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We show that representations of the loop braid group arise from
Aharonov-Bohm like effects in finite 2-group (3+1)-dimensional
topological higher gauge theory. For this we introduce a mini-
mal categorification of biracks, which we call W-bikoids (welded
bikoids). Our main example of W-bikoids arises from finite 2-
groups, realised as crossed modules of groups. Given a W-bikoid,
and hence a groupoid of symmetries, we construct a family of uni-
tary representations of the loop braid group derived from repre-
sentations of the groupoid algebra. We thus give a candidate for
higher Bais’ flux metamorphosis, and hence also a version of a
‘higher quantum group’.
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1. Introduction

The motivation for this work is to describe the observable collective proper-
ties of loop-like quasiparticles [35, 50, 61, 84–86] arising in (3+1)-dimensional
topological phases of matter with higher gauge symmetry [22, 23, 53, 88],
thereby modelling corresponding higher Aharonov-Bohm effects.

Higher gauge theory is a version of gauge theory that features 2-dimen-
sional holonomies along surfaces [3, 5], hence in particular along trajectories
of loops moving in 3-dimensional space. In this paper we model Aharonov-
Bohm phases that are conjecturaly related to the 2-dimensional holonomies
along the surfaces traced by loop-particles as they move.

In a topological system the observable collective properties of particles
are, at most, their braidings. The braiding of (unknotted and unlinked)
oriented circles is described by the n-loop braid group LBn [6, 29]. So we
study representations of LBn. Technically this group can be realised as the
mapping class group MCG(D3, Cn) of self-mappings of the 3-disk D3 that
are the identity on ∂D3 and fix Cn, an unlinked union of unknotted oriented
circles, setwise, in addition preserving the orientation on the circles. (We
review the definitions in §3.4.) The group LBn can also be described in
terms of loop motions [6, 45]; see [29, §2].

Let us give a visualization of motions of loops in (3+1)-dimensions that
would be expected to induce ‘Aharonov-Bohm like’ effects [35, 61, 74, 84, 86].
It will be helpful (cf. [6, 29]) first to work with two circular and parallel loops,
and in a frame in which one of the loops is fixed. Thus for example consider
two loops that are initially coaxial (as on the left in (1) below), and work
in a frame in which the upper loop is fixed. We can then visualize a motion
by showing the ‘Dirac sheet’, the surface swept out by the other loop in this
frame. At times t = 0, 1, 2 we might then have:
(1)

t=0

t=1

t=2

This is analogous to tracking the world-line of a point-particle moving around
another point in a plane. Indeed our particular motion is reproduced by ro-
tating this plane into 3 dimensions about a suitable axis in the plane (which
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axis then becomes the coaxis of the two loops). Note that our motion up
to t = 1 can be completed to a pure loop-braid in two topologically distinct
ways, that are both distinct from the ‘un-motion’. Firstly the ‘moving’ loop
can return to its original position first as at t = 2, and from there in the
obvious direct way, as shown in figure (2) below.

(2)

Secondly from t = 1 we can then break the axial symmetry and move to
some position high on the left, say, then return to base in the obvious way
from there; see figure (3) below.

(3)

These two topologically distint motions of a loop around another one play
a key role in understanding Aharonov-Bohm like effects for loop-particles;
see §2.3.

Let σ denote the motion class represented by t = 0 → 1 in (1); and ν
the class represented by t = 1 → 3 in (3). (Keep in mind the moving frame
— the loops are exchanged by σ and ν.) Extending to a stack of n loops,
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it turns out that these motions generate LBn. Thus given (I) a correspond-
ing n-loop-particle Hilbert space H, in some topological theory, and (II)
transformations on H corresponding to these motions, we will have a rep-
resentation of the loop braid group LBn. So far there is no higher analogue
of the solenoid/electron holography setup or experiments telling us how to
obtain (I,II). But there are formal recipes coming from higher gauge theory
– as we shall show in §2. Since these recipes are necessarily partly ad hoc, we
then rely on combinatorial methods to verify the well-definedness Theorem
for the representations of LBn, which takes up the remainder of the paper.

Writing σi for the σ motion exchanging loops i and i+ 1 it is easy to ver-
ify that the σ and ν generators obey braid relations: σiσi+1σi = σi+1σiσi+1,
and certain mixed braid relations between them. These relations give a ho-
momorphism with a group defined by generators and relations. For the
combinatorial proof we will use the isomorphism [6, 29] of LBn to the
welded braid group WBn [44, 51, 57]. This presentation arises in virtual
knot theory. In virtual knot theory we have ‘virtual’ knot and braid dia-
grams [29, 51, 55, 57]; see §3.3. These diagrams have positive, negative and
virtual crossings between strands, as below:

positive crossing
❄❄

❄

��❄
❄❄

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

, negative crossing
��❄

❄❄
❄❄

❄❄
❄

⑧⑧
⑧

��⑧⑧
⑧ ,

virtual crossing
��❄

❄❄
❄❄

❄❄
❄

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

.

[1.1] The n-strand virtual braid group VBn (discussed in §3.3) is generated,
as a monoid, by the elements S+

a [n], S
−
a [n] and Va[n], where a ∈ {1, . . . , n−

1}, subject to certain relations; see §3.3. These generators may be depicted
as n-strand virtual braid diagrams, as below, with composition via vertical
stacking.

S+
a [n] =

1
...

�� ���� ��

a
✿✿

��✿
✿✿
...

a+1

��☎☎
☎☎
☎☎
☎

���� ��

n

��
︸ ︷︷ ︸

n strands

,
S−
a [n] =

1
...

�� ���� ��

a

��✿
✿✿

✿✿
✿✿ ...
a+1
☎☎

��☎☎
☎

���� ��

n

��
︸ ︷︷ ︸

n strands

,

(4)

Va[n] =
1

...

�� ���� ��

a

��✿
✿✿

✿✿
✿✿ ...
a+1

��☎☎
☎☎
☎☎
☎

���� ��

n

��
︸ ︷︷ ︸

n strands

.
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The relations in VBn between generators are derived from the usual classical,
virtual and mixed Reidemeister moves between virtual braid diagrams [12,
51, 55, 57]; see equations (44)–(48), and the paragraph below. One passes
from VBn to WBn by furthermore imposing the the so-called “Forbidden
Move F1” [12, 13, 57], here called the W-move [51]”, a short for welded
move, displayed in Equation (49).

On generators, the isomorphism WBn → LBn is given by the motion in
Fig. 5.

[1.2] We have categories VB and WB of virtual and welded braid groups.
The set of objects of both is N, and hom(n, n) are VBn and WBn, respec-
tively. (There are no morphisms n→ m if n 6= m.) The composition ⊗ of di-
agrams through horizontal stacking gives that VB andWB are monoidal cat-
egories. Note that S+

2 [3] = 11 ⊗ S+
1 [2], S

+
1 [3] = S+

1 [2]⊗ 11 and so on. Here
11 is the identity morphism 1 → 1.

The Reidemeister III-move (46) in VB and WB, is a consequence of
the monoidal category structure in VB and WB, and the particular case
S+
1 [3]S

+
2 [3]S

+
1 [3] = S+

2 [3]S
+
1 [3]S

+
2 [3], which can be written as:

(S+
1 [2]⊗ 11) (11 ⊗ S+

1 [2]) (S
+
1 [2]⊗ 11)(5)

= (11 ⊗ S+
1 [2]) (S

+
1 [2]⊗ 11) (11 ⊗ S+

1 [2]).

And the welded-move in WB is a consequence of the monoidal structure and
the particular case:

(V1[2]⊗ 11) (11 ⊗ S+
1 [2]) (S

+
1 [2]⊗ 11)(6)

= (11 ⊗ S+
1 [2]) (S

+
1 [2]⊗ 11) (11 ⊗ V1[2]).

[1.3] One can show (a proof is in e.g. [64, Thm. 2]) that the category VB
of virtual braid groups contains the braid category B (defined in e.g. in [54,
§XIII.2]) as a subcategory — it is the part monoidally generated in VB by
the S±

1 [2]. Suppose we have a monoidal representation of B in a symmetric
category; the main example to have in mind is the category of vector spaces.
This lifts automatically [19] to a representation of VB by mapping V1[2] to
the transposition of tensor factors. However, for representations of the loop
braid group we require the welded braid group, and in this the welded move
(6) is also satisfied. The satisfaction of the welded move is one key outcome
of our higher gauge construction.

In order to formalise the representations of LBn derived from finite 2-
group higher gauge theory [3] in 3+1 dimensions, we develop a (lightly)
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categorified notion of biracks [13, 14, 43], which we call “W-bikoids”. The
connection to loop-excitations in (3+1)-dimensional topological higher gauge
theory is in §2.3.

[1.4] A birack (X, /, \) is a set X with two operations X ×X → X writ-
ten (x, y) 7→ y/x and (x, y) 7→ x\y such that (x, y) 7→ (y/x, x\y) defines an
invertible map S : X ×X → X ×X, satisfying the set-theoretical Yang-
Baxter equation [49],

(
S × id) ◦ (id× S) ◦ (S × id) = (id× S) ◦ (S × id) ◦ (id× S);

and for any a ∈ X the maps x 7→ x/a and x 7→ x\a are invertible. Our con-
ventions for biracks are spelled out in §4.3.

As we now recall, a birack encodes the combinatorics of virtual braid
diagrams (and more generally of virtual knot and link diagrams) [42, 51, 55,
57, 63] up to Reidemeister II and III moves between them.

[1.5] Given a birack (X, /, \), a (X, /, \)-colouring [34, 43] of a virtual braid
diagram (more generally of a virtual link diagram [44, 51, 55, 57]) is a map
from the set of edges of the diagram to X, satisfying the relations below
when four edges meet at a positive, negative or virtual crossing:

x
❋❋

❋

##❋❋

y

{{①①
①①
①①

y/x x\y

,

y/x

##❋
❋❋

❋❋
❋

x\y
①①

{{①①①
x y

and

x

��❀
❀❀

❀❀
❀ y

��✄✄
✄✄
✄✄

y x
.

(7)

(A crossing breaks an edge into two components, regardless of it being over,
under or virtual crossing.)

A biquandle is a birack which also satisfies identities corresponding to
Reidemeister I moves [34, 43] between virtual knot diagrams. The axioms of
biquandles ensure that the number of (X, /, \)-colourings of a virtual link
diagram is invariant under all classical Reidemeister moves. This implies
that the number of (X, /, \)-colourings is also invariant under virtual and
mixed Reidemeister moves between virtual link diagrams [55], hence defining
a virtual link invariant, called the colour counting invariant [34].

A welded birack [13] (called here a W-birack) makes the number of
(X, /, \)-colourings of virtual braid diagrams in addition invariant under
the welded move (6). In the biquandle case this leads to the definition of
invariants of welded knots [2, 11, 44, 51, 55, 56].

[1.6] A birack (X, /, \) yields, for each n, a (in this paper right) action ⊳ of
VBn on Xn. The action on x = (x1, x2, ..., xn) ∈ Xn of S+

a [n] and of Va[n]
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is given by the bottom lines of the diagrams below:

x1

��

. . .

���� ��

xa−1

��

xa
◆◆

◆◆

''◆◆◆

xa+1

ww♣♣♣
♣♣♣

♣
xa+2

��

. . .

���� ��

xn

��
x1 . . . xa−1 xa+1/xa xa\xa+1 xa+2 . . . xn

and

x1

��

. . .

���� ��

xa−1

��

xa

$$■
■■

■■
■ xa+1

zz✉✉✉
✉✉
✉

xa+2

��

. . .

���� ��

xn

��
x1 . . . xa−1 xa+1 xa xa+2 . . . xn

.

This is to say that:

(x1, . . . , xa−1, xa, xa+1, . . . , xn) ⊳ S
+
a [n]

= (x1, . . . , xa−1, xa+1/xa, xa\xa+1, xa+2, . . . , xn),

and

(x1, . . . , xa−1, xa, xa+1, . . . , xn) ⊳ Va[n]

= (x1, . . . , xa−1, xa+1, xa, xa+2, . . . , xn).

Linearising, we have a right-representation of VBn on (CX)n⊗ ∼= C(Xn).

There are several ways to enrich biquandle colouring counting invariants
of links and welded links. See for instance [25–27] for quandle cohomology
classes, and [33, 90] for meridian-longitude refinements. In this paper we
give the first representation theoretic steps in the development of a light
categorification-based enrichment. We will focus on the corresponding rep-
resentations of the loop braid group. Invariants of welded and virtual knots
will be addressed elsewhere [41].

The underlying notion is that of a bikoid (Γ, X+
Γ ); see §4.4. Let us sketch

their definition. First of all, given a groupoid [48] Γ, we write Γ0 for the set
of objects, Γ1 for the set of morphisms (arrows), and σ, τ : Γ1 → Γ0 for the
source and target maps. We write Γn for the n-fold product groupoid and
Γ≀n for the wreath product §4.1— the semidirect product Γn ⋊ Σn with the
symmetric group Σn acting by permutation of factors. We draw elements of
Γ≀n as top-to-bottom oriented permutation diagrams (like Va[n] in (4) above)
with edges decorated by elements of Γ1. Multiplication is then by vertical
stacking, followed by the composition of the groupoid arrows living in the
same strand of a permutation diagram.
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A bikoid is a groupoid Γ and a birack (Γ0, /, \), called the underlying
birack of the bikoid, together with two maps Γ0 × Γ0 → Γ1, of the form:

(x, y) 7→ (x
L(x,y)
−−−−→ x\y) and (x, y) 7→ (y

R(x,y)
−−−−→ y/x).

The L,R maps are combined as L⊗R in Γ≀2, and X+
Γ = (L⊗R)T , where T

is the elementary transposition. A bikoid can be graphically represented as
in Equation (8) below. The over-under effect in the last version of X+

Γ (x, y)
carries no information. But this redundant information is useful for later
tracking reasons, and in order to formulate bikoid colourings of braid dia-
grams, in a parallel way to birack colourings as in (7).

(8)

(x, y)
X+

Γ7−→

x

""❊
❊❊

❊❊
❊❊

❊
L(x,y) •

❊❊

""❊
❊❊

❊❊

y

||②②
②②
②②
②②
②

• R(x,y)
②②

||②②
②②
②

y/x x\y

=

x
❊❊

❊❊

""❊
❊❊

L(x,y) •
❊❊

""❊
❊❊

y

||②②
②②
②②
②②
②

• R(x,y)
②②

||②②
②②
②

y/x x\y

.

The axioms that X+
Γ in Equation (8) should obey are in Def. 22. A

graphical way to state them is in Equation (61), which, ‘component-wise’
(i.e. only looking at the L,R maps) is equivalent to Equation (62).

As we will see, constructions for bikoids appear in finite (2-)group topo-
logical gauge theory. There, the L(x, y) andR(x, y) arrows encode Aharonov-
Bohm phases [7–9, 30, 61] arising from flat connection holonomy and flat 2-
connection 2-holonomy obtained when point-particles move in 2-dimensional
space and loop-particles move in 3-dimensional space; see §2.1 and §2.3.
Hence, we call L and R “holonomy arrows”.

One can formulate the notion of a bikoid colouring of a virtual braid
diagram (and more generally of a virtual link diagram), which close to a
positive crossing should follow the pattern indicated in (8). (At negative
crossings we have the inverse of X+

Γ , and at virtual crossings only identity
holonomy arrows are inserted.) The axioms of bikoids precisely ensure that,
fixing colours of top and bottom strands, and given equivalent virtual braid
diagrams B and B′, there is a one-to-one correspondence between colourings
of B and colourings of B′, which moreover preserves the composition of
holonomy arrows living in each strand.

[1.7] A welded bikoid (abbrv.W-bikoid) is a bikoid that also obeys the welded
relation (6). In concrete terms this means (63) and (64). This ensures that
the one-to-one correspondence between bikoid colourings of virtual braid
diagrams of the paragraph above also holds if B and B′ are related by
moves between welded braid diagrams.
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[1.8] Given a bikoid (Γ, X+
Γ ), then not only is Γ0 a birack, but also Γ1 is a

birack. Thus, by [1.6] in particular we have a right-action of VBn on Γn1 ,
hence a representation of VBn on CΓn1 . Let us write γ ∈ Γn1 as:

γ =

x1

γ1

��

. . .

���� ��

xa−1

γa−1

��

xa

γa

��

xa+1

γa+1

��

xa+2

γa+2

��

. . .

���� ��

xn

γn

��
y1 . . . ya−1 ya ya+1 ya+2 . . . yn

.

Let ⋆ denote composition of arrows in Γ. Then this representation is given
by:

x1

γ1

��

. . .

���� ��

xa−1

γa−1

��

xa

γa

��

xa+1

γa+1

��

xa+2

γa+2

��

. . .

���� ��

xn

γn

��
y1 . . . ya−1 ya ya+1 ya+2 . . . yn

⊳∗S+
a [n]

=

x1

γ1

��

. . .

���� ��

xa−1

γa−1

��

xa+1

γa+1⋆R(ya,ya+1)

��

xa

γa⋆L(ya,ya+1)
��

xa+2

γa+2

��

. . .

���� ��

xn

γn

��
y1 . . . ya−1 ya+1/ya ya\ya+1 ya+2 . . . yn

.

x1

γ1

��

. . .

���� ��

xa−1

γa−1

��

xa

γa

��

xa+1

γa+1

��

xa+2

γa+2

��

. . .

���� ��

xn

γn

��
y1 . . . ya−1 ya ya+1 ya+2 . . . yn

⊳∗Va[n]

=

x1

γ1

��

. . .

���� ��

xa−1

γa−1

��

xa+1

γa+1

��

xa

γa

��

xa+2

γa+2

��

. . .

���� ��

xn

γn

��
y1 . . . ya−1 ya+1 ya ya+2 . . . yn

.

W-bikoids yield representations of the welded braid group WBn defined in
the same way.

Bikoids have a level of structure which biracks do not have, which is their
underlying groupoid Γ. This leads the primary reason to introduce them. In
particular consider the following.

[1.9] The groupoid algebra C(Γ) of a groupoid Γ [32, 67, 87] is the free
vector space CΓ1 with product:

(9)
(
x

γ
−→ y

)(
x′

γ′

−→ y′
)
= δ(y, x′)

(
x

γ⋆γ′

−−−→ y′
)
.
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(Given x, y ∈ Γ0, we put δ(y, x) to be 1 if y = x and 0 otherwise.) If the set
of objects of Γ is finite, then C(Γ) is a unital algebra with unit:

1C(Γ) =
∑

x∈Γ0

ι(x) =
∑

x∈Γ0

(
x

idx−−→ x
)
.

We also have a *-structure [3.8].

A bikoid (Γ, X+
Γ ) gives rise to the following invertible element in

C(Γ)⊗C(Γ):

(10) R(Γ,X+
Γ ) = R =

∑

x,y∈Γ0

(x
L(x,y)
−−−−→ x\y)⊗(y

R(x,y)
−−−−→ y/x) ∈ C(Γ)⊗C(Γ).

This R satisfies the relation below (cf. the relation satisfied by an R-matrix
in a quasi-triangular bialgebra):

(11) R12R13R23 = R23R13R12, in C(Γ)⊗C(Γ)⊗C(Γ);

see e.g. [54, Thm. VIII.2.4]. Here

R13 =
∑

x,y∈Γ0

(x
L(x,y)
−−−−→ x\y)⊗idC(Γ)⊗(y

R(x,y)
−−−−→ y/x),

R12 = R⊗idC(Γ) and R23 = idC(Γ)⊗R.

(N.B.: R is not in general an R-matrix [54], and C(Γ) is not, a priori, a
quasi-triangular bialgebra.) Furthermore, a bikoid is welded if, and only if,
in C(Γ)⊗C(Γ)⊗C(Γ), it holds that:

(12) R13R23 = R23R13.

A main result of this paper is that the representation in [1.8] of VBn can be
generalised to braid any n-tuple (V1, . . . , Vn) of representations of C(Γ) – see
Thm. 38 and 41. In particular, (11) implies that, if V is a representation of
C(Γ), then there is a representation ⊳∗ of VBn on V n⊗ = V⊗ . . .⊗V , such
that:

(v1⊗ . . .⊗va−1⊗va⊗va+1⊗va+2 . . .⊗vn)⊳
∗S+

a (n)(13)

=
∑

x,y∈Γ0

v1⊗ . . .⊗va−1⊗va+1.
(
y
R(x,y)
−−−−→y/x

)
⊗va.

(
x
L(x,y)
−−−−→x\y

)
⊗va+2⊗ · · ·⊗vn,

(v1⊗ . . .⊗va−1⊗va⊗va+1⊗va+2 · · · ⊗vn)⊳
∗Va(n)(14)

= v1⊗ · · · ⊗va−1⊗va+1⊗va⊗va+2⊗ · · ·⊗vn.
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This is a unitary representation if V is a unitary representation of the
groupoid algebra. This coincides with the representation in [1.8] if V =
C(Γ). If (Γ, X+

Γ ) is a welded bikoid, then this representation of VBn in V n⊗

descends to a representation of WBn. In particular the welded move (6)
follows from Equation (12).

If C(Γ) can be given a quasi-triangular bialgebra structure and R in
(10) is its R-matrix then (13) yields exactly the braid group representation
yielded by the quasi-triangular structure in C(Γ); see [54, VIII-3].

Of course the utility of all this abstract machinery depends on the ability
to construct bikoids and W-bikoids. We address this core point now.

Let G be a finite group. An example of unitary representation of the
welded braid group that follows from W-bikoids is the representation of
WBn on V n⊗, arising from the R-matrix in the quantum double D(G) ∼=
C(AUT(G)) of the group algebra of G [1], which is a quasi-triangular Hopf
algebra. Here V is a representation of D(G). This represention of WBn is
normally only stated to be a representation of the braid group Bn [1, 54, 75,
83], by using (13). However (14) extends it trivially to a representation of
VBn. Since the R-matrix of D(G) satisfies (12), the representation in (13,14)
descends to WBn.

[1.10] Let us now hence relate W-bikoids with the quantum-double D(G).
For G a finite group, AUT(G) is defined to be the action groupoid of the
conjugation action of G on G. The objects of AUT(G) are elements g ∈
G and arrows have the form (g

a
−→ aga−1), where g, a ∈ G. Composition in

AUT(G) is by group multiplication in reverse order. Hence in C(AUT(G))
the product on generators is:

(
g

a
−→ aga−1)

(
g′

a′

−→ a′g′a′
−1

)(15)

= δ(aga−1, g′)
(
g

aa′

−−→ aa′ga′
−1
a−1

)
, where g, g′, a, a′ ∈ G.

[1.11] The quantum double D(G) is the algebra C(AUT(G)) made [54] a
quasi-triangular Hopf algebra by:

∆(x
g
−→ gxg−1) =

∑

yz=x

(y
g
−→ gyg−1)⊗(z

g
−→ gzg−1),(16)

ǫ((x
g
−→ gxg−1)) = δ(x, 1G),
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S(x
g
−→ gxg−1) = (gx−1g−1 g−1

−−→ x−1),

R =
∑

g,h∈G

(g
h−1

−−→ h−1gh)⊗(h
1G−→ h).

[1.12] The bikoid X+
G associated to AUT(G) is given, cf. Equation (8), by:

(17)

(g, h)
X+

G7−→

g
• 1G

❉❉
❉❉

!!❉
❉❉

h
h−1 •

}}③③
③③
③③
③③
③③

h h−1gh

.

Therefore R(Γ,X+
G) obtained from Equation (10) coincides with R in Equa-

tion (16). Note that the underlying birack of X+
G is the ‘conjugation quandle’

in G: h/g = h and g\h = h−1gh; see [25–27].

So we can see that even though X+
G in (17) is apparently only a very

simple spin-off of the conjugation quandle, the holonomy arrows in X+
G add

the information needed for generating the representations of the braid group
derived from the R-matrix in the quantum double D(G). Hence X+

G is con-
siderably stronger than the conjugation quandle of G alone. In particular,
the invariants of knots derived from the R-matrix of D(G) take into account
not only the knot group of a knot, as does the conjugation quandle of G, but
also [41] the entire peripheral structure of a knot [33], which the conjugation
quandle alone cannot uncover.

As we will see below in §2.1, the holonomy arrows in X+
G naturally

arise from Aharonov-Bohm phases expected in finite group topological field
theory in the 2-disk; see [7–9, 30, 31, 66].

[1.13] For future reference, for X+
G , the representation of VB2 on

C(AUT(G))⊗C(AUT(G)) from [1.8] is:

(
(a−1ga

a
−→ g)⊗(b−1hb

b
−→ h)

)
⊳∗ S+

1 [2](18)

= (b−1hb
b
−→ h)⊗(a−1ga

h−1a
−−−→ h−1gh),

(
(a−1ga

a
−→ g)⊗(b−1hb

b
−→ h)

)
⊳∗ V1[2](19)

= (b−1hb
b
−→ h)⊗(a−1ga

a
−→ g).

