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For the two-dimensional one-component Coulomb plasma, we de-
rive an asymptotic expansion of the free energy up to order N ,
the number of particles of the gas, with an effective error bound
N1−κ for some constant κ > 0. This expansion is based on approx-
imating the Coulomb gas by a quasi-free Yukawa gas. Further, we
prove that the fluctuations of the linear statistics are given by a
Gaussian free field at any positive temperature. Our proof of this
central limit theorem uses a loop equation for the Coulomb gas, the
free energy asymptotics, and rigidity bounds on the local density
fluctuations of the Coulomb gas, which we obtained in a previous
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1. Introduction and main results

1.1. One-component plasma

The two-dimensional one-component Coulomb plasma (OCP) is a Gibbs
measure on the configurations of N charges z = (z1, . . . , zN ) ∈ CN . Given
an external potential V : C→ R ∪ {+∞}, the Hamiltonian of this measure
is defined by

(1.1) HG
N,V (z) = N

∑
j

V (zj) +
∑
j 6=k

G(zj , zk)

where G(zj , zk) = C(zj − zk) is the two-dimensional Coulomb potential,

(1.2) C(zj − zk) = − log |zj − zk|,

characterized by ∆ log | · | = 2πδ0 as distributions and
∑

i 6=j = 2
∑

i<j . The
Coulomb plasma is our main interest, but throughout the paper we will also
consider other symmetric interactions G(zj , zk). The associated canonical
Gibbs measure at the inverse temperature β > 0 is defined by

(1.3) PGN,V,β(dz) =
1

ZGN,V,β
e−βH

G
N,V (z)m⊗N (dz),

where m denotes the Lebesgue measure on C, and ZGN,V,β the normalization
constant. Here we have assumed that V has sufficient growth at infinity,
so that the latter is well-defined. We will follow the convention that when
G = C then we will omit the superscript C whenever there is no confusion.
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The two-dimensional Coulomb plasma 843

Similar conventions apply to other subscripts, i.e., we will often omit N
and β.

Throughout the paper, we will use the terms Coulomb plasma, Coulomb
gas, and OCP to refer to the measure PN,V,β. This model has connections
with a variety of models in mathematical physics and probability theory.
For β = 1, it describes the eigenvalues density for some measures on non-
Hermitian random matrices [16, 22]. In particular, for quadratic V the com-
plex vector z is distributed like the spectrum of a matrix with complex
Gaussian entries. Moreover, the properties of this two-dimensional gas are
known to be related to the fractional quantum Hall effect: for β = 2s+ 1,
with s integer, PN,V,β is the density obtained from Laughlin’s guess for wave
functions of fractional fillings of type (2s+ 1)−1 [31]. Finally, an important
problem is the crystallization of the two-dimensional Coulomb gas for small
temperature [2, 15].

The Coulomb plasma is a system with two scales: the microscopic scale
describing distances comparable to the typical interparticle distance N−1/2

and the macroscopic scale describing distances of order 1. At the macroscopic
scale, the empirical particle measure concentrates around a limiting density
that is described by classical potential theory, which we now describe. For
potentials V that are lower semicontinuous and satisfy the growth condition

(1.4) lim inf
|z|→∞

(
V (z)− (2 + ε) log |z|

)
> −∞

for some ε > 0, it is well known (see e.g. [43]) that there exists a compactly
supported equilibrium measure µV that is the unique minimizer of the con-
vex energy functional

(1.5) IV (µ) =

∫∫
log

1

|z − w|
µ(dz)µ(dw) +

∫
V (z)µ(dz)

over the set of probability measures on C. The unique minimizer µV is
supported on a compact set SV and, assuming that V is smooth, it has the
density

(1.6) ρV =
1

4π
∆V 1SV

with respect to the Lebesgue measure m. We write IV = IV (µV ) for the
minimum of IV . For z ∈ CN , the empirical measure is defined by

µ̂ = µ̂z =
1

N

∑
j

δzj .
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For arbitrary β ∈ (0,∞), it is well-known that µ̂→ µV vaguely in proba-
bility as N →∞, with µ̂ distributed under PN,V,β. In [6] (see also [32]) we
have proved two stronger estimates for the Coulomb gas, which in can be
summarized as follows. For b > 0 and k ∈ N, we introduce the norms

(1.7) ‖f‖∞,k,b =

k∑
j=0

bj‖∇jf‖∞, ‖f‖∞,k = ‖f‖∞,k,1.

Note that the boundedness of ‖f‖∞,k,b means that f is smooth at scale b. We
typically take b = N−s for some s ∈ [0, 1/2), and assume that f is supported
in a disk of radius of order b. The first estimate proved in [6] is a local law
that asserts that for any smooth f supported in a disk of radius b = N−s

(s ∈ [0, 1/2)) centered at some point z0 in the bulk (i.e., interior) of SV (and
the function f supported in the bulk when s = 0), we have

1

N

N∑
j=1

f(zj)−
∫
f(z)µV (dz)(1.8)

= O(logN)
(
N−1−2s‖∆f‖∞ +N−

1

2
−s‖∇f‖L2

)
= O(logN)N−1/2−s‖f‖∞,2,N−s ,

where ‖f‖L2 = (
∫
|f |2 dm)1/2 is the L2-norm of f , with very high probability.

A stronger estimate, which we shall call rigidity, asserting that

(1.9)

N∑
j=1

f(zj)−N
∫
f(z)µV (dz) = O(N ε)‖f‖∞,4,N−s

with very high probability, also holds under the same assumptions.
The main result of this paper is the identification of the random error

term in the above rigidity estimate. It is given by the Gaussian free field
with a nonzero mean.

1.2. Main results

Our main results are the following two theorems. In addition to the condition
(1.4), the global potential V is always assumed to satisfy

V ∈ C 5 on a neighborhood of SV = suppµV ,(1.10)

α0 6 ∆V (z) 6 α−1
0 for all z ∈ SV
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The two-dimensional Coulomb plasma 845

for some constant α0 > 0. We assume that the boundary of SV is piecewise
C 1, or more precisely that ∂SV is a finite union of C 1 curves. The prototyp-
ical example is V (z) = |z|2 in which case SV is a disk, and the convergence
µ̂→ µV is known as the circular law in random matrix theory.

Theorem 1.1. There exists a constant ζCβ ∈ R such that, for any external
potential V satisfying the conditions (1.4) and (1.10), for any κ < 1/24,

1

βN
log

∫
e−βHV m⊗N (dz) = −NIV +

1

2
logN + ζCβ

+

(
1

2
− 1

β

)∫
ρV log ρV dm+ O(N−κ).

A similar result, as a limiting statement instead of a quantitative er-
ror bound, and with ζCβ characterized via a large deviation principle, was
previously proved in [33]. For our application to the proof of Theorem 1.2
below, a quantitative error bound is essential. In addition, we will provide
a physical interpretation of ζCβ as the residual free energy of the Coulomb
(or technically a long-range Yukawa) gas on the torus; see Theorems 3.1
and 4.1.

For the statement of Theorem 1.2, we require the following additional
definitions. For any function f with support in SV , let

Xf
V =

∑
j

f(zj)−N
∫
f dµV ,(1.11)

Y f
V =

1

4π

∫
∆f log ∆V dm =

1

4π

∫
∆f(z) log ρV (z)m(dz).(1.12)

In the following theorem, f : C→ R is supported on a disk with radius
b = N−s for a fixed scale s ∈ [0, 1/2), and ‖f‖∞,5,b 6 C <∞ uniformly in
N . We also assume that the support of f satisfies dist(supp(f), ScV ) > ε for
some ε > 0 uniformly in N . (Indeed, the last condition can be relaxed to
ε = N−1/4+c for arbitrarily small c, i.e., f still supported in the bulk).

Theorem 1.2. Suppose that V satisfies the condition (1.4) and (1.10), and
that f has support in a ball of radius b = N−s with the above conditions.
Then there exists τ0 = τ0(s) > 0 such that for any 0 < τ < τ0 and 0 < λ�
(Nb2)1−2τ , we have

1

βλ
logE

(
e
−βλ

(
Xf
V−
(

1

β
− 1

2

)
Y fV

))
=

λ

8π

∫
|∇f(z)|2m(dz) + O((Nb2)−τ ).



i
i

“1-Yau” — 2020/1/15 — 18:54 — page 846 — #6 i
i

i
i

i
i

846 Bauerschmidt, Bourgade, Nikula, and Yau

Here the expectation is with respect to P CN,V,β.

Note that λ is allowed to be very large in this theorem; this provides
strong error estimates for the Gaussian convergence. This central limit the-
orem is noteworthy due to the absence of normalization: fluctuations of Xf

V

are only of order one, due to repulsion, but still Gaussian. For the purpose
of establishing the central limit theorem for Xf

V , it suffices to take λ to be
of order one (independent of N).

Finally, a result similar to Theorem 1.2 was obtained simultaneously and
independently in [34].

1.3. Related results

The study of one- and two-dimensional Coulomb and log-gases has attracted
considerable attention recently, see e.g. [21] for many aspects of these prob-
ability measures in connection with statistical physics. The subject of our
work, abnormally small Gaussian charge fluctuations of the one-component
plasma, was first predicted in the late 1970s (see [26] and the references
therein).

In dimension two, in the special case β = 1, the central limit theorem was
first proved for the Ginibre ensemble, i.e. for quadratic external potential V
[39, 40]. These results were extended to more general V by combining tools
from determinantal point processes and the loop equation approach [4, 5].
In particular, in the latter works the determinantal structure was used to
prove local isotropy of the point process, an important a priori estimate
necessary to the loop equation approach. For general inverse temperature β,
the determinantal structure does not hold; nevertheless an expansion of the
partition function and correlation functions was predicted in [48–50]. The
expansion of the partition function up to order N was rigorously obtained
in [33] (along with a corresponding large deviation principle for a tagged
point process); see also the related earlier works [41, 44, 45]; in addition, see
also [23]. Still for the two-dimensional Coulomb gas at any temperature, a
local density [6, 32, 36] was recently proved, together with abnormally small
charge fluctuations in the sense of rigidity [6], see (1.9). Other recent results
in this direction include [3, 37, 38, 42].

For the log-gas on the line, much more is known. Indeed, in dimension
one the Selberg integrals are often a good starting point to evaluate partition
functions, and anisotropy does not cause any trouble in the analysis of loop
equations. For general β and V , full expansions of the partition function
and correlators were predicted in [19], proved at first orders in [46] and at
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The two-dimensional Coulomb plasma 847

all orders in [8, 9]. A natural analogue of the rigidity (1.9) is also known
to hold for log-gases on the real line [10]. Still for the log-gas in dimension
1, the central limit theorem was first discovered on the circle for β = 2 in
[27], and on the real line for any β in [28]. For test functions supported on
a mesoscopic scale, the local central limit theorem was proved on the circle
for some compact groups in [47], for general β ensembles with quadratic V
in [11] and for general V in [7].

For expansions at high temperatures, and exponential decay of micro-
scopic correlations, in closely related models of Coulomb gases, see [13,
25]. For results on crystallization in the one-dimensional one-component
Coulomb plasma, see [1, 12, 30]. Further results on Coulomb systems in
statistical mechanics are reviewed in [14, 21].

1.4. Proof sketch

In Section 3, we first prove that an extended version of Theorem 1.1 holds for
Yukawa gases on a torus. The essence is to show that the constant ζCβ , to be
called the residual free energy, can be identified independently of the range
of the Yukawa interaction. This fact is then used in Section 4 to establish
an expansion of the free energy of the Coulomb gas up to order N1−κ. The
main idea is to approximate the Coulomb gas first by a short-range Yukawa
gas, and then by a quasi-free Yukawa gas. Roughly speaking, a Yukawa gas
with range `� 1 can be viewed, for the purpose of computing free energy, as
an ideal gas consisting of independent squares of size b satisfying 1� b� `
and with the gas inside each square being a periodic Yukawa gas with range
`. Since this gas is an ideal gas over a distance longer than a mesoscopic
scale b, we call it a quasi-free approximation.

The Yukawa approximation to the Coulomb gas is a well-known tool in
the study of the quantum Coulomb gas, see, e.g., [17, 18]. However, the preci-
sion needed here is far beyond the previous results. Following the traditional
approaches in free energy estimates, we will prove the free energy expansion
of the Coulomb gas by establishing a lower and an upper bound. The proof of
the upper bound, contained in Section 5, consists of the standard argument
of counting two-body Yukawa interactions in neighboring squares and uses
only that the density of Coulomb gas is bounded for all scales ≥ N−1/2+ε

by [6]. The lower bound turns out to be much more difficult than the up-
per bound. The Yukawa gas used in the approximation of the Coulomb gas
is constructed from the Yukawa gas on periodic squares, so the resulting
Yukawa gas on the plane breaks the translational and rotational invariances
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of the Coulomb gas. The translational invariance is easy to restore by av-
eraging over the “grid” of the squares. The rotational invariance, however,
is hard to recover and the effects of breaking it has to be estimated pre-
cisely. We remark that in the quantum Coulomb gas, the lower bound of the
free energy was proved [35] by carefully maintaining the Coulomb rotational
invariance. This was possible due to the use of the “Swiss cheese” approxi-
mation. In our setting, we are forced to maintain the square approximation
since the limits of the residual free energy were established only for squares.
The key estimate which allows us to control the breaking of the rotational
invariance is contained in Section 6, where we estimate the energy distortion
resulting from embedding torus into the Euclidean space. This estimate uses
the rigidity estimate of the periodic Yukawa gas, a parallel version of the
rigidity estimate established in [6] for the Coulomb gas. Using the estimates
from Section 6, we complete the proof of the lower bound of the free energy
in Section 7.

Another difficulty in establishing Theorem 1.1 is the surface energy of a
Coulomb gas. The typical inter-particle distance of this gas is N−1/2, there-
fore the total Coulomb energy for particles within a distance N−1/2 to the
boundary of the support of the equilibrium measure is of order N . To see
this, note that the number of surface particles, i.e., particles with distance of
order N−1/2 to the boundary, is of order

√
N . Thus their Coulomb interac-

tion energy is of order N . Theorem 1.1 requires to capture these interaction
energies up to order N1−κ. In other words, the leading term in the energy as-
sociated with the charges near the boundary of the support of the Coulomb
gas has to be identified. Our idea is to use an ideal gas approximation for
a boundary layer and then switch to a Yukawa approximation for interior
particles. We will explain this idea in Section 4.

In Section 8, we first prove that the central limit theorem holds after
subtracting a random term, the local angle term. From this result and the
asymptotic expansion of the free energy for the Coulomb gas, Theorem 1.1,
we obtain that the angle term does in fact vanish in a large deviation sense.
We thus prove Theorem 1.2 for a test function f with macroscopic support.
For test functions with support on a mesoscopic scale b, we proceed via
conditioning to a disk of radius 2b. This conditioning procedure was used
in [6]; it has the advantage of reformulating the question into a problem on
the natural scale b.

Throughout the paper, we will extensively use the local density and
rigidity estimates for the Yukawa gas and Coulomb gas with additional an-
gular interaction, in a form similar to (1.8) and (1.9). In Appendices A–B,
we therefore extend the estimates of [6] to the Yukawa gas and the Coulomb
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The two-dimensional Coulomb plasma 849

gas with angle term. The rigidity estimates, to be proved in Appendix A,
use estimates of the local laws in Appendix B. We reverse the logic order
because the proofs of the local laws in Appendix B are technical and use
extensively conventions from [6].

1.5. Notation

We use the usual Landau O and o symbols. For N -dependent quantities
A,B > 0, we write A� B when there exists ε > 0 and N0 > 0 such that
A 6 N−εB for N > N0. For an event E, we say that E holds with high
probability if for all D > 0 there is ND such that P(E) > 1−N−D for N >
ND. For random variables A and B, we write A ≺ B if for any ε > 0 the
event |A| 6 N ε|B| holds with high probability. We use the notation A =
O(N−∞) to denote that A is subpolynomially small: for every D > 0 one
has |A| 6 N−D for all N > ND with probability at least 1−N−D (if A is a
random variable).

2. Preliminaries

We begin with the definitions of the Coulomb and Yukawa gas ensembles,
and we give a summary of the potential theory that we require, as well as
of the estimates on the local density.

2.1. Coulomb and Yukawa potentials

We will identify R2 and C and usually write z and w for its elements. The
two-dimensional Coulomb potential is C(z) = − log |z|, satisfying −∆C =
2πδ0 as distributions. The Yukawa potential with range ` > 0 is the solution
to (−∆ + 1/`2)Y ` = 2πδ0. Explicitly, the two-dimensional Yukawa potential
is given by the formula

Y `(z) :=
1

4π

∫
R2

e−ip·z
∫ ∞

0
e−t(p

2+1/`2)/2 dtdp(2.1)

=

∫ ∞
1

e−a(s+1/s) ds

s
=: g(a), a =

|z|
2`
,

where p · z denotes the Euclidean inner product on R2. From this formula,
note that Y `(z) is pointwise positive and positive definite, and that there is
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an absolute constant Y0 such that

(2.2) Y `(z)

{
∼ − log |z|+ log `+ Y0 + O(|z|/`) if |z|/` 6 1

≤ C1e−C2|z|/` if |z|/` ≥ 1.

Indeed, the asymptotic relation can be checked with constant Y0 = log 2 + ϑ
from

(2.3) g(a) = ϑ− log a+ O(a), ϑ =

∫ ∞
0

(
e−s − 1s<1

) ds

s
,

where g was defined in (2.1). In particular, up to the constant Y0 + log `, the
two-dimensional Coulomb potential − log |z| is the limit `→∞ of Y `(z). We
denote by T the two-dimensional unit torus C/Z2. For ` > 0, the Yukawa
interaction of range ` on T is defined by

(2.4) U `(z) =
∑
n∈Z2

Y `(z + n).

2.2. Ensembles

We now define the Coulomb gas and its perturbed versions on the plane C,
and the Yukawa gas on the torus T.

Coulomb (and Yukawa) gas on the plane. Remember that for a one-
particle potential V : C→ R ∪ {+∞} and the two-particle interaction G :
C× C \ 4 → R on C, where 4 = {(z, w) ∈ C2 : z = w}, we define the N -
particle Hamiltonian by

(2.5) HG
N,V (z) = N

∑
j

V (zj) +
∑
j 6=k

G(zj , zk), (z ∈ CN ),

and the corresponding Gibbs measures at inverse temperature β > 0 by

(2.6) PGN,V,β(dz) =
1

ZGN,V,β
e−βH

G
N,V (z)m⊗N (dz),

where ZGN,V,β is the partition function. The Coulomb interaction is obtained
by taking G(z, w) = C(z − w) to be the Coulomb potential and we omit the
argument G in that case; the Yukawa interaction of range ` is obtained with
G(z, w) = Y `(z − w) and we then write ` instead of Y ` in the superscript.
For the Coulomb case, we sometimes use the convention ` =∞.
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On the plane, we only use the Yukawa potential as a regularization of the
Coulomb potential, with ` > N2, in which case it is for all of our purposes
equivalent to a Coulomb potential.

Yukawa gas on the torus. Similarly, for ` > 0 and for a potential V :
T→ R, the N -particle Hamiltonian of the periodic Yukawa gas on T is
defined by

(2.7) H`
N,V (z) = N

∑
j

V (zj) +
∑
j 6=k

U `(zj − zk), (z ∈ TN ),

where U ` was defined in (2.4) and we here use the abbreviation H`
N = H`

N,0

The corresponding probability measures are again defined as in (2.6), with
m now the Lebesgue measure on T.

On the torus, we use the Yukawa potential with short range compared to
the side length of the torus (but still large with respect to the interparticle
spacing), i.e., N−1/2 � `� 1.

Perturbed Coulomb gas on the plane. We will also consider perturba-
tions of the Coulomb gas on the plane, for which the two-particle interaction
takes the form

(2.8) G(z, w) = C(z − w) + tG̃(z, w),

with t ∈ R, and where we assume that the perturbation G̃ satisfies, for some
θ > 0,

(2.9) |G̃(z, w)| 6 1, |G̃(z, w)| 6 e−|z−w|
2/(2θ2).

The perturbed Coulomb gas will be used only in Section 8. We therefore
suggest the reader to skip this material until it is used in Section 8.

2.3. Potential theory

We define variational functionals for the Yukawa potential with external
potential V on probability measures µ on C by

(2.10) I`V (µ) =

∫
V (z)µ(dz) +

∫
Y `(z − w)µ(dz)µ(dw).

In the definition of the variational functional for the Coulomb interaction,
the Yukawa potential Y ` is replaced by the Coulomb potential C, and we
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then again omit the superscript `. Moreover, we use the analogous definition
for the variational functional of the Yukawa gas on the torus T, where Y ` is
replaced by U `. We always make the following assumptions:

(i) The set ΣV = {z : V (z) <∞} has positive logarithmic capacity; see
[43, Section I.1].

(ii) The potential V is locally in C1,1 and, for the full plane, it satisfies the
growth condition

(2.11) lim inf
|z|→∞

(V (z)− ε log |z|) > −∞.

In the Yukawa case, we assume ε > 0, whereas in the Coulomb gas we
assume that ε > 2. In the case of the torus, the growth assumption is
trivial.

For a probability measure µ on C respectively T, define the Yukawa potential
by

Y `
µ (z) =

∫
Y `(z − w)µ(dw), respectively U `µ(z) =

∫
U `(z − w)µ(dw),

and again we use analogous notation in the Coulomb case. The following
standard result gives the existence and uniqueness of the equilibrium mea-
sure for the Yukawa and Coulomb gas. Let P (ΣV ) be the set of probability
measures supported in ΣV . We write m = 1/` and use the convention m2 = 0
for the Coulomb case.

Theorem 2.1. Consider the Yukawa potential of range ` on C or the
Coulomb potential on C (with the convention ` =∞). Suppose satisfies as-
sumption (i)–(ii) above. Then there exists a unique µ`V ∈ P (ΣV ) such that

(2.12) I`V (µ`V ) = inf{I`V (µ) : µ ∈ P (ΣV )}.

The support S`V = suppµ`V is bounded (uniformly in `) and of positive capac-
ity, and I`V (µ`V ) <∞. Furthermore, the energy-minimizing measure µ`V may
be characterized as the unique element µ of P (ΣV ) for which there exists a
constant cV ∈ R such that Euler-Lagrange equation

Y `
µ + 1

2V = cV q.e. in S`V and(2.13)

Y `
µ + 1

2V > cV q.e. in C
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holds. The equilibrium measure µ`V in the set S`V is given by

(2.14) µ`V =
1

4π
(∆V +m2(2cV − V )) =

1

4π

(
(∆−m2)V + 2m2cV

)
,

where the Laplacian is understood in the distributional sense. The same
statement holds for the Yukawa potential on the torus T with Y `

µ replaced by

U `µ.

The proof is identical to that of the Coulomb case; see e.g. [43]. Also, by
the same argument, under the assumption that V satisfies (1.4), the support
of µ`V is compact uniformly in `.

In the case of the Yukawa gas on the torus with V = 0, by translation-
invariance, the unique minimizer in (2.12) is the uniform probability measure
on T. Hence the minimum energy of the variational functional for the Yukawa
gas on the unit torus is simply given by

(2.15) inf
µ∈P (T)

∫
U `(z − w)µ(dz)µ(dw) = 2π`2.

We will use this fact in Section 3.

2.4. Local density estimates

From now on, we always assume that V satisfies the assumptions of Theo-
rem 2.1. The local density estimates stated in the following theorems imply
that, for any disk B of radius r � N−1/2 (and the respective support as-
sumptions), the number of particles in B is of order r2 with high probability
under the respective ensemble. For their statements, given a test function
f : C→ R, we denote the linear statistic centered by the equilibrium mea-
sure by

(2.16) Xf =
∑

f(zk)−N
∫
f(z)µ`V (dz) = N

∫
f(z) µ̃(dz),

where µ̂ = 1
N

∑
j δzj denotes the empirical measure, and

(2.17) µ̃ = µ̂− µ`V .

The following two theorems will be proved in the Appendix B.
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Theorem 2.2 (Local density for the torus). Consider the Yukawa gas
on the torus T with Hamiltonian (2.7) and assume the potential V satisfies
(i) above and supp(µV ) = T. For any f : T→ R supported in a disk of radius
b� N−1/2,

(2.18) |Xf | ≺
√
Nb2(f, (−∆ +m2)f) + b2‖∆f‖∞.

In particular, for any disk B ⊂ T with radius b� N−1/2, with high proba-
bility, we have

(2.19) Nµ̂(B) = O(Nb2).

Theorem 2.3 (Local density estimate on the plane). Suppose that V
satisfies the conditions (1.4) and (1.10). Consider either the Coulomb gas
on C with potential V and Hamiltonian (2.5), the perturbed Coulomb gas in
(2.9) with |t|θ2N 6 1, or the Yukawa gas with range ` > N2. Then for any
f : C→ R supported in a disk of radius b� N−1/2 that is contained in SV
and has a distance � N−1/4 + t1/4 to ∂SV ,

(2.20) |Xf | ≺
√
Nb2(f,−∆f) + b2‖∇2f‖∞ = O(

√
Nb2)‖f‖∞,2,b.

In particular, for any disk B ⊂ SV with radius b� N−1/2 and distance �
N−1/4 + t1/4 to ∂SV , with high probability,

(2.21) Nµ̂(B) = O(Nb2).

Moreover, if D = {z ∈ SV : dist(z, ∂SV ) 6 b′} with b′ � N−1/4 then, with
high probability,

(2.22) Nµ̂(D) = O(Nb′).

2.5. Rigidity estimates

In addition to the local density estimates of the previous subsection, for the
Yukawa gas on the torus, we also need the stronger rigidity estimates given
by the following theorems. These theorems are proved in Appendix A, again
following the method of [6].

Theorem 2.4 (Rigidity estimate for Yukawa gas on the torus).
Consider the Yukawa gas on the unit torus of range `. Let s ∈ (0, 1

2), and
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assume that N−1/2 � `� 1 and that V = 0. For any sufficiently smooth
f : T→ R supported in a ball of radius b = N−s,

(2.23) |Xf | ≺
(
b

`
+ 1

)2

‖f‖∞,3,b.

In the regime that b/` ≤ 1, this estimate improves the previous local
density estimate by about a factor 1/(

√
Nb) with a price of taking one more

derivative in the test function f .
As a corollary, we obtain the following proposition which estimates func-

tions of two points. The proposition, proved in Appendix A, is a direct ap-
plication of the rigidity estimate just stated and Taylor expansion. To state
the estimate, for any sufficiently smooth function g : T× T→ R, we denote

(2.24) g
(j)
Bt

(z, w) = sup
(x,y)∈Bt(z)×Bt(w)

|∇jg(x, y)|,

where Bt(z) is the Euclidean ball of radius t centered at z and |∇jg(x, y)| is
the maximum over all partial derivatives of g of order j.

Proposition 2.5. Consider the Yukawa gas on the unit torus of range `.
Assume that N−1/2 � `� 1 and that V = 0. Fix N−1/2 � s� 1. Then for
any smooth function g on T× T and any fixed p ∈ N,

(2.25) N2

∫∫
g(z, w) µ̃(dz) µ̃(dw) ≺

(
1

s4
+

1

`4

) p−1∑
j=0

sj‖∇jg‖1N2sp‖g(p)
Bs
‖1

where ‖ · ‖1 is the L1-norm on T× T and ‖∇jg‖1 = ‖|∇jg|‖1.

Notice that, besides explicit factors, t only appears in the error term g
(p)
Bt

.
We usually choose t to be slightly smaller than the scale that the function
g is smooth on.

2.6. Conditioned local density estimates

To prove the mesoscopic versions of the central limit theorem, in addition
to the above local density estimates, we need conditioned versions of these.
These and can be skipped on the first reading.

To state the conditioned estimates, we first recall the local conditioning
from [6, Section 5]. We first focus on the Coulomb gas on the plane and
comment on the changes for the Yukawa gas on the torus afterwards. Let
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B ⊂ C be a disk of radius b contained in SV , and consider the Coulomb gas
obtained by conditioning on all of the particles outside B. More precisely,
for a particle configuration z ∈ CN , let M = M(z) denote the number of
particles in B, let (z̃1, z̃2, . . . , z̃M ) denote the collection of particles inside B,
and let (ẑ1, ẑ2, . . . , ẑN−M ) denote the particles outside B. The Hamiltonian
HN,V may then be written as

(2.26) HN,V (z) =
∑
j 6=k

log
1

|z̃j − z̃k|
+N

∑
j

(
V (z̃j)− Vo(z̃j |ẑ)

)
+ E(ẑ),

where

(2.27)

Vo(w|ẑ) = − 2

N

∑
k

log
1

|w − ẑk|
,

E(ẑ) =
∑
j 6=k

log
1

|ẑj − ẑk|
+N

∑
j

V (ẑj).

The term E(ẑ) is independent of the particles in B and is thus irrelevant
for the conditioned measure. For any configuration of external particles ẑ ∈
(C \B)N−M and z ∈ C, we write

W (w|ẑ) =

{
N
M (V (w)− Vo(w|ẑ)) (w ∈ B),

+∞ (w 6∈ B),
(2.28)

PN,V,β(dw|ẑ) = PM(ẑ),W (·|ẑ),β(dw).(2.29)

The Coulomb gas given by the potential W (·|ẑ) is the conditional gas inside
B, given the external configuration ẑ. Here we have used the convention of
the measure PN,V,β(dw|ẑ) in (1.3); this convention also explains the normal-
ization factor N/M in (2.28). In [6], it was proven that under our assump-
tions on V the conditional potential satisfies the following properties. First,
since Vo(·|ẑ) is harmonic in B we have

(2.30) µW =
∆W (z)

4π
=
N

M
µV

in the interior of the support SW ⊂ B (where µW and its support SW are
defined by minimization of the Coulomb version of (2.10)). For any function
f that has compact support in SW , we thus have

(2.31) M

∫
f dµW = N

∫
f dµV .



i
i

“1-Yau” — 2020/1/15 — 18:54 — page 857 — #17 i
i

i
i

i
i

The two-dimensional Coulomb plasma 857

Finally, from [6, Sections 5-6], we know that the measure dµW may be
expressed as N

M 1SW dµV + v ds, where ds is the length measure on ∂B, v ∈
L∞(∂B), and that the following properties hold. These properties are verified
in the proof of [6, Theorem 6.1].

The same definitions and properties apply in the Yukawa case when the
Coulomb potential is replaced by the Yukawa potential (the analogues of
[6, Sections 5-6] are proved in Appendix B), when (2.30) is replaced by the
Yukawa density of the form (2.14), and when (2.31) is restricted to test
functions with

∫
f dm = 0.

Lemma 2.6. Consider the perturbed Coulomb gas on the plane as in The-
orem 2.3 or the Yukawa gas on the torus as in Theorem 2.2. For any
s ∈ (0, 1

2), there exists a constant τ > 0 such that the following statements

hold with probability at least 1− e−Nr
2

for r = N−s:

(i) M = NµV (B)(1 + O(M−τ )),

(ii) SW ⊃ {z ∈ B : d(z, ∂B) > M−τr},

(iii) µW (∂B) =

∫
v ds 6M−τ ,

(iv) ‖v‖∞ 6 O(1/r).

In particular, any disk B in the lemma satisfies the following good bound-
ary conditions:

Definition 2.7 (Good boundary conditions). Fix a scale N−1/2+ε ≤
r � 1. Let B be a disk of radius r, let P (·|ẑ) be the conditional law (with
the particles ẑ outside B fixed) of the Coulomb gas induced on z ∈ BM(ẑ)

where M(ẑ) is the number of particles contained in B, and let W (·|ẑ)
be the corresponding potential (with W (·|ẑ) = +∞ outside B). We say
that the boundary condition ẑ of the conditional law is a good boundary
condition if the following properties hold. The equilibrium measure asso-
ciated to W = W (·|ẑ) of the conditional measure can be decomposed as
µW (dz) = ρW (z)m(dz) + v(z) ds, where ds is the length measure on ∂SW
and SW ⊂ B. Furthermore, there exists a disk Ω of radius r(1−N−τ ) for
some τ > 0 such that the equilibrium measure satisfies the bounds

(2.32)

3∑
k=0

rk‖(∇kρW )1Ω‖∞ 6 K,

1

|SW |

∫
Ω
ρW (z)m(dz) > 1−M−a, ‖v‖∞ 6MA
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for some constants a > 0, A > 0,K > 0.

Theorem 2.8. In the setting of Theorem 2.2, let B be a disk of radius
r with good boundary conditions, and write n = Nr2. Then good boundary
conditions in the sense of Definition 2.7 hold with high probability under the
original measure. Furthermore, for any disk B′ ⊂ SW with radius N−1/2 �
b� r and distance εr to ∂SW , with high probability under the conditioned
measure, the conditioned version of (2.18) holds (where Xf is defined with
respect to V ):

(2.33) |Xf | ≺
√
Nb2(f, (−∆ +m2)f) + b2‖∆f‖∞.

Theorem 2.9. In the setting of Theorem 2.3, let B be a disk of radius
r with good boundary conditions, and write n = Nr2 and t = N−2σ. Then
good boundary conditions in the sense of Definition 2.7 hold with high prob-
ability under the original measure. Furthermore, for any disk B′ ⊂ SW with
radius N−1/2 � b� r and distance � (n−1/4 + n−σ/2)r to ∂SW , with high
probability under the conditioned measure, the conditioned version of (2.20)
holds:

(2.34) |Xf | ≺
√
Nb2(f,−∆f) + b2‖∇2f‖∞.

3. Free energy of the torus

We start with proving a version of Theorem 1.1 for the Yukawa gas on the
torus. This outlines the strategy for the proof of Theorem 1.1 in a simplified
context and also constructs the constant ζ in Theorem 1.1.

3.1. Main result

Recall the definition of the Yukawa gas on the unit torus from Section 2.2 and
also that the minimum energy of the variational functional for the Yukawa
gas on the unit torus is given by 2π`2 by (2.15). We denote the N -particle
partition function of the Yukawa gas on the unit torus with range ` by

Z
(`)
N =

∫
TN

e−βH
`
N (z)m(dz),

whereH`
N was defined in (2.7). The main result of this section is the following

theorem, namely a version of Theorem 1.1 for the Yukawa gas on the torus.
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Theorem 3.1. There exists a β dependent constant ζ, the residual free
energy of the Yukawa gas on the torus, such that for any σ > 0 there is
κ > 0 such that if N−1/2+σ 6 `� 1,

(3.1)
1

β
logZ

(`)
N = −2π`2N2 +N log `+

1

2
N logN +Nζ + O(N1−κ).

More precisely, O(N1−κ) is N εO(N7/8 +N1−2σ).

Remark 3.2. The above statement holds without the assumption `� 1.
Since this generalization is not needed for our application, we restrict to this
slightly simplified case.

To prove Theorem 3.1, we define the specific residual free energy in a
system of N particles with interaction range ` by

(3.2)
ζ(`)(N) =

1

N
ξ(`)(N)− 1

2
logN,

ξ(`)(N) =
1

β
logZ

(`)
N + 2π`2N2 −N log `.

In this notation, Theorem 3.1 asserts that ζ`(N) = ζ + O(N1−κ) whenever
` > N−1/2+σ.

Along this section and in Section 4, we will repeatedly use the Jensen
inequality in the form

(3.3) log

∫
e−B + EB(B −A) ≤ log

∫
e−A ≤ log

∫
e−B + EA(B −A),

where EAX =
∫

e−AX∫
e−A

and integration is with respect to a fixed measure.

3.2. Continuity of the residual free energy

In the following Lemmas 3.3 and 3.5, it is proved that ζ(`)(N) is almost inde-
pendent of the range ` provided that `� N−1/2, and that ζ(`)(N) depends
only weakly on the number of particles N .

Lemma 3.3. For any σ ∈ (0, 1
2) and ν and ω such that N−1/2+σ 6 ν 6

ω � 1, the following inequality holds:

(3.4) O(N−2σ+ε) 6 ζ(ω)(N)− ζ(ν)(N) 6 O(N−∞),

where the notation O(N−∞) was defined at the end of Section 1.
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Proof. We start with the upper bound on ζ(ω) − ζ(ν). By Jensen’s inequality,

1

β
log

∫
e−βH

ω
N (z)m(dz) ≤ 1

β
log

∫
e−βH

ν
N (z)m(dz)(3.5)

− EHω
N [Hω

N −Hν
N ].

Let Lνω(z) = Uω(z)− Uν(z). Then Lνω(0) = log(ω/ν) + O(N−∞) since
U `(0) = Y `(0) +O(e−c/`) and ν 6 ω � 1. Since Lνω is positive definite, as
can be verified by representing it in Fourier space, we also have

(3.6) Lνω =

∫
Lνω(z − w) µ̃(dw) µ̃(dz) > 0, for ν 6 ω � 1.

Together with
∫
U `(z)m(dz) = 2π`2 by (2.15), we have the estimate

Hω
N −Hν

N =
∑
j 6=k

Lνω(zj − zk)(3.7)

= 2π(ω2 − ν2)N2 −N log(ω/ν) +N2Lνω + O(N−∞).

By the definition (3.2), this proves that ζ(ω)(N)− ζ(ν)(N) 6 O(N−∞).
For the lower bound, we use the Jensen inequality and (3.7) to obtain

1

β
log

∫
e−βH

ω
N (z)m(dz) ≥ 1

β
log

∫
e−βH

ν
N (z) m(dz)(3.8)

− 2π(ω2 − ν2)N2 +N log(ω/ν)

−N2EHν
NLνω + O(N−∞).

We apply the two-point rigidity estimate (2.25) with g(z, w) = Lνω(z, w),
` = ν, t = νN−ε and p = 2/ε. Note that this choice of g satisfies

tj‖∇jg‖1 ≤ Cjtjν−jω2 ≤ Cjω2,

tp‖g(p)
Bt
‖1 ≤ Cptpν−pω2 ≤ CpN−pεω2 6 CpN

−2.

Therefore (2.25) gives

(3.9) N2EHν
NLνω 6 N

4εO(ω2ν−4).

Replacing ε by ε/4, we have thus proved that

(3.10) ζ(ω)(N)− ζ(ν)(N) > N εO(ω2ν−4).

This estimate can be improved to give the lower bound stated in (3.4) as
follows. For any fixed ε > 0 small, we choose (νi)

k
i=1 such that ν1 = ω, νk = ν
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and 1 6 νj/νj+1 6 N ε. Since ω 6 1 by assumption, there exists an admis-
sible choice of k depending on ε but not on N . Then (3.10) with (ω, ν)
replaced by (νj , νj+1) gives

ζ(ω)(N)− ζ(ν)(N) =

k−1∑
j=1

(ζ(νj)(N)− ζ(νj+1)(N))(3.11)

=

k−1∑
j=1

N εO(ν2
j ν
−4
j+1) = N εO(ν−2).

