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The two-dimensional Coulomb plasma:
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For the two-dimensional one-component Coulomb plasma, we de-
rive an asymptotic expansion of the free energy up to order NV,
the number of particles of the gas, with an effective error bound
N1=* for some constant £ > 0. This expansion is based on approx-
imating the Coulomb gas by a quasi-free Yukawa gas. Further, we
prove that the fluctuations of the linear statistics are given by a
Gaussian free field at any positive temperature. Our proof of this
central limit theorem uses a loop equation for the Coulomb gas, the
free energy asymptotics, and rigidity bounds on the local density
fluctuations of the Coulomb gas, which we obtained in a previous

paper.
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1. Introduction and main results
1.1. One-component plasma

The two-dimensional one-component Coulomb plasma (OCP) is a Gibbs
measure on the configurations of N charges z = (z1,...,2x) € CV. Given
an external potential V : C — R U {400}, the Hamiltonian of this measure
is defined by

(L.1) Hfy(2)=NY V(z)+) Glz, )
j ik

where G(zj, z) = C(z; — 21) is the two-dimensional Coulomb potential,
(1.2) C(zj — z) = —log |zj — 2|,

characterized by Alog|- | = 2mdy as distributions and 3, ,, =25, . The
Coulomb plasma is our main interest, but throughout the paper we will also
consider other symmetric interactions G(zj, 2;). The associated canonical
Gibbs measure at the inverse temperature 8 > 0 is defined by

1

(1.3) P§y 5(dz) = e PHEV(#) ;m®N (dg),

N,V.B

where m denotes the Lebesgue measure on C, and Zﬁy’ 3 the normalization
constant. Here we have assumed that V has sufficient growth at infinity,
so that the latter is well-defined. We will follow the convention that when
G = C then we will omit the superscript C whenever there is no confusion.
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Similar conventions apply to other subscripts, i.e., we will often omit N
and f.

Throughout the paper, we will use the terms Coulomb plasma, Coulomb
gas, and OCP to refer to the measure Py 3. This model has connections
with a variety of models in mathematical physics and probability theory.
For g =1, it describes the eigenvalues density for some measures on non-
Hermitian random matrices [16} 22]. In particular, for quadratic V' the com-
plex vector z is distributed like the spectrum of a matrix with complex
Gaussian entries. Moreover, the properties of this two-dimensional gas are
known to be related to the fractional quantum Hall effect: for = 2s+ 1,
with s integer, Py v, is the density obtained from Laughlin’s guess for wave
functions of fractional fillings of type (25 + 1)~! [31]. Finally, an important
problem is the crystallization of the two-dimensional Coulomb gas for small
temperature [2] [15].

The Coulomb plasma is a system with two scales: the microscopic scale
describing distances comparable to the typical interparticle distance N~1/2
and the macroscopic scale describing distances of order 1. At the macroscopic
scale, the empirical particle measure concentrates around a limiting density
that is described by classical potential theory, which we now describe. For
potentials V' that are lower semicontinuous and satisfy the growth condition

(1.4) liminf (V(z) — (2+¢)log|z|) > —o0

|z]—o0
for some € > 0, it is well known (see e.g. [43]) that there exists a compactly
supported equilibrium measure py that is the unique minimizer of the con-
vex energy functional

(15) Ty = // log —— pu(d) p(duw) + / V(2) u(dz)

|2 — wl

over the set of probability measures on C. The unique minimizer py is
supported on a compact set Sy and, assuming that V' is smooth, it has the
density

1
1. = —AV1
(1.6) V= Vg,

with respect to the Lebesgue measure m. We write Iy = Zy (uy) for the
minimum of Zy . For z € CV, the empirical measure is defined by

=it = Y,
J
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For arbitrary g € (0,00), it is well-known that i — uy vaguely in proba-
bility as N — oo, with f distributed under Py y,g. In [6] (see also [32]) we
have proved two stronger estimates for the Coulomb gas, which in can be
summarized as follows. For b > 0 and k € N, we introduce the norms

k
(L.7) 1 lloose =D VIV flloos  flloose = I1F oo s

J=0

Note that the boundedness of || f||,, ; , means that f is smooth at scale b. We
typically take b = N ~* for some s € [0 1/2), and assume that f is supported
in a disk of radius of order b. The first estimate proved in [6] is a local law
that asserts that for any smooth f supported in a disk of radius b = N—*
(s € [0,1/2)) centered at some point zg in the bulk (i.e., interior) of Sy (and
the function f supported in the bulk when s = 0), we have

1 N
(1) N2 - [ @)
7=1
= O(log N) (N™' 72| Aflloe + N 757V ]| 12 )
= O(log N)N 7% f | o 2.+,

where || f|| ;= = ([ |f|> dm)!/? is the L?-norm of f, with very high probability.
A stronger estimate, which we shall call rigidity, asserting that

N
(1.9) S 1Gi) = N [ 1@ () = 00l
j=1

with very high probability, also holds under the same assumptions.

The main result of this paper is the identification of the random error
term in the above rigidity estimate. It is given by the Gaussian free field
with a nonzero mean.

1.2. Main results

Our main results are the following two theorems. In addition to the condition
(1.4), the global potential V' is always assumed to satisfy

(1.10) V € €° on a neighborhood of Sy = supp puy,
<AV(2) € ap? for all z € Sy
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for some constant cg > 0. We assume that the boundary of Sy is piecewise
€*, or more precisely that Sy is a finite union of €' curves. The prototyp-
ical example is V(z) = |2|? in which case Sy is a disk, and the convergence
i — wy is known as the circular law in random matrix theory.

Theorem 1.1. There exists a constant Cc € R such that, for any external
potential V' satisfying the conditions . and -, for any k < 1/24,

1
log [ e PHv m®N(dz) = —NTy + 5 log N + 5

+ <; - ;) /pvlogpvderO(N_”)'

A similar result, as a limiting statement instead of a quantitative er-
ror bound, and with CC characterized via a large deviation principle, was
previously proved in [33] For our application to the proof of Theorem [1.2] -
below, a quantitative error bound is essential. In addition, we will provide
a physical interpretation of Cg as the residual free energy of the Coulomb
(or technically a long-range Yukawa) gas on the torus; see Theorems
and [4.1]

For the statement of Theorem we require the following additional
definitions. For any function f with support in Sy, let

BN

(1.11) X{;:Zf(zj)—N/fduv,
J

(L12) v = 417T/AflogAVdm _ ;/Af(z) log py(2) m(dz).

