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We introduce and explore the relation between knot invariants
and quiver representation theory, which follows from the identi-
fication of quiver quantum mechanics in D-brane systems repre-
senting knots. We identify various structural properties of quivers
associated to knots, and identify such quivers explicitly in many
examples, including some infinite families of knots, all knots up to
6 crossings, and some knots with thick homology. Moreover, based
on these properties, we derive previously unknown expressions for
colored HOMFLY-PT polynomials and superpolynomials for var-
ious knots. For all knots, for which we identify the corresponding
quivers, the LMOV conjecture for all symmetric representations
(i.e. integrality of relevant BPS numbers) is automatically proved.
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1. Introduction

BPS states in supersymmetric field theories and string theory have remark-
able properties, which have been actively studied in last decades. In this
paper we consider BPS states that arise in D-brane systems, which en-
code properties of knots. The counting of these states leads to invariants
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of knots, referred to as Labastida-Mariño-Ooguri-Vafa (LMOV) invariants
(or Ooguri-Vafa invariants). On the other hand, dimensional reduction of
such brane systems is expected to lead to a description in terms of a super-
symmetric quiver quantum mechanics. In this paper we argue that this is
indeed the case, and in consequence properties of BPS states are encoded
in the data of moduli spaces of quiver representations, which leads to in-
triguing relations between knots and quivers. We presented a general idea
and the basic statement of this correspondence in a short note [1]. Now, in
this paper, we explain in detail the identification between knot invariants
and quiver moduli spaces, and identify explicitly relevant quivers for many
knots, including some infinite families of knots, all knots with up to 6 cross-
ings, some knots with thick HOMFLY-PT homology, etc. Understanding
structural properties of generating series of knot polynomials also enables
us to derive previously unknown expressions for colored HOMFLY-PT poly-
nomials and superpolynomials (and their quadruply-graded generalizations)
for several knots. More importantly, our correspondence relates generating
series of colored HOMFLY-PT polynomials to motivic Donaldson-Thomas
(DT) invariants, which then leads to the proof of the famous integrality of
LMOV invariants, conjectured in [2–4]. We also discuss many other conse-
quences of the relation between BPS states, knots and quivers.

Both types of invariants mentioned above, i.e. LMOV invariants of knots
and motivic Donaldson-Thomas invariants of quivers, are defined through
factorization of some generating series. Our results, in particular the proof of
the LMOV conjecture, follow from the identification of these series, which
physically amounts to the identification of the corresponding BPS states.
In case of knots, the series in question is the generating series of colored
HOMFLY-PT polynomials, and it arises as the expectation value of the
Ooguri-Vafa operator. This operator characterizes the system of branes,
which provide topological string theory realization of observables in Chern-
Simons theory. This system consists of N A-model lagrangian branes wrap-
ping S3 in the deformed conifold T ∗S3 Calabi-Yau geometry, and intersect-
ing — along a knotted curve — an additional set of lagrangian branes [2].
Topological string amplitudes on each set of branes reduce to amplitudes
in Chern-Simons theory, and the Ooguri-Vafa operator captures contribu-
tions from the scalar field describing strings stretched between these two
sets of branes, whose amplitudes are identified with expectation values of
Wilson loops in Chern-Simons theory [2, 5]. According to the seminal work
of Witten, such expectation values are identified with colored HOMFLY-PT
polynomials [6], which are then assembled into a generating series that arises
as the expectation value of the Ooguri-Vafa operator. The LMOV invariants
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that we consider are defined through factorization of this series [2–4]. Upon
the geometric transition, N branes in the deformed conifold geometry are
replaced by the resolved conifold geometry in the presence of additional la-
grangian branes, which encode the topology of the original knot. Embedding
this system in M-theory enables to interpret LMOV invariants as counting
open M2-branes ending on M5-branes. However, integrality of these invari-
ants has been verified only in some specific cases e.g. in [2–4, 7, 8], as well as
for some infinite families of knots and representations [9, 10]. In particular,
in [10] the relation of the framed unknot invariants (equivalently extremal
invariants of twist knots, as well as open topological string amplitudes for
branes in C3 geometry) to motivic Donaldson-Thomas invariants of the m-
loop quiver was found, which led to the proof of integrality of BPS numbers
in those cases; this relation was then analyzed and discussed also in [11, 12].

Reducing the above mentioned open M2-brane states to their worldvol-
ume is expected to lead to a description in terms of N = 4 supersymmetric
quiver quantum mechanics. We find this quantum mechanics description by
postulating that the Ooguri-Vafa generating function should be identified
with the motivic generating series assigned to a putative quiver. Factoriza-
tion of such a series defines motivic Donaldson-Thomas invariants, which
also have an interpretation as the counts of BPS states [13, 14]. If a quiver
in question indeed exists, it is natural to identify these BPS states as the
effective description of M2-M5 bound states in the Ooguri-Vafa description.
As our main result — advertised in [1] — we show that the Ooguri-Vafa
generating series indeed takes the form of the motivic generating series for
some quiver, and we identify such quivers explicitly in various cases. For
example, the quiver corresponding to the trefoil knot is shown in Figure 1.

Figure 1: Trefoil knot and the corresponding quiver.

BPS states that arise in the quiver description can be interpreted as
elements of Cohomological Hall Algebras [14–16], which provide prototype
examples of algebras of BPS states, whose existence was postulated in [17].
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These structures are intimately related to the theory of wall-crossing and
associated phenomena, which led to important results both in physics and
mathematics in recent years. In our work we take advantage of some of those
results, as well as suggest new directions of studies. For example, it has been
proved that motivic Donaldson-Thomas invariants assigned to a symmetric
quiver are integer [18]. Our results lead to the identification of LMOV in-
variants with motivic Donaldson-Thomas invariants for symmetric quivers,
which thus proves integrality of these LMOV invariants. More precisely, for
knots for which we identify the corresponding quiver, the LMOV conjecture
for all symmetric representations is automatically proved. This is already an
important result, and we expect that such corresponding quivers exist for
all knots, and a general proof of the LMOV conjecture could be conducted
along these lines. Some other identifications between quantities associated
to knots and to quivers are shown in Table 1.

Knots Quivers

Homological degrees, framing Number of arrows and loops
Colored HOMFLY-PT Motivic generating series

LMOV invariants Motivic DT-invariants
Classical LMOV invariants Numerical DT-invariants

Algebra of BPS states Cohom. Hall Algebra

Table 1: Identification of various quantities associated to knots and quivers.

There are many other consequences and new relations that follow from
our work. First, motivic Donaldson-Thomas invariants that we consider
have an interpretation as certain topological characteristics of quiver moduli
spaces [19, 20]. This suggests that quiver moduli spaces themselves should be
interpreted as knot invariants, which leads to a novel kind of categorification
in knot theory.

Second, we find that all HOMFLY-PT polynomials, as well as superpoly-
nomials and their quadruply-graded generalizations, colored by arbitrary
symmetric representations, are determined by a finite number of parameters:
the matrix C encoding the structure of the quiver corresponding to a given
knot, and homological degrees of generators of the uncolored HOMFLY-PT
homology. There should be a deeper reason why such limited information
gives rise to rich structure and intricate properties of various infinite families
of knot invariants.
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Third, colored HOMFLY-PT polynomials and LMOV invariants can be
defined for arbitrary (not only symmetric) representations and labeled by ar-
bitrary Young diagrams. It is desirable to understand how this information is
encoded in the corresponding quiver, or some generalization thereof. On the
other hand, colored HOMFLY-PT polynomials labelled by symmetric rep-
resentations satisfy a difference equation (encoded in Â operator), and their
asymptotics is encoded in algebraic curves generalizing the A-polynomial
[9, 10, 21]. Such objects should also have an interesting interpretation in the
context of quivers. In fact, for the m-loop quiver analogous functional equa-
tions have been discussed in [15], and we expect that such relations should
more generally play a role in quiver representation theory.

Fourth, having expressed colored HOMFLY-PT polynomials in the form
of the motivic generating function, it is natural to replace one generating
parameter associated with symmetric representations, by several parameters
that naturally appear in motivic generating functions. This leads to a re-
finement of colored HOMFLY-PT polynomials, as well as LMOV invariants,
and among others even stronger integrality statements.

Furthermore, motivic generating functions associated to quivers, as well
as — after our rewriting — the generating functions of colored HOMFLY-
PT polynomials, take the form of Nahm sums (with additional generating
parameters) [22, 23]. The Nahm sums have very intriguing properties, in
special cases they are modular functions and may arise as characters of
rational conformal field theories. It appears that both quiver representation
theory, as well as knot theory, are rich sources of sums of this type.

Our work should also be related to many other results in literature. For
example, uncolored HOMFLY-PT polynomials were related — from a differ-
ent perspective — to Donaldson-Thomas invariants in [24]. A class of func-
tions encoding integrality properties analogous to our generating functions
has been analyzed in [25, 26]. A detailed analysis of the LMOV conjecture
was conducted in [27], and a refined LMOV conjecture was considered in
[9, 28].

This paper is organized as follows. In Section 2 we present appropriate
background in knot theory and its relations to physics, including issues such
as colored HOMFLY-PT polynomials, LMOV invariants, and knot homolo-
gies. In Section 3 we introduce motivic Donaldson-Thomas invariants and
other relevant notions from quiver representation theory. In Section 4 we
present our main conjectures, motivated by physical interpretation of knot
invariants in terms of supersymmetric quiver quantum mechanics, and relat-
ing various knot invariants to invariants of quivers. In Section 5 we illustrate
these conjectures in many examples, including infinite families of torus and
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twist knots, all knots with up to 6 crossings, and examples of thick knots. Us-
ing our results we also determine previously unknown HOMFLY-PT polyno-
mials and superpolynomials colored by arbitrary symmetric representations
for 62 and 63 knots, as well as for (3, 7) torus knot.

2. Knot theory and physics

Knot theory plays a prominent role in contemporary high energy and math-
ematical physics. As a branch of topology, it is not surprising that it is
intimately related to topological field and string theories. It is perhaps more
surprising, that through these links not only physics provides an interpre-
tation of mathematical facts, but it is also a source of new ideas, which are
subsequently formalized and (hoped to be) proved by mathematicians. Ex-
amples of such ideas, relevant in the context of our work, include Labastida-
Mariño-Ooguri-Vafa (LMOV) invariants, superplynomials and HOMFLY-
PT homologies, quadruply-graded homologies, etc. In this section we recall
and briefly summarize all these notions and introduce notation used in what
follows.

2.1. Knot invariants and the LMOV conjecture

Polynomial knot invariants, including the Alexander polynomial known for
almost 100 years, and the much younger Jones polynomial, form one im-
portant class of knot invariants. The Jones polynomial was subsequently
generalized to the two-parameter HOMFLY-PT polynomial, and colored
versions of these polynomials were introduced. Witten’s interpretation of
these polynomials as expectation values of Wilson loops in Chern-Simons
theory [6] played an important role in those developments. Furthermore,
the Chern-Simons interpretation was also shown to be related to topological
string theory [5]. This paved the way to subsequent formulation of LMOV
invariants and the famous conjecture, stating that these invariants are inte-
ger [2–4, 29]. While this conjecture was verified in various specific situations
[2–4, 7–10], and some attempts of its general proof were undertaken [30], it
still appears to be an open problem. One aim of our work is to provide a
proof of this conjecture, at least for a large class of knots and representations.
However, let us first introduce relevant notation.
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As follows from [6], colored HOMFLY-PT polynomials can be inter-
preted as expectation values of Wilson loops in representation R in Chern-
Simons theory

(2.1) PR(a, q) = ⟨TrRU⟩,

where U = P exp
∮
K A is the holonomy of U(N) Chern-Simons gauge field

along a knot K. Here the HOMFLY-PT polynomial is unreduced, i.e. it is
normalized as

(2.2) PR(a, q) = P
01

R PR(a, q),

where PR(a, q) is the corresponding reduced colored HOMFLY-PT polyno-

mial (equal to 1 for the unknot), and P
01

R is the normalization factor of the
unknot. As we will explain in what follows, our results depend in a crucial
way on the choice of this normalization.