Since ν−2 6 N1−2σ by assumption, this completes the proof of the lemma.
�

We record the following rough bound on the partition function.

Lemma 3.4. The torus residual free energy satisfies

(3.12) ξ(γ)(n) = O(n log n).

Proof. This bound follows by smearing out the point charges into charge den-
sities and using the positive definiteness for the upper bound and Jensen’s
inequality for the lower bound. This is a standard argument and therefore
we omit the details. The interested reader can look into [6, Proposition 4.1]
or (B.45). �

Using the above bound on the partition function, we obtain the following
estimate for its dependence on n.

Lemma 3.5. The torus residual free energy satisfies

(3.13) ζ(γ)(n)− ζ(γ)(m) = O

(
|m− n| log(n+m)

n+m

)
.

Proof. We now prove the following more precise version of (3.12):

(3.14) ξ(γ)(n) + 2πγ2 − log γ ≤ ξ(γ)(n+ 1) ≤ ξ(γ)(n) + O(log n).
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In particular, ξ(γ)(n+ 1)− ξ(γ)(n) = O(log n). This implies the claim as fol-
lows. If n ≤ m ≤ 2n, then

ζ(γ)(m)− ζ(γ)(n) =

m∑
k=n

O

(
log k

k

)
(3.15)

= O

(
|m− n| logm

n

)
= O

(
|m− n| log(n+m)

n+m

)
.

On the other hand, if m ≥ 2n, then already (3.12) implies

ζ(γ)(m)− ζ(γ)(n) = O(log n) + O(logm)(3.16)

= O

(
|m− n| log(n+m)

n+m

)
.

This proves the claim for n 6 m. The case n > m follows by exchanging the
roles of n and m.

It remains to prove (3.14). We start with the lower bound. By Jensen’s
inequality,

log

∫
e−β

∑n+1
i6=j;i,j=1 U

γ(zi−zj)mn(dz)∫
e−β

∑n
i6=j;i,j=1 U

γ(zi−zj)mn(dz)
≥ −2βEγn

n∑
j=1

Uγ(zn+1 − zj),

where mn(dz) =
∏n
j=1m(dzj). In the following, we omit the superscript

whenever it is obvious. Integrating both sides over zn+1, and again using
Jensen’s inequality, we get

logZn+1 ≥
∫
m(dzn+1) log

∫
e−β

∑n+1
i6=j;i,j=1 U

γ(zi−zj)m(dz)

≥ logZn − (2nβ)(2πγ2).

By the definition of ξ(γ)(n), it follows that

ξ(γ)(n+ 1) = 2πγ2(n+ 1)2 − (n+ 1) log γ +
1

β
logZn+1(β)

≥ 2πγ2(n+ 1)2 − 2n(2πγ2) +
1

β
logZn(β)− (n+ 1) log γ

= ξ(γ)(n) + 2πγ2 − log γ.

This gives the lower bound in (3.14).
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For the upper bound, we set Ĥk =
∑n+1

i 6=j,i,j 6=k U
γ(zi − zj). Then, by

Hölder’s inequality, it follows that

Zn+1(β) =

∫
exp

[
− β

n− 1

n+1∑
k=1

Ĥk

]
m(dz)(3.17)

≤
∫

e−β
n+1

n−1
Ĥkm(dz) = Zn

(
β
n+ 1

n− 1

)
.

Since ξ(γ)(n) = O(n log n), we have

1

β
log

∫
e−βHnm(dz) = −2πγ2n2 + O(n log n), Hn =

n∑
i 6=j

Uγ(zi − zj).

Using this estimate and the convexity of the function t→ log
∫

e−tHnm(dz),
we have

−Eγ,βn Hn ≤ log

∫
e−(β+1)Hnm(dz)− log

∫
e−βHnm(dz)

≤ −2πγ2n2 + O(n log n).

Using (3.17) and integrating the relation ∂β logZn(β) = −Eγ,βn Hn, we there-
fore get

logZn+1(β) ≤ logZn

(
β
n+ 1

n− 1

)
= logZn(β)−

∫ β n+1

n−1

β
Eγ,sn Hn ds

≤ logZn(β)− 2πγ2 2n2β

n− 1
+ O(log n).

In summary, we have proved that

ξ(γ)(n+ 1) = 2πγ2(n+ 1)2 − (n+ 1) log γ +
1

β
logZn+1(β)

≤ 2πγ2(n+ 1)2 +
1

β
logZn(β)− 2πγ2 2n2

n− 1

− n log γ − log γ + O(log n)

= ξ(γ)(n) + O(log n),

which is the upper bound in (3.14). �
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3.3. Scaling relation

In the remainder of this section, we will often consider the Yukawa gas on
a torus of side length b. Let T(b) denote the torus of side length b, i.e., the
square [b/2, b/2)2 with horizontal respectively vertical sides identified. The
Yukawa potential on T(b), under this identification to the square [b/2, b/2)2,
is defined by

(3.18) U `b (z) = U
(γ)
b (z) =

∑
n∈(bZ)2

Y `(z + n),

where Y ` is the full plane Yukawa potential defined in (2.1) and γ = `/b
denotes the relative interaction range from now on. We denote the corre-

sponding partition function of the n-particle Yukawa gas by Z
(γ)
b,n , and set

(3.19)

ξ
(γ)
b (n) =

1

β
logZ

(γ)
b,n + 2πγ2n2 − n log `,

Z
(γ)
b,n =

∫
(T(b))n

e−β
∑
i6=j U

`
b (wi−wj)m(dw).

From now on, we adopt the following convention for z − w in T(b) in-
cluding the case b = 1.

Definition 3.6. For z, w ∈ T(b), we always choose the representative for
z − w (which is only defined modulo (bZ)2) to be in [−b/2, b/2)2.

For later use, we record the following scaling relation.

Lemma 3.7. For any K > 0,

ξ
(γ)
Kb(n) =

(
1

β
− 1

2

)
n logK2 + ξ

(γ)
b (n).(3.20)

In particular, by choosing K = b−1, with the definition of ζ from (3.2),

(3.21) ξ
(γ)
b (n) = nζ(γ)(n) +

n

2
log n+ n

(
1

2
− 1

β

)
log b−2.
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Proof. By definition of the Yukawa potential (3.18), we have UK`Kb (Kr) =
U `b (r). Therefore, by changing variables to z = wK,

1

β
Z

(γ)
n,Kb =

1

β
log

∫
(T(Kb))n

e−β
∑n
i6=j U

K`
Kb (zi−zj)m(dz)

=
1

β
log

∫
(T(b))n

e−β
∑
i6=j U

`
b (wi−wj)m(dw) +

1

β
n logK2

=
1

β
logZ

(γ)
n,b +

1

β
n logK2,

where the term with logK2 comes from the scaling factor in the Jacobian.
With γ = `/b and using the definition (3.19) of ξ, we have the rescaling
identity

ξ
(γ)
Kb(n) = 2πγ2n2 − n logK`+

1

β
n logK2 +

1

β
logZ

(γ)
n,b

=

(
1

β
− 1

2

)
n logK2 + ξ

(γ)
b (n)

as claimed. �

3.4. Quasi-free approximation

To prove Theorem 3.1 we first replace the interaction range ` by N−1/2+σ

for an arbitrary fixed σ > 0. By Lemma 3.3, this replacement contributes
an error N εO(N1−2σ) to (3.1). From now on, we therefore assume that
` = N−1/2+σ.

In the following, we always parametrize the unit torus T by the square
[−1/2, 1/2)2. For a parameter b� 1 such that 1/b and Nb2 are both integers,
we then divide the unit torus into a grid of (small) squares α of side length
b. To be concrete, we center the grid such that the small square containing
0 ∈ [1/2, 1/2)2 has 0 as its center. We denote the set of these squares by S0.

For `� b� 1, the quasi-free Yukawa interaction is obtained from the
Yukawa interaction by, roughly speaking, removing the interaction between
particles in a small square with particles outside that square and replac-
ing the interaction between particles in the same square by a periodic one.
More precisely, we denote by n = (nα) a particle profile, by which we mean
an assignment of a number of particles nα ∈ N to each square α, with the
constraint

∑
α nα = N where sums over α are always over α ∈ S0. We as-

sociate a torus Tα of side length b to each square α. The tori Tα are of
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course all identical and equal to T(b), but we keep the index α to emphasize
the connection with the square it is associated to, and label elements in Tα
by (α, z) with z ∈ T(b). For v = (α, z) ∈ Tα we write U `b (v) = U `b (z) where
U `b (v) is the periodic Yukawa interaction on T(b) defined in (3.18).

For nα ∈ N, we define

Ĥα(v) =
∑
i 6=j

U `b (vi − vj) (v ∈ Tnαα ).(3.22)

Given a particle profile n, the quasi-free free energy with particle profile n
is defined by

(3.23) F (n) =
1

β
log

(
N

n

)
+

1

β

∑
α

log

∫
Tnαα

e−βĤα(u)m(du)

where the term
(
N
n

)
= N !∏

α nα! arises as the number of ways to distribute N

particles into groups of sizes (nα) with
∑

α nα = N .
The name quasi-free is motivated by the fact that particles in different

squares do not interact, i.e., their contribution is additive. The following two
propositions show that its free energy is a good approximation to that of the
original Yukawa gas. To state the second proposition, denote by n̄ = (n̄α)
with n̄α = n̄ = Nb2 the expected number of particles in the square α.

Proposition 3.8 (Upper Bound). Assume that `� b� 1. Then

(3.24)
1

β
log

∫
e−βH

`(z)m(dz) 6
1

β
log
∑
n

eβF (n) +N εO(N2`3b−1).

Proposition 3.9 (Lower Bound). Assume that `� b� 1. Then

(3.25)
1

β
log

∫
e−βH

`(z)m(dz) ≥ F (n̄) +N εO(N2`3b−1).

We will prove the two propositions in the next two sections.

3.5. Upper bound: proof of Proposition 3.8

By translation invariance, instead of working with the grid of squares S0

centered at 0, we can equivalently consider the shifted grid consisting of
square u+ α with α ∈ S0 and center u ∈ [−b/2, b/2)2. The center of u+ α
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is c(u+ α) = u+ c(α). Given this choice of origin u and a square α ∈ S0,
we define

Φα ≡ Φu
α : u+ α→ T(b)(3.26)

the natural embedding from the square u+ α into the torus T(b),

mapping the boundary of u+ α to a vertical and a horizontal line in T(b).
More precisely, using the coordinates c(u+α)+[−b/2, b/2)2 on the square
u+ α ⊂ T and the coordinates [−b/2, b/2)2 on the torus T(b), we set

(3.27) Φu
α(z) = z − c(u+ α).

For z, w in the original unit torus T, we define the quasi-free pair interaction
through the embeddings Φα by

(3.28) Ỹ `
u (z, w) =

∑
α∈S0

U `b (Φ
u
α(z)− Φu

α(w))1z∈u+α1w∈u+α (z, w ∈ T).

The interaction Ỹ `
u is in fact very simple: we divide the unit torus into a grid

of cubes of side length b with the grid centered at u. Then for two particles
in the same small square α, we view them as two points on the torus T(b)

interacting via the torus Yukawa potential U `b . For two particles in different
small squares, the interaction vanishes.

The corresponding Hamiltonian H̃`
u with pair interaction Ỹ `

u is

(3.29) H̃`
u(z) =

∑
i 6=j

Ỹ `
u (zi, zj) (z ∈ TN ).

The choice of origin u ∈ [−b/2, b/2)2 was arbitrary and we will eventually
average of this choice. We set Euf(u) = 1

b2

∫
[−b/2,b/2)2 duf(u) and define the

function Ȳ by

(3.30) Ȳ (z, w) = EuỸ `
u (z, w) (z, w ∈ T).

By Jensen’s inequality and then averaging over u,

1

β
log

∫
e−βH

`(z)m(dz) ≤ 1

β
Eu log

∫
e−βH̃

`
u(z)m(dz)(3.31)

+ EuEH`

(H̃`
u −H`).
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The second term on the right-hand side is EH`∑
i 6=j [Ȳ (zi, zj)− U `(zi − zj)].

This expression is estimated in Lemma 3.11 below. Its proof follows by
counting particles using the local density estimate.

In preparation for the proof, we first state some estimates on Ȳ . These
estimates are stated in terms of the function g : C→ R defined with z =
x+ iy by

g(z) =
(b− |x|)+(b− |y|)+

b2
Y `

(√
|x|2b + |y|2b

)
,(3.32)

|x|b = |x| ∧ (b− |x|)+,

where we write Y (r) for Y (z) with |z| = r. By definition, g is supported in
[−b, b]2. Assuming an identification of T with [−1/2, 1/2)2, g can be extended
to a function on T. Thus g(z − w) is well-defined as a function on T× T.

Lemma 3.10. Assume that `� b. Then

(3.33) Ȳ (z, w) = g(z − w) + O(e−cb/`) (z, w ∈ T)

and

(3.34) U `(z − w) = g(z − w) + O(`/b) (z, w ∈ T).

Proof. We first verify (3.33), i.e., we evaluate Ȳ (z, w). If |z − w|∞ > b then
the points z and w are necessarily in two different squares and Ỹ `

u (z, w) = 0
by (3.28). Thus we can assume that |z − w|∞ 6 b. We write z − w = x+ iy
with x, y ∈ [−b, b]

For fixed such z, w, the probability under the average over u that z and
w lie in the same square is given by (b− |x|)/b× (b− |y|)/b. For z, w in the
same square, we have U `b (Φ(z)− Φ(w)) = Y `(

√
x2 + y2) + O(e−cb/`) where

the error is from the sum over the periods in the definition of U `b . We have
thus proved (3.33), i.e.,

Ȳ (z, w) = EuỸ `
u (z, w) =

(b− |x|)(b− |y|)
b2

Y `
(√

x2 + y2
)

+ O(e−c/γ).

To verify (3.34), first assume that |x| ∨ |y| 6 b. Then, by the definition
(3.32) and using the exponential decay Y `(z − w) = O(e−c|z−w|/`),

(3.35) g(z − w)− Y `(z − w) = O(|z − w|/b)Y `(z − w) = O(`/b).
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On the other hand, if |x| ∨ |y| > b then g(x, y) = 0 and the claim follows
from

|g(z − w)− Y `(z − w)| = Y `(z − w) = O(e−c|z−w|/`)(3.36)

6 O(e−cb/`) 6 O(`/b),

using the assumption `� b. This completes the proof. �

Lemma 3.11. Assume that `� b� 1. Then

(3.37) EH`
∑
i,j

[Ȳ (zi − zj)− U `(zi − zj)] = N εO(N2`3b−1).

Proof. We use the local density for the Yukawa gas, Theorem 2.2, implying
that any square in T of diameter r � N−1/2 contains O(Nr2) particles with
high probability. In addition, Y `(zi − zj) 6 e−cN

ε

if |zi − zj | ≥ `N ε. Thus
Ȳ (zi − zj) + U `(zi − zj) 6 O(N−∞) in this case and the sum over the con-
tributions of these terms in (3.37) is again of order O(N−∞). Therefore, we
can assume that |zi − zj | ≤ `N ε for all i, j from now on. By using (3.33), we
can replace Ȳ by g. As a consequence,

EH`
∑
i,j

[g(zi − zj)− U `(zi − zj)] = O(N εN(N`2)(`/b))

since each of the at most N particles zi interacts with O(N εN`2) particles
zj , and the difference U `(z − w)− g(z − w) is of order `/b by Lemma 3.10.
This proves (3.37). �

Proof of Proposition 3.8. By (3.31) and (3.37),

1

β
log

∫
e−βH

`(z)m(dz) ≤ 1

β
Eu log

∫
e−βH̃

`
u(z)m(dz)(3.38)

+O(N εN2`3b−1).

By the definitions (3.28)–(3.29), after partitioning in the number of particles
in each square, the integral in the first term on the right-hand side factorizes
over the squares and therefore is∫

e−βH̃
`
u(z)m(dz) =

∑
n

(
N

n

)∏
α

∫
Tnαα

e−βĤα(u)m(du) =
∑
n

eβF (n),

where we used the definition (3.23). This completes the proof. �
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3.6. Lower bound: proof of Proposition 3.9

To obtain a lower bound on the partition function, we use the coordinates
[−1/2, 1/2)2 for T and the grid S centered at 0. We can then restrict the
particle numbers in all squares α to their mean n̄ = n̄α = Nb2. (Although
n̄α is independent of α, we often keep the index for analogy with Section 4.)
Thus we define the indicator function

(3.39) χ̂(z) =
∏
α

1
(
nα(z) = n̄α

)
,

where, for a particle configuration z ∈ TN , we define n(z) = (nα(z)) to be
the particle profile associated to the configuration z, i.e., nα(z) is the number
of particles zj ∈ α. Trivially,

(3.40)
1

β
log

∫
e−βH

`(z)m(dz) ≥ 1

β
log

∫
e−βH

`(z) χ̂(z)m(dz).

Ordering the squares in S arbitrarily as α1, α2, . . . , we write χ̃(z) for χ̂(z)
multiplied by the indicator function of the event in which the particles
z1, . . . , zn̄ are in α1, the particles zn̄+1, . . . , z2n̄ are in α2, and so forth. Then

1

β
log

∫
e−βH

`(z) χ̂(z)m(dz)(3.41)

=
1

β
log

(
N

n

)
+

1

β
log

∫
e−βH

`(z) χ̃(z)m(dz),

where
(
N
n

)
is the combinatorial factor for dividing N particles into small

cubes of size n1, n2, . . .
To estimate the integral on the right-hand side, we choose maps

(3.42) Ψα : T(b) → α

that embed the torus T(b) injectively into the square α. Note that the maps
Ψα go in the opposite direction of the maps Φα in (3.26) used in the upper
bound. Such an embedding is necessarily discontinuous along a horizontal
and a vertical line in the image. We will choose the maps Ψα randomly by
averaging over the positions of the discontinuity lines. The center where the
two discontinuity lines meet can be parametrized by a point u ∈ [−b/2, b/2)2.
Using the coordinates [1/2, 1/2)2 on the unit torus and recalling that S is
the grid of size b with center 0, we can parametrize the square α ∈ S by
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c(α) + [−b/2, b/2)2 where c(α) ∈ (bZ)2 is the center of α. Using [−b/2, b/2)2

as coordinates for T(b), we define Ψu
α by

(3.43) Ψu
α(w) = c(α) + [u+ w], (w ∈ [−b/2, b/2)2),

where [z] the representative of z ∈ C in [−b/2, b/2)2 modulo (bZ)2. Clearly,
the maps Ψu

α have Jacobian |dΨu
α| = 1. We write EΨ for the average over u.

Given the particle profile n = n̄ = (n̄α) and Ĥα defined in (3.22), set

(3.44) Ĥ(v) =
∑
α

Ĥα(vα).

Let ωα be the probability measure of the Yukawa gas on (T(b))nα and ω
their product:

(3.45) ωα(dvα) =
1

Zα
e−βĤα(vα)m(dvα), ω =

∏
α

ωα.

Moreover, given the maps Ψα, define Ψ by

(3.46) Ψ :
∏
α

(T(b))nα → TN , Ψ({v}) = ({Ψα(vα)}) ∈ TN ,

where configurations in the image of Ψ have nα = n̄α particles in the square
α (in some fixed order that is irrelevant), and Ψ∗ω =

∏
α Ψ∗αωα is a measure

on such configurations of N particles in T.
For such a configuration z, we write zα for the vector of particles in the

square α. Then defining ĤΨ(z) =
∑

α Ĥα ◦Ψ−1
α (zα), we have by Jensen’s

inequality,

1

β
log

∫
e−βH

`(z)χ̃(z)m(dz) ≥ 1

β
log

∫
e−βĤΨ(z)χ̃(z)m(dz)(3.47)

+ EΨ∗ω(ĤΨ −H`).

Reversing the change of variables and averaging over the distribution of
maps Ψ with |dΨ| = 1, whose expectation is denoted by EΨ, we have

1

β
log

∫
e−βH

`

χ̃ ≥ 1

β
log

∫
e−βĤα(vα)

∏
α

dvα(3.48)

+ EΨEω(Ĥ(v)−H`(Ψ(v))).
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It remains to estimate the second term on right-hand side of (3.48). Let
µα denote either the normalized uniform measure on the square α or the
associated torus Tα (the distinction will be clear from the context). We write
µ̃α = µ̂α − µα where

(3.49) µ̂α(dv) =
1

nα

∑
j:vj∈Tα

δvj (dv).

Note that
∫

dµ̂α = 1. Define
(3.50)

E =
∑
α

n̄2
αEΨEω

∫∫
Tα×Tα

(U `b (v − w)− Y `(Ψα(v)−Ψα(w))) µ̃α(dv) µ̃α(dw).

The following two lemmas, which we will prove in the remainder of this
section, estimate the second term on right-hand side of (3.48).

Lemma 3.12. Assume `� b� 1. Then

(3.51) EΨEω(Ĥ(v)−H`(Ψ(v))) = E + O(N−∞).

Lemma 3.13. Assume `� b� 1. Then

(3.52) E = N εO(N2`3b−1).

Given Lemmas 3.12–3.13, the proof of Proposition 3.9 is completed as
follows.

Proof of Proposition 3.9. By combining (3.40)–(3.52), we have

1

β
log

∫
e−βH

`(z)m(dz)(3.53)

>
1

β
log

(
N

n

)
+
∑
α

1

β
log

∫
e−βĤα(vα)dvα +N εO(N2`3b−1).

The first two terms on the right-hand side of (3.53) together equal F (n̄),
completing the proof. �

To complete the proof of Proposition 3.9, it still remains to prove Lem-
mas 3.12–3.13.
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Proof of Lemma 3.12. We must prove that

∑
α,β

EΨEω
∑
i 6=j

1vi∈Tα1vj∈Tβ

(
U `b (vi − vj)1α=β − Y `(Ψα(vi)−Ψβ(vj))

)
(3.54)

= E + O(N−∞).

We first note that the contribution of the nonadjacent squares on the left-
hand side is bounded by O(e−c`/b) = O(N−∞), by (3.18) and (2.2). For any
α, β (including α = β), define

Ȳαβ =

∫∫
Tα×Tβ

Y `(Ψα(v)−Ψβ(w))µα(dv)µβ(dw)(3.55)

=

∫∫
α×β

Y `(v − w)µα(dv)µβ(dw),

where the equality follows from EΨEωµ̂α(dv) = µα(dv) and |dΨα| = |dΨβ| =
1. Denoting by α ∼ β that the squares α and β are adjacent, therefore

∑
α,β

EΨEω
∑
i 6=j

1vi∈Tα1vj∈Tβ

(
U `b (vi − vj)1α=β − Y `(Ψα(vi)−Ψβ(vj))

)
(3.56)

=
∑
α

n̄2
αEΨEω

[∫∫
Tα×Tα

(U `b (v − w)− Y `(Ψα(v)−Ψα(w)))µ̂α(dv)µ̂α(dw)

]
−
∑
α∼β

n̄αn̄βȲαβ + O(N−∞).

Using again |dΨα| = 1 and EΨEωµ̃α = 0, we can rewrite the difference of
the first term in the last line and E as
(3.57)∑
α

n̄2
α

[∫∫
T2
α

U `b (v − w)µα(dv)µα(dw)−
∫∫

α2

Y `(v − w)µα(dv)µα(dw)

]
.

We then apply the cancellation (3.58) below to this term and the last term on
the right-hand side of (3.56), i.e., −

∑
α∼β n̄αn̄βȲαβ. Finally, we sum over

the squares α of which there are O(b−2) many. Using O(b−2)O(N−∞) =
O(N−∞) and the definition of E, the claim follows. �
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Lemma 3.14. For any square α of side length b� ` fixed,

n̄2
α

[∫∫
T2
α

U `b (v − w)µα(dv)µα(dw)−
∫∫

α2

Y `(v − w)µα(dv)µα(dw)

]
−
∑
β:β∼α

n̄αn̄βȲαβ = O(N−∞).(3.58)

Proof. Using that contributions of pairs with distance � `/b are negligible
in U `b and unfolding the periodization in the definition of U `b , we have∫∫

T2
α

U `b (u− v)m(dv)m(dw)

=

∫
α

∫
(∪β∼αβ)∪α

Y `(z − w)m(dz)m(dw) + O(N−∞).

Thus the first two terms on the left-hand side of (3.58) are given by∑
β∼α

∫∫
α×β

Y `(z − w)µα(dz)µβ(dw) + O(N−∞),

i.e., the left-hand side of (3.58) equals

n̄α
∑
β∼α

(
n̄α − n̄β

) ∫∫
α×β

Y `(z − w)µα(dz)µβ(dw) + O(e−N
ε

) = O(N−∞)

as needed. �

Proof of Lemma 3.13. By the definition (3.50), n̄α = Nb2, and since there
are b−2 squares α, we must bound

E = b−2(Nb2)2EΨEω

×
∫∫

T(b)×T(b)

(U `b (v − w)− Y `(Ψα(v)−Ψα(w))) µ̃α(dv) µ̃α(dw),(3.59)

where α is any of the squares in S. Recall that the expectation EΨEω aver-
ages over the parameter u ∈ [−b/2, b/2)2 in the definition of the embedding
Ψu
α (see Section 3.4) and over the Yukawa gas in Tα. We estimate this ex-

pectation in two steps.

Step 1. For v, w ∈ T(b), we write v − w = (x, y) in the sense that (x, y) ∈ R2

is a representative for v − w ∈ T(b) chosen such that |x| 6 b/2 and |y| 6 b/2.
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We claim that

EΨ
(
U `b (v − w)− Y `(Ψα(v)−Ψα(w))

)
(3.60)

=
b|x|+ b|y| − |xy|

b2
U `b (v − w) + O(e−cb/`).

The proof of (3.60) uses exactly the same reasoning as that of Lemma 3.10.
Namely, by the definitions of Ψα and U `b , the difference U `b (v − w)−
Y `(Ψα(v)−Ψα(w)) is O(e−cb/`) unless v and w have periodic distance of
order ` and Ψα(v) and Ψα(w) have Euclidean distance order b (i.e., Ψα(v)
and Ψα(w) are on opposite sides of the square α). Assuming that the dif-
ference is not O(e−cb/`), the Y term itself is O(e−cb/`), and only the U term
contributes. The prefactor (b|x|+ b|y| − |xy|)/b2 on the right-hand side of
(3.60) is the probability that Ψα(v) and Ψα(w) fall on opposite sides of the
torus under the randomness of EΨ, i.e., when the center of the square α is
chosen uniformly.

Step 2. We claim that

(3.61) Eω
∫∫

b|x|+ b|y| − |xy|
b2

U `b (v − w) µ̃(dv) µ̃(dw) = nεO(`/b)3.

This estimate does not use any cancellations due to the difference in the
definition of µ̃α as µ̂α − µ̃α. We may therefore replace µ̃ by µ̂; the terms
involving µV obtained when expanding µ̃ are analogous. Moreover, since the
left-hand side of (3.61) does not depend on the position of the center of the
square α, the expectation EΨEω can be replaced by the expectation of the
Yukawa gas on the torus T(b). Furthermore, by rescaling it suffices to assume
that b = 1, i.e., that the torus T(b) is the unit torus T. With γ = `/b and
denoting by Eγ the expectation of the Yukawa gas on the unit torus with n
particles and range γ, it is then sufficient to to show that

(3.62) n2Eγ
∫∫
|v − w|Uγ(v − w) µ̂(dv) µ̂(dw) = nεO(n2γ3).

Note that O(n2γ3) is the order of the left-hand side when we replace µ̂
by the uniform measure. So the proof of the last bound can be understood by
the simple heuristic that the density of the measure µ̂ is bounded by uniform
measure at the scale γ provided by the regularization of the interaction Uγ .
We now give the formal proof by using the local density bound for µ̂ stated
in Theorem 2.2. More precisely, dividing the unit torus into squares of length
b̃ = nεγ, by the local density estimate, each square contains O(nb̃2) particles,
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with high probability. Thus, denoting the squares by α and β, the left-hand
side of (3.61) is bounded by

(3.63) n2Eγ
∑
α,β

∫∫
α×β
|v − w|Uγ(v − w) µ̂(dv) µ̂(dw).

Using the exponential decay of Uγ(v − w), up to an error of order O(e−cn
ε

),
only the neighboring or equal pairs of squares α, β contribute to this sum.
For each such pair, the contribution is O(n2b̃5) with two factors of b̃2 arising
from the integrals over z and w and one from the factor |z − w|. Summing
over the O(b̃−2) terms and using that b̃ = nεγ, the left-hand side of (3.62) is
bounded by O(n2b̃3) = O(n2+3εγ3). Finally, replacing 3ε by ε, the estimate
(3.62) follows. �

3.7. Consequence of quasi-free approximation

The main consequence of the quasi-free approximation for the torus is Propo-
sition 3.17 below. In preparation, we need two elementary lemmas. The
quasi-free approximation upper bound (3.24) and the lower bound (3.25)
are slightly different in that the upper bound is summed over all possible
particle numbers in every small tori while the lower bound contains only
the term that the number of particle in every small tori is identically its
mean. Due to the convexity of free energy, it is not difficult to show that
the fluctuations of number of particles can be estimated and they will be
of lower order. This is the content of the next two lemmas. Once this is
achieved, the quasi-free approximation upper and lower bound match up to
a lower order terms. This establishes the additivity of the free energy up to
negligible errors except that the range of Yukawa interactions are different
for the gas in the original torus and the smaller one. However, the scaling
of the free energy is given in Lemma 3.7 and the error due to the change of
Yukawa range is easy to estimate. Thus we obtain that the existence of the
specific free energy with effective error estimate in Proposition 3.17.

Lemma 3.15. Let

hα(n) = 2πγ2(nα − n̄)2 − nαζ(γ)(nα)(3.64)

− 1

2
nα log nα −

(
1

2
− 1

β

)
nα log b−2.
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Then the quasi-free free energy with particle profile n defined in (3.23) can
be written as

(3.65) F (n) =
1

β
log

(
N

n

)
+ 2π`2N2 +

∑
α

hα(n)−N log `.

Proof. From (3.23) and (3.19), recall that F (n) = 1
β log

(
N
n

)
−
∑

α Tα(nα),
where

Tα(nα) := − 1

β
log

∫
Tnαα

e−β
∑
j 6=k U

`
α(zj−zk)m(dz)

= 2πγ2n2
α − nα log `− ξ(γ)

b (nα).

By the scaling relation (3.21), we also have

hα(n) = 2πγ2(nα − n̄)2 − ξ(γ)
b (nα).

The equality ∑
α

2πγ2n2
α = 2πγ2

∑
α

(nα − n̄)2 + 2π`2N2

therefore implies∑
α

Tα(nα) = 2π`2N2 +
∑
α

hα(n)−N log `.

This completes the proof. �

Lemma 3.16. For any functions Eα : N→ R satisfying |Eα(n)− Eα(m)| 6
O(|n−m|(n+m)ε), with γ = `/b > N−C , we have

(3.66)

1

β
log
∑
n

eβE(n) ≤ E(n̄) +NO(ε)O(`−2),

E(n) :=
∑
α

[
− 2πγ2(nα − n̄α)2 + Eα(nα)

]
.

Proof. By definition,

1

β
log
∑
n

eβE(n) − E(n̄) =
1

β
log
∑
n

eβ(E(n)−E(n̄))(3.67)

=
1

β
log
∑
n

exp

[∑
α

β
[
−2πγ2(nα − n̄α)2 + (Eα(nα)− Eα(n̄α)

]]
.
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To get an upper bound, we drop the constraint
∑

α nα = N on n, and
sum each nα independently. Using the assumption |Eα(n)− Eα(m)| ≤ O(|n−
m|(n+m)ε), the elementary inequality that for any positive fixed numbers
C, c > 0 and all integers m ≥ 0,

∞∑
n=0

exp
[
C|n−m|(n+m)ε − cγ2(n−m)2

]
(3.68)

≤ O(γ−1)(m+ γ−2)2εeO(γ−2)(m+γ−2)2ε

,

and that n̄α = Nb2, the left-hand side of (3.67) is bounded by

O(logN)
∑
α

γ−2(n̄α + γ−2)2ε ≤ NO(ε)O(`−2).

This completes the proof of the lemma. �

Proposition 3.17. For any σ > 0, there is τ > 0 such that if ` > N−1/2+σ

and 1 > b > N1+σ`3,

(3.69) ζ(`)(N) = ζ(`/b)(Nb2) + O(N−τ ).

More precisely, O(N−τ ) is N εO(N`3/b+ 1/(N`2)).

Proof. The assumptions on ` and b imply that the error terms in (3.24),
(3.25) are O(N1−τ ). By Propositions 3.8, 3.9, together with Lemma 3.15,
therefore

1

β
log

∫
e−βH

`(z)m(dz)(3.70)

> −2π`2N2 +N log `+
1

β
log

(
N

n̄

)
e−β

∑
α hα(n̄) −O(N1−τ ),

1

β
log

∫
e−βH

`(z)m(dz)(3.71)

6 −2π`2N2 +N log `+
1

β
log
∑
n

(
N

n

)
e−β

∑
α hα(n) + O(N1−τ ).

We compute the sums on the right-hand sides of (3.70), (3.71). By Stirling’s
formula,

(3.72) log

(
N

n

)
= N logN −

∑
α

nα log nα + O(logN).
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With the definition of h from (3.64), and Eα(nα) = (1
2 −

1
β )nα log(nαb

−2) +

nαζ
(γ)(nα) and E of (3.66), we rewrite (3.70), (3.71) as

1

β
log

∫
e−βH

`(z)m(dz) + 2π`2N2 −N log `

> E(n̄) +
1

β
N logN + O(N1−τ ),

1

β
log

∫
e−βH

`(z)m(dz) + 2π`2N2 −N log `

6
1

β
log
∑
n

eβE(n) +
1

β
N logN + O(N1−τ ).

By Lemma 3.5, Eα satisfies the assumption of Lemma 3.16. Lemma 3.16
then shows that the sum over n can be estimated by its dominant term n̄
with error N εO(`−2) = O(N1−τ ). Since

E(n̄) =

(
1

2
− 1

β

)∑
α

n̄ log(n̄b−2) +
∑
α

n̄ζ(γ)(n̄)

=

(
1

2
− 1

β

)
N logN +Nζ(γ)(Nb2),

this replacement yields

1

β
log

∫
e−βH

`
V (z)m(dz) + 2π`2N2 −N log `

=
1

2
N logN +Nζ(γ)(Nb2) + O(N1−τ ),

which completes the proof of (3.69). �

3.8. Existence of torus residual free energy: proof of Theorem 3.1

We now prove Theorem 3.1. The main ingredient is the next lemma which
combines the previously proven estimates.

Lemma 3.18. For any σ > 0 there exists τ > 0 such that for ν with
n−1/2+σ 6 ν 6 n−1/3−σ,

(3.73) max
ñ∈[n,2n]

|ζ(ν)(n)− ζ(ν)(ñ)| = O(n−τ ).

More precisely, O(n−τ ) is nεO(nν3 + 1/(ν
√
n)).
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Proof. We will find u0(σ) > 0 such that the following statements hold. Given
n ∈ N, let ñ ∈ [n, 2n] ∩ N. Choose 0 6 u, ũ 6 u0(σ) such that B = nu and
B̃ = ñũ are both integers and that |B̃

√
M −B| 6 1 where M = ñ/n ∈ [1, 2].

We also set ` = n−uν and ˜̀= ñ−ũν. We claim that the following statements
hold:

ζ(`)(B2n) = ζ(ν)(n) + O(n−τ ),(3.74)

ζ(˜̀)(B̃2ñ) = ζ(ν)(ñ) + O(n−τ ),(3.75)

ζ(˜̀)(B̃2ñ)− ζ(`)(B̃2ñ) = O(n−τ ),(3.76)

ζ(`)(B2n)− ζ(`)(B̃2ñ) = O(n−τ ).(3.77)

By combining the estimates (3.74), (3.75), (3.76), (3.77), we obtain (3.73).
To prove (3.74), we apply Proposition 3.17 with N = B2n and b = 1/B.

For u sufficiently small, the assumptions of this lemma imply that the as-
sumptions of Proposition 3.17 are satisfied. Thus the resulting error estimate
of Proposition 3.17 becomes

N εO(N`3/b+ 1/(N`2)) = n2εO(n1−2uν3 + 1/(nν2))

6 n2εO(n1−2uν3 + 1/(n1/2+σν)) = O(n−τ ).

This completes the proof of (3.74). The proof of (3.75) can be done analo-
gously.

To prove (3.76), we apply (3.4) with N = B̃2ñ. This gives the needed
bound since 1/(N`2) 6 n2(u−ũ)−1ν−2 = O(n2(u−ũ)−σ/(

√
nν)) = O(1/(

√
nν))

when u and ũ are small depending on σ.
To prove (3.77), we apply (3.13). Since |B̃2M −B2| ≤ O(B), (3.13) im-

plies

|ζ(`)(B2n)− ζ(`)(B̃2ñ)| = O

(
|B̃2ñ−B2n|
|B̃2ñ+B2n|1−ε

)
(3.78)

= O

(
|B̃2M −B2|nε

|B̃2M +B2|1−ε

)
≤ O(nε)

B1−2ε
= O(n−τ ),

where the last inequality follows from nεO(1/B) = nεO(1/(
√
nν)) = O(n−τ ).

�

Proof of Theorem 3.1. Recall ζ is defined in (3.2). We set a constant c = 3/8
and for j ∈ N, define the sequences nj = 2j , νj = 2−cj and ζj = ζ(νj)(nj). For
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k > i, we then write

∣∣ζi − ζk∣∣ 6 k−1∑
j=i

|ζ(νj)(nj)− ζ(νj)(nj+1)|(3.79)

+

k−1∑
j=i

|ζ(νj)(nj+1)− ζ(νj+1)(nj+1)|.

We estimate the first sum in (3.79) by using Lemma 3.18. Note that since
c = 3/8 ∈ (1/3, 1/2), the assumptions of Lemma 3.18 are satisfied with n =
nj and ν = νj . Thus the first sum can be bounded by

∑k−1
j=i n

ε
jO(njν

3
j +

1/(νj
√
nj)) = O(2−(1/8−ε)i). For the second sum in (3.79), we use (3.4) and

obtain the estimate
∑k−1

j=i O(n−1+ε
j ν−2

j ) = O(2−(1/4−ε)i).

In summary, with τ = 1/8− ε, we have shown that ζk = ζi + O(2−iτ ) for
k > i sufficiently large. This implies the existence of the limit limj→∞ ζj = ζ
with the estimate ζj = ζ + O(2−jτ ).