In the following theorem, f:C — R is supported on a disk with radius
b= N~° for a fixed scale s € [0,1/2), and [|f||,, 5, < C < 0o uniformly in
N. We also assume that the support of f satisfies dlst(supp( f),S%) > ¢ for
some ¢ > 0 uniformly in N. (Indeed, the last condition can be relaxed to
e = N~Y4%¢ for arbitrarily small ¢, i.e., f still supported in the bulk).

Theorem 1.2. Suppose that V satisfies the condition (1.4) and ( -, and
that f has support in a ball of radius b = N—° with the above conditions.
Then there exists 1o = To(s) > 0 such that for any 0 <7 < 719 and 0 < A K
(NV*)1=27 | we have

1

mlog[g< —oA(xt-(3-1) ) /yw m(dz) + O((NB2) 7).
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Here the expectation is with respect to P](\Z[V 5

Note that A is allowed to be very large in this theorem; this provides
strong error estimates for the Gaussian convergence. This central limit the-
orem is noteworthy due to the absence of normalization: fluctuations of X‘J;
are only of order one, due to repulsion, but still Gaussian. For the purpose
of establishing the central limit theorem for X{;, it suffices to take A to be
of order one (independent of N).

Finally, a result similar to Theorem [I.2] was obtained simultaneously and
independently in [34].

1.3. Related results

The study of one- and two-dimensional Coulomb and log-gases has attracted
considerable attention recently, see e.g. [21] for many aspects of these prob-
ability measures in connection with statistical physics. The subject of our
work, abnormally small Gaussian charge fluctuations of the one-component
plasma, was first predicted in the late 1970s (see [26] and the references
therein).

In dimension two, in the special case 8 = 1, the central limit theorem was
first proved for the Ginibre ensemble, i.e. for quadratic external potential V'
[39, [40]. These results were extended to more general V' by combining tools
from determinantal point processes and the loop equation approach [4, [5].
In particular, in the latter works the determinantal structure was used to
prove local isotropy of the point process, an important a priori estimate
necessary to the loop equation approach. For general inverse temperature [,
the determinantal structure does not hold; nevertheless an expansion of the
partition function and correlation functions was predicted in [48H50]. The
expansion of the partition function up to order N was rigorously obtained
in [33] (along with a corresponding large deviation principle for a tagged
point process); see also the related earlier works [41], [44], [45]; in addition, see
also [23]. Still for the two-dimensional Coulomb gas at any temperature, a
local density [0, 32, B6] was recently proved, together with abnormally small
charge fluctuations in the sense of rigidity [6], see . Other recent results
in this direction include [3| 37, 38| [42].

For the log-gas on the line, much more is known. Indeed, in dimension
one the Selberg integrals are often a good starting point to evaluate partition
functions, and anisotropy does not cause any trouble in the analysis of loop
equations. For general g and V, full expansions of the partition function
and correlators were predicted in [19], proved at first orders in [46] and at
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all orders in [8, [9]. A natural analogue of the rigidity is also known
to hold for log-gases on the real line [I0]. Still for the log-gas in dimension
1, the central limit theorem was first discovered on the circle for 5 =2 in
[27], and on the real line for any S in [28]. For test functions supported on
a mesoscopic scale, the local central limit theorem was proved on the circle
for some compact groups in [47], for general 3 ensembles with quadratic V'
in [II] and for general V in [7].

For expansions at high temperatures, and exponential decay of micro-
scopic correlations, in closely related models of Coulomb gases, see [13]
25). For results on crystallization in the one-dimensional one-component
Coulomb plasma, see [I, 12, 30]. Further results on Coulomb systems in
statistical mechanics are reviewed in [14] 21].

1.4. Proof sketch

In Section |3} we first prove that an extended version of Theorem holds for
Yukawa gases on a torus. The essence is to show that the constant Cg, to be
called the residual free energy, can be identified independently of the range
of the Yukawa interaction. This fact is then used in Section [l to establish
an expansion of the free energy of the Coulomb gas up to order N'=*. The
main idea is to approximate the Coulomb gas first by a short-range Yukawa
gas, and then by a quasi-free Yukawa gas. Roughly speaking, a Yukawa gas
with range £ < 1 can be viewed, for the purpose of computing free energy, as
an ideal gas consisting of independent squares of size b satisfying 1 > b > ¢
and with the gas inside each square being a periodic Yukawa gas with range
£. Since this gas is an ideal gas over a distance longer than a mesoscopic
scale b, we call it a quasi-free approximation.

The Yukawa approximation to the Coulomb gas is a well-known tool in
the study of the quantum Coulomb gas, see, e.g., [17, [18]. However, the preci-
sion needed here is far beyond the previous results. Following the traditional
approaches in free energy estimates, we will prove the free energy expansion
of the Coulomb gas by establishing a lower and an upper bound. The proof of
the upper bound, contained in Section |5} consists of the standard argument
of counting two-body Yukawa interactions in neighboring squares and uses
only that the density of Coulomb gas is bounded for all scales > N~1/2+¢
by [6]. The lower bound turns out to be much more difficult than the up-
per bound. The Yukawa gas used in the approximation of the Coulomb gas
is constructed from the Yukawa gas on periodic squares, so the resulting
Yukawa gas on the plane breaks the translational and rotational invariances
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of the Coulomb gas. The translational invariance is easy to restore by av-
eraging over the “grid” of the squares. The rotational invariance, however,
is hard to recover and the effects of breaking it has to be estimated pre-
cisely. We remark that in the quantum Coulomb gas, the lower bound of the
free energy was proved [35] by carefully maintaining the Coulomb rotational
invariance. This was possible due to the use of the “Swiss cheese” approxi-
mation. In our setting, we are forced to maintain the square approximation
since the limits of the residual free energy were established only for squares.
The key estimate which allows us to control the breaking of the rotational
invariance is contained in Section [6] where we estimate the energy distortion
resulting from embedding torus into the Euclidean space. This estimate uses
the rigidity estimate of the periodic Yukawa gas, a parallel version of the
rigidity estimate established in [6] for the Coulomb gas. Using the estimates
from Section [6] we complete the proof of the lower bound of the free energy
in Section [1