[1.14] Our main example here (39) and (97) is a W-bikoid X+
R in a certain

groupoid TRANS
(
T 2
R(G)

)
motivated by discrete higher gauge theory in the

3-disk. Here G is a finite 2-group (represented by a crossed module). In this
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case, the underlying birack of X+
R is a full fledged W-birack and not simply

a quandle.

In this (TRANS
(
T 2
R(G)

)
, X+

R ) case, no underpinning quasi-triangular
Hopf algebra appears to be in hand for modelling the representations of
the welded braid group thereby obtained. Groupoid algebras are examples
of weak Hopf algebras [17, 36, 73]. However the representations of the welded
braid group derived from TRANS

(
T 2
R(G)

)
do not appear to arise from a bona

fide R-matrix inside C(TRANS
(
T 2
R(G)

)
), at least as far as the definition of

quasi-triangular weak Hopf algebras appearing in [73] is concerned. These
difficulties in interpreting our representations of WBn in terms of already
know construction were our main reason to introduce bikoids, which in addi-
tion have the already mentioned advantage that they naturally incorporate
Aharonov-Bohm phases featuring in topological field theory in their very
construction.

[1.15] The W-bikoid X+
R , motivated by higher gauge theory, can be derived

from one of the form X+
gr, below. Here we have an abelian gr-group, i.e. a

groupG left-acting, by automorphisms, in an additive abelian group A. Form
the semidirect product G⋉A and define TRANS(G,A) = AUT(G⋉A) to
be the action groupoid of the conjugation action of G⋉A on itself. Thus
arrows of TRANS(G,A) are of the form:

(
(g, a)

(w,k)
−−−→ (w, k)(g, a)(w, k)−1

)
=

(
wgw−1, k + w⊲a− (wgw−1)⊲a)

)
,

where g, w ∈ G and a, k ∈ A.

The corresponding W-bikoid X+
gr takes the form:

X+
gr

(

(z, a), (w, b)
)

=

(z, a)

❙❙❙
❙❙❙

❙❙❙

))❙❙❙
❙❙❙

(w−1,0A) •
❙❙

❙❙❙

))❙❙❙
❙❙❙

(w, b)

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦• (1G,−w−1⊲a)
❦❦

uu❦❦❦❦
❦❦❦

❦❦❦

(w, a+ b− w−1⊲a)
(
w−1zw,w−1⊲a

)
.

(20)

This W-bikoid is very different from the X+
G⋉A we would obtain from (17).

A topological explanation for the existence of the underlying W-birack
of X+

gr, in terms of elementary algebraic topology – namely in terms of the
action of π1 on π2, is done in §4.5.1. (The pertinent space is the 3-disk D3

minus an unlinked union of unknotted circles.) The latter W-birack had
appeared previously in [56], where it arised from Yetter TQFT [40, 92] of
the complement of a knotted surface in S4 [37, 38]. In [56] it is proven that
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this W-birack can distinguish between different welded knots with the same
knot group.

In a future publication [41], we will inspect invariants of virtual and
welded links derived from bikoids.

Structure of the paper. In §2, we sketch the reason of why W-bikoids
appear in the context of topological gauge theory in D2 and topological
higher gauge theory in D3. We start in §2.1 by giving an overview of Bais
Flux metamorphosis [7–9, 30], and how it is related to quantum doubles
and finite group W-bikoids. In §2.2 we give a brief overview of discrete
higher gauge theory, and in particular of the 2-dimensional holonomy of a
2-connection and its behaviour under gauge transformations. In §2.3 we ex-
plain how our main example of W-bikoids is related to loop-particles moving
in D3. In §2.3 we also propose a version of Bais flux metamorphosis in order
to handle higher gauge fluxes of unknotted and unlinked loop particles in
topological higher gauge theory. Section 2 is roughly independent of the rest
of the paper. However it motivates the main constructions.

In §3 we recap conventions for: groupoids, groupoid algebras, virtual
and welded braid groups, and loop braid groups, and sketch the definition
of the isomorphism WBn → LBn. In §4, we firstly §4.1 explain the wreath
product Γ≀n of a groupoid with the symmetric group Σn, and in §4.2 we
give a graphical calculus for Γ≀n, providing a visual framework to handle
a lot of intricate calculations. Conventions for biracks are in §4.3. Bikoids
and W-bikoids are defined in §4.4. In §4.5 we explain the W-bikoids X+

gr

derived from abelian gr-groups, and show how they arise from elementary
algebraic topology. In §5 we show how W-bikoids give rise to representations
of the loop braid group, when loops are coloured with representations of the
groupoid algebra of the underlying groupoid of the W-bikoid. In §6 we show
how finite 2-groups (described as crossed modules) yield W-bikoids, hence
proving that the representations of LBn announced in §2.3 exist.
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2. Insights from topological gauge theory and topological
higher gauge theory

2.1. Finite group gauge theory in D2, quantum doubles
and braid groups

This section contains a review of Bais flux metamorphosis [7–9, 30, 31, 66],
organised and reinterpreted with our lift to higher gauge theory in mind. (A
connection between finite group topological gauge theory in D2 and topo-
logical phases in (2+1)-dimensions can be made via the Kitaev quantum
double model [59, 74].)

Let G be a finite group. We consider a topological gauge theory with
gauge group G, with spatial manifold the unit disk D2 = [0, 1]2 = {(x, y) |
0 ≤ x, y ≤ 1}. Here a gauge field is interpreted as being a principal G-bundle.
We suppose the restriction to the boundary S1 to be ‘static’ in time. Note
that a principal G-bundle, where G is finite has a unique connection, which
is automatically flat.

[2.1] Consider a set of n anyonic point-particles p1, . . . , pn moving in the
interior of D2. We model these by a flat G-connection in D2, which becomes
singular at the location of each anyon. At that location a point-like magnetic
vortex arises. The magnetic vortex at pi is formally classified by its magnetic
flux. The latter is the gauge holonomy gi ∈ G observed when travelling along
a positively oriented small circle ci, looping around the particle pi. We let
∗ci be the coinciding initial and end-point of ci; cf. Fig. 1. Both ci and ∗ci
will be co-moving with the particle pi. A naive 1-particle Hilbert space is
given by the group algebra CG.

[2.2] Holonomies g ∈ G are not physical since the holonomy around a par-
ticle is defined only up to conjugation. The reason is twofold. Firstly, gauge
transformations in the connection change holonomy along a closed path by
conjugation by an element of G. Secondly, it is more realistic to consider the
connection holonomy along of a loop ĉi, looping around pi, however starting
and ending at a base-point ∗ far away from pi. Different choices of ĉi lead
also to conjugate values for the holonomy. (In anticipation, we note that in
higher gauge theory, discussed in §2.3, the lifts of these two types of tran-
formation in the way we calculate magnetic flux do not act exactly in the
same way on the observed 2-dimensional holonomy; see [2.23].)

Hence one could consider the Hilbert space CCC(G) spanned by the
conjugacy classes of G to be the relevant one for describing finite group
topological gauge theory particles in the plane. However in general there
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exists a further decomposition of the physical Hilbert space correspond-
ing to internal charge degrees of freedom. These charge degrees of free-
dom are truncated when switching from CG to CCC(G); [15, Page 1196].
For instance, given a flux g ∈ G, conjugation by the g-central subgroup
Z(g) = {h ∈ G|gh = hg} ⊂ G is a symmetry of the flux degree of freedom
and as such the action can be further decomposed into representations of
Z(g). The latter correspond to possibly non-trivial charges associated to
anyons.

[2.3] Finally, cf. [9, 30], a convenient formulation of the Hilbert space asso-
ciated to a point-particle in finite group topological gauge theory in D2 is
given by the underlying vector space of the groupoid algebra C(AUT(G));
see [1.10]. This C(AUT(G)) retains enough information to allow the treat-
ment of multiple anyons and of charge. The Hilbert space for n-particles
configurations is then C(AUT(G))⊗ · · · ⊗ C(AUT(G)).

Cf. the discussion in [15, §2.1], the vector space C(AUT(G)) is a ‘re-
solved’ version of CCC(G), i.e. a derived quotient of CG under the conjuga-
tion action. Hence switching from CCC(G) to C(AUT(G)) can be motivated
by the general principle that derived quotients retain more information and
are as a rule well behaved in comparison to naive quotients, see e.g. [28,
§2.1]. The latter point of view will be prevalent when discussing topological
higher gauge theory in D3; see §2.3.

[2.4] In general, if X is a set of possible formal configurations of a particle
and H is a group of symmetries acting on X, then we retain enough infor-
mation in the Hilbert space of the particle if we take this space to have basis
the morphisms of the action groupoid (Def. 2) of the action of H on X. A
‘resolved’ state of the system is thus a formal state x ∈ X together with a
datum h ∈ H, which encodes how it was measured.

An inner product in C(AUT(G)) which renders different arrows orthog-
onal is:

〈
(g

a
−→ aga−1), (g′

a′

−→ a′g′a′
−1

)
〉
= δ(a, a′)δ(g, g′).

Note that the group G left-acts in C
(
AUT(G)

)
by 〈, 〉-unitary transforma-

tions as:

(21) h.(g
a
−→ aga−1) = (g

ha
−→ haga−1h−1), where g, h, a ∈ G.

The groupoid algebra C(AUT(G)) is additionally an example of a Hopf
algebra (see [1.11]) describing the local symmetries of finite group topolog-
ical gauge theory [7, 9, 30, 59] in the 2-disk. References justifying the latter
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fact by identifying the quantum-double algebra as the coarse graining alge-
bra for topological gauge theory are [31, 60]. Particle types in finite-group
topological gauge theory should thus be labelled by irreducible representa-
tion of C(AUT(G)).

A Hilbert space on its own has very little information (Hilbert spaces of
equal dimension are isomorphic). We must specify what the observables are
and what they mean physically.

Given a g ∈ G, the flux operator Fg : C(AUT(G)) → C(AUT(G)) for a

single particle is defined as Fg(x
a
−→ axa−1) = δ(g, axa−1)(x

a
−→ axa−1). Clas-

sically, particle fluxes depend on the way we travel around a particle and
also on the choice of gauge. Let us specify what the flux observables mean
by stating how the magnetic flux (i.e. the connection holonomy around each
particle) is calculated.

[2.5] Let our base-point ∗ be (1/2, 0) ∈ ∂D2. For simplicity, we will only
consider gauge transformations on our discrete gauge fields which are the
identity in ∂D2. This is a very strong restriction, which we will also make
when discussing topological higher gauge theory in §2.3; see [2.18]. Given
that our gauge fields are stable in ∗, we can also choose and fix a point in
the fibre of ∗. Hence the holonomy along a path starting and ending at ∗
will from now on be uniquely defined. This will not make the definition of
flux around a particle pi unique, as some freedom still exists in the actual
choice of closed path looping around pi.

Let ci be a counter-clockwise oriented path enclosing pi and no other pj
for j 6= i, with initial point ∗ci , lying on the straight line connecting the base-
point ∗ ∈ ∂D2 and pi. We then choose a path γi, call it a “connecting path”,
connecting the base-point ∗ to the initial point ∗ci . This leads to an unam-
biguous definition of magnetic flux gi ∈ G of a discrete gauge field around
pi, to be the holonomy along the closed path ĉi = γiciγ

−1
i , connecting ∗ to ∗.

Homotopically distinct choices of paths in the definition of γi generally yield
conjugate values for gi. However in the following, by allowing the motion
of the particles p1, . . . , pn, there is no way paths γi, i = 1, . . . , n connecting
∗ to ∗ci can be chosen both once and for all, and in a way such that they
depend continuously of time. For this reason we will consider particles in
generic positions.

[2.6] Let us say that the particles p1, . . . , pn are in generic positions if their
x-coordinates are all different (see Fig. 1). In particular straight lines γi
connecting ∗ to ∗ci do not intersect any particle. For generic configurations
of particles, we will assume that the flux of each particle corresponds to the
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one arising from the holonomy along γiciγ
−1
i , for γi a straight line connecting

∗ to ∗ci .

∗

γ1 γ2

γ3 γ4
D2

c1
c2

c3
c4

∗c1 ∗c2

∗c3 ∗c4

p1 p2
p3 p4

Figure 1: A generic configuration of four particles p1, p2, p3, p4 in the
disk D2.

In the following we utilise the convention that the tensor components in
the Hilbert space C(AUT(G))⊗ · · · ⊗ C(AUT(G) correspond to the particles
ordered by increasing x value, here left to right.

[2.7] We now consider the transformations on the Hilbert space under mo-
tions of the particles. Moving particles adiabatically in a way such that the
configuration remains generic does not change the state of the system. Let
the particles pi, i = 1, . . . , n move, in between t = 0 and t = 1, in such a way
that we momentarily pass (say at t = 1/2) through a non-generic configu-
ration. For each i, and at each t, let γti be the path, in D2 \ {p1, . . . , pn},
obtained from a straight line from ∗ to the position of ∗ci , at time t. Note
that γti might be undefined at t = 1/2, since the straight line from ∗ to ∗ci
may cross another particle.

For each i, let also φti be the path obtained by concatenating γ0i with the
trajectory of ∗ci in between time 0 and time t. Note that φ0i = γ0i and that
φti is homotopic to γti , if 0 ≤ t < 1/2. However γti is in general not homotopic
to φti for t > 1/2. See Fig. 2, below, for a two particles configuration.

∗ ∗ ∗

γt
2γt

1=φ
t
1

γt
2
∼=φt

2

φt
1

γt
2
∼=φt

2

γt
1

φt
1

c2
c1 c2

c1

c2 c1p2p1 p2

p1

p2 p1

t = 0 t = 1/2 t = 1

Figure 2: A movement of particles passing non-generic configurations. Note
γ t

2 is homotopic to φt2, for all t.
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When passing by non-generic configurations, ‘Aharonov-Bohm phases’
[7–9, 30, 70] Ai ∈ G must be inserted. They make up for the fact that γti
and φti might not be homotopic when t = 1. A possible convention is that,
for each i = 1, . . . , n, the group element Ai is given by the holonomy of the
G-connection along the path φti(γ

t
i )

−1, at time t = 1.
These holonomies Ai can be determined [7–9, 30]. For instance in Fig 2,

if the particle p1 carries flux g, and the particle p2 carries flux h, then the
holonomy along the path φt2(γ

t
2)

−1 is trivial, when t = 1, i.e. A2 = 1G. This
is because the path is homotopically trivial, hence the associated holonomy
is the group identity. On the other hand, the holonomy along φt1(γ

t
1)

−1, at
t = 1, is A1 = h−1. (Since at t = 1, φt1(γ

t
1)

−1 is homotopic to γt2c
−1
2 (γt2)

−1.)
Therefore, the movement of particles in Fig. 2 induces the following unitary
transformation in the Hilbert space C(AUT(G))⊗C(AUT(G)) (Bais calls
this “flux metamorphosis” [8]):

(a−1ga
a
−→ g)⊗(b−1hb

b
−→ h) 7→ A2.(b

−1hb
b
−→ h) ⊗ A1.(a

−1ga
a
−→ g)(22)

= (b−1hb
b
−→ h) ⊗ h−1.(a−1ga

a
−→ g)

= (b−1hb
b
−→ h) ⊗ (a−1ga

h−1a
−−−→ h−1gh).

Note that the operative part of this can be expressed as g⊗h 7→ h⊗h−1gh.
[2.8] Remark: Equation (22) is exactly (18). Hence, the bikoid X+

G in (17)
is related to finite group topological gauge theory in D2 (just forget about
the ‘elementary transposition’ component). Considering n-particle configu-
rations (22) yields representations of the braid group Bn in C(AUT(G))n⊗

[8, 9].

[2.9] Fix particle locations p1, . . . , pn ∈ D2. Adiabatic exchanges of particles,
are modelled by diffeomorphisms (D2, {p1, . . . , pn}) → (D2, {p1, . . . , pn}) (by
definition these are diffeomorphisms D2 → D2 which are the identity in
the boundary S1 of D2 and send {p1, . . . , pn} to {p1, . . . , pn}). The braid
group Bn is isomorphic to the group of isotopy classes of diffeomorphisms
(D2, {p1, . . . , pn}) → (D2, {p1, . . . , pn}); see [16, 18]. In topological gauge
theory, maps induced by adiabatic exchanges of particles on Hilbert spaces
should depend only on isotopy classes of diffeomorphisms (D2, {p1, . . . , pn})
→ (D2, {p1, . . . , pn}). This is the case when maps on Hilbert spaces are, as
outlined above, induced by holonomies (to encode Aharonov-Bohm phases)
of flat connections in D2 with magnetic vortices at particle locations. The
same principle can be made to work in the loop braid group case and higher
gauge theory in the 3-disk D3, as we now explain.
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2.2. Higher gauge theory with a finite 2-group: preliminaries

Higher gauge theory is a generalisation of gauge theory which enables the
definition of non-abelian holonomies along surfaces embedded in a manifold
M , when a principal 2-bundle with a 2-connection over M is given; see
[3, 5, 39, 80, 81]. See [39] for a cubical approach [21] to the holonomy of a
2-connection. This is the point of view used here. In particular, a 2-bundle
with a 2-connection over M , will be subordinated to an open cover of M ,
whose open sets are called coordinate neighbourhoods [39, §3.1].

In discrete higher gauge theory, for the gauge field, instead of a principal
bundle with a finite group G of structure, we have a principal 2-bundle (see
[5, 91] and [39, §3.1]) with a structure finite 2-group. Note that a principal
2-bundle with a finite 2-group of structure has a unique 2-connection.

[2.10] In the strict version of higher gauge theory used here, a 2-group is
equivalent to a crossed module G = (∂ : E → G, ⊲) of groups, [4, 20, 21].
Here G and E are groups, ∂ : E → G is a group map, and ⊲ is a left action
of G on E by automorphisms, such that the 1st and 2nd Peiffer relations are
satisfied: ∂(g⊲e) = g∂(e)g−1 and ∂(e)⊲f = efe−1, where g ∈ G and e, f ∈ E.
We will suppose that E and G are finite.

A square in G [39, §2.2.1] is, by definition, a diagram like:
(23)

∗
x //

OO
z

∗OO
ye

∗ w
// ∗

, where x, y, z, w∈G and e∈E satisfy ∂(e) = wyx−1z−1.

[2.11] Squares in G can be composed vertically and horizontally, if their
sides match [39, §2.2.1]:

∗
x //

OO

z

∗OO
y

x′
// ∗OO

y′e e′

∗ w
// ∗

w′
// ∗

=

∗
xx′

//
OO

z

∗OO

y′(w⊲e′) e

∗
ww′

// ∗

(24)

and

∗
x //

OO

z

∗OO
ye′

∗ w //
OO

z′

∗OO
y′e

∗
w′

// ∗

=

∗
x //

OO

z′z

∗OO

y′ye z′⊲e′

∗
w′

// ∗

.
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These compositions are associative, have vertical and horizontal identities,
and satisfy the interchange law; see [39, 2.2.1], [21, §6.6] or [22] for explana-
tion. Also, each square in G has a vertical and a horizontal inverse.

In higher gauge theory, fields are 2-connections in a 2-bundle over a
manifold M . A 2-connection is a cubical-G-2-bundle with a connection, as
defined in [39, Defs. 3.1 and 3.4]. There is an equivalence relation [39, Def.
4.18] on the set of 2-connections, by gauge transformations. It is derived from
a 2-groupoid of 2-connections, gauge transformations and 2-gauge transfor-
mations between gauge transformations [39, 80, 81].

[2.12] If we have a 2-connection in M , then given a piecewise smooth map
P : [0, 1]× [0, 1] →M , and a choice of coordinate neighbourhoods covering
the image P ([0, 1]2), we can define [39, Def. 5.1] the 2-dimensional holon-
omy 2hol(P ) along P , which is a square in G [21, 22, 39], as in (23). This
2hol(P ) depends only on the choice of coordinate neighbourhoods covering
P (∂[0, 1]2); see [39, Cor. 5.5].

If γ : [0, 1] →M is a path, there is also a 1-dimensional holonomy hol(γ) ∈
G of γ; see [39, §5.1.3]. Holonomy h = hol(γ) along a closed path is well de-
fined, up to transformations like h 7→ ∂(a)ghg−1, where g ∈ G and a ∈ E.
The elements of G appearing in the edges of the square 2hol(P ) in (23) are
given by the 1-dimensional holonomies of the paths obtained by restricting
P to the edges of the boundary of [0, 1]2.

[2.13] Piecewise smooth maps of form P : [0, 1]× [0, 1] →M can be com-
posed horizontally, respectively vertically, when the restrictions to the ap-
propriate side of [0, 1]× [0, 1] match, by rescaling [39, §2.3.1].

The 2-dimensional holonomy of a 2-connection preserves both horizontal
and vertical compositions of maps P : [0, 1]2 →M ; see [39, Thm. 4.3]. Each
map Γ: [0, 1]2 →M has horizontal Γ−H and vertical Γ−V inverses, given by
(t, s) 7→ Γ(1− t, s) and (t, s) 7→ Γ(t, 1− s). The 2-dimensional holonomy of
a 2-connection preserves horizontal and vertical inverses.

Maps P : [0, 1]× [0, 1] →M such that the paths [0, 1] →M obtained by
restricting P to {0} × [0, 1] and to {1} × [0, 1] coincide are called tubes in
M , as they can be seen as maps P : S1 × [0, 1] →M . If P is a tube in M ,
the 2-dimensional holonomy along P has the form:

(25)
2hol(P ) =

∗
x //

OO

h

∗OO

hf

∗ w
// ∗

, where x, h, w ∈ G and f ∈ E

satisfy ∂(f) = whx−1h−1.
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[2.14] We will also consider tori-maps in M , which by definition are tubes
in M such that the paths [0, 1] →M obtained by restricting to [0, 1]× {0}
and to [0, 1]× {1} coincide. If P is a torus-map inM , then the 2-dimensional
holonomy of a 2-connection along P has the form below (cf. [39, Def. 5.16]):

(26)
2hol(P ) =

∗
x //

OO

h

∗OO

hf

∗ x
// ∗

, where x, h ∈ G and f ∈ E satisfy

∂(f) = xhx−1h−1 = [x, h].

This 2hol(P ), for P a torus-map, is independent of the choice of coordi-
nate neighbourhoods along P (∂[0, 1]2), and the gauge equivalence class of
the 2-connection, up to [39, Thm. 5.17] transformations of the form of a
simultaneous horizontal and vertical conjugation in the ‘double-groupoid’ of
squares in G, as in (27), below. (We note that the squares in the middle left
and the middle right are horizontal inverses of each other, and similarly the
squares in the middle top and the middle bottom are vertical inverses of
each other.)

(27)

∗
x //

OO

h

∗OO

hf

∗ x
// ∗

7→

∗
1G // ∗

x′
// ∗

1G // ∗

1E g−1⊲e−1 1E

∗ g //

1G

OO

∗

g−1

OO

x // ∗ g−1 //

g−1

OO

∗

1G

OO

a−1 f g−1⊲a

∗ g //

h′

OO

∗

h

OO

x // ∗ g−1 //

h

OO

∗

h′

OO

1E e 1E

∗
1G

//

1G

OO

∗

g

OO

x′
// ∗

1G

//

g

OO

∗

1G

OO

=

∗
x′

//
OO

h′

∗OO

h′f ′

∗
x′

// ∗

.

Where: ∂(e) = x′gx−1g−1, thus x′ = ∂(e)gxg−1, ∂(a)−1 = ghg−1h′−1, thus
h′ = ∂(a)ghg−1, and:

f ′ = e (gxg−1)⊲a g⊲f (ghg−1)⊲e−1 a−1 = x′⊲a e g⊲f (ghg−1)⊲e−1 a−1.

[2.15] A 2-connection is 2-flat if its categorical curvature vanishes [39, Def.
2.16] in all coordinate neighbourhoods of M [81, Prop. 3.3.6]. 2-connections
on 2-bundles with finite 2-groups are automatically 2-flat.

[2.16] Fix a flat 2-connection in M . The 2-dimensional holonomy along
P : [0, 1]2 →M depends only on the homotopy class of the map P : [0, 1]2 →
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M , relative to the boundary of [0, 1]2, and the choice of coordinate neigh-
bourhoods covering P (∂[0, 1]2). This follows by [39, Thm. 4.5], by the same
argument as in the proof of [39, Thm. 5.8], or by [81, Prop. 3.3.6]. For torus-
maps P : [0, 1]2 →M , we consider homotopies of P relative to {0, 1} × I,
which stay within the set of torus maps. If we fix coordinate neighbour-
hoods covering P ({0, 1} × [0, 1]), then 2hol(P ) is homotopy invariant, up to
transformations as in (27), with e = 1E , g = 1G.