Finally, it remains to pass from the limit along the dyadic sequence
above to that for general N and ` as in the statement of the theorem. Given
N large, we let jN be the smallest integer j such that 2j > N . By (3.4)
respectively (3.73), then

ζ(`)(N) = ζ(νjN )(N) + O(N−2σ+ε),(3.80)

ζ(νjN )(N) = ζjN + O(N−1/8+ε).(3.81)

Combining these two inequalities then gives the claim with N εO(N−1/8 +
N−2σ) = O(N−κ). �

4. Proof of Theorem 1.1: quasi-free approximation of
free energy

In this and the following three sections, we prove Theorem 1.1 and its local
version Theorem 4.2. The proofs of both theorems will be parallel and we
will give detailed arguments for the proof of Theorem 1.1 and remark along
the way the modifications needed for the proof of its local version.

We follow the strategy of quasi-free approximation analogously as for the
torus in Section 3. The main differences are that the equilibrium measure
can have a non-constant density and that its support has a boundary. In this
section, we present the set-up of the quasi-free approximation, and give the
proof of Theorem 1.1 assuming using Propositions 4.5–4.6 which are proved
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subsequently in Sections 5–7. In Section 5, we prove the upper bound on the
partition function. As in the torus case, this upper bound can essentially
be established using the Jensen inequality and the positive definiteness of
the Coulomb potential. In Section 7, we prove the lower bound. The lower
bound involves estimating the Coulomb energy near the boundary of the
support of the equilibrium measure and is the main difficulty of the proof.

4.1. Main result

We recall the definition of the two-dimensional Yukawa gas with range R and
external potential V as well as the related potential theory from Section 2.
In particular,

HR
V (z) = N

∑
j

V (zj) +
∑
j 6=k

Y R(zj − zk)

is the corresponding Hamiltonian, µRV is the equilibrium measure, ρRV denotes
the density of its absolutely continuous part, and IRV is the minimizing energy
of the variational functional.

Theorem 4.1. Assume that V satisfies the assumptions of Theorem 1.1
or more generally those stated in Theorem 4.2 below. Then for any σ > 0,
there exists a constant κ > 0 such that, for all R > N2,

1

βN
log

∫
CN

e−βH
R
V (z)m(dz)(4.1)

= −NIRV + logR+
1

2
logN + ζ

+

(
1

2
− 1

β

)∫
C
ρRV log ρRV dm+ O(N−κ),

where ζ is the residual torus free energy of Theorem 3.1. For R > 1, any
κ < 1/24 is admissible.

The remainder of Section 4 is devoted to the proof of Theorem 4.1,
which is concluded in Section 4.5, subject to the proofs of Propositions 4.5–
4.6, which will be proved in Sections 5 and 7. Theorem 1.1 for the Coulomb
gas is then a direct consequence, by taking R→∞, which we do in detail
in Section 4.6.

Throughout this section, we make the standing assumptions R > N2,
and that V satisfies the assumptions of Theorem 1.1, i.e., the asymptotic
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condition (1.4) and (1.10), or more generally that the conditions of the
remark below hold. We denote the empirical measure by µ̂ and its difference
with equilibrium measure by µ̃ = µ̃RV , i.e.,

(4.2) µ̂ = N−1
∑
j

δzj , µ̃ = µ̃RV = µ̂− µRV .

We denote the expectation of the Coulomb gas with density e−βH
R
V by ERV .

The following Theorem is a local version of Theorem 1.1. A more precise
statement with precise scaling and notation will be given in Theorem 8.15.
We choose to present it in the following way so that it is easier to digest in
the first reading.

Theorem 4.2 (A local version of Theorem 1.1). Consider the setting
of Theorem 1.1. Then the good boundary conditions hold with high probabil-
ity. Furthermore, Theorem 1.1 hold with respect to the conditional measure
with the error term O(N−κ) replaced by

(4.3) C(Ω, A)(1 +K2)(Nr2)−(κ∧a′)

for any a′ < a, where a is the constant in (2.32).

4.2. Short-range Yukawa approximation

The first step is a decomposition of the Yukawa potential into a short-
range and a long-range part. This is similar to our strategy in the proof
of Lemma 3.3 for the torus. However, due to the presence of a boundary of
the support of the equilibrium measure and lack of rigidity estimates there,
we cannot prove an analog of Lemma 3.3. Therefore we subsequently cannot
drop the long-range part of the interaction near the boundary.

Given 0 < ` < R, we decompose the Yukawa potential as Y R = Y `(z) +
L`R(z). The formula (2.1) shows that the Fourier transform of L`R is positive
and thus that L`R is a positive definite function on C. The next lemma
expresses the long-range contribution to the interaction in terms of a effective
potential Q and an error. We set

Q(z) = Q`R(z) = V (z) + 2

∫
L`R(z − w)µRV (dw),(4.4)

L = L`R =

∫
L`R(z − w) µ̃RV (dw) µ̃RV (dz),(4.5)

K = K`
R =

∫
L`R(z − w)µRV (dw)µRV (dz),(4.6)
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where K`
R is the equilibrium interaction energy of the potential difference

L`R = Y R − Y `.

Lemma 4.3. Let 0 < ` < R, and let Q, L, and K be as above. Then we
have the identity∑

j 6=k
L`R(zj − zk) +N

∑
j

V (zj)(4.7)

= N
∑
j

Q`R(zj) +N2L`R −N log(R/`)−N2K`
R,

and in particular

(4.8) H`
Q(z) = HR

V (z)−N2L`R +N log(R/`) +N2K`
R.

Moreover, the minimizers of the variational functionals I`Q and IRV coincide,

i.e., µ`Q = µRV , and their energies satisfy I`Q = IRV +K`
R. The Euler–Lagrange

equation for the measure µ`Q is∫
Y `(z − w)µ`Q(dw) + 1

2Q(z) = cV q.e. in SRV and(4.9) ∫
Y `(z − w)µ`Q(dw) + 1

2Q(z) > cV q.e. in C,

with the same constant cV as in the Euler–Lagrange equation for µRV .

Proof. The proof of (4.7) is a direct calculation. Indeed, using that L`R(0) =
log(R/`) by (2.2), it follows that∫

z 6=w
L`R(z − w) µ̃RV (dw) µ̃RV (dz)

=

∫
L`R(z − w) µ̃RV (dw) µ̃RV (dz)− 1

N
log(R/`).

The equilibrium measures (minimizers) of IRV and I`Q are characterized by
the Euler–Lagrange equations (2.13), which state that in the supports of the
measures, the equalities

1

2
V + Y R ∗ µRV = cRV ,

1

2
Q+ Y ` ∗ µ`Q = c`Q

hold, and that equality is replaced by inequality outside the supports of the
equilibrium measures. By definition of Q and the Euler–Lagrange equation
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for µRV , the solution µ`Q satisfies (4.9). By the uniqueness of the minimiz-

ers, we thus conclude that µ`Q = µRV and SRV = S`Q, i.e., the two minimizers

coincide. Moreover, a simple computation yields that IRV = I`Q +K`
R. �

In view of the above lemma, we write µV instead of µRV = µ`Q from now
on, we write ρV for the density of the absolutely continuous part of µV , and
SV for its support. The next lemma gives an elementary estimate on Q that
will be useful later.

Lemma 4.4. For z ∈ SV with distance � ` to the complement of SV ,

(4.10) Q(z) = 2cV − 4π`2ρV (z) +N εO(`4)‖∇2ρV ‖∞ + O(N−∞).

Proof. By Lemma 4.3, for z ∈ SV , we have

Q(z) = 2cV − 2

∫
Y `(z − w)µV (dw)

= 2cV − 2ρV (z)

∫
Y `(z − w)m(dw) +N εO(`4)‖∇2ρV ‖∞ + O(N−∞).

In the second equality, we used that, by the exponential decay of Y `, we
may restrict the integral over w a disk of radius O(`N ε) around z, up to
an error O(N−∞). Moreover, since z is in the support of the absolutely
continuous part of µV with distance � ` to its complement, we may Taylor
expand the equilibrium density to second order and use that the first-order
term vanishes after integration. The definition of the Yukawa potential (2.1)
implies

∫
Y `(z − w)m(dw) = 2π`2. This implies (4.10). �

4.3. Quasi-free approximation

In this and the next subsections, we approximate the partition function of
the (long-range) Yukawa gas in terms of the quasi-free Yukawa approxima-
tion, which we now define. The idea is the same as in Section 3.4, with the
additional element that now the boundary requires a special treatment.

Given parameters which we will chose later on with the constraint

(4.11) N−1/2+σ � `� b 6 b′ � 1, ` < R,

we divide C into a grid of squares α of side length b with centers c(α) ∈
(bZ)2 ⊂ C. The last constraint (4.11) will be assumed through out this paper.
It will also be useful to also consider the shifted grid, in which all squares are
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translated by u ∈ [−b/2, b/2)2 so that their centers are u+ c(α). We write
Su for the set of squares partitioning C such that the square containing 0
has u as its center. We say that the square α ∈ S0 is in the bulk if it and its
translates by u ∈ [−b/2, b/2)2 have distance at least b′ to the complement of
SV (respectively Ω in the situation of Theorem 4.2). Denote by D0 the union
of the bulk squares in S0 and by B0 = SV \D0 the remaining boundary
region. For a square α ∈ Su we define that α is in the bulk if α− u ∈ S0 is
the bulk. Similarly, we define Du the union of the bulk squares satisfying
the previous condition and denote by Bu = SV \Du the boundary region in
this case. We will use the notation α ∈ Du (or α ⊂ Du) to denote that α
is a bulk cube. Throughout Section 4, we assume in addition to (4.11) the
following condtion:

(4.12) b′ � N−1/4.

In the context of Theorem 4.2, we assume that b′ > N−a instead of b′ �
N−1/4.

Given parameters as above, we consider the quasi-free Yukawa gas ob-
tained by removing the interaction between particles in a bulk square with
particles outside that square, and replacing the interactions between parti-
cles in the same square by a periodic one inside each bulk square. For the
particles in the boundary region, we will use independent particle approxi-
mation with density given by the equilibrium density ρV near the boundary.
Since the boundary region B has an area of smaller order when compared
with the interior domain D, the independent particle approximation is al-
ready sufficient to approximate the log partition function to order N1−c.

Fix u ∈ [−b/2, b/2)2. The following definitions depend on u, but we do
not make this explicit in the notation. Firstly, we write S̄ = S̄u for the set

(4.13) S̄u = {u+ α : α ∈ S0, α ⊂ Du} ∪ {Bu},

i.e. the set of bulk squares together with the boundary region. Let n = (nα)
be a particle profile with

∑
α nα = N . Similarly as in (3.23), we define the

quasi-free free energy for particle profile n by

(4.14) F (n) =
1

β
log

(
N

n

)
+

1

β

∑
α⊂D

log

∫
Tnαα

e−βĤα(v)m(dv)− ĤB,
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with

(4.15)

Ĥα(v) =
∑
i 6=j

U `α(vi − vj) +NnαQ(α),

ĤB = N2IQ,B + 2cVN(nB −NµV (B)),

where Q(α) := Q(c(α)) and IQ,B is a constant defined in (5.13) below. We
denote by n̄ = (n̄α) the approximate mean number of particles in α, where
α is either a square or the boundary region. More precisely, we choose n̄α to
be an integer at distance at most 1 to NµV (α); we assume that this rounded
choice is such that

∑
α n̄α = N . The precise choice of n̄α is not important

as long as it is within 1 distance to nα and
∑

α n̄α = N . We also impose the
convention that sums over n will always be over all particle profiles with∑

α nα = N .
We will prove the following upper and lower bounds on the partition

function in terms of the quasifree free energy.

Proposition 4.5 (Upper Bound). Assume that the parameters b, b′ sat-
isfy (4.11) and (4.12). Then there exists u ∈ [−b/2, b/2)2 such that

1

β
log

∫
e−βH

R
V (z)m(dz)−N log(R/`)−N2K`

R(4.16)

6
1

β
log
∑
n

eβF (n) +N εO(N2`3b−1 +N2`2b)‖ρV ‖∞,2

+ O(nB logN),

where ‖ρV ‖∞,2 is defined in (1.7).

The error terms in (4.16) can be understood as follows. The error
N2`3b−1 = (N`2)(N2`b−1) is the number of pair interactions via a Yukawa
gas of range ` for particles in neighboring squares; the error N2`2b is the
variation of the effective potential Q over a square of size b. The error terms
in the following lower bound cannot be obtained by a simple counting as the
bound relies on higher order cancellations which we will explain later on.

Proposition 4.6 (Lower Bound). Assume N−1/2+σ � `� b� N−2c/5

for some small c > 0, ` < R, and 1� `/b� (Nb2)−1/4. Then, with τ =
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2σ/5, for all u ∈ [−b/2, b/2)2,

1

β
log

∫
e−βH

R
V (z)m(dz)−N log(R/`)−N2K`

R(4.17)

≥ F (n̄) +N εO(N1−τ + b2`−4)

+ O(N2(b4 + `2b))(‖ρV ‖∞,3 + ‖ρV ‖2∞,3)

+ O(b−2 logN + n̄B logN).

More precisely, O(N1−τ ) is N εO(N4/5`−2/5 +Nb).

Propositions 4.5 and 4.6 will be proved in Sections 5–7. In the remain-
der of Section 4, we complete the proof of Theorem 4.1 assuming these
propositions. They assert that the free energy of a Yukawa gas with (long)
range R can be approximated by that of the quasi-free Yukawa gases with
range `� R, for appropriate choices of the parameters b, b′ and `. These
propositions are analogous to Propositions 3.8 and 3.9, with the additional
treatment of the boundary and taking into account that the density of the
equilibrium measure is in general not constant.

We end this subsection by recording the following simple estimates for
the bulk and boundary regions. In the following, we usually omit the param-
eter u from Du (the union of bulk squares) and write B = SV \D to denote
the boundary region. We write

⋂
D =

⋂
uDu and

⋃
D =

⋃
uDu.

Lemma 4.7. The following bounds hold uniformly in the shift parame-
ter u ∈ [−b/2, b/2)2. The number of bulk squares (which is independent of
u) is O(b−2), the number of bulk squares touching the boundary region is
O(b−1), and the equilibrium mass covered by the bulk squares is µV (

⋂
D) >

1−O(b′). In addition, for any α ⊂ D,

(4.18)
n̄α = O(Nb2)‖ρV ‖∞, n̄α = Nb2ρ(α) + O(Nb3)‖∇ρV ‖∞,
n̄B = O(Nb′).

Proof. The claim about the number of bulk squares follows immediately
from the fact that the support of SV has diameter of order 1. The statements
about the number of squares touching the boundary region and the mass not
covered by the squares follow from the assumption that the the boundary
of SV is piecewise C1. In the more general situation of Theorem 4.2, the
estimates hold by the assumption stated in the remark. Finally, (4.18) follows
immediately from the fact that, by construction, ρV is C1 on the squares α.

�
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4.4. Consequence of quasi-free approximation

With the upper and lower bounds established in Propositions 4.5 and 4.6, the
remainder of the proof is similar to that for the torus. In fact, the following
proof is simpler since the limit of the torus free energy has already been
established.

First, analogously to (3.64), we define

hα(n) = 2πγ2(nα−n̄α)2−nαζ−
1

2
nα log nα−

(
1

2
− 1

β

)
nα log b−2,(4.19)

where γ = `/b.

Then, similarly to Lemma 3.15, we have the following estimate for F (n)
defined in (4.14).

Lemma 4.8. Assume that b satisfies (4.11). There exists τ > 0 such that

F (n) +N log `−N2K`
R −N2IRV

=
1

β
log

(
N

n

)
−
∑
α⊂D

hα(n) + O(N2`2b)(1 + ‖ρV ‖∞,1)2 + O(N1−τ ),

where ‖ρV ‖∞,1 is defined in (1.7). More precisely, the error O(N1−τ ) is
N εO(N7/8/b1/4 + `−2).

Proof. From (4.14), recall that

F (n) =
1

β
log

(
N

n

)
−
∑
α

Tα(nα)− ĤB,

Tα(nα) := − 1

β
log

∫
Tnαα

e−βĤα(z)m(dz),

where here and in the rest of this proof, all summations over α are over
α ⊂ D. Recall the defintion of ĤB from (4.15), hence Lemma 4.8 follows
from ∑

α

Tα(nα) +N2IQ,B + 2cVN(nB −NµV (B))−N2K`
R

= N2IRV −N log `+
∑
α⊂D

hα(n) + O(N2`2b(1 + ‖ρV ‖∞,1)2) + O(N1−τ ),
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which we now prove. By definition of Tα,

Tα(nα) = NnαQ(α) + 2πγ2n2
α − nα log `− ξ(γ)

b (nα)

= NnαQ(α) + 2πγ2n2
α − nα log `− nαζ(γ)(nα)

− 1

2
nα log nα −

(
1

2
− 1

β

)
nα log b−2.

By Theorem 3.1, nαζ
(γ)(nα) = nαζ +N εO(n

7/8
α + 1/γ2) so that∑

α

nαζ
(γ)(nα) = Nζ + b−2N εO((Nb2)7/8 + (`/b)−2)

= Nζ +N εO(N7/8/b1/4 + `−2).

Therefore∑
α

Tα(nα) =
∑
α

(
NnαQ(α) + 2πγ2n2

α

− 1

2
nα log nα −

(
1

2
− 1

β

)
nα log b−2

)
−N log `−Nζ +N εO(N7/8/b1/4 + `−2).

By definition of hα(n) in (4.19) and since∑
α

2πγ2n2
α = 2πγ2

∑
α

(nα − n̄α)2 + 4πγ2
∑
α

nαn̄α − 2πγ2
∑
α

n̄2
α,

we obtain∑
α

Tα(nα)−
∑
α

hα(nα) +N log `

=
∑
α

(
NnαQ(α) + 4πγ2nαn̄α − 2πγ2n̄2

α

)
+ O(N

7

8
+ε/b

1

4 + `−2).

We now compute the right-hand side of the last equation. Using that γ = `/b,
that 2π`2 =

∫
Y `(z)m(dz) =

∫
α Y

`(z)m(dz) + O(N−∞), and that

n̄α = Nb2ρV (z) + O(Nb3)‖∇ρV ‖∞

= N

∫
α
ρV (w)m(dw) + O(Nb3)‖∇ρV ‖∞
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for any z ∈ α, we obtain

2πγ2
∑
α

n̄2
α = N2

∑
α

∫∫
D×α

Y `(z − w) ρV (z) ρV (w)m(dz)m(dw)(4.20)

+ O(N2`2b)‖ρV ‖∞‖∇ρV ‖∞

= N2

∫∫
D×D

Y `(z − w)µV (dz)µV (dw)

+ O(N2`2b)‖ρV ‖∞‖∇ρV ‖∞.

Analogously, we have

4πγ2n̄α = 2N

∫
Y `(α− z)ρV (z)m(dz) + O(N`2b)‖∇ρV ‖∞.

It follows that∑
α

[NnαQ(α) + 4πγ2nαn̄α]

= N
∑
α

nα

[
Q(α) + 2

∫
Y `(α− z)µV (dz)

]
+ O(N2`2b)‖∇ρV ‖∞

+ 2N
∑
α

nα

∫
Y `(α− z) [ρV (z)m(dz)− µV (dz)]

= 2cVN(N − nB) + O(N2`2b)‖∇ρV ‖∞

− 2N2

∫∫
D×B

Y `(z − w)µV (dz)µV (dw) + O(N2`3‖ρV ‖2∞),

where the second equality follows from the Euler–Lagrange equation (4.9)
and

∑
α nα = N − nB, and using that in the computation of

∫∫
D×B Y

`(z −
w)µV (dz)µV (dw), the contribution of the absolutely continuous part of µV
in B is of order N2`2‖ρV ‖2∞. Using also that

IQ,B − 2cV µV (B) = −
∫∫

B×B
Y `(z − w)µV (dz)µV (dw)

by (5.13), in summary, we have proved∑
α

Tα(nα) +N2IQ,B + 2cVN(nB −NµV (B))−
∑
α

hα(nα) +N log `

= 2cVN
2 −N2

∫∫
C2

Y `(z − w)µV (dz)µV (dw)

+ O(N2`2b)(‖ρV ‖∞ + ‖∇ρV ‖∞)2.
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Lemma 4.8 now follows from the Euler–Lagrange equation (4.9), which im-
plies

2cV = 2

∫∫
Y R(z − w)µV (dz)µV (dw) +

∫
V (z)µV (dz)

=

∫∫
Y R(z − w)µV (dz)µV (dw) + IRV

=

∫∫
Y `(z − w)µV (dz)µV (dw) +K`

R + IRV .

This completes the proof. �

We need the following bound showing that in the sum over n the domi-
nant term is n = n̄. The torus version of this lemma was given in Lemma 3.16.

Lemma 4.9. Recall the condition (4.11). Suppose that we have a collection
of functions Eα : N→ R satisfying |Eα(n)− Eα(m)| 6 O(|n−m|(n+m)ε).
Define

(4.21) E(n) =
∑
α⊂D

[
− 2πγ2(nα − n̄α)2 + Eα(nα)

]
.

Assume that n̄ satisfies (4.18) and that γ = `/b > N−C . Then

(4.22)
1

β
log
∑
n

eβE(n)+βO(nB logN) 6 E(n̄) +N εO(Nb′ + `−2‖ρV ‖∞),

where the sum on n is under the constraint N =
∑

α nα = nB +
∑

α⊂D nα.
Notice that E contains only contribution from the squares in the bulk.

Proof. By definition,

1

β
log
∑
n

eβE(n)+βO(nB logN) − E(n̄)(4.23)

=
1

β
log
∑
n

eβ(E(n)−E(n̄))+βO(nB logN)

=
1

β
log
∑
n

exp

[∑
α

β
[
−2πγ2(nα − n̄α)2 + (Eα(nα)− Eα(n̄α)

]
+ O(βnB logN)

]
.
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By the constraint N =
∑

α nα = nB +
∑

α⊂D nα, we can add the factor

1
(
nB − n̄B =

∑
α⊂D

(n̄α − nα)
)
6 1

(
|nB − n̄B| 6

∑
α⊂D
|n̄α − nα|

)
6 exp

[
− β2πγ2

2#{α ⊂ D}
(nB − n̄B)2 +

β2πγ2

2

∑
α⊂D

(n̄α − nα)2

]
,

where we used 1(a 6 b) 6 e−Aa
2+Ab2 for any constantA > 0 and (

∑
α⊂D xα)2

6 #{α ⊂ D}
∑

α⊂D x
2
α where #{α ⊂ D} = O(b−2) is the number of squares.

Thus, at the cost of replacing 2πγ2 by πγ2 in (4.23), we can add the following
factor to the right hand side of (4.23):

exp
[
−cβb2γ2(nB − n̄B)2

]
= exp

[
−βc`2(nB − n̄B)2

]
,

where c is a constant of order one. With this preparation, to get an up-
per bound, we now drop the constraint

∑
α nα = N on n, and sum each

nα independently. For the bulk squares, we use |Eα(n)− Eα(m)| ≤ O(|n−
m|(n+m)ε) and the elementary inequality (3.68), as in the torus case. For
the boundary layer B, we similarly use

∞∑
n=0

exp
[
Cn logN − c`2(n−m)2

]
6 O(`−1)eO(m+`−2)(logN)2

.

In summary, using n̄α = O(Nb2)‖ρV ‖∞ for α ⊂ D and n̄B = O(Nb′) by
(4.18), the left-hand side of (4.23) is of order

(logN)
∑
α⊂D

γ−2(n̄α + γ−2)2ε‖ρV ‖∞ + (logN)2(n̄B + `−2)

≤ O(N2ε`−2)‖ρV ‖∞ + O(Nb′(logN)2).

This completes the proof of the lemma. �

4.5. Existence of free energy of Yukawa gas: proof of
Theorem 4.1

The proof of Theorem 4.1 below is analogous to that of Proposition 3.17.

Proof of Theorem 4.1. We first show that if 1 > R > N−1/2+σ there is some
κ = κ(σ) > 0 such that (4.1) holds. Subsequently we will observe that any
κ < 1/24 is admissible if R > 1. To do this, we apply Propositions 4.5, 4.6
and consider the different error terms.
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First, for any choice N−1/4 � b′ � 1 the error terms involving b′ are
N εO(nB) = N εO(Nb′) using (4.18). In particular, in the situation of Theo-
rem 1.1, we can choose b′ < N−κ as needed. In the situation of Theorem 4.2,
this error term is N εO(N1−a) as claimed in the remark.

Next we emphasize that, in the upper and lower bounds (Propositions 4.5
and 4.6), the range parameter ` is not required to be the same, but we always
require ` 6 R. We denote the value of ` by `+ for the upper bound and by
`− for the lower bound.

We first consider the case N−1/2+σ 6 R 6 1. Take b = N−1/2+σ/10. For
`+ = N−1/2+σ/100, the error terms in (4.16) are bounded by N1−σ/1000. For
`− = N−1/2+9σ/100, the error terms in (4.17) are also bounded by N1−σ/1000

(we used n̄B = O(Nb′)).
With Lemma 4.8, for some κ = κ(σ) > 0 we therefore obtain

1

β
log

∫
e−βH

R
V (z)m(dz)(4.24)

> −N2IRV +N logR+
1

β
log

(
N

n̄

)
e−β

∑
α hα(n̄) −O(N1−κ),

1

β
log

∫
e−βH

R
V (z)m(dz)(4.25)

6 −N2IRV +N logR+
1

β
log
∑
n

(
N

n

)
e−β

∑
α hα(n) + O(N1−κ).

For the rest of this proof, all summations of α are over α ⊂ D.
By Stirling’s formula as in (3.72), and using the definitions of h in

(4.19) and of E in (4.21) with Eα(nα) = (1
2 −

1
β )nα log(nαb

−2), we can rewrite
(4.24), (4.25) as

1

β
log

∫
e−βH

R
V (z)m(dz) +N2IRV(4.26)

> E(n̄) + ζ +N logR+
1

β
N logN + O(N1−κ),

1

β
log

∫
e−βH

R
V (z)m(dz) +N2IRV(4.27)

6
1

β
log
∑
n

eβE(n) + ζ +N logR+
1

β
N logN + O(N1−κ).

By Lemma 4.9, we can replace the sum over n in (4.27) by the dominant
term n̄ with error smaller than O(N1−κ). By a Riemann sum approximation
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using that ρV is C1 in D,

E(n̄) =

(
1

2
− 1

β

)∑
α

n̄α log(n̄αb
−2)

=

(
1

2
− 1

β

)
N

∫
ρV (z) log ρV (z)m(dz)

+

(
1

2
− 1

β

)
N logN + O(N(b+ b′))‖ρV ‖∞,1.

This completes the proof of (4.1) when N−1/2+σ 6 R 6 1.
To show that if R > 1 then any κ < 1/24 is admissible, we consider all

error terms in details. In the upper bound (4.16), the error is

(4.28) O(N ε)
[
N2`3+b

−1 +N2`2+b
]
,

while, in the lower bound (4.17), it is of order

(4.29) O(N ε)
[
N2b4 +N2`2−b+Nb+ (b2`−4

− +N4/5/`
2/5
− )

]
.

Lemma 4.8 gives analogues of (4.24) and (4.25) with an error term

O(N ε)
[
N7/8/b1/4 + 1/`2− + 1/`2+

]
.

Optimizing the parameters yields b = N−1/3, `+ = N−23/48, `− = N−7/18.
Note that this choice of parameters satisfies the hypothesis `−/b�(Nb2)−1/4

and `± 6 R. The common error then becomes O(N23/24+ε) for arbitrarily
small ε > 0. The rest of the proof is unchanged. �

4.6. Existence of free energy of Coulomb gas: proof of
Theorem 1.1

We now choose R = N2 to deduce Theorem 1.1 from Theorem 4.1.

Proof of Theorem 1.1. The equilibrium measure µV of the Coulomb gas in
Theorem 1.1 is characterized by the Euler–Lagrange equation

(4.30) UµV +
1

2
V = cV
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in its support SV and inequality in all of C. Define the potential VR via the
equation

(4.31) VR(z) = V (z)+2

∫ (
log

1

|z−w|
−Y R(z−w)+Y0+logR

)
µV (dw).

Explicitly, one can check that in SV ,

(4.32) UµVR +
1

2
VR = cRV , cRV = cV + Y0 + logR,

holds and with the inequality ≥ cRV outside the support of SV . Thus µV is
also the equilibrium measure with respect to the Yukawa interaction and
external potential VR. Moreover, by (2.2),

IRVR =

∫
UµVR (z)µV (dz) +

∫
VR(z)µV (dz)(4.33)

=

∫
UµVR (z)µV (dz) +

∫
V (z)µV (dz)

+ 2

∫
(UµV (z)− UµVR (z) + Y0 + logR)

= ICV + (Y0 + logR) + O

(
1

R

)
.

Thus we have

1

β
log

∫
e−βH

YR

VR m(dz) =
1

β
log

∫
e−βH

C
V m(dz)

−N(N − 1)(Y0 + logR) + O

(
N2

R

)
.

Moreover, (2.2) and an analogous estimate for derivatives of (2.1) imply

(4.34) max
k65
‖∇k(VR − V )‖∞ = O

(
1

R

)
.

Thus, we may apply Theorem 4.1 with V replaced by VR and with R = N2,
and Theorem 1.1 then follows with ζCβ = ζ − Y0. �
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5. Proof of Proposition 4.5: free energy upper bound

5.1. Upper bound: proof of Proposition 4.5

In this section, the condition R > N2 is imposed. Recall from the proof of
Proposition 3.8 that, to each square u+ α, we associate a map Φu

α : u+ α→
T(b) defined by (3.26)–(3.27). Analogously to (3.28), we define a two-body
potential

Ỹ `
u (z, w) =

∑
α∈S0

U `b (Φ
u
α(z)− Φu

α(w))1z∈u+α1w∈u+α(5.1)

+ Y `(z − w)1z 6∈Du,w 6∈Du ,

and Q̃u by replacing Q in the bulk squares u+ α ⊂ Du by its value at the
centers of the squares, and outside Du by adding the equilibrium contribu-
tion from the pair interaction with the bulk, i.e.,

Q̃u(z) =
∑
α∈S0

Q(c(u+ α))1z∈u+α(5.2)

+

(
Q(z) + 2N

∫
Du

Y `(z − w)µV (dw)

)
1z 6∈Du .

Denote by H̃`
u the corresponding Hamiltonian on CN :

(5.3) H̃`
u(z) = N

∑
j

Q̃u(zj) +
∑
i 6=j

Ỹ `
u (zi, zj).

The main work towards Proposition 4.5 is contained in the proof of Propo-
sition 5.1 below.

Proposition 5.1. Under the assumptions of Proposition 4.5, there exists
u ∈ [−b/2, b/2)2 such that (the constant K`

R is defined in (4.6))

1

β
log

∫
e−βH

R
V (z)m(dz)(5.4)

6
1

β
log

∫
e−βH̃

`
u(z)m(dz) +N log(R/`) +N2K`

R

+N εO(N2`3b−1 +N2`2b)‖ρV ‖∞,2.
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In preparation of the proof, we collect some notation and bounds. We
write Euf(u) = b−2

∫
[−b/2,b/2)2 duf(u) for the average over u, and analo-

gously to (3.30), we denote

(5.5) Ȳ (z, w) = EuỸ `
u (z, w), Q̄(z) = EuQ̃u(z).

The following lemma provides estimates on Ȳ , extending the analogous
Lemma 3.10 for the torus. The estimates are stated in terms of the function
g defined in (3.32).

Lemma 5.2. Assume that `� b. Then

(i) Inside the bulk, i.e., for z, w ∈
⋂
D, we have Ȳ (z, w) = g(z − w) +

O(e−cb/`) and g(z − w)− Y `(z − w) = O(`/b).

(ii) Away from the bulk, i.e., for z, w 6∈
⋃
D, by definition we have Ȳ (z, w) =

Y `(z − w).

(iii) In general, and in particular near the boundary, we have the inequali-
ties

g(z − w) + O(e−cb/`) 6 Ȳ (z, w) 6 Y `(z − w) + O(e−cb/`)(5.6)

if |z − w|∞ 6 b/2.

Proof. (i) This case is exactly the same as Lemma 3.10.

(ii) In this case, since z, w /∈ Du, by the definition (5.1) we directly have
Ȳ (z, w) = Y `(z, w).

(iii) By the exponential decay of Y `, the definition (5.1) and using that U ` is
the periodization of Y `, we have the bound Ȳ (z, w) 6 Y `(z − w) + O(e−cb/`)
for |z − w|∞ 6 b/2.

For the lower bound on Ȳ for |z − w|∞ 6 b/2, we notice that Ỹ `
u (z, w) =

Y `(z − w) + O(e−cb/`) if and only if either z and w belong to the same square
α ⊂ Du or z, w /∈ Du, and in other cases Ỹ `

u (z, w) = 0. The probability of
first event, with respect to the u-average, is bounded below by that of the
event that z and w are both in the same square, irregardless of whether the
square is in Du or not. This probability is (b− x)(b− y)/b2, and therefore

Ỹ (z, w) >
(b− x)(b− y)

b2
Y `(z − w) + O(e−cb/`) = g(z − w) + O(e−cb/`).

This completes the proof. �
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Proof of Proposition 5.1. By Jensen’s inequality,

1

β
log

∫
e−βH

R
V (z)m(dz) ≤ 1

β
log

∫
e−βH̃

`
u(z)m(dz) + ERV (H̃`

u −HR
V ),(5.7)

where we recall that ERV denotes the expectation of the probability measure
with density e−βH

R
V . The last term can be rewritten as

(5.8) ERV (H̃`
u −HR

V ) = ERV (H̃`
u −H`

V ) + ERV (H`
V −HR

V ).

Using that L`R is positive definite, L`R > 0, and by (4.8), the last term in
(5.8) is bounded by

ERV (H`
V −HR

V ) = −N2ERV L`R +N log(R/`) +N2K`
R

≤ N log(R/`) +N2K`
R.

To bound the first term in (5.8) for some u, it suffices to bound the average
of (5.7) over u in the square [−b/2, b/2]2. Indeed, by the mean-value theorem
for continuous functions, there then exists a choice of u that achieves the
bound of the average. By the definition of Ȳ and Q̄ in (5.5), we have

1

b2

∫
[−b/2,b/2]2

duERV (H̃`
u −H`

V )(5.9)

= ERV
[
N
∑
j

(Q̄(zj)−Q(zj))
]

+ ERV
[∑
i 6=j

(Ȳ (zi, zj)− Y `(zi − zj))
]
.

For the particles in the bulk, the term involving Q is bounded using (4.10).
Indeed, the term 2cV in (4.10) cancels and using that `6b and N ε`46`2b
the difference of the other two terms in (4.10) is estimated by

(5.10) N
∑
j

(Q(zj)− Q̄(zj))1zj∈D = O(N2`2b)(‖∇ρV ‖∞ + ‖∇2ρV ‖∞).

For the particles outside the bulk, the difference of Q and Q̃ is by the
definition (5.2) equal to

2N

∫
D
Y `(zj − w)µV (dw) = O(N`2)‖ρV ‖∞.

By the decay of the Yukawa potential, only particles zj within distance N ε`
to D give a nonnegligible contribution to this term. By the local density
estimate, Theorem 2.3, there are O(N1+ε`) such particles, so that the sum
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of the last expression over the particles zj in the boundary region is bounded
by N2+ε`3 6 N2`2b.

Similarly, dividing the sum over i 6= j for the pair interaction in (5.9)
into bulk and boundary contribution, Lemma 5.3 below implies

ERV
∑
i 6=j

[Ȳ (zi, zj)− Y `(zi − zj)] = N εO(N2`3b−1).

Here we used that the contribution for the above sum where both zi and
zj are outside

⋃
D vanishes since then Ȳ (zi, zj) = Y `(zi − zj). Moreover,

for the contributions where at least one of the particles is in the bulk, we
may assume with negligible error that the other particle is at most distance
N ε` from it and thus also far from the boundary so that the local density
estimate is applicable. This completes the proof. �

The following lemma is analogous to Lemma 3.11 for the torus.

Lemma 5.3. For any u,

ERV
∑
i,j

1zi,zj∈
⋂
D[g(zi − zj)− Y `(zi − zj)] = O(N εN2`3b−1),(5.11)

ERV
∑
i,j

1zi∈B,zj∈
⋃
D[Ỹ (zi, zj)− Y `(zi − zj)] = O(N εN2`3).(5.12)

Proof. We use the local density for the Yukawa gas, Theorem 2.3, stating
that balls of radius r � N−1/2 contain O(Nr2) particles with high proba-
bility (provided that the distance to the boundary is at least b′ � N−1/4).
In addition, we use that for |zi − zj | > `N ε we have Y `(zi − zj) 6 e−cN

ε

so
that contributions to the corresponding contributions to the double sums in
the statement contribute lower order errors. As a consequence, exactly as in
the proof of (3.37),

ERV
∑
i,j

[g(zi − zj)− Y `(zi − zj)] = O(N εN(N`2)(`/b))

since each of the at most N particles zi interacts with O(N εN`2). particles
zj , and the difference g − Y ` is of order `/b by Lemma 5.2 (i). This proves
(5.11).

The estimate for the boundary layer (5.12) is analogous. Indeed, by
definition, the boundary layer has distance at least b′ to the boundary of the
support of the equilibrium measure, so that the local density estimate can
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still be applied. Then we similarly have

ERV
∑
i,j

1zi∈B,zj∈
⋃
D[Ỹ (zi, zj)− Y `(zi − zj)] = O((N`)(N`2)).

To see that this inequality holds, we note that, up to exponentially small
errors, the only pairs we need to consider are that one particle is in the
boundary and the other one is in the bulk with the distance of these two
particles of order `. Since, by the local density estimate, with high probability
the total number of particle near boundary corridor of width ` is N` and
each particle interacts with N`2 particles, the left side of the last inequality
is of order N`N`2. �

To bound the boundary contribution, we will need the following esti-
mate. For z ∈ SV \D, recall from (5.2) and the Euler–Lagrange equation
(4.9) that

Q̃(z) = Q(z) + 2

∫
D
Y `(z − w)µV (dw) = 2cV − 2

∫
B
Y `(z − w)µV (dw),

and define the constant

IQ,B =

∫
B
Q̃(z)µV (dz) +

∫∫
B2

Y `(z − w)µV (dz)µV (dw)(5.13)

= 2cV µV (B)−
∫∫

B2

Y `(z − w)µV (dz)µV (dw).

Proposition 5.4. For any u,

1

β
log

∫
(C\Du)nB

e−βN
∑
j Q̃(zj)−β

∑
j 6=k Y

`(zj−zk)m(dz)(5.14)

6 −N2IQ,B − 2cVN(nB −NµV (Bu)) + O(nB logN).