Another difficulty in establishing Theorem is the surface energy of a
Coulomb gas. The typical inter-particle distance of this gas is N —1/2 there-
fore the total Coulomb energy for particles within a distance N~/2 to the
boundary of the support of the equilibrium measure is of order N. To see
this, note that the number of surface particles, i.e., particles with distance of
order N~1/2 to the boundary, is of order v/N. Thus their Coulomb interac-
tion energy is of order N. Theorem requires to capture these interaction
energies up to order N'=*. In other words, the leading term in the energy as-
sociated with the charges near the boundary of the support of the Coulomb
gas has to be identified. Our idea is to use an ideal gas approximation for
a boundary layer and then switch to a Yukawa approximation for interior
particles. We will explain this idea in Section

In Section |8, we first prove that the central limit theorem holds after
subtracting a random term, the local angle term. From this result and the
asymptotic expansion of the free energy for the Coulomb gas, Theorem (1.1
we obtain that the angle term does in fact vanish in a large deviation sense.
We thus prove Theorem [I.2] for a test function f with macroscopic support.
For test functions with support on a mesoscopic scale b, we proceed via
conditioning to a disk of radius 2b. This conditioning procedure was used
in [6]; it has the advantage of reformulating the question into a problem on
the natural scale b.

Throughout the paper, we will extensively use the local density and
rigidity estimates for the Yukawa gas and Coulomb gas with additional an-
gular interaction, in a form similar to and . In Appendices |[AHB]
we therefore extend the estimates of [6] to the Yukawa gas and the Coulomb
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gas with angle term. The rigidity estimates, to be proved in Appendix [A]
use estimates of the local laws in Appendix We reverse the logic order
because the proofs of the local laws in Appendix [B| are technical and use
extensively conventions from [6].

1.5. Notation

We use the usual Landau O and o symbols. For N-dependent quantities
A,B >0, we write A < B when there exists ¢ > 0 and Ny > 0 such that
A< N EB for N > Ny. For an event E, we say that F holds with high
probability if for all D > 0 there is Np such that P(E) > 1~ N~ for N >
Np. For random variables A and B, we write A < B if for any € > 0 the
event |A| < N¢|B| holds with high probability. We use the notation A =
O(N~°) to denote that A is subpolynomially small: for every D > 0 one
has |A| < N~P for all N > Np with probability at least 1 — N~ (if A is a
random variable).

2. Preliminaries

We begin with the definitions of the Coulomb and Yukawa gas ensembles,
and we give a summary of the potential theory that we require, as well as
of the estimates on the local density.

2.1. Coulomb and Yukawa potentials

We will identify R? and C and usually write z and w for its elements. The
two-dimensional Coulomb potential is C(z) = —log |z|, satisfying —AC =
2mdg as distributions. The Yukawa potential with range ¢ > 0 is the solution
o (=A+1/2)Y* = 2m8y. Explicitly, the two-dimensional Yukawa potential
is given by the formula

(21) — 47T/ —1pz/ t(p*+1/02)/2 dtdp
RQ

ds ]z\
— e—a(s+1/s) 22 . =l

where p - z denotes the Euclidean inner product on R?. From this formula,
note that Ye(z) is pointwise positive and positive definite, and that there is
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an absolute constant Yy such that

~ —1 log ¢ + Y 0) if |2/ <1
02)  yie = T8 EI IRl £ Yo 0=/ it
< Cpe=Cll/ if |z|/¢ > 1.

Indeed, the asymptotic relation can be checked with constant Yy = log2 + ¢
from

(2.3) gla) =19 —loga+ O(a), v= /Ooo (7 — 15<1) %,

where g was defined in . In particular, up to the constant Y + log ¢, the
two-dimensional Coulomb potential — log |z| is the limit £ — oo of Y*(2). We
denote by T the two-dimensional unit torus C/Z2. For £ > 0, the Yukawa
interaction of range £ on T is defined by

(2.4) Ul(z) = > Yz +n).

nez?

2.2. Ensembles

We now define the Coulomb gas and its perturbed versions on the plane C,
and the Yukawa gas on the torus T.

Coulomb (and Yukawa) gas on the plane. Remember that for a one-
particle potential V : C — RU {400} and the two-particle interaction G :
CxC\A =R on C, where A = {(z,w) € C%: 2z = w}, we define the N-
particle Hamiltonian by

(2.5) HSy(z)=N> Vi(z)+ > Glz,z), (z2e€CV),
J J#k
and the corresponding Gibbs measures at inverse temperature 5 > 0 by

1 G
e_ﬁHN,V(z) m®N (dz)7

(2.6) Pﬁvﬁ(dz) =
N, V.8

where Zﬁ,V, 5 is the partition function. The Coulomb interaction is obtained
by taking G(z,w) = C(z — w) to be the Coulomb potential and we omit the
argument G in that case; the Yukawa interaction of range ¢ is obtained with
G(z,w) = Y*(z — w) and we then write £ instead of Y in the superscript.
For the Coulomb case, we sometimes use the convention ¢ = oo.
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On the plane, we only use the Yukawa potential as a regularization of the
Coulomb potential, with ¢ > N2, in which case it is for all of our purposes
equivalent to a Coulomb potential.

Yukawa gas on the torus. Similarly, for £ > 0 and for a potential V :
T — R, the N-particle Hamiltonian of the periodic Yukawa gas on T is
defined by

2.7)  Hyy(z NZVZ]—i-ZU i—z),  (zeTV),
J#k

where U? was defined in and we here use the abbreviation H ﬁ, =H 15(7,0
The corresponding probability measures are again defined as in , with
m now the Lebesgue measure on T.

On the torus, we use the Yukawa potential with short range compared to
the side length of the torus (but still large with respect to the interparticle
spacing), i.e., N2 « £ < 1.

Perturbed Coulomb gas on the plane. We will also consider perturba-
tions of the Coulomb gas on the plane, for which the two-particle interaction
takes the form

(2.8) G(z,w) = C(z — w) + tG(z,w),

with ¢ € R, and where we assume that the perturbation G satisfies, for some
6 >0,

(2.9) Gz, w)| <1, |Gz w)| < e F-wl/C0%),

The perturbed Coulomb gas will be used only in Section |8} We therefore
suggest the reader to skip this material until it is used in Section

2.3. Potential theory

We define variational functionals for the Yukawa potential with external
potential V' on probability measures p on C by

@10)  Zhn) = [VE ) + [V - w) () n(dw).