After embedding Chern-Simons theory in string theory, as we sketched in
the introduction, it was shown in [2] that is natural to consider the following
generating function (often referred to as the Ooguri-Vafa operator):

(2.3) Z(U, V ) =
∑

R

TrRU TrRV = exp

(
∞∑

n=1

1

n
TrUnTrV n

)
,

where V is interpreted as a source, and the sum runs over all representa-
tions R, i.e. all two-dimensional partitions. The expectation value of this
expression is the generating function of colored HOMFLY-PT polynomials.
It was postulated in [2–4, 29] that this expectation value has the following
structure
(2.4)
〈
Z(U, V )

〉
=
∑

R

PR(a, q)TrRV = exp

(
∞∑

n=1

∑

R

1

n
fR(an, qn)TrRV

n

)
,

where the functions fR(a, q) take the form

(2.5) fR(a, q) =
∑

i,j

NR,i,ja
iqj

q − q−1

and encode conjecturally integer NR,i,j numbers. The functions fR(a, q) can
be expressed as universal polynomials in colored HOMFLY-PT polynomials.
The above statements, concerning the structure of

〈
Z(U, V )

〉
and integral-

ity of NR,i,j , are referred to as the LMOV conjecture, and NR,i,j are called
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LMOV invariants (or Ooguri-Vafa invariants). As indicated in the introduc-
tion, in the physics interpretation they count bound states of M2-branes
ending on M5-branes.

Of our main interest in this work is the generating function of Sr-
colored HOMFLY-PT polynomials. It can be obtained by considering a
one-dimensional source V = x. In this case TrRV ̸= 0 only for symmetric
representations R = Sr, and then TrSr(x) = xr. Then (2.4) reduces to the
generating function of Sr-colored HOMFLY-PT polynomials, and denoting
the Sr-colored HOMFLY-PT polynomial by P r(a, q) we get

(2.6) P (x) = ⟨Z(U, x)⟩ =

∞∑

r=0

P r(a, q)xr = exp


∑

r,n≥1

1

n
fr(a

n, qn)xnr


 ,

with

(2.7) fr(a, q) ≡ fSr(a, q) =
∑

i,j

Nr,i,ja
iqj

q − q−1
,

where LMOV invariants are denoted by Nr,i,j ≡ NSr,i,j . These functions are
polynomials, with rational coefficients, of P d1

(ad2 , qd2) for some d1 and d2
(with d1d2 ≤ r):

f1(a, q) = P 1(a, q),

f2(a, q) = P 2(a, q) −
1

2
P 1(a, q)2 −

1

2
P 1(a

2, q2),

f3(a, q) = P 3(a, q) − P 1(a, q)P 2(a, q) +
1

3
P 1(a, q)3 −

1

3
P 1(a

3, q3),

etc. One can also rewrite (2.6) in the product form

(2.8) P (x) =
∏

r≥1;i,j;k≥0

(
1 − xraiqj+2k+1

)Nr,i,j

.

One of our aims is to show integrality of BPS degeneracies Nr,i,j encoded in
this product.

In the (classical) limit q → 1, a special role is played by a subset of
LMOV invariants, referred to as classical LMOV invariants. To define them
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it is useful to consider the ratio

y(x, a) = lim
q→1

P (qx)

P (x)
= lim

q→1

∏

r≥1;i,j;k≥0

(
1 − xraiqr+j+2k+1

1 − xraiqj+2k+1

)Nr,i,j

(2.9)

=
∏

r≥1;i

(1 − xrai)−rbr,i/2,

with classical LMOV invariants defined as

(2.10) br,i =
∑

j

Nr,i,j .

It turns out that y = y(x, a) defined above satisfy algebraic equations

(2.11) A(x, y) = 0

of A-polynomial type [9, 21].

2.2. Knot homologies

Another important class of knot invariants are knot homologies. First well
understood examples of such structures are Khovanov homology [31] and
Khovanov-Rozansky homology [32, 33]. In our work an important role is
played by their putative, highly nontrivial generalization, namely colored
HOMFLY-PT homology HSr

i,j,k, which categorifies the HOMFLY-PT polyno-
mial colored by symmetric representations Sr. It has been defined rigorously
by mathematicians only recently [34], yet only for the unreduced version,
and it is still not suitable for explicit computations (there also exist some
constructions in the case of antisymmetric representations Λr, both reduced
and unreduced versions, see e.g. [35], which are conjecturally isomorphic to
the homologies corresponding to the symmetric representations). Nonethe-
less, the conjectural Poincaré polynomial of (reduced) colored HOMFLY-PT
homology, referred to as the superpolynomial

(2.12) Pr(a, q, t) =
∑

i,j,k

aiqjtk dimHSr

i,j,k,

can be determined for various families of knots, for example using the formal-
ism of differentials and the structural properties of the (colored) homologies
[36–39] — the formalism that we will exploit in the present paper. It has
been postulated that HOMFLY-PT homology should be identified with the
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space of BPS states in relevant brane systems [38, 40]. Superpolynomials
for the unknot or the Hopf link can be also computed by techniques of re-
fined topological string theory [41], and superpolynomials for torus knots
can be computed by means of refined Chern-Simons theory [42–46]. Col-
ored superpolynomials reduce to colored HOMFLY-PT polynomials upon
the substitution t = −1. As we will see, one interesting result of our work
is an explicit relation between colored HOMFLY-PT polynomials and the
(uncolored) superpolynomial.

Let us briefly present structural properties of the reduced Sr-colored
HOMFLY-PT homologies HSr

of a given knot [38, 47]. First, for a given
knot, for every k = 0, . . . , r − 1, there exists a (positive, vertical) colored
differential d1−k on HSr

, of (a, q, t)-degree (−2, 2 − 2k,−1), such that the
homology of HSr

with respect to d1−k is isomorphic to HSk

. Second, for
every k = 0, . . . , r − 1 there is another set of (negative, vertical) colored dif-
ferentials d−r−k on HSr

(K), of (a, q, t)-degree (−2,−2r − 2k,−3), such that
the homology of HSr

(K) with respect to d−r−k is isomorphic to HSk

. Third,
there is a universal colored differential d2→1 of degree (0, 2, 0) on the homol-
ogy HS2

(K), such that the homology of HS2

with respect to d2→1 is isomor-
phic to the uncolored homology HS . All these differentials relate homology
theories with different values of r. The uncolored homology, corresponding
to r = 1, supposedly categorifies the reduced HOMFLY-PT polynomial, and
its Poincaré polynomial is simply the original (uncolored) superpolynomial
introduced in [36].

Furthermore, HOMFLY-PT homologies of a large class of knots satisfy
the refined exponential growth, which implies the following relation for their
colored superpolynomials

(2.13) PSr(a, q = 1, t) = (P (a, q = 1, t))r ,

see also [35]. Properties of colored differentials, together with the assumption
of the exponential growth, enable to determine an explicit form of the col-
ored superpolynomial PSr(a, q, t) for various knots [38, 45, 48]. For example,
colored superpolynomials for the trefoil knot 31 take the form [45, 48]

(2.14) Pr(a, q, t) =
a2r

q2r

r∑

k=0

[
r

k

]
q2k(r+1)t2k

k∏

i=1

(1 + a2q2(i−2)t),

where

(2.15)

[
r

k

]
=

(q2; q2)r
(q2; q2)k(q2; q2)r−k

,
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and the q-Pochhammer symbol is defined as

(2.16) (x; q)r =

r−1∏

k=0

(1 − xqk), (x; q)∞ =

∞∏

k=0

(1 − xqk).

For t = −1, (2.14) specializes to the reduced colored HOMFLY-PT poly-
nomial for trefoil knot, while in the uncolored case (i.e. for r = 1), (2.14)
reduces to

(2.17) P1(a, q, t) =
a2

q2
+ a2q2t2 + a4t3.

The monomials in this expression correspond to generators of the HOMFLY-
PT homology, and powers of t in each monomial — in this example taking
values (0, 2, 3) — are referred to as homological degrees.

a
q

0

3

2
2

4

−2 0 2

a
q −2 0 2

2

0

−2

−1 0 1

2

−2

Figure 2: Diagrams of the reduced uncolored HOMFLY-PT homology of the
trefoil (left) and the figure-eight knot (right).

It is convenient to present the structure of (colored) HOMFLY-PT ho-
mology in terms of diagrams on a two-dimensional lattice. Each homology
generator is represented by a dot at position (i, j) in such a lattice, with
i and j representing respectively q-degree and a-degree of this generator,
and whose t-degree can in addition be written explicitly in the diagram as
label of a corresponding dot. In addition, differentials acting between pairs
of generators can be represented by arrows in the diagram. In Figure 2 are
presented the diagrams of the reduced uncolored HOMFLY-PT homologies
of the trefoil and the figure-eight knot.

The structure of differentials implies that in the case of the uncolored
homologies (the ones that are of our main interest in the paper) the genera-
tors must form two larger structures, which we call a zig-zag and a diamond.
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A zig-zag is a string of an odd number of generators, and a diamond consists
of four generators (as the name indicates, distributed in the form of a di-
amond). For each knot, its HOMFLY-PT homology must contain precisely
one zig-zag (possibly of length one, i.e. consisting of a single generator), and
an arbitrary number of diamonds. For example, in the case of the diagrams
in Figure 2, the diagram of the trefoil knot consists of a single zig-zag of
length three, while the diagram for the figure-eight knot consists of a zig-
zag of length one (only the generator in the middle of the diagram with the
label 0), and one diamond formed by the remaining four generators. The
(finite-dimensional) homology of a link has as many zig-zags as the number
of its components.

The structure of colored HOMFLY-PT homology was further general-
ized to quadruply-graded homology, which has a richer structure of differ-
entials [47]. The Poincaré polynomial of this quadruply-graded homology
Pr(a,Q, tr, tc) depends on four parameters a,Q, tr and tc, and specializes to
the colored superpolynomial upon the identification

(2.18) Pr(a, q, t) = Pr(a,Q = q, tr = tq−1, tc = q),

and to the colored HOMFLY-PT polynomial upon

(2.19) Pr(a, q) = Pr(a,Q = q, tr = −q−1, tc = q).

Quadruply-graded homologies for a large class of knots satisfy the refined ex-
ponential growth, which implies the following relation for the corresponding
Poincaré polynomials

(2.20) Pr(a,Q, tr, tc = 1) =
(
P1(a,Q, tr, tc = 1)

)r
.

3. Quiver moduli and Donaldson-Thomas invariants

In this section we present basic properties of quivers and moduli spaces of
their representations, which will be crucial in the rest of the paper. Moduli
spaces of quiver representations have a rich structure, which among others
provides a natural playground for the theory of (motivic) Donaldson-Thomas
invariants, Cohomological Hall Algebras, etc.

A quiver Q is an oriented graph with a finite set of vertices Q0 and
finitely many arrows between vertices α : i → j, for i, j ∈ Q0. On ZQ0, we
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define the Euler form of Q by

(3.1) ⟨d, e⟩Q =
∑

i∈Q0

diei −
∑

α:i→j

diej .

A quiver representation assigns to each vertex i ∈ Q0 a vector space of di-
mension di, and a linear map between two such spaces to each arrow. The
vector d = (d1, . . . , dm) is referred to as the dimension vector.

As we will see, quivers which appear in relation to knot invariants are
symmetric, meaning that for any pair of their vertices i and j, the number of
arrows from i to j is equal to the number of arrows from j to i. While explicit
expressions for invariants describing moduli spaces of quiver representations
are hard to find in general, they are quite well understood in the case of
symmetric quivers [14, 18–20]. An important information about the moduli
space of representations of a symmetric quiver is encoded in the following
generating series

(3.2) PQ(x) =
∑

d∈NQ0

(−q)−⟨d,d⟩Qxd
∏

i∈Q0

di∏

j=1

1

1 − q−2j

where xd =
∏

i∈Q0
xdi

i . In particular, motivic Donaldson-Thomas invariants
Ωd,j ≡ Ωd1,...,dm;j , assembled into

(3.3) Ωd(q) =
∑

j

Ωd,j(−q)j ,

are defined once (3.2) is rewritten as

(3.4) PQ(x) = Exp


 1

q−1 − q

∑

d ̸=0

Ωd(q)xd


 ,

where Exp is the plethystic exponential defined by Exp(f + g) = Exp(f) ·
Exp(g) and Exp(qixd) = 1

1−qixd for i ∈ Z and d ∈ NQ0. This plethystic ex-
ponential form can be written equivalently as a product decomposition

(3.5) PQ(x) =
∏

d ̸=0

∏

j∈Z

∏

k≥0

(
1 − (−1)jxdqj+2k+1

)−Ωd,j .

Two geometric interpretations of invariants Ωd(q), either as the intersection
Betti numbers of the moduli space of all semisimple representations of Q
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of dimension vector d, or as the Chow-Betti numbers of the moduli space
of all simple representations of Q of dimension vector d, were provided in
[19, 20]. It was also proved these invariants are positive integers [18]. One of
our aims in this paper is to relate these invariants to LMOV invariants of
knots.