Proof. We fix u and abbreviate D = Du and B = Bu throughout the proof.
Let

E(nB) = inf∫
ω=nB

[
N

∫
C\D

Q̃(z)ω(dz) +

∫∫
(C\D)2

Y `(z − w)ω(dz)ω(dw)

]
,

where ω is a positive measure of total mass nB supported on C \D. Using
the standard technique to replace point particle by a smooth distribution of
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radius 1/N , the left-hand side of (5.14) is bounded above by

(5.15) − E(nB) + O(nB logN).

(A more sophisticated form of this method will be presented in the proof of
Proposition B.8, where the regularity of the equilibrium measure was used
only in the proof of the lower bound of the partition function.)

It thus suffices to show that

E(nB)−N2IQ,B > 2cVN(nB −NµV (B)).

To do so, with ω̃ = ω −NµV inside the infimum, we write

E(nB)−N2IQ,B

= inf∫
ω=nB

[
N

∫
Dc

Q̃(z)ω(dz) +

∫∫
(Dc)2

Y `(z − w)ω(dz)ω(dw)

]
−N2

∫
Dc

Q̃(z)µV (dz)−N2

∫∫
(Dc)2

Y `(z − w)µV (dz)µV (dw)

= inf∫
ω=nB

[
N

∫
Dc

ω̃(dz)

[
Q̃(z) + 2

∫
Dc

Y `(z − w)µV (dw)

]
+

∫
Dc

Y `(z − w) ω̃(dz) ω̃(dw)

]
.

The last term on the right-hand side is nonnegative, and can therefore be
dropped. By definition of Q̃ and the Euler–Lagrange equation (4.9), also

Q̃(z) + 2

∫
Dc

Y `(z − w)µV (dw) = Q(z) + 2

∫
Y `(z − w)µV (dw) > 2cV .

Since the same relation holds with equality on the support of µV , therefore

E(nB)−N2IQ,B > 2cVN

∫
Dc

ω̃(dz) = 2cVN(nB −NµV (B)).

This completes the proof. �

Proof of Proposition 4.5. Summing over the possible particle profiles, we
have ∫

e−βH̃
`
u(z)m(dz) =

∑
n

(
N

n

)∫
e−βH̃

`
u(z) 1n(z)=nm(dz),
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where n(z) is the particle profile of the configuration z ∈ CN . By definition
of H̃, for any u, the integral on the right-hand side factorizes as(∏

α⊂D

∫
αnα

e−βĤα(z)m(dz)

)

×

(∫
(C\D)nB

e−βN
∑
j Q̃(zj)−β

∑
j 6=k Y

`(zj−zk)m(dz)

)
.

The claim now follows from Propositions 5.1 and 5.4. �

5.2. Summary

We summarize some of the key facts used in the proof of the upper bound
of the partition function of the Yukawa gas:

(i) The local densities are bounded at the scale ` of the interaction.

(ii) The solution of the ground state is regular in terms of derivatives of
ρV ; this is reflected in the estimate (5.4).

(iii) We used the independent particle approximation for particles within
distance b′ to the boundary of the support of the equilibrium measure.
In order to control the error due to the interactions between boundary
particles and bulk particles, we used that the local density at the scale
` for particles at a distance of order b′ to the boundary is bounded.

6. Decoupling estimate

The proof for the lower bound on the partition function, Proposition 4.6, will
be presented in Section 7. This proof is based as on a trial state similar to the
one used in Section 3.6 for the torus case. Notice that the Yukawa potential
has range R in the current setting instead of ` in the torus case. Since our
grid size b satisfies `� b� R, many error terms which are negligible in the
torus case need now to be estimated carefully. In particular, the embedding
map Ψ has to be chosen differently from the simple average used in (3.42)–
(3.43). In preparation of Section 7, we construct this choice in Proposition 6.1
below. We call it a decoupling estimate because it allows us to pass from
the original Yukawa gas to the quasi-free Yukawa gas in which cubes are
decoupled. By rescaling, we state the estimates for the Yukawa gas on the
unit torus.
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More precisely, the next proposition asserts the existence of a random
choice of maps

(6.1) Ψ : T→ [−1/2, 1/2)2 ⊂ R2 with Jacobian |dΨ| = 1,

such that the estimates stated in the proposition hold. Here T is the unit
torus. The expectation corresponding to the randomness defining the maps
Ψ is denoted by EΨ (and is independent of everything else). In the statement
of the estimate in the following proposition, Uγ is the Yukawa potential on
the unit torus (2.4), Y γ is the Yukawa potential on the plane (2.1), but
Eγ denotes the expectation of the Yukawa gas with N particles and range
γ on the unit torus. As usually, we also denote µ̂ the empirical measure
and µ̃ = µ̂−m where m is the uniform probability measure on T. In the
statement below and this section, it is understood that all double integrals
are evaluated on {z 6= w}.

Proposition 6.1. Assume that N−1/4 � γ � 1 and γ 6 R. Let Eγ denote
the expectation of the N -particle Yukawa gas of range γ on the unit torus T.
There is a random choice of Ψ : T→ [−1/2, 1/2)2 with |dΨ| = 1 such that

N2EΨEγ
∫∫

T×T
(Uγ(v − w)− Y γ(Ψ(v)−Ψ(w))) µ̃(dv) µ̃(dw)(6.2)

= N εO(N4/5/γ2/5 + γ−4),

N2EΨEγ
∫∫

T×T
(Y R(Ψ(v)−Ψ(w))−Y γ(Ψ(v)−Ψ(w)))µ̃(dv)µ̃(dw)(6.3)

= N εO(N4/5/γ2/5 + γ−4).

The remainder of this section is devoted to the proof of this proposition.
The main reason to introduce randomness into Ψ is to resolve the issue that
the torus distance and Euclidean distance are incompatible. The range of
the Yukawa interaction `, appearing in the quasi-free gas, is small. On the
other hand, we wish to use it to approximate the Coulomb energy which
corresponds to Y R with R� 1. The Coulomb interaction will be pushed
back to the torus; this creates discontinuities since the torus is periodic.
The naive embedding of the square onto the torus used in Section 3.4 is
discontinuous along a horizontal and a vertical line. This discontinuity can
be averaged out using the translational invariance of the torus, but the
resulting interaction on the torus is still not smooth enough to apply the
rigidity estimate. Therefore we now choose Ψ to involve a more sophisticated
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average than the simple mean over the discontinuity lines so as to have a
smooth interaction after pushing back the Coulomb interaction to the torus.

In Section 7, we will apply this estimate with the unit torus T rescaled
to the torus T(b) of side length b. For later reference, we state the rescaled
version below.

Corollary 6.2. Let `� b� 1, ` 6 R, and assume that γ := `/b satisfies
n−1/4 � γ � 1. Let E`b denote the expectation of the n-particle Yukawa gas
of range ` on the torus T(b). Then there is a random choice of Ψ = Ψ(b) :
T(b) → [−b/2, b/2)2 with |dΨ| = 1 such that

n2EΨE`b
∫∫

T(b)×T(b)

(U `b (v − w)− Y `(Ψ(v)−Ψ(w))) µ̃(dv) µ̃(dw)(6.4)

= nεO(n4/5/γ2/5 + γ−4),

n2EΨE`b
∫∫

T(b)×T(b)

(Y R(Ψ(v)−Ψ(w))−Y `(Ψ(v)−Ψ(w)))µ̃(dv)µ̃(dw)(6.5)

= nεO(n4/5/γ2/5 + γ−4).

Proof. The corollary is immediate from Proposition 6.1 by rescaling. �

6.1. Choice of the maps Ψα

To define the maps Ψ, we define [u] through

− 1

2
6 [u] <

1

2
, u− [u] ∈ Z for u ∈ R,(6.6)

[z] = ([z1], [z2]) ∈ T for z ∈ C ∼= R2.

Then we define maps Φ1,Φ2 : T→ T by

(6.7) Φ1(z) = ([z1 +m1s(z2)], z2), Φ2(z) = (z1, [z2 +m2s(z1)]),

where we will choose s(z) = sin(2πx) (or any smooth periodic function with
similar oscillation). Let Φ = Φ1 ◦ Φ2. We choose m1,m2 as independent ran-
dom variables with the distribution of tX with X a random variable with
smooth and compactly supported density, E(X) = 0, and N−1/2 � t� 1 is
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some mesoscopic scale. Eventually, we will choose

(6.8) t = N−1/4.

Finally, let Ψz = [Φ(z) + (a1, a2)], where (a1, a2) is a random shift, with
a1 and a2 independent and uniform on [−1/2, 1/2). Note that Φ and Ψ are
smooth function on the torus and they preserve volumes:

(6.9) |dΦ| = |dΨ| = 1.

6.2. From euclidean to periodic interaction

All terms we need to bound can be written as in the left-hand side of (2.25),
so Proposition 2.5 will be our main tool. However, these terms involve in-
teractions for the Euclidean distance on the square while Proposition 6.1
applies to the unit torus. We therefore first need the next Lemma 6.4 to
turn the Euclidean interaction into a periodic one; subsequently, we decom-
pose the resulting singularities carefully. For the lemma, we first need the
following definition of an average of interaction over translations.

Definition 6.3. For any G : T2 → R and h ∈ C, we define

TG(h) =

∫
T
G(z, [z + h])m(dz),

where m is the Lebesgue measure on T and we used the notation (6.6).
If G(z, w) = g(|z − w|) is a function of the Euclidean distance, TG will

also be denoted by Tg (and is obviously equal to Tg(h) =
∫
T g(|[z + h]−

z|)m(dz)).

We remark that in the above definition and below, z − w for (z, w) ∈ T×
T is defined as the difference of two elements in C2 through the identification
of T = [−1/2, 1/2)2.

Lemma 6.4. Consider a Yukawa gas on the unit torus T, G : T2→R, and
assume all integrands below are integrable. The following holds:

(6.10) E
∫∫

z 6=w
G(z, w) µ̂(dz) µ̂(dw) = E

∫∫
z 6=w
TG([z − w]) µ̂(dz) µ̂(dw).
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Moreover, if G(z, w) = g(|z − w|) is a function of the Euclidean distance,
for any h = (h1, h2) ∈ T we have

Tg(h) = (1− |h1|)(1− |h2|)g1(h) + |h1|(1− |h2|)g2(h)(6.11)

+ |h2|(1− |h1|)g3(h) + |h1||h2|g4(h),

where

(6.12)

g1(h) := g(
√
|h1|2 + |h2|2),

g2(h) := g(
√

(1− |h1|)2 + |h2|2),

g3(h) := g(
√
|h1|2 + (1− |h2|)2),

g4(h) := g(
√

(1− |h1|)2 + (1− |h2|)2).

Remark 6.5. The above calculation is stated for h ∈ T, and it shows that
TG = Tg is not smooth for h1 = 0 or h2 = 0. This non-smoothness prevents
us from using the rigidity estimate (2.23) and is the main source of diffi-
culty we will address in this section. In addition to the non-smoothness for
h1 = 0 or h2 = 0, one may wonder if TG has additional singularities (i.e.,
non-smoothness) at h1 = ±1/2 or h2 = ±1/2, as a function on the torus.
It has not, as shown by the following argument. Assume −1/2 6 h2 < 1/2
is fixed. The right-hand side of (6.11) admits an obvious smooth extension
to h1 ∈ (0, 1), called T̃G. One readily sees that for such h1 ∈ (0, 1), we have
T̃G(h1, h2) = T̃G(1− h1, h2): T̃G is smooth and symmetric with respect to
h1 = 1/2, so all its odd derivatives vanish there, meaning TG is smooth at
h1 = ±1/2. The same reasoning applies on h2 = ±1/2.

Proof. Recall that ρ2 is the two point correlation function for the Yukawa
gas on T. By translation invariance of the distribution of the Yukawa gas,
we have

E
∫∫

z 6=w
G(z, w)µ̂(dz)µ̂(dw) =

∫∫
z 6=w

G(z, w)ρ2([z − w])m(dz)m(dw)

=

∫∫
G(z, [z + h])ρ2(h)m(dz)m(dh)

=

∫
ρ2(h)

(∫
G(z, [z + h])m(dz)

)
m(dh)

=

∫
ρ2(h)TG(h)m(dh) =

∫∫
ρ2(h)TG(h)m(dh)m(dz̃)

= E
∫∫

z 6=w
TG([z̃ − w̃])µ̂(dz̃)µ̂(dw̃).
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In the case G(z, w) = g(|z − w|), the assertion follows from a direct calcula-
tion of TG(h) =

∫
T g(|[z + h]− z|)m(dz). �

Denote by E(a,b) integration with respect to the shift (a, b) of Ψ, and
write

(6.13) ∆w
z = [Φz − Φw].

Then the functional T from Definition 6.3 naturally appears in the following
calculation:

E(a,b) (G(Ψz,Ψw)) =

∫
T
G([Ψz + z̃], [Ψw + z̃])m(dz̃)

=

∫
T
G([z̃ + ∆w

z ], z̃)m(dz̃) = TG(∆w
z ).

In particular,

E(a,b) (g(|Ψz −Ψw|)) = Tg(∆w
z ).(6.14)

This will be useful in the following proof of Proposition 6.1.

6.3. Proof of estimate (6.2)

First note that, by (2.4) we have Uγ(z − w) = Y γ([z − w]) + O(e−N
c

), so
that it will be sufficient to prove both of the following estimates:

EΨEγN2

∫∫
(Y γ([z − w])− Y γ([Ψz −Ψw])) µ̃(dz) µ̃(dw)(6.15)

= O(N1+εt),

EΨEγN2

∫∫
(Y γ([Ψz −Ψw])− Y γ(Ψz −Ψw)) µ̃(dz) µ̃(dw)(6.16)

= O(N ε)

(
1

γ4
+

√
N

t

)
.

From (6.8) and the hypothesis γ � 1, the sum of both error terms above is
dominated by the right hand side of (6.3).

For the proof of (6.15), let N−1/2 � r � γ be some intermediate scale.
Let χ : R+ → [0, 1] be a smooth function such that χ(z) = 1 on [0, 1], χ(z) =
0 on [2,∞) and define q = Y γ , q̃(z) = q(z)χ(|z|/r). The proof of (6.15) will
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consist of the following two estimates (note that [Ψz −Ψw] = [Φz − Φw]):

EΦEγN2

∫∫
(q̃([Φz − Φw])− q̃([z − w])) µ̃(dz) µ̃(dw)(6.17)

= N ε O
(
N2t2r2

)
,

EΦEγN2

∫∫
((q − q̃)([Φz − Φw])− (q − q̃)([z − w])) µ̃(dz) µ̃(dw)(6.18)

= N ε O

(
1

r2

)
.

Optimization over r shows that (6.15) holds (note that the optimum r∗ =
(Nt)−1/2 is smaller than γ because t = N−

1

4 < γ.
For (6.17), we proceeds by Taylor expansion around |z − w + a| < N εr,

where a = ±1,±i. We treat the case a = 0, the other ones being identical.
As q̃ is supported on |x| < N εr, for all z, w contributing to (6.17) we have
[z − w] = z − w and [Φz − Φw] = Φz − Φw. For such z, w, from the definition
Φ = Φ1 ◦ Φ2 with (6.7), we have

(6.19) [Φw − Φz] = [w − z] +

(
m1 (s(w2 +m2s(w1))− s(z2 +m2s(z1)))
m2 (s(w1)− s(z1))

)
.

Expanding (6.19),

([Φw − Φz])2 − ([w − z])2

m2
= s′(w1)(w1 − z1) + O(|w − z|2),

([Φw − Φz])1 − ([w − z])1

m1
= s′(w2)(w2 − z2) + O(|w − z|2)

+m2 O(|w − z|) +m2
2 O(|w − z|2),

where, here and in the following, the O error terms are non-random, namely,
they do not depend on m1,m2. Denoting

∆ =

(
m1

(
s′(w2)(w2−z2)+O(|w−z|2)+m2O(|w− z|)+m2

2O(|w−z|2)
)

m2

(
s′(w1)(w1 − z1) + O(|z − w|2)

) )
,

we have

q̃([Φz−Φw])−q̃([z−w]) = ∇q̃([z−w]) ·∆+O

(
sup

[|z−w|/2,2|z−w|]
|∇2q̃|

)
|∆|2.
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As m1,m2 are centered (under the random choice of Φ), the linear terms
vanish under expectation. This gives, for any fixed small ε > 0,

EΦ (q̃([Φz − Φw])− q̃([z − w])) = E(m2)|(∇2q̃)(z − w)|O(|z − w|2)

= O(N2t2)1|z−w|6Nεr.

We have therefore proved that

EΦEγN2

∫∫
(q̃([Φz − Φw])− q̃([z − w])) µ̃(dz) µ̃(dw)(6.20)

6 O(N2t2)E
(

sup
z∈T

µ̂({w : |[z − w]| 6 N εr})
)
.

From the local density estimate for the Yukawa gas on the torus implied
by Theorem 2.2, the above parenthesis is bounded by (N εr)2 with high
probability. We have therefore proved (6.17).

Equation (6.18) is a consequence of Proposition 2.5. Indeed, let (χk)k>1

be a partition of unity in the sense that
∑

k χk(x) = 1 for any x > r, χk
is supported on [2k−1r, 2k+1r], and ‖χ(n)

k ‖∞ 6 Cn(2kr)−n. We denote f =
q − q̃ and apply Proposition 2.5 to Gk(z, w) = f([z − w])χk(|[z − w]|) and
s = sk = N−ε2kr, for some fixed small ε > 0. For any k such that 2kr < γN ε,
we have

|∇jGk(x, y)| = O
(
|[x− y]|−j1|[x−y]|∈[2k−2r,2k+2r]

)
and the same estimate holds for (Gk)

(j)
Bs

(x, y), defined in (2.24). Proposi-
tion 2.5 gives

N2

∫∫
Gk(z, w) µ̃(dz) µ̃(dw)

= O(N ε)

 1

s4
k

p−1∑
j=0

sjk(skN
ε)2−j +N2spk(skN

ε)2−p

 = O

(
N3ε

s2
k

)
,

where we chose p = b10/εc. Summation of the above estimate over 1 6 k 6
logN gives

(6.21) N2

∫∫
G(z, w) µ̃(dz) µ̃(dw) = O

(
N5ε

r2

)
,

which proves (6.18) for the term involving f([z − w]). The same estimate
holds for the integral of f([Φz − Φw]), because for any fixed m1,m2 = O(t)
the function (z, w) 7→ f([Φz − Φw]) has the same regularity properties as
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(z, w) 7→ f([z − w]) (Φ = Id + tφ for some function φ smooth on a scale 1).
This concludes the proof of (6.15).

For equation (6.16), we first consider the averaging in the shift (a, b)
from Ψ: denoting |h| = (|h1|, |h2|), for any h ∈ T we have

E(a,b) (Y γ([[h+ (a, b)]− (a, b)])) = Y γ(|h|),
E(a,b) (Y γ([h+ (a, b)]− (a, b))) = (1− |h1|)(1− |h2|)Y γ(|h|) + O(e−N

c

),

where the second equation comes from (6.14) and the fact that Y γ is es-
sentially supported on |x| < N εγ. Equation (6.16) is therefore equivalent
to

EΦEγN2

∫∫
(|(∆w

z )1 + |(∆w
z )2| − |(∆w

z )1||(∆w
z )2|)Y γ(|∆w

z |) µ̃(dz) µ̃(dw)

= O(N ε)

(
1

γ4
+

√
N

t

)
.

On the left side of the above equation, we would like to calculate the inter-
action after the Φ-averaging. However, this expression is not a function of
[z − w], which would be convenient for our proof. We therefore perform an
additional averaging over the torus: the above equation is equivalent to

(6.22) EγN2

∫∫
Kt([z − w]) µ̃(dz) µ̃(dw) = O(N ε)

(
1

γ4
+

√
N

t

)

whereKt(h) = EΦ
∫
f(∆

[v+h]
v )m(dv) and f(h) = (|h1|+ |h2| − |h1h2|)Y γ(h).

The proof of (6.22) is delicate, so before giving the technical details, we
list below the main difficulties and ingredients.

(i) The function K0 is smooth on T except on h1 = 0 or h2 = 0, as ex-
plained in Remark 6.5. This prevents a direct application of Proposi-
tion 2.5 and is the motivation for our averaging over Φ.

(ii) The function Kt now gained some smoothness in neighborhoods of
h1 = 0 and h2 = 0 thanks to the convolution with the distribution of
tX. For example, around h1 = 0, Kt is smooth on a scale |th2|: for
k > 1, ∂kh1

Kt(h) = O(|h1||th2|−k+1), thanks to the definition of Φ1 in
(6.7) and the asymptotics tXs(h2) ∼ 2πtXh2. Proposition 2.5 can now
be applied for the function Kt, after some surgery removing some small
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singular set corresponding to the cross {|th2| 6 N−1/2, h1 6 N−1/2} ∪
{|th1| 6 N−1/2, h2 6 N−1/2}.

We now implement the above outline. The function Kt is a linear com-
bination of the terms

(6.23) F tj (h) = EΦ

∫
fj(∆

[v+h]
v )m(dv),

where ∆
[v+h]
v is defined in (6.13) and

(6.24) f1(h) = |h1|Y γ(h), f2(h) = |h2|Y γ(h), f3(h) = |h1h2|Y γ(h).

Figure 6.1: The functions F 0
1 (left) and F t1(right) in [−1/5, 1/5]2, γ = t =

1/20.

We first bound the contribution from F t1 (and therefore F t2 by a similar
argument), by exploiting its smoothness properties. Thus a calculation on
{h1 6= 0} gives

|∂h1
F 0

1 (h)| 6 C
(
|h1|
|h|

+ |Y γ(h)|
)
,

|∂h2
F 0

1 (h)| 6 C |h1|
|h|

,

|∂k1

h1
∂k2

h2
F 0

1 (h)| 6
Ck1,k2

|h|k1+k2−1
, if k1 + k2 > 2.(6.25)

Here we have used |∂k1

h1
∂k1

h2
Y γ(h)| 6 Ck1,k2

|h|−(k1+k2) and [Φw − Φz] = [w −
z] when t = 0.

Recall that Φ is defined in (6.7) with m1,m2 given by independent ran-
dom variables with distribution tX with X a compactly supported random

variable of order one. Thus ∆
[v+h]
v ∼ h with a distortion of order t, which

makes the function |(∆[v+h]
v )1| differentiable on {h1 = 0}. With this in mind
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and explicitly writing F t1 with the definition (6.19), a simple calculation and
the Taylor expansion extends the estimate (6.25) to

|∂h1
F t1(h)| 6 C

(
|h1|+ |th2|
|h|

+ |Y γ(h)|
)
,

|∂h2
F t1(h)| 6 C |h1|+ |th2|

|h|
,

|∂k1

h1
∂k2

h2
F t1(h)| 6 Ck1,k2

(
1

|h|k1+k2−1
+

1

|th2|k1−1|h2|k2
1|h1|<t|h2|,k1>1

)
(k1 + k2 > 2).(6.26)

For some mesoscopic scale N−1/2+c 6 r � t, define a partition of unity
1[0,1](x) =

∑n
i=0 χ̃i where n is of order logN , χ̃0 is supported on [0, 2r], χi is

supported on [2i−1r, 2i+1r], and ‖χ(m)
i ‖∞ 6 Cm(2ir)−m. We define F tij(h) =

F t1(h)χ̃|i|(|h1|)χ̃|j|(|h2|) for |i|, |j| 6 n. By symmetry, we only need to bound
each

∫∫
F tij in one quadrant: we now assume 0 6 i, j 6 n.

First, for i = j = 0 (in fact for i+ j bounded), the local density estimate
and ‖F tij‖∞ = O(r1+ε) give

(6.27) N2Eγ
∫∫

F tij([z − w]) µ̃(dz) µ̃(dw) = O(N ε)N2r3.

We now assume i+ j > 0.
For 2i > t2j (in other words |h1| > t|h2|), (6.26) yields

|∂k1

h1
∂k2

h2
F tij(h)| 6 Ck1,k2

1

max(2ir, 2jr)k1+k2−1
.

The area of the support of Fij is O(r22i+j). We proceed as in the proof
of (6.21). We use Proposition 2.5 with the parameter s in the Proposition
chosen to be max(2ir, 2jr)N−ε. Thus (2.25) gives

N2Eγ
∫∫

F tij([z − w]) µ̃(dz) µ̃(dw)

= O(N ε)

(
1

γ4
+

1

(max(2ir, 2jr))4

)
max(2ir, 2jr)(r22i+j).

Notice that the error term in (2.25) is negligible here by choosing pε > 10,
say. We will often use this argument and from now no we will not repeat it
in details.
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After summation over i, j, we obtain

(6.28)
∑

2i>t2j

N2Eγ
∫∫

F tij([z − w]) µ̃(dz) µ̃(dw) = O(N ε)

(
1

γ4
+

1

r

)
.

For i > 0 and 2i < t2j (|h1| < t|h2|), from (6.26) we have

|∂k1

h1
∂k2

h2
F tij(h)| 6 Ck1,k2

1

(t2jr)k1+k2−1
.

The area of the support of Fij is still of order r22i+j , so that Proposition 2.5
now yields

N2Eγ
∫∫

F tij([z − w]) µ̃(dz) µ̃(dw) = O(N ε)

(
1

γ4
+

1

(t2jr)4

)
(t2jr)(r22i+j).

The contribution of such terms is therefore

(6.29)
∑

2i<t2j ,i>0

N2Eγ
∫∫

F tij([z − w])µ̃(dz)µ̃(dw) = O(N ε)

(
t2

γ4
+

1

rt

)
.

For i = 0 and t2jr > N−1/2+ε (|th2| > N−1/2+ε), we have from (6.26)

|∂k1

h1
∂k2

h2
F tij(h)| 6 Ck1,k2

1

(t2jr)k1+k2−1

so that Proposition 2.5 gives

N2Eγ
∫∫

F t0j([z − w]) µ̃(dz) µ̃(dw) = O(N ε)

(
1

γ4
+

1

(t2jr)4

)
(t2jr)(r22j),

and therefore
(6.30) ∑

N−1/2+ε<t2jr

N2Eγ
∫∫

F t0j([z − w]) µ̃(dz) µ̃(dw) = O(N ε)

(
rt

γ4
+
rN

t

)
.

For the terms corresponding to i = 0, j > 0 and t2jr 6 N−1/2+ε, we
need one more decomposition. Let r′ = N−1/2+ε′ � r, and decompose F t0j =
Aj +Bj with

(i) Aj supported on {|h1| < 2r′} ∩ {2j−1r < h2 < 2j+1r}, ‖Aj‖∞ 6 r′,
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(ii) Bj smooth, supported on {|h1| < 2r} ∩ {2j−1r < h2 < 2j+1r}, satisfy-
ing ‖Bj‖∞ 6 r, and

|∂k1

h1
∂k2

h2
Bj(h)| 6 Ck1,k2

(
r

|h2|k1+k2
+

r

(r′)k1+k2
1|h1|<r′

)
.

More explicitly, Aj and Bj can be constructed from F0j as follows. Let a > 0
be smooth on R+, a = 1 on [0, 1], a > 0 on [1, 2] and a = 0 on [2,∞). Let
g > 0 be a smooth, compactly supported function on C with

∫
g = 1. Define

gη(z) =
1

(r′a(|η|))2
g

(
z

r′a(|η|)

)
,

with the convention gη = δ0 when |η| > 2, and

Bj(z) =
(
F0j ∗ gh2/r′

)
(z), Aj = F0j −Bj .

Then the functions Aj and Bj satisfy (i) and (ii): for example, note that
that in the region {r′ < h1 < r} ∩ {2j−1r < h2 < 2j+1r}, B ∼ h1Y

γ(h), and
this function satisfies the estimates in (ii).

The function Aj is supported on a domain of area O(2jrr′) and ‖A‖∞ 6
r′, and the local density implied by Theorem 2.2 gives

N2Eγ
∫∫

Aj([z − w]) µ̃(dz) µ̃(dw) = O(N1+2ε2jr).

The contribution of all Aj terms is therefore
(6.31) ∑

j>0: t2jr6N−1/2+ε

N2Eγ
∫∫

Aj([z − w]) µ̃(dz) µ̃(dw) = O

(
N1/2+3ε

t

)
.

For the contribution from Bj , consider the following partition of T: 1 =∑
−1/(2r)6a,b61/(2r) χab where χab is supported on a disk of radius 10r around

(ar, br), and ‖χ(n)
ab ‖∞ 6 Cnr

−n. The contribution of Bj is of order at most

r−2N2Eγ
∫∫ ∑

|a|65,2j−16b62j+1

Bj([z − w])χ00(z)χab(w)µ̃(dz)µ̃(dw).
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Let E be the event that all particles at distance 4r from 0 are known. Then

N2Eγ
∫∫

Bj([z − w])χ00(z)χab(w)µ̃(dz)µ̃(dw)

= EγEγ
(∫

f(z)χ00(z)Nµ̃(dz) | E
)

where f(z) =
∫
B([z − w]χab(w)Nµ̃(dw). By the local law Theorem 2.2, the

set of E such that

f(z) = O(Nr3),

∇f(z) =

∫
∇(B([z − w]χab(w))Nµ̃(dw) = O(Nr2),

∆f(z) =

∫
∆(B([z − w])χab(w))Nµ̃(dw) = O(Nr),

has measure at least 1−N−100. Using the (conditioned version of the) local
law, Theorem 2.8, for E in such a good set we therefore have∣∣∣∣Eγ (∫ f(z)χ00(z)Nµ̃(dz) | E

)∣∣∣∣
6

(
Nr2

(∫
|∇(fχ00)|2 +

1

γ2

∫
(fχ00)2

))1/2

+N εr2‖∆(fχ00)‖∞

= O(N3/2r4).

Hence the contribution of Bj is at most

N2Eγ
∫∫

Bj([z − w]) µ̃(dz) µ̃(dw) = O(N ε)2jN3/2r2.

All Bj terms are therefore bounded by

(6.32)
∑

j>0: t2jr6N−1/2+ε

N2Eγ
∫∫

Bj([z − w]) µ̃(dz) µ̃(dw) = O(N ε)
Nr

t
.

Equations (6.27), (6.28), (6.29), (6.30), (6.31) and (6.32) show that r =
N−1/2+c for arbitrarily small c is the best choice. We therefore proved

(6.33) N2Eγ
∫∫

F t1([z − w]) µ̃(dz) µ̃(dw) = O(N ε)

(
1

γ4
+

√
N

t

)
.
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The contribution from F t3 can be bounded following the same method, and
the resulting estimate is smaller due to the extra small |h2| factor in f3.
Inserting the estimate (6.33) for F ti , i = 1, 2, 3 into (6.23), we have completed
the proof of (6.22) and thus (6.2).

6.4. Proof of estimate (6.3)

By (6.14) we need to bound

(6.34) N2EΦEγ
∫∫
TL([∆w

z ]) µ̃(dz) µ̃(dw), L = LγR + c,

where c is an arbitrary constant. Without loss of generality, we choose c =
logR− log γ, so that from (2.2) we have

(6.35) L(z) = O(|z|/γ)

for |z| � γ. Equation (6.34) is equivalent to

N2Eγ
∫∫

Dt([z − w]) µ̃(dz) µ̃(dw),(6.36)

where Dt(h) = EΦ

∫
TL(∆[v+h]

v )m(dv),

and we remind the reader that Φ depends on t (note that we introduced an
additional averaging over v for the same reasons as in (6.22)).

Our estimate of (6.36) is similar to (6.22), up to two differences. First,
it is easier to bound (6.36) when the contributions from g1, g2, g3, g4 from
(6.12) are isolated, but this cannot be performed directly: smoothness of Dt

across h1, h2 = ±1/2 requires the combination of these four terms. In the
first step, we therefore prove that the long-range contribution of Dt, which
we will denote by Et, is negligible (this problem was not present for Kt,
which is essentially supported in a small neighborhood of 0).

Second, the most delicate decompositions of Kt are not necessary for
Dt as we have the additional small factor (6.35) for the interaction at small
distance.

First step. In this paragraph we prove that the contribution of the long range
part in Dt is of order

(6.37) N2Eγ
∫∫

Et([z − w]) µ̃(dz) µ̃(dw) = O (N ε)

(
1

t3
+

1

γ4

)
,
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where Et(h) = EΦ
∫
TL(∆

[v+h]
v )(1− χ)(∆

[v+h]
v )m(dv) and χ is a smooth cut-

off function equal to 1 on |h1|+ |h2| 6 1/10, 0 on |h1|+ |h2| > 1/5.
The function TL(h) has discontinuous derivative on {h1 = 0} ∪ {h2 = 0},

which imposes a detailed analysis around these axes. We first gain some
order of magnitude of TL(1− χ) around these singularities by removing the
following function,

A(h) =
(
χ̃(h1)

[
(1− |h2|)g1(h) + |h2|g3(h)

]
+ χ̃(h2)

[
(1− |h1|)g1(h) + |h1|g2(h)

])
(1− χ(h)),

where χ̃ is a smooth cutoff equal to 1 on [0, 1/200] and vanishing outside
[0, 1/100]. The function A is smooth on T for the following two reasons.
First, the function is smooth on h1 = 0 because the following three es-
timates cannot be simultaneously satisfied: |h1| < 1/1000, χ̃(h2) 6= 0 and
(1− χ)(h) 6= 0. Similarly, the function is smooth on h2 = 0. Second, A is
smooth on h1 = ±1/2 and h2 = ±1/2. Indeed, assume −1/2 6 h2 < 1/2 is
fixed. Then (1− |h1|)((1− χ)g1)(h) + |h1|((1− χ)g2)(h) admits an obvious
smooth extension to h1 ∈ (0, 1), and this extension is symmetric in a neigh-
borhood of h1 = 1/2, hence all its odd derivatives vanish there, so that A is
smooth at h1 = ±1/2. The same reasoning applies to h2 = ±1/2.

We define A(h) = EΦ
∫
A(∆

[v+h]
v )m(dv). As A is smooth at the scale of

order one, from Proposition 2.5 with t chosen to be N−ε and p large enough,
we obtain

(6.38) N2Eγ
∫∫
A([z − w]) µ̃(dz) µ̃(dw) = O

(
N ε

γ4

)
.

It thus remains to estimate N2Eγ
∫∫

Ht([z − w]) µ̃(dz) µ̃(dw) where Ht =
Et −A. To understand the regularity properties of Ht, assume first that
the distortion vanishes, i.e., t = 0. We have H0 = TL(1− χ)−A, so that
H0 is smooth on {h1 6= 0} ∩ {h2 6= 0}, vanishes on {h1 = 0} ∪ {h2 = 0} (this
is the purpose of removing the contribution from A) and satisfies (on the
smoothness domain {h1 6= 0} ∩ {h2 6= 0})

sup
k1+k2=k

|∂k1

h1
∂k2

h2
H0(h)| 6 Ck.
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The distortion t smooths the singularities on {h1 = 0} ∪ {h2 = 0} as follows:

(6.39)

|Ht(h)| 6 C(t+ min(|h1|, |h2|)),

|∂k1

h1
∂k2

h2
Ht(h)| 6 Ck1,k2

(
1 +

1|h2|<t

tk2−1
+
1|h1|<t

tk1−1

)
.

The above bounds are elementary after writing Ht explicitly in terms of
g1, g2, g3, g4, χ and χ̃. It amounts to the observation that the function rt(x) =

EX |x+ tX| satisfies |r(k)
t (x)| 6 Ck(1 + 1|x|<2tt

1−k). Intuitively, rt(x) is a
regularized absolute value function which is smooth at the scale t and
rt(x) = |x| for |x| ≥ 2t.

Let Ωt = {|h1| < t} ∪ {|h2| < t}. Consider a partition of unity 1 =
∑
χi

on the torus with O(logN) summands, χ0 with support on Ωt, χi (i >

0) supported on (2i+1Ωt)\(2i−1Ωt), and the derivative bound ‖χ(n)
i ‖∞ 6

Cn(2it)−n for all integer n. Note that for H = Htχi we have |∇jH(x, y)| =
O((2it)−j+1), and the same estimate holds for H

(j)
s when s = (2it)N−ε.

Moreover, (2i+1Ωt)\(2i−1Ωt) has area O(2it), so that Proposition 2.5 gives
(take p = b10/εc)

N2Eγ
∫∫

Ht([z − w])χi([z − w])µ̃(dz)µ̃(dw)

= O(N ε)

(
1

(2it)3
+

2it

γ4

)
, for 2it < 10.

Summation of the above equations over i gives
(6.40)

N2Eγ
∫∫

Ht([z − w])(1− χ)([z − w]) µ̃(dz) µ̃(dw) = O(N ε)

(
1

t3
+

1

γ4

)
.

Equations (6.38) and (6.40) prove (6.37).

Second step. In this paragraph we prove that the contribution of the short
range is

(6.41) N2Eγ
∫∫

U t([z − w]) µ̃(dz) µ̃(dw) = O(N ε)

(
1

γ4
+
N1/2

t
+
N4/5

γ2/5

)
,

where U t(h) = EΦ
∫
TL(∆

[v+h]
v )χ(∆

[v+h]
v )m(dv). From our expression (6.11)

for TL, we only need to bound N2Eγ
∫∫

U tj ([z − w])µ̃(dz)µ̃(dw) (1 6 j 6 3)
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where

(6.42) U tj (h) = EΦ

∫
uj(∆

[v+h]
v )m(dv),

with

u1(h) = L(h)χ(h), u2(h) = |h1|L(h)χ(h), u3(h) = |h1h2|L(h)χ(h).

The terms above all involves g1; the other ones involving g2, g3, g4 can be
bounded in an easier way, because g2, g3, g4 are smooth on scale 1 with no
singularity at 0.

We first consider U t1. LetN−1/2 � u� γ be some intermediate scale. Let
χ be as before and define L̃(h) = f1(h)χ(h/u). Then the local law, Theorem
2.2 and the bound (6.35) give

N2Eγ
∫∫

Ũ t1([z − w]) µ̃(dz) µ̃(dw) = O

(
N2+εu3

γ

)
,(6.43)

where Ũ t1(h) = EΦ

∫
L̃(∆[v+h]

v )m(dv).

On the other hand, the same reasoning as the paragraph from (6.20) to
(6.21) gives

N2Eγ
∫∫

(U t1 − Ũ t1)([z − w]) µ̃(dz) µ̃(dw) = O

(
N ε

u2

)
.

Optimization the parameter u in both previous estimates shows that the
contribution from U t1 is

(6.44) N2Eγ
∫∫

U t1([z − w]) µ̃(dz) µ̃(dw) = O

(
N4/5+ε

γ2/5

)
.