In the definition of the variational functional for the Coulomb interaction,
the Yukawa potential Y* is replaced by the Coulomb potential C, and we
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then again omit the superscript £. Moreover, we use the analogous definition
for the variational functional of the Yukawa gas on the torus T, where Y is
replaced by Uf. We always make the following assumptions:

(i) The set Xy = {z: V(2) < oo} has positive logarithmic capacity; see
[43, Section I.1].

(ii) The potential V is locally in C'*! and, for the full plane, it satisfies the
growth condition

(2.11) liminf(V(2) — elog |z|) > —o0.

|z]—00

In the Yukawa case, we assume e > 0, whereas in the Coulomb gas we
assume that € > 2. In the case of the torus, the growth assumption is
trivial.

For a probability measure p on C respectively T, define the Yukawa potential
by

Y/f(z) = /Ye(z —w) p(dw), respectively Uﬁ(z) = /Ué(z —w) p(dw),

and again we use analogous notation in the Coulomb case. The following
standard result gives the existence and uniqueness of the equilibrium mea-
sure for the Yukawa and Coulomb gas. Let P(Xy) be the set of probability
measures supported in ¥y,. We write m = 1/ and use the convention m? = 0
for the Coulomb case.

Theorem 2.1. Consider the Yukawa potential of range ¢ on C or the
Coulomb potential on C (with the convention £ = 0o). Suppose satisfies as-
sumption (i)-(ii) above. Then there exists a unique ut, € P(Xy) such that

(2.12) T () = mf{Z{ () : p € P(Sy)}.

The support Sf} = supp u€/ is bounded (uniformly in £) and of positive capac-
ity, and Ié (M{/) < 00. Furthermore, the energy-minimizing measure uf/ may
be characterized as the unique element p of P(Xy) for which there exists a
constant cy € R such that Euler-Lagrange equation

(2.13) Yj +3V=cy ge in St and
Ylf—k %V >cy gq.e inC
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holds. The equilibrium measure ,uf/ in the set Sé s given by

(AV +m?(2¢cy — V) * (A —m*)V + 2mPey),

1 J—
C Ar

2.14 £ —
( ) y pp

where the Laplacian is understood in the distributional sense. The same
statement holds for the Yukawa potential on the torus T with Yj replaced by
Ut.

“w

The proof is identical to that of the Coulomb case; see e.g. [43]. Also, by
the same argument, under the assumption that V satisfies (1.4)), the support
of uf/ is compact uniformly in £.

In the case of the Yukawa gas on the torus with V' = 0, by translation-
invariance, the unique minimizer in is the uniform probability measure
on T. Hence the minimum energy of the variational functional for the Yukawa
gas on the unit torus is simply given by

(2.15) #Gig%r) / Uz — w) p(dz) p(dw) = 2m02.

We will use this fact in Section [Bl
2.4. Local density estimates

From now on, we always assume that V' satisfies the assumptions of Theo-
rem The local density estimates stated in the following theorems imply
that, for any disk B of radius r > N —1/2 (and the respective support as-
sumptions), the number of particles in B is of order r? with high probability
under the respective ensemble. For their statements, given a test function
f:C —= R, we denote the linear statistic centered by the equilibrium mea-
sure by

@16 X =Y 5 - N [ £ bl = N [ 1)),
where 1 = % > y d., denotes the empirical measure, and

(2.17) = i iy

The following two theorems will be proved in the Appendix [B]
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Theorem 2.2 (Local density for the torus). Consider the Yukawa gas
on the torus T with Hamiltonian and assume the potential V' satisfies
(i) above and supp(py) = T. For any f : T — R supported in a disk of radius
b> N2,

(2.18) X4 < VNB(f, (= A+ m2) f) + b Af| oo

In particular, for any disk B C T with radius b>> N2, with high proba-
bility, we have

(2.19) Nji(B) = O(Nb?).

Theorem 2.3 (Local density estimate on the plane). Suppose that V
satisfies the conditions and . Consider either the Coulomb gas
on C with potential V' and Hamiltonian , the perturbed Coulomb gas in
[.9) with |t|9>N < 1, or the Yukawa gas with range £ > N%. Then for any
f:C — R supported in a disk of radius b> N~Y/2 that is contained in Sy
and has a distance > N~V/* 4 tY/4 to 9Sy,

(2.20) [ X¢| < VNO(f, =Af) + 0| V2 flloo = O(VND)| floc,2-

In particular, for any disk B C Sy with radius b> N~Y/2 and distance >
N4 4 414 4o 8Sy, with high probability,

(2.21) Nj(B) = O(Nb?).

Moreover, if D= {z € Sy : dist(z,0Sy) <V} with b/ > N~V then, with
high probability,

(2.22) Ni(D) = O(NV).
2.5. Rigidity estimates

In addition to the local density estimates of the previous subsection, for the
Yukawa gas on the torus, we also need the stronger rigidity estimates given
by the following theorems. These theorems are proved in Appendix[A] again
following the method of [6].

Theorem 2.4 (Rigidity estimate for Yukawa gas on the torus).
Consider the Yukawa gas on the unit torus of range £. Let s € (0, %), and
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assume that N~Y2 < £ < 1 and that V = 0. For any sufficiently smooth
f:T — R supported in a ball of radius b= N2,

b 2
(2.23) %< (7+1) Wlwss

In the regime that b/¢ <1, this estimate improves the previous local
density estimate by about a factor 1/(v/Nb) with a price of taking one more
derivative in the test function f.

As a corollary, we obtain the following proposition which estimates func-
tions of two points. The proposition, proved in Appendix [A] is a direct ap-
plication of the rigidity estimate just stated and Taylor expansion. To state
the estimate, for any sufficiently smooth function g : T x T — R, we denote

(2.24) 99 (z,w) = sup Vg, ),
(z,y)€B(2) xB(w)

where By(z) is the Euclidean ball of radius ¢ centered at z and |V7g(z,y)| is
the maximum over all partial derivatives of g of order j.

Proposition 2.5. Consider the Yukawa gas on the unit torus of range (.
Assume that N™Y2 <« ¢ < 1 and that V = 0. Fiz N~Y/2 <« s < 1. Then for
any smooth function g on T X T and any fized p € N,

p—1

- - 1 1 S
229) 8 [[ gty tas) itaw) < (55 + 31 ) X 917025l

J=0

1

where || - || is the L*-norm on T x T and ||[Vgl|l1 = ||[V?g]||.

