
ũme,Q(sϵ − δ)

2

(
1 +

Q2

ũme,Q(sϵ − δ)2

−
(
1− 2me

ũme,Q(sϵ − δ)
+

Q2

ũme,Q(sϵ − δ)2

)
σ̇(sϵ − δ)2

)

=
ũme,Q(sϵ − δ)

2

(
1 +

Q2

ũme,Q(sϵ − δ)2

−
(
1− 2me

ũme,Q(sϵ − δ)
+

Q2

ũme,Q(sϵ − δ)2

)
(1 + pδ)

)

= − ũme,Q(sϵ − δ)

2
pδ +me(1 + pδ)−

Q2

2ũme.,Q(sϵ − δ)
pδ

= me +
pδ

2

(
2me − ũme,Q(sϵ − δ)− Q2

ũme,Q(sϵ − δ)

)

> me +
pδ

2
(2me − ũme,Q(sϵ − δ)− |Q|)

> me +
pδ

2
(me − ũme,Q(sϵ − δ))

> me +
pδ

2
(me − ume,Q(sϵ)) .
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Therefore, for sufficiently small δ > 0, since me > m∗ > |Q| and pδ can be
made arbitrarily small, we obtain

(4.10) m
CH
H (Σsϵ−δ) > |Q|,

as desired. We now apply Lemma 4.2 with f1 = f on [a, b] and f2 = ũme,Q

on [sϵ − δ, sϵ − δ
2 ]. □

5. Extensions with minimal boundary

Given an initial data set (M,γ,E), using the stability equation as in [14],
together with the relation between the scalar curvature of (M,γ) and the
electric field E, if Σ ∼= S

2 is a stable horizon, we have

∫

Σ

(
−∆gφ

2 +K(g)φ2
)
dAg ≥

∫

Σ

R(γ) + |A|2
2

φ2dAg ≥
∫

Σ
|E|2γφ2dAg

for all φ ̸≡ 0 smooth on S
2, hence

(5.1)

∫

Σ

(
−∆gφ

2 +K(g)φ2
)
dAg ≥

∫

Σ
|E|2γφ2dAg

for all φ ̸≡ 0 smooth on S
2. By setting φ ≡ 1 and applying Hölder’s inequal-

ity, we obtain the area-charge relation (c.f. [11])

(5.2) 4π ≥ 16π2Q2

|Σ| ,

where we have used Gauss–Bonnet and the definition of the charge contained
in Σ given in (2.2).

Recall that by the variational characterization of eigenvalues of −∆g +
K(g), its first eigenvalue is given by

λ1 := inf

{∫
Σ(|∇gφ|2g +K(g)φ2) dAg∫

Σ φ2 dAg

∣∣∣∣φ ̸≡ 0

}
.

Note that if c := max
M

|E|2γ , then λ1 ≥ c implies the stability equation (5.1).

Thus we are naturally led to consider the set

(5.3) M
κ+

:= {g metric on Σ ∼= S
2 |λ1(−∆g +K(g)) > κ},

and we have the following lemma.
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Lemma 5.1. Let (Σ ∼= S
2, g) be a 2-dimensional Riemannian manifold with

metric g satisfying λ1(−∆g +K(g)) > κ. Then there exists a smooth path
of metrics {g(t)}0≤t≤1 on Σ, connecting g to a round metric, such that
λ1(−∆g(t) +K(g(t))) > κ for all 0 ≤ t ≤ 1.

Proof. Let ro be the area radius of (Σ, g), that is |Σ|g = 4πr2o . Recall that
the first eigenvalue of the operator −∆g +K(g) can be computed via the
Rayleigh quotient as

(5.4) λ1 := inf

{∫
Σ(|∇gφ|2g +K(g)φ2) dAg∫

φ2 dAg

∣∣∣∣φ ̸≡ 0

}
.

In particular, by setting φ ≡ 1, we obtain that r−2
o > κ.