We now consider the most delicate terms U t2 and U t3. We decompose
LγR = Y R − Y γ + O(e−N

c

), we can just replicate the proof for F t1 and F t3
and get the same estimates as (6.33) (note that, as for U t1, we could also
have used the short range bound (6.35) for an improved but unnecessary
estimate). This concludes the proof.

7. Proof of Proposition 4.6: free energy lower bound

In this section, we construct a trial state to give a correct lower bound for
the free energy, and thus prove Proposition 4.6. Recall the assumptions of



i
i

“1-Yau” — 2020/1/15 — 18:54 — page 921 — #81 i
i

i
i

i
i

The two-dimensional Coulomb plasma 921

the proposition

1� `/b� (Nb2)−1/4, N−1/2+c � `� b� N−τ ,(7.1)

` < R, τ = 2c/5,

which we will assume throughout this section.

7.1. The trial state and embedding of the torus

Throughout the proof of the lower bound the parameter u ∈ [−b/2, b/2)2

is fixed arbitrarily, and all estimates will be uniform in the choice of u. To
obtain a lower bound on the partition function, we first restrict the particle
profile to n̄. For this, we define the indicator function

(7.2) χ̂(z) = 1
(
nB(z) = n̄B

)∏
α

1
(
nα(z) = n̄α

)∏
j

1
(
zj ∈ D ∪B

)

where n(z) is the particle profile of the configuration z ∈ CN , i.e., n(z) =
(nα(z)) where nα(z) is the number of particles zj ∈ α (with α either a bulk
square or the boundary region B).

We then start with the trivial bound

(7.3)
1

β
log

∫
e−βH

R
V (z)m(dz) ≥ 1

β
log

∫
e−βH

R
V (z) χ̂(z)m(dz).

Next we break the permutation symmetry of the particles. We order the
squares α arbitrarily as α1, α2, . . . and write χ̃(z) for χ̂(z) multiplied with
the indicator function of the event in which the particles z1, . . . , zn̄α1

are in
α1, the particles zn̄α1

+1, . . . , zn̄α1
+n̄α2

are in α2, and so on. Then

1

β
log

∫
e−βH

R
V (z) χ̂(z)m(dz) =

1

β
log

(
N

n

)
+

1

β
log

∫
e−βH

R
V (z) χ̃(z)m(dz).

As in the lower bound for the torus in Section 3.6, to each bulk square
α, we associate a map

(7.4) Ψα : T(b) → α.

The main difference between these two settings is the choice of the embed-
dings Ψα. We now choose Ψα as the re-centered version of the map defined
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by Corollary 6.2:

(7.5) Ψα(v) = c(α) + Ψ(b)(v) = c(α) + bΨ(v/b) (v ∈ T(b)).

This choice of the maps will enter in this section only through the estimates
given by Corollary 6.2 and the fact that |dΨ| = 1.

The remaining set-up is parallel to that for the torus in Section 3.6. Let
ωα be the measure of the Yukawa gas on Tnαα , with density

(7.6) ωα(dvα) =
1

Zα
e−βĤα(vα)m(dvα),

where Ĥα was defined in (4.15) as the energy of a torus Yukawa gas in
Tα with range ` (in principle, there is an external potential Q(α). Since
it is a constant, we remove it). For the boundary, we take ωB to be the
measure under which the particles are independently distributed according
to the equilibrium measure, i.e., ωB = µV |⊗nBB on B and ΨB : B → B to
be the identity map. With the fixed particle profile n = n̄, the quasi-free
approximation is the product measure ω =

∏
α ωα (where the product also

includes α = B). Given the maps Ψα, define Ψ by

(7.7) Ψ :
∏
α

Tnαα ×BnB → CN , Ψ({v}) = ({Ψαvα}) ∈ CN .

In particular, Ψ∗ω =
∏
α Ψ∗αωα is a measure on configurations of N particles

in C. Under the map Ψα, using that |dΨα| = 1, the measure ωα transforms
to

1

Zα
e−βĤα(Ψ−1

α (z))
∏
i

dΨ−1
α (zi) =

1

Zα
e−βĤα(Ψ−1

α (z))
∏
i

dzi,

where we write Ψ−1
α (z) = (Ψ−1

α (z1),Ψ−1
α (z2), . . . ) if z = (z1, z2, . . . ). Thus

defining ĤΨ(z) =
∑

α Ĥα ◦Ψ−1
α (zα), by Jensen’s inequality,

1

β
log

∫
e−βH

R
V (z)χ̃(z)m(dz)(7.8)

≥ 1

β
log

∫
e−βĤΨ(z)χ̃(z)m(dz) + EΨ∗ω(ĤΨ −HR

V ).

Reversing the change of variables and averaging over the distribution of
maps Ψ with |dΨ| = 1, whose expectation is denoted by EΨ,

(7.9)
1

β
log

∫
e−βH

R
V χ̃ ≥ 1

β
log

∫
e−βĤα(vα)

∏
α

dvα + Ω
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where Ω = EΨEω(Ĥ(v)−HR
V (Ψv)) with Ĥ(v) =

∑
α Ĥα(vα). We abbrevi-

ate by EΨEω the expectation EΨEω with ω =
∏
αωα, where ωα is the mea-

sure of a Yukawa gas of range ` defined in the previous paragraph. Then, in
summary, we need to estimate Ω = Ω1 + Ω2 where

(7.10)
Ω1 := EΨEω(Ĥ(v)−H`

Q(Ψv)),

Ω2 := EΨEω(H`
Q(Ψv)−HR

V (Ψv)),

and we recall thatH`
Q is the Yukawa energy of range ` with potentialQ. Thus

Ω1 is the error of a short range Yukawa gas in the quasifree approximation
and is similar to that in (3.48) for the torus. The second term was absent
for the torus because it was essentially handled by Lemma 3.3 at an earlier
stage; the choice of `� b in (3.48) is the key reason that this term is much
simpler on the torus than the current general setting. The control of this
term requires a more careful choice of the maps Ψ.

7.2. Lower bound I: the short-range term Ω1

In the next two lemmas we estimate the short-range contribution Ω1. These
lemmas are analogous to Lemmas 3.12–3.13 for the torus setting. Besides
the density of the equilibrium measure is not constant, that there is a small
contribution from the boundary, we also need precise estimate on Ω1 in the
dependence of the parameters ` and b. With the current more sophisticated
choice of the map Ψ and the decoupling estimate, Corollary 6.2, we will be
able to estimate Ω1 effectively.

First recall notation similar to that discussed around (3.49). As previ-
ously, U `b is the Yukawa potential on the torus T(b) ∼= Tα. Also, µ̃α = µ̂α − µα
where µα is the normalized uniform measure on Tα and where µ̂α is defined
in (3.49). We observe that, by construction, the expected empirical measure
µ̂ under EΨEω in each square α is uniform with total mass nα/N :

(7.11) NEΨEω(µ̂|α) = nαµα, where µα(dz) = b−21z∈αm(dz).

The next lemma replaces Lemma 3.12 for the torus. Similarly as in (3.50),
we define
(7.12)

E=
∑
α⊂D

n2
αEΨEω

∫∫
Tα×Tα

(U `b (v−w)−Y `(Ψα(v)−Ψα(w)))µ̃α(dv)µ̃α(dw).
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We also write ĤD =
∑

α⊂D Ĥα and decompose H`
Q(z) into bulk and bound-

ary contributions as

(7.13)

H`
Q,D(z) = N

∑
j

Q(zj)1zj∈D +
∑
j 6=k

Y `(zj − zk)1zj ,zk∈D,

H`
Q,B(z) = H`

Q(z)−H`
Q,D(z).

Lemma 7.1. Assume 1� `� b and recall that E is defined in (7.12).
Then

EΨEω(ĤD(u)−H`
Q,D(Ψu)) = E +N εO(N2(`3 + b2`2))‖ρV ‖2∞,2,(7.14)

N2IB,Q − EΨEω(H`
Q,B(u)) = N εO(N2`2b)‖∇ρV ‖∞ + O(n̄B logN).(7.15)

The proof of the above lemma occupies the remainder of this subsection.
Before proceeding with the proof, we state the estimate for E in the following
lemma.

Lemma 7.2. Assume the parameters b and ` satisfy the condition (7.1).
Then E defined in (7.12) satisfies

E = N εO
(
b−2

(
(Nb2)4/5/(`/b)2/5 + (`/b)−4

))
(7.16)

= N εO(N4/5/`2/5 + b2`−4) = O(N1−τ +N εb2`−4).

Proof. This is (6.4) of Corollary 6.2 and the fact that there are O(b−2) bulk
squares α according to (4.18). �

We now prove Lemma 7.1. The main error in (7.14) is the one with the
factor N2(`3 + b2`2), which is of order b smaller than the main error term
in the upper bound (5.4). The reason we gain an additional factor b here,
roughly speaking, is due to the fact that the leading error from the left side
of a square is canceled by that from the right side provided that the densities
of the two neighboring squares are the same. Since the density variation is
of order b, the next order error carries an additional factor b. (A similar
cancellation could have been obtained also in the upper bound (5.4). Since
this refined estimate is not needed in this paper, we chose not to present it
for the sake of simplicity.)
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Proof of (7.14). Estimating Q by (4.10) and n̄α by (4.18), the difference of
the contributions of the external potential is

∣∣∣∣∣EΨEω
[
N
∑
α⊂D

∑
i

(Q(zi)−Q(α)1zi∈α)

]∣∣∣∣∣
=

∣∣∣∣∣N ∑
α⊂D

nα

∫
(Q(z)−Q(α))µα(dz)

∣∣∣∣∣
6 4π`2N

∑
α⊂D

nα

∣∣∣∣∫ (ρV (α)− ρV (z))µα(dz)

∣∣∣∣
+N

∑
α⊂D

O(Nb2‖ρV ‖∞)O(N ε`4‖∇2ρV ‖∞)

6 O(N2b2`2‖∇ρV ‖2∞) + O(N εN2`4‖ρV ‖∞‖∇2ρV ‖∞).

To estimate the two-particle interactions, it suffices to show that

∑
α,β⊂D

EΨEω
∑
i 6=j

1vi∈Tα1vj∈Tβ(U `α(vi − vj)1α=β − Y `(Ψα(vi)−Ψβ(vj)))


= E + O(N2`3)(‖ρV ‖+ ‖∇ρV ‖∞)2.(7.17)

The outline of the proof is analogous to that of (3.54) for the torus. Again,
the contribution of the nonadjacent pairs of squares on the left-hand side is
bounded by O(e−c`/b) = O(N−∞). For any squares α, β, define

Ȳαβ =

∫∫
Tα×Tβ

Y `(Ψα(u)−Ψβ(v))µα(du)µβ(dv)(7.18)

=

∫∫
α×β

Y `(u− v)µα(du)µβ(dv).

Denoting by α ∼ β that the squares α and β are adjacent, exactly as in
(3.56), therefore
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.
∑
α,β⊂D

EΨEω
∑
i 6=j

1vi∈Tα1vj∈Tβ(U `b (vi−vj)1α=β−Y `(Ψα(vi)−Ψβ(vj)))


(7.19)

=
∑
α⊂D

n̄2
αEΨEω

[∫∫
Tα×Tα

(U `b (v−w)−Y `(Ψα(v)−Ψα(w)))µ̂α(dv)µ̂α(dw)

]
−
∑
α∼β

n̄αn̄βȲαβ + O(N−∞)

The difference between E and the first term on the right-hand side of the
above equation is

∑
α⊂D

n̄2
α

[ ∫∫
T2
α

U `b (v − w)µα(dv)µα(dw)(7.20)

−
∫∫

α2

Y `(v − w)µα(dv)µα(dw)

]
,

where we have used that µ̃α = µ̂α − µα. For the squares α ⊂ D not touch-
ing the boundary, we use the cancellation (7.21) below and for the squares
touching the boundary instead the weaker estimate (7.22). By these esti-
mates, and summing over α using that there O(b−2) squares α not touching
a boundary square and O(b−1) squares touching the boundary, it follows
that the last display equals

∑
α⊂D

∑
β:β∼α

n̄αn̄βȲαβ + O(N2`3)(‖ρV ‖∞ + ‖∇ρV ‖∞)2.

This proves (7.17). �

The following lemma replaces Lemma 3.14 for the torus. The argument
requires more care since we here do not have n̄α = n̄β.
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Lemma 7.3. Assume that b� `. For any bulk square α whose neighboring
squares do not touch the boundary region B,

n̄2
α

[ ∫∫
Tα×Tα

U `(v − w)µα(dv)µα(dw)(7.21)

−
∫∫

α×α
Y `(v − w))µα(dv)µα(dw)

]
−
∑
β∼α

n̄αn̄βȲαβ

= O
(
N2b2`3‖ρV ‖∞‖∇ρV ‖∞

)
+ O(N−∞).

For all other squares α, we still have

n̄2
α

[ ∫∫
Tα×Tα

U `(v − w)µα(dv)µα(dw)(7.22)

−
∫∫

α×α
Y `(v − w))µα(dv)µα(dw)

]
−
∑
β∼α

n̄αn̄βȲαβ

= O(N2b`3)‖ρV ‖2∞.

Proof. For any fixed square α of side length b� l, using that contributions
for distances � ` are negligible, by unfolding the periodized interaction we
have ∫

α

∫
α
U `(u− v)m(du)m(dv)

=

∫
α

∫
∪β∼αβ∪α

Y `(z − w)m(du)m(dv) + O(N−∞),

and thus ∫∫
α2

(U `(u− v)− Y `(u− v))µα(du)µα(dv)

=
∑
β∼α

∫∫
α×β

Y `(z − w)µα(dz)µβ(dw) + O(N−∞).

Therefore the left-hand side of (7.21) equals

n̄α
∑
β:β∼α

(
n̄α − n̄β

) ∫∫
α×β

Y `(z − w)µα(dz)µβ(dw) + O(N−∞).
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Note that for α 6= β,∫∫
α×β

Y `(z − w)µα(dz)µβ(dw)

= O(b−2)O(`b−1) sup
z∈α

∫
Y `(z − w)m(dw) = O(b−3`3).

Using |n̄α−n̄β|=O(Nb3)‖∇ρV ‖∞ and n̄α=O(Nb2)‖ρV ‖∞, the claim (7.21)
follows.

For the boundary squares, we do not use any cancellation between the
difference of U ` and Y ` and Ȳ in (7.21), but we still use the cancellation
between U ` and Y `. Analogously to the above, the difference between U `

and Y ` and the Ȳ terms are each bounded by

O(Nb2)2O(b−3`3)‖ρV ‖2∞ = O(N2b`3)‖ρV ‖2∞.

This completes the proof. �

Proof of (7.15). By definition, we have

EΨEω[H`
Q,B] = EΨEω

[∑
i 6=j

Y `(zi − zj)1zi,zj∈B

+N
∑
zi∈B

Q(zj) + 2
∑
zi∈D

∑
zj∈B

Y `(zi − zj)

]
.

Moreover, by definition of the expectation EΨEω, the particles in B are
distributed independently according to the restriction of the equilibrium
measure µV . If the particles in D were also distributed independently ac-
cording to the equilibrium measure, the above right-hand side would be
N2IQ,B + O(n̄B logN), with the error term O(n̄B logm(B)) = O(n̄B logN)
resulting from the inclusion of the diagonal i = j in the first sum. In reality,
the particles in D are distributed according to the periodic Yukawa gas in
the squares α; under this measure the expected empirical measure is uniform
on the squares α with constant density n̄α/N ; we may replace this constant
density in the bulk squares by the density of the equilibrium measure with an
error O(NnB`

2bb′)‖∇ρV ‖∞ = O(NnB`
2b)‖∇ρV ‖∞. In summary, we have

EΨEω[H`
Q,B] = N2IQ,B + O(N2`2b)‖∇ρV ‖∞ + O(n̄B logN)

as claimed. �
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7.3. Lower bound II: the long-range term Ω2 and conclusion

In the next lemma we estimate the term Ω2. It is in this estimate where
the randomness of the Ψα enters in an essential way through the decoupling
estimate, (6.5) of Corollary 6.2. We recall the decomposition H`

Q = H`
Q,D +

H`
Q,B of the energy into bulk and boundary part from (7.13) and decompose

HR
V analogously.

Lemma 7.4. Assume the parameters b and ` satisfy the condition (7.1)
and recall K`

R from (4.6). Then

Ω2 = N log(R/`) +N2K`
R +N εO(N1−τ + b2`−4)(7.23)

+ O(N2b4)‖∇ρ‖2∞,2 + O((logN)b−2 + nB logN).

More precisely, with O(N1−τ ) = N εO(N4/5/`2/5), we have

EΨEω(H`
Q,D(Ψv)−HR

V,D(Ψv))−N log(R/`)−N2K`
R(7.24)

= N εO(N1−τ + b2`−4) +N εO(N2b4)‖∇ρ‖2∞,2 + O((logN)b−2),

EΨEω(H`
Q,B(Ψv)−HR

V,B(Ψv)) = O((logN)b−2 + nB logN).(7.25)

Assuming this Lemma, we can now prove Proposition 4.6.

Proof of Proposition 4.6. By (7.3)–(7.10),

1

β
log

∫
e−βH

R
V (z)m(dz) >

1

β
log

(
N

n

)
+
∑
α⊂D

1

β
log

∫
e−βĤα(uα)duα(7.26)

+
1

β
log

∫
e−βĤB(uB)duB + Ω1 + Ω2

where the combinatorial factor 1
β log

(
N
n

)
arises analogously as in (3.41).

By definition, the first three terms on the right-hand side give F (n̄). By
Lemmas 7.1 and 7.4, the last two terms on the right-hand side, Ω1 + Ω2,
contribute the explicit terms N log(R/`) +N2K`

R as well as the error terms
in the statement of the proposition. �

The rest of this section is devoted to a proof of Lemma 7.4. We start
with a proof of (7.24).
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Proof of (7.24). We start with (4.8), which implies that

EΨEω(H`
Q ◦Ψ−HR

V ◦Ψ)−N log(R/`)−N2K`
R(7.27)

= −N2EΨEω(L`R ◦Ψ)

= −N2EΨEω
∑
α,β

(Ωαβ ◦Ψ),

where we define (note that Ωαβ should not be confused with Ω1 and Ω2)

(7.28) Ωαβ(z) =

∫∫
α×β

L`R(v − w) µ̃z(dv) µ̃z(dw);

here µ̃z = µ̂z − µRV and we have made its dependence on z ∈ CN through
the empirical measure µ̂ = µ̂z explicit. Recall Ψ from (7.7) and note that
Ωαβ ◦Ψ is a function on

∏
α Tnαα . For any v ∈

∏
α Tnαα , denote by µ̂v

α(dv) =
n̄−1
α

∑
j:vj∈Tα δvj (dv) the normalized empirical measure on Tα as in (3.49).

We also denote by µα(dv) = b−2m(dv) the normalized uniform measure on
Tα, and set µ̃α = µ̂α − µα. We rewrite Ωαβ ◦Ψ as

Ωαβ(Ψ(v)) =

∫∫
Tα×Tβ

L`R(Ψα(v)−Ψβ(w))(7.29)

×
[ n̄α
N
µ̂v
α(dv)− b2ρV (Ψα(v))µα(dv)

]
×
[
n̄β
N
µ̂v
β(dw)− b2ρV (Ψβ(w))µβ(dw)

]
,

where we changed variables v → Ψα(v) and used (6.9). We then rewrite

[n̄αµ̂
v
α(dv)−Nb2ρV (Ψα(v))µα(dv)](7.30)

= n̄αµ̃
v
α(dv)− [Nb2ρV (Ψα(v))− n̄α]µα(dv).

Using that Eωµ̃v
α(dv) = 0 to see that the cross terms between the µ̃v

α and
µβ or µ̃v

β terms vanish. This gives
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N2EΨEωΩαβ = 1α=βn̄αn̄βEΨEω(7.31)

×
∫∫

Tα×Tβ
L`R(Ψα(v)−Ψβ(w)) µ̃v

α(dv) µ̃v
β(dw)

+N2EΨEω
∫∫

Tα×Tβ
L`R(Ψα(v)−Ψβ(w))

×
[
ρV (Ψα(v))− n̄α

Nb2

]
×m(dv)

[
ρV (Ψβ(w))−

n̄β
Nb2

]
m(dw).

The proof is completed by bounding the sums of the two term in (7.31)
over α, β. The first term with α = β is the key difficulty requiring the so-
phisticated averaging over Ψ. Indeed, by (6.5) of Corollary 6.2 and using
that there are O(b−2) bulk squares α, we have∑

α⊂D
n̄2
αEΨEω

∫∫
Tα×Tα

L`R(Ψα(v)−Ψα(w)) µ̃v
α(dv) µ̃v

α(dw)(7.32)

= N εb−2O((Nb2)4/5/(`/b)2/5 + b4`−4)

= N εO(N4/5/`2/5 + b2`−4)

as needed. The sum over α, β of the second term on the right-hand side of
(7.31) is bounded as needed in Lemma 7.5 stated below. �

In the statement of the following lemma, a naive bound of the left-hand
side is N2b2. We gain an extra factor b for each integration variable due
to the cancellation of the integrand, and thus obtain the resulting stronger
estimate.

Lemma 7.5. Assume the parameters b and ` satisfy the condition (7.1).
Then we have

N2
∑
α,β

EΨEω
∫∫

Tα×Tβ
L`R(Ψα(v)−Ψβ(w))(7.33)

×
[
ρV (Ψα(v))− n̄α

Nb2

]
m(dv)

×
[
ρV (Ψβ(w))−

n̄β
Nb2

]
m(dw)

= N εO(N2b4)‖∇ρV ‖2∞,3 + O((logN)b−2)
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where the sum is over bulk squares α, β.

Proof. By changing variables, the claim is equivalent to

N2
∑
α,β⊂D

EΨEω
∫∫

α×β
L`R(z − w)

[
ρV (z)− n̄α

Nb2

]
m(dz)(7.34)

×
[
ρV (w)−

n̄β
Nb2

]
m(dw)

= N εO(N2b4)‖∇ρV ‖2∞,3 + O((logN)b−2).

By definition of n̄α we have |n̄α −NµV (α)| 6 1, and thus (recalling that µV
has density ρV )

ρV (z)− n̄α
Nb2

= ρV (z)− µV (α)

b2
+O

(
1

Nb2

)
(7.35)

=
1

b2

∫
α
m(dζ) (ρV (z)− ρV (ζ)) dζ +O

(
1

Nb2

)

as well as

(7.36) ρV (w)− n̄α
Nb2

=
1

b2

∫
α
m(dξ) (ρV (w)− ρV (ξ)) dξ +O

(
1

Nb2

)
.

We will use these bounds below and also bound L`R(z − w) by O(log `) =
O(logN) in the integral.

We first consider the diagonal terms α = β on the left-hand side of (7.34).
We claim that the contribution of each such term is O(logN)[N2b6‖∇ρV ‖2∞ +
1]. To see this, note that the factor logN is due to L`R, and a factor b2

arises from each of the integration of z and w. The first terms on the right-
hand sides of (7.35)–(7.36) contribute a factor b‖∇ρV ‖∞ each from bounding
[ρV (z)− ρ(ζ)] respectively [ρV (w)− ρ(ξ)], while the error term are of order
1/(Nb2). Since there are O(b−2) many bulk squares α, this bounds the sum
over the terms α = β as claimed.

Next we consider the off-diagonal terms α 6= β; we drop sub- and super-
scripts from L and ρ to shorten notations. We use a Taylor expansion to
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find that the sum of these terms is bounded, up to remainder terms, by

N2
∑
α 6=β

∫∫
α×β

∫∫
α×β

[
∇ρ(α)(z − ζ) +∇2ρ(α)(z − ζ)2

]
×
[
∇ρ(β)(w − ξ) +∇2ρ(β)(w − ξ)2

]
×
[
L(α− ζ) +∇L(ζ − ξ)(z − ζ − w + ξ) +∇2L(α− ξ)(z − ζ − w + ξ)2

]
×m(dz)m(dw)m(dζ)m(dξ).

The remainder term are bounded similarly without using symmetry and
produce the error terms depending on ‖∇3ρ‖∞. We return to the main terms.
By symmetry, the odd terms in (z − ξ) and (w − ζ) do not contribute. The
leading terms are therefore the quartic terms. These terms are bounded by

N2b4(‖∇ρ‖∞ + ‖∇2ρ‖∞)2.

The factor b4 comes from b−4b4b4 with the factor b−4 coming from the sum-
mation over squares; the b4 factor coming from the volume of the integration
of z and w, and the last b4 factor comes from the size of products of (z − ζ)
and (w − ξ) in the formula. This concludes the proof. �

Proof of (7.25). We now bound EΨEωΩαβ for β = B and α ⊂ D. Since
µ̃V = µ̂− µV and EΨEωµ̂|α is the uniform measure on α with total mass
n̄α/N , we have

EΨEω(µ̃V |α(dz)) =

(
n̄α

Nb2ρV (z)
− 1

)
µV |α(dz),

EΨEω(µ̃V |B(dz)) =

(
n̄B

NµV (B)
− 1

)
µV |B(dz).

Since µ̂|B and the µ̂|α are independent under EΨEω, and since the number
of squares α is O(b−2) and bounding L`R by O(logN), therefore

N2
∑
α

EΨEω
∫
z∈B

∫
w∈α

L`R(ΨB(z)−Ψα(w)) µ̃V (dz) µ̃V (dw)

=

(
n̄B

µV (B)
−N

)∑
α

∫
z∈B

∫
w∈α

L`R(z−w)

(
n̄α

b2ρV (z)
−N

)
µV (dz)µV (dw)

= O

(
(logN)

∣∣n̄B −NµV (B)
∣∣∑
α

∣∣n̄α −NµV (α)
∣∣) = O

(
(logN)b−2

)
.
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Similarly, for α = β = B, we have

N2EΨEω
∫
z∈B

∫
w∈B

L`R(z − w)1z 6=w µ̃(dz) µ̃(dw)

=

(
n̄B

µV (B)
−N

)2 ∫∫
B×B

L`R(z − w)µV (dz)µV (dw)

=

(
n̄B

µV (B)
−N

)2

O(logN)µV (B)2 = O(n̄B logN).

This completes the proof. �

7.4. Summary

In order to prove the lower bound for the partition function of the Coulomb
gas, we used a quasi-local approximation whose main building blocks are
Yukawa gases on torus. Due to the natural that the lower bound is proved
via a variational trial state, all estimates needed are with respect to a Yukawa
gas on tori. In particular, the rigidity estimate needed in the lower bound is
with respect to a Yukawa gas on a torus. This rigidity estimate is done in
Appendix A.

8. Proof of Theorem 1.2: central limit theorem

In this section, we prove Theorem 1.2. Our proof uses a modification of the
loop equation, which is a relation between one- and two-point correlations.
It allows to obtain the moment generating function for linear statistics of
the Coulomb plasma in terms of expectations of terms involving one-point
and two-point correlations with respect to a tilted measure. The density
estimates of Section 2 provide sufficient control on the one-point terms in
the loop equation. The two-point correlation term in the loop equation is
singular and can be decomposed into short- and long-range contributions.
The long-range part can be decomposed further into scales which can then
be bounded using local density estimates for all scales. Thus the short-range
contribution, which we call the local angle term, is the main difficulty to
obtain the CLT.

In [5], the loop equation was used to prove a central limit theorem for β =
1, by bounding the two-point contribution using the determinantal structure
of the microscopic point process (which holds only for β = 1). In [6], we used
the loop equation approach for Coulomb plasma for any β > 0 to obtain
rigidity estimates, by introducing the local density estimates to estimate
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the long-range part of the two-point contribution and bounding the angle
term by a trivial bound. In this section, we obtain an effective estimate for
the angle term for general β > 0. We deduce this estimate from Theorem 1.1
and the fact that the estimates for the remaining terms in the loop equation
can be obtained also for version of the Coulomb plasma that is tilted by a
small two-body interaction.

We remind the reader that all estimates in this section are with respect
to a Coulomb gas with or without an angle correction term; the Yukawa gas
is used only in the approximation of the free energy of the Coulomb gas, in
Sections 4-7. In particular, the estimate of the angle term, to be presented
in this section, is with respect to a Coulomb gas. This estimate requires not
just the local density bound, but the sophisticated rigidity estimate which is
a consequence of the loop equation. The rigidity estimate will also be needed
for Yukawa gases on a torus, to be presented in the Appendix A.

8.1. CLT for macroscopic test functions

We first prove Theorem 1.2 for macroscopic test functions f . For this, we
first prove that a version of Theorem 1.2 holds up to certain random shift,
the local angle term ÂfV defined by

ÂfV =
N

2
Re

∫∫
z 6=w

h(z)− h(w)

z − w
e−
|z−w|2

2θ2 µ̃V (dz) µ̃V (dw),(8.1)

h(z) =
∂̄f(z)

∂∂̄V (z)
,

where θ = N−1/2+σ. Note the integrand is singular at z = w since

h(z)− h(w)

z − w
= ∂h(z) + ∂̄h(z)

z̄ − w̄
z − w

+ O(|z − w|).

We recall the definitions of Xf
V and Y f

V from (1.11) and (1.12), as well as
the norms from (1.7), and that we write ‖f‖∞,k for ‖f‖∞,k,b with b = 1.

In the proof of [6, Theorem 1.2], more precisely in [6, Lemma 7.5], we
showed that (8.1) is bounded by O(N ε) with very high probability. Assuming
this term was � 1 instead of O(N ε), a small modification of the argument
in [6, Section 7] would already imply Theorem 1.2. A similar strategy was
used in [4, 5], where a version of (8.1) was shown to be approximately
equal to −1

2Y
f
V for β = 1, by using the exactly known correlation kernel for

the microscopic correlation functions in this integrable case. Our strategy
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now is to first prove a version of Theorem 1.2 in which the contribution
of the angle term (8.1) has been removed (in Proposition 8.1 below), and
then subsequently, by combining this argument with Theorem 1.1, prove
that the angle term (8.1) is in fact negligible up to the constant −1

2Y
f
V (in

Proposition 8.2).

Proposition 8.1. Suppose that V satisfies conditions (1.4) and (1.10), or
more generally the conditions stated in Remark 4.2. Then for any small σ,
the following holds. For any function f satisfying the same assumptions as in
Theorem 1.2 (in particular the support of f has distance of order 1 to ∂SV ),
for small ε and tb−2N2σ + tb−2‖f‖∞,4,b � 1, we have for any 0 ≤ |u| ≤ O(t)

1

tβN
logEV e−βNt(X

f
V−Â

f
V+uf )(8.2)

=
tN

8π

∫
|∇f(z)|2m(dz)− 1

β
Y f
V

+ O(N−1/2+3σ+εb−1 +N−σ+ε)‖f‖∞,3,b
+ O(tN2σ+εb−2)‖f‖2∞,3,b + O(N−1/2+εb‖f‖4,b).

Proposition 8.2. There exists κ > 0 such that if σ = κ/6 and 0 ≤ |u|, t 6
N−2κ/3,

(8.3)
1

tβN
logEV eβNtÂ

f
V+uf = −1

2
Y f
V + O(N−κ/3)(1 + ‖f‖∞,5)2.

The above two propositions will be proved in Sections 8.2-8.5 below.
We first note that the estimate (8.2) given by Proposition 8.1 without the
angle term ÂfV+uf on the left-hand side would imply a CLT for Xf

V . This
angle term is controlled by (8.3) of Proposition 8.2. By combining the two
estimates, we can complete the proof of Theorem 1.2 for macroscopic test
functions. For mesoscopic test functions, a similar argument applies after
conditioning (see Section 8.6).

Proof of Theorem 1.2 for macroscopic test functions. By assumption, f is a
macroscopic test function with ‖f‖∞,5 bounded. Let σ and κ be as in Propo-
sition 8.2. Then, with λ = Nt in the identity

(8.4)
1

tβN
logEV e−βNtX

f
V =

1

tβN

(
logEV e−βNt(X

f
V−Â

f
V )−logEV+tfeβNtÂ

f
V

)
,

the claim follows by using the estimates (8.2), (8.3) for the two terms on the
right-hand side of (8.4), and finally replacing κ by 3κ. �
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8.2. Loop equation with angle term

We start the proof with an integration by parts formula. Consider a smooth
bounded function v : C→ C, and G smooth, defined on z1 6= z2 such that
G(z1, z2) = G(z2, z1), and

(8.5) lim sup
|z2|→∞

(|G(z1, z2)|/ log |z2|) 6 1

for any fixed z1. For any z ∈ CN we define

WG,v
V (z) = −

∑
j 6=k

(v(zj)− v(zk))∂zjG(zj , zk)(8.6)

+
1

β

∑
j

∂jv(zj)−N
∑
j

v(zj)∂V (zj).

The following elementary lemma is often referred to as Ward identity or
loop equation. For example, it was used in [5] to study fluctuations of the
empirical measure when β = 1, and in [6] to prove rigidity for all β > 0,
with in both cases the interaction G being the Coulomb potential C. Its
relation to Conformal Field Theory is discussed in [29]. In this work we
need a perturbation G of the Coulomb interaction by the local angle term.

Lemma 8.3. Under the above assumptions, we have

EGV
(
WG,v
V

)
=

1

2
EGV

∑
j 6=k

(v(zj) + v(zk))(∂zk + ∂zj )G(zj , zk)

 ,

where the expectation is with respect to PGN,V defined in (1.3).

Proof. The proof is a classical simple integration by parts: for any j ∈ [[1, N ]],
we have

E
(
∂zjv(zj)

)
= βE

(
v(zj)∂zjH(z)

)
,

where both terms are absolutely summable and the boundary terms vanishes
because (i) with probability 1, no two zi’s have the same real or imaginary
part, (ii) v is bounded, G satisfies the growth condition (8.5), V satisfies the
growth condition (1.4). Summation of the above equation over all j ∈ J1, NK



i
i

“1-Yau” — 2020/1/15 — 18:54 — page 938 — #98 i
i

i
i

i
i

938 Bauerschmidt, Bourgade, Nikula, and Yau

therefore gives

1

βN

N∑
j=1

E(∂zjv(zj))

= E

 N∑
j=1

v(zj)

(
∂zjV (zj) +

∑
k 6=j

(∂zjG(zj , zk) + ∂zjG(zk, zj))

)
= E

 N∑
j=1

v(zj)

(
∂zjV (zj) +

∑
k 6=j

(∂zj − ∂zk)G(zj , zk)

)
+ E

∑
j=1

∑
k 6=j

v(zj)(∂zj + ∂zk)G(zj , zk)

 .

Using G(zj , zk) = G(zk, zj), we can continue the equation with

= E

(
N∑
j=1

v(zj)∂zjV (zj)

+
1

2

∑
j 6=k

(
v(zj)(∂zj − ∂zk)G(zj , zk) + v(zk)(∂zk − ∂zj)G(zk, zj)

))

+
1

2
E

∑
j 6=k

(v(zj) + v(zk))(∂zj + ∂zk)G(zj , zk)


= E

 N∑
j=1

v(zj)∂zjV (zj) +
1

2

∑
j 6=k

(
v(zj)− v(zk)

)
(∂zj − ∂zk)G(zj , zk)


+

1

2
E

∑
j 6=k

(v(zj) + v(zk))(∂zj + ∂zk)G(zj , zk)

 .

This concludes the proof. �

Before considering the interaction G with additional angle term, we tem-
porarily restrict our attention to the Coulomb case, where ∂zjC(zj − zk) =
−1

2(zj − zk)−1.

Lemma 8.4. For any f : C→ R of class C 2 supported on SV and z ∈ CN ,
recall Xf

V defined in (1.11) and h, depending on f and V , defined in (8.1).
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With these notations, we have

Xf
V = − 1

N
W h
V (z) +

1

Nβ

∑
k

∂h(zk)(8.7)

+
N

2

∫∫
z 6=w

h(z)− h(w)

z − w
µ̃V (dz) µ̃V (dw),

where µ̃V = µ̂− µV and we used the notation W h
V = W C,hV .

Proof. First remember the following two identities:

∫
µV (dw)

z − w
= ∂V (z), f(z) =

1

π

∫
∂̄f(w)

z − w
m(dw).(8.8)

The first equation holds for z ∈ SV and is obtained by the Euler-Lagrange
equation, the second equation is a simple integration by parts. We therefore
can write

Xf
V =

∑
j

∫
h(w)

zj − w
µV (dw)−N

∫∫
h(w)

z − w
µV (dw)µV (dz)

= N

∫∫
h(w)− h(z)

z − w
µ̂V (dz)µV (dw) +

∑
j

h(zj)∂V (zj)

− N

2

∫∫
h(w)− h(z)

z − w
µV (dw)µV (dz)

= − 1

2N

∑
j 6=k

h(zj)− h(zk)

zj − zk
+
∑
j

h(zj)∂V (zj)

+
N

2

∫∫
z 6=w

h(z)− h(w)

z − w
µ̃V (dz)µ̃V (dw),

which is equivalent to (8.7). In the first equation we used (1.6) and (8.8),
and in the second equation we used (8.8). �

We now decompose the last term in (8.7) into a sum of the long-range and
short-range terms. For this purpose, let ϕ(z) = e−|z|

2

and, given a mesoscopic
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scale θ = N−
1

2
+σ, we define

Φ(z − w, r) =
2

π

∫
ϕ

(
|z − ξ|
r

)
ϕ

(
|ξ − w|
r

)
dm(ξ) = r2e−

|z−w|2

2r2 ,

Φ−θ (z − w) =

∫ θ

0
Φ(z − w, r)dr

r5
=

e−
|z−w|2

2θ2

|z − w|2
,(8.9)

Φ+
θ (z − w) =

∫ ∞
θ

Φ(z − w, r)dr

r5
=

1− e−
|z−w|2

2θ2

|z − w|2
,

Ψ±h (z, w) = Φ±θ (z − w)(z̄ − w̄)(h(z)− h(w)),(8.10)

Ψh(z, w) = Ψ+
h (z, w) + Ψ−h (z, w).

As in the proof of [6, Lemma 7.5] (see also [20]), we have decomposed the
last term in (8.7) into a relatively long range part and, essentially, a local
angle term:

N

2

∫∫
z 6=w

h(z)− h(w)

z − w
µ̃V (dz) µ̃V (dw) = Ah,+V +Ah,−V ,

where

Ah,+V =
N

2

∫∫
z 6=w

Ψ+
h (z, w) µ̃V (dz) µ̃V (dw),(8.11)

Ah,−V =
N

2

∫∫
z 6=w

Ψ−h (z, w) µ̃V (dz) µ̃V (dw).(8.12)

By definition (8.1), we also have

(8.13) ÂfV =
N

2
Re

∫∫
z 6=w

h(z)− h(w)

z − w
e−
|z−w|2

2θ2 µ̃V (dz) µ̃V (dw) = ReAh,−V ,

i.e., ÂfV is just ReAh,−V with h chosen according to (8.1).
Note that, in the above decomposition, we could have considered any

fixed non-negative function ϕ ∈ C∞(C) with compact support or fast decay
at infinity, as in [6, Lemma 7.5]. We here chose the Gaussian scale function
for the sake of concreteness and some convenient simplifications. Compared
with [6], we also write the mesoscopic scale as θ rather than N−1/2θ.