Notice that, besides explicit factors, t only appears in the error term g}gpt ).
We usually choose t to be slightly smaller than the scale that the function
g is smooth on.

2.6. Conditioned local density estimates

To prove the mesoscopic versions of the central limit theorem, in addition
to the above local density estimates, we need conditioned versions of these.
These and can be skipped on the first reading.

To state the conditioned estimates, we first recall the local conditioning
from [0, Section 5]. We first focus on the Coulomb gas on the plane and
comment on the changes for the Yukawa gas on the torus afterwards. Let
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B C C be a disk of radius b contained in Sy, and consider the Coulomb gas
obtained by conditioning on all of the particles outside B. More precisely,
for a particle configuration z € CV, let M = M(z) denote the number of
particles in B, let (21, 22, ..., Z)r) denote the collection of particles inside B,
and let (21, 22,...,2yv—n) denote the particles outside B. The Hamiltonian
Hy v may then be written as

(2.26) Hyy(z Zlog
J#k

+NZ( Vo(%12)) + E(2),

—Zlc|

where

Vo(wlz) = —%Zlog —
Zlog +NY V(3)
J

J#k

(2.27)
- Zk|
The term E(2) is independent of the particles in B and is thus irrelevant

for the conditioned measure. For any configuration of external particles Z €
(C\ B)YNM and z € C, we write

(2.28) W(wl|?) = {ﬁ(V(w) —Vo(w|2)) (w e B),
o0 (w ¢ B),
(2.29) Py vg(dw|2) = Prs) wz),s(dw).

The Coulomb gas given by the potential W(:|2) is the conditional gas inside
B, given the external configuration Z. Here we have used the convention of
the measure Py v,5(dw|2) in (L.3)); this convention also explains the normal-
ization factor N/M in (2.28). In [6], it was proven that under our assump-
tions on V' the conditional potential satisfies the following properties. First,
since V,(+|2) is harmonic in B we have

AW(z) N
T Vel

(2.30) i =
in the interior of the support Sy C B (where py and its support Sy, are

defined by minimization of the Coulomb version of (2.10)). For any function
f that has compact support in Sy, we thus have

(2.31) M/fd,uw :N/fduv.
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Finally, from [6, Sections 5-6], we know that the measure dupy may be
expressed as %]1 swdpy +vds, where ds is the length measure on 0B, v €
L*>°(0B), and that the following properties hold. These properties are verified
in the proof of [0, Theorem 6.1].

The same definitions and properties apply in the Yukawa case when the
Coulomb potential is replaced by the Yukawa potential (the analogues of
[6l, Sections 5-6] are proved in Appendix , when is replaced by the
Yukawa density of the form , and when is restricted to test
functions with [ fdm = 0.

Lemma 2.6. Consider the perturbed Coulomb gas on the plane as in The-
orem [2.3 or the Yukawa gas on the torus as in Theorem [2.9 For any
s € (0, %), there exists a constant T > 0 such that the following statements
hold with probability at least 1 — e N for r = N—5:

M = Npy(B)(1+O(M™7)),
Sw D{z€B:d(2,0B) > M "r},

)
)

(i) i (9B) = / vds < M,
) [v]loo < O(1/7).

In particular, any disk B in the lemma satisfies the following good bound-
ary conditions:

Definition 2.7 (Good boundary conditions). Fix a scale N~1/2%¢ <
r < 1. Let B be a disk of radius r, let P(:|2) be the conditional law (with
the particles Z outside B fixed) of the Coulomb gas induced on z € BM()
where M (%) is the number of particles contained in B, and let W (:|2)
be the corresponding potential (with W (:|Z) = 400 outside B). We say
that the boundary condition Z of the conditional law is a good boundary
condition if the following properties hold. The equilibrium measure asso-
ciated to W = W(:|2) of the conditional measure can be decomposed as
pw (dz) = pw(z) m(dz) + v(z) ds, where ds is the length measure on dSy
and Sy C B. Furthermore, there exists a disk Q of radius 7(1 — N~7) for
some 7 > 0 such that the equilibrium measure satisfies the bounds

Zrk” pW 1QHoo B K7
(2.32)

/PW S1-M7 o]l < M
[Sw]



858 Bauerschmidt, Bourgade, Nikula, and Yau

for some constants a > 0,4 > 0, K > 0.

Theorem 2.8. In the setting of Theorem let B be a disk of radius
r with good boundary conditions, and write n = Nr2. Then good boundary
conditions in the sense of Definition [2.7 hold with high probability under the
original measure. Furthermore, for any disk B' C Sy with radius N~Y/? <«
b < r and distance er to OSy, with high probability under the conditioned
measure, the conditioned version of holds (where Xy is defined with
respect to V' ):

(2.33) | X¢| < V/NO(f, (A +m2) f) + 0| Af|oo-

Theorem 2.9. In the setting of Theorem let B be a disk of radius
r with good boundary conditions, and write n = Nr? and t = N~2°. Then
good boundary conditions in the sense of Definition[2.7 hold with high prob-
ability under the original measure. Furthermore, for any disk B’ C Sy with

radius N~'/? < b < r and distance > (n=* +n=7/%)r to dSw, with high
probability under the conditioned measure, the conditioned version of (12.20))
holds:

(2.34) [ Xy| < VNO(f, =Af) + bV floo-
3. Free energy of the torus
We start with proving a version of Theorem for the Yukawa gas on the

torus. This outlines the strategy for the proof of Theorem [1.1]in a simplified
context and also constructs the constant ¢ in Theorem

3.1. Main result

Recall the definition of the Yukawa gas on the unit torus from Section[2.2)and
also that the minimum energy of the variational functional for the Yukawa
gas on the unit torus is given by 2m¢? by . We denote the N-particle
partition function of the Yukawa gas on the unit torus with range ¢ by

Z](\f) —/ e PHN(2) (dz),
']I‘N

where HY; was defined in (2.7)). The main result of this section is the following
theorem, namely a version of Theorem for the Yukawa gas on the torus.
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Theorem 3.1. There exists a 3 dependent constant (, the residual free
energy of the Yukawa gas on the torus, such that for any o > 0 there is
k> 0 such that if N~1/2t0 <1<« 1,

1
B
More precisely, O(N'=%) is NSO(N7/8 4+ N1-20),

1
(3.1) log 29 = 27> N? + Nlogl + 5V log N + N¢ +O(N' ™).

Remark 3.2. The above statement holds without the assumption ¢ < 1.
Since this generalization is not needed for our application, we restrict to this
slightly simplified case.

