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We study a realization of S dualities of four-dimensional N = 2
class S theories based on BPS graphs. S duality transformations of
the UV curve are explicitly expressed as a sequence of topological
transitions of the graph, and translated into cluster transforma-
tions of the algebra associated to the dual BPS quiver. Our con-
struction applies to generic class S theories, including those with
non-maximal flavor symmetry, generalizing previous results based
on higher triangulations. We study the the action of S duality on
UV line operators, and show that it matches precisely with the
mapping class group, by a careful analysis of framed wall-crossing.
We comment on the implications of our results for the computation
of three-manifold invariants via cluster partition functions.
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1. Introduction and discussion

Twisted compactifications of the six-dimensional (2, 0) theory provide a valu-
able laboratory to explore various nonperturbative aspects of quantum field
theories. The archetypal example is perhaps the identification of general-
ized S-duality for four-dimensional N = 2 dualities with the mapping class
groups of Riemann surfaces [1], whose implications have reverberated into
the studies of partition functions, BPS line operators, and three-dimensional
compactifications, to name a few [2–5].

In this paper we study S-duality from a low-energy perspective, by going
to the Coulomb branch of a four-dimensional class S theory and asking
how dualities act on the BPS spectrum. One advantage of the IR setting
is that it gives us a good control on certain observables, allowing us to
perform explicit computations. On the other hand, by going the Coulomb
branch we apparently lose connection with the UV description of the theory,
including the geometric interpretation of S-duality as a mapping class group
transformation of the UV curve C. The resolution of this issue comes from
studying protected quantities, such as BPS states and their generalizations
in presence of line and surface defects, which retain some information about
the UV physics. For example, it is known that framed BPS states encode
enough information to characterize the algebra of UV line operators [6, 7].
There is in fact a precise map between low-energy line operators and their
UV counterparts, developed on spectral networks in [8], where it is called
“nonabelianization map”. This result provides the conceptual foundation for
our approach, explaining how operations on certain low-energy observables
can encode UV dualities.

We derive a low-energy characterization of the mapping class group
MCG(C) of C based on BPS graphs, which are graphs embedded in C.
BPS graphs arise from a degenerate limit of spectral networks at points
in the Coulomb branch where the phases of central charges are maximally
aligned, and they encode both the BPS quiver and all the BPS spectra of a
theory [9, 10]. There is a whole equivalence class of BPS graphs associated
to a given theory, generated by three basic moves shown in Figure 1. The
topology of a BPS graph G is characterized by the type of each vertex (see
Figure 1), by the adjacency matrix of its edges, and by a cyclic ordering of
edges at each vertex. We identify a mapping class group transformation of
C with a sequence of elementary moves κ which takes G to a new graph G′
with the same topology. In general G and G′ need not wrap C in the same
way, instead they will wrap the UV curve in ways related by an element



i
i

“4-Longhi” — 2020/1/27 — 18:12 — page 1363 — #3 i
i

i
i

i
i

S duality and framed BPS states 1363

gκ ∈ MCG(C). There is a natural map κ→ gκ, that arises from using the
BPS graph to characterize the action of κ on H1(C,Z).

Figure 1: The flip move is shown on top, the cootie move in the center, and
the j-move at the bottom. Vertices of BPS graphs come in two types: branch
points are marked by a yellow cross, joints are unmarked.

Our construction of MCG(C) moreover has a natural interpretation in
the context of cluster algebras, because any BPS graph G is dual to a BPS
quiver Q [9]—any sequence κ translates naturally into a sequence of “quiver
mutations” of the quiver Q, and into associated sequential changes of clus-
ter variables. The existence of a relation between mapping class groups and
cluster algebras has been known for some time [11, 12], however its explicit
characterization was limited to Riemann surfaces decorated by “full” punc-
tures, i.e. punctures encoding maximal flavor symmetry. Our construction
via BPS graphs agrees with these previous results, but further extends to
Riemann surfaces with more general types of punctures. The only funda-
mental requirement for our construction is the existence of a BPS graph for
the theory.

The sequence of moves κ that generates a mapping class group trans-
formation can be interpreted as a path in the moduli space of BPS graphs,
along which some edges shrink to a point and subsequently grow again. How-
ever, finding such a region in the physical moduli space of a theory, which
may include both Coulomb and UV parameters, can be challenging. This is
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both one of the main shortcomings and advantages of BPS graphs. On the
one hand, it is difficult to find the region of moduli space where a BPS graph
arises from spectral networks. On the other hand, the BPS graph of a theory
is typically so much simpler than the generic network. Based on the experi-
ence gained from some examples, we can then make educated guesses for the
BPS graphs of more complicated ones. In this paper we follow this approach,
and construct the BPS graphs of AN−1 theories of class S defined by a torus
with a “simple” puncture using an ansatz inspired by methods of [9]. We
thus obtain candidates for the BPS quivers of the so-called SU(N) N = 2∗

theories, and check that the map from MCG(C) to the cluster algebra is a
homomorphism.

A key property of our map from MCG(C) to cluster algebras is that
it reproduces the action of S duality on UV line operators [3, 13–15]. The
duality relating BPS graphs to quivers leads to an identification between
VEVs of IR line operators and cluster coordinates.1 Through this relation κ
translates into a transformation of the IR line operators of the theory, which
can be further mapped into an action on the UV line operators, thanks to
a relation between the two sets of observables characterized by framed BPS
states [6]. Since a honest BPS graph originates from a spectral network G, we
can always use the latter to compute the spectrum of framed BPS states, via
the nonabelianization map [8]. In this paper we focus on UV line operators
L℘ labeled by closed paths ℘ ⊂ C, whose VEVs are identified with traces of
holonomies of a flat connection on C. A detailed analysis shows that acting
with κ on the underlying spectral network G induces a sequence of framed
wall-crossing phenomena. These jumps of framed BPS states translate into a
transformation L℘ → Lgκ(℘), that maps a UV line operator wrapping ℘ into
a new one wrapping gκ(℘). We give a general derivation of this property,
which provides a strong check that our construction of S duality via cluster
algebras acts in the expected way on UV line operators. We also provide
explicit checks of this property for two simple cases: the A1 theories defined
by a once-punctured torus and the four-punctured sphere, as a byproduct
we illustrate for the first time computations of VEVs of UV line operators
(and framed BPS states) using BPS graphs.2

1More precisely, there is a relation between the two, but they are not quite
identical. For example, they have different transformation properties as we explain
in the main body of the paper.

2More precisely, the computation always relies on the data of the underlying
spectral network, and we recover previous results obtained by different, but related,
techniques. The point is that it is often easier to work with the BPS graph than
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The main novelty of the relation between S duality and cluster algebras
uncovered in this paper is the fact that it extends to Riemann surfaces
with generic types of punctures. This generalizes previous relations based
on (higher) ideal triangulations [11], and relies only on the existence of the
BPS graph.

One reason why such a generalization is interesting comes from applica-
tions to the study of three-manifold invariants computed by cluster partition
functions [16, 17]. A Riemann surface C together with an element κ of its
mapping class group define a three-manifold known as a mapping torus
M = C ×κ S1. Under suitable conditions on κ, M is a link complement in
S3. The 3d–3d correspondence [4, 5, 18–21] associates a 3d N = 2 theory
T [M ] to a three-manifold, and in the case when M is a mapping torus, there
is a natural quiver Q associated with the theory T [M ]. Q coincides in fact
with the BPS quiver of the 4d N = 2 class S theory defined by the Riemann
surface C, which is dual to the BPS graph. The cluster partition function
is a versatile computational tool for studying SL(N) Chern-Simons parti-
tion functions on M , whose definition relies precisely on the cluster algebra
representation of MCG(C).

The results of this paper provide the necessary ingredients to compute
cluster partition functions for mapping tori fibered by Riemann surfaces
with non-maximal punctures. From the viewpoint of Chern-Simons theory,
the types of punctures on C enter the definition of the path integral, as they
specify the conjugacy class for the holonomy around a cycle along the link
(e.g. the longitudinal cycle), therefore they characterize the types of topo-
logical invariants encoded by the partition function. In particular, for the
Chern-Simons path integral on a knot complement with non-generic holon-
omy along the knot, it is important to sum over saddle points that include
several conjugacy classes of holonomies with fixed eigenvalues [22]. Very lit-
tle is known about these invariants in the case of non-maximal punctures,
therefore it will be very interesting to construct them using the cluster alge-
bra realization of mapping class groups developed in this paper; this is the
subject of our upcoming work [23]. For the case of a torus with a simple punc-
ture [N − 1, 1] and an element ϕ of the mapping class group SL(2,Z) (see
Section 4.3), the resulting cluster partition function can also be compared
with the partition function of Tr(T [SU(N), ϕ])—this is a theory obtained

producing the generic spectral network, this can make computations more accessible
depending on the context.
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by gauging the diagonal SU(N) subgroup of the duality domain wall non-
Abelian gauge theory T [SU(N), ϕ], studied in [4]. Schematically, we have

Zcluster partition function
Tr(ϕ) = Z3d N = 2 theory

Tr(T [SU(N),ϕ])(1)

and this will provide one of the most stringent checks of the BPS graphs
and their S duality action proposed in this paper [23].

This paper is organized as follows. Section 2 contains the characteriza-
tion of S-duality groups (i.e. mapping class groups) based on BPS graphs,
and the map to cluster algebras. In Section 3 we analyze the framed wall-
crossing that is induced by the action of the mapping class group, and show
that it reproduces the expected action of S duality on UV line operators.
Section 4 contains examples of our construction together with various checks.

2. Mapping class group from BPS graphs

The aim of this section is to explain how a representation of the mapping
class group of a Riemann surface can be derived using BPS graphs.