Now use the uniformization theorem to write g = e2wgro , where gro :=
r2og∗ and w is a smooth function. Let g(t) = e2(1−t)wgro be a smooth path of
metrics connecting g to gro , as in [14].

Observe that by a direct computation

L(t) :=

∫

Σ
(|∇g(t)φ|2g(t) +K(g(t))φ2) dAg(t)

=

∫

Σ
(|∇groφ|2gro +

(
1

r2o
− (1− t)∆grow

)
φ2) dAgro .

In particular L(0) > (κ+ δ)
∫
Σ φ2 e2wdAgro , for some δ > 0, which can be

picked sufficiently small so that L(1) > (κ+ δ)
∫
Σ φ2 dAgro , since r−2

o > κ >

0. We can write L(t) as

L(t) = tL(1) + (1− t)L(0)

> t(κ+ δ)

∫

Σ
φ2 dAgro + (1− t) (κ+ δ)

∫

Σ
φ2 e2wdAgro .

In view of (5.4), to show that λ1(−∆g(t) +K(g(t))) > κ it suffices to show
that

t(κ+ δ)

∫

Σ
φ2 dAgro + (1− t) (κ+ δ)

∫

Σ
φ2 e2wdAgro

> (κ+ δ)

∫

Σ
φ2 e2w(1−t)dAgro .

This is equivalent to showing that the function

h(t) := t(κ+ δ) + (1− t)(κ+ δ)e2w − (κ+ δ)e2w(1−t)
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is non-negative on [0, 1], but since h(0) = 0 = h(1) and h′′(t) ≤ 0 on [0, 1],
h(t) must be positive on (0, 1), and the result follows. □

Corollary 5.1. Given (Σ ∼= S
2, go) with λ1 := λ1(−∆go +K(go)) > 0 and

κ > 0 such that λ1 > κ, one can repeat the procedure of [14, Lemma 1.2] to
modify the path given by Lemma 5.1, so that {g(t)} satisfies

(i) g(0) = go and g(1) is round,

(ii) g′(t) = 0 for t ∈ [θ, 1] for some 0 < θ < 1, and

(iii) trg(t)g
′(t) = 0 for t ∈ [0, 1].

We note that a rescaling is necessary to achieve (i)-(iii). As a conse-
quence, we cannot guarantee that the lower bound κ on λ1(−∆g(t) +K(g(t)))
still holds along the modified path, since λ1(−∆g(t) +K(g(t))) along the
modified path will depend on the exact values of w arising in the proof of
Lemma 5.1. Thus, we need to define a new threshold

(5.5) κ := inf
[0,1]

λ1(−∆g(t) +K(g(t)))

which will be strictly positive, κ > 0 by construction. In particular, we have
that g(t) ∈ M κ+

for all t ∈ [0, 1].

Let (Σ, go, Ho = 0, Qo) be charged Bartnik data and let ro be defined
as the area radius |Σ|go = 4πr2o . Consider a path {g(t)} as in Corollary 5.1.
Then, as in [17], we define

(5.6) α :=
1

4
max
[0,1]×Σ

|g′(t)|2g(t)

and

(5.7) β := r2o min
[0,1]×Σ

K(g(t)).

Observe that the area-charge relation (5.2) implies

Q2
o ≤ r2o .

The next theorem asserts the existence of asymptotically flat extensions
with an electric field satisfying the dominant energy condition and such
that the geometry at the boundary is prescribed and the ADM mass of the
extension can be made arbitrarily close to the optimal value in the charged
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Riemannian Penrose inequality. We follow the main ideas from [14] combined
with the gluing methods developed in Section 4.