8.3. Coulomb gas with angle perturbation

We now define the perturbed Coulomb gas. The Coulomb gas, exponen-
tially tilted by the real-part of the local angle term, is defined to have pair
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interaction and potential given by

Gt = C − t

2
Re Ψ−h , Vt = V + tf + tF,(8.14)

F = Re

∫
Ψ−h (·, w)µV (dw),

where h = ∂̄f
∂∂̄V

(we will see that h = h0 defined in (8.17) below). We also
include a t-dependent constant in the perturbed Hamiltonian and define

Ht := HGt
Vt
− t

2
N2 Re

∫∫
Ψ−h (z, w)µV (dz)µV (dw)(8.15)

= HCV+tf −NtÂ
f
V .

Notice that the interaction term involving Re Ψ−h , the potential term involv-

ing tF and the constant term in (8.15) were recombined into ÂfV which was
defined in (8.1). Notice further that the subscript V is different from the
subscript V + tf in the Hamiltonian in (8.15).

For the proof of Proposition 8.1, we require the following Proposition 8.5
regarding a local density estimate for this interaction.

Proposition 8.5. Consider the Coulomb gas with Hamiltonian (8.15), with
V, f ∈ C 2 and tN2σ 6 1 and ‖∇h‖∞ 6 1 and t ∈ [0, 1]. For all s ∈ (0, 1

2), for
all f supported in ball of radius b = N−s contained in SV with distance of
order 1 to the boundary, we have the local density estimate

(8.16) XVt
f ≺

√
Nb2‖f‖∞,2,b

with respect to the measure PGtVt
. In particular, for any ball as above, the

number of particles in that ball is bounded by O(Nb2) with high probability.

Proof. The proposition is a direct consequence of Theorem 2.3. Indeed,
(8.15) corresponds to the choice G̃(z, w) = h(z)−h(w)

z−w e−|z−w|
2/(2θ2) in (2.8)

which satisfies (2.9) since ‖∇h‖∞ 6 1. �

For 0 ≤ t� 1, we define

(8.17) ht(z) =
∂̄f(z)

∂∂̄(V (z) + tf(z))
, h = h0.

In the next lemma, we collect some elementary estimates for ht and Ft. Recall
that V satisfies the growth condition (1.4) and the regularity assumption
(1.10).
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Lemma 8.6. Assume that the support of f has distance � N−1/2+σ to
∂SV , and that

(8.18) tb−2‖f‖∞,4,b � 1.

Recall θ = N−1/2+σ. Then the following estimates hold:

‖ht‖k,b ≤ b−1‖f‖∞,k+1,b

[
1 + tb−2‖f‖∞,k+2,b

]
,(8.19)

tF (z) = O(N−1+2σ)tb−2‖f‖∞,2,b,(8.20)

t∆F (z) = O(N−1/2+σ)tb−3‖f‖∞,4,b.(8.21)

Proof. Using that t‖∆f‖∞ � 1 and (8.18), we have

‖∇ht‖∞ ≤
‖∇∂̄f‖∞

‖∂∂̄(V + tf)‖∞
+
‖∂̄f∇(∂∂̄(V + tf))‖∞
‖∂∂̄(V + tf)‖2∞

≤ b−2‖f‖∞,2,b
[
1 + tb−2‖f‖∞,3,b

]
.

Similar estimates hold for higher derivatives and we get in general (8.19).
We can bound tF by

tF (z) = t

∫
h(z)− h(w)

z − w
e−
|z−w|2

2θ2 µV (dw)

= O(N−1+2σ)t‖∇h‖∞ = O(N−1+2σ)tb−2‖f‖∞,2,b,

which is a small correction to V + tf . Similarly, we have

t∆F (z) = t∆h(z)

∫
e−
|z−w|2

2θ2

z − w
µV (dw)− 2t∇h(z)

∫ (
∇w

e−
|z−w|2

2θ2

z − w

)
µV (dw)

+ th(z)

∫ (
∆w

e−
|z−w|2

2θ2

z − w

)
µV (dw) = O(N−1/2+σ+ε),

where for the last estimate we integrated w by parts to avoid the singularity.
�

By using the local law of Proposition 8.5 in the loop equation, as in [6,
Section 7], we obtain the following estimate. Recall that ÂfV was defined in
(8.1) and satisfies (8.13).
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Lemma 8.7. Suppose that the assumption (8.18) holds. Recall σ is the
parameter in the definition (8.1). Then for any 0 ≤ |u| ≤ O(t)

1

tβN
logEV e−tβN(Xf

V−Â
f
V+uf )(8.22)

=
tN

8π

∫
|∇f(z)|2m(dz)− 1

β
Y f
V +

1

t
Re

∫ t

0
EGsVs

(
Ahs,+Vs

)
ds

+ O(N−1/2+3σ+εb−1‖f‖3,b) + O(tN εb−2N2σ‖f‖23,b)
+ O(N−1/2+εb‖f‖4,b),

1

tβN
logEV e−tβNX

f
V(8.23)

=
tN

8π

∫
|∇f(z)|2m(dz)− 1

β
Y f
V

+
1

t
Re

∫ t

0
ECV+sf

(
Ahs,−V+sf +Ahs,+V+sf

)
ds

+ O(N−1/2+3σ+εb−1‖f‖3,b) + O(tN εb−2N2σ‖f‖23,b)
+ O(N−1/2+εb‖f‖4,b).

Proof. We focus on (8.22); the second bound (8.23) can be proved in a
similar way. Note that the expectation on the right-hand side of (8.23) is
with respect to the standard Coulomb gas without local angle term, and
that the terms Ahs,±V+sf are with respect to the external potential V + sf .
The estimate (8.23) was essentially obtained in [6, Section 7] already. The
short range angle term, Ahs,−V+sf , was difficult to estimate in [6, Section 7].
In (8.22), we added an angle term in the Hamiltonian so that there is no
such short range angle term on the right side of (8.22). The following proof
is written for u = 0 for the simplicity of notations; we will remark on the
modification needed for the general case in the proof. Furthermore, the error
Aht,−Vt

−Ah,−V+uf will be estimated in Lemma 8.8.
We denote by Zt the partition function corresponding to the Hamilto-

nian (8.15). Then the left-hand side of (8.22) can be written as

1

tβN
(logZt − logZ0) +N

∫
fdµV =

1

t

∫ t

0

[
∂s

1

βN
logZs +N

∫
f dµV

]
ds.

Using the definition (8.15) of Gt, we get

∂t
1

βN
logZt +N

∫
f dµV = N

∫
f(dµV − dµVt) + ReEGtVt

(
−Xf

Vt
+ ÂfV

)
.
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As t� 1 and ∆f is bounded and supported in SV , the supports SV and
SVt coincide. Together with the explicit formula for the equilibrium mea-
sure (1.6) and with (8.20), we have

N

∫
f(dµV − dµVt) =

Nt

4π

∫
|∇f |2 dm+

N

4π

∫
|ft∆F | dm

=
Nt

4π

∫
|∇f |2 dm+ O(tb−2N2σ)‖f‖2∞,2,b,

where we have integrated by parts twice in getting the last inequality and
also used that the support of the integrand has area O(b2). Using (8.7) with
the choice Vt for the external potential (and the unperturbed Coulomb pair
interaction), we have

EGtVt
(
−Xf

Vt
+Ah,−V

)
(8.24)

= EGtVt

(
1

N
W ht
Vt
− 1

Nβ

∑
k

∂ht(zk)−Aht,+Vt
−Aht,−Vt

+Ah,−V

)
.

The perturbed interaction Gt satisfies Gt(zj , zk) = Gt(zk, zj) and the growth
assumption (8.5), so Lemma 8.3 applies. Together with the definition of Gt
and recalling W h

V = W C,hV , we have

EGtVt

W ht
Vt

+ t
∑
j 6=k

(ht(zj)− ht(zk))∂zj Re Ψ−ht(zj , zk)

(8.25)

= EGtVt
(
WGt,ht
Vt

)
=

1

2
EGtVt

∑
j 6=k

(ht(zj)+ht(zk))(∂zk + ∂zj )Gt(zj , zk)

.

In summary, equations (8.24) and (8.25) give
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∂t
1

βN
logZt +N

∫
f dµV =

Nt

4π

∫
|∇f |2 dm(8.26)

+ ReEGtVt

(
− 1

Nβ

∑
k

∂ht(zk)−Aht,+Vt
−Aht,−Vt

+Ah,−V

− t

N

∑
j 6=k

(ht(zj)− ht(zk))∂zj Re Ψ−ht(zj , zk)

+
1

2N

∑
j 6=k

(ht(zj) + ht(zk))(∂zk + ∂zj )Gt(zj , zk)

)
+ O(tb−2N2σ)‖f‖2∞,2,b.

We now evaluate all terms in the above expectation. The difference Aht,−Vt
−

Ah,−V is bounded in Lemma 8.8 below. For the general cases with u 6= 0,

Ah,−V should be replaced by Ah,−V+uf . Notice that Lemma 8.8 is valid for all
0 ≤ |u| ≤ O(t).

The other terms are bounded as follows. By (8.16),

ReEGtVt

(
− 1

Nβ

∑
k

∂ht(zk)

)
(8.27)

= − 1

β
Re

∫
∂ht dµVt + O(N−1/2+εb)‖∇ht‖∞,2,b.

To compute the main term on the right-hand side, recall that Vt = (V +
tf) + tF . By integration by parts and the explicit formula for the equilibrium
density,

− 1

β
Re

∫
∂ht dµVt(8.28)

= − 1

4πβ
Re

∫
∂

(
∂̄f

∂∂̄(V + tf)

)
∆(V + tf) dm

+ O

(
t

∫
∂ht∆F dm

)
= − 1

4πβ

∫
∆f log ∆(V + tf) dm+ O

(
t

∫
∂ht∆F dm

)
= − 1

β
Y f
V + O

(
t

∫
|∆f |2 dm

)
+ O(tb−2N2σ)‖f‖2∞,3,b

= − 1

β
Y f
V + O(tb−2N2σ)‖f‖2∞,3,b.
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Finally, differentiating Ψ and using (8.9) give∣∣∣∣∣∣ tN
∑
j 6=k

(ht(zj)− ht(zk))∂zj Re Ψ−ht(zj , zk)

∣∣∣∣∣∣
6 C

t

N
‖∇ht‖2∞

∑
j 6=k:zj∈Ω

e−
|zj−zk|

2

2θ2

(
1 +
|zj − zk|2

θ2

)
+ e−N

ε

,

where Ω is the N εθ-neighborhood of the support of h. Using the boundedness
of the local density, implied by (8.16), we have, under the assumption (8.18),
that

ReEGtVt

 t

N

∑
j 6=k

(ht(zj)− ht(zk))∂zj Re Ψ−ht(zj , zk)

(8.29)

= O(tN2σ+εb2)‖∇ht‖2∞ = O(tb−2N2σ+ε)‖f‖2∞,2,b.

Similarly, (8.9) yields

1

N

∑
j 6=k

(ht(zj) + ht(zk))(∂zj + ∂zk)Gt(zj , zk)

=
t

N

∑
j 6=k

(ht(zj) + ht(zk))
∂h(zj)− ∂h(zk)

zj − zj
e−
|zk−zj |

2

2θ2

= O

 t

N
‖ht‖∞‖∇2h‖∞

∑
j 6=k:zj∈Ω

e−
|zj−zk|

2

2θ2

+ O(e−N
ε

)

= O

 t

N
b−4‖f‖2∞,3,b

∑
j 6=k:zj∈Ω

e−
|zj−zk|

2

2θ2

+ O(e−N
ε

).

The local density estimate (8.16) then again gives

ReEGtVt

 1

N

∑
j 6=k

(ht(zj) + ht(zk))(∂zj + ∂zk)Gt(zj , zk)

(8.30)

= O(
t

N
b−4N2σ+ε)‖f‖2∞,3,b = O(tb−2N2σ+ε)‖f‖2∞,3,b.

Collecting the error terms and using (8.32) and b ≥ θ, we get the error terms

(8.31) N−1/2+3σ+εb−1‖f‖3,b + tN εb−2N2σ‖f‖23,b +N−1/2+εb‖f‖4,b.
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This concludes the proof. �

Lemma 8.8. Recall assumption (8.18) and that ht is defined in (8.17). For
any 0 ≤ |u| ≤ O(t) we have the estimate

EGtVt
(
Aht,−Vt

−Ah,−V+uf

)
= O(N−1/2+3σ+εb−1)‖f‖∞,3,b(8.32)

+ O(tN2σ+εb−2)‖f‖2∞,3,b.

An analogous estimate holds with EGtVt replaced by ECV .

Proof. To simplify notation, we set u = 0 in the following proof as the general
case is proved in the same way. By definition,

Aht,−Vt
−Ah,−V =

N

2

∫∫
z 6=w

[
Ψ−ht(z, w) µ̃Vt(dz) µ̃Vt(dw)(8.33)

−Ψ−h (z, w) µ̃V (dz) µ̃V (dw)
]
.

Decompose the integrand into

[Ψ−ht −Ψ−h ](z, w) µ̃Vt(dz) µ̃Vt(dw)(8.34)

+ Ψ−h (z, w) [µ̃Vt(dz) µ̃Vt(dw)− µ̃V (dz) µ̃V (dw)].

To estimate the first term, using that

(8.35) ∂s∂hs(z) = O
(
‖∇f‖∞‖∇3f‖∞ + ‖∇2f‖2∞

)
= O(b−4)‖f‖2∞,3,b,

with high probability with respect to the measure PGtVt
we have

N

∫∫
z 6=w

[Ψ−ht −Ψ−h ](z, w) µ̃Vt(dz) µ̃Vt(dw)(8.36)

≤ N
∫ t

0
ds

∫∫
z 6=w

∣∣∂s∂hs(z)∣∣ 1(|z − w| ≤ θ) µ̃Vt(dz) µ̃Vt(dw)(8.37)

6 O(tN2σ+εb−2)‖f‖2∞,3,b(8.38)

where we used the local density estimate Proposition 8.5, and the factor
θ2b2 comes from the integration restriction that z is in the support of f and
|w − z| . θ.
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Similarly we can estimate the second term in (8.34). We start with the
bound that, with high probability,

N

∫∫
Ψ−ht(z, w)

[
µ̃Vt(dz)− µ̃V+tf (dz)

]
µ̃Vt(dw)

= O(N)

∫∫
Ψ−ht(z, w) t∆F (z)m(dz) µ̃Vt(dw)

= O(N1+εθ2b2)‖∇ht‖∞‖t∆F‖∞
= O(N−1/2+3σ+ε)‖f‖∞,2,btb−3‖f‖∞,4,b
= O(N−1/2+3σ+ε)b−1‖f‖∞,2,b

where we have used Lemma 8.6 to bound ‖∇ht‖∞‖t∆F‖∞ and assumption
(8.18) in the last step. Similar argument also leads to

N

∫∫
Ψ−ht(z, w)

[
µ̃V (dz)− µ̃V+tf (dz)

]
µ̃Vt(dw)

= O(Nt)

∫∫
Ψ−ht(z, w) ∆f(z)m(dz) µ̃Vt(dw)

= O(N1+εtθ2b2)‖∇ht‖∞‖∆f‖∞ = O(N2σ+εtb−2)‖f‖2∞,2,b.

Collecting all these bounds and using ‖f‖2∞,2,b ≤ ‖f‖2∞,3,b, we have proved
Lemma 8.8. Notice that we have used assumption (8.18) in the proof so that
the right side of (8.32) does not involve ‖f‖4,b. This completes the proof. �

8.4. Proof of Proposition 8.1

The proof of Proposition 8.1 follows the strategy in [6] by first estimating
the sum of the long and short range angle terms with the local law Propo-
sition 8.5.

Lemma 8.9. For any ε > 0, uniformly in 0 6 t� 1 with t‖∆f‖∞ � 1, we
have

(8.39) EGtVt
(
Ag,+Vt +Ag,−Vt

)
= O(N ε)b‖g‖∞,2,b.

Proof. The proof is exactly the same as that of [6, Lemma 7.5], using the
local density estimate Proposition 8.5. Here A− corresponds to t 6 N−1/2+δ

in that proof and A+ to t > N−1/2+δ. �

Inserting these bounds into (8.23), we obtain the following rigidity esti-
mate. This estimate is essentially the same as the rigidity estimate for the
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Coulomb gas, i.e., [6, Theorem 1.2]. The only difference is that the estimate
is with respect to the Coulomb gas with an angle term, i.e., the measure
PGtVt .

Proposition 8.10. Assume the same conditions as in Proposition 8.5. For
any ε > 0, s ∈ (0, 1/2), for any f supported in a ball of radius b = N−s

contained in SV with distance of order 1 to ∂SV ,

(8.40) Xf ≺ ‖f‖∞,4,b

with respect to the measure PGtVt .

Proof. The proof is exactly the same as the proof of [6, Theorem 1.2]. �

Finally, using this rigidity estimate instead of the local law of Proposi-
tion 8.5, we obtain the following improved bound on A+, which consists of
correlations at range longer than N−1/2+σ. The proof of Lemma 8.11 uses a
loop equation and will be given in Section A.4, where a systematical treat-
ment of loop equation will be presented. We remark that a similar estimate
for Coulomb gas was already proved in [6].

Lemma 8.11 (Refined estimate on the long range angle term). For
any ε > 0, uniformly in 0 6 t� 1 with t‖∆f‖∞ � 1 and for any function
g, we have

(8.41) EGtVt
(
Ag,+Vt

)
= O(N−σ+ε)b‖g‖∞,2,b.

In particular, when g = ht, the last term is bounded by O(N−σ+ε)‖f‖3,b. For
a Coulomb gas satisfying (2.32) a similar estimate holds, i.e.,

(8.42) ECV+tf

(
Ag,+V+tf

)
= O(N−σ+ε)b‖g‖∞,2,b.

Proof of Proposition 8.1. Proposition 8.1 follows immediately from (8.22)
and Lemma 8.11. �

8.5. Concentration of the angle term (macroscopic case): proof
of Proposition 8.2

In this subsection, we assume b is of order 1. The main input of the proof of
Proposition 8.2 is the following estimate of large deviations type, which is a
direct consequence of Theorem 1.1.
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Corollary 8.12. Assume that V satisfies the conditions of Remark 4.2. Let
0 < t� 1 and κ < 1/24. Then for any f ∈ C 5 whose support is contained
in SV and has distance of order 1 to the boundary of SV , assuming that
t‖∆f‖∞ � 1, we have

1

tβN
logEV e−βtNX

f
V =

tN

8π

∫
|∇f |2 dm+

(
1

2
− 1

β

)
Y f
V

+ O(N−κ/t)(1 + ‖∆f‖∞,3)2 + O(t)‖∆f‖2∞.

Proof. By Theorem 1.1, we have

(8.43)
1

tβN
logEV e−βtNX

f
V = N

∫
f dµV −

N

t
(IV+tf − IV )

+

(
1

2
− 1

β

)
1

t

(∫
ρV+tf log ρV+tf −

∫
ρV log ρV

)
+ O(t−1N−κ),

with an f -dependent error term. More precisely, by Remark 4.2, with V
fixed, the f -dependence of the error term can be taken to be O(t−1N−κ)(1 +
‖∆f‖∞,3)2.

Using that ρV = 1
4π∆V 1SV and ρV+tf = 1

4π (∆V + ∆f)1SV for f with
compact support contained in SV such that t∆f < ∆V in its support, an
explicit calculation (see, e.g., [6, Proposition 3.1]) shows that

(8.44) IV+tf − IV = t

∫
f dµV −

t2

8π

∫
|∇f |2 dm,

and that

1

t

(∫
ρV+tf log ρV+tf −

∫
ρV log ρV

)
(8.45)

=
1

4π

∫
∆f log ρV +

1

t

∫
ρV+tf log

(
ρV+tf

ρV

)
=

1

4π

∫
∆f log ρV + O

(
t

∫
(∆f)2

)
,

where for the last equality we expanded log(1 + t∆f/∆V ) to first order and
used

∫
∆f = 0. Equations (8.44) and (8.45) in (8.43) conclude the proof. �

Proof of Proposition 8.2. Let κ be as in Corollary 8.12 and write W = V −
tf . By an elementary identity as in (8.4), we have

1

tβN
logEV etβNÂ

f
V+uf =

1

tβN

(
logEW e−βNt(X

f
V−Â

f
V+uf ) − logEW e−βNtX

f
V

)
.
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We can replace Xf
V by Xf

W in the two exponents in the above equation

since Xf
V −X

f
W is a constant which cancels in the above expression. Also,

ÂfV+uf = ÂfW+(t+u)f . By Proposition 8.1,

1

tβN
logEW e−βNt(X

f
W−Â

f
W+(t+u)f )

= −1

2
Y f
W +N εO(tN2σ +N−σ +N−1/2+3σ)(1 + ‖f‖∞,4)2.

By Corollary 8.12 with V replaced by W , we can estimate the last term
logEW e−βNtX

f
W . Recall from (8.28) that Y f

W = Y f
V + O

(
t
∫
|∆f |2 dm

)
.

Putting all these bounds together, we have arrived at

1

tβN
logEV etβNÂ

f
V+uf = −1

2
Y f
V +N εO(tN2σ +N−σ

+ t−1N−κ +N−1/2+3σ)(1 + ‖f‖∞,5)2.

This proves (8.3) in the specific case t = N−4σ = N−2/3κ. Moreover, the
bound also holds as claimed for smaller t by the monotonicity of t 7→
t−1 logE(etX) applied with the choice X = βN(ÂfV+uf + 1

2Y
f
V ). �

8.6. CLT for mesoscopic test functions

To extend the proof of the central limit theorem to test functions on meso-
scopic scales, it suffices to prove the following estimate for the local angle
term. Recall that ÂfV was defined in (8.1) and satisfies (8.13).

Proposition 8.13. Suppose that V satisfies the conditions (1.4) and (1.10).
Let s ∈ (0, 1

2) and assume that f is supported in a ball of radius b = N−s

contained in SV with distance of order 1 to the boundary ∂SV . Then there
exists τ = τ(s) > 0 such that with high probability under the measure P CV ,

(8.46)

∣∣∣∣ÂfV +
1

2
Y f
V

∣∣∣∣ ≺ (Nb2)−τ/3‖f‖∞,5,b.

This proposition can be proved by following the strategy used in the
proof of Proposition 8.2, after conditioning on the particles outside a meso-
scopic ball with radius of order b containing the support of f . Before imple-
menting this, we complete the proof of Theorem 1.2 using (8.46).

Proof of Theorem 1.2 for mesoscopic test functions. We apply (8.23) and we

need to estimate the term 1
t Re

∫ t
0 ECV+sf

(
Ahs,−V+sf +Ahs,+V+sf

)
ds on right hand
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side of (8.23). The term A+ is again bounded by Lemma 8.11. To estimate
the expectation of A−, we now use (8.46) which implies that with high
probability

Ahs,−V+sf = −1

2
Y f
V+sf + O(M−τ/3+ε)‖f‖∞,5,b

= −1

2
Y f
V + O(M−τ/3+ε + sb−2)‖f‖∞,5,b

where we have used Y f
V+sf = Y f

V + O
(
s
∫
|∆f |2 dm

)
as in (8.45). Clearly,

the high probability estimate immediately implies the same estimate under
expectation. Integrating s from 0 to t, this implies an estimate on the term
1
t Re

∫ t
0 ECV+sf

(
Ahs,−V+sf +Ahs,+V+sf

)
ds. Inserting this estimate into (8.23), we

have completed the proof of Theorem 1.2. �

In the remainder of this section, we prove Proposition 8.13. For this,
we use the approach of local conditioning of [6] and then proceed as in
the proof of Proposition 8.2. The local conditioning and its properties are
given in Section 2.6. Relative to the conditioned measure, for f compactly
supported in SW ⊂ SV , the definitions (1.11), (1.12) translate to

Xf
N,V = Xf

M,W =
∑
j

f(z̃j)−M
∫
f dµW ,

Y f
V = Y f

W =
1

4π

∫
∆f log ρW dm,

where ρW is the density of the absolutely continuous part of µW ; inside the
support of f , this density equals that of µV up to rescaling. The angle term
relative to the conditioned measure is
(8.47)

ÂfV = ÂfW =
M

2
Re

∫∫
z 6=w

Ψ−hW (z, w) µ̃W (dz) µ̃W (dw), hW =
∂̄f(z)

∂∂̄W (z)
.

The following proposition is a conditioned version of Proposition 8.2.
Note that Lemma 2.6 implies that the assumptions of this proposition holds
with high probability. Thus by the Markov inequality, the following Propo-
sition 8.14 immediately implies Proposition 8.13.

Proposition 8.14. Let W be the conditional potential defined above and
assume that it satisfies the conclusions of Lemma 2.6. Choosing the local
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angles cutoff θ = M−1/2+σ with σ = τ/6, for any 0 ≤ t ≤M−2τ/3 we have

(8.48)
1

tβM
logEW etβM(ÂfW+

1
2Y

f
W ) = O(M−τ/3)(1 + ‖f‖∞,5,b)2.

To prove Proposition 8.14, we need a version of Theorem 1.1 for the
conditioned measure. Recall that µW denotes the unique minimizer of the
energy functional

(8.49) IW (µ) =

∫∫
log

1

|z − w|
µ(dz)µ(dw) +

∫
W (z)µ(dz),

defined for probability measures supported in B, and that its minimum value
is IW = IW (µW ).

Theorem 8.15. Let W be the conditional potential defined above and as-
sume that it satisfies the conclusions of Lemma 2.6. Then there exists τ > 0
(depending on the constant τ in Lemma 2.6 but possibly smaller; here we
have abused the notation and use the same symbol τ) such that with ζC,β ∈ R
defined in Theorem 1.1,

1

βM
log

∫
BM

e−βH
C
W (z)m⊗M (dz)

= −MIW + ζC,β +
1

2
logM

+

(
1

2
− 1

β

)∫
B
ρW (z) log ρW (z)m(dz) + O(M−τ ),

where ρW is the density of the absolutely continuous part of µW .

Proof. We apply the local version of Theorem 1.1, i.e., Theorem 4.2, to the
conditional Coulomb gas satisfying the properties stated in Lemma 2.6. To
apply Theorem 4.2, we first rescale and center the domain B, which is a
disk of radius b, to the unit disk D with center at 0. Since the translation is
trivial, we will assume that the center of B is already at the origin. Denote
the rescaling by z = bu and define the new Hamiltonian ĤCW (u) through the
identity

(8.50)

∫
BM

e−βH
C
W (z)m⊗M (dz) =

∫
DM

e−βĤ
C
W (u)m⊗M (du).
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Hence ĤCW (u) is a Coulomb gas with external potential W̃ (u) = W (bu) up
to a constant. More precisely,

ĤCW (u) = HCW (u/b)− 2Mβ−1 log b

= HC
W̃

(u)−M(M − 1) log b− 1

β
M log b2.

By Theorem 4.2, there exists τ > 0 such that

1

βM
log

∫
BM

e−βH
C
W (z)m⊗M (dz)

=
1

βM
log

∫
DM

e−βHM,W̃ (u)m⊗M (du) +M log b−
(

1

2
− 1

β

)
log b2

= −M(IW̃ − log b) +
1

2
logM

+

(
1

2
− 1

β

)[∫
D
ρW̃ (u) log ρW̃ (u)m(du)− log b2

]
+ O(M−τ ).

Recall the normalization conditions for the densities
∫
ρW̃ (u)m(du) = 1 =∫

ρW (z)m(dz). Hence ρW̃ (u) = ρW (bu)b2 and we have∫
D
ρW̃ (u) log ρW̃ (u)m(du)− log b2 =

∫
B
ρW (z) log ρW̃ (z)m(dz).

A similar argument shows that (IW̃ − log b) = IW . We have thus proved
Theorem 8.15 . �

Proof of Proposition 8.14. By assumption, the potential W satisfies the con-
ditions of Theorem 4.2, and therefore the assumptions of Proposition 8.1.
Together with using Proposition 8.15 to replace Theorem 1.1, the proof
of Proposition 8.14 follows in exactly the same way as that of Proposi-
tion 8.2. �

As in the proof of Theorem 8.15, one can also derive a conditioned version
of the CLT, stated below; we omit the details of the proof.

Theorem 8.16. Suppose W is the conditional potential defined above and
assume that it satisfies the conclusions of Lemma 2.6. Then for any β > 0,
c ∈ (0, 1) and large C > 0, there a positive constant τ > 0 such that the
following holds. For any f : C→ R supported in the ball with same center
as B and radius b(1− c) and satisfying ‖f‖4,b < C, and for any 0 6 λ ≤
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M1−2τ , we have

1

βλ
log

(
ECM,W,βe

−λβ
(
Xf
W−(

1
β−

1
2 )Y fW

))
(8.51)

=
λ

8π

∫
|∇f(z)|2m(dz) + O(M−τ ).

Note that the measure associated to the external potential W + λ
M f is

a perturbation of the original measure provided that

|λ∆f | � |M∆W | = |N∆V |.

Our assumptions ‖f‖4,b < C and λ ≤M1−2τ guarantee this condition. Also
note that, in the context of the above Theorem 8.16, our test function has
shrinking support so that

Y f
W =

1

4π

∫
∆f(z) log ρW (z) dm(z)

=
1

4π

∫
∆f(z) log

∆V (z)

∆V (z0)
dm(z)

= O(b)‖f‖∞,b,2‖V ‖SV ,∞,3 = o(1),

where we used (2.30) and denoted the center of J by z0. Thus Theorem 8.16,
with λ of order 1, implies there is no shift of the mean in the convergence
to the Gaussian free field for mesoscopic observables:

Xf
W

(d)−→
N→∞

N

(
0,

1

4πβ

∫
|∇f |2

)
.

Appendix A. Rigidity estimates for Yukawa gas on torus

In this appendix, we prove Theorem 2.4 and Proposition 2.5. The proofs use
the same ideas as that of [6, Theorem 1.2]. We will also prove Lemma 8.11
by the same argument.

A.1. Loop equation

As the first step, we state the loop equation for the Yukawa gas on the torus.

Given a function v : T→ R, the function WU`,v
V : TN → C was defined by
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(8.6). For simplicity of notation, we denote it by W v
V (z) in this section, i.e.,

W v
V (z) = −

∑
j 6=k

(v(zj)− v(zk))∂U
`(zj − zk)(A.1)

+
1

β

∑
j

∂jv(zj)−N
∑
j

v(zj)∂V (zj).

By Lemma 8.3, EU`V (W v
V ) = 0 since the Yukawa interaction Y ` (and there-

fore U `) are functions of zj − zk. Given q : C→ R supported in SV , further
abbreviate

(A.2) h(z) =
1

π

∂̄q(z)

ρV (z)
, g(z) =

1

π

q(z)

ρV (z)
,

where ρV denotes the density of µV (2.14) with respect to the Lebesgue
measure. The following lemma extends Lemma 8.4 from the Coulomb gas
to the Yukawa gas.

Lemma A.1. For any q : T→ R of class C 2 supported on SV and z ∈ TN ,
recall Xq

V defined in (1.11). Then we have

Xq
V = − 1

N
W h
V (z) +

1

Nβ

∑
k

∂h(zk)(A.3)

+N

∫∫
z 6=w

(h(z)− h(w))∂U `(z − w)µ̃V (dz)µ̃V (dw)

+
Nm2

2

∫∫
z 6=w

g(w)U `(z − w)µ̃V (dz)µV (dw),

where m = `−1 an h is defined in (A.2). Thus for any smooth enough f :
T→ R with

(A.4) q = f −
∫
T
fdm−m2∆−1

(
f −

∫
T
fdm

)
supported in SV , where ∆ is the Laplacian on the torus, we have

Xf
V = − 1

N
W h
V (z) +

1

Nβ

∑
k

∂h(zk)(A.5)

+N

∫∫
z 6=w

(h(z)− h(w))∂U `(z − w)µ̃V (dz)µ̃V (dw).
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Proof. As in the proof of Lemma 8.4, we have

2

∫
∂U `(z − w)µV (dw) = ∂V (z),(A.6)

q(z) =
1

2π

∫
(−4∂∂̄q(w) +m2q(w))U `(z − w)m(dw)(A.7)

=
1

2π

∫
(4∂̄q(w)∂U `(z − w) +m2q(w)U `(z − w))m(dw),

where again the first equation holds for z ∈ SV by the Euler-Lagrange equa-
tion, the second equation holds by the definition of the Yukawa potential as
the Green’s function of −∆ +m2 and integration by parts – the boundary
term vanishes by periodicity. We therefore have

Xq
V = 2

∑
j

∫
h(w)∂U `(zj − w)µV (dw) +

m2

2

∑
j

∫
g(w)U `(zj − w)µV (dw)

− 2N

∫∫
h(w)∂U `(z − w)µV (dw)µV (dz)

− Nm2

2

∫∫
g(w)U `(z − w)µV (dw)µV (dz)

= 2N

∫∫
(h(w)− h(z))∂U `(z − w)µ̂(dz)µV (dw) +

∑
j

h(zj)∂V (zj)

−N
∫∫

(h(w)− h(z))∂U `(z − w)µV (dw)µV (dz)

+
Nm2

2

∫∫
g(w)U `(z − w)µ̃V (dz)µV (dw).

In the first equation we used (A.2) and (A.7), and in the second equation
we used (A.6). Since the integrands in the double integrals are symmetric,
we arrive at

Xq
V = − 1

N

∑
j 6=k

(h(zj)− h(zk))∂U
`(zj − zk)

+N

∫∫
z 6=w

(h(z)− h(w))∂U `(z − w)µ̃V (dz)µ̃V (dw)

+
∑
j

h(zj)∂V (zj) +
Nm2

2

∫∫
z 6=w

g(w)U `(z − w)µ̃V (dz)µV (dw),

which is equivalent to (A.3).
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For the consequence, note that moving the last term on the right-hand
side to the left-hand side, the left-hand side becomes Xf with

f(z) = q(z)− m2

2π

∫
q(w)U `(z − w)m(dw) = ((1−K)q)(z),

where

1−K = 1− (1− `2∆)−1 =
`2∆

`2∆− 1
, (1−K)−1 = 1−m2∆−1.

Therefore, given f as in the assumption, we can choose q = f −m2∆−1f .
Finally, since

∫
dµV = 1, we have Xf

V = Xf−c
V for any constant c. Hence

the assumption
∫
T fdm = 0 is trivial to remove. �

A.2. Estimate on two-point correlations

For the analysis of the loop equation, we need weak decorrelation estimates
for two-point observables. The following simple estimate based on Taylor
expansion and the boundedness of the local density. Let ωt be a nonnegative
mollifier such that

∫
ωt(z) dz = 1, ωt has support in a square of side length t,

and ‖ω(n)
t ‖∞ 6 Cnt−2−n for all n > 0. In the lemma below g is an arbitrary

function on T2, unrelated to the normalization (A.2).

Lemma A.2. Consider the Yukawa gas on the unit torus with range
N−1/2+σ 6 ` 6 1. Recall the definition (2.24) and the notations of Propo-
sition 2.5. Fix a scale t with N−1/2+σ 6 t 6 N−σ. Then for any fixed p ∈ N
and ε > 0, there exist functions |F (j,k)(x, y)| = O(|∇jg(x, y)|) such that the
following bound holds with high probability:∫∫

g(z, w) µ̃(dz) µ̃(dw)(A.8)

=

p∑
j=1

∑
∑
ki=j

∫∫
F (j,k)(x, y)m(dx)m(dy)

×
(∫∫

ϕk(x, y, z, w)ωt(z − x)ωt(w − y) µ̃(dz) µ̃(dw)

)
+ O(tp‖g(p)

Bt
‖1),

where ‖ · ‖1 is the L1-norm over T× T, and

ϕk(x, y, z, w) = ck(x− z)k1(x̄− z̄)k2(y − w)k3(ȳ − w̄)k4 .



i
i

“1-Yau” — 2020/1/15 — 18:54 — page 959 — #119 i
i

i
i

i
i

The two-dimensional Coulomb plasma 959

Remark A.3. This lemma uses only that the density is locally bounded
w.r.t. the Yukawa gas. In its application, we choose t such that

tp‖g(p)
t ‖L1(T×T) ≤ N−εp.

If g is a function smooth at the scale W , say, then t = WN−ε is such a
choice.

Proof. By Taylor expansion, for any (x, y) ∈ B(z, t)× B(w, t) (defined in
(2.24)) we can write

g(z, w) =

p−1∑
j=0

∑
∑
ki=j,ai∈{x,x̄,y,ȳ}

(
4∏
i=1

(∂ai)
kig(x, y)

)
ϕk(x, y, z, w)(A.9)

+Rp(z, w : x, y),

where

Rp(z, w : x, y)

= C

∫ 1

0
(1− s)p∇pg(x+ s(z − x), y + s(w − y)) ds ϕp(x, y, z, w)

is the remainder term. Here ∇p is understood as a multi-indices differentia-
tion operators with total degree p and the right-hand side ofRp is understood
as a sum over all indices with |p| = p. We now rewrite

∫∫
g(z, w) µ̃(dz) µ̃(dw)(A.10)

=

∫∫
g(z, w) µ̃(dz) µ̃(dw)ωt(z − x)ωt(w − y)m(dx)m(dy),

and insert the equation (A.9) into this identity. This gives the sum in (A.8)
with

(A.11) |F (j,k)(x, y)| =
∑

ai∈{x,x̄,y,ȳ}

(
4∏
i=1

(∂ai)
kig(x, y)

)
= O(|∇jg(x, y)|).



i
i

“1-Yau” — 2020/1/15 — 18:54 — page 960 — #120 i
i

i
i

i
i

960 Bauerschmidt, Bourgade, Nikula, and Yau

To complete the proof, it remains to bound the remainder term

∣∣∣∣∫∫ Rp(z, w : x, y) µ̃(dz) µ̃(dw)

∣∣∣∣
= C

∣∣∣∣∣
∫∫ ∫ 1

0
(1− s)p∇pg(x+ s(z − x), y + s(w − y)) ds

×
[ ∫∫

ϕp(x, y, z, w) µ̃(dz) µ̃(dw)ωt(z − x)ωt(w − y)

]
m(dx)m(dy)

∣∣∣∣∣
≤ C

∫∫
O
(
g

(p)
Bt

(x, y)
)
m(dx)m(dy)

× sup
x,y

∣∣∣∣∫∫ ϕp(x, y, z, w)ωt(z − x)ωt(w − y) µ̃(dz) µ̃(dw)

∣∣∣∣ .
By the local law, Theorem 2.2, i.e., that the empirical density is bounded
with high probability, for any function k supported in a square of size w �
N−1/2, we have

(A.12)

∫
|k(z)| µ̂(dz) ≤ Cw2‖k‖∞,

and the same estimate holds with µ̂ replaced by µ̃ since it is trivially true
for µV . Hence

sup
x,y

∣∣∣∣∫∫ ϕp(x, y, z, w)ωt(z − x)ωt(w − y) µ̃(dz) µ̃(dw)

∣∣∣∣ = O(tp).