One can also introduce numerical Donaldson-Thomas invariants of a
quiver. To this end, for a vector n ∈ NQ0, we denote by PQ(qnx) the se-
ries arising from PQ(x) by replacing every xd by qn·dxd, where n · d =∑

i∈Q0
nidi. Then

(3.6)
PQ((−q)nx)

PQ((−q)−nx)
= Exp


∑

d ̸=0

(−q)n·d − (−q)−n·d

(−q) − (−q)−1
Ωd(q)xd


 ,

and in this equation we can specialize q to 1. By [49], the left hand side
specializes then to the generating series of the Euler characteristic of certain
Hilbert schemes Hilbd,n(Q) attached to the quiver (these numbers admit a
combinatorial interpretation by counting certain kinds of trees), so that we
get

∑

d∈NQ0

χ(Hilbd,n(Q))xd = Exp


∑

d ̸=0

(n · d)Ωd(1)xd


(3.7)

=
∏

d ̸=0

(1 − xd)−(n·d)Ωd(1).

These Ωd(1) are the (numerical) Donaldson-Thomas invariants of the quiver.

4. Knot invariants from quivers

In this section we first present our main claim, relating various knot in-
variants to quivers. We also discuss its various implications, and develop a
formalism facilitating computations and enabling to determine quivers asso-
ciated to knots. Our claim takes form of the following conjectures. We show
that these conjectures are correct in many explicit and nontrivial examples
in Section 5.

4.1. Main conjectures

Conjecture 4.1. For a given knot, the generating function of its (appropri-
ately normalized, as explained in detail in Section 4.5) colored HOMFLY-PT
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polynomials (2.6) can be written in the form

P (x) =

∞∑

r=0

P r(a, q)xr(4.1)

=
∑

d1,...,dm≥0

xd1+···+dmq
∑

i,j
Ci,jdidj

∏m
i=1 q

lidiaaidi(−1)tidi

∏m
i=1(q

2; q2)di

where C is a (symmetric) m×m matrix, and li, ai and ti are fixed integers.
Note that terms proportional to xr, with fixed r, arise from sets of {di} such
that r = d1 + · · · + dm. Remarkably, (4.1) has the same form as the motivic
generating function (3.2) of a symmetric quiver determined by the matrix
C, up to the identification q 7→ −q and the specialization of variables

(4.2) xi = xaaiqli−1(−1)ti .

The number of vertices m of such a quiver is given by the size of C, and the
number of arrows between vertices i and j is given by the matrix element
Ci,j (in particular Ci,i denotes the number of loops at vertex i).

It follows that to a given knot one can assign a quiver, so that various
invariants of this knot are encoded in the data of moduli spaces of quiver
representations of this corresponding quiver. Moreover, all this information
is encoded in a finite set of parameters that determine (4.1): the matrix
C, as well as integers li, ai, ti that are encoded in the (uncolored, reduced)
superpolynomial of the knot in question. Recall that the uncolored, reduced
superpolynomial for a given knot is a sum of monomials of the form aaiqqitti ,
which correspond to generators of the HOMFLY-PT homology.

Conjecture 4.2. The size of the matrix C (the number of vertices in
the corresponding quiver) is equal to the number of generators of uncolored
HOMFLY-PT homology. Furthermore, with appropriate ordering of vertices,
ti in (4.1) agree with homological degrees of generators of HOMFLY-PT ho-
mology, diagonal elements of C are also equal to homological degrees, i.e.
Ci,i = ti, coefficients of linear powers of q take the form li = qi − ti, and ai
are equal to a-degrees of generators of uncolored HOMFLY-PT homology.
An additional minus sign in (4.1) comes with the power determined by ti,
so that it is relevant only for generators with odd t-grading.

Note that it follows that homological degrees ti can be identified (as
diagonal elements of matrix C) after rewriting the generating series (2.6)
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in the quiver-like form, and they are given by the number of loops in the
corresponding quiver. This means, that the uncolored superpolynomial is
encoded in the form of colored HOMFLY-PT polynomials, which is quite a
surprising observation.

For knots that satisfy the refined exponential growth (2.13) it is not
hard to see where the coefficients of linear terms in di, in powers of q, a and
(−1) in (4.1), come from. In general, in expressions for quadruply-graded
superpolynomials, tc does not appear in powers which are linear in sum-
mation variables, so — if (2.20) holds — linear powers of other parame-
ters can be identified upon specialization tc = 1. Furthermore, recall that
colored superpolynomials arise upon the substitution (2.18), and colored
HOMFLY-PT polynomials upon (2.19). It follows that for arbitrary color
r = d1 + · · · + dm, a linear term in the exponent of q takes the form

(4.3)
∑

i

(qi − ti)di,

where the sum is over all generators i of the uncolored homology, qi and
ti are their q- and t-degrees, and di is the corresponding summation index.
Analogously, linear powers of parameters a and (−1) in (4.1) must, respec-
tively, take the form

∑
i aidi and

∑
i tidi. The same formulas are valid for

the unreduced homology, since the refined exponential growth holds for the
unreduced homology of the unknot.

Note that one can also focus on those parts of colored HOMFLY-PT
polynomials or superpolynomials which are proportional to the highest or
lowest power of the variable a [9, 47]. The corresponding generators of
HOMFLY-PT homology lie respectively in the top or bottom row of the
homology diagram, so such invariants are often referred to as top/bottom
row invariants, or extremal invariants. For a large class of knots satisfy-
ing the exponential growth property (2.13), the generating function of their
colored extremal reduced HOMFLY-PT polynomials also takes a universal
form (4.1), however with the dependence on a suppressed
(4.4)

P bottom/top(x) =
∑

d1+d2+···+dm≥0

xd1+···+dmq
∑

i,j
Ci,jdidj

q
∑

i
(qi−ti)di(−1)

∑
i
tidi

∏m
i=1(q

2; q2)di

.

Here m is the dimension of the fundamental homology corresponding to the
bottom/top row, and qi and ti, i = 1, . . . ,m, are q-degrees and t-degrees
of these m generators. In this case the matrix C encodes a quiver which
is a subquiver (capturing only extremal a-dependence) of the full quiver
associated to a given knot.
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The Conjecture 4.2 relates various quantities associated to knots to those
of quiver moduli. Note that other relations of this type also follow — one
another example of such a relation is the dependence on framing. The op-
eration of framing by f ∈ Z changes the colored HOMFLY-PT polynomial
by a factor, which for the symmetric representation Sr takes the form

(4.5) a2frqf r(r−1).

From the viewpoint of the quiver generating function (4.1), the term with
quadratic (in r) power of q

(4.6) qfr
2

= qf(
∑

i
di)2 = qf

∑
i,j

didj

shifts all elements of the matrix C by f

(4.7) C 7→ C + f




1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1




which in the quiver interpretation corresponds to adding f loops at each
vertex and f pairs of oppositely-oriented arrows between all pairs of vertices.
Note that, while in the context of quivers all entries of a matrix C should
be nonnegative, in some examples coming from knots we find matrices C
with negative entries. In this case a change of framing can be used to shift
such negative values, and make all entries of C nonnegative; such a modified
matrix still describes the same knot.

Furthermore, we can also characterize the structure of the matrix C in
more detail.

Conjecture 4.3. For a given knot, the matrix C has a block structure

C =




b1,1 · · · b1,k · · ·
...

. . .
...

bT1,k · · · bk,k
...

. . .




Diagonal blocks bk,k correspond to structural elements of the HOMFLY-PT
homology, introduced in Section 2.2. One of those blocks (in case of knots;
or as many blocks as the number of components of a link) corresponds to
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the zig-zag element of length 2p + 1, and it has the same form (up to some
permutation of homology generators, and up to an overall shift by a constant
matrix with integer coefficients as in (4.7), corresponding to framing) as
the matrix C for the (2, 2p + 1) torus knot (5.24). All other diagonal block
elements correspond to diamonds and (up to a permutation of homology
generators) take the form

(4.8)




k k k + 1 k + 1
k k + 1 k + 2 k + 2

k + 1 k + 2 k + 3 k + 3
k + 1 k + 2 k + 3 k + 4




for a fixed k (which may be different for each block). The structure of other
blocks bl,k for l ̸= k depends only on the structural elements corresponding
to diagonal blocks bl,l and bk,k.

4.2. Superpolynomials and quadruply-graded homology of knots
from quivers

In the above conjectures we related generating functions of colored
HOMFLY-PT polynomials to the motivic generating series of some quiver.
However, in addition we postulate that the same quiver encodes also gener-
ating functions of colored superpolynomials, as well as Poincaré polynomials
of quadruply-graded HOMFLY-PT homology.

Conjecture 4.4. Consider a knot satisfying the exponential growth prop-
erty (2.20), with the corresponding quiver — determined as explained above
— represented by a matrix C, the size of the reduced colored homology de-
noted by m, and (a, q, t)-degrees of its generators denoted by (ai, qi, ti). Then,
the Poincaré polynomial of the reduced quadruply-graded Sr-colored homol-
ogy is also determined by the quiver matrix C, and it takes a universal form

Pr(a,Q, tr, tc) =
∑

d1+d2+···+dm=r

(t2c ; t
2
c)r

(t2c ; t
2
c)d1

(t2c ; t
2
c)d2

· · · (t2c ; t
2
c)dm

(4.9)

× a
∑

m

i=1 aidiQ
∑

m

i=1 qidit
∑

m

i=1 tidi

r t
∑

m

i,j=1 Ci,jdidj

c .

The generating function of such Poincaré polynomials, normalized by
(t2c ; t

2
c)r,

(4.10) P (x) =

∞∑

r=0

Pr(a,Q, tr, tc)
xr

(t2c ; t
2
c)r

,
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can also be obtained as a specialization of (3.2), with appropriate choice of
xi, which then gives rise to linear (in di) powers of a,Q and tr. Therefore
the product decomposition (3.5) leads to refined (quadruply-graded) LMOV
invariants. Furthermore, (4.9) can be reduced to the generating function of
colored superpolynomials upon the identification of variables given in (2.18),
and the corresponding refined LMOV invariants can be identified (note that
LMOV invariants, refined in the sense of including t-dependence, were also
discussed in [9, 28]).

The expression (4.9) can also be reduced to the case of extremal powers
of a (i.e. top/bottom row). Let now m denote the size of such a bottom or top
row uncolored reduced homology, and denote (q, t)-degrees of its generators
by (qi, ti). The Poincaré polynomial of the bottom (or top) row of the reduced
quadruply-graded Sr-colored homology is then given by

P bottom/top
r (Q, tr, tc) =

∑

d1+d2+···+dm=r

Q
∑

m

i=1 qidit
∑

m

i=1 tidi

r t
∑

m

i,j=1 Ci,jdidj

c

(4.11)

×
(t2c ; t

2
c)r

(t2c ; t
2
c)d1

· · · (t2c ; t
2
c)dm

.

In this case we suppressed the a-dependence, since the entire bottom (or
top) row homology is characterized by the same a-degree. The matrix C
in (4.11) coincides with the one in (4.4) and it encodes a subquiver (rep-
resenting only the extremal a-dependence) of the full quiver associated to
a given knot. Specializing the product decomposition (3.5) results in re-
fined (quadruply-graded), extremal LMOV invariants. Moreover (4.11) can
be reduced to the generating function of (extremal) colored superpolynomi-
als upon the identification of variables given in (2.18), which then encodes
refined extremal LMOV invariants.

We stress that integrality of various refined (or quadruply-graded) LMOV
invariants mentioned above follows automatically from the fact that the cor-
responding generating series arise as specializations of (3.5), whose product
decomposition is proved to give rise to integer invariants in general.

4.3. Consequences: proof of the LMOV conjecture, new
categorification, etc.

Our conjectures imply that various knot invariants can be expressed in terms
of invariants characterizing quiver moduli spaces. More generally, these con-
jectures imply that there are various — unexpected, and highly nontrivial
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— relations between knot theory and quiver representation theory; some of
those relations are listed in Table 1. We now briefly discuss some of these
consequences, and we will illustrate them in various examples in the next
section.

First, the fact that — under appropriate specialization — the motivic
generating series of a quiver agrees with the generating function of colored
HOMFLY-PT polynomials also means, that the product decomposition (3.5)
is identified with the product decomposition (2.8). This implies that the
LMOV invariants Nr,i,j take the form of linear combinations (with integer
coefficients) of motivic Donaldson-Thomas invariants Ωd,j = Ωd1,...,dm;j . The
motivic Donaldson-Thomas invariants for symmetric quivers are proved to
be integer [18], which therefore implies that the corresponding LMOV invari-
ants are also integer — which then proves the LMOV conjecture. Therefore,
once a quiver corresponding to a given knot is identified (which we will do
in many examples in the rest of the paper), it automatically follows that
LMOV invariants for this knot, labeled by symmetric representations, are
integer.