[2.17] Let B2 = {z ∈ R2 : ||z|| ≤ 1} be based at ∗ = (−1, 0). Hence B2 and
D2 are homeomorphic. Suppose that P : B2 →M is piecewise smooth. It is
more convenient to consider the 2-dimensional holonomy along P to have
the form: 2hol(P ) = ∗ e v

xx
, where e ∈ E and v = ∂(e); cf. (23), here we are

putting v = wyx−1z−1. Note that v is the 1-dimensional holonomy of the
path obtained by restricting P to the boundary S1 of B2, oriented counter-
clockwise. If B ⊂M is diffeomorphic to B2, and has a base point ∗ ∈ ∂B,
then the 2-dimensional holonomy along an orientation and base-point pre-
serving diffeomorphism B2 → B depends only on B, see [22, Thm. 67] or
[39, Thm. 5.14]. It will be denoted 2hol(B).

2.3. Higher gauge theory with a finite 2-group and
invariants of loop braids

Consider a 2-flat 2-connection [2.15] in the 3-disk D3 = {(x, y, z) | 0 ≤
x, y, z ≤ 1}. Let us also assume that the 2-connection is ‘static’ in the bound-
ary ∂D3.We choose an oriented ‘base-loop’ O ∼= S1 embedded inD2 × {1} ⊂
∂D3. We let ∗ ∈ O be the base point of O. Hence O is the image of a path
γ : [0, 1] → ∂D3, starting and ending at ∗. Also O bounds a 2-dimensional
ball B contained in ∂D3; see Fig. 3, below.

[2.18] A parameter we will need is the 2-dimensional holonomy [2.17] along
B which has the form:

(28) 2hol(B) = ∗ ∂(R)
xx
R .

Here R ∈ E. The 1-dimensional holonomy along O, with initial point ∗, is
∂(R) ∈ G. Cf. [2.5], as for gauge theory in D2, we will only consider gauge
transformations [39, §4.2.1] on 2-connections which are trivial in ∂(D3). We
also fix coordinate neighbourhoods along O. Hence we take R and ∂R to be
constant in time.

[2.19] Consider a set of small unknotted unlinked circles c1, . . . , cn (call
them “loop particles”) in D3. Outside these, the 2-connection is flat. We



✐

✐

“1-Martins” — 2020/4/29 — 0:26 — page 1708 — #24
✐

✐

✐

✐

✐

✐

1708 Alex Bullivant, João Faria Martins, and Paul Martin

allow for a 2-connection to be singular in the loop-particles c1, . . . , cn, which
therefore may carry ‘higher gauge magnetic vortices’.

[2.20] We suppose that loop-particles can move, but remain horizontal. In
other words each loop-particle is at each time t contained in a plane (whose
height may vary with t) parallel to D2 × {0} ⊂ D3.

[2.21] Let c be a loop-particle. A formal observable for c (here called mag-
netic primary 2-flux) is the 2-dimensional holonomy Fc = 2hol(Pc) along a
torus-map Pc : [0, 1]

2 → D3, starting and ending at the base-loop O, and
bounding the torus T 2

c obtained as the boundary of a local neighbourhood
of c as in Fig. 3 below. Cf. the figure in Equation (2) for a visualisation of
a tube-map homotopic to Pc.

Let us explain Pc. It is constructed as the vertical composition of three
tubes in D3. The torus T 2

c
∼= S1 × S1 has a meridian m and a longitude l.

Both m and l are assumed to be co-moving with c. The linking number of
l and c should be zero. We consider a ‘connecting tube’ Γc connecting O to
l. Then consider the torus-map in D3 obtained by sweeping the torus T 2

c ,
in the obvious way, from l to l. And finally we go back to O by using the
vertical inverse Γ−V

c of Γc. (Hence Γ−V
c (t, s) = Γc(t, 1− s).)

connecting tube Γc

meridian m

longitude l

loop-particle c

∗ ∗

c

l

l

l

m m

m

γ

γ γ

γ−1 γ−1

O O

O

∗ ∗
∗ B

= Pc

T 2
c

Figure 3: Construction of a torus-map Pc : [0, 1]
2 → D3 in D3, associated to

a loop-particle c.

The 2-dimensional holonomy 2hol(Pc) has the form (26), and hence by
[2.18] the form (29) below. Note that h is the 1-dimensional holonomy
along γmγ−1, and ∂(R) is the 1-dimensional holonomy along O.
(29)

2hol(Pc) =
∗

∂(R) //
OO

h

∗OO

hf

∗
∂(R)

// ∗

, where h ∈ G, f ∈ E and ∂(f) = [∂(R), h].



✐

✐

“1-Martins” — 2020/4/29 — 0:26 — page 1709 — #25
✐

✐

✐

✐

✐

✐

Representations of the loop braid group 1709

[2.22] An encoding of magnetic primary 2-flux Fc is thus a triple F (c) =
(h, ∂(R), f) ∈ G×G× E such that ∂(f) = [∂R, h]. The relation between
F (c) = (h, ∂(R), f) and 2hol(Pc) is as in (29).

We let T 2
R(G) be the set of those triples, called 2-fluxes.

An important property of 2-fluxes is that they form a group (as do fluxes
g ∈ G of gauge theory) under the vertical composition of squares in G; see
(24). Hence: (g, ∂(R), a)(g′, ∂(R), a′) = (gg′, ∂(R), a g⊲a′).

[2.23] As for topological gauge theory flux [2.2], F (c) = (h, ∂(R), f) is not
physical. It changes if we perform gauge transformations in the 2-gauge
field [39, §4.2.1 and §5.1.7] or change the chosen coordinate neighbourhoods
along Pc(∂[0, 1]

2); see [39, Thm. 5.1.4]. Cf. [2.18], in order to simplify the
construction, we fix coordinate neighbourhoods along the base loop, and
the disk B, and only consider gauge transformations which are trivial along
∂D3. In particular, we are considering only a subset of gauge transformations
which leave the holonomy of the base-loop invariant. This means that in (27)
we take g = 1G and e = 1E . Hence F (c) will change as

(h, ∂(R), f) → (∂(a)h, ∂(R), R aR−1 f a−1
)
,

under gauge transformations; here e ∈ E. We are using the 2nd Peiffer rela-
tion here; see [2.10].

We can also modify the connecting tube Γc, connecting the base-loop O
to the longitude l (see Fig. 3), to a new connecting tube Γ′

c. This leads to
transformations in the 2-flux F (c) = (h, ∂(R), f) like below:

(h, ∂(R), f) 7→ (g, ∂(R), e) (h, ∂(R), f) (g, ∂(R), e)−1

= (ghg−1, ∂(R), e g⊲f (ghg−1)⊲e−1
)
.

Here (g, ∂(R), e) ∈ T 2
R(G). Note that (g, ∂(R), e) arises as the 2-dimensional

holonomy of the torus-map obtained as the vertical concatenation of Γ′
c and

the vertical inverse of Γc.
Putting the two types of transformations together, we can see that the

appropriate group of transformations on 2-fluxes is given by the following
semidirect product:

T 2
R(G)⋉ E = {(g, ∂(R), e, a) ∈ G×G× E × E : ∂(e) = [∂(R), g]}.

with group operation

(g, ∂(R), e, a) (g′, ∂(R), e′, a′) = (gg′, ∂(R), e g⊲e′, a g⊲a′).
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The group T 2
R(G)⋉ E acts on the set T 2

R(G) of 2-fluxes as below (calcu-
lations are in §6.2.2):

(g, ∂(R), e, a)⋗ (h, ∂(R), f)

= (∂(a)ghg−1, ∂(R), R aR−1 e g⊲f (ghg−1)⊲e−1 a−1
)
.

This action also arises from (27), where we put x′ = ∂(R). (We are using
the 2nd. Peiffer relation [2.10].)

[2.24] We define TRANS(T 2
R(G)) as the action groupoid of the action ⋗

of T 2
R(G)⋉ E on T 2

R(G). Objects of TRANS(T 2
R(G)) are given by 2-fluxes

F ∈ T 2
R(G). Morphisms are, where T = (g, ∂(R), e, a) ∈ T 2

R(G)⋉ E:

(
(h, ∂(R), f)

(g,∂(R),e,a)
−−−−−−−→ (g, ∂(R), e, a)⋗ (h, ∂(R), f)

)
=

(
F

T
−→ T ⋗ F

)
.

[2.25] In higher gauge theory, we not only have gauge transformations be-
tween 2-connections but also 2-gauge transformations between gauge trans-
formations. Hence there is also a quotient groupoid TRANS(T 2

R(G)) of
TRANS(T 2

R(G)), where gauge transformation connected by 2-gauge trans-
formations are identified. Throughout most of the paper, we neglect the role
of 2-gauge transformations. We will come back to this in [2.37].

[2.26] Finally, we note that a different type of 2-flux F̂ (c) ∈ T 2
R(G), called

thin 2-flux, can be associated to c in Fig. 3. This F̂ (c) is given by the 2-
dimensional holonomy of a ‘degenerate’ (i.e 1-dimensional) tube P̂c, from
O to O. This P̂c is obtained from contracting O to its base point ∗, along
B, then concatenating with a 1-dimensional tube tracing γmγ−1, and then
using B to go back to O again. Cf. the figure in (3) for a visualisation of a
tube-map homotopic to P̂c. We have a group morphism ΘR : T

2
R(G) → T 2

R(G)
given by (g, ∂(R), e) 7→ (g, ∂(R), R g⊲R−1). From the assumptions in [2.18],
we can conclude that primary and thin 2-fluxes of a loop-particle c are related
as:

F̂ (c) = ΘR

(
F (c)

)
.

Cf. [2.3] and [2.4]. In analogy with C(AUT(G)) in topological gauge
theory, for an unknotted loop-particle c, an approximation of the algebra
of local symmetries of finite 2-group topological higher gauge theory in
D3 is the groupoid algebra C(TRANS

(
T 2
R(G)

)
). Elementary loop-particles

in our simplified model correspond to irreducible representations of
C(TRANS

(
T 2
R(G)

)
). The latter algebra is semisimple, as is any finite

groupoid algebra over C.
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Now recall the G-action on AUT(G) in (21). We have a left-action “.”
of T 2

R(G)⋉ E on TRANS
(
T 2
R(G)

)
, such that:

(30) T ′.(F
T
−→ T ⋗ F ) = (F

T ′T
−−→ (T ′T )⋗ F ),

where F ∈ T 2
R(G) and T, T

′ ∈ T 2
R(G)⋉ E. (We more generally should have a

2-group action [68] of the underlying 2-group in TRANS
(
T 2
R(G)

)
. This will

be developed in a forthcoming publication.)

Let proj : D2 × [0, 1] → D2 be (x, y, z) 7→ (x, y). Consider two loop-
particles c1, c2 ∈ D2 × [0, 1] in generic position. This means that proj(c1 ∪
c2) is the disjoint union of two circles, such that no circle is nested inside
the other, and moreover the middle-points of the disks spanned by c1 and
c2 have different x coordinates.

[2.27] If c1 and c2 are in generic position, we can consider connecting tubes
Γ1 and Γ2, given by rectilinear cylinders connecting the base-loop O to their
their longitudes l1 and l2, such that the line connecting the base-point of
O to the base-point of li is a straight line, as in Fig. 4. We call these con-
necting tubes rectilinear connecting tubes. Assuming that the configuration
is generic, these rectilinear connecting tubes Γ1 and Γ2 do not intersect the
regular neighbourhoods of the other loop-particle, if these regular neigh-
bourhoods, with boundary T 2

c1 and T 2
c2 , are chosen to be thin enough.

∗

l1

c1 c2

l2

m2m1

γ1
γ2

Γ1 Γ2

O

T 2
c1

T 2
c2

Figure 4: A generic configuration of loop-particles c1 and c2.

[2.28] The Hilbert space C(TRANS(T 2
R(G))⊗C(TRANS(T 2

R(G)) describes
the set of internal states for the pair of loop-particles, c1 and c2, in generic
position. We order circles from left to right. The primary and thin 2-fluxes
F (ci) and F̂ (ci) of the loop-particle ci are calculated by using a rectilinear
tube from O to li.

We now wish to consider the transformations on the Hilbert space arising
when the loop-particles c1 and c2 move. Note, cf. [2.9], that if there is an
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Aharonov–Bohm like effect, then the pertinent mapping class group is now
the loop braid group LB2 in two circles §3.4.

[2.29] Fix a motion of our system, and in particular a motion of each
loop ci, and hence of each longitude li. Let Γ

t
i be the rectilinear tube [2.27]

from O to the longitude li, at time t, where i = 1, 2. Let Traj
(t0,t1)
i be the

‘tube’ in D3 made by the trajectory of the longitute li between t0 and t1.
Let Ai(t0, t1) ∈ T 2

R(G) be the 2-dimensional holonomy of the torus T
t0,t1
i =

Γt0i Traj
(t0,t1)
i (Γt1i )

−V , namely:

Ai(t0, t1) = 2hol(Γt0i Traj
(t0,t1)
i (Γt1i )

−V ),

where (Γt1i )
−V is the vertical inverse of Γt1i .

Our model is that the Aharonov-Bohm phase applied to ci for a motion
from t0 to t1 is given by: Ai = (Ai(t0, t1), 1E) ∈ T 2

R(G)⋉ E. Thus for example
if the motion exchanges the loops we will have:

(31) (
T1−→)⊗ (

T2−→) 7→ (
A2T2−−−→)⊗ (

A1T1−−−→).

[2.30] The 2-dimensional holonomy along a torus-map is not homotopy in-
variant as explained in [2.16], whereas in the motion group picture for loop

braids groups, the trajectories Traj
(t0,t1)
i are only defined up to isotopy [6].

Hence, when determining the 2-dimensional holonomy along T
t0,t1
i we must

fix a representative for the homotopy class of Tt0,t1i .
Crucially for the construction in this paper, these representatives are

chosen to derived from the torus-maps Pc and P̂c with which we calculate the
primary and thin 2-flux of our loop particles c [2.28], so we always look to the
‘closest’ Pc and P̂c to T

t0,t1
i . Additionally we will assume that homotopically

trivial tubes give rise to trivial 2-holonomies. That such strong assumptions
give rise to a loop-braid group representation is a mystery to the authors
which will be investigated in future work. With such approximations a notion
of Aharonov-Bohm phases can be determined from the primary F (c) and
thin F̂ (c) 2-fluxes of our loop particles c. We now explain this.

[2.31] Suppose that between t = 0 and t = 1 two loops c1 and c2 exchange
places as indicated in (32), below:

(32)
c1 c2

c1

c2

c1

c2

c1

c2
c1c2

— these, and further such figures below, are views from O in the ceiling of
D3. As the 2-dimensional holonomies associated to the tubes traced by c1
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and c2 in (32) are trivial, since the homotopy classes of Tt0,t1i are trivial,
for i = 1, 2, then by [2.30] the Aharonov-Bohm phases to insert in (31) are
trivial. Thus this move is associated to the following map V on the Hilbert
space:

(33) (T−1
1 ⋗ F1

T1−→ F1)⊗(T−1
2 ⋗ F2

T2−→ F2)

(−)⊳∗V1[2]
7−−−−−−→ (T−1

2 ⋗ F2
T2−→ F2)⊗(T−1

1 ⋗ F1
T1−→ F1).

(We just swap tensor components.) We will write V as (−)⊳∗V1[2] in antici-
pation of the role of LB2.

[2.32] Now suppose that the loop-particles c1 and c2 swap positions in the
way indicated in figure (34)-(35) below. We need to determine Aharonov-
Bohm phases A1, A2 ∈ T 2

R(G)⋉ E associated to the movement of the loop-
particles. We suppose that this movement of loop-particles happens in be-
tween t = 0 and t = 3.

(34)

(35)

t=1

t=3

t=0

c1

c1

c2

c2

c1 c2 c1
c2

c1
c2

c1
c2c1

c2

c2

c1

c2

c1
c2

c1
c2

c1

[2.33] In order to determine A1, A2, first recall [2.22] and [2.26] that a
loop-particle ci has two 2-fluxes, primary and thin, associated to it, denoted
F (ci) and F̂ (ci). We let F (ci, t) and F̂ (ci, t) be their value at time t. We
assume that F (ci, t) and F̂ (ci, t) are calculated by using the rectilinear tube
from O to li. Hence F (ci, t) and F̂ (ci, t) are not defined for all t.

[2.34]We now calculate A1(0, 3) = A1(1, 3)A1(0, 1) (recall [2.13] that the 2-
dimensional holonomy of a 2-connection preserves the vertical composition
of tubes). Note that A1(1, 3) is trivial (indeed T

1,3
1 is homotopic to the

constant tube at O). On the other hand, given our definition of thin and
primary 2-flux of a loop-particle, we have that A1(0, 1) = F̂ (c2, 0)

−1, the
inverse of the thin 2-flux of c2. Cf. [2.30], this is because T

0,1
1 is homotopic

to the inverse of the tube P̂c2 in [2.26], with which we calculate the thin
2-flux of c2. Hence, the primary 2-flux of c1 for t ≥ 1 is

F (c1, t) = F̂ (c2, 0)
−1

⋗ F (c1, 0).

Here ⋗ denotes the conjugation action of T 2
R(G) on itself.
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[2.35] Determining A2(0, 3) is more complicated. Given our conventions,
A2(0, 1) is trivial. In order to calculate A2(1, 3), we substitute (35) by an
isotopic movement of loops, as in (36) below; cf. [2.30]. Between t = 1
and t = 2, the loop-particles c1 and c2, exchange ‘concentric position’, with
c2 passing behind c1, along the back part of the torus T 2

c1 . Hence the 2-
dimensional holonomy of the trajectory of c2 is related to the primary 2-flux
of c1 at time t = 1.

(36)

t=1 t=3t=2

c1c1 c2

c2

c2 c1c2c1

c2

c1

c2

c1c2 c1c2

Now A2(1, 3) = A2(2, 3)A2(1, 2). Putting together [2.29] and [2.30], we
see that A2(1, 2) is given by the inverse of the primary 2-flux of c1 at time
1. This is because T

1,2
2 is homotopic to the vertical inverse of the torus-map

Pc1 at time t = 2. Hence

A2(1, 2) = F (c1, 1)
−1.

Finally, A2(2, 3) is given by the thin 2-flux of c1 at time 2, hence A2(2, 3) =
F̂ (c1, 2) = F̂ (c1, 1).

Let us give explicit formulae. Recall [2.26], if

F (c1, 0) = (z, ∂(R), e) = F1 and F (c2, 0) = (w, ∂(R), f) = F2,

then F̂ (c1, 0) = (z, ∂(R), R z⊲R−1) = ΘR(F1) and F̂ (c2, 0) = (w, ∂(R),
R w⊲R−1) = ΘR(F2). Hence:

A1(0, 3) = F̂ (c2, 0)
−1 = ΘR(F (c2, 0))

−1 = ΘR(F2)
−1.

On the other hand:

A2(0, 3) = A2(2, 3)A2(1, 2) = F̂
(
c1, 2)

)
F
(
c1, 1

)−1
= F̂

(
c1, 1

)
F
(
c1, 1

)−1

= ΘR

(
F
(
c1, 1)

)
F
(
c1, 1

)−1

= ΘR

(
F̂ (c2, 0)

−1
⋗ F (c1, 0)

) (
F̂ (c2, 0)

−1
⋗ F (c1, 0)

)−1

=
(

ΘR

(
ΘR(F2

−1)⋗ F−1
1

)) (

ΘR(F2)
−1

⋗ F1

)

.

[2.36] Putting the stages together, the move of loop-particles in (34)
and (35) leads to the following transformation in the Hilbert space
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C(TRANS
(
T 2
R(G)

)
)⊗C(TRANS

(
T 2
R(G)

)
):

(37) (
T1−→)⊗ (

T2−→) 7→ (
A2T2−−−→)⊗ (

A1T1−−−→).

In full:

(T−1
1 ⋗ F1

T1−→ F1)⊗(T−1
2 ⋗ F2

T2−→ F2)(38)

(−)⊳∗S+
1 [2]

7−−−−−−−→ A2.(T
−1
2 ⋗ F2

T2−→ F2) ⊗ A1.(T
−1
1 ⋗ F1

T1−→ F1)

= (T−1
2 ⋗ F2

A2T2−−−→ A2 ⋗ F2) ⊗ (T−1
1 ⋗ F1

A1T1−−−→ A1 ⋗ F1),

where

A1 =
(
ΘR(F2)

−1, 1E) and

A2 =
(

ΘR

(
ΘR(F2

−1)⋗ F1

) (
ΘR(F2)

−1
⋗ F1

−1
)
, 1E

)

.

Remark 1 (Higher gauge flux metamorphosis). The unitary trans-
formations (−)⊳∗V1[2] and (−)⊳∗S+

1 [2] in

C(TRANS
(
T 2
R(G)

)
)⊗C(TRANS

(
T 2
R(G)

)
),

defined in Equations (33) and (38), are our proposal for a simplified higher
gauge analogue of flux metamorphosis of topological gauge theory (22); see
[7–9, 30, 61].

It turns out (e.g. by direct calculation) that the unitary transformations
(−)⊳∗V1[2] and (−)⊳∗S+

1 [2] yield a representation of the 2-circle loop braid
group LB2 in C(TRANS

(
T 2
R(G)

)
)⊗C(TRANS

(
T 2
R(G)

)
), as the physical set-

ting would suggest. This can be extended to a representation of LBn in
C(TRANS

(
T 2
R(G)

)
)
n⊗

. One way to prove this is to note that we have an
underpinning W-bikoid in TRANS

(
T 2
R(G)

)
of the form:

(
F1, F2

) X+
R7−→

F1

▼▼
▼▼

▼▼

&&▼▼
▼▼▼

A1 •
▼▼

▼▼

&&▼▼
▼▼▼

F2

xxqqq
qq
qq
qq
qq•A2

qq

xxqqq
qq
qq

A2 ⋗ F2 A1 ⋗ F1

(39)

for

{

A1 = (ΘR(F2)
−1, 1E)

A2 =
(

ΘR

(
ΘR(F2

−1)⋗ F1

) (
ΘR(F2)

−1
⋗ F1

−1
)
, 1E

)

.
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And then we can use use the general Theorems 38 and 41. This sets the
relevance of the work in this paper for modelling Aharonov-Bohm like phe-
nomena for loop-particles in topological higher gauge theory.

It is proven in §6.2 that all groupoids TRANS
(
T 2
R(G)

)
), where R ∈ E,

are isomorphic, and all W-bikoids X+
R become the same by using a canoni-

cal groupoid isomorphism. Hence, as far as representations of LBn are con-
cerned, it suffices to consider the case R = 1E . In this case T 2

1E
(G) ∼= G⋊⊲ A,

where A = ker(∂) ⊂ E; note that ker ∂ is an abelian subgroup. The arrows
of TRANS

(
S2(G)

) .
= TRANS

(
T 2
1E
(G)

)
take the form:

(g, a)
(w,k,m)
−−−−−→

(

∂(m)wgw−1, k + w⊲a − (wgw−1)⊲k
)

,(40)

where g, w ∈ G, a, k ∈ ker(∂) and m ∈ E.

(Note that we switched to additive notation.) And the pertinent W-bikoid
X+
gr∗ takes the form:

(
(z, a), (w, b)

) X+
gr∗

7−→

(z, a)

❙❙❙
❙❙❙

❙❙❙

))❙❙❙
❙❙❙

w •
❙❙❙

❙❙❙❙

))❙❙❙
❙❙❙

(w, b)

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦•−w⊲a
❦❦

uu❦❦❦❦
❦❦❦

❦❦❦
❦

(w, a+ b− w−1⊲a)
(
w−1zw,w−1⊲a

)

(41)

for

{

w = (w−1, 0ker(∂), 1E)

−w⊲a = (1G,−w
−1⊲a, 1E).

This X+
gr∗ is a spin-off of the abelian gr-group W-bikoid of (20), but the

underlying groupoid of X+
gr∗ has an additional component, related to gauge

transformations on 2-connections, which is however ‘decoupled’ from the rest
of the structure. The additional level of structure present in X+

gr∗ neverthe-
less becomes very visible when considering 2-gauge transformations between
gauge transformations (see [2.37] below), and is essential when dealing with
invariants of welded knots derived from X+

gr∗ , see [41].