This proves the the bound on the error term and completes the proof of the
lemma. �

A.3. Analysis of loop equation and proof of Theorem 2.4

We next analyze the terms in the loop equation.

Lemma A.4. For any A > 0, there is a constant C such that for any
smooth f : T→ R supported in a ball of radius b with b ≥ N−1/2, there exists
fs support in a ball of radius bs := b+ Cs logN for 0 ≤ s ≤ logN such that



i
i

“1-Yau” — 2020/1/15 — 18:54 — page 961 — #121 i
i

i
i

i
i

The two-dimensional Coulomb plasma 961

h(z) = 1
πρV (z) ∂̄(1−m2∆−1)f(z) can be written as

h(z) =
1

πρV (z)

(
∂̄f(z)−m2

∫ logN

0

ds

s
∂̄fs(z)

)
(A.13)

+ O(N−A‖f‖∞,1,b),

‖fs‖∞,k,bs ≤ C(b ∧ s)2N ε‖f‖∞,k,b.(A.14)

It is useful to keep in mind that if f is dimensionless then fs has a linear
dimension 2.

Proof. We write

∂̄∆−1f(z) =

∫ ∞
0

dt et∆∂̄f(z)=

∫ M

0
dt et∆∂̄f(z) +

∫ ∞
M

dt e−t∆∂̄f(z).(A.15)

Since ∆ has a spectral gap of order one w.r.t mean zero function and ∂̄f is
mean zero for any f with compact support, there is c > 0 such that∫ ∞

M
dt et∆ ∂̄f(z) ≤

∫ ∞
M

dt e−ct‖∂̄f(z)‖2 ≤ ‖f‖∞,1,be−cM .

We choose M = (logN)2 so that this term is an error term of the form
N−A‖f‖1,b for any A > 0.

The heat kernel on the unit circle is given by

gt(x) = 2π
∑
k∈Z

kt(x+ 2πk) =

√
π

t
e−x

2/4t

1 + 2
∑
k≥1

e−π
2k2/t cosh(πkx/t)


where kt(x) = (4πt)−1/2e−x

2/4t. The heat kernel on the two dimensional unit
torus is given by Gt(z) := gt(x)gt(y). Now change variables s2 = t. Clearly,
the function Gs2 decays exponentially at scale s. Rewrite Gs2 = G1

s +G2
s

with G1
s(z) = Gs2(z)ηsC logN (z) where C is a large constant and ηa(z) is a

mollifier in a ball of radius a with ηa(z) = 1 if |z| ≤ a/2 (note that we have
changed the subscript from s2 to s in Gi so that the subscript indicates the
scale of the support for the functions Gi). Define

fs(z) = s2

∫
G1
s(z − w)f(w)m(dw).

Clearly, fs is supported in a ball of radius bs and satisfies the bound (A.14).
Certainly, when bs ≥ 1, fs is supported on the entire torus. The error term
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involving G2
s can be trivially bounded and the constant A can be arbitrary

large by choosing C large depending on A. �

In next lemma, which is parallel to [6, Lemma 7.5], we estimate the last
term in (A.5). The proof of this lemma uses only the local law (2.18) (In the
later application, we only need V = f/N .)

Lemma A.5. For any f : T→ R, define h as in Lemma A.4, and G(z, w) =
(h(z)− h(w))∂U `(z − w). Then, for the Yukawa gas on the unit torus, we
have

(A.16) EU`V
(
N

∫∫
z 6=w

G(z, w) µ̃V (dz) µ̃V (dw)

)
=O

(
N ε

(
1+

b2

`2

))
‖f‖∞,3,b.

Proof. We first write

(A.17) ∂U `(z) =
∑
i≤m

Ui(z) + U (m)(z)

where Ui is supported in `i/2 ≤ |z| ≤ 2`i with `i = 2−i` and U (m) is sup-
ported in |z| ≤ 2`m = N−1/2+ε.

Case 1: U (m). For any function k supported in a ball of radius b, using the
fact that the empirical density is locally bounded up to a factor N ε, with
high probability we have

∣∣∣∣N ∫∫ (∂̄k(z)− ∂̄k(w))U (m)(z − w) µ̃(dz) µ̃(dw)

∣∣∣∣(A.18)

≤ N1+ε`2mb
2‖∇2k‖∞ ≤ N1+ε`2m‖k‖∞,2,b,

where`2mb
2 comes from the volume in the integration and we have used |(z −

w)|U (m)(z − w)| ≤ C.
Recall that h is defined in Lemma A.4. We can apply the previous in-

equality to k = f . To bound the other contribution due to the integral of
`−2∂̄fs, we use that fs is supported in a ball of size bs and apply (A.18) and
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(A.14) to obtain (ignoring the small error N−A from (A.13))∣∣∣∣N`2
∫ ∞

0

ds

s

∫∫
(∂̄fs(z)− ∂̄fs(w))U (m)(z − w) µ̃(dz) µ̃(dw)

∣∣∣∣
≤ N1+ε`2m

`2

∫ logN

0

ds

s
(b ∧ s)2‖f‖∞,2,b

≤ N2ε
[
1 + (

√
N`m)−1

]2
b‖h‖∞,2,b

≤ N2ε
[
1 + (

√
N`m)−1

]2‖f‖∞,3,b.
Case 2: Ui for a scale `i := q ≤ ` (notice that q is also used to denote the
function in Lemma A.1 and (A.2)). Suppose that k is a function supported
in a ball of radius r (note that r can be either smaller or bigger than `). We
will prove

EU`V
(
N

∫∫
z 6=w

(k(z)− k(w))Ui(z − w) µ̃V (dz) µ̃V (dw)

)
(A.19)

= O(N2ε)A(q)2r‖k‖∞,2,r,

where A(q) := 1 + q`−1 + (
√
Nq)−1. Summation over i 6 m will give an ap-

propriate bound. Let Mi(z, w) = (k(z)− k(w))Ui(z − w). Our goal is to
bound N

∫∫
z 6=wMi(z, w) µ̃V (dz) µ̃V (dw). Treating k(z)− k(w) as a multi-

plicative factor, we can apply Lemma A.2 to the function Ui(z − w) with
the scale s in the lemma replaced by qN−ε. By applying the decomposition
(A.8) for fixed and large enough p, for each 1 6 j 6 p and k we need to
estimate ∫∫

F (j,k)(x, y)Ωx,ym(dx)m(dy),(A.20)

Ωx,y =

∫∫
(k(z)− k(w))ϕk(x, y, z, w)ωq(z − x)ωq(w − y) µ̃(dz)µ̃(dw),

where ωq is a smooth mollifier at scale q (more precisely, qN−ε as mentioned
in Remark A.3. The reader can follow through this minor change in the
following proof).

We now prove that the contribution from j = 0 in the decomposition of
the left hand side of (A.19) is bounded by the right hand side of (A.19).
Recall that when j = 0, ϕk(x, y, z, w) = 1 in (A.20). Rewrite k(z)− k(w) =
(k(z)− k(x)) + (k(y)− k(w)) + (k(x)− k(y)) and we consider the term in-
volving k(z)− k(x). The other two terms can be estimated in a similar way.
Let Rx(z) = (k(z)− k(x))ωq(z − x). To prove (A.19), we apply the local law
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(2.18) to have∣∣∣∣∫ (k(z)− k(x))ωq(z − x) µ̃(dz)

∣∣∣∣(A.21)

≤ qN−
1

2
+ε
[
‖∇zRx(z)‖L2(z)+‖Rx(z)‖L2(z)`

−1+N−
1

2 q‖∆zRx(z)‖∞
]
,

and ∣∣∣∣∫ ωq(w − y)µ̃(dw)

∣∣∣∣ ≤ qN− 1

2
+ε
[
‖∇wωq(w − y)‖L2(w)(A.22)

+ ‖ωq(w − y)‖L2(w)`
−1

+N−
1

2 q‖∆wωq(w − y)‖∞
]

≤ q−1N−
1

2
+εA(q).

We now claim that∣∣∣∣ ∫∫ Ui(x, y)m(dx)m(dy)(A.23)

×
[
‖∇zRx(z)‖L2(z) + ‖Rx(z)‖L2(z)`

−1 +N−1/2q‖∆zRx(z)‖∞
]∣∣∣∣

≤ q2r2q−1
[
q−1 + `−1 +N−1/2q−2

]
r−1‖k‖∞,2,r = A(q)r‖k‖∞,2,r.

If this holds, then the last three inequalities imply the j = 0 case of (A.19).
To prove (A.23), we first consider the case r ≥ q. Recall |Ui(x, y)| ≤

q−11(|x− y| ≤ q). Furthermore,

‖∇zRx(z)‖L2(z) ≤ ‖(k(z)− k(x))∇ωq(z − x)‖L2(z) + ‖ωq(z − x)∇k(z)‖L2(z).

Clearly, the contribution of this first term involving ‖∇zRx(z)‖L2(z) on the
left hand side of (A.23) is bounded by∣∣∣∣∫∫ Ui(x, y)m(dx)m(dy)‖(k(z)− k(x))∇ωq(z − x)‖L2(z)

∣∣∣∣
≤ q‖∇k‖∞

∫
m(dx)1(dist(x, supp k) ≤ q)‖q∇ωq(z − x)‖L2(z)

≤ r2‖∇k‖∞ ≤ r‖k‖∞,2,r.

All other terms are bounded similarly and we obtain (A.23) in this case
r ≥ q.
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We now assume that r ≤ q. In this case, we view

k(z)ωq(z − x) ∼ k(z)1dist(x,supp k)≤qq
−2

and obtain∣∣∣∣∫ k(z)ωq(z − x) µ̃(dz)

∣∣∣∣
≤ 1dist(x,supp k)≤q

rN ε

√
Nq2

[
‖∇k(z)‖L2(z) +

‖k(z)‖L2(z)

`
+

r√
N
‖∆zk(z)‖∞

]
≤ 1dist(x,supp k)≤qq

−2rN−
1

2
+ε‖k‖∞,2,r,

where we have used r ≤ q ≤ ` and N−1/2 ≤ r. This implies that∫∫
Ui(x, y)m(dx)m(dy)

∫
k(z)ωq(z − x) µ̃(dz) = O

(
qrN−

1

2
+ε‖k‖∞,2,r

)
.

Similar inequality holds with k(z) replaced by k(x). This concludes the proof
of (A.23), and therefore the contribution from j = 0 in (A.19).

One can check in a similar way that the same bound holds for any j
since the factor q−j induced by the derivatives on Ui is compensated by the
size of the function ϕk. Notice that for all j, we need at most two derivatives
on k; all other derivatives will apply to explicit functions depending on Ui.
Summing over all j and i and using q ≤ C`, we have thus proved∣∣∣∣∣∣

∑
i≤m

N

∫∫
z 6=w

Mi(z, w) µ̃V (dz) µ̃V (dw)

∣∣∣∣∣∣(A.24)

≤ N2ε
∑
i≤m

A(`i)
2r‖k‖∞,2,r

≤ N2ε
[
1 + (

√
N`m)−1

]2
r‖k‖∞,2,r.

From the definition of h in Lemma A.4, we need to consider two contributions
of h: one is k = ∂̄f , the other involves the s integration. Since f is supported
in a ball of radius b, the contribution from ∂̄f can be trivially bounded by

N2ε
[
1 + (

√
N`m)−1

]2
b‖h‖∞,2,b ≤ N2ε

[
1 + (

√
N`m)−1

]2‖f‖∞,3,b,
where we have replaced r in (A.24) by b.
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Applying now (A.24) to k = ∂̄fs, we bound the other term of h involving
s integration by

N2ε
[
1 + (

√
N`m)−1

]2
`−2

∫ logN

0

ds

s
bs‖∂fs‖∞,2,bs +N−A‖f‖∞,1,b

≤ N2ε
[
1 + (

√
N`m)−1

]2
`−2

∫ logN

0

ds

s
(b ∧ s)2‖f‖∞,3,b +N−A‖f‖∞,1,b

≤ N2ε
[
1 + (

√
N`m)−1

]2 b2
`2
‖f‖∞,3,b +N−A‖f‖∞,1,b,

where we have again used (A.14).
Combining Case 1 and 2, we have bounded (A.16) by

(A.25) N2ε

[(
1 + (

√
N`m)−1

)2
+N`2m

][
1 +

b2

`2

]
‖f‖∞,3,b +N−A‖f‖∞,3,b,

where the term N`2m[1 + b2

`2 ] comes from the Case 1 and the other terms

come from Case 2. Recalling `m = N−1/2+ε, we have proved (A.16). �

Proof of Theorem 2.4. We will assume V = 0; the general case can be proved
in a similar way. We again employ the loop equation and calculate

1

β
logEU`0 e−tβX

f
0 =

1

β

∫ t

0
ds

∂

∂s
logEU`0 e−sβX

f
0

=

∫ t

0
ds

(
−EU`sf/NX

f
sf/N +N

∫
f(µ0 − µsf/N )

)
=

∫ t

0
dsEU`sf/N

(
1

N
W hs
sf/N −

1

Nβ

∑
j

∂hs(zj)

−N
∫∫

(hs(z)− hs(w))∂U `(z − w)µ̃sf/N (dz)µ̃sf/N (dw)

+N

∫
f(µ0 − µsf/N )

)
,

where hs(z) = 1
πρsf/N (z) ∂̄(1−m2∆−1)f(z) and µsf/N as in (A.2). By Lemma

A.5,

N EU`sf/N
∫∫

(hs(z)− hs(w))∂U `(z − w)µ̃sf/N (dz)µ̃sf/N (dw)

= O

(
N ε

(
1 +

b2

`2

))
‖f‖∞,3,b.
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By Lemma 8.3, EU`sf/NW
hs
sf/N = 0. Using m = 1/`, we have

∫ t

0
dsN

∫
f(µ0 − µsf/N )

= −N
∫ t

0
ds

∫
f(z)

[
s

4πN
(∆−m2)f(z)m(dz) +

m2

2π
(c0 − csf/N )

]
= O

(∫ t

0
ds

s

4π

∫
f(−∆ +m2)f

)
= O

(
t2(1 + b2`−2)

)
‖f‖2∞,2,b,

where we have used (c0 − csf/N ) = s
2N

∫
f(z)m(dz) which is a consequence

of (2.14) and the normalization condition
∫
µ`V = 1. Finally, using the fact

that the local density is bounded and (A.14), we have∫ t

0
ds

1

Nβ
EU`sf/N

∑
j

∂hs(zj) = O(t)‖∂ρ−1
sf/N ∂̄(f −m2∆−1)f‖1

= O(t)

(
1 +

b2

`2

)
b2‖f‖∞,2,b.

Collecting these estimates gives

1

β
logEU`0 e−tβX

f
0 = O

(
N ε

(
1 +

b2

`2

))[
t‖f‖∞,3,b + t2‖f‖2∞,3,b

]
.(A.26)

By Markov’s inequality with t = 1/‖f‖∞,3,b this implies Xf
0 = O(N ε)(1 +

b2/`2)‖f‖∞,3,b with probability at least 1− e−N
ε

, which proves Theorem 2.4.
�

With Theorem 2.4 proved, we can now prove Proposition 2.5.

Proof of Proposition 2.5. We apply the identity (A.9) which expands the
left hand side of (2.25) into a Taylor series with error term. To prove (2.25),
we only have to estimate each term in the summation in (A.8). From the
rigidity estimate Theorem 2.4, we have

(A.27) N

∫
(x− z)k1(x̄− z̄)k2ωs(z − x)µ̃(dz) = O(N ε)sk1+k2−2

(
1 +

s

`

)2
,

and a similar estimate holds around y. These two bounds together imply that
each term in the summation in (A.8) is bounded by O(N ε)

(
1
s4 + 1

`4

)
sj‖∇jg‖1

and this completes the proof of the proposition. �
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A.4. Proof of Lemma 8.11

In this subsection, we prove Lemma 8.11 which is an estimate with respect
to the Coulomb gas with an angle correction term. Recall the definition of
the long range interaction in (8.11), given by

Ah,+V =
N

2

∫∫
z 6=w

Ψ+
h (z, w) µ̃V (dz) µ̃V (dw),

where

Ψ+
h (z, w) = Φ+

θ (z − w)(z̄ − w̄)(h(z)− h(w)),

Φ+
θ (z − w) =

∫ ∞
θ

Φ(z − w, r)dr

r5
=

1− e−
|z−w|2

2θ2

|z − w|2
.

Our proof of Lemma 8.11 is based on transporting a proof for the Yukawa
gas to the Coulomb setting. For this purpose, recall that the long range part
in the decomposition (A.17) for the Yukawa gas is of the following form

(A.28) Gσ(z, w) = (h(z)− h(w))
∑
i≤m

Ui(z − w),

with `m ∼ N−1/2+σ for some σ > 0 fixed. Using the rigidity estimate (2.23)
for the Yukawa gas, we claim that

(A.29)

∣∣∣∣EU`V (
N

∫∫
z 6=w

Gσ(z, w) µ̃V (dz) µ̃V (dw)

)∣∣∣∣ 6 N−σ+εr‖h‖∞,2,r.

To prove this bound, we keep the estimate (A.21) unchanged but for (A.22),
instead of the local law, we apply the rigidity estimate (2.23)∣∣∣∣∫ ωq(w − y)µ̃(dw)

∣∣∣∣ ≤ N−1+ε
(

1 + q2/`2
)
‖ωq(· − y)‖∞,3,q.(A.30)

Using ‖ωq(· − y)‖∞,3,q ≤ q−2, we therefore improved (A.24) to∣∣∣∣∣∣
∑
i≤m

N

∫∫
z 6=w

Mi(z, w) µ̃V (dz) µ̃V (dw)

∣∣∣∣∣∣(A.31)

6
N2ε

√
N`m

(
1 +

1√
N`m

)2

r‖h‖∞,2,r,
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gaining a factor (
√
N`m)−1 over (A.24). This proves (A.29). Notice that the

extra derivative required in applying the rigidity estimate is performed on
the test function ω, so the number of derivatives required on h remains the
same when compared with the earlier results relying on the local law.

We return to estimating A+, ie.e the proof of Lemma 8.11 for Coulomb
gases with or without an angle correction term. Notice that Ψ+

h (z, w) is of the
form k(z − w)(h(z)− h(w)) with k(z − w) = Φ+

θ (z − w)(z̄ − w̄). Hence we
can apply the decomposition (A.17) and express A+ similarly to G in (A.28).
Due to the short range cutoff by θ in the definition of Φ+

θ , we effectively
have a cutoff at the scale θ = N−1/2+σ. This is consistent with the choice
of `m ∼ N−1/2+σ in (A.28). Instead of the rigidity estimate (2.23) for the
Yukawa gas, we apply the one with respect to the Coulomb gas with an
angle correction term, i.e., (8.40). Notice that in (8.40), ‖ωq(· − y)‖∞,3,q in
(A.30) was replaced by ‖ωq(· − y)‖∞,4,q. Since ω is a smooth mollifier, both
norms are of the same order. Following the argument in the proof of (A.29),
we have therefore proved Lemma 8.11.

The key observation in this proof is that the application of the rigid-
ity estimate yields an improvement over the local law for all functions of
scales bigger than N−1/2+ε. So any estimates based on the local laws can be
improved by a factor N−σ for functions at scales greater than N−1/2+σ.

Appendix B. Local law for the Yukawa and Coulomb gas

In this appendix, we prove Theorems 2.2–2.3. Our presentation follows closely
that of [6] and we therefore mainly present the differences. The interaction
in Theorem 2.2 is a Yukawa potential instead of the Coulomb potential in
[6, Theorem 1.1]. To allow for this change, we first develop generalizations
of the basic potential estimates used in [6] to the Yukawa potential. Once
these estimates are given, the rest of the proof is parallel to that of [6, The-
orem 1.1]. The proof of Theorem 2.3 is essentially the as same as that of [6,
Theorem 1.1] under slightly generalized assumptions. Its proof requires only
minor adjustment to the original proof which we will comment on later in
this appendix.

B.1. Some potential theory for the Yukawa potential

We start with properties of the Yukawa potential. They are parallel to those
of the Coulomb potential used in [6].

The following proposition characterizes the Yukawa potential of the equi-
librium measure in terms of an obstacle problem. The proposition is similar
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to the analogous result for the Coulomb case, but requires a slightly differ-
ent characterization of the admissible potentials than the one stated for the
Coulomb case in [24], for example. We give a proof for completeness, as we
were unable to locate a suitable reference.

Proposition B.1. Under the assumptions of Theorem 2.1, the following
holds. Define

(B.1) uV,`(z) = sup
ν,c
{−U `ν(z) + c : −U `ν + c 6 1

2V, ν > 0, ν(C) 6 1},

where the supremum is over measures ν and constants c. Then uV,`=−U `µV +
cV where cV is the constant in (2.13).

Proof. By definition, uV,` > −U `µV + cV since the right-hand side is a sub-
solution of the same form as inside the supremum in (B.1). To prove that
in fact equality holds, suppose otherwise that uV,`(z0) > −U `µV (z0) + cV for
some z0 ∈ C. Then there exists some positive measure η̃ with η̃(C) 6 1 and
constant c ∈ R for which−U `η̃(z0) + c > −U `µV (z0) + cV . By considering η̃|BR
for R > 0 large enough we may suppose that η̃ is compactly supported, and
by convolving with a smooth mollifier we may suppose η̃ has a smooth den-
sity. Consider the function

g(z) = max(−U `η̃(z) + c̃,−U `µV (z) + cV ).

By writing max(a, b) = a+b
2 + |a−b|

2 and convolving the absolute value by
a smooth, compactly supported, symmetric mollifier, we may check that
g(z) = −U `η(z) + c for some positive measure η, and necessarily c =
max(c̃, cV ). To show that g is a subsolution of the form in (B.1) we need to
show that η(C) 6 1. For this, suppose without loss of generality that c = c̃.
Denote D = {z : −U `η̃(z) + c̃ < −U `µV (z) + cV }. Then

η(∂D) =

∫
∂D

∂n(−U `η̃ − (−U `µV )) =

∫
D

∆(−U `η̃ − (−U `µV ))

=

∫
D

(η̃ − µV ) +m2

∫
D

(−U `η̃ − (−U `µV ))

=

∫
D

(η̃ − µV ) +m2

∫
D

(−U `η̃ + c̃− (−U `µV + cV )) +m2

∫
D

(cV − c̃)

6 η̃(D)− µV (D).
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Thus η(D ∪ ∂D) = η(∂D) + µV (D) 6 η̃(D). Since clearly η(C \ (∂D ∪D)) =
η̃(C \ (∂D ∪D)), we have η(C) 6 η̃(C) 6 1. Now,

g − (−U `µV + cV ) > 0,

(∆−m2)(−U `η − (−U `µV ) = η − µ > m2(c− cV ) > 0.

Since strict inequality holds in the first inequality for z0 and the functions in-
volved are continuous, equality (as distributions) cannot hold on the second
line. But this implies η(C) > µV (C) = 1, a contradiction. �

We also require the following properties of the Yukawa potential (2.1).
Recall that

(B.2) Y `(z) = g(a), a =
|z|
2`
, where g(a) =

∫ ∞
1

e−a(s+1/s) ds

s
.

In fact, g(a) = K0(2a) where K0 is a modified Bessel function of the second
kind. In particular, the gradient of the Yukawa potential has the expression:

(B.3) ∇Y `(z) = g′(
|z|
2`

)
∇|z|
2`

= g′(
|z|
2`

)
|z|
2`

1

z̄
= −1

z̄
f(a), a =

|z|
2`
,

where

f(a) =

∫ ∞
1

a(s+ 1/s)e−a(s+1/s) ds

s
=

∫ ∞
a

(1 + a2/s2)e−(s+a2/s)ds.

The function f is smooth in a > 0, satisfies f(0) = 1, and is positive and
decreasing. As a consequence we have |∇Y `(2r)| 6 |∇Y `(r)|/2.

Since ∇Y `(z) ∼ ∇ log 1
|z| for z → 0, the following formula (B.4) follows

as in [6, (3.21)]. Let γ ⊂ C be a C1 curve and η a measure supported on γ
for which the potential U `η is continuous on C. Then for z ∈ γ we have

(B.4) ∂−n U
`
η(z) = π lim

r→0+

η(Br(z))

s(Br(z))
+

∫
γ
∇Y `(z − w) · n̄ η(dw),

where ∂−n denotes a one-sided derivative in the normal direction n̄ = n̄(z)
and s denotes the arclength measure of γ, if the limit on the right-hand side
exists.
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The formula (B.4) implies the following estimate for the density of a
measure supported on ∂D. For the statement, define

(B.5) I` :=
1

2π

∫
∂D
f

(
|1− w|

2`

)
s(dw) ∈ (0, 1),

and note that I` is increasing in ` with I` = 1 +O(1/`) as `→∞ and I` =
O(`) as `→ 0. The proofs of the following Lemma B.2 and B.3 are based on
elementary potential theory.

Lemma B.2. For any (signed) measure ω supported on ∂D, denote by
ω̄ = 1

2π

∫
dω the constant part of ω. Then∥∥∥∥dωds − ω̄

∥∥∥∥
∞
6

2

πI`
‖∂−n U `ω‖∞,∂D,(B.6) ∥∥∥∥dωds

∥∥∥∥
∞
6

1

π(1− I`)
‖∂−n U `ω‖∞,∂D,(B.7)

and

(B.8) ∂−n U
`
ω̄(1) =

1

2π

∫
∂D
∂−n U

`
ω(z) s(dz) 6 ‖∂−n U `ω‖∞,∂D.

Proof. By (B.4), we have

(B.9)
dω

ds
(z) =

1

2π

(
2∂−n U

`
ω(z)− 2

∫
∇Y `(z − w) · n̄(z)ω(dw)

)
.

For z, w with |z| = |w| = 1 and z 6= w,

(B.10)
z − w
|z − w|2

· z
|z|

= Re

(
z − w
|z − w|2

z̄

)
= Re

(
1− w/z
|1− w/z|2

)
=

1

2
,

and, by (B.3), therefore

(B.11) − 2∇Y `(z − w) · n(z) = f

(
|z − w|

2`

)
.

It follows that

(B.12)
dω

ds
(z) =

1

2π

(
2∂−n U

`
ω(z) +

∫
f

(
|z − w|

2`

)
ω(dw)

)
.
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Integrating (B.12), we obtain the identity

(B.13) (1− I`)
∫
ω =

2

2π

∫
∂D
∂−n U

`
ω(z) s(dz).

Applying this identity to ω̄, since
∫

dω =
∫

dω̄, we obtain

(B.14) ∂−n U
`
ω̄(1) =

1

2π

∫
∂D
∂−n U

`
ω̄(z) s(dz) =

1

2π

∫
∂D
∂−n U

`
ω(z) s(dz).

This shows (B.8). Similarly, from (B.12), we obtain

(B.15) (1− I`)
∥∥∥∥dωds

∥∥∥∥
∞
6

2

2π
‖∂−n U `ω‖∞,

which shows (B.7), and also similarly,

(B.16)

∥∥∥∥dωds − 1

2π

∫
f

(
| · −w|

2`

)
ω(dw)

∥∥∥∥
∞
6

2

2π
‖∂−n U `ω‖∞.

To show (B.6), i.e.,

(B.17) I`
∥∥∥∥dωds − 1

2π

∫
dω

∥∥∥∥
∞
6

4

2π
‖∂−n U `ω‖∞,

write

dω

ds
− 1

2π

∫
f

(
| · −w|

2`

)
ω(dw)

=
dω

ds
− 1

2π

∫
dω +

1

2π

∫ (
1− f

(
| · −w|

2`

))
ω(dw)

=
dω

ds
− 1

2π

∫
dω +

1

2π

∫ (
1− f

(
| · −w|

2`

))(
dω

ds
(w)− 1

2π

∫
dω

)
s(dw)

+
1

2π

∫ (
1− f

(
| · −w|

2`

))
s(dw) · 1

2π

∫
dω.
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Taking absolute values on the supremum over ∂D, and using (B.15), there-
fore∥∥∥∥dωds − 1

2π

∫
f

(
| · −w|

2`

)
ω(dw)

∥∥∥∥
∞

>

∥∥∥∥dωds − 1

2π

∫
dω

∥∥∥∥
∞
− (1− I`)

∥∥∥∥dωds − 1

2π

∫
dω

∥∥∥∥
∞
− (1− I`)

∣∣∣∣ 1

2π

∫
dω

∣∣∣∣ ,
> I`

∥∥∥∥dωds − 1

2π

∫
dω

∥∥∥∥
∞
− 2

2π
‖∂−n U `ω‖∞.

Together with (B.16), we obtain (B.17). �

We will also need the following properties of the function

(B.18) lr(z) =

(
Y ` ∗ 1

πr2
1B(0,r)

)
(z).

Clearly, lr(z) is radial, so we can define hr through ∇lr(z) = −(z/|z|)hr(|z|)
for z 6= 0.

Lemma B.3. For any ` > 0, the function hr(t)is positive, increasing for
t 6 r, decreasing for t > r, and

(B.19) hr(t) > |∇Y `(t)| for t > r.

Proof. That hr(t) is increasing for t < r can be seen as follows. For t > 0,
since Y ` is symmetric,

∇lr(t) =

∫
|z|6r

∇Y `(z − t)m(dz)

=

∫
Ur(t)

Re∇Y `(z − t)m(dz) =

∫
Ur(t)−t

Re∇Y `(z)m(dz)

where Ur(t) is {|z| 6 r} minus the region {|z| 6 r : Re z > t} and the reflec-
tion of the latter region about the axis Re z = t. In particular, the region
Ur(t)− t is increasing in t.

To prove (B.19) and that hr(t) is decreasing for t > r, we use the Yukawa
version of Newton’s shell theorem: there is M `(r) > 1 such that for t > r,

(B.20)
1

2πr

∫
|z|=r

Y `(t− z) s(dz) = M `(r)Y `(t).
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Denote the left-hand side by f(t). Then f is a bounded and radially sym-
metric solution to (−∆ + 1/`2)f(z) = 0 for |z| > r. Therefore, for t > r,

(B.21) f ′′(t) +
1

t
f ′(t)− 1

`2
f(t) = 0,

and the solutions to this ODE are of the form

(B.22) f(t) = AI0(t/`) +BK0(t/`),

where the In are the modified Bessel functions of the first kind and the
Kn are the modified Bessel functions of the second kind, and A,B are
constants depending on r. The Yukawa potential equals Y `(z) = K0(|z|/`).
Since I0(t)→∞ as t→∞, therefore A = 0 and thus f(t) = BK0(t/`) =
BY `(t) for some constant B = M `(r).

To see that B > 1, we assume that r = 1 and ` = 1/2 to simplify the
notation (the general case is analogous). Denote by θ the angle of z with
respect to the real axis so that |t− z|2 = t2 − 2t cos θ + 1. Recall (2.1) and
note that the function g̃(x) =

∫∞
1 e−

√
x(s+1/s) ds

s is convex for x > 1. With
x = t2 − 2t cos θ + 1 and using the Jensen inequality, we have

f(t) = Eg̃(t2 − 2t cos θ + 1) ≥ g̃(t2 − 2tE cos θ + 1) = g̃(t2 + 1),

E = (2π)−1

∫
dθ.

It is elementary to check that

(B.23) lim
t→∞

g̃(t2 + 1)

g̃(t2)
= 1.

Hence we have proved that B ≥ 1. (In fact, B > 1 for any r, ` fixed, but we
will not need this.)

In particular, for t > r,

lr(t) =
1

πr2

∫
|z|6r

Y `(z − t)(B.24)

=
1

πr2

∫ r

0

∫
|z|=s

Y `(z − t) s(dz) dr = M̃ `(t)Y `(t)

with M̃ `(t) = 1
πr2

∫ r
0 (2πr)M `(r) dr > 1. Thus, for t > r,

(B.25) |∇lr(t)| = M̃ `(r)|∇Y `(t)| > |∇Y `(t)|.
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The first equality implies that |∇lr(t)| is decreasing for t > r since |∇Y `(t)|
is decreasing. The inequality implies that (B.19) holds. �

In Section B.2 below, we require the following two technical lemmas to lo-
cate the bulk of the support of a perturbed equilibrium measure. Lemma B.4
is a small adaption of [6, Lemma 3.6] to the Yukawa case; Lemma B.5 is
a similar statement that applies to a radially symmetric potential on the
boundary of a disk instead of a point charge outside a disk.

Lemma B.4. For any z0 ∈ C, w ∈ C, σ > 1
2 , and r ∈ (0, 1) such that that

|z0 − w| > 2r, there exist z̃ ∈ C and k ∈ R such that

σ
(
lr(z0 − z̃) + k

)
=

1

2
Y `(z0 − w) and(B.26)

σ
(
lr(z − z̃) + k

)
6

1

2
Y `(z − w) for all z ∈ C.

Moreover, the point z̃ lies on the line passing through z0 and w at distance
at most r from z0 between z0 and w.

Proof. By (B.19) and since σ > 1
2 , the map z 7→ σ∇lr(z0 − z) takes Br(z0)

onto Bσ|∇lr(r)|(0) ⊃ Bσ|∇Y `(r)| ⊃ B|∇Y `(2r)|(0), where we also used |∇Y `(2r)|
6 1

2 |∇Y
`(r)|. Therefore, as in [6, Lemma 3.6], it follows there exists a unique

choice of z̃ ∈ Br(z0) so that the gradients of σlr(· − z̃) and 1
2Y

`(· − w) match
at z0. By choice of k, we can in addition arrange

(B.27) σ
(
lr(z0 − z̃) + k

)
=

1

2
Y `(z0 − w).

It remains to be shown that with the above choice it is in fact true that

(B.28) σ
(
lr(z − z̃) + k

)
6

1

2
Y `(z − w) for all z ∈ C.

As in the Coulomb case, the point must z̃ lie on the line between the points
z0 and w, and it suffices to show the inequality on this line (by the same
argument as in the Coulomb case, [6, Lemma 3.6]). Moreover, without loss
of generality, we can assume that w = 0, z0 > 0, z̃ > 0, so that this line is
R. Thus it needs to be shown that

f(x) :=
1

2
Y `(x) > σ

(
lr(x− z̃) + k

)
=: g(x), x ∈ R.

As in the Coulomb case, denote by h the common tangent of the graphs
of f and g drawn at x = z0. Since f is convex and g is concave on [z̃ −
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r, z̃ + r], the graph of f lies above h and the graph of g lies below h on this
interval. Especially g(x) 6 f(x) on [z̃ − r, z̃ + r]. Moreover, since f ′(x) <
0 and g′(x) > 0 for x ∈ (0, z̃), the inequality g(x) 6 f(x) holds by these
observations for x ∈ (0, z̃ + r].

To prove the inequality for x ∈ [z̃ + r,∞), we have g′(t) 6 f ′(t+ z̃) 6
f ′(t) by (B.19), for t ∈ [z̃ + r,∞). It follows that

g(x)− g(z̃ + r) =

∫ x

z̃+r
g′(t) dt 6

∫ x

z̃+r
f ′(t) dt = f(x)− f(z̃ + r),

which by g(z̃ + r) 6 f(z̃ + r) implies the desired inequality g(x) 6 f(x), now
proven for x ∈ (0,∞). The case x < 0 is actually not required for the appli-
cation, but true. Indeed, for x ∈ (−∞, 0) it also holds that g′(x) 6 f ′(x) and
it is clear that f(x) > g(x) as x→ 0−, so it remains to check the inequality
as x→ −∞. As in the Coulomb case, this follows from k < 0, which follows
from

σk =
1

2
Y `(z0)− σlr(z0 − z̃) <

1

2
Y `(2r)− σlr(r) < 0.

This completes the proof. �

Lemma B.5. Let r ∈ (0, 1
2) and σ > σ0 and ` > `0, where σ0 and `0 are

sufficiently large absolute constants. Then for any z0 ∈ C with |z0| < 1− 2r,
there exists a constant k ∈ R and z̃ ∈ C with |z̃| < 1− r on the line through
0 and z0 such that

σ
(
lr(z0 − z̃) + k

)
= ±`2I0(|z0|/`) and(B.29)

σ
(
lr(z − z̃) + k

)
6 ±`2I0(|z|/`) for all z ∈ D,

where ± is either always + or always −, and I0 is a modified Bessel function
of the first kind.

Proof. Throughout the proof, x� 1 means that x is larger than a large
absolute constant. Let

(B.30) I(z) = `2(I0(|z|/`)− 1).

Replacing k by k − `2/σ, the claim (B.29) is equivalent to the claim

σ
(
lr(z0 − z̃) + k

)
= I(z0) and(B.31)

σ
(
lr(z − z̃) + k

)
6 I(z) for all z ∈ D.
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For the right-hand side, for `� 1, we have

I(z) =
1

4
|z|2(1 + O(|z|/`)), ∇I(z) =

(
1

2
+O(1/`)

)
z,(B.32)

∇2I(z) =
1

2
12×2 + O(1/`).

For `�1, the map z 7→σ∇lr(z) takes Br(0) onto Bσ|∇Y `(r)|(0)⊃Bσ(1−ε)/r(0)
⊃ B1(0). Thus, by appropriate choice of z̃ and k, the derivatives of σlr(z − z̃)
and ±I can be matched at any |z0| < 1. It remains to show the inequality in
(B.29). By definition of lr and since, by (B.3), the derivatives of Y `(z) are
well approximated by those of − log |z| for `� 1, we have

(B.33) ∇2lr(z) = − 1

r2
(12×2 + O(1/`)) for |z| < r.

Together with (B.32), using that 1/r2 > 1 > 1/2, it follows that the function
lr(z − z̃) + k stays below ±I(z) for |z − z̃| < r, provided that `� 1. Using
further that lr(0)− lr(r) = 1

2 + O(1/`), we can choose σ > σ0 and ` > `0
large enough that

σ(lr(0)− lr(r)) >
1

4
(1 + O(1/`)) = sup

D
(±I)− inf

D
(±I).