Second, quiver invariants automatically provide a refinement of knot in-
variants — once a quiver is identified, its motivic generating series (3.2)
involves several generating parameters x1, . . . , xm, encoding “refined” in-
variants Ωd1,...,dm;j , and “refined” HOMFLY-PT polynomials. It is desirable
to understand the meaning of those refined invariants from the knot theory
perspective.

Third, we find that in some cases to a given knot one may assign several
quivers, which give rise to the same generating function of HOMFLY-PT
polynomials — even though their original motivic generating series, without
imposing the specialization (4.2), are different. Such quivers differ by some
permutation of their elements, as we will illustrate in various examples.

Moreover, the limit q → 1 of the motivic generating series immediately
implies integrality of classical LMOV invariants (2.10), which are expressed
in terms of (integer) numerical Donaldson-Thomas invariants defined in (3.7).

Furthermore, the fact that (generating functions of) colored HOMFLY-
PT polynomials and LMOV invariants are expressed in terms of motivic
Donaldson-Thomas invariants — which arise as certain Betti numbers of
quiver moduli spaces — provides a novel categorification of these knot in-
variants. Namely, quiver moduli spaces themselves can be regarded as new
invariants of knots.
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While, on one hand, knot invariants appear as specializations of invari-
ants of quiver moduli spaces, on the other hand knot invariants (HOMFLY-
PT polynomials, or LMOV invariants) can be defined in more general fam-
ilies, labeled by arbitrary Young diagrams (not just symmetric Young dia-
grams, which appear in (4.1)). It is desirable to understand how such more
general invariants are related to, or could be extracted from, the data of
quiver moduli spaces.

We also note that, as argued in [14], the Cohomological Hall Algebra
associated to a quiver should be identified with the algebra of BPS states
[17]. Furthermore, the generating functions (4.1) take the form of products
of q-series that appear in Nahm conjectures [22], which suggests their rela-
tion to conformal field theories and integrability. All these issues are worth
thorough further investigation.

4.4. The strategy and q-identities

In order to determine a quiver corresponding to a given knot, we have to
rewrite the generating function of colored HOMFLY-PT polynomials of this
knot in the form (4.1). Colored HOMFLY-PT polynomials, which are known
for various knots, can be written in terms of sums involving q-Pochhammer
and q-binomial symbols [45, 48], as e.g. in the expression (5.15). However,
in general in such expressions the number of summations is smaller than
the number of terms in the superpolynomial, and it is not obvious that such
sums can be rewritten in the form (4.1), which involves as many summations
as the number of terms in the superpolynomial. Therefore some algebraic
manipulations are necessary in order to rewrite such formulas in the form
that involves an appropriate number of additional summations, and in ad-
dition includes appropriate q-Pochhammer symbols in the denominator. To
achieve this we take advantage of the following lemmas.

Lemma 4.5. For any d1, . . . , dk ≥ 0, we have:

(x; q)d1+···+dk

(q; q)d1
· · · (q; q)dk

(4.12)

=
∑

α1+β1=d1

∑

α2+β2=d2

· · ·
∑

αk+βk=dk

1

(q; q)α1
· · · (q; q)αk

(q; q)β1
· · · (q; q)βk

× (−x)α1+···+αkq
1

2
(α2

1+···+α2
k)q

∑
k−1
i=1 αi+1(d1+···+di)q−

1

2
(α1+···+αk).
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Proof. First, note that
(4.13)

(x; q)d1+···+dk
= (x; q)d1

(xqd1 ; q)d2
(xqd1+d2 ; q)d3

· · · (xqd1+···+dk−1 ; q)dk
.

By expanding each of k q-Pochhammers on the right hand side by using the
quantum binomial identity

(x; q)n =

n∑

α=0

(−x)αq
1

2
α(α−1) (q; q)n

(q; q)α(q; q)n−α
(4.14)

=
∑

α+β=n

(−x)αq
1

2
α(α−1) (q; q)n

(q; q)α(q; q)β
,

we obtain

(x; q)d1+···+dk

(4.15)

=
∑

α1+β1=d1

∑

α2+β2=d2

· · ·
∑

αk+βk=dk

(q;q)d1
(q;q)α1

(q;q)β1

(q;q)d2
(q;q)α2

(q;q)β2

· · ·
(q;q)dk

(q;q)αk
(q;q)βk

× (−x)α1+···+αkq
1

2
(α2

1+···+α2
k−α1−···−αk)q

∑
k−1
i=1 αi+1(d1+···+di)

which proves the lemma. □

Lemma 4.5 enables rewriting the expression of the form

(4.16)
(x; q)d1+···+dk

(q; q)d1
· · · (q; q)dk

as a sum of terms

(4.17)
1

(q; q)α1
· · · (q; q)αk

(q; q)β1
· · · (q; q)βk

weighted simply by linear and quadratic powers of q. In this way (at least in
some cases) we can introduce additional summations in expressions for col-
ored HOMFLY-PT polynomials, in order to bring them into the form of the
quiver generating series (4.1). In more complicated situations, generalizing
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the relation

(4.18) (x; q)a+b = (x; q)a(xqa; q)b,

we can take advantage of the following lemma which enables rewriting cer-
tain q-binomial coefficients. Recall that throughout the paper we are using
the convention

[
n
k

]
= (q2;q2)n

(q2;q2)k(q2;q2)n−k
, cf. (2.15).

Lemma 4.6. For nonnegative integers a, b and k we have

(4.19)

[
a + b

k

]
=
∑

i+j=k

q2(a−i)(k−i)

[
a

i

][
b

j

]
.

More generally, let a1, . . . , am, m ≥ 1, and k1, . . . , kp, p ≥ 1, be nonnegative
integers. Then

[
a1 + a2

k1

][
k1
k2

]
· · ·

[
kp−1

kp

](4.20)

=
∑

i1+j1=k1

∑

i2+j2=k2

· · ·
∑

ip+jp=kp

[
a1
i1

][
i1
i2

]
· · ·

[
ip−1

ip

] [
a2
j1

][
j1
j2

]
· · ·

[
jp−1

jp

]

× q2((a1−i1)(k1−i1)+(i1−i2)(k2−i2)+···+(ip−1−ip)(kp−ip)),

[
a1 + a2 + · · · + am

k

](4.21)

=
∑

i1+i2+···+im=k

[
a1
i1

][
a2
i2

]
· · ·

[
am
im

]

× q2((a1−i1)(k−i1)+(a2−i2)(k−i1−i2)+···+(am−im)(k−i1−i2−···−im)).

Furthermore

[
a1 + a2 + · · · + am

k1

][
k1
k2

]
· · ·

[
kp−1

kp

](4.22)

=
∑

i11+···+i1m=k1

∑

i21+···+i2m=k2

· · ·
∑

ip1+···+ipm=kp

qX(a,i1,k1)+X(i1,i2,k2)+···+X(ip−1,ip,kp)

×

[
a1
i11

][
i11
i21

]
· · ·

[
ip−1
1

ip1

] [
a2
i12

][
i12
i22

]
· · ·

[
ip−1
2

ip2

]
· · ·

[
am
i1m

][
i1m
i2m

]
· · ·

[
ip−1
m

ipm

]
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where

X(a, i, k) = 2
(
(a1 − i1)(k − i1) + (a2 − i2)(k − i1 − i2)

+ · · · + (am − im)(k − i1 − i2 − · · · − im)
)
,

for sequences a = (a1, . . . , am) and i = (i1, . . . , im).

Proof. These relations follow after straightforward calculations. For exam-
ple, from the q-Pochhammer relation (4.18) we get

(4.23)

a+b∑

k=0

(−x)kqk
2−k

[
a + b

k

]
=

a∑

i=0

(−x)iqi
2−i

[
a

i

] b∑

j=0

(−x)jq2ajqj
2−j

[
b

j

]
.

By matching the powers of x on both sides of this equation we get the relation
(4.19). The remaining three equalities can now be obtained by induction,
using (4.19). □

One can use the above lemma for example after rewriting the following
product of binomial coefficients in terms of the q-Pochhammer symbols

[
a

k1

][
k1
k2

]
· · ·

[
kp−1

kp

]
(4.24)

=
(q2; q2)a

(q2; q2)a−k1
(q2; q2)k1−k2

· · · (q2; q2)kp−1−kp
(q2; q2)kp

.

The right hand side is the quotient of the q-Pochhammer of length a by
the product of p q-Pochhammers, whose lengths sum up also to a. As
we explained above, this can be further transformed into a sum involv-
ing q-Pochhammers only in the denominator, weighted only by linear and
quadratic powers of q, which is then of the required quiver form (4.1).

4.5. Reduced vs. unreduced invariants

The values of parameters li, ai and Ci,i in (4.1) depend on the choice of
normalization of P r(a, q). The values mentioned in Conjecture 4.2 arise when
the normalization includes only the denominator (q2; q2)r of the colored
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HOMFLY-PT polynomial of the unknot, i.e.

(4.25) P r(a, q) =
Pr(a, q)

(q2; q2)r
.

In this case the values of li, ai and Ci,i are related to reduced and uncolored
HOMFLY-PT homology and superpolynomial. On the other hand, a more
familiar normalization that involves the full unknot polynomial (5.1)

(4.26) P r(a, q) = a−rqr
(a2; q2)r
(q2; q2)r

Pr(a, q)

leads to a twice larger quiver, which encodes information about unreduced
HOMFLY-PT homology, whose Poincaré polynomial is obtained by multi-
plying the (reduced) superpolynomial by a−1q(1 + a2t). Suppose that col-
ored polynomials normalized as in (4.25) lead to a quiver encoded in a ma-
trix C. Multiplying (4.25) by an additional factor a−rqr(a2; q2)r, we can use
(4.12) to deal with the additional q-Pochhammer (a2; q2)r. Introducing new
summation variables αi and βi, such that di = αi + βi, the expression (4.1)
is replaced by another summation which is also of the required form (4.1),
which however involves summations over αi and βi with summands involving
the following factors of q in quadratic powers of summation variables

(4.27) q
∑

i,j
Ci,j(αi+βi)(αj+βj)qα

2
1+···α2

mq2
∑

m−1
i=1 αi+1(d1+···di).

The exponent of q in this expression can be rewritten as

∑

i,j

Ci,jβiβj +
∑

i,j

(Ci,j + 1)αiαj(4.28)

+ 2
∑

i≤j

Ci,jαiβj + 2
∑

i>j

(Ci,j + 1)αiβj .

This expression also encodes a quiver, which is however twice larger than C,
and which decomposes into two parts: one which looks like the original quiver
encoded in C (determined by the first term

∑
i,j Ci,jβiβj), and another one

which looks like the original quiver framed by 1 (as determined by the second
term

∑
i,j(Ci,j + 1)αiαj). These two subquivers are connected by arrows,

whose structure is given by the last two summations in (4.28).
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5. Case studies

In this section we illustrate our claims and conjectures in various examples.
We show how to rewrite generating functions of known colored HOMFLY-
PT polynomials in the form (4.1) and identify corresponding quivers. In
particular this automatically proves the LMOV conjecture (for symmetric
representations) for the knots under consideration. Furthermore, assuming
that generating functions of colored HOMFLY-PT polynomials should be of
the form (4.1), we derive previously unknown formulas for such polynomials
for 62 and 63 knots, as well as for (3, 7) torus knot.

5.1. Unknot

The (unreduced) colored HOMFLY-PT polynomial for the unknot takes the
form

(5.1) P r(a, q) = a−rqr
(a2; q2)r
(q2; q2)r

.

First, consider just the denominator of this expression, which includes a
single q-Pochhammer. This is equivalent to the simpler (reduced) normal-
ization discussed in Section 4.5, and up to the qr factor it agrees with the
extremal (bottom row) unknot HOMFLY-PT polynomial. More generally,
the generating series of the reduced colored HOMFLY-PT polynomials of
the f -framed unknot takes the form

(5.2) P (x) =

∞∑

r=0

xr
qf(r

2−r)

(q2; q2)r
,

which essentially agrees with the motivic generating series associated to a
quiver consisting of one vertex and f loops, shown in Figure 3. These are
prototype and important examples of quivers, and properties of their moduli
spaces were discussed in [15, 16]. The relation of this family of quivers to
LMOV invariants of framed unknot (equivalently extremal invariants of twist
knots, or open topological string amplitudes for branes in C3 geometry) was
presented in [10], and discussed also in [11, 12].