2.1. BPS graphs

A BPS graph G is a graph embedded in the UV curve C of a class S the-
ory, and arises as a maximally degenerate spectral network [9] (see also the
related works [10, 24, 25]). The shape of the spectral network reflects the
geometry of the Seiberg-Witten curve Σ, which is presented as a N -sheeted
ramified covering of C, and depends on a choice of Coulomb vacuum and
UV moduli. G appears at a special locus within the moduli space, a.k.a. the
Roman locus, where central charges of BPS particles all have the same phase
ϑc (anti-particles have phase ϑc + π). An important feature of BPS graphs
is that they are quite simple, compared to the generic spectral network of a
theory. In fact, it is sometimes possible to deduce or guess the BPS graph
of a theory without plotting the actual spectral network.3 In this paper we
will mostly take this route, i.e. we will adopt an ansatz for the BPS graph
of a theory, and will assume that it arises from a honest spectral network
at some point of the moduli space. The validity of this assumption is cru-
cial for some of our considerations, and our ansatze for BPS graphs will be
supported by several types of checks.

3This option is important because it can be in practice challenging to find the
Roman locus within the moduli space.
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Figure 2: Two elementary webs ωi, ωj made of a single edge each, and their
lifts to closed cycles on Σ (γi and γj).

For our purposes, a BPS graph consists of edges ei ∈ E(G) attached
together at vertices v ∈ V (G), which come in two types: branch points or
joints. The topological data defining G includes an embedding in C up to
homotopy, the adjacency matrix of its edges, and a cyclic ordering σv of edges
at each vertex v. G is naturally divided into smaller connected sets of edges,
called elementary webs, defined as the connected components of G after
cutting the graph at the branch points (indicated by crosses in figures).4 An
elementary web ω may consist of a single edge, or of several edges connected
together at joints. A BPS graph comes equipped with a map from the set
of elementary webs to homology cycles on Σ

(2) h : ω 7→ γ ∈ H1(Σ,Z).

This map is inherited from the spectral network: γ is the class of a cycle
arising as a lift of ω from C to Σ, see Figure 2. The cyclic ordering σv of
the edges at each vertex v encodes the intersection pairing 〈γ, γ′〉 of cycles
associated to webs ω, ω′ that meet at v.

Two BPS graphs with the same topological data are regarded as the
same graph G. On the other hand, if the embeddings of G,G′ in C are not
homotopy equivalent, we say that G ' G′ are equivalent as abstract graphs
if there is a 1-1 map f which takes V (G)→ V (G′) and E(G)→ E(G′) and

4This definition of elementary webs is not entirely accurate, but will be appro-
priate for the BPS graphs studied in this paper. For more details see [9].
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respects σv at each vertex v

(3) f(σv) = σf(v).

This equivalence relation implies that G,G′ have the same adjacency matrix
and same cyclic ordering of edges at each vertex, regardless of how G and G′
are placed on C. An example of equivalent graphs with different embeddings
is shown in Figure 3.

Figure 3: Two BPS graphs on the punctured torus, wrapping it in two
different ways related by a mapping class group transformation (a Dehn
twist).

2.2. Mapping class group

BPS graphs come in families generated by topological transitions: the flip,
cootie and the j-move shown in Figure 1. We will be interested in pairs of
equivalent graphs (G,G′), both embedded in the same Riemann surface C,
that are related by a sequence of flips, cooties and j-moves. Let κs be a
sequence of such moves, which takes G to an equivalent graph G′, up to a
relabeling of the edges κr

(4) G′ ≡ κr ◦ κs (G) ' G.

We define κr as the relabeling ei → e′i′ such that f(ei) = e′i, thereby fixing
f in terms of κr ◦ κs for the rest of the paper. G′ may wrap C in a different
way from G, and through the map f relating them we can define a mapping
class group transformation for C, under certain conditions which we now
specify.

Choose a basis for H1(C,Z), together with a representative of each basis
element made of an oriented closed chain of edges (ei1 , . . . , eik) of G. The
map f takes this to a new chain (e′i1 , . . . , e

′
ik

) ⊂ E(G′) which is also closed,
since G ' G′. The new chain defines a new element of H1(C,Z). In order
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to define a honest mapping class group transformation, we require that any
two chains of edges in E(G) in the same homology class

(5) [(ei1 , . . . , eik)] = [(ej1 , . . . , ej`)]

must be mapped to two chains in E(G′) which are also in the same homology
class.

(6)
[
(e′i1 , . . . , e

′
ik)
]

=
[
(e′j1 , . . . , e

′
j`)
]
.

If this condition is satisfied, f acts as an endomorphism of H1(C,Z), and can
be identified with a mapping class group transformation. We will henceforth
restrict our attention to sequences κs composed with relabelings κr which
lead to equivalent graphs G,G′ related by a map f satisfying this require-
ment. Since we fixed f in terms of κr ◦ κs we will leave f implicit in the
following, and simply refer to the operation κ = κr ◦ κs as a mapping class
group transformation.

Figure 4: The BPS graph G is placed on a torus with one puncture, whose
fundamental domain is depicted as a square, with the puncture placed at
the corners. G undergoes a sequence of moves κs (green arrows) followed by
the relabeling κr.

This construction can be made quite explicit: given κ satisfying the
consistency conditions, it can be identified with a specific element gκ of the
mapping class group. For example let us consider the sequence of moves on
the BPS graph shown in Figure 4. κs consists of the following moves: flip
e2, flip e1, cootie on (e5, e6, e7, e8), flip e9, flip e2. The graph obtained after
applying κs has a Z3 symmetry, so there are three inequivalent relabelings
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κr, κ
′
r, κ
′′
r that can be used to produce a new BPS graph G′ equivalent to the

original one. We choose κr as

(7) κr :

{
e2 → e1 → e4 → e3 → e9 → e2

e5 → e6 → e7 → e8 → e5,

meaning that κr(e2) = e′1, et cetera. Next we choose generators for H1(C,Z)
as the homology classes of the following sequences of edges of G

(8) A : [(e1, e8, e9, e2)], B : [(e2, e5, e4, e1)].

The orientation of a cycle is understood as left to right, when reading each
sequence. As the moves κs are applied to G, we keep track of these edges,
and finally apply the relabeling κr. This leads to a new pair of cycles, defined
by the new sequences of edges identified by the equivalence G ' G′

(9) A′ : [(e′1, e
′
8, e
′
9, e
′
2)], B′ : [(e′2, e

′
5, e
′
4, e
′
1)].

As homology classes, they are related to the original ones by

(10) A′ = B, B′ = −A,

therefore we identify κ with the following generator of MCG(C) ' SL(2,Z)

(11) gκ = S−1 =

(
0 −1
1 0

)
.

More generally, a transformation which takes A,B to A′ = dA+ cB, B′ =
bA+ aB corresponds to the following element of SL(2,Z)

(12) gκ =

(
a b
c d

)
.

This representation of gκ obviously depends on the choice of homology basis
on C, and different choices should be related by conjugation. Therefore upon
fixing a basis, any two sequences κ, κ′ must satisfy

(13) gκ′gκ = gκ′◦κ.

2.3. Map to cluster algebra

A BPS graph G is dual to a BPS quiver Q: an oriented graph consisting of
nodes Q0 connected by arrows Q1 [26, 27]. Nodes are in 1-1 correspondence
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with elementary webs of G, we associate to the i-th node the generator
γi = h(ωi) of the charge lattice identified by (2). There are bij = −〈γi, γj〉
arrows oriented from node i to node j, when counted with signs.5 Figure 5
shows the BPS quiver dual to the initial BPS graph of Figure 4, node label
i stands for γi. Since the pairing 〈γi, γj〉 is determined by the adjacency
matrix of G and by the cyclic orderings {σv}v∈V (G), two equivalent graphs
G ' G′ are dual to the same BPS quiver.

Figure 5: BPS quiver dual to the graphs G and G′ of Figure 4.

A quiver further encodes the information of an associated cluster algebra
[28, 29]. Let yi be a set of variables associated to each node of Q. The pair
(Q, {yi}) defines a seed for the cluster algebra. The algebra is generated by
an elementary operation on the seed, known as a mutation. A mutation µk
on node k produces a new quiver with the same set of nodes but with new
arrows

(14) b′ij =

{
−bij if i = k or j = k,

bij + 1
2 (|bik|bkj + bik|bkj |) otherwise.

The mutation also acts on the cluster variables6 by

(15) y′i = yiy
[−bik]+
k

(
1 + y−1

k

)−bik
,

5Negative values of bij mean that the arrows go from j to i. This definition
assumes that quivers do not contain two-cycles or loops, and is appropriate for the
purposes of this paper. A more general dictionary between quivers and BPS graphs
can be found in [9].

6More precisely cluster y-variables [29]. In this paper a cluster variable always
means a cluster y-variable.
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where [a]+ is zero if a is negative, and equal to a otherwise. The flip move
on a BPS graph corresponds to a mutation on the dual quiver, performed
on the node corresponding to the shrinking edge, see Figure 6. The cootie
and j-move leave the quiver invariant instead.

Going back to the mapping class group, let us consider the action of a se-
quence κ : G 7→ G′ on the quiver. The sequence κs translates into a sequence
of mutations, while the relabeling κr maps to a simultaneous reshuffling
of the quiver nodes and cluster variables. Overall, the composite operation
κ = κr ◦ κs must take Q back to itself since equivalent BPS graphs have
identical quivers. Nevertheless, the resulting transformation on the cluster
variables needs not be trivial, and we take it as the definition of the action
of κ on the cluster algebra. In this sense, through BPS graphs we have given
a representation of the mapping class group of C in the cluster algebra.

The fact that mapping class groups of surfaces admit a cluster algebra
representation is not new, in fact such maps have been constructed by several
other authors, see for example [11, 12, 30–33]. However, most of the previous
constructions are limited to cluster varieties associated to Riemann surfaces
decorated by full punctures, i.e. corresponding to maximal flavor symmetry
(exceptions include [17, 34]). We both re-derive these previous constructions
via BPS graphs, and extend them to cases including partially higgsed punc-
tures, for which BPS graphs can be defined. In Section 4 we provide several
examples of this construction of mapping class groups from cluster algebras,
in higher rank theories of class S defined by Riemann surfaces decorated
with simple punctures, i.e. with minimal flavor symmetry.