Since σ(lr(0) + k) 6 supD(±I), it follows that σ(lr(z − z̃) + k) 6 infD(±I)
for |z − z̃| = r. Since lr(z − z̃) is decreasing in |z − z̃| the inequality then
holds on all of D. �

B.2. Perturbed Yukawa equilibrium measure

As in [6], to prove the local law, we will condition on the particles outside
small disks. To handle this conditioning, we next state adaptations of the
results of [6, Section 3.3] to the Yukawa case. As in [6, Section 3.3], we can
assume here that SV = ρD for some ρ > 0, where D ⊂ C is the open unit
disk. Furthermore, we assume the density of µV is bounded below by 1

4πα
in ρD for some parameter α > 0. The class of perturbed potentials W that
we consider is as follows. Let ν be a positive measure with supp ν ∩ ρD = ∅,
t > 0 and let R ∈ C (ρD) satisfy (∆−m2)R = 0 in ρD. Then W is given by

(B.34) W (z) =

{
tV (z) + 2U `ν(z),+2R(z), z ∈ ρD,
∞, z ∈ ρD∗,
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where we write D∗ = C \ D for the open complement of the unit disk. Both
perturbations U `ν and R are m-harmonic inside ρD, i.e., (∆−m2)R = 0 and
analogously for U `ν . In particular, by (2.13), this implies that the density of
µW is equal to tµV + constant in SW . For z ∈ ∂(ρD) we write n̄ = n̄(z) =

z/|z| for the outer unit normal, and we write ∂−n f(z) = limε↓0
f(z)−f(z−εn̄)

ε
for the derivative in the direction n̄ taken from inside ρD.

The next two propositions show that the bulk of the equilibrium measure
µV is stable under suitable perturbations W of the form (B.34), and that the
density of µW on the boundary remains bounded. To prove the stability of
the bulk we use the obstacle problem characterization (B.1) of the support.

Proposition B.6. Suppose that V and W are as above (B.34). Then, for
any ` > 0, the support SW of the equilibrium measure with Yukawa interac-
tion of range ` and potential W satisfies

SW ⊃ {z ∈ ρD : dist(z, ρD∗) > κ} ,(B.35)

where κ = C

√
max(‖ν‖, ρ‖∂−n R‖∞,∂ρD + (t− 1))

αt
.

Proof. As in the proof of [6, Proposition 3.3], except that we must now
replace ` by `/ρ, we may assume that ρ = 1, and we define D = {z ∈ D :
dist(z,D∗) > κ}. The replacement of ` does not matter since the estimate
is uniform in `. By Proposition B.1, to prove the proposition, it suffices to
exhibit, for any z0 ∈ D, a test function vz0

= v = −U `ν(z) + c with v(z0) =
1
2W (z0) and satisfying the requirements for the potential in (B.1) with W
instead of V .

This test function is chosen almost exactly as in the Coulomb case, with
the small difference in the handling of the perturbation R. Indeed, recall that
by assumption R = U `µ for a (signed) charge distribution µ supported in D∗.
Up to an additive constant, we may replace µ by its balayage ω onto ∂D, i.e.,
we choose the measure ω supported on ∂D such that R = U `ω + c in D. The
existence of ω follows as in the Coulomb case; see e.g. [43]. We choose `0 to
be the sufficiently large absolute constant from Lemma B.5. For ` > `0, we
decompose ω = ω0 + ω+ − ω− with ω0 a measure of constant density with
respect to the arclength measure on ∂D such that

∫
dω =

∫
dω0 and with

ω± positive measures. For ` < `0, we simply decompose ω = ω+ − ω− with
ω± positive measures and set ω0 = 0. In both cases, Lemma B.2 implies that
the total charge of ω± is estimated by

(B.36) ‖ω±‖ = O(1)‖∂−n R‖∞,∂D.
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Then, similarly as in [6, Proposition 3.3], we will choose the function v of
the form

v(z) = tuV,`(z) + σL(z) + γL0(z)− Uω−(z),(B.37)

L(z) =

∫ (
lr
(
z − z̃(w)

)
+ k(w)

)
(ν + ω+)(dw),

where σ > 0, r > 0, k : supp ν → R and z̃ : supp ν → D are parameters, and
the function lr is now defined by (B.18), and L0(z) is chosen of the form

L0(z) = lr(z − z̃0)− k0

for some z̃0 ∈ C and k0 ∈ R to be chosen later.

Step 1. With the choice

γ = O(1)‖∂−n R‖∞,∂D, σ = max

(
1

2
,
(t− 1)− γ + ‖ω−‖

‖ν + ω+‖

)
,

r = 2

√
‖ν + ω+‖σ + γ

αt
=

1

2
κ,

the function v is of the form −U `µ + c for a positive measure µ of total mass
at most t+ ‖ω−‖ − γ − σ‖ν + ω+‖ 6 1. Indeed, by definition, −tuV,` + Uω−
is the potential of a positive measure of mass t+ ‖ω−‖ and −σL− γL0 is
the potential of a negative measure of total mass −σ‖ν + ω+‖ − γ. Their
sum is the potential of a positive measure since

(∆−m2)(tuV,` − Uω− + σL+ γL0)(B.38)

> 2πtρV,` + 2πω− −
2σ

r2
‖ν + ω+‖ −

2γ

r2
> 0,

where we used the assumption ρV,` > α/(4π).

Step 2. For appropriate choice of the parameters z̃ and k (depending on z0),
we have v(z0) = 1

2W (z0) and v 6 1
2W in D. Indeed, replacing [6, Lemma 3.6]

by Lemma B.4 stated below the proof, we choose the parameters z̃ and k
exactly as in the proof of [6, Proposition 3.3] to achieve

σL(z) 6
1

2

∫
Y `(z − w) (ν + ω+)(dw) for all z ∈ D,(B.39)

σL(z0) =
1

2

∫
Y `(z0 − w) (ν + ω+)(dw).(B.40)
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This concludes the proof for ` < `0. For ` > `0, it remains to handle the
remaining part of the perturbation, which is the potential U `ω̄ generated by
the constant part ω̄ of ω. Since the Yukawa potential of ω̄ is m-harmonic
in |z| < 1, radially symmetric and bounded as |z| → 0, as in (B.22), it is
explicitly given inside D by

U `ω̄(z) = ±A`2I0(|z|/`) (|z| < 1),

for some constant A > 0 depending on ` and ω̄, where In are the modified
Bessel functions of the first kind. Using that I ′0 = I1 by general relations
between Bessel functions,

∇U `ω̄(z) = ±A2`I1(|z|/`) z
|z|

= ∂−n U
`
ω̄(1)

I1(|z|/`)
I1(1/`)

z

|z|
.

The modified Bessel functions satisfy the asymptotics

I0(t) ∼ 1 +
1

4
t2, I1(t) ∼ 1

2
t, as t→ 0.(B.41)

Therefore, with (B.8), the constant A is given by

A = ± ∂
−
n U

`
ω̄(1)

2`I1(1/`)
= ±(1 + O(1/`))∂−n U

`
ω̄(1)(B.42)

6 (1 + O(1/`))‖∂−n U `ω‖∞,∂D = O(1)‖∂−n R‖∞,∂D.

By Lemma B.5, there exists a large constant σ such that we can choose k0

and z̃0 and γ = O(1)‖∂−n R‖∞,∂D such that with γ = σA,

(B.43) γL0(z0) = U `ω̄(z0), γL0(z) 6 U `ω̄(z) for all z ∈ D.

This concludes the proof. �

Proposition B.7. Suppose that V and W are as above (B.34) and assume
in addition that µV is absolutely continuous with respect to the 2-dimensional
Lebesgue measure. Then µW = µ+ η, where µ is absolutely continuous with
respect to µV , and η absolutely continuous with respect to the arclength mea-
sure s on ∂ρD with the Radon–Nikodym derivative bounded by

(B.44) ρ
∥∥∥dη
ds

∥∥∥
∞
6 C

(
‖η‖+ ‖ν‖+ 2ρ‖∂−n R‖∞,∂ρD + |1− t|ρ‖∂−n V ‖∞,∂ρD

)
.
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Proof. The only change in the proof of Proposition B.7 compared to [6] is
the change of the logarithmic potentials to Yukawa potentials. In particular,
the formula (B.4) holds and ∇Y `(z) is proportional to ∇ log 1

|z| . �

B.3. One-step estimate for the Yukawa interaction

As in [6, Proposition 4.1], we use a simple mean-field partition function
estimate to obtain a bound on the fluctuations of smooth linear statistics.
In the following, dm denotes the Lebesgue measure and is not related to the
mass m.

Proposition B.8. Let Σ = ΣW be a smooth domain with boundary ∂Σ or
Σ = T (with ∂Σ = ∅). Given a potential W ∈ C1,1

loc (ΣW ) possibly depending
on the number of particles M , assume that there exist u : ΣW → R+ and
v : ∂ΣW → R+ (if ∂ΣW 6= ∅) such that dµW = udm+ v ds, where dm is the
2-dimensional Lebesgue measure and ds is the arclength measure on ∂ΣW (if
∂ΣW 6= ∅). Assume the conditions (i)–(iv) as stated in [6, Proposition 4.1]
but replace the bounds on 1

4π∆W (which is the density in the Coulomb case)
more generally by the same bound on the density of the equilibrium measure
u and also modify the assumption (iv) by replacing ζ by ζ` = U `µW + 1

2V −
cV , where the constant cV is the one in (2.13). Then, for any constant A,
for any bounded f ∈ C2(C) with compactly supported (∆−m2)f ,

log

∫
e−βHM,W (z)+

∑
f(zj)m(dz)(B.45)

6 −βM2I`W (µV ) +M(f, µW ) + 1
8πβ (f,−(∆−m2)f)

+ O(M−A)‖∆f‖∞ + O(M logM),

log

∫
e−βHM,W (z)m(dz) > −βM2I`W (µV ) + O(M logM),(B.46)

and consequently for any ξ > 1 + 1/β,∣∣∣∣∣∣
∑
j

f(zj)−M
∫
f dµ`W

∣∣∣∣∣∣(B.47)

= O(ξ)
(√

M logM(f, (−∆ +m2)f)1/2 +M−A‖∆f‖∞
)
,

with probability at least 1− e−ξβM logM , with the implicit constant depending
only on the numbers A in the assumptions (i)–(iv).
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Proof. The probability estimate is obtained as in [6] from the partition
function bounds (B.45) and (B.46), which are analogous to [6, Lemmas 4.3
and 4.4] except that ‖∇f‖2 =(f, (−∆)f)1/2 is replaced by (f, (−∆+m2)f)1/2.
The lower bound can be proved exactly the same way; for the upper bound
we may bound the energy slightly differently from below, as follows, avoiding
the need that the support of (∆−m2)f is contained in SV .

All the properties of the Coulomb potential used in the proof of [6,
Lemmas 4.3] also hold for the Yukawa potential and on the torus. Replacing
the point charges by charged disks of radius ε, and denoting by D`(·, ·) the
Yukawa analog of D(·, ·), we get the bound

H`
M (z)− 1

βM

∑
j

f(zj)

>M2D`(µ̂(ε), µ̂(ε)) +M2
(
W − 1

βM f, µ̂
)

+ O

(
M log

1

ε

)
= M2

(
D`(µ̂(ε), µ̂(ε)) + (W, µ̂)−

(
1
βM f, µ̂

(ε)
))

+M2( 1
βM f, µ̂

(ε) − µ̂) + O

(
M log

1

ε

)
.

Writing

D`(µ̂(ε), µ̂(ε)) = D`(µW , µW ) + 2D`(µW , µ̂
(ε) − µW )

+D`(µ̂(ε) − µW , µ̂(ε) − µW )

and further using the Euler–Lagrange equation (2.13) to write

2D`(µW , µ̂
(ε) − µW ) + (W, µ̂)

= (W,µW ) + 2(ζ`, µ̂− µW ) + 2(U `µW , µ̂
(ε) − µ̂),

where ζ` = U `µW + 1
2W − cW = 0 on SW , we therefore can the bound

H`
M (z)− 1

βM

∑
j f(zj) by

M2
(
I`W (µW ) +D`(µ̂(ε) − µW , µ̂(ε) − µW )−

(
1
βM f, µ̂

(ε)
))

+ 2M2(ζ`, µ̂− µW ) +M2
(

1
βM f, µ̂

(ε) − µ̂
)

+ 2M2(U `µW , µ̂
(ε) − µ̂) + O(M log ε−1).
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We write

D`(µ̂(ε) − µW , µ̂(ε) − µW )−
(

1
βM f, µ̂

(ε)
)

= 1
2π

(
1
βM f + U `µ̂(ε)−µW ,−(∆−m2)U `µ̂(ε)−µW

)
−
(

1
βM f, µW

)
.

The Yukawa potentials decay exponentially at infinity, so we may integrate
by parts and use the elementary inequality −|ab|+ |b|2 > −|a|2/4 to get

1
2π

(
1
βM f + U `µ̂(ε)−µW , (−∆)U `µ̂(ε)−µW

)
= 1

2π

(
1
βM∇f +∇U `µ̂(ε)−µW ,∇U

`
µ̂(ε)−µW

)
> − 1

8πβ2M2 (∇f,∇f) = − 1
8πβ2M2 (f, (−∆)f).

By the same inequality we have

1
2π

(
1
βM f + U `µ̂(ε)−µW ,m

2U `µ̂(ε)−µW

)
> − m2

8πβ2M2 (f, f).

In conclusion,

M2D`(µ̂(ε), µ̂(ε)) +M2
(
W − 1

βM f, µ̂
)

>M2
(
I`W (µW )− 1

βM (f, µW )− 1
8πβ2M2 (f,−(∆−m2)f)

)
+ 2M2(ζ`, µ̂− µW ) +M2

(
1
βM f, µ̂

(ε) − µ̂
)

+ 2M2
(
U `µW , µ̂

(ε) − µ̂
)

+ O

(
M log

1

ε

)
.

In the same way as in [6], for the error terms on the last line,

M

β
|(f (ε) − f, µ̂)| 6 M

β
Cε2‖∆f‖∞ 6M−A‖∆f‖∞

and

2M2|(Uµ`W , µ̂
(ε) − µ̂)| 6 Cε2MAu + C

√
εMAv 6 1,

by choosing ε sufficiently small depending on A and such that log 1
ε =

O(logM). Finally, we use that 2M2(ζ`, µ̂− µW ) > 0 by the Euler–Lagrange
equation to conclude the proof. �
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Remark B.9. For test functions f supported in S`V and satisfying the
condition

∫
f dm = 0,∫

f dµ`V =

∫
f

1

4π
(∆V −m2V ) dm.

(We recall that dm is the Lebesgue measure and not related to the mass m.)
Consequently, if V is replaced by V +R with (∆−m2)R = 0, and assuming
that f is supported in the intersection of the supports of the equilibrium
measures of V and V +R, and that

∫
f dm = 0, we have∫

f dµ`V =

∫
f dµ`V+R.

Since we are ultimately interested in test functions without the condition∫
f dm = 0, some additional care is required. (The condition was not nec-

essary in the Coulomb case in [6].) This problem will be addressed at the
beginning of the proof of Proposition B.10.

B.4. Yukawa gas on the torus: proof of Theorem 2.2

We follow the proof of [6, Theorem 1.1] to improve the estimate of Propo-
sition B.8 to the stronger one asserted by Theorem 2.2 by using local con-
ditioning. Compared with [6, Theorem 1.1], there are two main changes in
Theorem 2.2: (i) the domain is now a torus rather than the plane, (ii) the
interaction is the Yukawa potential rather than the Coulomb potential. The
domain change is only visible in the first step of the induction in the proof;
it does not have any effect after the first step when we take local condi-
tioning. The change from the Coulomb potential to the Yukawa potential
does require changes in the local conditioning; it will be taken into account
by replacing the potential theory estimates in [6] by their generalizations in
Sections B.1–B.2.

First, we note that [6, Section 5] applies without changes except that
the Coulomb potential log 1/|z| is replaced by the Yukawa potential Y `(z)
in all expressions, and with the additional condition that

∫
f dm = 0 in the

assumption of [6, Proposition 5.3]. This condition is necessary because, with
the m-harmonic perturbation Vo, inside the support of µW we now have

µW =
N

M
µV + const.
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by (2.14). As explained in Remark B.9, the additional constant has no effect
if both sides are integrated against a test function f with support in the
support of µW that satisfies

∫
f dm = 0.

Next, we adapt [6, Section 6] to the Yukawa case. Here two modifications
are required. First, the scaling of the Yukawa gas is different, which leads
to a different recursion of scales. Second, in the case of the Yukawa gas, as
noted above, the density of the equilibrium is only stable under m-harmonic
perturbations up to a constant, and thus a small extra argument is required
to remove the mean zero condition.

As previously, we write ` = N−1/2+δ for the range of the Yukawa poten-
tial. Given ε > 0 (and assuming ε < δ), we set s0 = 0 and

sj+1 =

((1

4
+
sj
2

)
∧ (sj + δ)

)
− ε,

for ε > 0 fixed sufficiently small. As long as the second term in the mini-
mum above dominates, the sequence sj grows linearly as j(δ − ε) until the
scale s = 1

2 − 2δ is reached. After that, the first term dominates. Then sj
evolves according to 1

2 − δ − ε; then 1
2 −

1
2δ; then 1

2 −
1
4δ −

3
2ε and converges

geometrically to 1
2 − 2ε. In particular, given s ∈ (0, 1

2), we can fix ε > 0 and
n <∞ such that sn = s, and we will assume such a choice from now on.

The induction assumption (Ar) is modified as follows (as a formal re-
mark, note that compared to [6], we changed the index of the condition At

into Ar as, in the current paper, t refers to the argument of the Laplace
transform).

Assumption (Ar). For any bounded f ∈ C2(T) with supp(∆−m2)f ⊂
B◦r ∩ SV , we have∣∣∣∣∣∣ 1

N

∑
j

f(zj)−
∫
f dµV

∣∣∣∣∣∣ ≺ N− 1

2
−r(f, (−∆ +m2)f)

1

2(B.48)

+N−1−2r‖∆f‖∞.

Proposition B.10. For arbitrary ε > 0, (Ar) implies (As) for any 0 6 r 6
s 6 (1

4 + 1
2r) ∧ (r + δ)− ε (with the implicit constants depending on ε).

Proof. First, we show that, for any s as asserted in the proposition, it suffices
to prove that (Ar) implies (A′s), where (A′s) is defined exactly as (As) except
that the test functions f are required to obey the additional mean zero
condition

∫
f dm = 0. Indeed, assume (Ar) and that we have proved (A′s)
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for all s as in the statement of the proposition. Recall from above that
B = Bs is a disk of radius N−s and that B◦s the disk with the same center
and half the radius. For any test function f supported on B◦s we define
fi(z) = 2−2if(2−iz), and write

f = fk +

k−1∑
i=0

(fi − fi+1),

where k is the largest integer such that 2kN−s 6 N−t. Then

(B.49)
‖∆fi‖∞ = 2−4i‖∆f‖∞,
(fi, (−∆ +m2)fi)62−2i(f, (−∆ +m2)f).

Therefore, with si = s− (i+ 1)/ log2N for i = 0, 1, . . . , k − 1, applying (A′si)
to the mean zero function fi − fi+1, we obtain

1

N

∑
j

(fi(zj)− fi+1(zj))−
∫

(fi − fi+1) dµV

≺ 22iN−1−2s‖∆(fi − fi+1)‖∞
+ 2iN−

1

2
−s(fi − fi+1, (−∆ +m2)(fi − fi+1))1/2

≺ 2−2iN−1−2s‖∆f‖∞ +N−
1

2
−s(f, (−∆ +m2)f)1/2.

Similarly, applying (Ar) to fk, we have

1

N

∑
j

fk(zj)−
∫
fk dµV

≺
(
N−1−2r‖∆fk‖∞ +N−

1

2
−r(fk, (−∆ +m2)fk)

1/2
)

≺
(
2−4kN−1−2r‖∆f‖∞ + 2−kN−

1

2
−r(f, (−∆ +m2)f)1/2

)
≺
(
2−4kN−1−2s‖∆f‖∞ + 2−kN−

1

2
−s(f, (−∆ +m2)f)1/2

)
.

Then
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1

N

∑
j

f(zj)−
∫
f

=
1

N

∑
j

(
fk(zj) +

k−1∑
i=0

(fi(zj)− fi+1(zj))

)
−
∫ (

fk +

k−1∑
i=0

(fi − fi+1)

)

≺
k∑
i=0

(
2−2iN−1−2s‖∆f‖∞ +N−

1

2
−s(f, (−∆ +m2)f)1/2

)
≺ N−1−2s‖∆f‖∞ +N−

1

2
−s(f, (−∆ +m2)f)1/2.

It remains to prove that (Ar) implies (A′s) for s as in the statement of
the proposition. This proof proceeds exactly as in [6, Section 6.1], with the
only essential changes in [6, Lemmas 6.2–6.3], since now m2 > 0 in (B.48).
Indeed, the required properties of the conditional equilibrium measure follow
from Propositions B.6–B.7, as soon as [6, Lemmas 6.2–6.3] are adapted.

In [6, Lemma 6.2], which states that τ = 1 + O(N−cε) (where we recall
that τ = N

M µV (B)) and ν(C) = O(N−cε), with high probability, the follow-
ing changes are necessary. Recall that χ± are smooth cutoff functions with

χ+|B = 1, χ+|Bc+ = 0, χ−|Bc = 0, χ−|B− = 1,

obeying ‖∇kχ±‖∞ = O(Nks/ηk) for k = 0, 1, 2 (see [6] for the definitions of
the expressions). We replace the estimates on (χ±,−∆χ±) by

(χ±, (−∆ +m2)χ±) = O(ηN−2sN2s/η2) + O(N1−2δN−2s)

= O(1/η) + O(N1−2δ−2s),

and thus

N−1−2r(χ±, (−∆ +m2)χ±) = O(N−4s−4ε/η) + O(N−4s−2ε)

= O(N−4s−cε).

Using this, the rest of the proof of [6, Lemma 6.2] proceeds as in [6].
In [6, Lemma 6.3], which states the estimateN−s‖∇R̂‖L∞(B) = O(N−cε),

with high probability, we make the following changes. We change the defini-
tion of f from f(w) = N−s∇(ψ(w) log 1

|z−w|) to f(w) = N−s∇(ψ(w)Y `(z −
w)). In particular, the property that ∆f = 0 on Ac is replaced by (∆−
m2)f = 0 on Ac, and using this, the estimate on (f,−∆f) is replaced by
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(here again we use a notation from [6], namely a = N−cε),

N−1−2r(f, (−∆ +m2)f) = N−1−2rO(N−2sN2s| log a|/a2)

+N−1−2rO(N1−2δN2s| log a|2)

= O(N−4s−cε),

so that, again, the rest of the proof of [6, Lemma 6.3] proceeds as in [6]. �

Proof of Theorem 2.2. Proposition B.8 applied to the torus Σ = T and with
M = N verifies Assumption (A0). We then apply local conditioning, exactly
as in the proof of [6, Theorem 1.1]. For the conditioned measure, since ` 6
N−c, we may replace the torus Yukawa potential by the full plane Yukawa
potential since

HN,0(z) =
∑
j 6=k

U `(zj − zk) + O(N−∞) =
∑
j 6=k

Y `(zj − zk) + O(N−∞)

with error bound uniform in z ∈ TN . By inductive application of Proposi-
tion B.10, the assumption (As) is verified for all s ∈ (0, 1

2). This completes
the proof. �

B.5. Coulomb gas on the plane: proof of Theorem 2.3

Theorem 2.3 is generalization of [6, Theorem 1.1] in the following three
ways: (i) the distance of the support of the test function to the boundary
of the support of the equilibrium measure can be � N−1/4 + t1/4 rather
than order 1; (ii) the Coulomb potential can be replaced by the perturbed
Coulomb potential; (iii) or replaced by the Yukawa potential Y ` with ` > N2.
We will show that all these changes have only minor effects on the proof.
The condition � N−1/4 + t1/4 arises because N−1/4 + t1/4 is the scale that
can be controlled without induction. Indeed, the requirement of distance
� N−1/4 was already implicit in [6], but the distance requirement was simply
estimated crudely by order 1 there. When the perturbation is present, i.e.,
t 6= 0, there is an additional error term which leads to the condition � t1/4;
see below.

We begin with the condition on the distance to the boundary. In the
proof of [6, Theorem 1.1], in [6, Section 6], by replacing V (z) by V (z − z0)
for some fixed z0 ∈ SV , it was sufficient to restrict the induction to functions
supported in the centered balls Bo

s = B(0, 1
2N
−s) ⊂ Bs = B(0, N−s). For

test functions whose support has distance� N−1/4 + t1/4 to the boundary of
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the support of the equilibrium measure, we now choose z0 to be N -dependent
points with dist(z0, S

c
V )� N−1/4 + t1/4. This requires no changes in the

proof because the initial estimate (here given by Proposition B.12 below)
has no restriction on the support of the test function f . Writing t = N−2a,
in the first inductive step, we can choose the scale as N−s1 with s1 = (1/4 ∧
a/2)− ε. By assumption the ball of this radius centered at z0 is contained
in the support of the equilibrium measure and has density bounded below
there. Hence there is no change in the remaining steps. Thus the condition
� N−1/4 + t1/4 arises because N−1/4 + t1/4 is the scale that the density in
that scale can be controlled without induction.

As a preliminary step towards Theorem 2.3, we prove the following es-
timate, which provides a weaker fluctuation bound than asserted in Theo-
rem 2.3. However, once this bound is established for all scales, Theorem 2.3
then follows from the same estimates.

Proposition B.11. Assume the same conditions as in Theorem 2.3. Write
t = N−2a and suppose that supp f has diameter at most N−s. Then

Xf

N
≺ (N−

1

2
−s +N−a−2s)‖∇f‖2 + (N−1−2s +N−2a−4s)‖∆f‖∞.

To prove this bound, we proceed as in the proof of [6, Theorem 1.1].
The first ingredient is the following generalization of the one-step estimate
[6, Proposition 4.1].

Proposition B.12. Assume that the potential W and the number of parti-
cles M satisfy the assumptions of [6, Proposition 4.1]. Consider the proba-
bility measure on ΣM

W with density proportional to e−βH(z) where we assume
that for some constant K the Hamiltonian H : ΣM

W → R satisfies the uniform
estimate

(B.50) |H(z)−HCM,W (z)| 6 tMK.

Then for any bounded f ∈ C2(C) with supp ∆f compact,∑
j

f(zj)−M
∫
f dµW(B.51)

= O(ξ)
(

(tMK +M logM)1/2 ‖∇f‖2 +M−A‖∆f‖∞
)

with probability at least 1− e−ξβ(tMK+M logM) for any ξ > 1 + 1/β. The
same estimate holds for the Yukawa gas with ` >M2.
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Proof of Proposition B.12. The proof of the proposition is completely paral-
lel to the one without the perturbation G̃, only with an additional error term
from (B.50). Namely, by the assumption (B.50), we may trivially estimate

log

∫
e−βH

C
M,W m⊗M (dz)− tMK 6 log

∫
e−βH m⊗M (dz)

6 log

∫
e−βH

C
M,W m⊗M (dz) + tMK.

By [6, Lemmas 4.3–4.4], the partition function of the Coulomb Hamiltonian
(without perturbation term) can be estimated as

1

β
log

∫
e−βH

C
W m⊗M (dz) >M2IW + O(M logM),

1

β
log

∫
e−βH

C
W+f m⊗M (dz) 6M2IW +

1

8πβ2
(f,−∆f)

+ O(M−A)‖∆f‖∞ + O(M logM).

Here we have used the improvement commented in the proof of Proposi-
tion B.8, which gives the improved factor for the error term proportional to
‖∆f‖∞ and avoids the restriction on ‖∆f‖∞ that was assumed in [6, Lem-
mas 4.3–4.4]. From this and with f replaced by f/s, we obtain the estimate

1

β
logEGtVt eXf/s =

1

8πs2β2
(f,−∆f) + O(M−A)

1

s
‖∆f‖∞ + O(E),

with E = tMK +M logM . As in the proof of [6, Lemmas 4.1], choosing

s = E−
1

2 ‖∇f‖2 +M−AE−1‖∆f‖∞,

this implies

1

β
logEGtVt eXf/s = O(E).

By Markov’s inequality, P(Xf > O(sE)) 6 e−E , and since the same estimate
also holds with f replaced by −f , we have

P
(
Xf = O

(
E1/2‖∇f‖2 +M−A‖∆f‖∞

))
> 1− 2e−E ,

which implies the claim (B.51).
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Finally, we note that for the Yukawa gas with ` >M2 we have

Y `(z) + log |z| = constant +O(|z|/M2)

by (2.2). The constant part of the energy does not affect the measure and
the error term O(1/M2) is uniformly bounded by O(1) when summed over
all M2 pairs of particles (which we may assume to be at distance of order
1 due to the growth of the external potential) and therefore does not affect
the estimate either. �

As in the proof of [6, Theorem 1.1], the proof of Proposition B.11 now
follows from iterated applications of Proposition B.12 to the conditioned
measures associated to increasingly small balls. This induction proceeds al-
most exactly as in [6, Section 6], with the additional element that, in each
step, we improve also the bound K for the conditioned measure. We first
give an outline of this induction now. Recall that we write t = N−2a.

First step. In the first step, using (2.9), the difference H −HCW,N is
bounded uniformly by

(B.52)
∑

j,k:j 6=k
|G̃(zj , zk)| 6 t

∑
j 6=k

e−|zj−zk|
2/(2θ2) 6 tMK,

with M = N and K = N . From Proposition B.12, we therefore get the high
probability estimate

Xf

N
≺ N−A−1‖∆f‖∞ + (N−a +N−

1

2 )‖∇f‖2.

This estimate proves an effective estimate on the number of particles on
scales N−s for s < 1/4 ∧ a/2, i.e., � N1/4 + t1/4.

Induction. By induction, supposing we can control particle numbers on
the distance scale N−r, in Proposition B.12 applied to the conditional mea-
sure in a ball of the former scale, we have M ≈ N1−2r and α = N/M ≈ N2r.
With the range of the perturbation in the interaction given by θ = N−1/2+σ,
it follows that (B.50) holds (see Lemma B.14 below) with

K = O(M ∨N2σ).

Using this estimate, by conditioning exactly as in the proof of [6, Theo-
rem 1.1], for any f whose support has diameter at most N−r, we obtain
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from Proposition B.12 the estimate

Xf

N
≺
(
t
M ∨N2σ

αN
+ α−1N−1

)
‖∆f‖∞

+

(
t

1

2
M ∨ (MN2σ)

1

2

N
+M

1

2N−1

)
‖∇f‖2

≺
(
N−2a−4r +N−1−2r

)
‖∆f‖∞ +

(
N−a−2r +N−

1

2
−r)‖∇f‖2.

This is an effective estimate on particle numbers on scales N−s for s <
(r + a

2 ) ∨ (1
4 + r

2) + ε, improving the assumed estimate. We remark that, as
far as the scales are concerned, this is the same recursion as in the case of
the Yukawa gas, with δ replaced by a/2.

To set up the induction formally, we replace the assumption (Ar) of
[6] by the following one. (Note also that as before we changed the index t
from condition At from [6] into Ar as, in the current paper, t refers to the
argument of the Laplace transform).

Assumption (Ar). For any bounded f ∈ C2(C) with supp ∆f ⊂ B◦r ∩ SV ,
we have

(B.53)
Xf

N
≺ (N−1−2r +N−2a−4r)‖∆f‖∞ + (N−

1

2
−r +N−a−2r)‖∇f‖2.

As shown above, for r = 0 this is (B.51) applied with M = N and V = W
and the trivial estimate K = N . To prove Proposition B.11, it is enough to
prove the next proposition.

Proposition B.13. For arbitrary ε > 0, (Ar) implies (As) for any

(B.54) 0 6 r < s 6

(
1

4
+
r

2

)
∧
(
a

2
+ r

)
− ε,

with the implicit constant in (B.53) depending only on ε.

To prove Proposition B.13, exactly as in [6, Sections 5-6], we condition on
the outside of a ball Bs on scale s and replace the Coulomb potential of the
outside charges with the Coulomb potential of the equilibrium measure. To
ensure that the equilibrium measure of the conditional system inside Bs does
not move much under this replacement, we use [6, Propositions 3.3 and 3.4]
and the analogues of [6, Lemmas 6.2 and 6.3], where the input assumption is
replaced by our new assumption (Ar); the lemmas are checked exactly as in
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the case of the Yukawa gas. The additional required estimate is the bound
K on (B.50), which is given by the following lemma.

Lemma B.14. Assume (Ar). Then, with high probability, uniformly for all
configurations of the M charges inside Bs, the estimate (B.50) holds with

K = O(N1−2r ∨Nθ2).

In particular, if B is at scale N−r and θ = N−1/2+σ then the right-hand side
is O(M ∨N2σ).

Proof. Recall that the perturbation term in the Hamiltonian is bounded by∑
j 6=k e−|zj−zk|

2/(2θ2).
We split this term into the three contributions: (1) both particles are

inside B, (2) one particle is in B and one outside B, and (3) both parti-
cles are outside B. The contribution (3) with both particles outside B is a
constant for the conditioned measure and thus irrelevant for the estimate
on the conditioned measure. Contribution (1) is trivially estimated by M2.
Contribution (2) is bounded by O(M(Nθ2 +N1−2r)) by the local density
estimate, with r-HP for the configurations outside B. This gives the claimed
estimate. �

Proof of Theorem 2.3. As in the proof of Proposition B.13, we condition on
the particles outside a ballB of radiusN−s and assume that f is supported in
the ball with the same center and half of the radius. However, since (A1/2−σ)
has already been proved, by Lemma B.14, we now have the optimal estimate
K = O(N2σ). The theorem then follows directly from the one-step bound
(B.51) on any scale b as in the assumption of the theorem using this bound
on K, implying that tK = tO(N2σ) = O(1). �

B.6. Conditioned versions: proof of Theorems 2.8–2.9

The proofs of the conditioned versions of the local density estimates are
analogous to the original (unconditioned) versions. Namely, we prove the
unconditioned versions by inductive conditioning on increasing small balls.
The assumptions of the conditioned versions are exactly such that the in-
ductive assumption is satisfied for the conditional measure. We omit the
details.
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Notation index

Interaction

C 2d Coulomb interaction, page 842

G generic two-body interaction, page 842

G̃ generic perturbation of the interaction, page 851

Lνω difference between Yukawa interactions U ` with ranges ` = ω and
` = ν, page 860

TG InteractionG averaged over translations of the unit torus, page 906

U ` periodic Yukawa interaction on T with range `, page 850

U `α periodic Yukawa interaction on the torus Tα with range `, page 866

U `b periodic Yukawa interaction on T(b) with range `, page 864

Ȳ interaction Y `
u averaged over u, page 867

Y ` Yukawa interaction on C with range `, page 849

Ỹ `
u sum of periodic Yukawa interaction on tori Tα, with origin u,

page 867

Potential

Q = Q`R effective potential for the Yukawa gaz with range `, page 883

U `µ Yukawa potential with range ` associated to a measure µ, on the
torus, page 852

V external potential, for the Coulomb of Yukawa gas, on the plane
or torus, page 842

Y `
µ Yukawa potential with range ` associated to a measure µ, on the

plane, page 852

Hamiltonian, energy

ÂfV local angle term for the test function f , page 935

Ah,+V long-range angular term, page 940

Ah,−V short-range angular term, page 940

HG
N,V Hamiltonian for interaction G and external potential V , page 842

H`
N,V Hamiltonian for the Yukawa interaction on T with range ` and

external potential V , page 851
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Ĥα Hamiltonian for the interaction U `α, page 866

H̃`
u Hamiltonian associated to interaction Ỹ `

u , page 867

IV minimum of IV , page 843

IV energy functional with Coulomb interation and external potential
V , page 843

I`V energy functional with Yukawa interaction with range ` and ex-
ternal potential V , page 851

K`
R equilibrium energy of the Yukawa potential from scale ` to R,

page 884

Lνω Lνω =
∫
Lνω(z − w) µ̃(dw) µ̃(dz), page 860

WG,v
V evaluated Hamiltonian in the Ward identity, page 937

Measure

EA expectation for the Gibbs measure associated to a Hamiltonian A,
page 859

m Lebesgue measure on C or on the torus, page 842

µV equilibrium measure for external potential V and Coulomb inter-
action, minimizer of IV , page 843

µ`V equilibrium meaure for external potential V and Yukawa interac-
tion with range `, minimizer of I`V , page 852

µ̂ empirical measure, page 844

µ̃ difference between empirical measure and equilibrium measure,
page 853

PGN,V,β Gibbs measure for interaction G, external potential V , inverse
temperature β, page 842

ρV density of µV , page 843

Partition function

ξ
(γ)
b (n) a normalized version of logZ

(γ)
b,n , page 864

ξ(`)(N) a normalized version of logZ
(`)
N , page 859

ζ(`)(N) torus residual free energy, a normalized version of logZ
(`)
N , page 859

F (n) quasi-free free energy for particle profile n, page 866

Z
(`)
N associated to HamiltonianH

(`)
N , at inverse temperature β, page 858
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Z
(γ)
b,n associated to Hamiltonian with interaction U `b , at inverse temper-

ature β (γ = `/b), page 864

ZGN,V,β associated to HamiltonianHG
N,V , at inverse temperature β, page 842

Other Symbols

α index of the squares, page 865

b mesoscopic scale for test function, also noted N−s, page 844

b torus side length, page 864

∆w
z increments of the map Φ, ∆w

z = [Φz − Φw], page 908

γ relative interaction range, γ = `/b, page 864

` range of the Yukawa gas, page 849

ζCβ universal constant in partition function second order asymptotics,
page 845

m inverse of the Yukawa interaction, m = 1/`, page 852

n = (nα) particle profile, assignment of number of particles to squares α,
page 865

n̄ = (n̄α) expected particle profile, page 866

N−s mesoscopic scale for test function, also noted b, page 844

Φu
α embedding of the square alpha, shifted by u, in T(b), page 867

Ψ A distorted map defined along subsection 6.1, page 905

Ψu
α a map from Tα to α, with discontinuity lines having origin u,

declared to be flat, page 871

Ψu
α another map from Tα to α based on Ψ, with distortions, page 921

Su set of squares such that square containing 0 has center u, page 886

SV equilibrium set, support of µV , page 843

S`V equilibrium set, support of µ`V , page 852

T unit torus, page 850

Tα torus of side length b associated to the square α, page 866

T(b) torus of side length b, page 864

Xf
V linear statistics of function f centered with µV , page 845

Y f
V limiting shift for the expectation of Xf

V , page 845

‖·‖∞,k ∞-norm up to k-th derivative, page 844
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‖·‖∞,k,b ∞-norm on scale b up to k-th derivative, page 844

O(N−∞) subpolynomially small error term, page 849
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