Consider now the generating function of the full unknot invariants (5.1)
— or equivalently open topological string amplitudes for branes in the
resolved conifold geometry. Using (4.14), this generating function can be
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Figure 3: Quiver with one vertex and f loops, encoding extremal framed un-
knot invariants (equivalently open topological string amplitudes for branes
in C3 geometry).

rewritten as

P (x) =

∞∑

r=0

xra−rqr
(a2; q2)r
(q2; q2)r

=

∞∑

d1,d2=0

xd1+d2
(−1)d1ad1−d2qd

2
1+d2

(q2; q2)d1
(q2; q2)d2

(5.3)

=

(
∞∑

d1=0

xd1
(−1)d1ad1qd

2
1

(q2; q2)d1

)(
∞∑

d2=0

xd2
a−d2qd2

(q2; q2)d2

)
=

(xaq; q2)∞
(xq/a; q2)∞

.

From the expression in the first line, or simply taking advantage of (4.28),
we find that the corresponding quiver can be interpreted as a twice larger
quiver associated to (5.2); this larger quiver consists of two disconnected
vertices, with a single loop associated to one vertex (labeled by d1). The final
factorization into the ratio of two quantum dilogarithms means that there
are only two non-zero LMOV (or motivic Donaldson-Thomas) invariants,
which is a well known statement for the unknot [2, 10].

More generally, including the framing dependence (4.5) in (5.3) results
in a quiver with additional loops and arrows, as in (4.7). Contrary to the
unframed case (5.3), such expressions do not factorize into a finite number of
quantum dilogarithms, and they would encode an infinite number of LMOV
invariants.

5.2. Trefoil and cinquefoil knots

We now illustrate how to identify a quiver corresponding to a knot in the
example of the trefoil knot, i.e. the (2, 3) torus knot (also denoted T2,3 or 31),
whose reduced colored HOMFLY-PT polynomials arise by setting t = −1
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in (2.14)

(5.4) Pr(a, q) =
a2r

q2r

r∑

k=0

[
r

k

]
q2k(r+1)

k∏

i=1

(1 − a2q2(i−2)),

with the q-binomial
[
r
k

]
given in (2.15). Using (4.14), the q-binomial together

with the last product in (5.4) take the form

[
r

k

](a2
q2

; q2
)
k

=

k∑

i=0

(q2; q2)r
(
− a2

q2

)i
qi(i−1)

(q2; q2)r−k(q2; q2)i(q2; q2)k−i
.

Introducing

(5.5) r = d1 + d2 + d3, k = d2 + d3, i = d3,

with di ≥ 0, and normalizing Pr(a, q) by (q2; q2)r, the generating function (2.6)
takes the form

P (x) =

∞∑

r=0

Pr(a, q)

(q2; q2)r
xr(5.6)

=
∑

d1,d2,d3≥0

q
∑

i,j
C

T2,3
i,j didj−2d1−3d3(−1)d3a2d1+2d2+4d3

(q2; q2)d1
(q2; q2)d2

(q2; q2)d3

xd1+d2+d3 ,

where

(5.7) CT2,3 =




0 1 1
1 2 2
1 2 3


 .

The expression (5.6) is indeed of the form (4.1), with the corresponding
quiver shown in Figure 1. Vertices of this quiver, as stated in the previous
section, correspond to generators of HOMFLY-PT homology. The diagonal
elements (0, 2, 3) of the matrix C (representing numbers of loops at vertices
of the quiver) indeed agree with homological degrees encoded in the uncol-
ored superpolynomial (2.17), coefficients li = −2, 0,−3 of linear terms in di
in the power of q in (5.6) are given by li = qi − ti, coefficients ai = 2, 2, 4 in
the power of a agree with a-degrees of generators of HOMFLY-PT homology,
and the additional minus sign (−1)d3 is determined by just one generator
with odd t-degree t3 = 3 (which is manifest in Figure 2).
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Let us also discuss the normalization of the colored HOMFLY-PT poly-
nomials by the full unknot invariant, following Section 4.5. Multiplying each
summand in (5.6) proportional to xr by a−rqr(a2; q2)r and taking advantage
of (4.12), we get the generating function

P (x) =

∞∑

r=0

xr
∑

α1+α2+α3+β1+β2+β3=r

qα
2
1+α2

2+α2
3qα2d1+α3(d1+d2)q−α1−α2−α3

(q2;q2)α1
(q2;q2)α2

(q2;q2)α3
(q2;q2)β1

(q2;q2)β2 (q
2;q2)β3

(5.8)

× (−1)d3ad1+d2+3d3q−d1+d2−2d3q2d
2
2+3d2

3+2(d1d2+d1d3+2d2d3)(−a2)α1+α2+α3 ,

where di = αi + βi, i = 1, 2, 3. The form of the corresponding quiver can
be read off from powers of q in this generating function, or simply from the
transformation (4.28) applied to the quiver (5.7). Ultimately we find a quiver
with 6 nodes, whose structure, in the basis ordered as (β1, α1, β2, α2, β3, α3),
is encoded in the matrix of the form

(5.9) C
T2,3

unreduced =




0 0 1 2 1 2
0 1 1 2 1 2
1 1 2 2 2 3
2 2 2 3 2 3
1 1 2 2 3 3
2 2 3 3 3 4



.

As expected, the information about unreduced HOMFLY-PT homology is
encoded in this quiver and the expression (5.8). For the trefoil this homology
has 6 generators (obtained by multiplying the reduced superpolynomial by
a−1q(1 + a2t)), with t-degrees 0, 1, 2, 3, 3, 4, which indeed appear as diagonal
elements in (5.9). More generally, (q, t)-degrees of these six generators are
(−1, 0), (−1, 1), (3, 2), (3, 3), (1, 3), (1, 4), and the differences qi − ti in (4.3)
also match the coefficients of the linear term in the power of q in (5.8), which
are of the form −β1 − 2α1 + β2 − 2β3 − 3α3.

Let us consider a more involved example of the cinquefoil (2, 5) torus
knot (also denoted T2,5 or 51). Its colored HOMFLY-PT polynomials are
obtained as the p = 2 case of (5.15) and their generating function, normalized
by (q2; q2)r, takes the form

P (x) =

∞∑

r=0

xra4rq−4r

(q2; q2)r
(5.10)

×
∑

0≤k2≤k1≤r

[
r

k1

][
k1
k2

]
q2(2r+1)(k1+k2)−2rk1−2k1k2(a2q−2; q2)k1

.
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Rewriting the last q-Pochhammer symbol in this expression using (4.14),
and then taking advantage of (4.19), we get

P (x) =

∞∑

r=0

xr

(q2; q2)r

∑

0≤k2≤k1≤r

∑

0≤α1≤k1

[
r

k1

][
k1
k2

][
k1
α1

](5.11)

× (−1)α1a2α1+4rq2(2r+1)(k1+k2)−2rk1−2k1k2+α2
1−3α1−4r

=

∞∑

r=0

xr

(q2; q2)r

∑

0≤k2≤k1≤r

∑

0≤α1≤k1

∑

0≤α2≤k2

[
r

k1

][
k1
α1

][
k1 − α1

k2 − α2

][
α1

α2

]

× (−1)α1a4r+2α1q−4r+2(2r+1)(k1+k2)−2rk1−2k1k2+α2
1−3α1+2(α1−α2)(k2−α2)

(with the condition α2 ≤ α1, k2 − α2 ≤ k1 − α1). After the change of vari-
ables

(5.12)
d1 = r − k1, d2 = k1 − α1 − (k2 − α2),

d3 = α1 − α2, d4 = k2 − α2, d5 = α2,

we finally get

P (x) =
∑

d1,d2,...,d5≥0

q
∑

i,j
CT2,5

i,j didj
xd1+d2+···+d5

(q2; q2)d1
(q2; q2)d2

· · · (q2; q2)d5

×(5.13)

× (−1)d3+d5a4d1+4d2+6d3+4d4+6d5q−4d1−2d2−5d3−3d5 ,

where the matrix

(5.14) CT2,5 =




0 1 1 3 3
1 2 2 3 3
1 2 3 4 4
3 3 4 4 4
3 3 4 4 5




represents the quiver corresponding to the (2, 5) torus knot.

5.3. (2, 2p + 1) torus knots

Colored HOMFLY-PT polynomials for (2, 2p + 1) torus knots (also denoted
T2,2p+1) can be obtained as the t = −1 specialization of the following colored
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superpolynomials, determined in [43, 48]

P
T2,2p+1

Sr (a, q, t) = a2prq−2pr
∑

0≤kp≤···≤k2≤k1≤r

[
r

k1

][
k1
k2

]
· · ·

[
kp−1

kp

]
×

× q2
∑

p

i=1((2r+1)ki−ki−1ki)t2(k1+k2+···+kp)
k1∏

i=1

(
1 + a2q2(i−2)t

)
.(5.15)

These expressions can be transformed to the form (4.1) recursively, general-
izing the step between trefoil and cinquefoil knots presented in the previous
section. In order to determine the form of the generating function (4.1) and
the quiver for arbitrary (2, 2p + 1) torus knot, we analyze first the following
three modifications in the expression for colored HOMFLY-PT polynomials,
when p is changed to p + 1

a2prq−2pr 7→ a2(p+1)rq−2(p+1)r(5.16)

∑

0≤kp≤···≤k1≤r

[
r

k1

]
· · ·

[
kp−1

kp

]
7→

∑

0≤kp+1≤···≤k1≤r

[
r

k1

]
· · ·

[
kp
kp+1

](5.17)

q2
∑

p

i=1[(2r+1)ki−ki−1ki] 7→ q2
∑

p

i=1[(2r+1)ki−ki−1ki]+2(2r+1)kp+1−2kpkp+1 .(5.18)

These transformations generalize the relation between trefoil and cinquefoil
knots, which we discussed in Section 5.2, and which corresponds to changing
p = 1 to p = 2.

The first modification (5.16) only affects the change of variables leading
to the generating function of the quiver, but not the form of the quiver.

In the second transformation (5.17) a new variable kp+1 and an addi-

tional q-binomial
[ kp

kp+1

]
are introduced. Let us discuss first the special p = 1

case of trefoil and cinquefoil knots. As already analyzed above, in this case,
in the generating series for the cinquefoil knot, we split

[ kp

kp+1

]
≡
[
k1

k2

]
into[ kp−αp

kp+1−αp+1

][
αp

αp+1

]
and changed variables accordingly

d1 = r − k1 d1 = r − k1

d2 = k1 − α1 7−→ d2 = k1 − α1 − (k2 − α2)

d3 = α1 d3 = α1 − α2(5.19)

d4 = k2 − α2

d5 = α2.
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This is equivalent to the following modification of summation variables in
the quiver generating series

r = d1 + d2 + d3 r = d1 + (d2 + d4) + (d3 + d5)

k1 = d2 + d3 7−→ k1 = (d2 + d4) + (d3 + d5)(5.20)

α1 = d3 α1 = (d3 + d5)

which means that the matrix representing the cinquefoil quiver is obtained
from the one for the trefoil quiver by copying the first and the second col-
umn and row, respectively, into the third and the fourth column and row.
In addition, changing

[
k1

k2

]
into

[ kp−αp

kp+1−αp+1

][
αp

αp+1

]
introduces a new term in∑

i,j Ci,jdidj of the form 2(α1 − α2)(k2 − α2) = 2d3d4, which means that the
matrix elements C3,4 and C4,3 are increased by 1.

Generalizing the above transformation and splitting
[ kp

kp+1

]
into[ kp−αp

kp+1−αp+1

][
αp

αp+1

]
for arbitrary p, the relation (5.20) is replaced by

r = d1 + d2 + · · · + d2p + d2p+1 r = d1 + d2 + · · · + (d2p + d2p+2)

(5.21)

+ (d2p+1 + d2p+3)

k1 = d2 + · · · + d2p + d2p+1 k1 = d2 + · · · + (d2p + d2p+2)

+ (d2p+1 + d2p+3)

k2 = d4 + · · · + d2p + d2p+1 k2 = d4 + · · · + (d2p + d2p+2)

+ (d2p+1 + d2p+3)

...
...

kp = d2p + d2p+1 7−→ kp = (d2p + d2p+2) + (d2p+1 + d2p+3)

α1 = d3 + d5 + · · · + d2p+1 α1 = d3 + d5 + · · · + (d2p+1 + d2p+3)

α2 = d5 + · · · + d2p+1 α2 = d5 + · · · + (d2p+1 + d2p+3)

...
...