To prove Theorem [3.I} we define the specific residual free energy in a
system of N particles with interaction range ¢ by

1 1
¢ON) = =£O(N) = S log N,
N 2
32 ONY = L 100 20 4 902 N2 — Nlog f
5():EogN+27r — Nlog/.
In this notation, Theorem [3.1| asserts that ¢‘(N) = ¢ + O(N'~*) whenever
0> N—1/2+0"
Along this section and in Section [4, we will repeatedly use the Jensen
inequality in the form

(3.3) 1og/e—B +EB(B-A) < log/e_A < 1og/e—B +EA(B — A),

—A
where EAX = 1 fe e,j( and integration is with respect to a fixed measure.

3.2. Continuity of the residual free energy

In the following Lemmas and it is proved that ¢() () is almost inde-
pendent of the range ¢ provided that £ > N~/2 and that ¢ (V) depends
only weakly on the number of particles N.

Lemma 3.3. For any o € (0, %) and v and w such that N~V <y <
w & 1, the following inequality holds:

(3.4) O(N~27+%) < (W) = ¢(N) < O(N ),

where the notation O(N~°°) was defined at the end of Section .
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Proof. We start with the upper bound on () — ¢(*). By Jensen’s inequality,

(3.5) ;log/eBH%(z) m(dz) < élog/eﬁHﬁ(z)m(dz)

w

— BN [HY, — HY).

Let LZ(z) =U%(z) —U"(2). Then L(0)=log(w/v)+ O(N~°°) since
U0) = Y40) + O(e/*) and v < w < 1. Since LY, is positive definite, as
can be verified by representing it in Fourier space, we also have

(3.6) L, = /LZ’J(z —w) a(dw) a(dz) 20, forv<w< 1.
Together with [ U‘(2) m(dz) = 2n¢2 by (2.15), we have the estimate

(1) HY— =S 14 — =)
ik
= 27(w? — V*)N? — Nlog(w/v) + N2LY, + O(N~).

By the definition (3.2), this proves that () (N) — () (N) < O(N—°).
For the lower bound, we use the Jensen inequality and (3.7 to obtain

(3.8) ;log/eﬁH%(z) m(dz) > élog/eﬁnyv(z) m(dz)

—27(w? = V?)N?% 4+ N log(w/v)
— N2EHRLY + O(N~).

We apply the two-point rigidity estimate (2.25) with ¢(z,w) = L (2, w),
¢=v,t=vN"¢ and p = 2/e. Note that this choice of g satisfies

7| Vigly < Citivw? < Cjuw?,
tp||g](3pt)|\1 < OptPrPw? < C,NP°w? < C,N 2.
Therefore gives
(3.9) NZEANLY < N#O(W?r™).
Replacing € by £/4, we have thus proved that
(3.10) CW(N) = ¢W(N) = NeO(w?v ™).

This estimate can be improved to give the lower bound stated in (3.4) as
follows. For any fixed & > 0 small, we choose (1;)¥_, such that v; = w, v}, = v
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and 1 < v;/vj41 < N°. Since w < 1 by assumption, there ex1sts an admis-
sible choice of k depending on ¢ but not on N. Then with (w, )
replaced by (v;,vj41) gives

W
._.

(3.11) CWRN»—6”<>: @@J<>—<@HMN»

x> .
Il
—_

NEO(V?V;fl) = N°O(v™?).

<.
Il
—_

Since 2 < N'1729 by assumption, this completes the proof of the lemma.
O

We record the following rough bound on the partition function.

Lemma 3.4. The torus residual free energy satisfies
(3.12) 9 (n) = O(nlogn).

Proof. This bound follows by smearing out the point charges into charge den-
sities and using the positive definiteness for the upper bound and Jensen’s
inequality for the lower bound. This is a standard argument and therefore
we omit the details. The interested reader can look into [6, Proposition 4.1]

or . |

Using the above bound on the partition function, we obtain the following
estimate for its dependence on n.

Lemma 3.5. The torus residual free energy satisfies

(3.13) (O n) = ¢D(m) = 0 (|m )

log(n + m)
n+m ’

Proof. We now prove the following more precise version of ([3.12)):

(314)  €D(n) + 2192 —logy < €7 (n+1) < €D (n) + Ologn).
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In particular, €0 (n 4 1) — £€0)(n) = O(logn). This implies the claim as fol-
lows. If n < m < 2n, then

(3.15) ¢ (m) = (D (n) = i 0 (10§k>
k=n
-ofimont5) o)

On the other hand, if m > 2n, then already (3.12]) implies

(3.16) ¢V (m) = (P (n) = O(logn) + O(logm)
B . log(n + m)
=0 <\m | n+m > '

This proves the claim for n < m. The case n > m follows by exchanging the
roles of n and m.

It remains to prove . We start with the lower bound. By Jensen’s
inequality,

f 6_6 Z:L;]lzjzl U (zi—2;) m" (dZ)

lo —
° il e P L= UV Ei=21) iy (dg)

> —28E] > U (2n41 — %),
i=1

where m”(dz) = [[i_; m(dz;). In the following, we omit the superscript
whenever it is obvious. Integrating both sides over z,.1, and again using
Jensen’s inequality, we get

n+1

log ZTL+1 2 /m(dzn+1) log / e_ﬁ Zz‘;ﬁj;z‘,j:l U“’(Zi—zj)m(dz)
> log Zn — (2n3)(277%).

By the definition of £()(n), it follows that

1
ED(n+1) =2 (n+1)* = (n+1)logy + 5108 Zns1(9)
> 2my%(n 4 1)? — 2n(277?) + ;log Zn(B) — (n+1)log~y
=D (n) + 2142 — log .

This gives the lower bound in (3.14)).
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For the upper bound, we set Hj = Z?;]l”#k U7(z; — z;). Then, by
Holder’s inequality, it follows that

n+1

(3.17) Znt1(B) = /exp [ ZHk

n+1 7y 1
< /eﬁvﬁlH’“m(dz) =Zn <Bn+ 1) :
n_

Since £ (n) = O(nlogn), we have

1
3 log/e_BH" m(dz) = —27v*n? + O(nlogn), H, = ZU7 — Zj).
i#]

Using this estimate and the convexity of the function ¢ — log [ e~ m(dz),
we have

-E}PH, < log/e_(ﬁH)H" m(dz) — log/e_ﬁH" m(dz)
< —21v*n% + O(nlogn).