Figure 6: The flip of an edge of the graph and the mutation it induces of
the dual BPS quiver.
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3. S-duality on framed BPS states

This section is devoted to studying the action of the generalized S-duality
group on UV line operators. We will show that our construction of the
mapping class group of C based on transitions of BPS graphs is consistent
with the action of dualities on a certain class of UV observables. Related
questions about the action of cluster algebras on UV line defects were studied
in [35, 36] from the viewpoint of framed BPS quivers.7

A crucial assumption in our derivation will be that the BPS graph always
arises from a degenerate limit of spectral networks. This analysis leads to two
consequences. If a BPS graph is known to arise from a degenerate spectral
network, it is guaranteed that the representation of MCG(C) from Section 2
acts correctly on a certain class of UV line operators. On the other hand, if
G is a conjectural BPS graph, and the corresponding mapping class group
action behaves appropriately (in a sense that will be defined in this section),
this provides a strong consistency check that G actually arises as a degenerate
limit of spectral networks, and is therefore the physical BPS graph of the
theory.

3.1. Connecting IR and UV line operators

The Hitchin system defined by the class S data (AN−1, C,D) is a hyper-
Kähler manifold, that in complex structure Jζ (with ζ ∈ C∗) can be viewed
as a moduli space of flat GL(N) connections over C. There is a standard
set of coordinates on this moduli space, namely traces of holonomies along
cycles in H1(C,Z). The traces of these holonomies bear the interpretation
of expectation values of a certain class of BPS line operators in the gauge
theory [3, 6, 14, 15, 38]. Let ℘ be a closed path on C, we will denote the

corresponding UV line operator by L
(UV)
℘ .

On the Coulomb branch B, the gauge symmetry is broken to an Abelian
torus U(1)r, and the set of line operators of the IR theory is therefore quite

7An interesting generalization of the line defects considered in this section, is to
consider those described by laminations in A1 theories [6]. Vevs of UV line defects
labeled by laminations can be computed with spectral networks, see for example
[37], therefore we expect that our construction of the mapping class group can be
extended to this setting. Laminations arise in class S theories defined by a Riemann
surface with one or two irregular punctures. The mapping class group is thus Zk,
the discrete rotations of the plane (or cylinder), and the S-duality reduces to a
manifestation of the Witten effect on the core charge of the line defects [36]. We
thank M. Cirafici for bringing our attention to this point.
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different from that of the UV theory. Line operators in the IR are classified
by electromagnetic charges γ valued in H1(Σ,Z), where Σ is the spectral
curve of the Hitchin system in a fixed vacuum u ∈ B. We will denote the

corresponding line operator by L
(IR)
γ . Just like for UV line operators, the

expectation value of L
(IR)
γ can be interpreted as the holonomy of a GL(1)

connection over Σ.
The dictionaries between UV/IR line operators and holonomies can be

used to establish a relation between the two sets of observables, based on
a relation between the two moduli spaces of flat connections. This goes by
the name of nonabelianization map, and can be characterized via spectral
networks [8]. A spectral network W on C defines a map

(16) ΨW : Mflat(GL(1),Σ) −→ Mflat(GL(N), C),

that associates to any smooth closed path ℘ on C a formal parallel transport
F (℘;W) for the flat GL(N) connection on C. The trace of holonomy can
be expanded as follows

(17) TrF (℘;W) =
∑
γ

Ω(W, γ, ℘)Xγ ,

where Xγ are formal variables representing GL(1) holonomies along cycles
γ ∈ H1(Σ,Z). The coefficients Ω(W, γ, ℘) depend on ℘ only through its ho-
motopy class, this highly nontrivial property justifies the interpretation of
F (℘,W) as the parallel transport of a flat GL(N) connection. Physically
Ω(W, γ, ℘) is an index which counts framed BPS states, semiclassically these
can be viewed as supersymmetric boundstates of BPS particles and the line
operator [6, 39–43], whereas mathematically they encode the relation be-
tween the two sets of holonomies. By the dictionary relating holonomies to
VEVs of line operators

(18) 〈L(UV)〉 ∼ TrF (℘,W), 〈L(IR)〉 ∼ Xγ ,

the expansion in framed BPS states (17) therefore encodes the relation be-
tween the VEVs.

This relation between UV and IR line operators will play a key role
towards our goal of studying the action of MCG(C) on the former. Recall
that a BPS graph G provides a basis for the IR charge lattice through the
map (2), at least locally in some patch of the Coulomb branch. On the other
hand, G should first and foremost arise as a degenerate spectral network,
and therefore can be used to compute framed BPS states. In the rest of this
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section we will explain how to formulate the nonabelianization map (17)
entirely in terms of the data associated to a BPS graph. In particular, we
propose a relation between the formal variables Xγ and the cluster coor-
dinates yi [8, 9], and use it to define the action of MCG(C) on UV line
operators via nonabelianization.

3.2. Resolved BPS graphs

Let G be a BPS graph on C arising from a maximally degenerate spectral
network W(u, ϑc) at a point u on the Roman locus, and critical phase ϑc.

8

There are two canonical resolutions of G, corresponding to positive or neg-
ative perturbations of the phase ϑc involved in the definition of a network
spectral network. These two options are known as the American and the
British resolution [8].9 Note that resolving the spectral network is a nec-
essary condition for the nonabelianization map (17) to be well-defined. We
choose to resolve by going to a phase ϑc − ε, known as the American reso-
lution of Wc, and denote the resolved network by G to stress its relation to
the BPS graph G. In practice, resolving Wc → G amounts to replacing the
unoriented edges with families of oriented edges running “on the right”, as
shown in the bottom-left frame of Figure 7. The oriented edges of a spec-
tral network can be sourced either at branch points or at joints, and their
precise shape is determined by the geometry of the spectral curve Σ. Since
G is the American resolution of a BPS graph, for small ε the oriented edges
will typically run very close to the original shape of G, although they may
eventually veer off and be captured by punctures, after a very long time.

Next let us consider two equivalent BPS graphs G, G′ related by a se-
quence κ = κr ◦ κs. First of all, it is important to realize that G,G′ are
generally related to two different spectral curves Σ,Σ′. In other words, if
we assume that G,G′ arise from actual spectral networks on C, they would
occur in different regions of the moduli space of the theory.10 Therefore ho-
mology classes encoded by the respective elementary webs through the map
(2) belong to distinct homology lattices H1(Σ,Z) and H1(Σ′,Z). In order to
compare charges γ between G and G′ we must specify a parallel transport

8Note that the spectral network Wc, which also looks like a graph on C, may
contain more edges than G. See for example [9, Fig. 19]. It is important to retain
all the edges of the network.

9Apologies to the rest of the world.
10This would mean different loci on the Coulomb branch, but possibly also dif-

ferent Coulomb branches, related by deformations of UV moduli like masses and
couplings.
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γ1 γ4

γ0

γ2 γ3

γ′1 γ′4

γ′0

γ′2 γ′3

Figure 7: The flip move on a BPS graph G, and the corresponding defor-
mation of the spectral network corresponding to the American resolution
of G. The resulting spectral network does not coincide with the American
resolution of the BPS graph after the flip.

for the homology lattice, through the sequence of transitions κ that takes G
to G′. Happily, there is a canonical way to do this suggested by our choice of
a resolution, which allows to smoothly deform homology classes throughout
κ. In physical terms, working with resolved spectral networks G instead of
the actual BPS graph, we always avoid singularities of the moduli space
where branch points collide. At these singularities a cycle of Σ shrinks, and
the Picard-Lefshetz monodromy of the charge lattice would introduce an
ambiguity. Instead of colliding branch points, we deform the network in a
way that they “scatter off” each other, as shown in Figure 7. In keeping
with the choice of American resolution, we will adopt the convention that
after the scattering each branch point veers off to its right. Overall the se-
quence of moves κs, together with this convention on the motion of branch
points through flips, unambiguously fixes a parallel transport for H1(Σ,Z).
We stress that using this parallel transport is crucial for making sense of
any relation between homology cycles γi and γ′i associated respectively to
elementary webs of G and G′. This identification of charges by parallel trans-
port in the moduli space will henceforth be understood for the rest of the
discussion.
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Having settled the question of comparing homology lattices of different
spectral curves, there is one additional subtlety to confront, in order to
relate the charges γi to γ′i associated to elementary webs of G and G′. This
is the fact that the map (2) which associates homology classes to edges of G
actually jumps in correspondence of a flip. This jump is clearly necessary,
because a flip on G acts by a mutation on the dual quiver Q, and its arrows
correspond to the intersection pairing bij = 〈γj , γi〉 of the charges assigned
by h to elementary webs. Referring to Figure 7 the jump of h reads11

γ′0 = −γ0, γ′1 = γ1 + 〈γ1, γ0〉γ0, γ′2 = γ2,

γ′3 = γ3 + 〈γ3, γ0〉γ0, γ′4 = γ4,
(19)

in agreement with (14).12

A mutation of the quiver induces a cluster transformation (15) on the
cluster variables yi. Therefore cluster variables yi, y

′
i of quivers Q,Q′ dual to

G,G′ must be related by a sequence of cluster mutations, possibly composed
with a permutation, corresponding respectively to the flips in κs and to
relabelings in κr. By a slight abuse of notation we will denote this relation
by

(20) y′i = κ(yi).

Figure 8: An inverse K-wall transition of a spectral network.

The jump of h may appear in contradiction with the continuity of the
transport of the charge lattice described previously, instead there is a rather

11This is one place where the choice of American resolution is relevant. In British
resolution we should employ a different transformation.

12The transformation (19) coincides with the transformation properties of (the
logarithm of) the so-called tropical y-variables in the cluster algebras.
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subtle interplay between the two. The parallel transport of the homology
lattice is defined by choosing a resolution G of the initial BPS graph G.
However a flip transition on G will not produce a network that is a resolu-
tion of the new BPS graph, as made evident in Figure 7. In this example the
new spectral network in the bottom-right frame differs from the American
resolution of the BPS graph in the top-right frame, since the two vertical
oriented edges in the middle run “on the left”. In fact, there is a precise
relation between this spectral network and the resolution of the new BPS
graph, which is known as a K-wall transformation and shown in Figure 8.
This is a jumps of the spectral network which involves a change of its topol-
ogy, and induces a transformation of both the Ω and the Xγ appearing in
(17) [8].