αp = d2p+1 αp = (d2p+1 + d2p+3)

so that columns and rows of number 2p and 2p + 1 are copied respectively
to those of number 2p + 2 and 2p + 3, and matrix elements C2p+1,2p+2 and
C2p+2,2p+1 are increased by 1.

Finally, the third transformation (5.18) modifies the change of variables
and adds 4rkp+1 − 2kpkp+1 to the sum

∑
i,jCi,jdidj . In the special case of
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p = 1 we have

4rk2 − 2k1k2 = 4(r − k1)k2 + 2(k1 − k2)k2 + 2k22(5.22)

= 4d1 (d4 + d5) + 2 (d2 + d3) (d4 + d5) + 2 (d4 + d5)
2 ,

which means that C1,4, C1,5, C4,5 (and transposed matrix elements) and C4,4,
C5,5 increase by 2, and C2,4, C2,5, C3,4 and C3,5 (and transposed elements)
increase by 1. For general p

4rkp+1 − 2kpkp+1 = 4(r − kp)kp+1 + 2(kp − kp+1)kp+1 + 2k2p+1

= 4 (d1 + · · · + d2p−1) (d2p+2 + d2p+3)

+ 2 (d2p + d2p+1) (d2p+2 + d2p+3) + 2 (d2p+2 + d2p+3)
2 ,(5.23)

which means increasing C1,2p+2, . . ., C2p−1,2p+2, C1,2p+3, . . ., C2p−1,2p+3,
C2p+2,2p+3 (and transposed elements) and C2p+2,2p+2, C2p+3,2p+3 by 2, as
well as increasing C2p,2p+2, C2p+1,2p+2, C2p,2p+3, C2p+1,2p+3 (and transposed
elements) by 1.

To sum up, once we know a matrix CT2,2p+1 representing a quiver for
the (2, 2p + 1) torus knot, the matrix CT2,2p+3 for a quiver associated to the
(2, 2p + 3) torus knot is obtained by copying columns and rows of the number
2p and 2p + 1 to 2p + 2 and 2p + 3 respectively, and increasing elements in
the last two columns (and rows) by 2, except for C2p,2p+2, C2p,2p+3, and
C2p+1,2p+3 (and transposed elements) that are increased by 1. The solution
of this recursion, for an arbitrary (2, 2p + 1) torus knot, takes the form

(5.24) CT2,2p+1 =




F0 F1 F2 F3 · · · Fp−1 Fp

F T
1 D1 U2 U3 · · · Up−1 Up

F T
2 UT

2 D2 U3 · · · Up−1 Up

F T
3 UT

3 UT
3 D3 · · · Up−1 Up

...
...

...
...

. . .
...

...
F T
p−1 UT

p−1 UT
p−1 UT

p−1 · · · Dp−1 Up

F T
p UT

p UT
p UT

p · · · UT
p Dp




with the following block entries

F0 = [0] , Fk =
[

2k − 1 2k − 1
]
,

Dk =

[
2k 2k
2k 2k + 1

]
, Uk =

[
2k − 1 2k − 1

2k 2k

]

The homological diagram for the (2, 2p + 1) torus knot consists of a sin-
gle zig-zag, which is a building block of homologies for more complicated
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knots (as stated in Conjecture 4.3), and the above matrix represents the
corresponding quiver. It is also interesting that, while increasing p, all pre-
viously determined entries of the matrix (5.24) remain unchanged, so that
it makes sense to consider the limit p → ∞ of an infinite quiver.

Furthermore, from (5.21) we find parameters that determine (4.1), which
are indeed consistent with our conjectures. In particular α1 = d3 + d5 +
· · · + d2p+1 gives rise to the minus sign (−1)α1 in (4.1), which is consistent
with the sign (−1)

∑
i
tidi determined by homological degrees ti, encoded in

the diagonal of (5.24)

(5.25) (ti) = (0, 2, 3, 4, 5, . . . , 2p, 2p + 1).

In addition, the parameters ai and li (and so qi) in (4.1) are determined by

∑

i

aidi = 2pr + 2α1 = 2p(d1 + d2 + d4 + · · · + d2p)(5.26)

+ 2(p + 1)(d3 + d5 + · · · + d2p+1),∑

i

lidi = −2pr + 2(k1 + k2 + · · · + kp) − 3α1(5.27)

= −2pd1 + 2(1 − p)d2 +
(
2(1 − p) − 3

)
d3+

+ 2(2 − p)d4 +
(
2(2 − p) − 3

)
d5+

...

+ 2(p− 1 − p)d2(p−1) +
(
2(p− 1 − p) − 3

)
d2(p−1)+1+

+ 2(p− p)d2p +
(
2(p− p) − 3

)
d2p+1.

As a confirmation, for trefoil and cinquefoil knots, restricting (5.24) to
p = 1 and p = 2, we reproduce respectively (5.7) and (5.14)

(5.28)

CT2,3 =

[
F0 F1

F T
1 D1

]
=




0 1 1
1 2 2
1 2 3




CT2,5 =




F0 F1 F2

F T
1 D1 U2

F T
2 UT

2 D2


 =




0 1 1 3 3
1 2 2 3 3
1 2 3 4 4
3 3 4 4 4
3 3 4 4 5



.
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5.4. (2, 2p) torus links

In general, the analysis of HOMFLY-PT homology of links is more involved.
However if all components of a link are colored by the same representation,
they have properties analogous to knots. In particular colored HOMFLY-PT
polynomials for (2, 2p) torus links, with all components colored by the same
symmetric representation Sr, take the form [39]

P
T2,2p

[r] (a, q) = a2prq−2pr
∑

0≤s1≤···≤sp≤sp+1=r

(a2q−2; q2)sp(q2; q2)r−s1(5.29)

×

p∏

i=1

q4si(−q)−2siq4rsi−2sisi+1

[
si+1

si

]
.

This expression corresponds to the so-called ”finite-dimensional” version,
which is a suitably normalized reduced colored HOMFLY-PT polynomial,
that is actually a polynomial. It can be also rewritten as

P
T2,2p

[r] (a, q) = a2prq−2pr
∑

0≤kp≤···≤k1≤k0=r

[
r

k1

][
k1
k2

]
· · ·

[
kp−1

kp

]
(5.30)

× q2
∑

p

i=1((2r+1)ki−ki−1ki)(a2q−2; q2)k1
(q2; q2)r−kp

.

Following analogous manipulations as in Section 5.3 we find that this ex-
pression can be further rewritten in the form (4.1), with the corresponding
quiver encoded in the matrix

(5.31) CT2,2p =




F0 F1 F2 F3 · · · Fp−1 F e
p

F T
1 D1 U2 U3 · · · Up−1 U e

p

F T
2 UT

2 D2 U3 · · · Up−1 U e
p

F T
3 UT

3 UT
3 D3 · · · Up−1 U e

p
...

...
...

...
. . .

...
...

F T
p−1 UT

p−1 UT
p−1 UT

p−1 · · · Dp−1 U e
p

F eT
p U eT

p U eT
p U eT

p · · · U eT
p De

p




.

Apart from the last column and row, the block entries take the form

(5.32) F0 =

[
0 0
0 1

]
, Fk =

[
2k − 1 2k − 1 2k − 1 2k − 1

2k 2k 2k 2k

]
,
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and

(5.33)

Dk =




2k + 1 2k + 1 2k 2k + 1
2k + 1 2k + 2 2k 2k + 1

2k 2k 2k 2k
2k + 1 2k + 1 2k 2k + 1


 ,

Uk =




2k 2k 2k 2k
2k + 1 2k + 1 2k + 1 2k + 1
2k − 1 2k − 1 2k − 1 2k − 1

2k 2k 2k 2k


 .

In addition, the terms in the last column and row take the form
(5.34)

F e
p =

[
2p− 1 2p− 1
2p− 1 2p− 1

]
, De

p =

[
2p + 1 2p

2p 2p

]
, U e

p =




2p 2p
2p 2p

2p− 1 2p− 1
2p− 1 2p− 1


 .

The matrix (5.31), being assigned to a link with two components, in fact
represents a combination of two (appropriately shifted) zig-zags (5.24).

Furthermore, the linear terms that determine (4.1) take the form
(5.35)

(−1)
∑

i
tidi = (−1)(d2+d3)+(d6+d7)+···+(d4p−2+d4p−1)+2(d4+d8+···+d4p),

∑

i

aidi = 2p
(
(d1 + d2) + (d5 + d6) + · · · + (d4(p−1)−3 + d4(p−1)−2)

+ d4p−3 + d4p−2 + d4p
)

+ 2(p + 1)
(
(d3 + d4) + (d7 + d8)

+ · · · + (d4(p−1)−1 + d4(p−1)) + d4p−1

)
,

∑

i

lidi = (−2p)d1 + (1 − 2p)d2 + (−1 − 2p)d3 + (−2p)d4

+ (2 − 2p)d5 + (3 − 2p)d6 + (1 − 2p)d7 + (2 − 2p)d8

+ (4 − 2p)d9 + (5 − 2p)d10 + (3 − 2p)d11 + (4 − 2p)d12
...

− 4d4(p−1)−3 − 3d4(p−1)−2 − 5d4(p−1)−1 − 4d4(p−1)

− 2d4p−3 − 1d4p−2 − 3d4p−1.

Specializing (5.31) and (5.35) we find, for example, that the generating
function for the Hopf link (p = 1) is determined by
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CT2,2 =

[
F0 F e

1

F eT
1 De

1

]
=




0 0 1 1
0 1 1 1
1 1 3 2
1 1 2 2


(5.36)

∑

i

tidi = d2 + d3,
∑

i

aidi = 2d1 + 2d2 + 4d3 + 2d4,

∑

i

lidi = −2d1 − d2 − 3d3,

and for the T2,4 link (p = 2) by

CT2,4 =




F0 F1 F e
2

F T
1 D1 U e

2

F eT
2 U eT

2 De
2


 =




0 0 1 1 1 1 3 3
0 1 2 2 2 2 3 3
1 2 3 3 2 3 4 4
1 2 3 4 2 3 4 4
1 2 2 2 2 2 3 3
1 2 3 3 2 3 3 3
3 3 4 4 3 3 5 4
3 3 4 4 3 3 4 4




,(5.37)

∑

i

tidi = d2 + d3 + d6 + d7,

∑

i

aidi = 4d1 + 4d2 + 6d3 + 6d4 + 4d5 + 4d6 + 6d7 + 4d8,

∑

i

lidi = −4d1 − 3d2 − 5d3 − 4d4 − 2d5 − d6 − 3d7.

The matrix CT2,2 for the Hopf link represents two zig-zags, respectively of
length 3 (which is identical to a matrix for the trefoil knot (5.7)) and of length
1 (representing a single homology generator of t-degree 1). The matrix CT2,4

for the T2,4 link consists of one zig-zag of length 5 (identical to a matrix for
the 51 knot (5.14)), and another zig-zag of length 3 (identical to a matrix
for the trefoil knot, but with all elements shifted by 1, with (1, 3, 4) on the
diagonal).

5.5. (3, p) torus knots

We discuss now torus knots from the (3, p) family, which enables us to
present other interesting aspects of the duality with quivers. Properties of
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these knots are much more involved than for (2, 2p + 1) torus knots, in par-
ticular their homology is thick. General formulas for colored superpolynomi-
als for arbitrary (3, p) torus knot are unknown. Although there are explicit
expressions for the colored HOMFLY-PT polynomials of arbitrary colors
for torus knots, via Rosso-Jones formula [50], the formulas involve different
plethysm coefficients, that are changing with the colors. In such a way they
are not suitable for obtaining explicit expressions for arbitrary symmetric
color and consequently for obtaining the explicit generating function of col-
ored HOMFLY-PT polynomials for general torus knots that we need for
our main Conjecture 4.1. However colored superpolynomials for the special
cases of (3, 4) and (3, 5) torus knots (equivalently, respectively, 819 and 10124
knots) were determined in [39]. In what follows we show, first, that these
formulas can be rewritten in the general quiver form, and we identify cor-
responding quivers. Second, we show that such quivers are determined not
uniquely, but only up to a permutation of some of their entries, which indi-
cates some symmetry of the corresponding quiver moduli spaces. Further-
more, by simply assuming that there should exist a corresponding quiver, we
find explicit formulas for colored HOMFLY-PT polynomials of (3, 7) torus
knot, which have not been known before, and which nicely illustrate the
power of our formalism.