[2.37] For simplicity we take R = 1E . As mentioned in [2.37], there is an im-
portant variant of the groupoid TRANS

(
T 2
1E
(G)

)
∼= TRANS

(
S2(G)

)
, where

gauge transformations related by 2-gauge transformations [80, §2.3.3] [39,

§4.3.1] are identified. This yields a quotient groupoid TRANS
(
S2(G)

)
of



✐

✐

“1-Martins” — 2020/4/29 — 0:26 — page 1717 — #33
✐

✐

✐

✐

✐

✐

Representations of the loop braid group 1717

TRANS
(
S2(G)

)
, where:

(
(g, a)

(w,k,m)
−−−−−→ (∂(m)wgw−1, k + w⊲a− (wgw−1)⊲k)

)

∼=
(
(g, a)

(w∂(e),k,m (wg)⊲ew⊲e−1)
−−−−−−−−−−−−−−−−→ (∂(m)wgw−1, k + w⊲a− (wgw−1)⊲k)

)
.

Here g, w ∈ G, a, k ∈ ker(∂) andm, e ∈ E. The formulae in (41) give a bikoid

structure in TRANS
(
S2(G)

)
. Details on the construction of TRANS

(
S2(G)

)

and its relation to higher gauge theory will appear in [41].

3. Mathematical preliminaries

[3.1] If C is a category, the class of objects of C is denoted by Obj(C) or by
C0. The class of morphisms of C is denoted by C1 or by Mor(C). If x, y ∈ C0,
the set of morphisms x→ y is denoted homC(x, y) or hom(x, y).

[3.2] Our default convention for compositions in categories and groupoids
is reverse to that of function composition. Given objects x, y, z of C, com-
position is a map (f, g) ∈ hom(x, y)× hom(y, z) 7→ f ⋆ g ∈ hom(x, z). How-
ever the symbol ◦ will always denote the usual function composition. I.e.,
given set maps f : X → Y and g : Y → Z, then g ◦ f will denote the usual
(g ◦ f)(x) = g(f(x)).

[3.3] We put N = {0, 1, 2, . . . } and Z+ = {1, 2, . . . }.

[3.4] The product we use in the symmetric group Σn, of bijections f :
{1, . . . , n} → {1, . . . , n}, is f.g = g ◦ f .

3.1. General conventions for groupoids

Let Γ = (Γ1,Γ0, σ, τ, ι, ⋆) be a groupoid [48, 54, 62]. Here, Γ1 is the set of mor-
phisms (arrows) of Γ, Γ0 is the set of objects of Γ, and σ, τ : Γ1 → Γ0 denote
source and target maps, respectively. Given x, y ∈ Γ0, the set of morphisms
x→ y hence is hom(x, y) = homΓ(x, y) = {γ ∈ Γ1 : σ(γ) = x and τ(γ) = y}.

[3.5] An arrow γ of Γ will sometimes be denoted as (x
γ
−→ y), thus x = σ(γ)

and y = τ(γ).

The composition map in Γ provides, given any triple of objects (x, y, z) ∈
(Γ0)

3, a map of sets:

hom(x, y)× hom(y, z) → hom(x, z)
((
x

γ
−→ y

)
,
(
y

φ
−→ z

))

7−→
(

x
γ
−→ y

)

⋆
(

y
φ
−→ z

)

.
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[3.6] The composition of arrows in Γ will be denoted in a variety of ways,
as indicated below:

(

x
γ
−→ y

)

⋆
(

y
φ
−→ z

)

=
(

x
γ
−→ y

φ
−→ z

)

=
(

x
γ⋆φ
−−→ z

)

.

[3.7] The inverse arrow to (x
γ
−→ y) can, and will, be denoted in four different

ways:
(
x

γ
−→ y

)−1
=

(
y

γ−1

−−→ x
)
=

(
y

γ
−→ x

)
= (x

γ
−→ y).

The identity map ι : Γ0 → Γ1 sends x ∈ Γ0 to the arrow (x
idx−−→ x).

Definition 2 (Action groupoid). Let the group G have a left-action
“.” on set X. The action groupoid ΓG(X) has X as set of objects. The

arrows have the form: (x
g
−→ g.x), where x ∈ X and g ∈ G. The composition

is such that: (x
g
−→ g.x) ⋆ (g.x

h
−→ (hg).x) = (x

hg
−→ (hg).x). (Note the order of

the product.) Of course, the identity map is such that ι(x) = (x
1G−→ x)

.
= idx,

where 1G is the unit element of G.

Example 3 (AUT(G)). Let G be a group. The action groupoid of the
conjugation action of G on G is denoted by AUT(G). Hence the set of

objects of AUT(G) is G, and the arrows have the form x
g
−→ gxg−1, where

g, x ∈ G. The composition in AUT(G) therefore is such that:

(x
g
−→ gxg−1) ⋆ (gxg−1 h

−→ hgxg−1h−1) = (x
hg
−→ hgxg−1h−1).

3.2. Groupoid algebras and their representations

Definition 4 (Groupoid algebra). Let Γ be a groupoid. Cf. [32, 67, 87].
The groupoid algebra C(Γ) of Γ is the free C vector space CΓ1 over the set
Γ1 of morphisms of Γ. The product on generators is:

(
x

γ
−→ y

)
⋆
(
x′

γ′

−→ y′
)
=

(
x

γ
−→ y

)(
x′

γ′

−→ y′
)
= δ(y, x′)

(
x

γ⋆γ′

−−−→ y′
)
,(42)

where (x
γ
−→ y

)
,
(
x′

γ′

−→ y′
)
∈ Γ1.

(Here δ(y, x) = 1, if y = x, and 0 otherwise). If Γ0 is finite, then C(Γ) is a
unital algebra with identity:

1C(Γ) =
∑

x∈Γ0

ι(x) =
∑

x∈Γ0

(
x

idx−−→ x
)
.
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[3.8] The groupoid algebra has a *-structure given by (a
γ
−→ b)∗ = (b

γ−1

−−→ a),
for all (a

γ
−→ b) ∈ Γ1.

Remark 5. If G a finite group, then C(AUT(G)) (see Example 3) is [87]
the underlying algebra of the quasi-triangular Hopf algebra D(G) in (16),
the quantum double of the group algebra of G; see [1, 46, 54, 83].

[3.9] In this paper a representation (or right-representation) of a unital
algebra A will mean a right A- module V , with action denoted (v, a) ∈
V ×A 7→ v.a ∈ A, such that v.1A = v, for each v ∈ V .

Definition 6. Let (V, 〈, 〉) be an inner product space. A representation
ρ : (v, k) ∈ V × C(Γ) 7→ x.k ∈ V of C(Γ) is called unitary if it is unitary with
respect to the ∗-structure in [3.8]. This means that:

〈

u.(x
γ
−→ y), v

〉

=
〈

u, v.(y
γ−1

−−→ x)
〉

, for all u, v ∈ V , and all (x
γ
−→ y) ∈ Γ1.

[3.10] Suppose that Γ is finite and ρ is a finite dimensional representation
of C(Γ) on V . Standard techniques, as e.g. in [46, page 12], prove that we
can find an inner product in V with respect to which ρ is unitary. Stan-
dard tecniques, as in [46], also prove that C(Γ) is semisimple. This will be
addressed elsewhere.

Example 7. The right regular representation of C(Γ) has C(Γ) as under-
lying vector space. The action is by right multiplication. This representation
is unitary if we pick the inner product in C(Γ) that renders different arrows
orthonormal.

Example 8 (Object regular representation). The object regular rep-
resentation of C(Γ) has the free vector space CΓ0 on Γ0 as underlying vector

space. The action is such that if x ∈ Γ0 and (a
γ
−→ b) ∈ Γ1, then:

x.(a
γ
−→ b) = δ(a, x)b.

This representation is unitary if we choose Γ0 to be an orthonormal basis
of CΓ0.

If x ∈ Γ0, then Cπ0(Γ, x) is a sub-representation of CΓ0. Here Cπ0(Γ, x)
is the connected component of Γ0 to each x belongs. As in the case of
the quantum-double of a finite group algebra [46, Chapter IV], the latter
representation can be modified in order to include a representation of the
automorphism group of x.
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3.3. The virtual braid group and the welded braid group

Virtual knot theory is discussed e.g. in [51, 55, 63]. In this paper all mani-
folds, homeomorphisms, isotopies, immersions, embeddings, etc, are assumed
to be piecewise linear [24, 58], unless otherwise specified.

Let N be an oriented 1-dimensional manifold, possibly with boundary.
An immersion Q of N in R× [0, 1] is the image Q = φ(N) of an immersion
map φ : N → R× [0, 1]; i.e. φ is piecewise linear and locally injective. The
set of multiple points M(Q) of Q is M(Q) = {z ∈ Q : #φ−1(z) ≥ 2}, where
# denotes set cardinality. A double-point (also called a double intersection)
is a multiple point such that #φ−1(z) = 2.

The interval [0, 1] is oriented in the positive direction. We put p : R×
[0, 1] → [0, 1] to be p(s, t) = t.

Definition 9 (Virtual braid diagram). A virtual braid diagram, of de-
gree n, is the image Q of an immersion map φ : ⊔ni=1 Ii → R× [0, 1], where
Ii = [0, 1]. We put φi : Ii → R× [0, 1] to denote the restriction of φ to Ii.
The component Qi ⊂ Q of the immersion Q is by definition given by φ(Ii),
where i = 1, . . . , n.

We impose that: (1) multiple points of Q are all transversal [77, §5.2]
double intersections between different components of the immersion, (2)
each double point of Q is assigned a label from ‘classical crossings’ (positive
and negative) and ‘virtual crossings’, as below:

positive crossing
❄❄

❄

��❄
❄❄

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

, negative crossing
��❄

❄❄
❄❄

❄❄
❄

⑧⑧
⑧

��⑧⑧
⑧ ,

virtual crossing
��❄

❄❄
❄❄

❄❄
❄

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

;

(3) for each i ∈ {1, . . . , n}, the map p ◦ φi : [0, 1] → [0, 1] is an orientation
reversion homeomorphism; (4) Q ∩ (R× {1}) = {1, . . . , n} × {1} and Q ∩
(R× {0}) = {1, . . . , n} × {0}, (5) for each i ∈ {1, . . . , n}, φi(1) = (i, 0); (6)
the restriction of p : R× [0, 1] → [0, 1] to the set of double points is injective
(i.e. double points occur at different heights).

We consider two virtual virtual braid diagrams Q and Q′ equivalent if
they can be deformed one into the other via an ambient isotopy t 7→ ft of
R× [0, 1], fixing the boundary, and such that ft(Q) is a virtual braid diagram
for each t ∈ [0, 1].
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[3.11] A virtual braid diagram Q yields a bijection UQ : {1, . . . , n} →
{1, . . . , n}. Our convention is that UQ sends j to the unique i such that
φi(0) = j × {1}. (Note that φi(1) = (i, 0).) See also diagram (52), below.

Definition 10 (The monoid MV[n] of virtual braid diagrams). Given
a positive integer n, we have a monoid MV[n] of virtual braid diagrams
in degree n. Given M and M ′ in MV[n], the multiplication MM ′ is the
vertical juxtaposition of M and M ′, where M stays on top of M ′, followed
by rescalling in the height direction. The identity of the monoid MV[n] is
given by the equivalence class of the diagram I[n], below:

I[n] =
1

...

�� ���� �� ���� ��

n

��
︸ ︷︷ ︸

n strands

.

(Here, and also below, we put (i, 1) = i, where i = 1, 2, . . . , n.)

The monoid MV[n] is freely generated [51] by the equivalence classes of
the diagrams displayed below:

S+
a [n] =

1
...

�� ���� ��

a
✿✿

��✿
✿✿
...

a+1

��☎☎
☎☎
☎☎
☎

���� ��

n

��
︸ ︷︷ ︸

n strands

, S−
a [n] =

1
...

�� ���� ��

a

��✿
✿✿

✿✿
✿✿ ...
a+1
☎☎

��☎☎
☎

���� ��

n

��
︸ ︷︷ ︸

n strands

,
(43)

Va[n] = 1
...

�� ���� ��

a

��✿
✿✿

✿✿
✿✿ ...
a+1

��☎☎
☎☎
☎☎
☎

���� ��

n

��
︸ ︷︷ ︸

n strands

.

Here a ∈ {1, 2, . . . , n− 1}. From now on, we will frequently not display some
of the vertical strands which do not interact with the rest of the diagram,
when drawing compositions of generators of the monoid MV[n]. Also note
that given our convention for the multiplication in MV[n], diagrams are read
from top to bottom.

Definition 11. The n-strand welded braid group WBn [44, 51, 57] is the
monoid (easily proven to be a group) obtained from the monoid MV[n] of
virtual braid diagrams, by imposing the relations (44)–(49), below. Here
a, b ∈ {1, . . . , n− 1} for (44) and (45), and a ∈ {1, . . . , n− 2} for (46)–(49).
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Some relations are written algebraically and also diagramatically, since there
will be several diagrammatic calculations later on.

Classical and virtual Reidemeister II moves (RII± and VII):

(44)
Va[n] Va[n]

VII
= I[n], S+

a [n] S
−
a [n]

RII+
= I[n]

and S−
a [n] S

+
a [n]

RII−
= I[n].

Locality, if |a− b| ≥ 2 then:

Va[n] Vb[n] = Vb[n] Va[n], Va[n] S
+
b [n] = S+

b [n] Va[n],

Va[n] S
−
b [n] = S−

b [n] Va[n], S+
a [n] S

−
b [n] = S−

b [n] S
+
a [n],

S−
a [n] S

−
b [n] = S−

b [n] S
−
a [n], S+

a [n] S
+
b [n] = S+

b [n] S
+
a [n].

(45)

Reidemeister III move (RIII):

(46) S+
a [n] S

+
(a+1)[n] S

+
a [n]

RIII
= S+

(a+1)[n] S
+
a [n] S

+
(a+1)[n].

Graphically:

a
❊❊

❊

""❊❊

a+ 1

||②②
②②
②②

a+ 2

��
a

��

a+ 1
❑❑❑

%%❑
❑

a+ 2

yysss
ss
s

a
❊❊

❊

""❊❊

a+ 1

||②②
②②
②②

a+ 2

��
a a+ 1 a+ 2

RIII
=

a

��

a+ 1
❑❑❑

%%❑
❑

a+ 2

yysss
ss
s

a
❊❊

❊

""❊❊

a+ 1

||②②
②②
②②

a+ 2

��
a

��

a+ 1
❑❑❑

%%❑
❑

a+ 2

yysss
ss
s

a a+ 1 a+ 2

.

Virtual Reidemeister III move (VIII):

(47) Va[n] V(a+1)[n] Va[n]
VIII
= V(a+1)[n] Va[n] V(a+1)[n].

Graphically:

a

""❊
❊❊

❊❊
❊ a+ 1

||②②
②②
②②

a+ 2

��
a

��

a+ 1

%%❑❑
❑❑

❑❑
a+ 2

yysss
ss
s

a

""❊
❊❊

❊❊
❊ a+ 1

||②②
②②
②②

a+ 2

��
a a+ 1 a+ 2

VIII
=

a

��

a+ 1

%%❑❑
❑❑

❑❑
a+ 2

yysss
ss
s

a

""❊
❊❊

❊❊
❊ a+ 1

||②②
②②
②②

a+ 2

��
a

��

a+ 1

%%❑❑
❑❑

❑❑
a+ 2

yysss
ss
s

a a+ 1 a+ 2

.
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Mixed Reidemeister III move (MIII):

(48) Va[n] V(a+1)[n] S
+
a [n]

MIII
= S+

(a+1)[n] Va[n] V(a+1)[n].

Graphically:

a

""❊
❊❊

❊❊
❊ a+ 1

||②②
②②
②②

a+ 2

��
a

��

a+ 1

%%❑❑
❑❑

❑❑
a+ 2

yysss
ss
s

a
❊❊

❊

""❊❊

a+ 1

||②②
②②
②②

a+ 2

��
a a+ 1 a+ 2

MIII
=

a

��

a+ 1
❑❑❑

%%❑
❑

a+ 2

yysss
ss
s

a

""❊
❊❊

❊❊
❊ a+ 1

||②②
②②
②②

a+ 2

��
a

��

a+ 1

%%❑❑
❑❑

❑❑
a+ 2

yysss
ss
s

a a+ 1 a+ 2

.

Welded Reidemeister III move (WIII):

(49) Va[n] S
+
(a+1)[n] S

+
a [n]

WIII
= S+

(a+1)[n] S
+
a [n] V(a+1)[n].

Graphically:

a

""❊
❊❊

❊❊
❊ a+ 1

||②②
②②
②②

a+ 2

��
a

��

a+ 1
❑❑❑

%%❑
❑

a+ 2

yysss
ss
s

a
❊❊

❊

""❊❊

a+ 1

||②②
②②
②②

a+ 2

��
a a+ 1 a+ 2

WIII
=

a

��

a+ 1
❑❑❑

%%❑
❑

a+ 2

yysss
ss
s

a
❊❊

❊

""❊❊

a+ 1

||②②
②②
②②

a+ 2

��
a

��

a+ 1

%%❑❑
❑❑

❑❑
a+ 2

yysss
ss
s

a a+ 1 a+ 2

.

[3.12] It is easy to see that WBn is isomorphic to the group formally gener-
ated by the symbols S+

a [n] and Va[n], where a = 1, . . . , n− 1, with relations
(44) to (49), desconsidering all relations involving S−

a [n], a = 1, . . . , n− 1.
This is the point of view taken in [6, 29, 44, 50]. We will use the two per-
spectives (presentation of WBn as a group, versus presentation of WBn as
a monoid) in this paper.

Definition 12 (Virtual braid group). The group with the same gener-
ators as WBn, and the same relations, except for the welded Reidemeister
III (WIII) move (49), is called the virtual braid group VBn.

Definition 13 (Braid group). The group with generators S±
a [n], a =

1, . . . , n− 1, and all relations in WBn not involving the Vn[a], a = 1, . . . , n−
1, is called the braid group Bn in n-strands.

Clearly, inclusion of generators provides an epimorphism VBn → WBn.
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[3.13] Consider Σn in [3.4], with the usual presentation with generators
Va[n], where a = 1, . . . , n− 1, and relations: (i) Va[n]V(a+1)[n]Va[n] =
V(a+1)[n]Va[n]V(a+1)[n]; (ii) Va[n] Vb[n] = Vb[n]Va[n] if |a− b| ≥ 2; and (iii)

Va[n]
2 = id. And then, concretely, Va(n) = tna,a+1 ∈ Σn, the transposition ex-

changing a and a+ 1.

[3.14] We have epimorphisms U : WBn,VBn → Σn sending both S±
a [n] and

Va[n] to Va[n]. Given B in WBn or VBn, then U(B), denoted UB, is called
the underlying permutation of B. Looking at elements of WBn and VBn as
equivalence classes [Q] of virtual braid diagrams Q, it holds that U[Q] = UQ
in [3.11].

Remark 14 (Tournant Dangereux). The welded Reidemeister III rela-
tion (49) is not equivalent to:

(50) S+
a [n]S

+
(a+1)[n]Va[n] = V(a+1)[n]S

+
a [n]S

+
(a+1)[n].

(We have just reversed the order of the factors in (49).) The relation in
(50) is equivalent to the “Forbidden move F2 in [57]”. The group obtained
from WBn by imposing (50) is called the “unrestricted virtual braid group”
[12, 57]. We note that virtual knot theory in the presence of the welded
Reidemeister III move and its reverse (50) is trivial; see e.g. [52, 71]; however
non-trivial linking phenomena may still occur [69].

Definition 15 (The monoidal categories WB and VB). We have strict
monoidal categories WB and VB, the welded braid category and the virtual
braid category. Objects in WB and VB are given by non-negative integers.
The sets of morphism m→ m′ are non-empty if, and only if, m = m′. Also
put homWB(m,m) = WBm and homVB(m,m) = VBm. On objects, the ten-
sor product is n⊗ n′ = n+ n′. Given morphisms B : n→ n and B′ : n′ → n′,
in WB or VB, their tensor product (B ⊗B′) : (n+ n′) → (n+ n′) is derived
from the horizontal juxtaposition QBQ

′
B of virtual braid diagrams QB and

QB′ , for B and for B′, moving crossings up and down, if necessary, in order
that all crossings appear at different heights.
By (45), the tensor product of morphisms is well defined and we have
monoidal categories WB and VB.

[3.15] The monoidal categories WB and VB can be presented by generators
and relations, as in [54, §XII]. The generators are S±[2] and V [2]. For VB
the only relations are the ones in (44), for n = 2, and (46)–(48), for n = 3,
where S+

2 [3] = 11 ⊗ S+
1 [2], S

+
1 [3] = S+

1 [2]⊗ 11 and so on. (We note that the
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locality relation (45) is automatically satisfied in a monoidal category.) In
order to present WB, we must also add relation (49).

3.4. The loop braid group: isomorphism with
the welded braid group

Papers addressing the loop braid group, or close relatives, include [6, 18, 29,
45]. We essentially follow [29].

In this subsection, our convention for the 3-disk is: D3 = {z ∈ R2 : ||z|| ≤
2} × [−1, 1]. Let n ∈ Z+. Let Cn ⊂ D3 be a disjoint union of unlinked circles
in D3 ∩ (R2 × {0}), oriented counterclockwise. For definiteness put S1

j =

({z ∈ R2 : ||z|| = 1/(3n)}+ j/n)× {0} and Cn =
⋃n
j=1 S

1
j , which is therefore

oriented.

[3.16] Let Homeo(D3, Cn) be the group of orientation preserving home-
omorphisms D3 → D3, which restrict to an orientation preserving home-
omorphism Cn → Cn, and which are the identity over ∂D3. The group
operation in Homeo(D3, Cn) is composition. Two homeomorphisms f, g :
Homeo(D3, Cn) are said to be pair-isotopic, if there exists a map H : D3 ×
[0, 1] → D3 such that (z, t) ∈ D3 7→ H(z, t, s) ∈ D3 is in Homeo(D3, Cn), for
each s ∈ [0, 1].

Definition 16. Let MCG(D3, Cn) (the “mapping class group of (D3, Cn)”)
be the group of homeomorphisms f ∈ Homeo(D3, Cn), considered up to pair
isotopy. The group law in MCG(D3, Cn) is induced by the composition in
Homeo(D3, Cn), which descends to the quotient under pair isotopy. In this
paper, MCG(D3, Cn) is also denoted LBn and called the “loop braid group
(in n circles)”.

As we shall illustrate shortly, MCG(D3, Cn) can be thought of as a
group of braidings of loop world-sheets in (3+1)-dimensions, generalising
the ordinary braid group regarded as a group of braidings of point world-
lines in (2+1)-dimensions; see [6, 29]. Hence the term ‘loop braid group’ and
the notation LBn.

For some manipulations, and for example representation theoretically,
the given realisation of LBn is difficult to work with. Next we prepare a
useful presentation.

Theorem 17 (Baez et al [6], Damiani [29]). There exists an isomor-
phism:

T : B ∈ WBn 7−→ TB ∈ MCG(D3, Cn) = LBn.
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This isomorphism sends a group generator [3.12] g ∈ WBn of the form
S+
a [n] or Va[n], to the pair-isotopy class of the homeomorphism fg = φgt=1 :

(D3, Cn) → (D3, Cn) at the end of the isotopies Φg =
(
t ∈ [0, 1] 7→ φgt ∈

Homeo(D3, ∅)
)
, of D3, relative to its boundary, indicated in the Fig. 5, below

(only a few virtual braid strands and circles are displayed, but the general
picture should be clear).

g = S+
a [n] Φg g = Va[n] Φg

Figure 5: A generator g ∈ WBn gives rise to an isotopy Φg =
(
t ∈ [0, 1] 7→

φ gt ∈ Homeo(D3, ∅)
)
of D3.

We note that the convention for loop braiding in Fig. 5 is opposite to that
in Equations (34)–(35) in §2.

This theorem was stated in [6] for smooth motion groups. The inter-
pretation of smooth motion groups in terms of topological mapping class
groups appears in [29]. In order to connect the two points of view, we can
use results in [45], to pass from mapping class groups to motion groups,
and [89], to go from the continuous setting to the smooth setting. In [18] it
is proven that WBn has another topological realisation as the fundamental
group of the configuration space of rings in D3.

Several other groups are isomorphic to WBn, e.g. the group of conjugat-
ing automorphisms of a free group [79] – we will go back to this in §4.5.1.
For further discussion see [29].

4. Bikoids and welded bikoids (W-bikoids)

4.1. The wreath product groupoid Γ≀n = Γn ⋊ Σn of a groupoid Γ

Let Γ = (Γ1,Γ0, σ, τ, ι, ⋆) be a groupoid. For n ∈ Z+, we write (x1, . . . , xn) =
x ∈ Γn0 and (γ1, . . . , γn) = γ ∈ Γn1 . The product groupoid Γn is Γn =
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(Γn1 ,Γ
n
0 , σ, τ , ι, ⋆), with product composition. Morphisms in Γn can be rep-

resented in a variety of ways, as indicated below:

(
γ : x→ y

)
=

(
x

γ
−→ y

)
=

(
(x1, . . . , xn)

(γ1,...,γn)
−−−−−−→ (y1, . . . , yn)

)

=
(
(x1

γ1
−→ y1)⊗ . . .⊗(xn

γn
−→ yn)

)
.