In conclusion, we define the parallel transport of the homology lattice
by moving branch points through a flip transition, as shown in Figure 7.
Note that the deformation of the spectral curve, as reflected by the motion
of branch points over C, does not imply any choice about what we do with
the spectral network. On the other hand this deformation produces non-
canonical spectral networks, in the sense that the resulting network doesn’t
correspond to the resolution of a BPS graph, but is related to one precisely
by K-wall transitions. We therefore perform a K-wall transformation on the
network G, to compensate for this mismatch. At the same time, we also
introduce a jump (19) for the map h which associates homology cycles γi
to elementary webs of G. This change of basis for the charge lattice will be
denoted by

(21) γ′i = κ(γi)

by a small abuse of notation. It is understood that κ = κr ◦ κs also includes
the effect of the relabeling κr, which acts by a permutation on the basis.

3.3. Nonabelianization for BPS graphs

Let us recall some key properties of the computation of framed BPS indices
Ω(G, γ, ℘) using spectral networks. The Ω are entirely determined by how
the path ℘ intersects the spectral network G, and by the topology of the
network. The contribution of each intersection is determined by a combina-
torial problem formulated in terms of the overall topology of G. When the
network arises as the resolution of a BPS graph, the combinatorial data,
a.k.a. 2d-4d soliton data, can be computed directly in terms of topological
data of G which includes a cyclic ordering of edges at each vertex [10]. A bit
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more precisely, the construction of F (℘,G) depends on which oriented edges
are crossed by ℘, but the final result is actually invariant under homotopy
of the latter, including deformations across branch points and joints of G.

Through the map (2) the elementary webs provide a basis γi ∈ H1(Σ,Z)
for the IR charge lattice. Any charge γ therefore admits a unique decomposi-
tion γ =

∑
i ciγi and can be represented by a lattice vector c = (c1, . . . , cd),

13

where d is the number of elementary webs of G and coincides with the rank
of the charge lattice. We can therefore reformulate the nonabelianization
map entirely in terms of data of G as follows

TrF (℘;G) =
∑
c

Ω(G, c, ℘)Xc(22)

without any explicit reference to H1(Σ,Z). It is always possible to bring
this expression back to the form (17), through the map (2). This expression
of holonomies is especially convenient for studying the action of MCG(C)
derived in Section 2, we turn to this next.

3.4. Mapping class group action on holonomies

Consider two equivalent BPS graphs G and G′ related by a sequence κ, we
would like to study how the respective holonomies (22) are related. Re-
call that to compute these holonomies one should work with non-degenerate
spectral networks, and we will choose G,G′ as defined previously.14 The com-
putation of Ω depends on two pieces of information: how ℘ intersects G, and
certain combinatorial data computed from G. The latter is known as soliton
data, and is entirely determined by the topology of the spectral network. By
definition G and G′ have the same topology, just different embeddings in C,
and the same will be assumed of G and G′. This implies that the soliton data
of G and G′ must be essentially identical, the only difference between the
two will be in the map h, which plays the role of translating combinatorial
data on a BPS graph into homology classes on Σ.

A bit more precisely, the soliton data of G consists of relative homology
classes, counting paths on Σ which run “above” edges of G according to
the projection π : Σ→ C [8]. This data is determined by a set of equations,

13This is known as the c-vector in cluster algebras [29].
14It is important to distinguish from the situation of Figure 7. Here we always

take the actual American resolution both for G and for G′. As explained previously,
we perform K-wall transitions on the network at each flip, in order to preserve this
property.
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which can be formulated entirely in terms of the adjacency matrix of G and
of the cyclic ordering of edges at its vertices [10]. Therefore the equations

that determine soliton data are formally identical for G and for G′, and
there is a 1-1 correspondence between them. However the spectral networks
G,G′ encode different framed BPS states. This is because the respective
elementary webs of G and G′ define different bases of the IR charge lattice,
related by jumps of the map (2).

The fact that soliton data sets are formally identical implies that the
integers

(23) Ω(G, c, ℘) = Ω(G′, c′, ℘′)

coincide if

(24) G′ = κ(G), c′ = c, ℘′ ' gκ(℘),

as a direct consequence of the construction of (22). The first requirement
states that G ' G′ must be equivalent as abstract graphs, and are moreover
related by a sequence of moves κ = κr ◦ κs. The second relation is simply an
identity of vectors in Zn. The third relation denotes equivalence as homology
classes [℘] and [℘′], related by the mapping class group transformation gκ
associated to κ.

Combining the identity (23) with the change of basis for the charge
lattice (21) we arrive the following formula, which relates the holonomy

computed along ℘ using G′ to the one along ℘ computed using G

TrF (℘′;G′) =
∑
c′

Ω(G′, c′, ℘′)Xc′iγ
′
i

(25)

=
∑
c

Ω(G, c, ℘)Xciγ′i

=
∑
c

Ω(G, c, ℘)Xciκ(γi).

We can also ask how does the holonomy around a fixed path ℘′ change, as
the network undergoes a sequence of flips and cooties κs. Recall that we
smoothly deform the spectral network from G to G′, except for a K-wall
jump at each flip, therefore

(26) TrF (℘′,G′) = K−1
n · · · K−1

1

(
TrF (℘′,G)

)
,
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provided that the homology cycles γ appearing in the expansion of either
side are identified according to the parallel transport described in Subsec-
tion 3.2. Here K−1

n · · · K−1
1 denotes a sequence of (inverse) K-wall jumps of

the network, corresponding precisely to the flips in κ, ordered from right to
left. A K wall corresponding to a mutation on node k acts on the Xγ as
follows

(27) K−1(Xγ) = Xγ(1 +X−γk)
〈γk,γ〉.

Note the appearance of −γk as opposed to γk, this is because the K-wall
jump involves the edge of the new BPS graph after the flip, see Figures 7
and 8 and equation (19). Combining this identity with (25) gives

(28) TrF (℘′,G) =
∑
c

Ω(G, γ, ℘)K1 · · · Kn
(
Xκ(γ)

)
.

We would like to express the r.h.s. in terms of the holonomy TrF (℘,G).
In order to achieve that, we first need a technical result, whose proof can be
found in Appendix A. Introduce a map ρ defined as follows

(29) ρG : Xγi → yi,

this definition is formulated in terms of the basis elements of the initial BPS
graph G and its cluster variables yi. ρ extends to other homology classes by
multiplication Xγ+γ′ = XγXγ′ . We claim that

(30) K1 . . .Kn(Xκ(γi)) = ρ−1 ◦ κ ◦ ρ(Xγi),

where K1 . . .Kn is a sequence of K-wall transformations, applied in the op-
posite order compared to how they occur on the BPS graph (K1 happens
first, but its transformation is applied last).

Using this result in (28) gives

TrF (℘′,G) =
∑
c

Ω(G, γ, ℘) ρ−1 ◦ κ ◦ ρ (Xγ) .(31)

Finally, we go back to cluster variables by applying ρ on each side, and come
to the main result of this section

ρ
(
TrF (℘′,G)

)
= κ ◦ ρ

(
TrF (℘,G)

)
.(32)
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This identity holds for a generic sequence of moves κ = κr ◦ κs made of flips,
cooties, j-moves and relabelings, provided that it corresponds to an element
of MCG(C), subject to the consistency conditions described in Section 2.

Equation (32) shows that the action by κ on cluster variables yi cor-
responds to turning the holonomy along ℘ into the holonomy along a new
path ℘′. Moreover ℘′ and ℘ are related precisely by the mapping class group
transformation gκ acting on H1(C,Z). This relation provides strong evidence
that our construction of the mapping class group via the cluster algebra and
BPS graphs acts as expected on the moduli space of flat GL(K) connections
on C. On the other hand, if the mapping class group action generated by
a BPS graph is shown to satisfy this relation, this provides evidence that G
really arises from a degenerate spectral network.

4. Examples

In this section we work out the construction of the mapping class group in
several examples, and perform several checks, including the group relations
of generators of MCG(C) and the action on UV line operators.

4.1. SU(2) N = 2∗ theory

The SU(2) gauge theory with a massive adjoint hypermultiplet is realized
as a class S theory by taking the A1 Hitchin system with C a torus with
a regular puncture. The mapping class group action for this example does
not require the machinery of BPS graphs, and has been previously studied
using other techniques [4, 30, 31, 44, 45]. Nevertheless we include it both for
completeness and for pedagogical purposes.

Figure 9: The BPS graph of SU(2) N = 2∗ theory, and the dual quiver.
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The spectral curve has genus two and has two punctures, however the
physical charge lattice is just three dimensional, as a result of a quotient [46].
The BPS graph of the theory is shown in Figure 9, it is made of three edges
ei. Each edge corresponds to an elementary web, the intersection pairing of
the respective homology cycles γi = h(ei) is

(33) 〈γi, γi+1〉 = −2.

Accordingly the quiver has bi,i+1 = 2 arrows connecting node i to i+ 1. Note
that γ1 + γ2 + γ3 is a flavor charge, it has vanishing intersection with any
other cycle. We choose to represent the generators of the homology lattice
of C as

(34) A = [(e1, e2)], B = [(e1, e3)],

note that the orientation of each is ambiguous, since the cyclic ordering
is preserved by reversing the ordering. This is a peculiarity of the SU(2)
theory, and will bring specific consequences. We choose A oriented to the
right, and B oriented upwards.

Figure 10: Top: the S−1 move. Bottom: the T−1 move.