Theorem 5.1. Let (Σ ∼= S
2, go, Ho = 0, Qo) be minimal charged Bartnik

data satisfying λ1 := λ1 (−∆go +K(go)) > 0, where λ1 (−∆go +K(go)) de-
notes the first eigenvalue of the operator −∆go +K(go) on Σ, K(go) is the
Gaussian curvature of go and let |Σ|go =: 4πr2o. Suppose that

Q2
o < r2o

and assume furthermore that

κ >
Q2

o

r4o
,

where κ is given by

κ := inf
[0,1]

λ1(−∆g(t) +K(g(t)))

along a suitable path of metrics {g(t)}0≤t≤1 as in Corollary 5.1. Then, for
any

m > m
CH
H (Σ ∼= S

2, go, Ho = 0, Qo) =

√
|Σ|go
16π

+

√
π

|Σ|go
Q2

o,

there is an asymptotically flat, electrically charged Riemannian 3-manifold
(M,γ,E) with Rγ ≥ 2|E|2γ, where E is a divergence-free electric field of total
charge Qo, such that

(i) the boundary ∂M is minimal and isometric to (Σ, go),

(ii) outside a compact set, M coincides with the spatial Reissner-Nordström
manifold with mass m and charge Qo, such that m > |Qo|,

(iii) M is foliated by mean convex spheres that eventually coincide with the
coordinate spheres in the spatial Reissner-Nordström manifold, and

(iv) E eventually coincides with the electric field of the spatial Reissner-
Nordström manifold.

Proof. Let {g(t)}0≤t≤1 be a smooth path of metrics connecting go to a round
metric as described in Corollary 5.1. For each t ∈ [0, 1], let u(t, x) > 0 be a
smooth eigenfunction on Σ corresponding to first eigenvalue λ(t) := λ1(t) of
−∆g(t) +K(g(t)), normalized to have L2-norm equal to 1. It can be checked
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that this choice of u is smooth (see [14]). Let 0 < ϵ < 1 and define the collar
extension

(5.8) γc := A2u(t, ·)2dt2 + (1 + ϵt2)g(t),

where A > 0 is a constant to be determined and 0 < ϵ ≪ 1. By (3.2), the
scalar curvature of γc is given by

R(γc) = 2v(t, ·)−1
(
−∆F (t)2g(t)v(t, ·) +K(F (t)2g(t))v(t, ·)

)
(5.9)

+ v(t, ·)−2

(−2F ′(t)2 − 4F (t)F ′′(t)

F (t)2

− 1

4
|g′(t)|2g(t) + 4∂t log v(t, ·)∂t logF (t)

)
,

for F (t) = (1 + ϵt2)1/2 and v(t, ·) = Au(t, ·). Consider the electric field E :=
Qo

f(t,·)2∂t, where f(t, ·)2 := Ar2ou(t, ·)F (t)2, then by Lemma 3.1,

(5.10) divγc
E = 0,

and the total charge contained in Σt (given by (2.2)), is equal to Qo.
Using the definition of F ,v, and the fact

(5.11) −∆F (t)2g(t)(Au(t, ·)) +
1

2
R(F (t)2g(t))Au(t, ·) = F (t)−2λ(t)Au(t, ·),

we have

R(γ)− 2|E|2γ = 2F (t)−2λ(t) +
u(t, ·)−2

A2

(−2F ′(t)2 − 4F (t)F ′′(t)

F (t)2

− 1

4
|g′(t)|2g(t) + 4

∂tv(t, ·)
v(t, ·)

∂tF (t)

F (t)

)
− 2Q2

oA
2u2(t, ·)

f(t, ·)4

=
2u(t, ·)−2

A2F (t)2

[
A2u(t, ·)2

(
λ(t)− Q2

o

r4oF (t)2

)
− ϵ− ϵ

F (t)2

− 1

8
|g′(t)|2g(t)F (t)2 + 2ϵt

∂tu(t, ·)
u(t, ·)

]

≥ 2u(t)−2

A2F (t)2

[
A2 inf

[0,1]×Σ
u2
(
λ(t)− Q2

o

r4o

)

− 2− α− 2 sup
[0,1]×Σ

|∂t log u|
]
.
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Since u(t, ·) > 0 and λ(t)− Q2
o

r4o
> 0 for all t ∈ [0, 1], we have

inf
[0,1]×Σ

u2
(
λ(t)− Q2

o

r4o

)
> 0.