[4.1] Cf. [3.4] for our convention on the symmetric group Σn. We have a left-
action of Σn on Γn by groupoid functors, obtained by permuting components.
Namely if f ∈ Σn and (γ : x→ z) ∈ Γn1 , we put:

f⊲
(
(x1, x2, . . . xn)

(γ1,γ2,...,γn)
−−−−−−−→ (z1, z2, . . . zn)

)

=
(
f⊲(x1, x2, . . . xn)

f⊲(γ1,γ2,...,γn)
−−−−−−−−−→ f⊲(z1, z2, . . . zn)

)

.
=

(
(xf(1), xf(2), . . . xf(n))

(γf(1),γf(2),...,γf(n))
−−−−−−−−−−−−→ (zf(1), zf(2), . . . zf(n))

)
.

Definition 18. The ‘wreath product groupoid’ Γ≀n = Γn ⋊ Σn, with re-
spect to the action in [4.1], is defined as follows. The set of objects is Γn0
and the set of morphisms is Γn1 × Σn. Arrows have the form:

((
σ(γ1), . . . , σ(γn)

)
(
(γ1,...,γn),f

)

−−−−−−−−−→
(
τ(γf−1(1)), . . . , τ(γf−1(n))

))

=
(
σ(γ)

(γ,f)
−−−→ f−1⊲

(
τ(γ)

)
.

And given another arrow in Γ≀n, namely
(
σ(φ)

(φ,g)
−−−→ g−1⊲τ(φ)

)
, with σ(φ) =

f−1⊲τ(γ), the composition is:

(

σ(γ)
(γ,f)
−−−→ f−1⊲τ(γ)

)

⋆
(

f−1⊲τ(γ)
(φ,g)
−−−→ g−1⊲τ(φ)

)

(51)

=
(

σ(γ)
(γ ⋆ (f⊲φ),f.g)
−−−−−−−−→ g−1⊲τ(φ)

)

.

(These apparently awkward conventions are justified by the graphical cal-
culus in §4.2.)

4.2. Graphical calculus for Γn ⋊ Σn = Γ≀n

Recall [3.11] and [3.14]. Any welded (or virtual) braid [Q], and any virtual
braid diagram Q, gives rise to a permutation UQ. Hence permutations can
be represented by virtual braids diagrams. Thus we can use a graphical cal-
culus to represent morphisms in Γn ⋊ Σn, cf. [65]. We explain the graphical
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calculus for n = 3 (the other cases extend in the obvious way). This provides
visual help for some calculations in this paper.

Firstly note that bijections f : {1, 2, 3} → {1, 2, 3} can be represented by
virtual braid diagrams as below:

(52)
1 2 3

f(3)=1 f(2)=3f(1)=2

1 2 3

f(3)=1 f(2)=3f(1)=2

f = = =

1 2 3

f(3)=1 f(2)=3f(1)=2

Here only initial and end-points of strands matter. In this diagrammatic
presentation, the product f.g of two permutations is given by the vertical
juxtaposition where f stays on top of g. (In order for this to work, we must
use convention [3.4] for the symmetric group.)

The morphisms of Γ3 ⋊ Σ3 can be represented by diagrams as in Fig. 6.
Only initial and end-points of strands matter, encoding permutation compo-
nents of morphisms in Γ3 ⋊ Σ3. Hence, we can switch positive crossings with
negative or virtual crossings without changing the morphism in Γ3 ⋊ Σ3 that
we are describing.

σ(γ) σ(γ′) σ(γ′′)

τ(γ′′) τ(γ′)τ(γ)

γ γ′ γ′′

=
(

σ(γ), σ(γ′), σ(γ′′)
)

(
(γ,γ′,γ′′),f

)

−−−−−−−−→
(

τ(γ′′), τ(γ), τ(γ′)
)

Figure 6: A morphism in Γ3 ⋊ Σ3. Here f ∈ Σ3 is such that f(1) = 2, f(2) =
3 and f(3) = 1.

For γ = id we may omit this and the blob “•” entirely.
Assume that two morphisms in Γ3 ⋊ Σ3 are composable. (In the case be-

low this means σ(φ) = τ(γ′′), σ(φ′) = τ(γ′), and σ(φ′′) = τ(γ).) Graphically
their composition is via vertical juxtaposition, as below:
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σ(γ) σ(γ′) σ(γ′′)

σ(γ) σ(γ′) σ(γ′′)
σ(γ) σ(γ′) σ(γ′′) σ(γ) σ(γ′) σ(γ′′)

τ(γ′′) τ(γ′) τ(γ)

σ(φ) σ(φ′) σ(φ′′)
γ γ′ γ′′

φ φ′ φ′′

γ γ′ γ′′

γ⋆φ′′ γ′⋆φ′ γ′′⋆φ γ⋆φ′′ γ′⋆φ′
γ′′⋆φ

τ(φ′′) τ(φ) τ(φ′)

τ(φ′′) τ(φ) τ(φ′)
τ(φ′′) τ(φ) τ(φ′) τ(φ′′) τ(φ) τ(φ′)

φ φ′ φ′′

⋆ = = =

Figure 7: Graphical notation for composing morphisms in Γ3 ⋊ Σ3.

Hence, blobs in a diagram can be moved freely along a strand, including
pass a crossing, as long as no other blob gets in the way. We can compose
the arrows colouring any two contiguous blobs in the same strand.

4.3. Conventions and notation for biracks and
welded biracks (W-biracks)

References on quandles, biquandles and biracks include: [13, 14, 25–27, 42,
43, 72, 82].

Definition 19 (Birack, W-birack). A birack (X, /, \) is a set X with two
maps X ×X → X, denoted (x, y) 7→ x\y, called “x under y”, and (x, y) 7→
y/x called “y over x”. The conditions to be satisfied are:

1) Fixing a ∈ X, the maps fa, f
a : X → X given by fa : x 7→ x/a and

fa : x 7→ x\a each are invertible.

2) The map S : X ×X → X ×X given by (x, y) 7→ (y/x, x\y) (called [43]
a “switch”) is invertible.

3) Putting S1 = S × idX : X ×X ×X → X ×X ×X and S2 = idX × S
then S1 ◦ S2 ◦ S1 = S2 ◦ S1 ◦ S2.

A birack is “welded”, or a W-birack, if for each x, y, z the following hold:

(z/x)/y = (z/y)/x, y\z = y\(z/x)), x\z = x\(z/y).(53)

The last equation of (53) is of course redundant. It is left since it facilitates
some of the diagrammatic proofs later.

[4.2] Let G be a group. The operations h/g = h and g\h = h−1gh make G
a W-birack (also a quandle [43]).
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[4.3] For any birack X, we may visualize the maps S and t1,2 : X
2 → X2

given by t1,2 : (x, y) 7→ (y, x) as sending (x, y) ∈ X ×X to the pairs appear-
ing at the bottom of the diagrams:

x
❏❏❏

%%❏❏
y

yytt
tt
t

y/x x\y
and

x

��❃
❃❃

❃❃
y

����
��
�

y x
.

In particular S1 ◦ S2 ◦ S1 = S2 ◦ S1 ◦ S2 becomes identification of the bottom
rows here, for each x, y, z ∈ X:
(54)

x
❯❯❯

❯❯❯
❯❯

**❯❯❯
❯❯❯

❯

y

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐ z

��
y/x

��

x\y
◗◗◗

◗◗

((◗◗
◗

z

vv♠♠♠
♠♠♠

♠♠♠
♠♠

y/x
❚❚❚

❚❚❚
❚

**❚❚❚
❚

z/(x\y)

tt❥❥❥❥
❥❥❥

❥❥❥
(x\y)\z

��
(z/(x\y))/(y/x) (y/x)\(z/(x\y)) (x\y)\z

=

x

��

y
❯❯❯

❯❯❯
❯❯

**❯❯❯
❯❯❯

❯

z

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐

x
◗◗◗

◗◗◗

((◗◗
◗

z/y

vv♠♠♠
♠♠♠

♠♠♠
y\z

��
(z/y)/x

��

x\(z/y)
❚❚❚

❚❚

**❚❚❚
❚

y\z

tt❥❥❥❥
❥❥❥

❥❥❥
❥❥

(z/y)/x (y\z)/(x\(z/y)) (x\(z/y))\(y\z)

.

The welded birack axiom (53) says that the bottom colours of the dia-
grams below coincide, if x, y, z ∈ X:

(55) x

''❖❖
❖❖

❖❖
❖❖

❖❖ y

ww♦♦♦
♦♦
♦♦
♦♦
♦ z

��
y

��

x
❏❏

❏

$$❏❏

z

zzttt
tt
tt

y
▲▲▲

▲▲

&&▲▲
▲

z/x

xxrrr
rr
rr

x\z

��
(z/x)/y y\(z/x) x\z

=

x

��

y
❖❖

❖❖

''❖❖
❖

z

ww♦♦♦
♦♦♦

♦♦♦

x
◆◆

◆◆

&&◆◆

z/y

xx♣♣♣
♣♣
♣

y\z

��
(z/y)/x

��

x\(z/y)

&&◆◆
◆◆

◆
y\z

xx♣♣♣
♣♣
♣♣

(z/y)/x y\z x\(z/y)

.

Note that the bottom colours in (56) coincide identically, given any triple
(x, y, z) ∈ X3:

(56) x

%%▲▲
▲▲

▲▲
▲ y

yyrrr
rr
rr

z

��
y

��

x

$$■
■■

■■
■ z

zz✉✉
✉✉
✉✉

y
❏❏

❏

$$❏❏
z

zzttt
tt
t x

��
z/y y\z x

=

x

��

y
❑❑

❑

%%❑❑
z

yysss
ss
s

x

$$❏
❏❏

❏❏
❏❏ z/y

zzttt
tt

y\z

��
z/y

��

x

$$❏
❏❏

❏❏
❏❏ y\z

zzttt
tt

z/y y\z x

.
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(See §3.3.) The following is standard [13, 14, 42, 43]. In this paper we
will extend this to bikoids.

Lemma 20. If (X, /, \) is a birack, then Xn = X × · · · ×X has a right-
action “⊳” of VBn given by:

(x1, . . . , xa−1, xa, xa+1, xa+2, . . . , xn) ⊳ S
+
a [n]

= (x1, . . . , xa−1, xa+1/xa, xa\xa+1, xa+2, . . . xn),

(x1, . . . , xa−1, xa, xa+1, xa+2, . . . , xn) ⊳ Va[n]

= (x1, . . . , xa−1, xa+1, xa, xa+2, . . . xn).

This action descends to an action of the welded braid group WBn if, and
only if, (X, /, \) is welded.

Proof. We follow the formulation in [3.12] for VBn. Firstly (−)⊳S+
a [n] is

invertible by item 2 of Def. 19. Then note that x⊳S+
a [n] and x⊳Va[n], where

x = (x1, . . . , xa−1, xa, xa+1, xa+2, . . . , xn), are the bottom colours of the fol-
lowing diagrams:

x1

��

. . .

���� ��

xa−1

��

xa
◆◆

◆◆

''◆◆◆

xa+1

ww♣♣♣
♣♣♣

♣
xa+2

��

. . .

���� ��

xn

��
x1 . . . xa−1 xa+1/xa xa\xa+1 xa+2 . . . xn

and

x1

��

. . .

���� ��

xa−1

��

xa

$$■
■■

■■
■ xa+1

zz✉✉✉
✉✉
✉

xa+2

��

. . .

���� ��

xn

��
x1 . . . xa−1 xa+1 xa xa+2 . . . xn

.

The check of RIII (46) from Def. 11 boils down to (54); VRIII (48) boils
down to (56). Equations (44), (45) and (47) are trivial. Equation (49) follows
from (55), which happens if, and only if, (X, /, \) is welded. �

[4.4] By extending linearly, given a birack, we hence have a right represen-
tation ⊳ of VBn on the vector space κ(Xn) ∼= κ(X)n⊗. Here κ is a field. This
descends to a representation of WBn if (X, /, \) is welded.

We will be particularly interested in biracks for which the reverse form
of the welded Reidemeister III move in (50) does not hold for the action ⊳
(Lem. 20) of WBn on Xn. These are called essential biracks.
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Definition 21. (We follow [13].) A W-birack (X, /, \) is called essential if
it does not hold that:

∀x, y, z ∈ X3 : (x\y)\z = (x\z)\y,

and y/x = y/(x\z), and z/(x\y) = z/x.

[4.5] Essential W-biracks are the most interesting when it comes to appli-
cations to WBn. This is because otherwise ⊳ in Lem. 20 will descend to a
representation of the unrestricted virtual braid group; see Rem. 14.

4.4. Bikoids: definition

Definition 22 (Bikoid). A bikoid (Γ, X+) is a groupoid

Γ = (Γ1,Γ0, σ, τ, ι, ⋆),

together with set maps L,R : Γ0 × Γ0 → Γ1, such that the following hold.
Firstly, σ(L(x, y)) = x, σ(R(x, y)) = y. Secondly, L and R define a birack
(Γ0, /, \), called the underlying birack of (Γ, X+), by x\y = τ(L(x, y)) and
y/x = τ(R(x, y)). That is, the source and target of L(x, y) and R(x, y) are
as indicated below:

(x
L(x,y)
−−−−→ x\y) and (y

R(x,y)
−−−−→ y/x).

Next define the following morphisms of the wreath product Γ2 ⋊ Σ2 =
Γ≀2 (recall [3.13], §4.1 and §4.2):

Y +(x, y) =
(

x⊗y

(
(L(x,y),R(x,y)),1Σ2

)

−−−−−−−−−−−−−−→ x\y⊗y/x
)

,(57)

X+(x, y) = Y +(x, y) ⋆
(
x\y⊗y/x

(
(idx\y,idy/x),t21,2

)

−−−−−−−−−−−−→ y/x⊗x\y)(58)

=
(
x⊗y

(
(L(x,y),R(x,y)),t21,2

)

−−−−−−−−−−−−−→ y/x⊗x\y
)
.(59)

Note σ(X+(x, y)) = (x, y) = x⊗y. We use the notations (recall the diagram-
matic calculus for Γ≀2 in §4.2):

(60)

X+(x, y) =

x
❊❊

❊❊

""❊
❊❊

L(x,y) •
❊❊

""❊
❊❊

y

||②②
②②
②②
②②
②

•R(x,y)
②②

||②②
②②
②

y/x x\y

=

x

""❊
❊❊

❊❊
❊❊

❊
L(x,y) •

❊❊

""❊
❊❊

y

||②②
②②
②②
②②
②

•R(x,y)
②②

||②②
②②
②

y/x x\y

.
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We impose that for each x, y, z ∈ Γ0 the equation below holds in Γ3 ⋊

Σ3= Γ≀3:

x
L(x,y) •

◗◗◗

◗◗

((◗◗
◗◗◗

◗◗
◗◗◗

◗◗◗
◗◗

((◗◗
◗◗◗

◗◗

y

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠

• R(x,y)
♠♠♠

vv♠♠♠
♠♠♠

♠♠♠
♠

z

��
y/x

��

x\y
L(x\y,z) •

▲▲

&&▲▲
▲▲

▲
▲▲

▲▲
▲

&&▲▲
▲▲

▲

z
•R(x\y,z)
rrr

xxrrr
rr
rr

xxrrr
rr
rr
rr
rr
r

y/x

L(y/x,z/(x\y)) •
PP

P

((PP
PPP

P
PP

PP
PP

P

((PP
PPP

P

z/(x\y)

•R(y/x,z/(x\y))
♥♥

vv♥♥♥
♥♥♥

♥

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

(x\y)\z

��
(z/(x\y))/(y/x) (y/x)\(z/(x\y)) (x\y)\z

(61)

=

x

��

y
L(y,z) •

◗◗◗

◗◗

((◗◗
◗◗◗

◗◗
◗◗◗

◗◗◗
◗◗◗

((◗◗
◗◗◗

◗◗

z
• R(y,z)

♠♠♠

vv♠♠♠
♠♠♠

♠♠♠
♠♠

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠

x
L(x,z/y) •

▼▼

▼▼

&&▼▼
▼▼

▼
▼▼

▼▼
▼▼

▼

&&▼▼
▼▼

▼

z/y

• R(x,z/y)
qq

xxqqq
qq

xxqqq
qq
qq
qq
qq

y\z

��
(z/y)/x

��

x\(z/y)

L(x\(z/y),y\z) •
PP

((PP
PPP

P
PPP

PPP

((PP
PPP

P

y\z

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥

• R(x\(z/y),y\z)
♥♥♥

vv♥♥♥
♥♥♥

♥♥

(z/y)/x (y\z)/(x\(z/y)) (x\(z/y))\(y\z)

.

Recall that undecorated lines carry identities in Γ. Hence Equation (61)
means that for each x, y, z ∈ Γ0:

L(x, y) ⋆ L(x\y, z) = L(x, z/y) ⋆ L(x\(z/y), y\z),

R(x, y) ⋆ L(y/x, z/(x\y)) = L(y, z) ⋆ R(x\(z/y), y\z),

R(x\y, z) ⋆ R(y/x, z/(x\y)) = R(y, z) ⋆ R(x, z/y).

(62)

Remark 23 (Holonomy arrows). The L(x, y) and R(x, y) arrows are
called holonomy arrows. In the context of finite group and finite 2-group
topological field theory, they encode Aharonov-Bohm phases [8, 9, 61] arising
from flat connection holonomy and flat 2-connection 2-dimensional holon-
omy obtained when point-particles move in 2-dimensional space and loop-
particles move in 3-dimensional space – see §2.1 and §2.3.

Remark 24. We can define a bikoid (Γ, X+) as being given by a birack
structure on Γ0, together with morphisms (L(x, y) : x→ x\y) and (R(x, y) :
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y → y/x), in Γ, for each x, y ∈ Γ0, satisfying Equation (62). The wreath
groupoid approach chosen, and its graphical calculus, greatly facilitates the
proofs to come.

[4.6] Let (Γ, X+) be a bikoid. Consider the underlying birack (Γ0, /, \) of
(Γ, X+). In particular the map (x, y) ∈ Γ0 × Γ0 7→ (y/x, x\y) ∈ Γ0 × Γ0 is
bijective (Def. 19). We put (the inverse is taken in Γ2 ⋊ Σ2):

X−(y/x, x\y) =
(

(x, y)
X+(x,y)
−−−−−→ (y/x, x\y)

)−1

=
(
(y/x, x\y)

X−(y/x,x\y)
−−−−−−−−→ (x, y)

)
∈ Mor(Γ2

⋊ Σ2).

We use the following diagrammatic notations for X−(y/x, x\y):

X−(y/x, x\y) =

y/x

""❊
❊❊

❊❊
❊❊

❊❊
R(x,y) •

""❊
❊❊

❊❊

x\y

②②
②

||②②
②②

•L(x,y)

||②②
②②

x y

=

y/x

""❊
❊❊

❊❊
❊❊

❊❊
R(x,y) •

""❊
❊❊

❊

x\y

||②②
②②
②②
②②
②

•L(x,y)

||②②
②②
②

x y

.

[4.7] Thus L(x, y) ⋆ L(x, y) = idx\y and L(x, y) ⋆ L(x, y) = idx. And the same

for R(x, y) and R(x, y).

Definition 25 (Welded bikoid). (Recall Def. 19 and Equation (55).) A
bikoid (Γ, X+) is called welded, or a W-bikoid, if (Γ0, /, \) is a welded birack,
and for each x, y, z ∈ Γ0 it holds that:
(63)

x
id •
❑❑

❑❑

%%❑❑
❑❑

❑

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑ y

yysss
ss
ss
ss
ss•id
ss

yysss
ss
ss
s

z

��
•id

��
y

��
•id

��

x
L(x,z) •

""❋
❋❋

❋❋
❋❋

""❋
❋❋

z
•R(x,z)
①①

||①①
①①
①

||①①
①①
①①
①①
①

y
L(y,z/x) •

■■

$$■■
■■

■■
■■

■

$$■■
■■

z/x

•R(y,z/x)

zz✉✉✉
✉✉

zz✉✉✉
✉✉
✉✉
✉✉

x\z

��
•id
��

(z/x)/y y\(z/x) x\z

=

x

��
•id

��

y
L(y,z) •

❍❍

$$❍
❍❍

❍❍
❍❍

❍

$$❍
❍❍

z
•R(y,z)
✈✈

zz✈✈✈
✈✈

zz✈✈
✈✈
✈✈
✈✈
✈

x
L(x,z/y) •

●●

##●●
●●

●●
●●

●

##●●
●●

z/y

•R(x,z/y)
✇✇

{{✇✇✇
✇

{{✇✇
✇✇
✇✇
✇✇

y\z

��
•id
��

(z/y)/x

��
• id
��

x\(z/y)
id •

##●
●●

●●
●

##●
●●

●●
●●

●
y\z

{{✇✇
✇✇
✇✇
✇✇• id

{{✇✇
✇✇
✇

(z/y)/x y\z x\(z/y)

.

Since (Γ0, /, \) is a W-birack, the equation above means that for each x, y, z ∈
Γ0 we have that:

(64)
L(x, z) = L(x, z/y), L(y, z) = L(y, z/x),

R(x, z) ⋆ R(y, z/x) = R(y, z) ⋆ R(x, z/y).
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Proposition 26 (Finite group W-bikoid). Let G be a group. We have
a W-bikoid structure X+

G in the groupoid AUT(G) of Example 3. The un-
derlying birack (Γ0, /, \) = (G, /, \) is given by y/x = y and x\y = y−1xy,
cf. [4.2]. The holonomy morphisms are as follows (below we put y = y−1,
where y ∈ G):

(65)

X+
G (x, y) =

x
• 1G

❊❊
❊❊

""❊
❊❊

y
y •

||②②
②②
②②
②②
②②

y y−1xy

.

Proof. Recalling [4.2], (G, /, \) is a W-birack. Equation (61) — equivalently
(62) — is true since:
(66)

x
❍❍

❍❍

##❍
❍

y •
❍❍

##❍
❍

y

{{✇✇
✇✇
✇✇
✇✇
✇

• 1G
✇✇

{{✇✇
✇✇
✇✇

z

��
•1G

��
y

��
•1G

��

y−1xy
◆◆

◆◆

''◆◆
◆◆

z •◆◆

''◆◆
◆◆

z

ww♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

• 1G
♣♣

ww♣♣♣
♣♣
♣♣
♣♣
♣

y
❋❋

❋❋

##❋❋
❋

z •
❋❋

##❋❋
❋

z

||①①
①①
①①
①①
①①• 1G
①①

||①①
①①
①①

z−1y−1xyz

��
•1G
��

z z−1yz z−1y−1xyz

=

x

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

z y •
❖❖❖

''❖❖
❖

y

ww♦♦♦
♦♦
♦♦
♦♦
♦♦

• z
♦♦♦

ww♦♦♦
♦♦
♦

z
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•1G

��
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�� ��
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((PP
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z

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥
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♥
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◆
z

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣ z−1y−1xyz

��
z z−1yz z−1y−1xyz

.

(Recall our convention for composition in AUT(G); see Example 3.) Whereas:
(67)

x

��
•1G

��

y
◆◆

◆◆
◆◆

''◆◆
◆

z •
◆◆

◆◆

''◆◆
◆

z

ww♣♣♣
♣♣
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♣♣
♣♣• 1G
♣♣

ww♣♣♣
♣♣
♣♣
♣♣
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❉❉

❉❉

!!❉❉
❉

z •

!!❉❉
❉

z

}}③③
③③
③③
③③
③

• 1G
③③

}}③③
③③
③③

z−1yz

��
•1G
��

z

��
•1G

��

z−1xz
▼▼

▼▼
▼

&&▼▼
▼▼

z−1yz •

&&▼▼
▼▼

z−1yz

xxqqq
qq
qq
qq• 1G

xxqqq
qq
q

z z−1yz z−1y−1xyz

=

x

��
z−1yz z •

��

y

&&▼▼
▼▼

▼▼
▼▼

▼▼
z •
▼▼

▼▼

&&▼▼
▼

z

xxqqq
qq
qq
qq
qq
q

• 1G
qq

xxqqq
qq
qq
qq

z−1y−1xyz

%%▲▲
▲▲

▲▲
▲▲

z

yyrrr
rr
rr
rr
rr
r z−1yz

��
z

��

z−1y−1xyz

%%▲▲
▲▲

▲▲
▲▲

z−1yz

yyrrr
rr
rr
r

z z−1yz z−1y−1xyz

.