Using (3.17) and integrating the relation 0glog Z,,(5) = —E)P H,,, we there-
fore get

n+1 Aty s
log Zn11(B8) <logZ, | S 1) = log Z,(B) — E)*H, ds
n- B
2

2
<log Z,(B) — 27r72nn7_€ + O(logn).

In summary, we have proved that

€0 (n+1) = 2073 (n + 1)* = (n+ log + 5 1og Zupa(9)

+ ;log Zn(B) — 27T’y

—nlog~y — logy + O(logn)
= ¢O(n) + O(logn),

5 2n?
-1

< 2my%(n 4 1)2

which is the upper bound in (3.14)). O
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3.3. Scaling relation

In the remainder of this section, we will often consider the Yukawa gas on
a torus of side length b. Let T®) denote the torus of side length b, i.e., the
square [b/2,b/2)? with horizontal respectively vertical sides identified. The
Yukawa potential on T®), under this identification to the square [b/2,5/2)2,
is defined by

(3.18) Uiz) =0 (2) = > Yz +n),
née(bZ)?

where Y is the full plane Yukawa potential defined in (2.1) and v = £/b
denotes the relative interaction range from now on. We denote the corre-
sponding partition function of the n-particle Yukawa gas by Zéwn), and set

n

€7 (n) = Glos 20 + 27°n —nlos
(3.19)

b,n

Z(V) _ / e Bz, Us(wi—wy) m(dw).
(T®)n

From now on, we adopt the following convention for z — w in T®) in-
cluding the case b = 1.

Definition 3.6. For z,w € T® we always choose the representative for
z — w (which is only defined modulo (bZ)?) to be in [~b/2,b/2).

For later use, we record the following scaling relation.

Lemma 3.7. For any K > 0,

(3.20) Q= (5-3) ok + €7

In particular, by choosing K = b=', with the definition of ¢ from (3.2),

(3.21) 5157) (n) = n¢(n) + glogn +n (; - ;) logb™2.
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Proof. By definition of the Yukawa potential (3.18), we have UL (Kr) =
Uf (r). Therefore, by changing variables to z = wkK,

Lo _1, / UL (2i-2)
— —_ 1#7 Kb\~ I m dz
B Fnico ﬂ (T (d2)
= l log e P Bz Ui (wi=0s) ypy (dwr) + lnlog K?
p (T®)n g
1

where the term with log K2 comes from the scaling factor in the Jacobian.
With v = /¢/b and using the definition (3.19)) of &, we have the rescaling
identity

1
ﬁ}’g(n) = 2my*n® — nlog K{ + BnlogK2 +

1 1
= (5 — 2> log K* +§l§7)(n)

as claimed. O

1 ()
—log 27
B g n,b

3.4. Quasi-free approximation

To prove Theorem we first replace the interaction range ¢ by N—1/2+o
for an arbitrary fixed o > 0. By Lemma [3.3] this replacement contributes
an error N*O(N'=%9) to (3.1). From now on, we therefore assume that
/= N—1/2+U'

In the following, we always parametrize the unit torus T by the square
[—1/2,1/2)2. For a parameter b < 1 such that 1/b and Nb? are both integers,
we then divide the unit torus into a grid of (small) squares « of side length
b. To be concrete, we center the grid such that the small square containing
0 € [1/2,1/2)? has 0 as its center. We denote the set of these squares by S.

For ¢/ <« b <« 1, the quasi-free Yukawa interaction is obtained from the
Yukawa interaction by, roughly speaking, removing the interaction between
particles in a small square with particles outside that square and replac-
ing the interaction between particles in the same square by a periodic one.
More precisely, we denote by n = (ny) a particle profile, by which we mean
an assignment of a number of particles n, € N to each square «, with the
constraint ) no = N where sums over « are always over a € Sg. We as-
sociate a torus T, of side length b to each square «. The tori T, are of
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course all identical and equal to T®), but we keep the index « to emphasize

the connection with the square it is associated to, and label elements in T,

by (a,z) with z € T®. For v = (a,2) € T, we write Uf(v) = Uf(2) where

Uf(v) is the periodic Yukawa interaction on T() defined in (B-13).
For n, € N, we define

(3.22) Hav) =S Ul(wi —v;)  (veTm).
i#j

Given a particle profile n, the quasi-free free energy with particle profile n

is defined by

e (V) 1L ~ B (u)
(3.23) F(n) = 5 log <n> + 3 glog /11‘2‘* e m(du)

where the term (]X ) = HNr!za! arises as the number of ways to distribute N
particles into groups of sizes (ng) with 3° oMo =N.

The name quasi-free is motivated by the fact that particles in different
squares do not interact, i.e., their contribution is additive. The following two
propositions show that its free energy is a good approximation to that of the
original Yukawa gas. To state the second proposition, denote by fn = (74)

with i, = 7 = Nb? the expected number of particles in the square .

Proposition 3.8 (Upper Bound). Assume that { < b < 1. Then

1

(3.24) 3

log/e_ﬁm(z)m(dz) < ;logZeﬁF(n) + NO(N?63p~1).

Proposition 3.9 (Lower Bound). Assume that { < b < 1. Then
1
(3.25) 3 log / ¢ I () m(dz) > F(n) + NSO(N263p71).
We will prove the two propositions in the next two sections.

3.5. Upper bound: proof of Proposition [3.8

By translation invariance, instead of working with the grid of squares Sq
centered at 0, we can equivalently consider the shifted grid consisting of
square u + o with a € S and center u € [—b/2,b/2)2. The center of u + «
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is ¢(u + a) = u+ c¢(a). Given this choice of origin u and a square o € S,
we define

(3.26) Oy =" :u+a— TO

the natural embedding from the square u + « into the torus T(®),

mapping the boundary of u + « to a vertical and a horizontal line in T(®).
More precisely, using the coordinates c(u+a)+[—b/2,b/2)? on the square
u+ o C T and the coordinates [—b/2,b/2)? on the torus T(®), we set

(3.27) OU(2) =2 —c(u+a).

For z, w in the original unit torus T, we define the quasi-free pair interaction
through the embeddings ®, by

(3'28) Y;UZ(Z’ w) = Z Ulf(‘I)Z(Z) - (I)g(w))]leu-‘rOc]leu-I—a (Z,U) € T)

OCESQ

The interaction }Nﬂf is in fact very simple: we divide the unit torus into a grid
of cubes of side length b with the grid centered at u. Then for two particles
in the same small square «, we view them as two points on the torus T®)
interacting via the torus Yukawa potential Uf . For two particles in different
small squares, the interaction vanishes.