The S−1 transformation is obtained by performing a single flip κs on
edge e1 followed by a relabeling κr : e2 ↔ e3, see Figure 10. As a check, note
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that

(35) A′ = [(e′1, e
′
2)] = B, B′ = [(e′1, e

′
3)] = −A

which indeed corresponds to the action of S−1.15 Let us therefore denote
by κS−1 = κr ◦ κs. On the cluster variables, this transformation acts by the
mutation µ1 on node 1, followed by a permutation of nodes 2↔ 3

(36) κS−1(y1, y2, y3) =
(
y−1

1 , y3(1 + y−1
1 )−2, y2y

2
1(1 + y−1

1 )2
)
.

Another generator of MCG(C) can be chosen to be the flip on edge e2

followed by the permutation of e1 ↔ e2, see Figure 10. The homology basis
on C gets mapped to

(37) A′ = [(e′1, e
′
2)] = A, B′ = [(e′1, e

′
3)] = B −A,

therefore we recognize this as the action of

(38) T−1 =

(
1 −1
0 1

)
.

On the cluster variables this acts by composition of a mutation µ2 on node
2, followed by a permutation of nodes 1↔ 2

(39) κT−1(y1, y2, y3) =
(
y−1

2 , y1(1 + y−1
2 )−2, y3(1 + y2)2

)
.

As a check that the identifications are consistent among themselves, we can
verify that the identity

(
S−1T−1

)3
= 1

(y1, y2, y3)
κT−1−→

(
y−1

2 , y1

(
1 + y−1

2

)−2
, y3 (1 + y2)2

)
(40)

κS−1−→ (y2, y3, y1)
κT−1−→

(
y−1

3 , y2

(
1 + y−1

3

)−2
, y1 (1 + y3) 2

)
κS−1−→ (y3, y1, y2)
κT−1−→

(
y−1

1 , y3

(
1 + y−1

1

)−2
, y2 (1 + y1)2

)
κS−1−→ (y1, y2, y3).

It is also straightforward to check that (S−1)2 = 1, this suggests that we
found a representation of the orientation-preserving mapping class group

15We chose A′ oriented upwards, and B′ oriented left, preserving the relative
orientation of A,B.
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PSL(2,Z) (as opposed to its double cover SL(2,Z), which allows for orien-
tation change). This appears to be a special feature of N = 2, and is due
to the fact that the orientation of A and B cycles is ambiguous: each is
composed of just two edges of G, therefore their cyclic ordering is invariant
under orientation reversal. This ambiguity will be absent for higher N .

Notice that the graph has an obvious Z3 symmetry, and this raises the
possibility of choosing κr differently. For instance, considering the permuta-
tion κr : e1 ↔ e3 after the flip on edge e2 would have given A′ = B −A,B′ =
2A+B. This corresponds to the transformation

(41)

(
1 −2
1 −1

)
= S−1T−1S−1T−2S−2.

Indeed, we checked that performing this transformation corresponds pre-
cisely to acting with the sequence κS−1κT−1κS−1κT−1κT−1κS−1κS−1 on the
cluster variables. This match provides a strong consistency check on the
identification between mapping class group and cluster algebra. A nice prop-
erty of this construction is how manifest the relation between mapping class
group action and cluster algebra is. On the one hand the action on the BPS
graph resembles directly that of MCG(C), on the other we read off directly
on the dual quiver what is the corresponding cluster transformation.

4.1.1. Line operators. We will now illustrate the action of MCG(C) on
the UV line operators of the theory, to show how the general statements of
Section 3 are realized in this theory. As a byproduct, we also work out the
first computation of framed BPS states using BPS graphs, which involves
some subtleties due to the occurrence of fractional charges.

Let us consider line operators labeled by the paths ℘A and ℘B in Fig-
ure 11. First of all we need to compute the holonomies along each path, which
in turn requires us to compute the soliton data on the BPS graph. Recall
that computing soliton data (and BPS states) requires a non-degenerate
spectral network, we choose the American resolution of G, denoted by G.
The soliton data for the resolved network has been computed in [10] from
which we borrow the results, see the reference for details on the computa-
tion.16 Let Υi/∆i be the generating functions of up/down-going solitons on
edge ei. With the choice of branch cuts shown in Figure 11, the generating
functions ∆1,∆2,Υ3 count solitons of type 21 while their counterparts ob-
tained from switching ∆↔ Υ count solitons of type 12. These generating

16Note that in the reference, the British resolution was adopted. This explains
the slightly different expressions.
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Figure 11: A choice of trivialization for the spectral curve, branch cuts are
dashed lines. The cycles ℘A, ℘B are indicated in green. Blue arrows indicate
the direction of the flow of 21-walls of the spectral network arising as the
American resolution of the BPS graph.

functions encode all the soliton data of the network, they are determined by
the following equations

(42)

NE SW

∆1 = Xa1
+ ∆3 Υ1 = Xb1 + Υ3

∆2 = Xa2
+ Υ1 Υ2 = Xb2 + ∆1

Υ3 = Xa3
+ Υ2 ∆3 = Xb3 + ∆2

where ai, bi are the shortest soliton paths sourced at the NE/SW branch
point, supported on edge ei. The equations are solved by

∆1 = Xa1

1 +Xγ3 +Xγ2+γ3

1−Xγ1+γ2+γ3

,

Υ1 = Xb1

1 +Xγ3 +Xγ2+γ3

1−Xγ1+γ2+γ3

,

(43)

and other similar expressions obtained by cyclic permutations of indices.
The formal parallel transport along the A-cycle can be computed as

follows. For convenience, let us split the path into ℘′A, ℘
′′
A, with ℘′A running

from the basepoint (the green dot) to the intersection with edge e3, and ℘′′A
its complement. The lift of ℘′A to Σ consists of two pieces A′1 +A′2, running
respectively on sheets 1 and 2. ℘′′A runs through a branch cut, so its lift
includes two pieces A′′12 +A′′21, which run from sheet 1 to 2 and vice versa.
The parallel transport is then computed using the standard detour rules of
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Figure 12: The paths α and β on the spectral curve Σ. Labels 1, 2 indicate
on which sheet of Σ a segment of a path lies. The sheet switches at every
crossing with a branch cut (dotted lines).

spectral networks [8]

TrF (℘A,G) = Tr

(
XA′1

XA′2

)(
1 ∆3

1

)(
1

Υ3 1

)(
XA′′12

XA′′21

)
= XA′1∆3XA′′21 +XA′2Υ3XA′′12 .(44)

To unpack this expression, consider the paths on Σ built from the concate-
nations β = A′1 + b3 +A′21 and α = A′2 + a3 +A′12, see Figure 12. Both are
closed paths, so their homology classes can be expressed in terms of the basis
γi. By drawing representatives for these paths in our choice of trivialization,
it is not hard to derive the following relations17

(45) α+ β = a3 + b3 = γ3, α− β = γ1 + γ2 + γ3.

Taken together, these imply that α and β are actually fractional charges

(46) α =
1

2
(γ1 + γ2) + γ3, β = −1

2
(γ1 + γ2).

There is also a crucial sign coming from spectral networks rules, which must
be taken into account [8, eq. (4.1)]. This comes from the extra unit of winding

17The first relation follows immediately from the fact that A′
1 +A′

2 +A′′
12 +A′′

21

is invariant under the exchange of the two sheets, and therefore is projected out of
the physical charge lattice [46] (related to this, note that the period of the Seiberg-
Witten 1-form would vanish along this cycle). To derive the second one, one draws
representatives for α,−β and deforms each component to join each other. In order
to do this, one of the paths must pass through the puncture, picking up a cycle
running clockwise around its lift to sheet 1. This is equal to γ1 + γ2 + γ3, and the
remaining paths are homologically trivial.
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of the tangent vector of the representative of α. Overall we get

TrF (℘A,G) = (Xβ −Xα)
1 +Xγ2 +Xγ1+γ2

1−Xγ1+γ2+γ3

(47)

= Xβ(1−Xα−β)
1 +Xγ2 +Xγ1+γ2

1−Xγ1+γ2+γ3

= X− 1

2
(γ1+γ2) +X 1

2
(γ2−γ1) +X 1

2
(γ1+γ2).

This result agrees with previous computations such as [6, eq. (10.46)].
A similar computation can be done for the B-cycle line operator, and we

find

TrF (℘B,G) = Tr

(
XB′1

XB′2

)(
1

∆2 1

)(
1 Υ2

1

)(
XB′′12

XB′′21

)
= X− 1

2
(γ1+γ3) +X 1

2
(γ1−γ3) +X 1

2
(γ1+γ3).(48)

We can now test the action of the S−1 generator derived in (36) according
to our formula (32). Translating holonomies into cluster variables using the
map ρ in (29), we find

κS−1 ◦ ρ
(
TrF (℘A,G)

)
= κS−1

(
1

√
y1y2

+

√
y2

y1
+
√
y1y2

)
(49)

=
1 + y1√
y1y3

+

√
y3

1y3

1 + y1
+

√
y1y3

1 + y1

=
1

√
y1y3

+

√
y1

y3
+
√
y1y3

= ρ
(
TrF (℘B,G)

)
as expected, since S−1 takes the A cycle into the B cycle.

4.2. SU(3) N = 2∗ theory

We now move on to higher rank, and consider the class S theory correspond-
ing to an A2 Hitchin system on a punctured torus with a minimal (a.k.a.
simple) puncture. In order to obtain the BPS graph we adopt a procedure
described in [9]. Let G0 be BPS graph of the theory with a full puncture, this
is conjectured to be dual to a 3-triangulation of the torus, see Figure 13.
In order to obtain the BPS graph for the simple puncture, we consider a
deformation of the mass moduli so as to partially close the puncture. This
operation is expected to change the shape of the spectral network underlying
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the BPS graph in a precise way, which we can mimic using the standard flip,
cootie and j-move on G0. The deformation of G0 corresponds to the reduction
of the puncture shown in Figure 13, and the resulting graph coincides with
the one we encountered in Figure 4. Note that G has a Z3 symmetry gen-
erated by shifting labels γ1 → γ5 → γ3 and by simultaneously rotating the
webs of γ2 and γ4 counter-clockwise by 2π/3, so as to preserve the branch
point at which γ1 meets γ2 and γ4, and so on. The elementary webs of G
and their respective lifts to homology classes on Σ are

γ1 = h(e2), γ2 = h(e4, e5, e6), γ3 = h(e1),

γ4 = h(e7, e8, e9), γ5 = h(e3).
(50)

The dual quiver is shown in Figure 5, note that it inherits the Z3 symmetry
of G.18

Figure 13: Left: the BPS graph for the torus with a full puncture. Center: an
equivalent BPS graph obtained by performing flips. Right: the BPS graph
for the torus with a [2, 1] puncture, after reduction.