Here we focus only on (3, p) knots, rather than links, so p cannot be a
multiple of 3. The case of p = 1 is the framed unknot, and p = 2 represents
the trefoil, already analyzed in Section 5.2. Therefore the first nontrivial
examples involve p = 3, 4 and 7. Moreover, as computations become more
involved and technical, in this section we only consider extremal (bottom
row) invariants (4.4); with some patience, and taking advantage of structural
properties presented in Conjecture 4.3, these results can be generalized to
the full a-dependence.

Let us consider the (3, 4) torus knot first. Its quadruply-graded Poincaré
polynomial determined in [39] reads

Pr(a,Q, tr, tc) = a6rQ6rt6r
2

c t6rr

(5.38)

×
r∑

α=0

r∑

β=α

r∑

γ=β

r∑

j=γ

a2(j−γ)

[
β

α

]

t−2
c

[
γ

β

]

t−2
c

[
j

γ

]

t−2
c

[
r

j

]

t−2
c

×Q−4α−4β+4γ−8jt−2(α2+β2+γ2)−2(j−γ)(α+β+γ)−(j−γ)2

c t−2(α+β+γ)−(j−γ)
r

×
(
−

Q2

a2trtc
; tc

−2
)
j−γ

(
− a2Q2t3rt

2r+1
c ; t2c

)
j
,
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where now we denote
[
β
α

]
t−2
c

= (t−2
c ;t−2

c )β
(t−2

c ;t−2
c )α(t

−2
c ;t−2

c )β−α

. Upon the identification

of variables (2.19), and extracting the terms at the lowest powers of a, we
find that that extremal (bottom row) colored HOMFLY-PT polynomials for
the (3, 4) torus knot take form

P bottom
r (q)

(5.39)

= q6r
2

r∑

α=0

r∑

β=α

r∑

γ=β

r∑

j=γ

(q2; q2)r q
−2α(β−γ+j+1)−2β(j+1)+2γ−2j(r+2)

(q2; q2)α(q2; q2)β−α(q2; q2)γ−β(q2; q2)j−γ(q2; q2)r−j
,

while its uncolored HOMFLY-PT homology has 5 generators in the bottom
row, whose q-degrees and t-degrees are

(q1, q2, q3, q4, q5) = (−6,−2, 0, 2, 6),

(t1, t2, t3, t4, t5) = (0, 2, 4, 6, 8).
(5.40)

Manipulating the expression (5.39) we find that the corresponding quiver is
represented by the following matrix

(5.41) CT3,4 =




0 1 2 3 5
1 2 3 3 5
2 3 4 4 5
3 3 4 4 5
5 5 5 5 6




This quiver, together with q-degrees and t-degrees of 5 bottom row gen-
erators in (5.40), encode all extremal (bottom row) colored HOMFLY-PT
polynomials for the (3, 4) torus knot, which can be reconstructed from (4.4).
Moreover, simply the fact that we are able to identify this quiver proves the
LMOV conjecture for all symmetric representations for this knot. Further-
more, the matrix CT3,4 captures the structure of the bottom row generators
of HOMFLY-PT homology for the (3, 4) torus knot, which consists of one
zig-zag (the same as for the (2, 7) torus knot) and one diamond. The part
of the matrix with (0, 2, 4, 6) on the diagonal represents the bottom row of
the zig-zag, and an additional 4 on the diagonal is the bottom row of the
diamond (4.8).

The next knot in this series is the (3, 5) torus knot. Its HOMFLY-PT
homology and colored superpolynomials were also considered in [39]. For
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brevity, we just recall that colored superpolynomials for this knot take form

Pr(a, q, t) =

r∑

j=0

j∑

k1=0

k1∑

k2=0

k2∑

k3=0

k3∑

k4=0

r−j∑

i=0

a8r
(
t

q

)2(i+2j−k1−k2−k3−k4+2r)

(5.42)

× q−2(k1k2 + k2k3 + k3k4 + 2(k1 + k2 + k3 + k4) + r + (k1 + k2 + k3 + k4)r − 2r2 − i(2 + k1 + r) − j(5 + k2 + k3 + k4 + 2r)

×
[
j
k1

][
k1

k2

][
k2

k3

][
k3

k4

][
r−j
i

]
(−a2tq−2; q2)r−j(−a2q−2−2j+2r; q2)k4−j(−a2q2rt3; q2)r−j.

Setting t = −1 and extracting coefficients of minimal powers of a reveals the
form of extremal (bottom row) colored HOMFLY-PT polynomials

P bottom
r (q) =

r∑

j=0

j∑

k1=0

k1∑

k2=0

k2∑

k3=0

k3∑

k4=0

r−j∑

i=0

(q2; q2)r

(5.43)

× q−2(k2+k3+k4)−2(k1+k1k2+k2k3+k3k4)−6r−2(k1+k2+k3+k4)r+4r2+2i(1+k1+r)+2j(3+k2+k3+k4+2r)

(q2;q2)i(q2;q2)j−k1
(q2;q2)k1−k2

(q2;q2)k2−k3
(q2;q2)k3−k4

(q2;q2)k4
(q2;q2)r−j−i

.

Furthermore, the HOMFLY-PT homology for (3, 5) torus knot has 7 gener-
ators in the bottom row, with the following q-degrees and t-degrees

(q1, q2, . . . , q7) = (−8,−4,−2, 0, 2, 4, 8),

(t1, t2, . . . , t7) = (0, 2, 4, 4, 6, 6, 8).
(5.44)

Manipulating the above expressions we find, surprisingly, that there are two
quivers which reproduce the same extremal (bottom row) colored HOMFLY-
PT polynomials via (4.4). These two quivers are very similar, and their ma-
trices differ only by a permutation of a few entries. They take the following
form; the permuted entries are underlined in the second matrix

(5.45) CT3,5 =




0 1 2 3 4 5 7
1 2 3 3 5 5 7
2 3 4 4 5 5 7
3 3 4 4 6 5 7
4 5 5 6 6 6 7
5 5 5 5 6 6 7
7 7 7 7 7 7 8




C̃T3,5 =




0 1 2 3 4 5 7
1 2 3 3 5 5 7
2 3 4 4 5 5 6
3 3 4 4 6 5 7
4 5 5 6 6 7 7
5 5 5 5 7 6 7
7 7 6 7 7 7 8




Again let us stress, that the quiver represented by either of the above ma-
trcies, together with q-degrees and t-degrees in (5.44), encode all extremal
colored HOMFLY-PT polynomials for (3, 5) torus knot, which can be re-
constructed from (4.4). The fact that we are able to identify these quivers
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also proves the LMOV conjecture for all symmetric representations for this
knot.

The next knot we consider is the (3, 7) torus knot. Its colored superpoly-
nomials, or even explicit, closed-form expressions of HOMFLY-PT polyno-
mials colored by arbitrary symmetric representations, have not been known
before. However, based on the structure (4.4), and by comparing the results
with the Rosso-Jones formula for the first several symmetric representations,
we are able to reconstruct the corresponding quiver, which then encodes
HOMFLY-PT polynomials colored by arbitrary symmetric representations,
and corresponding integral LMOV invariants. The homology of the bottom
row of the (3, 7) torus knot has 12 generators with the following q-degrees
and t-degrees

(q1, q2, . . . , q12) = (−12,−8,−6,−4,−2, 0, 0, 2, 4, 6, 8, 12),

(t1, t2, . . . , t12) = (0, 2, 4, 4, 6, 6, 8, 8, 8, 10, 10, 12),
(5.46)

and we find that the corresponding quiver is encoded in a matrix

(5.47) CT3,7 =




0 1 2 3 4 5 5 6 7 8 9 11
1 2 3 3 5 5 6 7 7 9 9 11
2 3 4 4 5 6 6 7 8 9 10 11
3 3 4 4 5 5 7 7 7 9 9 11
4 5 5 5 6 6 7 7 8 9 10 11
5 5 6 5 6 6 8 7 7 9 9 11
5 6 6 7 7 8 8 8 9 9 10 11
6 7 7 7 7 7 8 8 8 9 10 11
7 7 8 7 8 7 9 8 8 9 9 11
8 9 9 9 9 9 9 9 9 10 10 11
9 9 10 9 10 9 10 10 9 10 10 11
11 11 11 11 11 11 11 11 11 11 11 12




.

In this case we also find other quivers, whose matrices differ from the above
one by permutation of several entries, and yet encode the same generating
series (4.4).

5.6. Twist knots 41, 61, 81, . . .

Another infinite family of knots that we consider are twist knots, which
are labelled by an integer p. Negative values of this parameter, i.e. p =
−1,−2,−3, . . . , correspond to 41, 61, 81, . . . knots; these are simply (2|p| +
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2)1 knots, which are also denoted TK2|p|+2. The colored HOMFLY-PT poly-
nomials for these knots are determined in [48, 51] and they take the form

P
TK2|p|+2

r (a, q) =
∑

0≤k|p|≤···≤k2≤k1≤r

[
r

k1

][
k1
k2

]
· · ·

[
k|p|−1

k|p|

]

× a2
∑|p|

i=1 kiq2
∑|p|

i=1(k
2
i−ki)(a−2q2; q−2)k1

(a−2q−2r; q−2)k1
.(5.48)

Following manipulations similar to the previous examples, we find that the
quiver corresponding to a given p < 0, i.e. to a given TK2|p|+2 knot, is en-
coded in the matrix

(5.49) CTK2|p|+2 =




F0 F F F · · · F F
F T D1 R1 R1 · · · R1 R1

F T RT
1 D2 R2 · · · R2 R2

F T RT
1 RT

2 D3 · · · R3 R3
...

...
...

...
. . .

...
...

F T RT
1 RT

2 RT
3 · · · D|p|−1 R|p|−1

F T RT
1 RT

2 RT
3 · · · RT

|p|−1 D|p|




where

(5.50) F0 = [0] F =
[

0 −1 0 −1
]

and

(5.51)

Dk =




2k 2k − 2 2k − 1 2k − 3
2k − 2 2k − 3 2k − 2 2k − 4
2k − 1 2k − 2 2k − 1 2k − 3
2k − 3 2k − 4 2k − 3 2k − 4




Rk =




2k 2k − 2 2k − 1 2k − 3
2k − 1 2k − 3 2k − 2 2k − 4

2k 2k − 1 2k − 1 2k − 3
2k − 2 2k − 3 2k − 2 2k − 4


 .

The element F0 represents a zig-zag of length 1, corresponding to a single
homology generator, while the diagonal blocks Dk represent (up to a permu-
tation of homology generators, and an overall shift) diamonds (4.8). Note
that in this case it also makes sense to consider the −p → ∞ limit, and the
corresponding infinite quiver.
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The other parameters that determine the form of the generating series
(4.1) for the TK2|p|+2 knot take the form

(−1)
∑

i
pidi = (−1)(d3+d4)+(d7+d8)+···+(d4|p|−1+d4|p|)+2(d5+d9+···+d4|p|+1),∑

i

aidi = 2d2 + 0d3 + 0d4 − 2d5 + 4d6 + 2d7 + 2d8 + 0d9(5.52)

...

+ 2|p|d4|p|−2 + (2|p| − 2) d4|p|−1 + (2|p| − 2) d4|p|

+ (2|p| − 4) d4|p|+1,∑

i

lidi = −2d2 − d3 + d4 + 2d5 − 4d6 − 3d7 − 1d8 + 0d9(5.53)

...

− 2|p|d4|p|−2 + (1 − 2|p|) d4|p|−1 + (3 − 2|p|) d4|p|

+ (4 − 2|p|) d4|p|+1.

For example, the quiver for the p = −1 case, i.e. the figure-eight knot 41,
whose homology diagram is shown in Figure 2, is represented by the matrix

(5.54) CTK4 =

[
F0 F
F T D1

]
=




0 0 −1 0 −1
0 2 0 1 −1
−1 0 −1 0 −2
0 1 0 1 −1
−1 −1 −2 −1 −2



.

This matrix is consistent with Conjecture 4.3: the top left entry 0 represents
the zig-zag of length 1, and the remaining diagonal block of size 4 × 4 rep-
resents a diamond and agrees (up to a permutation of homology generators,
and corresponding rows and columns) with (4.8) for k = −2.

For p = −2, i.e. the 61 knot, the quiver is represented by the following
matrix



✐

✐

“4-Sulkowski” — 2020/5/15 — 12:32 — page 1892 — #44
✐

✐

✐

✐

✐

✐

1892 Kucharski, Reineke, Stošić, and Su lkowski

(5.55) CTK6 =




F0 F F
F T D1 R1

F T RT
1 D2


 =




0 0 −1 0 −1 0 −1 0 −1
0 2 0 1 −1 2 0 1 −1
−1 0 −1 0 −2 1 −1 0 −2
0 1 0 1 −1 2 1 1 −1
−1 −1 −2 −1 −2 0 −1 0 −2
0 2 1 2 0 4 2 3 1
−1 0 −1 1 −1 2 1 2 0
0 1 0 1 0 3 2 3 1
−1 −1 −2 −1 −2 1 0 1 0




.