Since z−1yz z = z−1y−1zz−1 = z y, the morphisms in Γ≀3 in the right-hand-
sides of (66) and (67) coincide. That the bikoid X+

G is welded is proved
similarly; we will prove this in a more general context in §6.2.3. �

The W-bikoid (AUT(G), X+
G ) is closely related to topological gauge theory

in D2; see §2.1.

The proof of the following result is an easy exercise:
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Proposition 27. Let (Γ, X+) be a bikoid. Then Γ1, the set of morphisms
of Γ, is a birack with:

(
x′

γ
−→ x)\(y′

φ
−→ y) = (x′

γ
−→ x) ⋆ (x

L(x,y)
−−−−→ x\y) = (x′

γ⋆L(x,y)
−−−−−→ x\y),

(
y′

φ
−→ y)/(x′

γ
−→ x) = (y′

φ
−→ y) ⋆ (y

R(x,y)
−−−−→ y/x) = (y′

φ⋆R(x,y)
−−−−−→ y/x).

Furthermore (Γ, X+) is a welded bikoid if, and only if, (Γ1, /, \) is a welded
birack.

[4.8] To (Γ1, /, \) we call the upper birack of (Γ, X+).

[4.9] By combining Prop. 27 with Lem. 20, we hence have a representation
⊳∗ of VBn on CΓn1

∼= (CΓ1)
n⊗, derived from the upper birack of a bikoid

(Γ, X+). Explicit formulae are in [1.8]. The representation ⊳∗ of VBn de-
scends to a representation of WBn when (Γ, X+) is welded. This ⊳∗ will be
generalised in §5.

(Recall [4.5]). We will be particularly interested in essential W-bikoids.
These are the W-bikoids for which the representation ⊳∗ does not descend
from WBn to the unrestricted virtual braid group in Rem. 14.

Definition 28. A W-bikoid is called essential if its upper birack is essential
(as in Def. 21).

Example 29. A quick calculation shows that if G is non-abelian then the
W-bikoid X+

G in Prop. 26 is an essential W-bikoid. The lower birack of X+
G ,

displayed in [4.2], may be non-essential when G is non-abelian, if it happens
that for all x, y, z ∈ G, it holds that (xy)z(xy)−1 = (yx)z(yx)−1.

4.5. Bikoids from abelian gr-groups

There will be heavy use of semidirect products in this document. Here are
our conventions.
[4.10] Let the group G left-act by automorphisms on the group E. Such
action is denoted by:

(g, e) ∈ G× E 7→ g⊲e ∈ E.

Our convention for the semidirect product G⋉ E = G⋉⊲ E is:

(g, a)(h, b) = (gh, a g⊲b), for each g, h ∈ G and a, b ∈ E.

Hence inverses in G⋉⊲ E are: (g, e)−1 = (g−1, g−1⊲e−1).
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[4.11] Let g ∈ G and e ∈ E. We will frequently put g = (g, 1E), where 1E
is the identity of E, and e = (1G, e). Hence (g, e) = e g = g (g−1⊲e). Also
recall that given left-actions ⋗ of G and of E on a set X, then (g, e)⋗ x

.
=

e⋗ (g ⋗ x) is an action of G⋉⊲ E on X if, and only if, for each g ∈ G, e ∈ E
and x ∈ X:

(68) e⋗ (g ⋗ x) = g ⋗
(
(g−1⊲e)⋗ x

)
.

Definition 30 (Abelian gr-group). An abelian gr-group is given by pair
(G,A), or more correctly a triple (G,A, ⊲), where G and A are groups, with
A abelian, and ⊲ is a left-action of G on A by automorphisms. Morphisms
φ : (G,A) → (H,B) of abelian gr-groups are defined as pairs of group maps
φ1 : G→ H and φ2 : A→ B preserving group actions, namely φ2(g⊲a) =
φ1(g)⊲φ2(a), for each g ∈ G and a ∈ A. The set of morphisms of abelian
gr-groups between (G,A) and (H,B) is denoted homgr

(
(G,A), (H,B)

)
.

Example 31. E.g., for p a prime and m ∈ Z+, put G = GL(m,Zp), the
group of invertible m×m matrices in the field (Zp,+,×), and A = (Zmp ,+).
The action is by matrix multiplication.

Let (G,A) be an abelian gr-group, and G⋉A = G⋉⊲ A. Cf. Def. 3, let
TRANS(G,A) = AUT(G⋉A), the action groupoid (Def. 2) of the conjuga-
tion action of G⋉A on itself. Thus arrows of TRANS(G,A) are:

(
(g, a)

(w,k)
−−−→ (w, k)(g, a)(w, k)−1

)
=

(
wgw−1, k + w⊲a− (wgw−1)⊲a

)
,

where g, w ∈ G and a, k ∈ A.

Theorem 32 (Abelian gr-group bikoids). We have a W-bikoid
(TRANS(G,A), X+

gr), given by:

X+
gr

(

(z, a), (w, b)
)

=

(z, a)

❙❙❙
❙❙❙

❙❙❙

))❙❙❙
❙❙❙

(w−1,0A) •
❙❙❙

❙❙

))❙❙❙
❙❙❙

(w, b)

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
• (1G,−w−1⊲a)

❦❦❦

uu❦❦❦❦
❦❦❦

❦❦

(w, a+ b− w−1⊲a)
(
w−1zw,w−1⊲a

)

.(69)

Hence the underlying birack of X+
gr is such that:

(70)
(z, a)\(w, b) = (w−1zw,w−1⊲a) and

(w, b)/(z, a) = (w, a+ b− w−1⊲a).
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We omit the proof, as we will treat a more general case (bikoids derived
from crossed modules) in Thm. 57.

Proposition 33. (Cf. Def. 28.) The W-bikoid X+
gr in (69) is essential if,

and only if, it does not hold that:

∀y, z ∈ G, ∀a ∈ A : yz = zy, y−1⊲a = (y−1z−1)⊲a,

and z−1⊲a = (z−1y−1)⊲a.

Hence if G is non-abelian, or if the action of G on A is non-trivial, then the
W-bikoid X+

gr in (69) is essential.

Proof. This follows by easy calculations. �

Example 34. It is possible that X+
gr in (69) is essential when G is abelian.

E.g. take G = Z2 = ({1,−1},×) and A = Z3 = ({0, 1,−1},+). Hence Z2

acts on Z3 as x⊲a = xa. The associated W-bikoid is essential.

4.5.1. Algebraic topological interpretation of abelian gr-group W-
bikoids: ‘balloons and hoops’. We freely use §3.4 and Thm. 17. We use
the same notation for B ∈ WBn and its image TB ∈ LBn.

Recall [56, 78] that the underlying birack [4.2] of the finite group bikoid
(AUT(G), X+

G ) of Prop. 26 essentially computes the cardinality of the set of
group maps from the knot group of a welded knot into G.

Let n ∈ Z+. The underlying birack (70) of the abelian gr-group bikoid
X+
gr = (TRANS(G,A), X+

gr) of Thm. 32 is strongly related to the action of
π1(D

3 \ Cn, ∗) on π2(D
3 \ Cn, ∗). We now explain this.

Consider the base point ∗ = (0, 0, 1) ∈ ∂(D3) for D3. Hence any homeo-
morphism f : (D3, Cn) → (D3, Cn) fixes ∗. So do the isotopies we consider.
Homotopically, (D3 \ Cn, ∗) is a wedge product of n circles and n 2-spheres.
The fundamental group π1(D

3 \ Cn, ∗) is the free product ∨ni=1Zi, where
Zi = {mk

i }k∈Z
∼= (Z,+). Here mi ∈ π1(D

3 \ Cn, ∗) is associated with the ori-
ented unknotted circle S1

i , in the usual way; see Fig. 8. (This is the usual
Wirtinger presentation of the fundamental group of a knot complement, see
e.g. [76].) The group-algebra of π1(D

3 \ Cn, ∗), with coefficients in Z, is thus
isomorphic to the algebra of Laurent polynomials Z{m1,m

−1
1 , . . . ,mn,m

−1
n },

in the non-commuting variables m1, . . . ,mn.
The second homotopy group π2(D

3 \ Cn, ∗) is isomorphic to the second
homology group of the universal cover of D3 \ Cn, which recall is homo-
topic to the wedge product of n 1-spheres S1 and n 2-spheres S2. Therefore
π2(D

3 \ Cn, ∗) is isomorphic to the free Z{m1,m
−1
1 , . . . ,mn,m

−1
n }–module
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∗

mi

mj

S1
i S1

j S1
k

vk

Figure 8: Elements mi,mj ∈ π1(D
3 \ Cn, ∗), vk ∈ π2(D

3 \ Cn, ∗) given by
the unknotted circles S1

i , S
1
j ,S

1
k .

on the variables v1, . . . , vn; [47, Example 4.27] treats a particular case of
this. Geometrically, each vk ∈ π2(D

3 \ Cn, ∗) traces a ‘balloon’ encircling
the circle S1

k ; see Fig. 8. (A similar ‘balloons and hoops’ picture appears in
[10].)

Given a path-connected pointed space (X, ∗), the abelian gr-group made
out of π1(X, ∗) acting on π2(X, ∗), in the usual way, is denoted by π1,2(X, ∗).
The previous two paragraphs imply (given the freeness of π1(D

3 \ Cn, ∗) and
the freeness of π2(D

3 \ Cn, ∗) as a Z(π1(D
3 \ Cn, ∗))-module) the following:

Lemma 35. Let (G,A) be an abelian gr-group. Abelian gr-group maps
φ = (φ1, φ2) : π1,2(D

3 \ Cn, ∗) → (G,A) are in bijective correspondence with
sequences of the form:

(
(g1, a1), . . . , (gn, an)

)
, where gi ∈ G and ai ∈ A, for

each i = 1, . . . , n. The bijection is defined by gi = φ1(mi) and ai = φ2(vi),
for i = 1, . . . , n.

The loop braid group LBn in §3.4 has a natural left-action ⋗ in π1,2(D
3 \

Cn, ∗) by abelian gr-group maps. In another language, we have a group map
from LBn to the automorphism group of the abelian gr-group π1,2(D

3 \
Cn, ∗). This extends the embedding of the loop braid group into the auto-
morphism group of a free group – the bit consisting of basis conjugating
automorphisms – as explained in [29, §4] and [79].

Let us give details. A homeomorphism f : (D3, Cn) → (D3, Cn), con-
sidered up to pair-isotopy, functorially gives an isomorphism f∗ : π1,2(D

3 \
Cn, ∗) → π1,2(D

3 \ Cn, ∗). And then given m ∈ π1(D
3 \ Cn, ∗) and v ∈

π2(D
3 \ Cn, ∗), we put f ⋗m = f∗(m) and f ⋗ v = f∗(v). Hence LBn right-

acts in homgr

(
π1,2(D

3 \ Cn, ∗), (G,A)
)
, namely given f ∈ LBn, we send

φ ∈ homgr

(
π1,2(D

3 \ Cn, ∗), (G,A)
)
to φ ◦ f∗

.
= φ⋖ f.
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Looking at Fig. 5 in Thm. 17, we can see that S+
i [n], Vi[n] ∈ LBn act in

π1,2(D
3 \ Cn, ∗) as:

Vi[n]⋗mj = mj , if j /∈ i, i+ 1, Vi[n]⋗m(i+1) = mi, Vi[n]⋗mi = m(i+1),

Vi[n]⋗ vj = vj , if j /∈ i, i+ 1, Vi[n]⋗ v(i+1) = vi, Vi[n]⋗ vi = v(i+1),

S+
i [n]⋗mj = mj , if j /∈ i, i+ 1, S+

i [n]⋗m(i+1) = mi, S+
i [n]⋗mi = m−1

i mi+1mi,

S+
i [n]⋗ vj = vj , if j /∈ i, i+ 1, S+

i [n]⋗ vi = m−1
i ⊲v(i+1).

The hardest action to address is S+
i [n]⋗ v(i+1). Cf. the left bit of Fig. 5,

when the circle Sii goes inside the circle S1
i+1, it ‘drags’ the balloon v(i+1)

with it. Since the isotopy connecting the top and bottom of the left part
of Fig 5 can be made local, the sum vi + vi+1 in π2(D

3 \ Cn, ∗), which can
be visualised as a large balloon encircling the circles S1

i and S1
i+1, remains

stable during the isotopy, since the isotopy can be made local enough so that
it happens well inside the balloon vi + vi+1. In a more precise language, this
means:

S+
i [n]⋗ (vi + v(i+1)) = vi + v(i+1).

Since S+
i [n]⋗ (vi + v(i+1)) = S+

i [n]⋗ vi + S+
i [n]⋗ v(i+1) and S+

i [n]⋗ vi =

m−1
i ⊲v(i+1), it follows that:

S+
i [n]⋗ v(i+1) = vi + v(i+1) −m−1

i ⊲v(i+1).

Comparing with Equation (69), this implies, by noting that the Va[n] and
the S+

a [n] generate LBn, that:

Theorem 36 (Topological interpretation of abelian gr-group W-
bikoids). Let (G,A) be an abelian gr-group. Consider the right-action ⊳
of the loop braid group LBn ∼= WBn on (G×A)n derived (Lem. 20) from
the underlying birack (70) of the welded bikoid X+

gr of (69). Looking at the
elements in (G×A)n as being abelian gr-group maps φ : π1,2(D

3 \ Cn, ∗) →
(G,A) — by Lem. 35 — then given a B ∈ LBn it holds that φ⊳B = φ ◦B∗,
where B∗ : π1,2(D

3 \ Cn, ∗) → π1,2(D
3 \ Cn, ∗) is the induced map on homo-

topy groups.

5. Virtual and welded braid group representations
from bikoids

Throughout this section we will fix a groupoid Γ and a bikoid (Γ, X+); see
Def. 22.
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5.1. Representations of WBn derived from bikoids

Recall the groupoid algebra C(Γ) in Def. 4. We define the following element
R ∈ C(Γ)⊗C(Γ):

(71) R =
∑

x,y∈Γ0

(x
L(x,y)
−−−−→ x\y)⊗(y

R(x,y)
−−−−→ y/x).

Lemma 37. The element R is invertible and its inverse is (recall the no-
tation introduced in [3.7]):

(72) R−1 =
∑

a,b∈Γ0

(a\b
L(a,b)
−−−−→ a)⊗(b/a

R(a,b)
−−−−→ b).

Moreover R satisfies the relation below:

(73) R12R13R23 = R23R13R12, in C(Γ)⊗C(Γ)⊗C(Γ).

Here

R12 = R⊗idC(Γ), R23 = idC(Γ)⊗R

and R13 =
∑

x,y∈Γ0

(x
L(x,y)
−−−−→ x\y)⊗idC(Γ)⊗(y

R(x,y)
−−−−→ y/x).

Furthermore, if the bikoid (Γ, X+) is welded, then in C(Γ)⊗C(Γ)⊗C(Γ):

(74) R13R23 = R23R13.

Note that Equation (73) is satisfied by R-matrices in quasi-triangular
bialgebras; see e.g. [54, Thm.VIII.2.4].

Proof. We have:

RR−1 =
∑

x,y,a,b∈Γ0

(

(x
L(x,y)
−−−−→ x\y)⊗(y

R(x,y)
−−−−→ y/x)

)(

(a\b
L(a,b)
−−−−→ a)⊗(b/a

R(a,b)
−−−−→ b)

)
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=
∑

x,y,a,b∈Γ0

(

(x
L(x,y)
−−−−→ x\y)(a\b

L(a,b)
−−−−→ a)

)

⊗
(

(y
R(x,y)
−−−−→ y/x)(b/a

R(a,b)
−−−−→ b)

)

(#1)
=

∑

x,y,a,b∈Γ0

x\y=a\b∧ y/x=b/a

(

(x
L(x,y)
−−−−→ x\y)(a\b

L(a,b)
−−−−→ a)

)

⊗
(

(y
R(x,y)
−−−−→ y/x)(b/a

R(a,b)
−−−−→ b)

)

(#2)
=

∑

x,y,a,b∈Γ0

x=a∧ y=b

(

(x
L(x,y)
−−−−→ x\y)(a\b

L(a,b)
−−−−→ a)

)

⊗
(

(y
R(x,y)
−−−−→ y/x)(b/a

R(a,b)
−−−−→ b)

)

(#3)
=

∑

x,yΓ0

(
x

idx−−→ x
)
⊗
(
y

idy
−−→ y

)
= 1C(Γ)⊗1C(Γ).

Here (#1) follows from the definition of the product (42) in C(Γ), and (#2)
from the fact that (x, y) 7→ (y/x, x\y) is a bijection, by definition of biracks.
Step (#3) follows from [4.7].

That RR−1 = 1C(Γ)⊗1C(Γ) is proven analogously.
Now note:

R12R13R23 =
∑

x,y,a,z,u,v∈Γ0

(

(x
L(x,y)
−−−−→ x\y)⊗(y

R(x,y)
−−−−→ y/x)⊗1C(Γ)

)

×
(

(a
L(a,z)
−−−−→ a\z)⊗1C(Γ) ⊗(z

R(a,z)
−−−−→ z/a)

)

×
(

1C(Γ)⊗(u
L(u,v)
−−−−→ u\v)⊗(v

R(u,v)
−−−−→ v/u)

)

=
∑

x,y,a,z,u,v∈Γ0

(

(x
L(x,y)
−−−−→ x\y)(a

L(a,z)
−−−−→ a\z)

)

⊗
(

(y
R(x,y)
−−−−→ y/x)(u

L(u,v)
−−−−→ u\v)

)

⊗
(

(z
R(a,z)
−−−−→ z/a)(v

R(u,v)
−−−−→ v/u)

)

(#1)
=

∑

x,y,a,z,u,v∈Γ0

a=x\y ∧u=y/x∧ v=z/a

(

(x
L(x,y)
−−−−→ x\y)(a

L(a,z)
−−−−→ a\z)

)

⊗
(

(y
R(x,y)
−−−−→ y/x)(u

L(u,v)
−−−−→ u\v)

)

⊗
(

(z
R(a,z)
−−−−→ z/a)(v

R(u,v)
−−−−→ v/u)

)

(#2)
=

∑

x,y,z∈Γ

(

x
L(x,y)⋆L(x\y,z)
−−−−−−−−−−→ (x\y)\z

)

⊗
(

y
R(x,y)⋆L(y/x,z/(x\y))
−−−−−−−−−−−−−−→ (y/x)\(z/(x\y))

)

⊗
(

z
R(x\y,z)⋆R(y/x,z/(x\y))
−−−−−−−−−−−−−−−→ (z/(x\y))/(y/x)

)
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(#3)
=

∑

x,y,z∈Γ

(

x
L(x,z/y)⋆L(x\(z/y),y\z)
−−−−−−−−−−−−−−−→ (x\(z/y))\(y\z)

)

⊗
(

y
L(y,z)⋆R(x\(z/y),y\z)
−−−−−−−−−−−−−−→ (y\z)/(x\(z/y))

)

⊗
(

z
R(y,z)⋆R(x,z/y)
−−−−−−−−−−→ (z/y)/x

)

=R23R13R12.

Here (#1) and (#2) follow from (42). On the other hand (#3) follows from
(54), (61) and (62).

That R13R23 = R23R13 if the bikoid is welded follows analogously, by
using (53), (55), (63) and (64). �

We can hence can define representations of the virtual braid group VBn
derived from a bikoid (Γ, X+). The following is one of our main results.

Theorem 38. Let (Γ, X+) be a bikoid. Let V be a right-representation of
the groupoid algebra C(Γ); §3.2. Let n ∈ Z+. We have a representation ⊳∗

of VBn on V n⊗, which on the generators of VBn has the form:

(v1⊗ . . .⊗va−1⊗va⊗va+1⊗va+2⊗ . . .⊗vn)⊳
∗Va[n](75)

= v1⊗ . . .⊗va−1⊗va+1⊗va⊗va+2⊗ . . .⊗vn,

(v1⊗ . . .⊗va−1⊗va⊗va+1⊗va+2⊗ . . .⊗vn)⊳
∗S+

a [n](76)

=
∑

x,y∈Γ0

v1⊗ . . .⊗va−1⊗va+1.
(
y

R(x,y)
−−−−→ y/x

)

⊗va.
(
x

L(x,y)
−−−−→ x\y

)
⊗va+2⊗ . . .⊗vn.

Moreover, ⊳∗ descends to a representation of WBn on V n⊗ if (Γ, X+) is
welded.

These are unitary representations if V is a unitary representation of the
groupoid algebra; see Def. 6.

[5.1] If V is the object-regular representation (see Example 8) of C(Γ), then
⊳∗ coincides with ⊳ in [4.4].
[5.2] If V is the right-regular representation (see Example 7) of C(Γ), then
⊳∗ coincides with ⊳∗ in [4.9].

Proof. (We are using the definition in [3.12] for WBn). First of all note that
(−)⊳∗S+

a [n] and (−)⊳∗Va[n] each are invertible maps V n⊗ → V n⊗. In order
to prove ⊳∗ is a representation, we must check that the relations in Def. 11
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for the virtual braid group, not involving the S−
a [n], hold. The Reidemeister

III move follows from (73), whereas Virtual and Mixed Reidemeister III
moves, as well as Locality, follow trivially. If (Γ, X+) is welded, then (74)
holds, from which it follows the Welded Reidemeister III move.

Let us now prove that the representation of VBn is unitary if V is uni-
tary; see Def. 6. It suffices proving unitarity for S+

a [n]. This follows eas-
ily from the following calculation, which encodes unitarity for n = 2. If
u, v, u′, v′ ∈ V , we have:

〈
∑

x,y∈Γ0
u′.

(
y

R(x,y)
−−−−→ y/x

)
⊗u.

(
x

L(x,y)
−−−−→ x\y

)
,
∑

z,w∈Γ0
v′.

(
w

R(z,w)
−−−−→ w/z

)
⊗v.

(
z

L(z,w)
−−−−→ z\w

)
〉

(#1)
=

∑

z,w∈Γ0

∑

x,y∈Γ0

〈

u′⊗u, v′.
(
w

R(z,w)
−−−−→ w/z

)
⋆ (y/x

R(x,y)
−−−−→ y)⊗v.(z

L(z,w)
−−−−→ z\w) ⋆ (x\y

L(x,y)
−−−−→ x

)
〉

(#2)
= 〈u′⊗u, v′⊗v〉.

In (#1) we have used Def. 6 and the notation of [4.6] and [4.7]. Step (#2)
follows from (in C(Γ)⊗C(Γ)):

∑

z,w∈Γ0

∑

x,y∈Γ0

(
w

R(z,w)
−−−−→ w/z

)
⋆ (y/x

R(x,y)
−−−−→ y)⊗(z

L(z,w)
−−−−→ z\w) ⋆ (x\y

L(x,y)
−−−−→ x

)

(#1)
=

∑

z,w∈Γ0

∑

x,y∈Γ0

w/z=y/x
z\w=x\y

(
w

R(z,w)
−−−−→ w/z

)
⋆ (y/x

R(x,y)
−−−−→ y)⊗(z

L(z,w)
−−−−→ z\w) ⋆ (x\y

L(x,y)
−−−−→ x

)

(#2)
=

∑

z,w∈Γ0

(
w

R(z,w)
−−−−→ w/z

)
⋆ (w/z

R(z,w)
−−−−→ w)⊗(z

L(z,w)
−−−−→ z\w) ⋆ (z\w

L(z,w)
−−−−→ z

)

(#3)
=

∑

z,wΓ0

(w
idw−−→ w)⊗(z

idz−−→ z) = 1C(Γ)⊗1C(Γ).

Note that step (#1) follows from (42). Step (#2) follows from the fact that
the map (z, w) 7→ (w/z, z\w) is bijective, by Def. 19. Step (#3) follows from
the description in [4.6] and [4.7]. This finishes the proof. �

The representation in Thm. 38 generalises. Pick different representa-
tions V1, . . . , Vn of C(Γ), and consider (−)⊳∗S+

a [n] and (−)⊳∗Va[n] in (75)
and (76) to act on v1⊗ . . .⊗vn ∈ V1⊗ . . .⊗Vn. In general, this does not de-
fine a representation of VBn, since (−)⊳∗S+

a [n] and (−)⊳∗Va[n] each send
V1⊗ . . .⊗Va⊗Va+1⊗ . . .⊗Vn to V1⊗ . . .⊗Va+1⊗Va⊗ . . .⊗Vn, but it still sat-
isfies the VBn relations. We give details in the next subsection.
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5.2. Representations of the categories Γ-WBn and
UΓ-WBn from bikoids

The results in this section are stated for W-bikoids and representations of
WBn; see Def. 11 and Def. 25. All results apply, mutatis mutandis, to bikoids
and the virtual braid group VBn. We work over C.