Now we choose A > 0 such that

(5.12) A2 inf
[0,1]×Σ

u2
(
λ(t)− Q2

o

r4o

)
− 2− α− 2 sup

[0,1]×Σ
|∂t log u| > 0.

Therefore,

(5.13) R(γc) > 2|E|γc
.

Using (3.3), the mean curvature of Σt = {t} × Σ is given by

(5.14) H(t) =
2F ′(t)

Au(t, ·)F (t)
≥ 0,

and in particular, H(0) = 0.
By construction of the path {g(t)}0≤t≤1, we have g(t) = r2og∗ for t ∈

[θ, 1], which implies that u(t, ·) = u(1, ·) =: u(1) is a positive constant. Hence,
the charged Hawking mass of Σt for θ < t < 1 is given by

m
CH
H (Σt) =

√
|Σt|
16π

(
1 +

4πQ2
o

|Σt|
− 1

16π

∫

Σt

H(t)2 dσt

)
(5.15)

=
F (t)ro

2

(
1 +

Q2
o

F (t)2r2o
− r2oF

′(t)2

A2u(t, ·)2
)

=
(1 + ϵt2)1/2ro

2

(
1 +

Q2
o

(1 + ϵt2)r2o
− r2oϵ

2t2

A2u(1)2(1 + ϵt2)

)
.

In particular, for any 0 < ϵ3/2

1+ϵ <
A2u(1)2

r2o

(
1 + Q2

o

r2o

)
, we have

m
CH
H (Σ1) ≤

(1 +
√
ϵ)ro

2

(
1 +

Q2
o

r2o
− r2oϵ

2

A2u(1)2(1 + ϵ)

)
(5.16)

=
ro

2

(
1 +

Q2
o

r2o

)
+

√
ϵro

2

(
1 +

Q2
o

r2o

)
− (1 +

√
ϵ)r3oϵ

2

2A2u(1)2(1 + ϵ)

≤ ro

2

(
1 +

Q2
o

r2o

)
+

√
ϵro

2

(
1 +

Q2
o

r2o

)
− r3oϵ

2

2A2u(1)2(1 + ϵ)

≤ m
CH
H (Σ0) +

√
ϵC,
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where C > 0 is a constant depending on ro, A, Qo, and u(1). Therefore for
a sufficiently small ϵ,

(5.17) m > m
CH
H (Σ, g0, Ho = 0, Qo) +

√
ϵC ≥ m

CH
H (Σ1).

In addition, we have

m
CH
H (Σ1)−m

CH
H (Σ0)

=
ro

2

(√
1 + ϵ− 1 +

Q2
o

r2o
√
1 + ϵ

− Q2
o

r2o
− ϵ2r2o

A2u(1)2
√
1 + ϵ

)
.

It is straightforward to check that the right-hand side is positive by taking
ϵ sufficiently small, since Q2 < r2o . Using the fact that mCH

H (Σ0) > |Qo|, we
obtain

(5.18) m
CH
H (Σ1) > |Qo|.

To apply Proposition 4.1, perform the change of variables s(t) = Au(1)t,
then the metric for s ∈ [Au(1)θ,Au(1)] is

(5.19) γc = ds2 + f(s)2g∗, f(s)2 = r2o

(
1 +

ϵ

A2u(1)2
s2
)
.

Notice that (5.13), (5.14) and (5.18) are precisely the conditions needed
in Proposition 4.1, and by our choice m (see (5.17)), we can readily ap-
ply Proposition 4.1 to construct the desired asymptotically flat, electrically
charged Riemannian manifold (M,γ,E), with mass m and total charge Qo,
with scalar curvature satisfying R(γ) > 2|E|γ . Moreover, it has the desired
boundary geometry. Since F ′(t) > 0 for t ∈ (0, 1), it is foliated by mean con-
vex spheres which eventually will coincide with coordinate spheres of the spa-
tial Reissner–Nordström manifold. The electric field along this manifold also
eventually coincides with the electric field of the spatial Reissner–Nordström
manifold. This completes the proof. □
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