In order to study the mapping class group let us fix A,B cycles as in
(8). The sequence of moves that generates the S−1 transformation is shown
in Figure 4, and reads

(51) κs : f2 ◦ f9 ◦ cootie(e5, e6, e7, e8) ◦ f1 ◦ f2,

where fi denotes a flip of edge ei. The graph obtained after applying κs
has a Z3 symmetry, so there are three inequivalent relabelings κr, κ

′
r, κ
′′
r

which turn it back into the original graph. We define κr as in (7), providing
precisely the S−1 transformation of the homology basis in (10).

18This quiver is related by a sequence of mutations to the one proposed in [17].
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On the cluster variables κs translates into a sequence of mutations, which
is followed by a permutation of the nodes corresponding to κr:

κs : µ1 ◦ µ4 ◦ µ3 ◦ µ1,

κr : 1→ 3→ 2→ 5→ 4→ 1.
(52)

The action on the cluster variables is rather involved

y′1 = y3 (1 + y1 (1 + y3))

×
(
1 + y12 (1 + y3) + y2

1 (1 + y3) (1 + y3 (1 + y4))
)−1

,

y′2 = y3
1y

2
3y

2
4

(
1 + y1 (2 + y3 + 2) + y2

1 (1 + y3 (1 + y4))
)−1

×
(
1 + 2y1 (y3 + 1) + y2

1 (1 + y3) (1 + y3 (1 + y4))
)−1

,

y′3 = (1 + y1 (1 + y3))
(
1 + y1 (2 + y3) + y2

1 (1 + y3 (1 + y4))
)
y−2

1 y−2
3 y−1

4 ,

y′4 = y5

(
1 + y1 (4 + 3y3) + y2

1 (2 + y3) (3 + y3 (3 + y4))

+ y3
1

(
4 + 5y3 + y2

3

)
(1 + y3 (1 + y4)) + y4

1 (1 + y3) (1 + y3 (1 + y4))2
)

×
(

(1 + y1 (1 + y3))3
)−1

,

y′5 = y2 (1 + y1 (1 + y3))
(
1 + 2y1 (1 + y3) + y2

1 (1 + y3) (1 + y3 (1 + y4))
)

×
(
1 + y1 (2 + y3) + y2

1 (1 + y3 (1 + y4))
)−1

.

(53)

We also found a sequence of moves that corresponds to the L generator
of the MCG(C). In this case the sequence of flips and cooties κs is shown in
Figure 14. We choose a relabeling of edges κr which is

(54) κr : e1 → e4 → e5 → e2 → e9 → e7 → e3 → e1.

The homology basis changes as follows

(55) A′ = A+B, B′ = B,

implying that the complex structure of the torus transforms precisely by the
transformation

(56) L =

(
1 0
1 1

)
.
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The action on cluster variables is κr ◦ κs with

κs : µ5 ◦ µ2 ◦ µ1 ◦ µ5,

κr : 1→ 4→ 5→ 3→ 2→ 1,
(57)

acting as follows

y′1 = y1 (1 + y5 (1 + y1))−1 (1 + y2 (1 + y1) (1 + y5 (1 + y1)))−1 ,

y′2 = y1y
2
2y3 (1 + y5 (1 + y1))3 (1 + y2 (1 + y1) (1 + y5 (1 + y1)))−1

×
(

1 + y5 + y2 (1 + y5 (1 + y1))2
)−1

,

y′3 =
(

1 + y5 + y2 (1 + y5 (1 + y1))2
)

(y1y2 (1 + y5 (1 + y1)))−1 ,

y′4 = y−1
1 y−1

5

(
1 + y5 + y2

(
2 (1 + y5)2 + y1

(
1 + 5y5 + 4y2

5

)
+ y5y

2
1 (1 + 2y5)

)
+ y2

2 (1 + y1) (1 + y5 (1 + y1))3
)
,

y′5 = y1y4y
2
5 (1 + y2 (1 + y1) (1 + y5 (1 + y1)))

× (1 + y5 (1 + y1))−1
(

1 + y5 + y2 (1 + y5 (1 + y1))2
)−1

.

(58)

We checked that the SL(2,Z) identities

(59) (LS−1)3 = 1, (S−1)4 = 1,

are indeed satisfied by (53) and (58). Unlike for the case of N = 2, now there
is no ambiguity in the orientation of the A,B cycles, simply because they
are composed of more than two edges each. In fact, we find that (S−1)2 6= 1
in this case, and we have the representation of the mapping class group
SL(2,Z).

4.3. SU(N) N = 2∗ theory

We wish to generalize the analysis of the previous two subsections to punc-
tured tori with a simple puncture, for Lie algebra AN−1. Finding the BPS
graph of these models in full generality is rather challenging, even resort-
ing to the puncture-reduction techniques illustrated in the previous subsec-
tion.19

19We were able to obtain the BPS graph for the torus with a [3, 1] puncture by
reducing the BPS graph for the full puncture. We also checked that it is related to
the guess of Figure 15 by a sequence of flips and cooties.
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Figure 14: The L-move for the [2, 1]-punctured torus.

On the other hand we were able to find a natural a guess for the BPS
graphs of these theories, for general N (this is supported by a heuristic
argument presented in Appendix B, which also can deal with more general
punctures of type [k, 1, . . . , 1]). The graph and the dual quiver are shown in
Figure 15. The complex dimension of the Coulomb branch is N − 1 while
the flavor symmetry is U(1), therefore the charge lattice has rank 2N − 1,
and this coincides with the elementary webs of G. The quiver agrees in fact
with previous proposals [17, 34] and, in the case of N = 3 it is mutation-
equivalent to the one in Figure 5. We tested our guess by using the BPS
graphs to derive generators of the mapping class group, and checking that
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they produce consistent representations of MCG(C) on the cluster algebra
for N = 3, 4, 5.

Figure 15: BPS graph for the torus with a [N − 1, 1] puncture, and the dual
quiver. There are N − 1 nodes on the horizontal and diagonal edges.

The A and B cycles are defined as oriented sequences of edges, depicted
by dashed lines in Figure 15. We were able to find a sequence of moves κs
that corresponds to the element L of the mapping class group. The dual
sequence of mutations is

(60) κs :
∏
i∈IH

µi,

where IH is set of quiver nodes on the horizontal edge in Figure 15, and
the ordering is irrelevant since these nodes are not connected by arrows.
Together with these mutations, in order to obtain the L transformation, one
must apply the following relabeling of quiver nodes

(61) κr :
{
γ

(H)
i ↔ γ

(D)
i

}
i=1,...,N−1

,

where γ(D/H) denote the nodes on the diagonal/horizontal edge respectively.
These nodes get exchanged with each other pairwise. The action of L on the
cluster variables is

(62) κL = κs ◦ κr.

Finding other generators of the mapping class group is feasible, but
much more challenging. We were not able to find a general formula valid
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for all N , but for the cases N = 3, 4, 5 we found several possible choices
for a second generator of MCG(C). They are reported in the tables below,
where labels refer to Figure 16. Of course, there may be several mutations
corresponding to a single a MCG transformation, and they should all be
equivalent (for example, via wall-crossing identities). In writing the data we
adopt the convention that parentheses (µa ◦ µb) stand for either µa ◦ µb or
µb ◦ µa, when the ordering does not matter.

Figure 16: BPS quivers for the torus with a minimal puncture, for N =
3, 4, 5.

N = 3

S

(
0 1
−1 0

)
κs : µ1

κr : 3→ 5→ 4→ 2→ 3

L

(
1 0
1 1

)
κs : (µ3 ◦ µ4)
κr : 2↔ 3, 4↔ 5

LS

(
0 1
−1 1

)
κs : (µ2 ◦ µ5) ◦ µ1

κr : 2↔ 5

LS−1L−1

(
1 −1
2 −1

)
κs : (µ3 ◦ µ4) ◦ µ1 ◦ (µ2 ◦ µ5)
κr : 2→ 3→ 5→ 4→ 2

S−1L−1

(
1 −1
1 0

)
κs : µ1 ◦ (µ2 ◦ µ5)
κr : 3↔ 4

L−1S−1

(
0 −1
1 1

)
κs : (µ3 ◦ µ4) ◦ µ1

κr : 2↔ 5

SL

(
1 1
−1 0

)
κs : µ1 ◦ (µ3 ◦ µ4)
κr : 2↔ 5
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N = 4

S

(
0 1
−1 0

)
κs : µ1 ◦ µ4 ◦ µ2 ◦ µ6 ◦ µ4 ◦ µ5 ◦ µ3 ◦ µ1

κr : 1↔ 4, 2→ 5→ 6→ 3→ 2

L

(
1 0
1 1

)
κs : (µ3 ◦ µ5 ◦ µ4)
κr : 2↔ 3, 4↔ 7, 5↔ 6

LS

(
0 1
−1 1

)
κs : µ4 ◦ (µ2 ◦ µ6) ◦ (µ3 ◦ µ5) ◦ µ1

κr : 1→ 7→ 4→ 1

LS−1L−1

(
1 −1
2 −1

)
κs : µ1 ◦ µ7 ◦ (µ3 ◦ µ5) ◦ (µ2 ◦ µ6) ◦ µ7 ◦ µ1

κr : 1↔ 7, 2→ 3→ 6→ 5→ 2

S−1L−1

(
1 −1
1 0

)
κs : µ7 ◦ (µ3 ◦ µ5) ◦ (µ2 ◦ µ6) ◦ µ1

κr : 1→ 4→ 7→ 1

N = 5

S

(
0 1
−1 0

) κs :

µ4 ◦ µ1 ◦ µ2 ◦ µ9 ◦ µ3 ◦ µ2 ◦ µ6

◦µ5 ◦ µ4 ◦ µ1 ◦ µ9 ◦ µ2 ◦ µ7 ◦ µ4

◦µ8 ◦ µ1 ◦ µ9 ◦ µ2 ◦ µ7 ◦ µ8 ◦ µ3

◦µ1 ◦ µ8 ◦ µ6 ◦ µ5 ◦ µ1

κr :
1→ 6→ 2→ 3→ 8→
→ 7→ 4→ 5→ 9→ 1

L

(
1 0
1 1

)
κs : (µ3 ◦ µ5 ◦ µ6 ◦ µ8)
κr : 2↔ 3, 4↔ 5, 6↔ 7, 8↔ 9

L2S−1L−1

(
1 −1
3 −2

) κs :
µ1 ◦ µ2 ◦ µ9 ◦ µ1 ◦ µ7 ◦ µ4 ◦ µ6

◦µ5 ◦ µ2 ◦ µ9 ◦ µ7 ◦ µ4 ◦ µ8

◦µ3 ◦ µ2 ◦ µ9 ◦ µ1

κr :
2↔ 9, 3→ 6→ 4→ 3,
5→ 7→ 8→ 5

We checked that the cluster transformations generated by these se-
quences, composed with appropriate permutations of nodes, correctly re-
produce the SL(2,Z) algebra.