Throughout the subsection, we fix n ∈ Z+. Given a pair of vector spaces
U and V , we put L(U, V ) to denote the vector space of linear maps U → V .
Given vector spaces U1, . . . , Un, V1, . . . , Vn, linear maps g1 : U1 → V1, . . . , gn :
Un → Vn, and f ∈ Σn, we put:

f⊲
(
U1⊗ . . .⊗Un

g1⊗...⊗gn
−−−−−−→ V1⊗ . . .⊗Vn

)
(77)

=
(
Uf(1)⊗ . . .⊗Uf(n)

gf(1)⊗...⊗gf(n)

−−−−−−−−−→ Vf(1)⊗ . . .⊗Vf(n)
)
.

This yields a linear map f⊲(−), from L(⊗n
i=1Ui,⊗

n
i=1Vi) to L(⊗n

i=1Uf(i),
⊗n
i=1Vf(i)).

Definition 39 (Categories Vn and UV n). We define the following cate-
gory Vn. Objects are given by sequences U = (U1, . . . , Un) of vector spaces.
Given objects U and V = (V1, . . . , Vn), the morphisms U → V are given by
linear maps F : ⊗n

i=1 Ui → ⊗n
i=1Vi. Given objects U, V ,W , as well as mor-

phisms F : U → V and G : V →W , their composition in Vn is given by the
following composition of linear maps (see [3.2]):

(
U

F
−→ V

G
−→W

)
=

(
U

G◦F
−−−→W

)
.

The category UV n is defined analogously. Objects of UV n are given by
sequences U = (U1, . . . , Un) of vector spaces, provided with inner products,
and the linear maps F : ⊗n

i=1 Ui → ⊗n
i=1Vi are required to be unitary.

The symmetric group Σn left-acts in the categories Vn and UV n by functors,
by means of Equation (77).

Definition 40 (Categories Γ-WBn and UΓ-WBn). Let Γ be a groupoid.
We have categories Γ-WBn and UΓ-WBn. Objects of Γ-WBn are given by
sequences R = (R1, . . . , Rn) of representations of C(Γ); cf. §3.2. Given ob-

jects R and S, morphisms R
B
−→ S are given by welded braids B ∈ WBn such

that U−1
B ⊲R = S, where UB is the underlying permutation of B; see [3.14].
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The composition in Γ-WBn has the form below:

(
R

B
−→ U−1

B ⊲R
B′

−→ U−1
B′ ⊲U

−1
B ⊲R

)
=

(
R

BB′

−−→ U−1
B′ ⊲U

−1
B ⊲R

)

=
(
R

BB′

−−→ U−1
BB′⊲R

)
.

The category UΓ-WBn is similarly defined, the only difference being that
the R1, . . . , Rn are required to be unitary representations of C(Γ).

We can see morphisms of Γ-WBn as welded braids, whose strands are coloured
with representation of C(Γ).

Theorem 41. Let (Γ, X+) be a W-bikoid. We have a functor F : Γ-WBn →
Vn. The functor F sends an n-tuple of representations R = (R1, . . . , Rn) of
C(Γ) to U(R) = (U(R1), . . . , U(Rn)), where U(Ri) is the underlying vector
space of Ri. On morphisms, F is uniquely specified by its value on the

morphisms of the form R
B
−→ U−1

B ⊲R, where B is a generator of the monoid
WBn, as in Equation (43). In these particular cases, F has the form in
shown in Equations (78), (79) and (80), below:

F

(

(U1, . . . , Ua, Ua+1, . . . , Un)
S+

a [n]
−−−→ (U1, . . . , Ua+1, Ua, . . . , Un)

)
(78)

× (v1⊗ . . .⊗va⊗va+1⊗ . . .⊗vn)

=
∑

x,y∈Γ0

v1⊗ . . .⊗va−1⊗va+1.
(
y

R(x,y)
−−−−→ y/x

)
⊗va.

(
x

L(x,y)
−−−−→ x\y

)
⊗va+2⊗ . . .⊗vn,

F

(

(U1, . . . , Ua, Ua+1, . . . , Un)
S−

a [n]
−−−→ (U1, . . . , Ua+1, Ua, . . . , Un)

)
(79)

× (v1⊗ . . .⊗va⊗va+1⊗ . . .⊗vn)

=
∑

x,y∈Γ0

v1⊗ . . .⊗va−1⊗va+1.
(
x\y

L(x,y)
−−−−→ x

)
⊗va.

(
y/x

R(x,y)
−−−−→ y

)
⊗va+2⊗ . . .⊗vn,

F

(

(U1, . . . , Ua, Ua+1, . . . , Un)
Va[n]
−−−→ (U1, . . . , Ua+1, Ua, . . . , Un)

)
(80)

× (v1⊗ . . .⊗va⊗va+1⊗ . . .⊗vn)

= v1⊗ . . .⊗va−1⊗va+1⊗va⊗va+2⊗ . . .⊗vn.
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Equations (78)–(80) also gives a functor UF : UΓ-WBn → UV n, sending
R = (R1, . . . , Rn) to U(R) = (U(R1), . . . , U(Rn)), where U(Ri) is the un-
derlying inner-product space of the unitary representation Ri.

Proof. Follows from the calculations in the proof of Thm. 38. We can also
combine [3.15] and Lem. 37. �

6. Bikoids from crossed modules

We already have, from §5.1 and §5.2, machines for constructing representa-
tions of the welded braid groupWBn, hence §3.4 of the loop braid group LBn,
from W-bikoids. The task now is to manufacture W-bikoids from crossed
modules. These will be our main examples of W-bikoids. They are related
to Aharonov-Bohm like effects [8, 35, 61] inherent to moving loop-particles
in topological higher gauge theory in D3, see §2.3.

Let the group G have a left-action (g, e) ∈ G× E 7→ g⊲e ∈ E on the
group E by automorphisms. In order to not surcharge our notation with
brackets, let us convention that actions have priority over group multipli-
cation, meaning for instance that we put g⊲a g⊲b c for (g⊲a) (g⊲b) c, where
a, b, c ∈ E and g, h ∈ G.

The following simple observation will be useful later on in §6.2.3.
[6.1] Let Γ = (Γ1,Γ0, σ, τ, ι, ⋆) and Γ′ = (Γ′

1,Γ
′
0, σ

′, τ ′, ι′, ⋆′) be groupoids.
Let us be given a groupoid inclusion g : Γ → Γ′ = (g0 : Γ0 → Γ′

0 , g1 : Γ1 →
Γ′
1). Hence g0 and g1 are injective and preserve all structure maps in Γ and

Γ′. Suppose in addition that g0 is surjective. If we have a bikoid (or W-bikoid)
X+

Γ = X+ on Γ then X+
Γ can be transported to a bikoid (or W-bikoid) X+

Γ′

in Γ′, in the obvious way. Explicitly we put:

X+
Γ′(x′, y′) =

x′

❙❙❙
❙❙❙

❙❙❙
❙❙❙

))❙❙❙
❙❙❙

g1
(
L
(
g−1
0 (x′),g−1

0 (y′)
))

•

❙❙❙

))❙❙❙
❙❙❙

y′

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦

•g1
(
R
(
g−1
0 (x′),g−1

0 (y′)
))❦❦❦

uu❦❦❦❦
❦❦❦

❦❦

g0(g
−1
0 (y′)/g−1

0 (x′)) g0

(

g−1
0 (x′)\g−1

0 (y′)
)

.

6.1. Crossed modules G

Definition 42 (Crossed module). Let E and G be groups. A crossed
module of groups G = (∂ : E → G, ⊲) (see [4, 20, 21, 38]) is a group map
∂ : E → G, and a left action of G on E by automorphisms, such that the
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relations below, called Peiffer relations hold for each g ∈ G and e, e′ ∈ E:

(81)
1st Peiffer relation: ∂(g⊲e) = g∂(e)g−1,

2nd Peiffer relation: ∂(e)⊲e′ = ee′e−1.

Lemma 43. Let G = (∂ : E → G, ⊲) be a crossed module. a) The group A =
ker(∂) ⊂ E is central in E, and in particular A is abelian. b) The group A is
closed under the action of G, meaning that if K ∈ A and g ∈ G, then g⊲K ∈
A. c) Given any g, h ∈ G, e ∈ E, and f ∈ A it holds that: (g∂(e)h)⊲f =
(gh)⊲f . d) The action of G on A descends to an action of coker(∂) on A.

Proof. Assertions a), c), d) follow from the 2nd Peiffer relation, and b) from
the 1st Peiffer relation. �

[6.2] A crossed module G hence gives rise to two abelian gr-groups: (G,A)
and (coker(∂), A); see Def. 30.
[6.3] Conversely, if (G,A, ⊲) is an abelian gr-group, then we have a crossed

module (A
a 7→1G−→ G, ⊲). Looking at the abelian gr-groups in Examples 31 and

34, this gives many examples of crossed modules of finite groups.

[6.4] Let G be a group and Aut(G) be its group of automorphisms, acting
on G in the obvious way. Let g ∈ G 7→ Adg ∈ Aut(G) be such that Adg(x) =
gxg−1. This defines a crossed module (Ad: G→ Aut(G), ⊲).

6.2. Groupoids TRANS(T 2

R
(G)) and TRANS(S2(G)), and the

associated W-bikoids

Throughout this subsection, we fix a crossed module G = (∂ : E → G, ⊲), and
an element R ∈ E; see [2.18]. We will explicitly construct the W-bikoids
X+
R and X+

gr∗ of Equations (39) in (41), appearing at the end of the physics
motivation section §2.3. We firstly construct X+

gr∗ , and them obtain X+
R

by transporting X+
gr∗ along a groupoid isomorphism; see [6.1]. The ideas

are simple, but require several algebraic preliminaries. A slightly depleted
version of the W-bikoids X+

gr∗ and X+
R is the W-bikoid X+

gr in Equation (69).

Our convention for commutators in a group G is [p, q] = pqp−1q−1, where
p, q ∈ G.

6.2.1. The groups T 2

R
(G) and S2(G).

Definition 44. Fix an R ∈ E. We let

T 2
R(G) =

{
(g, ∂(R), e) ∈ G×G× E

∣
∣ ∂(e) = [∂(R), g]

}
.
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Explicit calculations swiftly prove the following lemma. (Cf. [2.22] and
the second equation of (24).)

Lemma 45. The set T 2
R(G) is a group with the operation

(g, ∂(R), e)(g′, ∂(R), e′) = (gg′, ∂(R), e g⊲e′).

Hence inverses in T 2
R(G) take the form (g, ∂(R), e)−1 = (g−1, ∂(R), g−1⊲e−1).

The unit is (1G, ∂(R), 1E).

Proof. Associativity is immediate. The most important bit is to show that
∂(e g⊲e′) = [∂(R), gg′]. Note:

∂(e g−1⊲e′) = ∂(e) g−1∂(e′)g = [∂(R), g] g[∂(R), g′]g−1 = [∂(R), gg′],

where we have used the 1st Peiffer relation in Def. 42. �

Definition 46. (Recall the conventions in [4.10].) Let S2(G) = G⋉⊲ A.
Here A = ker(∂), which is closed under the action of G on E; see Lem. 43.
Hence the product in S2(G) is (g,K) (h, L) = (gh,K g⊲L).

[6.5] We have a group isomorphism φ1E
: (g, J) ∈ S2(G) 7→ (g, ∂(1E), J) ∈

T 2
1E
(G). This generalises.

Lemma 47. Let R ∈ E. We have a group isomorphism ψR : T
2
R(G) → S2(G).

It is defined as:

(g, ∂(R), e)
ψR
7−→ (g,R−1 e g⊲R).

Its inverse is given by φR : S
2(G) → T 2

R(G), where φR(g, J) = (g, ∂(R),
R J g⊲R−1).

Proof. Let (g, ∂(R), e) ∈ T 2
R(G). Then ∂(e) = [∂(R), g], from which it

follows, by using ∂(g⊲R) = g ∂(R) g−1, that R−1 e g⊲R ∈ A = ker(∂).
Thence (g,R−1 e g⊲R) ∈ S2(G). Analogously, if J in ker(∂), it holds that
∂(R J g⊲R−1) = [∂(R), g]. (We have used the 1st Peiffer rule in (81).) Hence
φR(g, J) ∈ T 2

R(G), if g ∈ G.
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Given (g, ∂(R), e), (g′, ∂(R), e′) ∈ T 2
R(G), we have:

ψR
(
(g, ∂(R), e)(g′, ∂(R), e′)

)
= ψR

(
gg′, ∂(R), e g⊲e′)

=
(

gg′, R−1 e g⊲e′ (gg′)⊲R
)

= (gg′, R−1 e g⊲R g⊲R−1 g⊲e′ (gg′)⊲R)

= (g,R−1 e g⊲R) (g′, R−1 e′ g′⊲R)

= ψR
(
g, ∂(R), e

)
ψR(g

′, ∂(R), e′).

To finalise, note that clearly ψR ◦ φR = idS2(G) and φR ◦ ψR = idT 2
R(G).

�

[6.6] We have a homomorphism Θ: S2(G) → S2(G) defined as: (g, J)
Θ
7→

(g, 1A). Note Θ ◦Θ = Θ.
By combining with the previous lemma, or by a direct calculation, it follows
that:

Lemma 48. We have a group homomorphism ΘR : T
2
R(G) → T 2

R(G), which
has the explicit form:

(82) (g, ∂(R), e) ∈ T 2
R(G)

ΘR7−→ (g, ∂(R), R g⊲R−1) ∈ T 2
R(G).

Furthermore ΘR ◦ΘR = ΘR and ΘR = φR ◦Θ ◦ ψR.

[6.7] We will make strong use of the map of sets β : S2(G) → S2(G), defined
as (g,K)

β
7→ (1G,K

−1). Note that β(g,K) = (g, 1A)(g,K)−1, in other words:
β(g,K) = Θ(g,K) (g,K)−1, for each (g,K) ∈ S2(G).

Definition 49. Analogoulsy, if (g, ∂(R), e) ∈ T 2
R(G), we put βR(g, ∂(R), e) ∈

T 2
R(G) to be:

βR(g, ∂(R), e) = ΘR(g, ∂(R), e) (g, ∂(R), e)
−1(83)

= (1G, ∂(R), R g⊲R−1 e−1) ∈ T 2
R(G).

[6.8] By construction, or by a direct calculation, it follows that: βR = φR ◦
β ◦ ψR.



✐

✐

“1-Martins” — 2020/4/29 — 0:26 — page 1751 — #67
✐

✐

✐

✐

✐

✐

Representations of the loop braid group 1751

Lemma 50. We have left-actions ⋗ of E on T 2
R(G) and on S2

R(G). They
are such that:

a⋗ (g, ∂(R), e) = (∂(a)g, ∂(R), R a R−1 e a−1),(84)

a⋗ (g,K) = (∂(a)g,K).(85)

Here a ∈ E. Morever ψR : T
2
R(G) → S2(G), hence also φR : S

2(G) → T 2
R(G),

preserves E actions.

(The action in Equation (84) was mentioned in [2.23]. It arises from the
gauge transformation rule for the 2-dimensional holonomy of a 2-connection
(27).) These actions are, in general, not actions by automorphisms.

Proof. Firstly, if (g, ∂(R), e) ∈ T 2
R(G), then an easy calculation shows that

∂(R a R−1 e a−1) = [∂(R), ∂(a)g]. Let a, b∈E. Clearly a⋗ b⋗ (−) = (ab)⋗
(−), both for ⋗ in (84) and ⋗ in (85). Finally note that:

ψR
(
a⋗ (g, ∂(R), e)

)
= ψR

(
∂(a)g, ∂(R), R a R−1 e a−1

)

=
(
∂(a)g,R−1 RaR−1 e a−1 (∂(a)g)⊲R

)

(#1)
=

(
∂(a)g,R−1R aR−1 e a−1 a g⊲R a−1

)

=
(
∂(a)g, aR−1 e g⊲R a−1

)
,

where (#1) follows from the 2nd Peiffer rule (see Def. 42). On the other
hand:

a⋗ ψR
(
g, ∂(R), e

)
= a⋗ (g,R−1 e g⊲R) = (∂(a)g,R−1 e g⊲R)

(#2)
= (∂(a)g, a R−1 e g⊲R a−1).

Here step (#2) follows from the fact that ker(∂) = A is central in E (Lem. 43),
since R−1 e g⊲R ∈ A. �

6.2.2. The action groupoids TRANS(S2(G)) and TRANS(T 2

R
(G)).

[6.9] Consider the actions ⊲′ of T 2
R(G) and of S2(G) on E, by automorphisms,

such that:

(g, ∂(R), e)⊲′a = g⊲a, where a ∈ E and (g, ∂(R), e) ∈ T 2
R(G),

(g,K)⊲′a = g⊲a, where a ∈ E and (g,K) ∈ S2(G).

[6.10] Note that ψR(g, ∂(R), e)⊲
′a = (g, ∂(R), e)⊲′a, where a ∈ E and

(g, ∂(R), e) ∈ T 2
R(G).
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[6.11] Let ⋗ denote the left-actions of T 2
R(G) and of S2(G) on themselves

by conjugation.

Lemma 51. We have a left-action ⋗ of the group T 2
R(G)⋉⊲′ E (cf. [4.10])

on T 2
R(G). It has the form:

(g, ∂(R), e, a)⋗ (h, ∂(R), f)(86)

= a⋗
(
(g, ∂(R), e)⋗(h, ∂(R), f)

)

= (∂(a)ghg−1, R aR−1 e g⊲f (ghg−1)⊲e−1 a−1
)
.

Proof. Cf. Lem. 50 and [4.11]. We solely need to prove that, given a ∈ E
and (g, ∂(R), e) ∈ T 2

R(G), then:

a⋗
(
(g, ∂(R), e)⋗(h, ∂(R), f)

)
= (g, ∂(R), e)⋗

(
(g−1⊲a)⋗ (h, ∂(R), e)

)
.

We have:

a⋗
(
(g, ∂(R), e)⋗(h, ∂(R), f)

)

= a⋗ (ghg−1, ∂(R), e g⊲f (ghg−1)⊲e−1)

= (∂(a)ghg−1, ∂(R), R aR−1 e g⊲f (ghg−1)⊲e−1 a−1
)
.

On the other hand:

(g, ∂(R), e)⋗
(
(g−1⊲a)⋗ (h, ∂(R), f)

)

= (g, ∂(R), e)⋗(g−1∂(a)gh,R g−1⊲a R−1 f g−1⊲a−1)

=
(
∂(a)ghg−1, e g⊲R a g⊲R−1 g⊲f a−1 (∂(a)ghg−1)⊲e−1

)

(#1)
=

(
∂(a)ghg−1, e g⊲R a g⊲R−1 g⊲f (ghg−1)⊲e−1 a−1

)

(#2)
= (∂(a)ghg−1, R aR−1 e g⊲f (ghg−1)⊲e−1 a−1

)
.

Here (#1) follows by the 2nd. Peiffer rule (81). Step (#2) also follows from
the 2nd Peiffer rule, since:

e g⊲R a g⊲R−1 (#1)
= ∂(e)⊲

(
g⊲R a g⊲R−1

)
e

(#2)
=

(
∂(R)g∂(R)−1g−1

)
⊲
(
g⊲R a g⊲R−1

)
e

(#3)
= (∂(R)g∂(R−1))⊲

(
R g−1⊲a R−1

)
e

(#4)
= R g⊲

(
R−1R g−1⊲a R−1R

)
R−1 e = R aR−1 e.
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In (#2) we used ∂(e) = ∂(R)g∂(R)−1g−1. The 2nd Peiffer rule was used in
(#1) and (#4). �

Definition 52. Consider the group S2(G)⋉⊲′ E = G⋉⊲ (A× E), where ⊲
is the product action of G on A× E. By [6.10] and Lem. 47, we can define
a group isomorphism ψ∗

R : T
2
R(G)⋉⊲′ E → S2(G)⋉⊲′ E, as:

ψ∗
R(g, ∂(R), e, a) = (ψR(g, ∂(R), e), a),

where (g, ∂(R), e) ∈ T 2
R(G) and a ∈ E.

[6.12] The inverse φ∗R : S
2(G)⋉⊲′ E → T 2

R(G)⋉⊲′ E of ψ∗
R is such that

φ∗R(g,K, a) = (φR(g,K), a).

Lemma 53. We have a left-action ⋗ of S2(G)⋉⊲′ E = G⋉⊲ (A× E), on
S2(G). It has the form:

(g, J, a)⋗ (h,K) = a⋗
(
(g, J)⋗(h,K)

)
(87)

= (∂(a)ghg−1, J g⊲K (ghg)−1⊲J−1
)
.

Moreover, given (g, J, a) ∈ S2(G)⋉⊲′ E and (h,K) ∈ S2(E), it holds that:

φR
(
(g, J, a)⋗ (h,K)

)
= φ∗R(g, J, a)⋗ φR

(
h,K

)
.

Note that ⋗ is not, in general, an action by automorphisms.

Proof. That we have an action follows as in the proof of Lem. 51, or by using
Lem. 51 in the particular case R = 1E , given [6.5]. The other bits follows
from concatenation of previous formulae. Here is a proof:

φR
(
(g, J, a)⋗ (h,K)

)
= φR

(
∂(a)ghg−1, J g⊲K (ghg)−1⊲J−1

)

= (∂(a)ghg−1, ∂(R), R J g⊲K (ghg−1)⊲J−1 (∂(a)ghg−1)⊲R−1
)

= (∂(a)ghg−1, ∂(R), R J g⊲K (ghg−1)⊲J−1 a (ghg−1)⊲R−1 a−1
)
.

In the last step we used the 2nd Peiffer relation (see Def. 42). On the other
hand:

φ∗R(g, J, a)⋗ φR
(
h,K

)
= (g, ∂(R), R J g⊲R−1, a)⋗ (h, ∂(R), RK h⊲R−1)

= (∂(a)ghg−1, ∂(R), R aR−1 R J g⊲R−1

g⊲(R K h⊲R−1) (ghg−1)⊲(R J g⊲R−1)−1 a−1)

(#1)
= (∂(a)ghg−1, ∂(R), R a J g⊲K (ghg−1)⊲J−1 (ghg−1)⊲R−1 a−1)

(#2)
= (∂(a)ghg−1, ∂(R), R J g⊲K (ghg−1)⊲J−1 a (ghg−1)⊲R−1 a−1).
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Here (#1) follows by cancelling pairs of a group element product with its
inverse. And (#2) follows from the fact that A is central in E and J,K ∈ A;
recall Lem. 43. �

Definition 54. Cf. Def. 2; TRANS(S2(G)) is the action groupoid of the
action ⋗ of S2(G)⋉⊲′ E on S2(G).

Definition 55. We let TRANS(T 2
R(G)) be the action groupoid of the action

⋗ of T 2
R(G)⋉⊲′ E on T 2

R(G).

Arrows of TRANS(S2(G)) and of TRANS(T 2
R(G)) hence have the form

below; see (86) and (87):

(

(h, ∂(R), f)
(g,∂(R),e,a)
−−−−−−−→ (g, ∂(R), e, a)⋗ (h, ∂(R), f)

)

and
(

(h,K)
(g,J,a)
−−−−→ (g, J, a)⋗ (h,K)

)

.

Here g, h ∈ G; e, a, f ∈ E and J,K ∈ A. For an interpretation in terms of
2-fluxes of loop-particles see §2.3.

Lemma 56. We have an isomorphism

ΦR : TRANS(S
2(G)) → TRANS(T 2

R(G)),

of groupoids. On objects ΦR is given by φR, see Lem. 47. On morphisms ΦR
takes the form (see [6.12]):

ΦR
(
(h,K)

(g,J,a)
−−−−→ (g, J, a)⋗ (h,K)

)
=

(
φR(h,K)

φ∗
R(g,J,a)

−−−−−−→ φ∗R(g, J, a)⋗ φR(h,K)
)
.

Proof. Follows by combining Lem. 47, Lem 53 and Def. 52. �

6.2.3. A W-bikoid structure on TRANS(S2(G)). Let G = (∂ : E →
G, ⊲) be a crossed module. We put g to denote g−1. Recall (87), [4.11] and
Def. 54.
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Theorem 57. We have a W-bikoid structure X+
gr∗ in the groupoid

TRANS(S2(G)), such that:

(88)

X+
gr∗

(

(z, J), (w,K)
)

=

(z, J)

PP
PP

PP

((PP
PPP

P
w •
PP

PPP

((PP
PPP

P

(w,K)

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥• w⊲J

vv♥♥♥
♥♥♥

♥♥

(w⊲J)⋗ (w,K) w ⋗ (z, J)

,

where
{

w = (w−1, 1A, 1E)

w⊲J = (1G, w
−1⊲J−1, 1E).