Note that in these examples some entries of matrices C are negative. In
order to have a proper quiver representation theory interpretation, we can
change the framing (4.7) to shift all values of these matrices by a constant
and make them nonnegative.

5.7. Twist knots 31, 52, 72, 92, . . .

Another class of twist knots is characterized by p > 0, which are respectively
31, 52, 72, 92, . . . knots, which have 2p + 1 crossings, and are also denoted
TK2p+1. Their superpolynomials take the form [51]

P
TK2p+1

Sn−1 (a, q, t) =
∑

0≤s1≤···≤sp<∞

(−t)−n+1q2sp
(−a2tq−2; q2)sp

(q2; q2)sp
(5.56)

× (q2−2n; q2)sp(−a2t3q2n−2; q2)sp

×

p−1∏

i=1

q4si(a2t2)siq2si(si−1)

[
si+1

si

]
.

Here we can illustrate another subtlety, which is the fact that sometimes
— in particular for TK2p+1 knots — more general quivers can be assigned
to a given knot, which are however not consistent with our conjectures. For
example, setting p = 1 and t = −1 in (5.56), we find the following represen-
tation of the colored HOMFLY-PT polynomials for the trefoil knot

(5.57) P TK3

Sr (a, q) =
∑

0≤s1≤r

[
r

s1

]
(−1)s1q−2s1r+s21+s1(a2q−2; q2)s1(a

2q2r; q2)s1 .
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This expression is equal to (5.4), however its naive rewriting in the form
(4.1) leads to the quiver represented by the following matrix

(5.58)




0 −1 0 −1 0
−1 −1 0 −1 0
0 0 2 1 2
−1 −1 1 0 1
0 0 2 1 3



.

The last three rows and columns of this matrix contain the trefoil quiver
matrix (5.7) that we found earlier, however now we find two additional rows
and columns. In fact the same issue arises for all twist knots TK2p+1 in
this series. Moreover, the structure of terms with linear powers of di in the
generating series that determines such enlarged quivers, is also not quite
consistent with the structure of the parameters in (4.1) and their relation
to homological degrees. Nonetheless, we can get rid of these additional rows
and columns, at the same time fixing terms with linear powers of di, by
taking advantage of the following lemma.

Lemma 5.1. Consider a generating function (not necessarily related to
a knot) of the form (4.1), determined by a quiver C of size n× n. Up to
appropriate adjustment of terms with with linear powers of di, the same
generating function is assigned to the modified quiver

(5.59) C+ =




1 + α0 α0 α1 α2 · · · αn−1 αn

α0 α0 α1 α2 · · · αn−1 αn

α1 α1

α2 α2
...

... C
αn−1 αn−1

αn αn




for every α0, α1, . . . , αn ∈ Z.

Proof. Note that, for m ≥ 1, using (4.14), we have

(5.60) 0 = (1; q−2)m =
∑

a+b=m

(−1)bq−b2+b−2ab (q2; q2)m
(q2; q2)a(q2; q2)b

.



✐

✐

“4-Sulkowski” — 2020/5/15 — 12:32 — page 1894 — #46
✐

✐

✐

✐

✐

✐

1894 Kucharski, Reineke, Stošić, and Su lkowski

It follows that, for arbitrary α0, α1, . . . , αn, d1, . . . , dn ∈ Z,

1 =
∑

m≥0

q(α0+1)m2+2(α1d1+α2d2+···+αndn)mxm
(1; q−2)m
(q2; q2)m

(5.61)

=
∑

a,b≥0

(−1)bq−b2+b−2ab+(α0+1)(a+b)2+2(α1d1+α2d2+···+αndn)(a+b)

×
xa+b

(q2; q2)a(q2; q2)b
.

Therefore, if PC is a generating function determined by a quiver C, then

PC+ =
∑

a,b≥0

q−b2+b−2ab+(α0+1)(a+b)2+2(α1d1+α2d2+···+αndn)(a+b)(5.62)

×
(−1)bxa+b

(q2; q2)a(q2; q2)b
PC

is a generating function determined by a quiver C+ in (5.59), and from
(5.61) we clearly see that PC+ = PC , which completes the proof. □

Having in mind the above subtlety, in order to find a quiver representa-
tion consistent with our conjectures, we rewrite the colored HOMFLY-PT
polynomials (5.56) in the form

(5.63) P TK2p+1
r (a, q) =

∑

0≤kp≤···≤k2≤k1≤r

[
r

k1

][
k1
k2

]
· · ·

[
kp−1

kp

]

× a2
∑

p

i=2 kiq−2k1r+k2
1+k1+2

∑
p

i=2(k
2
i−ki)(a2q−2; q2)k1

(a2q2r; q2)k1
.

Following manipulations analogous to the previous sections, we now find
that the generating series (4.1) for TK2p+1 knot is determined by a quiver
whose matrix takes the form

(5.64) CTK2p+1 =




D1 R1 R1 R1 · · · R1 R1

RT
1 D2 R2 R2 · · · R2 R2

RT
1 RT

2 D3 R3 · · · R3 R3

RT
1 RT

2 RT
3 D4 · · · R4 R4

...
...

...
...

. . .
...

...
RT

1 RT
2 RT

3 RT
4 · · · Dp−1 Rp−1

RT
1 RT

2 RT
3 RT

4 · · · RT
p−1 Dp
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where the block elements in the first row and column are

(5.65) D1 =




2 1 2
1 0 1
2 1 3


 R1 =




1 2 1 2
0 2 0 1
1 3 2 3


 .

and all other elements, for k > 1, take the form

(5.66)

Dk =




2k − 3 2k − 2 2k − 3 2k − 2
2k − 2 2k 2k − 1 2k
2k − 3 2k − 1 2k − 2 2k − 1
2k − 2 2k 2k − 1 2k + 1


 .

Rk =




2k − 3 2k − 2 2k − 3 2k − 2
2k − 1 2k 2k − 1 2k
2k − 2 2k 2k − 2 2k − 1
2k − 1 2k + 1 2k 2k + 1


 .

In this case D1 represents a zig-zag of the same form as for the trefoil knot
(5.7), and the Dk (for k > 1) represent (up to a permutation of homology
generators and an overall constant shift) the diamonds (4.8).

The other parameters that determine (4.1), now with vertices of a quiver
(or homology generators), and thus also the summation variables di num-
bered from 3 to 4p + 1 (after removing d1 and d2 using the above lemma),
take the form

(−1)
∑4p+1

i=3 tidi = (−1)(d3+d4)+(d7+d8)+···+(d4p−1+d4p)+2(d5+d9+···+d4p+1)

4p+1∑

i=3

aidi = 2(d3 + d4) + 4d5 + 2d6 + 4d7 + 4d8 + 6d9(5.67)

+ 4d10 + 6d11 + 6d12 + 8d13
...

+ 2(p− 1)d4p−2 + 2pd4p−1 + 2pd4p + 2(p + 1)d4p+1

4p∑

i=2

lidi = −2d4 − 3d5 − d6 − 2d7 − 4d8 − 5d9(5.68)

− 3d10 − 4d11 − 6d12 − 7d13
...

+ (1 − 2p)d4p−2 + (2 − 2p)d4p−1 + (−2p)d4p

+ (−1 − 2p)d4p+1.
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For example, for p = 1, which represents simply the trefoil knot, the
quiver matrix (5.64) consists only of the element D1 in (5.65), and up to
permutation of vertices it is equivalent to (5.7). For p = 2, i.e. for the knot
52, from (5.64) we obtain a quiver represented by the matrix

(5.69) CTK5 =



D1 R1 R1

RT
1 D2 R2

RT
1 RT

2 D3


 =




2 1 2 1 2 1 2
1 0 1 0 2 0 1
2 1 3 1 3 2 3
1 0 1 1 2 1 2
2 2 3 2 4 3 4
1 0 2 1 3 2 3
2 1 3 2 4 3 5




.

5.8. 62 and 63 knots

Finally we discuss knots with six crossings, 62 and 63 (the third prime knot
with six crossings is the twist knot 61, whose quiver we already identified
in (5.55)). Explicit expressions for colored polynomials for those knots have
not been known before. Assuming that they are consistent with our conjec-
tures, we are able to determine such expressions, as being encoded in the
corresponding quivers. This again shows the power of our formalism.

Let us consider 62 knot first. Its uncolored HOMFLY-PT homology has
11 generators, which have the following degrees

(a1, . . . , a11) = (0, 2, 2, 0, 2, 2, 2, 4, 4, 2, 4),

(q1, . . . , q11) = (−2,−4,−2, 2, 0, 0, 2,−2, 0, 4, 2),

(t1, . . . , t11) = (−2,−1, 0, 0, 1, 1, 2, 2, 3, 3, 4).

(5.70)

Assuming that the generating series of colored HOMFLY-PT polynomials
takes the form (4.1), and comparing that generating series with several first
such polynomials obtained using the Rosso-Jones formula, we find that the
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corresponding quiver is encoded in the following matrix

(5.71) C62 =




−2 −2 −1 −1 −1 −1 0 −1 1 1 1
−2 −1 −1 0 0 0 1 0 1 2 2
−1 −1 0 1 0 0 1 0 1 2 2
−1 0 1 0 0 0 1 0 2 1 1
−1 0 0 0 1 1 1 1 2 2 2
−1 0 0 0 1 1 1 1 2 2 2
0 1 1 1 1 1 2 1 2 2 2
−1 0 0 0 1 1 1 2 2 3 3
1 1 1 2 2 2 2 2 3 3 3
1 2 2 1 2 2 2 3 3 3 3
1 2 2 1 2 2 2 3 3 3 4




.

In this matrix one can identify diagonal blocks, one corresponding to a zig-
zag of the same form as in the trefoil quiver (5.7), and two diamonds of the
form (4.8).

Analogously we analyze the generating series for the 63 knot, whose
uncolored HOMFLY-PT homology has 13 generators of the following degrees

(a1, . . . , a13) = (0, 2, 0, 0,−2, 2, 0, 0,−2, 2, 0, 0,−2),

(q1, . . . , q13) = (0,−2, 0,−4,−2, 0, 2,−2, 0, 2, 4, 0, 2),

(t1, . . . , t13) = (0, 1, 0,−2,−3, 2, 1,−1,−2, 3, 2, 0,−1).

(5.72)

Similarly, comparing first few colored HOMFLY-PT polynomials from (4.1)
with the Rosso-Jones formula, we find the corresponding quiver
(5.73)

C63 =




0 0 0 −1 −1 0 0 −1 −1 0 0 −1 −1
0 1 0 −1 −2 1 0 −1 −2 1 1 0 −1
0 0 0 −1 −2 1 0 0 −2 1 1 0 0
−1 −1 −1 −2 −3 0 −1 −2 −3 −1 0 −2 −2
−1 −2 −2 −3 −3 −1 −1 −2 −3 −1 −1 −2 −2
0 1 1 0 −1 2 1 0 −1 2 1 1 −1
0 0 0 −1 −1 1 1 0 −1 2 1 1 0
−1 −1 0 −2 −2 0 0 −1 −2 0 0 −1 −2
−1 −2 −2 −3 −3 −1 −1 −2 −2 0 −1 −1 −2
0 1 1 −1 −1 2 2 0 0 3 2 1 0
0 1 1 0 −1 1 1 0 −1 2 2 1 0
−1 0 0 −2 −2 1 1 −1 −1 1 1 0 −1
−1 −1 0 −2 −2 −1 0 −2 −2 0 0 −1 −1




.
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In this matrix one can identify diagonal blocks, one corresponding to a zig-
zag of length 1 (representing a homology generator with t-degree 0), and
three diamonds of the form (4.8).

We checked that the above results agree with those obtained using the
formalism of differentials, presented in [52].
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Av. Rovisco Pais, 1049-001 Lisboa, Portugal

and Mathematical Institute SANU

Knez Mihailova 36, 11000 Beograd, Serbia

E-mail address: mstosic@isr.ist.utl.pt

Faculty of Physics, University of Warsaw

ul. Pasteura 5, 02-093 Warsaw, Poland

and Walter Burke Institute for Theoretical Physics

California Institute of Technology, Pasadena, CA 91125, USA

E-mail address: psulkows@fuw.edu.pl


	Introduction
	Knot theory and physics
	Quiver moduli and Donaldson-Thomas invariants
	Knot invariants from quivers
	Case studies
	References