As explained in Section 3, if our guess for the BPS graph actually arises
from a spectral network G, the latter could be used to compute framed
BPS spectra, and our construction of MCG(C) would act on the moduli
spaces of flat GL(N) connections over C. One way to test this would be
simply to draw the “completion” of G into a spectral network, in the spirit
of general spectral networks [8, Section 9]. Another possibility would be to
test the generators of MCG(C) on explicit expressions for the VEVs of UV
line operators.
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4.4. SU(2) Nf = 4 theory

The SU(2) gauge theory with four fundamental hypermultplets is realized as
an A1 theory of class S on a four-punctured sphere, with regular punctures.
Its BPS graph is shown in Figure 17. G has six edges, each is mapped to a
generator γi = h(ei) of H1(Σ,Z) with intersection pairing

(63) 〈γi, γj〉 =


0 −1 1 1 0 −1
1 0 −1 −1 1 0
−1 1 0 0 −1 1
−1 1 0 0 −1 1
0 −1 1 1 0 −1
1 0 −1 −1 1 0

 .

Figure 17: The BPS graph of SU(2) Nf = 4 theory, and its quiver.

To construct the mapping class group, it will be convenient to adopt
a slightly different approach than we did with the torus. Instead of work-
ing with homology cycles on C, it is simpler to introduce a system of arcs
connecting the punctures, and to keep track of how they evolve under the
action of MCG(C).

Performing a flip on edge e3 followed by a flip on edge e4, then relabeling
according to

(64) κr : 2→ 3→ 6→ 4→ 2

produces the BPS graph of Figure 18 (to avoid clutter, we draw only two
arcs). The picture is slightly deceiving, at first it appears that the BPS
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graph went back to itself while the Riemann surface C was acted upon with
a Dehn half-twist along the A cycle. However just the opposite happened.
We should regard C as fixed, like in subsection 4.1, while the BPS graph was
acted upon by an inverse Dehn half-twist. To obtain the full (inverse) Dehn
twist we can simply apply the move twice. The action on cluster variables
corresponds to a mutation on node 3, followed by a mutation on node 4 and
by a permutation of nodes as in (64). The result is

(65)

y′1 = y1 (1 + y3) (1 + y4) , y′2 = y−1
4 ,

y′3 = y2y3y4 (1+y3)−1 (1+y4)−1 , y′4 = y3y4y6 (1+y3)−1 (1+y4)−1 ,

y′5 = y5 (1 + y3) (1 + y4) , y′6 = y−1
3 .

Figure 18: A half Dehn twist along the A cycle on C exchanges punctures
c↔ d. In our setup however this should be thought as keeping punctures
fixed, and acting the the inverse half-twist on G.

It is straightforward to generate other Dehn twists, by using the symme-
tries of G viewed as a tetrahedron. For example, a twist around the B-cycle
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can be generated by flipping edge e1 and subsequently edge e5, then rela-
beling according to

(66) κr : 1→ 6→ 5→ 2→ 1.

This produces the inverse of a half-Dehn twist along the B-cycle, see Fig-
ure 19. The action on cluster variables in this case is

(67)

y′1 = y2 (1 + y1) (1 + y5) , y′2 = y−1
5 ,

y′3 = y1y3y5 (1+y1)−1 (1+y5)−1 , y′4 = y1y4y5 (1+y1)−1 (1+y5)−1 ,

y′5 = y6 (1 + y1) (1 + y5) , y′6 = y−1
1 .

Figure 19: An inverse half Dehn twist along the B cycle exchanges punctures
b↔ c. In our setup however this should be thought as keeping punctures
fixed, and acting the the positive half-twist on G.
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4.4.1. Line operators. Consider a line operator labeled by a path ℘bd
circling counterclockwise punctures b and d, as shown in Figure 20. The cycle
℘bd crosses only edge e2, therefore we only need the generating functions
Υ2,∆2 of solitons running up/down on this edge. The resolved spectral
network underlying G will be denoted by G as usual. Since we are working in
the American resolution, Υ2 is the soliton data of the oriented edge that runs
upward on the right. Let a2, b2 be the solitons sourced at the upper/lower
branch points of edge e2, and define Υ̂, ∆̂ by

(68) Υ = Xb2Υ̂2, ∆ = Xb2∆̂2.

These reduced generating functions are readily obtained20 using the soliton
rules for the spectral network G obtained by resolving G [10]

Υ̂2 =
1 +Xγ1 (1 +Xγ4)

1−Xγ1+γ2+γ4

,

∆̂2 =
1 +Xγ5 (1 +Xγ3)

1−Xγ2+γ3+γ5

.

(69)

Figure 20: Left: The path ℘bd labeling a line operator. Right: The path ℘bc
obtained from ℘bd after a half Dehn twist around the A-cycle.

With the choice of trivialization of Figure 20, the solitons encoded by
Υ2 are of type 21, while those in ∆2 are of type 12. Let us split ℘bd =
℘′℘′′℘′′′ into three segments, running respectively from the basepoint to the

20The computation of soliton data is nearly identical to the one detailed in [10,
Section 4.7], with one important difference: here we are working with the American
resolution of the BPS graph.



i
i

“4-Longhi” — 2020/1/27 — 18:12 — page 1400 — #40 i
i

i
i

i
i

1400 D. Gang, P. Longhi, and M. Yamazaki

first intersection with e2, between the two intersections with e2, and from
the second intersection with e2 back to the basepoint. The formal parallel
transport around ℘bd is

TrF (℘bd,G) = Tr

[(
X℘′1

X℘′2

)(
1

Υ2 1

)
(70) (

1 ∆2

1

)(
X℘′′1

X℘′′2

)
(

1 ∆2

1

)(
1

Υ2 1

)(
X℘′′′1

X℘′′′2

)]
= Xα1

+Xα2
+ Υ̂2∆̂2 (Xα3

−Xα4
−Xα5

+Xα6
) ,

where the negative signs arise from from spectral networks rules, see [8,
eq. (4.1)].21 The cycles α1 . . . α6 are shown in Figure 21, a tedious but simple
inspection of each of them shows that

(71)
α1 = 1

2 (γ3 + γ5 − γ1 − γ4) , α2 = 1
2 (γ1 + γ4 − γ3 − γ5) ,

α3 = −1
2 (γ1 + γ4 + γ3 + γ5) , α4 = 1

2 (2γ2 + γ3 + γ5 − γ1 − γ4) ,
α5 = 1

2 (2γ2 + γ1 + γ4 − γ3 − γ5) , α6 = 1
2 (4γ2 + γ1 + γ4 + γ3 + γ5) .

Plugging these into (70) we find

TrF (℘bd,G) = X− 1

2
(γ1+γ3+γ4+γ5)(72)

× (1 +Xγ1 +Xγ5 +Xγ1+γ5

+Xγ1+γ4+γ5 +Xγ1+γ3+γ5 +Xγ1+γ3+γ4+γ5) .

This expression matches with previous computations, see [6, eq. (10.44)].
Next we would like to check the action of the mapping class group on

TrF (℘bd,G). Acting with a positive Dehn half-twist around the A-cycle turns
℘bd into ℘bc shown in Figure 20. It is now important to recall the subtlety
involved in Figure 18: the sequence of moves depicted there corresponds to
the inverse half-twist. In order to get the positive half twist we act on the
holonomy with the inverse of (65), that is

(73) κDA ≡ µ3 ◦ µ4 ◦ κ−1
r .

21These signs count the winding of the tangent vector to each path αi mod 2. In
our example, they show up in α4, α5 as can be seen from Figure 21.
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Figure 21: The cycles α1 . . . α6. The numbers 1, 2 near each path specify on
which sheet of Σ the path is running.

This map acts on cluster variables as follows

(74)
y′1 = y1y2y6(1 + y2)−1 (1 + y6)−1, y′2 = y3 (1 + y2) (1 + y6) ,

y′3 = y−1
6 , y′4 = y−1

2 , y′5 = y2y5y6 (1 + y2)−1 (1 + y6)−1 ,
y′6 = y4 (1 + y2) (1 + y6) .

Using the map (29) allows to rewrite the holonomy in terms of cluster vari-
ables, then acting with the coordinate transformation (74) gives

κDA ◦ ρ
(
TrF (℘bd,G)

)
= κDA

(
1

√
y1y3y4y5

+

√
y1

y3y4y5
(75)

+

√
y5

y1y3y4
+

√
y1y5

y3y4

+

√
y1y4y5

y3
+

√
y1y3y5

y4
+
√
y1y3y4y5

)
=

1
√
y1y2y5y6

+

√
y6

y1y2y5

+

√
y2

y1y5y6
+

√
y2y6

y1y5

+

√
y1y2y6

y5
+

√
y2y5y6

y1
+
√
y1y2y5y6

= ρ
(
TrF (℘bc,G)

)
.
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The last expression clearly coincides with the holonomy around ℘bc: this is
evident by simply acting on (72) with the discrete symmetries of the BPS
graph, viewed as a tetrahedron.