(Note that w⊲J =
(
β
(
Θ(w,K)−1 ⋗ (z, J)

)
, 1E

)
; see [6.7].) Equation (88)

can be written as (recall [6.11]):
(89)

X+
gr∗

(

(z, J), (w,K)
)

=

(z, J)

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗

(Θ(w,K)−1,1E) •
◗◗◗

◗◗◗
◗◗◗

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗

(w,K)

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠
• (Θ(w,K)−1⋗(z,J)−1,1E)

•
(
Θ
(
Θ(w,K)−1⋗(z,J)

)
,1E

)

vv♠♠♠
♠♠♠

♠♠♠
♠♠♠

♠

β
(
Θ(w,K)−1 ⋗ (z, J)

)
⋗ (w,K) Θ(w,K)−1 ⋗ (z, J)

.

Explicitly, the underlying W-birack of X+
gr∗ is such that (where z, w ∈ G and

K,L ∈ A = ker(∂)):

(z, J)\(w,K) = w ⋗ (z, J) = (w−1, 1A, 1E)⋗ (z, J)

=
(
w−1zw,w−1⊲J

)
,

(w,K)/(z, J) = (w⊲J)⋗ (w,K) = (1G, w
−1⊲J−1, 1E)⋗ (w,K)

= (w,w−1⊲J−1 K J).

(90)

And, as the diagram in (88) indicates, the holonomy morphisms in the W-
bikoid X+

gr∗ in (88) are:

L
(
(z, J), (w,K)) =

(

(z, J)
(w−1,1A,1E)
−−−−−−−−→ (w−1, 1A, 1E)⋗ (z, J)

)

,

R
(
(z, J), (w,K)) =

(

(w,K)
(1G,w−1⊲J−1,1E)
−−−−−−−−−−−→ (1G, w

−1⊲J−1, 1E)⋗ (w,K)
)

.

Remark 58. The form (89) for the bikoid X+
gr∗ is useful (see §6.2.4) for

transporting [6.1] X+
gr∗ in (88) to TRANS(T 2

R(G)). Equation (89) for X+
gr∗

also makes the interpretation of the associated representations §5 of the loop
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braid group as observables in topological higher gauge theory in D3 more
transparent; see §2.3.

Remark 59. A more compact formulation of X+
gr∗ in (88), in additive

notation, can be found in (41).

Proof. That (88) and (89) coincide follows from [6.6] and [6.7].
Let us prove that X+

gr∗ in (88) is a bikoid. We freely use Defs. 19 and 22.
First of all note that the maps:

f (w,K) : (z, J) ∈ S2(G) 7−→ (z, J)\(w,K) = (w−1, 1A, 1E)⋗ (z, J)

=
(
w−1zw,w−1⊲J

)
∈ S2(G),

f(z,J) : (w,K) ∈ S2(G) 7−→ (w,K)/(z, J) = (1G, w
−1⊲J−1, 1E)⋗ (w,K)

= (w,w−1⊲J−1 K J) ∈ S2(G)

each are bijections. Inverses are given by:

f (w,K) : (z′, J ′) ∈ S2(G) 7−→ (w, 1A, 1E)⋗ (z′, J ′)

= (wz′w−1, w⊲J ′) ∈ S2(G),

f(z,J) : (w
′,K ′) ∈ S2(G) 7−→ (1G, w

′−1
⊲J, 1E)⋗ (w′,K ′)

= (w′, w′−1
⊲J K ′ J−1) ∈ S2(G).

On the other hand, the map below is also invertible:

S :
(
(z, J), (w,K)

)
∈ S2(G)× S2(G)

7→
(
(w,K)/(z, J), (z, J)\(w,K)

)
∈ S2(G)× S2(G),

and its inverse is:

(
(w′,K ′), (z′, J ′)

)
7→

(
(w′, 1A, 1E)⋗ (z′, J ′), (1G, J

′, 1E)⋗ (w′,K ′)
)

=
(
(w′z′w′−1

, w′⊲J ′), (w′, J ′ K ′ w′⊲J ′−1
)
)
.

That
(
(z, J), (w,K)

)
∈S2(G)×S2(G) 7→

(
(w,K)/(z, J), (z, J)\(w,K)

)
∈

S2(G)× S2(G) in Equation (90) is a birack, and that X+
gr∗ in (88) is a bikoid,

follows from comparing the diagrams (91) and (92) in TRANS
(
T 2
R(G)

)3
⋊
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Σ3, where (z, J), (w,K) and (t, L) are general elements of S2(G).
(91)

(z, J)

w •
◗◗◗

◗◗

((◗◗
◗◗◗

◗
◗◗◗

◗◗◗
◗

((◗◗
◗◗◗

◗

(w,K)

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

• w⊲J
♠♠

vv♠♠♠
♠♠♠

♠♠

(t, L)

��
(w⊲J)⋗ (w,L)

��

w ⋗ (z, J)
t • ◆◆

&&◆◆
◆◆

◆
◆◆◆

◆◆◆

&&◆◆
◆◆

◆

(t, L)

• (t w)⊲J
♣♣

xx♣♣♣
♣♣
♣

xx♣♣♣
♣♣
♣♣
♣♣
♣♣

(w⊲J)⋗ (w,K)

t • PP

((PP
PPP

P
PP

PP
PP

((PP
PPP

P

(
(tw)⊲J

)
⋗ (t, L)

• t⊲J t⊲K (t w)⊲J

vv♥♥♥
♥♥♥

♥

vv♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

(tw)⋗ (z, J)

��
(t⊲J t⊲K)⋗ (t, L) (t (w⊲J)⊲(w,L) (tw)⋗ (z, J)

w = (w−1, 1A, 1E)

w⊲J = (1G, w
−1⊲J−1, 1E)

t = (t−1, 1A, 1E)

(t w)⊲J = (1G, (t
−1w−1)⊲J−1, 1E)

t⊲J = (1G, t
−1⊲J−1, 1E)

t⊲K = (1G, t
−1⊲K−1, 1E)

(t w)⊲J = (1G, (t
−1w−1)⊲J, 1E)

.

(Recall the convention in Def. 2 for the composition in TRANS
(
T 2
R(G)

)
.

Note:

w ⋗ (z, J) = (w−1, 1A, 1E)⋗ (z, J) = (w−1zw,w−1⊲J),

(w⊲J)⋗ (w,K) = (1G, w
−1⊲J−1, 1E)⋗ (w,K)

= (w,w−1⊲J−1 K J)
(
1G, t

−1⊲(w−1⊲J−1 K J)−1
)
= (1G, t

−1⊲J−1 t−1⊲K−1 (t−1w−1)⊲J
)

= t⊲J t⊲K (t w)⊲J.

And (for the other side of the Reidemeister III move):
(92)

(z, J)

��

(w,K)
t • PP

''PP
PP

P
PPP

PPP

''PP
PP

P

(t, L)

• t⊲K
♥♥

ww♥♥♥
♥♥♥

♥♥

ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

(z, J)

t •
❘❘

❘❘❘

))❘❘❘
❘❘❘

❘
❘❘❘

❘❘❘
❘❘

))❘❘❘
❘❘❘

❘

(t⊲K)⋗ (t, L)

• t⊲J
❧❧

❧❧

uu❧❧❧
❧❧❧

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧
t⋗ (w,K)

��(
(t⊲J)(t⊲K)

)
⋗ (t, L)

��

t⋗ (z, J)

t w t • ❖❖

''❖❖
❖❖❖

❖
❖❖

❖❖
❖❖

''❖❖
❖❖❖

❖

t⋗ (w,K)

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦

• (tw)⊲J

ww♦♦♦
♦♦♦

♦♦

(
(t⊲J)(t⊲K)

)
⋗ (t, L)

(
(tw)⊲J t

)
⋗ (w,K) (tw)⋗ (z, a)

w = (w−1, 1A, 1E)

t = (t−1, 1A, 1E)

t = (t, 1A, 1E)

(t w)⊲J = (1G, (t
−1w−1)⊲J−1, 1E)

t⊲J = (1G, t
−1⊲J−1, 1E)

t⊲K = (1G, t
−1⊲K−1, 1E)

(t w)⊲J = (1G, (t
−1w−1)⊲J−1, 1E)

.

Note:

t⋗ (w,K) = (t−1wt, t−1⊲K), t⋗ (z, J) = (t−1zt, t−1⊲J).

We can easily see that the group elements in S2(G)⋉⊲′ E associated to each
strand in the diagrams in (91) and (92) coincide. Namely in the first strand
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we have t w = t w t t; in the second strand we have:

t (w⊲J) = (t−1, 1A, 1E) (1G, w
−1⊲J−1, 1E)

= (1G, (t
−1w−1)⊲J−1, 1E) (t

−1, 1A, 1E) =
(
(tw)⊲J) t.

And in the third strand we have: (t⊲J t⊲K (t w)⊲J) (t w)⊲J) = t⊲J t⊲K.
Hence given any (z, J), (w,K), (t, L) ∈ S2(G), then diagrams (91) and

(92) in TRANS
(
T 2
R(G)

)3
⋊ Σ3 coincide. Hence, by construction, so do the

bottom lines of (91) and (92), thus it follows that (S2(G), /, \) in (90) is a
birack. And then the equality of (91) and (92) mean exactly that X+

gr∗ in
(88) is a bikoid.

That the bikoid is welded (Def. 25), follows in exactly the same way, by
comparing the two diagrams below (93) and (94) in TRANS(S2(G))3 ⋊ Σ3,
where (z, J), (w,K), (t, L) ∈ S2(G):
(93)

(z, J)

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗
(w,K)

vv♠♠♠
♠♠♠

♠♠♠
♠♠

vv♠♠♠
♠♠♠

♠♠♠
♠♠

(t, L)

��
(w,K)

��

(
z, J

)

t •

&&▲▲
▲▲

▲▲
▲

&&▲▲
▲▲

(t, L)
• t ⊲J

xxrrr
rr
r

xxrrr
rr
rr
r

(w,K)
t • ◗◗

((◗◗◗
◗◗

◗◗◗
◗◗

((◗◗◗
◗◗

(t⊲J)⋗ (t, L)
• t⊲K

vv♠♠♠
♠♠♠

♠

vv♠♠♠
♠♠♠

♠♠♠
♠

t⋗ (z, J)

��
(t⊲K t⊲J)⋗ (t, L) t⋗ (w,K) t⋗ (z, J)

t = (t−1, 1A, 1E)

t⊲J = (1G, t
−1⊲J−1, 1E)

t⊲K = (1G, t
−1⊲K−1, 1E) .

and:
(94)

(z, J)

��

(w,K)
t •

''PP
PP

PP
PP

''PP
PP

(t, L)

• t⊲K
♥♥

ww♥♥♥
♥♥

ww♥♥♥
♥♥♥

♥♥♥
♥

(z, J)
t •
❙❙

❙❙

))❙❙❙
❙❙

❙❙❙
❙❙❙

❙

))❙❙❙
❙❙

(t⊲K)⋗ (t, L)
• t⊲J

uu❦❦❦❦
❦

uu❦❦❦
❦❦❦

❦❦❦
❦❦

t⋗ (w,K)

��
(t⊲J t⊲K)⋗ (t, L)

��

t⋗ (z, J)

''PP
PPP

PPP
PP
PPP

PP

''PP
PP

t⋗ (w,K)

ww♥♥♥
♥♥♥

♥♥♥
♥

(t⊲J t⊲K)⋗ (t, L) t⋗ (w,K) t⋗ (z, J),

t = (t−1, 1A, 1E)

t⊲J = (1G, t
−1⊲J−1, 1E)

t⊲K = (1G, t
−1⊲K−1, 1E) .

Morphisms (93) and (94) in TRANS(S2(G))3 ⋊ Σ3 coincide, for each
(z, J), (w,K), (t, L) ∈ S2(G). This follows since t⊲J t⊲K = t⊲K t⊲J , as the
group operation in A = ker(∂) is commutative; see Lem. 43. �
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Remark 60. Let G = (∂ : E → G, ⊲) be a crossed module. We have an
abelian gr-group (G,A = ker(∂)) [6.2]. Write A in multiplicative notation.
The W-bikoid X+

gr∗ is obtained from the W-bikoid X+
gr in (69), and vice

versa. We have an inclusion morphism of groupoids Inc : TRANS(G,A) →
TRANS(S2(G)), with:

Inc
(

(h,K)
(g,J)
−−−→ (g, J)(h,K)(g, J)−1

)

=
(

(h,K)
(g,J,1E)
−−−−−→ (g, J, 1E)⋗ (h,K)

)

.

This inclusion is bijective on objects. And then X+
gr∗ is obtained by trans-

porting [6.1] X+
gr along Inc.

In particular, §4.5.1 gives a topological interpretation for the existence
of the W-bikoid X+

gr∗ .

Remark 61. (Cf. [6.2] [6.3] and Rem. 60.) The representations of WBn
derived from X+

gr∗ do not appear to encode more information that those
derived from X+

gr. The extra degree of structure appearing in the underpin-

ning groupoid TRANS(S2(G)) of X+
gr∗ is [2.23] related to gauge transfor-

mations betwen 2-connections. Hence X+
gr∗ is likely more fundamental than

X+
gr. From a strictly mathematical sense, this extra degree of freedom that

TRANS(S2(G)) has in comparison with TRANS(G,A) is essential when ad-
dressing invariants of welded knots derived from crossed modules, by using
X+
gr∗ . This will be addressed in [41].

Remark 62. Let G = (∂ : E → G, ⊲) be a crossed module. The underlying
W-birack (90) of X+

gr∗ is studied in [56]. In the cases in Examples 31 and 34,
this W-birack yields non-trivial invariants of welded knots that see beyond
their knot groups; see also [38]. This indicates that the representations of
WBn derived from G = (∂ : E → G, ⊲) carry more topological information
than those derived (see [1.11], [1.12]) from G alone.

Example 63. Continuing Rem. 62. Consider the crossed module G(Z2,Z3)
derived [6.3] from the abelian gr group in Example 34. Let V be the right-
regular representation of C

(
TRANS(S2(G(Z2,Z3)))

)
; Example 7. Let VOBJ

be the object-regular representation of C
(
TRANS(S2(G(Z2,Z3)))

)
; see Ex-

ample 8. Let also U and UOBJ be the right-regular and object-regular repre-
sentations of C(AUT(Z2)); see Example 3. Consider the representations of
WB2 derived from the W-bikoid X+

gr∗ in (88), on V⊗V and on VOBJ⊗VOBJ;
see Thm. 38 or Thm. 41. Consider the representations of WB2 on U⊗U
and on UOBJ⊗UOBJ, derived from the W-bikoid X+

Z2
in (65). The degree of
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(−)⊳∗S+
1 [2] in (76), induced by the braid generator S+

1 [2] in (4) is:

2 for the action of WB2 on UOBJ⊗UOBJ,(95)

4 for the action of WB2 on U⊗U,

12 for the action of WB2 on VOBJ⊗VOBJ,(96)

12 for the action of WB2 on V⊗V.

Hence Equation (95) tell us that the representations of WBn derived from a
W-bikoid may carry more information than those derived from its underlying
W-birack [5.1]. Comparing (95) and (96) gives an example of a case when
the representations of WBn derived from a crossed module (∂ : G→ E, ⊲)
– in this case G(Z2,Z3) – are finner than those derived from the W-bikoid
associated to G alone.

6.2.4. A W-bikoid structure in TRANS(T 2

R
(G)). Let G = (∂ : E →

G, ⊲) be a crossed module. Let R ∈ E. (The physical meaning of R is ex-
plained in [2.18].) We now describe the W-bikoid X+

R mentioned in the end
of §2.3. (Hence X+

R is related to loop-particles in topological higher gauge
theory.) This X+

R is derived from and is isomorphic to X+
gr∗ in Equation (88).

Cf. Defs. 54, 55, and Lem. 56. There is a groupoid isomorphism ΦR :
TRANS(S2(G)) → TRANS(T 2

R(G)).

Theorem 64. We have a W-bikoid defined in the groupoid X+
R in

TRANS(T 2
R(G)). This X

+
R is obtained by transporting [6.1] (TRANS(S2(G)),

X2
gr∗) in (88) to TRANS(T 2

R(G)) along ΦR. The explicit form of X+
R is (re-

calling the notation of Defs. 48 and 49, and that we sometimes use (−) to
denote inverses in a group):
(97)

X+
R

(

(z, ∂(R), e), (w, ∂(R), f)
)

=

(z, ∂(R), e)

PPP
PPP

PPP
PPP

PPP
PPP

((PP
PPP

PPP
PPP

PPP
PPP

(ΘR(w,∂(R),f),1E) •
PPP

PPP
PPP

PPP
PP

((PP
PPP

PPP
PPP

PPP
PPP

(w, ∂(R), f)

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥

•
(
ΘR(w,∂(R),f)⋗(z,∂(R),e),1E)
♥♥♥

♥

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥
• (ΘR

(
ΘR(w,∂(R),f)⋗(z,∂(R),e)

)
,1E)

♥♥♥
♥♥♥

♥♥♥
♥♥♥

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥♥
♥♥

βR

(

ΘR(w, ∂(R), f)⋗ (z, ∂(R), e)
)

⋗ (w, ∂(R), f) ΘR(w, ∂(R), f)⋗ (z, ∂(R), e)

.

(Recall [6.11].) Or, in another form:
(98)

X+
R

(

(z, ∂(R), e), (w, ∂(R), f)
)

=

(z, ∂(R), e)

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘

(
ΘR(w,∂(R),f),1E) •

❘❘❘

❘❘❘
❘❘❘

❘❘

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘

(w, ∂(R), f)

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧

•
(
βR

(
ΘR(w,∂(R),f)⋗(z,∂(R),e)

)
,1E

)❧❧❧
❧❧❧

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧

uu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧

βR

(

ΘR(w, ∂(R), f)⋗ (z, ∂(R), e)
)

⋗ (w, ∂(R), f) ΘR(w, ∂(R), f)⋗ (z, ∂(R), e)

.
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Explicitly, on the second strand of (97), we have the following element of
T 2
R(G) (see (82) and (83)):

ΘR

(
ΘR(w, ∂(R), f)⋗ (z, ∂(R), e)

)
ΘR(w, ∂(R), f)⋗ (z, ∂(R), e)(99)

= βR

(

ΘR(w, ∂(R), f)⋗ (z, ∂(R), e)
)

= βR
(
w−1zw, ∂(R),R w−1⊲R−1 w−1⊲e (w−1z)⊲R (w−1zw)⊲R−1

)

=
(
1, ∂(R),R (w−1z)⊲R−1 w−1⊲e−1 w−1⊲R R−1

)
.

Hence the element of T 2
R(G) associated to the target of the second strand of

the diagram in (97) is:

(
βR(ΘR(w, ∂(R), f)⋗ (z, ∂(R), e)

)
, 1E

)
⋗ (w, ∂(R), f)

(100)

= (w, ∂(R), R (w−1z)⊲R−1w−1⊲e−1w−1⊲RR−1 f w⊲RR−1 e z⊲Rw⊲R−1).

And, on the first strand of the diagram in (97), we have the following element
of T 2

R(G):

ΘR(w, ∂(R), f) = (w−1, ∂(R), R w−1⊲R−1).(101)

Hence the element of T 2
R(G) associated to the target of the first strand in

(97) is:

ΘR(w, ∂(R), f)⋗ (z, ∂(R), e)(102)

=
(
w−1zw, ∂(R), R w−1⊲R−1 w−1⊲e (w−1z)⊲R (w−1zw)⊲R−1).

Remark 65. A more compact formulation of X+
R in Equations (98) and

(99) is in Equation (39).

Proof. By using (83), it follows that the formulations for X+
R in (97) and

(98) coincide, and it also follows (99). Equation (100) follows from (86).
Analogously, (101) and (102) follow from Lem. 48 and (86).

We prove that X+
R in (98) is obtained by transporting the bikoid X+

gr∗ in
(88) along ΦR : TRANS(S

2(G)) → TRANS(T 2
R(G)) in Lem. 56; recall [6.1].

We use the formulation in Equation (89) for X2
gr∗ . Recall Defs. 47 and 52.

That X+
R in (97) is obtained by transporting X+

gr∗ in (89) along ΦR follows
swiftly from the construction of ΦR : TRANS(S

2(G)) → TRANS(T 2
R(G)) in

Lem. 56, together with Lem. 48, 50 and [6.8]. �
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[23] A. Bullivant, M. Calçada, Z. Kádár, J. Faria Martins, and P. Martin,
Topological phases from higher gauge symmetry in 3 + 1 dimensions,
Phys. Rev. B 95 (2017) 155118.

[24] G. Burde, H. Zieschang, and M. Heusener, Knots, 3rd fully revised and
extented edition., Vol. 5, Berlin: Walter de Gruyter, 3rd fully revised
and extented edition edition (2014), ISBN 978-3-11-027074-7/hbk;
978-3-11-027078-5/ebook.



✐

✐

“1-Martins” — 2020/4/29 — 0:26 — page 1764 — #80
✐

✐

✐

✐

✐

✐

1764 Alex Bullivant, João Faria Martins, and Paul Martin

[25] J. S. Carter, A survey of quandle ideas, in: Introductory Lectures on
Knot Theory, Vol. 46 of Ser. Knots Everything, 22–53, World Sci. Publ.,
Hackensack, NJ (2012).

[26] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, State-
sum invariants of knotted curves and surfaces from quandle cohomology,
Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 146–156.

[27] J. S. Carter, D. Jelsovsky, S. Kamada, and M. Saito, Computations of
quandle cocycle invariants of knotted curves and surfaces, Adv. Math.
157 (2001), no. 1, 36–94.

[28] K. Costello, Renormalization and Effective Field Theory, Vol. 170 of
Mathematical Surveys and Monographs, American Mathematical Soci-
ety, Providence, RI (2011), ISBN 978-0-8218-5288-0.

[29] C. Damiani, A journey through loop braid groups, Expositiones Mathe-
maticae 35 (2017), no. 3, 252 – 285.

[30] M. de Wild Propitius and F. A. Bais, Discrete Gauge Theories, pp. 353–
439, Springer New York, New York, NY (1999), ISBN 978-1-4612-1410-
6.

[31] C. Delcamp, B. Dittrich, and A. Riello, Fusion basis for lattice gauge
theory and loop quantum gravity, Journal of High Energy Physics 2017
(2017), no. 2, 61.

[32] M. Dokuchaev, R. Exel, and P. Piccione, Partial Representations and
Partial Group Algebras, Journal of Algebra 226 (2000), no. 1, 505–532.

[33] M. Eisermann, Knot colouring polynomials, Pac. J. Math. 231 (2007),
no. 2, 305–336.

[34] M. Elhamdadi and S. Nelson, Quandles: An Introduction to the Alge-
bra of Knots, Student Mathematical Library, American Mathematical
Society (2015), ISBN 9781470422134.

[35] D. V. Else and C. Nayak, Cheshire charge in (3 + 1)-dimensional topo-
logical phases, Phys. Rev. B 96 (2017), 045136.

[36] P. Etingof, D. Nikshych, and V. Ostrik, On fusion categories, Ann. of
Math. (2) 162 (2005), no. 2, 581–642.

[37] J. Faria Martins, Categorical groups, knots and knotted surfaces, J. Knot
Theory Ramifications 16 (2007), no. 9, 1181–1217.



✐

✐

“1-Martins” — 2020/4/29 — 0:26 — page 1765 — #81
✐

✐

✐

✐

✐

✐

Representations of the loop braid group 1765

[38] J. Faria Martins, The fundamental crossed module of the complement
of a knotted surface, Trans. Amer. Math. Soc. 361 (2009), no. 9, 4593–
4630.

[39] J. Faria Martins and R. Picken, Surface holonomy for non-Abelian 2-
bundles via double groupoids, Adv. Math. 226 (2011), no. 4, 3309–3366.

[40] J. Faria Martins and T. Porter, On Yetter’s invariant and an extension
of the Dijkgraaf-Witten invariant to categorical groups, Theory Appl.
Categ. 18 (2007), no. 4, 118–150.

[41] J. Faria Martins et al, Invariants of welded knots derived from finite
crossed modules, in preparation.

[42] R. Fenn, D. P. Ilyutko, L. H. Kauffman, and V. O. Manturov, Unsolved
problems in virtual knot theory and combinatorial knot theory, in: Knots
in Poland III. Part III, Vol. 103 of Banach Center Publ., pp. 9–61, Polish
Acad. Sci. Inst. Math., Warsaw (2014).

[43] R. Fenn, M. Jordan-Santana, and L. Kauffman, Biquandles and virtual
links, Topology Appl. 145 (2004), no. 1-3, 157–175.
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