As a further check, we may use the symmetries of the BPS graph to
write down the holonomy for a cycle ℘cd around punctures c and d

TrF (℘cd,G) = X− 1

2
(γ2+γ3+γ4+γ6)(76)

× (1 +Xγ3 +Xγ4 +Xγ3+γ4

+Xγ2+γ3+γ4 +Xγ3+γ4+γ6 +Xγ2+γ3+γ4+γ6) .

It is straightforward to check that (74) leaves this holonomy invariant

κDA ◦ ρ
(
TrF (℘cd,G)

)
= ρ

(
TrF (℘cd,G)

)
,(77)

as expected from the fact that the twist around the A-cycle leaves ℘cd in-
variant.
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Appendix A. Cluster mutations and K-walls

In this section we give a proof of the identity (30). This statement is a version
of the known statement in the literature, namely the decomposition of the
cluster transformation for the cluster variables into the so-called monomial
part and the automorphism part [11]. We nevertheless present here the self-
contained proof for completeness.
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To begin with, suppose κ consists of a single flip on edge ek of a BPS
graph G. The corresponding resolved spectral network undergoes a single K-
wall jump, which results in the following transformation on the Xγ variables

(A.1) K−1
γ′k

(Xγ) = Xγ(1 +Xγ′k)
−〈γ′k,γ〉 = Xγ(1 +X−γk)

〈γk,γ〉.

Note the appearance of γ′k as opposed to γk, this is because the K-wall jump
involves the edge of the new BPS graph after the flip, see Figures 7 and 8.
Now we would like to compare this coordinate transformation for Xγ with
the cluster transformation on the variables of the dual quiver, which is given
in (15). Using the map ρ introduced in (29), the action of a single flip is,
respectively, on the cluster variables and on Xγ

µk ◦ ρ(Xγi) = µk(yi) = yiy
[−bik]+
k

(
1 + y−1

k

)−bik
,

ρ ◦ Kγ′k(Xκ(γi)) = ρ
(
Xγ′i(1 +Xγ′k)

〈γ′k,γi〉
)

= ρ
(
Xγi+γk[〈γi,γk〉]+(1 +X−γk)

−〈γk,γi〉
)

= yiy
[−bik]+
k

(
1 + y−1

k

)−bik
,

(A.2)

where we used the following reformulation of the jump of basis charges (19)

(A.3) γ′i = γi + γk [〈γi, γk〉]+ , γ′k = −γk,

compatibly with (14) through the relation bij = −〈γi, γj〉. This proves (30)
in the case when κ is a single flip.

Next we consider two flips. The first one, denoted by λ, is performed on
edge e`, then a second one κ is performed on edge ek. Let γi, yi be the charges
and cluster variables associated to the quiver nodes before acting with λ, κ.
Likewise, let γ′i, y

′
i be the charges and cluster variables after the flip λ, and

γ′′i , y
′′
i the charges and cluster variables after κ ◦ λ. Applying definitions, the

cluster variables yi with i 6= k, ` transform as

κ ◦ λ(yi) = y′i(y
′
k)

[−b′ik]+(1 + (y′k)
−1)−b

′
ik(A.4)

= yiy
[−bi`]+
` (1 + y−1

` )−bi`

× y[−b′ik]+
k y

[−b′ik]+[−bk`]+
` (1 + y−1

` )−bk`[−b
′
ik]+

×
(

1 + y−1
k y

−[−bk`]+
` (1 + y−1

` )bk`
)−b′ik

.

The Xγ transform as

(A.5) Kγ′`Kγ′′k (Xγ′′i ) = Xγ′′i (1 +Xγ′`)
〈γ′`,γ′′i 〉(1 +Xγ′′k (1 +Xγ′`)

〈γ′`,γ′′k 〉)〈γ
′′
` ,γ
′′
i 〉.
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The charges are related as follows

γ′i = γi + [〈γi, γ`〉]+γ`, γ′k = γk + [〈γk, γ`〉]+γ`,
γ′′i = γi + [〈γi, γ`〉]+γ` + [〈γ′i, γ′k〉]+γk + [〈γ′i, γ′k〉]+[〈γk, γ`〉]+γ`.

(A.6)

Therefore we can match (A.4) and (A.5), piece by piece as follows

ρ(Xγ′′i ) = y′′i = yiy
[−bi`]+
` y

[−bk`]+[−b′ik]+
` y

[−b′ik]+
k ,(A.7)

ρ
(
1 +Xγ′`

)〈γ′`,γ′′i 〉 = (1 + y−1
` )−bi`−bk`[−b

′
ik]+ ,(A.8)

and the last big parenthesis in (A.5) by noting

〈γ′′k , γ′′i 〉 = −b′′ik = −b′ik,

ρ
(
Xγ′′k

)
= y−1

k y
−[−bk`]+
` ,

ρ
(

(1 +Xγ′`)
〈γ′`,γ′′k 〉

)
= (1 + y−1

` )bk` .

(A.9)

This proves (30) for the case when κ consists of two flips. By induction, this
proof can be extended to the case of n consecutive flips.

Last, we must deal with relabelings of edges of G, by our conventions
these are performed after all flips, cooties and j-moves. We consider κ =
κr ◦ κs, with a permutation κr. For illustration, we take κs = µk to be a
single flip on edge ek. κr acts on the basis charges associated with elementary
webs simply as a permutation

(A.10) κr : γ′i 7→ γ′′i = γ′κr(i),

where κr(i) denotes the image of node i of the dual BPS quiver (cf. (52)).
On cluster variables the overall action is

(A.11) κr ◦ κs(yi) = κr(y
′
i) = y′κr(i) = yκr(i)y

[−bκr(i),k]+
k (1 + y−1

k )−bκr(i),k .

On the Xγ , the ordering is reversed, so κr must be applied before all K-wall
transformation

Kγ′k
(
Xκr◦κs(γi)

)
= Xγ′κr(i)

(1 +Xγ′k)
〈γ′k,γ′κr(i)〉(A.12)

ρ→ yκr(i)y
[−bκr(i),k]+
k (1 + y−1

k )−bκr(i),k .

The two clearly coincide, proving that (30) behaves well also under compo-
sition of mutations with a permutation.
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Appendix B. BPS graphs on once-punctured torus with a
partial puncture

In this appendix we present a heuristic procedure to derive the BPS graph of
the once punctured torus C1,1, with a partial puncture of the type [k, 1 . . . , 1].
Related construction has appeared previously in [34] in more combinatorial
context.

Let us start by recalling the puncture reduction proposed in [9]. For our
purposes it will suffice to review the case of the AN−1 theory on a sphere
with 3 punctures C0,3, with two full punctures and one partial puncture of
the type [k, 1 . . . , 1].

We first start with the case where all the punctures are maximal. The
sphere C0,3 can be triangulated by two ideal triangles, and each triangle can
be triangulated with N(N − 1)/2 branch points, as in the left of Figure B1
(shown there for the case N = 5, where only one of the two triangles are
shown).

The reduction from the maximal puncture to a [k, 1 . . . , 1] is done in two
steps: one starts from the BPS graph corresponding to an ideal triangulation
of C0,3 with three full punctures, and then remove k(k − 1)/2 branch points
around the puncture we want to reduce. This is illustrated in Figure B1, for
the case N = 5 and k = 3.

Figure B1: Reduction from the maximal puncture [1, 1, 1, 1, 1] to a partial
puncture [3, 1, 1], for A4 theory on a three punctured sphere C0,3. The high-
lighted puncture degenerated to a partial puncture, while the other two
punctures stay maximal. The two triangles are glued according to the colors
of the edges.
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Now, in order to apply this to obtain the torus with one partial puncture,
we start from an ideal triangulation of C0,3 with two full punctures and one
reduced puncture of type [k, 1, . . . , 1] as above. We write the triangulated
surface in a plane, and starting from one of the full punctures, we label the
external edges as r1, . . . , rk+1, l1, . . . , lk−1, l

′
k−1, . . . , l

′
1 and r′k+1, . . . , r

′
1, see

Figure B2 for an example. The identifications for the C0,3 triangulations are

(B.13) ri ≈ r′i (i = 1, . . . , k + 1), l′j ≈ l′j (j = 1, . . . , k − 1).

r1 

r2  
l1  

 r3 r4

l2

r'1

r'2

 r'3 r'4

l'1

l'2

Figure B2: Ideal triangulation of C0,3 with a [3, 1, 1] puncture and two full
punctures with labels on the external edges.

As pointed out in [9] λ(i) − λ(j) remains finite at a partial puncture, for
certain pairs of sheets i, j.22 This implies that an ij trajectory of the spectral
network behaves as it would at a generic point over C, i.e. it doesn’t feel
the presence of a puncture at all, and in particular this implies that we can
move an ij edge across the puncture. We undo the identifications (B.13)
and we move the edges labeled rk+1 and r′ across the [k, 1, . . . , 1] puncture.

22This holds for the pairs of sheets i, j whose corresponding eigenvalues mi,mj

coincide, in the residue matrix of the pole of the Higgs field of the Hitchin sysytem.
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Then we make the following identifications:

rj+2 ≈ l′j , r′j ≈ lj (j = 1, . . . , k − 1),

rj ≈ r′k+1−j (j = 1, 2),
(B.14)

see Figure B3. Our proposal is that this is the BPS graph of C1,1 with a
puncture of type [k, 1, . . . , 1].

r1

r2

l1

 r3

r4

l2

r'1

r'2

 r'3

r'4

l'1

l'2

r1

r2

l1

 r3r4

l2

r'1

r'2

 r'3r'4l'1
l'2

Figure B3: Adding a handle to C0,3 by gluing two full punctures.
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