The corresponding Hamiltonian Flﬁ with pair interaction fqu is

(3.29) Hi(z)=> Yi(z,2;) (z€TV).
i#j

The choice of origin u € [-b/2,b/2)? was arbitrary and we will eventually
average of this choice. We set E*f(u) = & f[_b/2 b/2)? duf(u) and define the
function Y by

(3.30) Y (z,w) = E*Y*(z,w) (z,weT).
By Jensen’s inequality and then averaging over u,
1 ~BH(2) 1 e ~ B, (2)
(3.31) 3 log [ e m(dz) < BE log | e 7"«'% ' m(dz)

+E“EH (H: - HY).
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The second term on the right-hand side is Ef D it [V (24, 25) — U2 — zj)].
This expression is estimated in Lemma below. Its proof follows by
counting particles using the local density estimate.

In preparation for the proof, we first state some estimates on Y. These
estimates are stated in terms of the function g : C — R defined with z =
x + iy by

- U (e

|y = [z A (b= |2])+,

where we write Y (r) for Y (2) with |z| = r. By definition, g is supported in
[~b, b]2. Assuming an identification of T with [—~1/2,1/2)2, g can be extended
to a function on T. Thus g(z — w) is well-defined as a function on T x T.

Lemma 3.10. Assume that £ < b. Then

(3.33) V(z,w)=g(z —w)+ 0 ")  (z,weT)
and
(3.34) Uz —w) = g(z —w) + O(¢/b) (z,weT).

Proof. We first verify (3.33)), i.e., we evaluate Y (z,w). If |z — w|oe > b then
the points z and w are necessarily in two different squares and fﬂf (z,w) =0
by (3-28). Thus we can assume that |z — w|e < b. We write z — w = z + iy
with x,y € [-b, 1]

For fixed such z,w, the probability under the average over u that z and
w lie in the same square is given by (b — |z|)/b x (b — |y|)/b. For z,w in the
same square, we have U/ (®(z) — ®(w)) = Y/ (/22 + y2) + O(e~*/*) where
the error is from the sum over the periods in the definition of Uf. We have

thus proved (3.33)), i.e.,

P (ew) = B4 () = OO Wy i) 1 o),

To verify ([3.34]), first assume that |z| V |y| < b. Then, by the definition
(3-32) and using the exponential decay Y*(z — w) = O(e~clz=wl/t),

(3.35) gz —w) =Yz —w) = O]z — w| /b)Y (z — w) = O(L/b).
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On the other hand, if |z| V |y| = b then g(z,y) = 0 and the claim follows
from

(3.36) gz —w) — Y!(z —w)| = Y(z — w) = O(e~ Il
<O(e ") <o),

using the assumption ¢ < b. This completes the proof. O
Lemma 3.11. Assume that £ < b << 1. Then

(3.37) BTN [V (2 — 2;) — Uz — )] = NTO(N26%b 7).
%

Proof. We use the local density for the Yukawa gas, Theorem implying
that any square in T of diameter r > N~1/2 contains O(N72) particles with
high probability. In addition, Y*(z; — z;) < e *N" if |2 — 2;| > ¢N°. Thus
Y (2 — 2j) + Uz — 2;) < O(N~°°) in this case and the sum over the con-
tributions of these terms in is again of order O(N~°°). Therefore, we
can assume that |z; — z;| < ¢N°€ for all ¢, j from now on. By using , we
can replace Y by g. As a consequence,

B S lg(ei— =) — Ui — )] = OV N(NE)(e/b)

since each of the at most N particles z; interacts with O(N®N/?) particles
zj, and the difference U*(z — w) — g(z — w) is of order ¢/b by Lemma
This proves (3.37)). O

Proof of Proposition [3.8. By (3.31) and (3.37),

(3.38) élog/e_ﬁm(z)m(dz) < ;E“ log/e_ﬁgﬁ(z) m(dz)
+ O(N°N23p™1).

By the definitions (3.28)—(3.29)), after partitioning in the number of particles
in each square, the integral in the first term on the right-hand side factorizes
over the squares and therefore is

/ e P () = 3 <JZ ) I / e P 1 () = 37 ),
n « ']I'ZD‘ n

where we used the definition ([3.23)). This completes the proof. O
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3.6. Lower bound: proof of Proposition (3.9

To obtain a lower bound on the partition function, we use the coordinates
[-1/2,1/2)? for T and the grid S centered at 0. We can then restrict the
particle numbers in all squares a to their mean 7 = n, = Nb%. (Although
N is independent of a, we often keep the index for analogy with Section )
Thus we define the indicator function

(3.39) #(2) = [T 1(na(2) = 7a),

where, for a particle configuration z € TV, we define n(z) = (nq(z)) to be
the particle profile associated to the configuration z, i.e., n,(2z) is the number
of particles z; € a. Trivially,

1 . 1 ¢

(3.40) 610g/e_5H #) m(dz) > ﬁlog/e_ﬂH (#) {(z) m(dz).
Ordering the squares in S arbitrarily as a1, ag, ..., we write x(z) for x(z)
multiplied by the indicator function of the event in which the particles
z1,...,25 are in aq, the particles zp4+1,.. ., 295 are in ag, and so forth. Then

1 ~BH(z) ¢
(3.41) Elog e X(z) m(dz)

1 N 1 e

=—1lo +—1lo /e_ﬁH(z)~zmdz,
Sloz () + o (z) m(dz)

where (]X ) is the combinatorial factor for dividing N particles into small
cubes of size ni,na, ...
To estimate the integral on the right-hand side, we choose maps

(3.42) U, :TO — o

that embed the torus T(® injectively into the square a.. Note that the maps
W, go in the opposite direction of the maps @, in used in the upper
bound. Such an embedding is necessarily discontinuous along a horizontal
and a vertical line in the image. We will choose the maps ¥, randomly by
averaging over the positions of the discontinuity lines. The center where the
two discontinuity lines meet can be parametrized by a point u € [—b/2,b/2)2.
Using the coordinates [1/2,1/2)? on the unit torus and recalling that S is
the grid of size b with center 0, we can parametrize the square o € S by



The two-dimensional Coulomb plasma 871

c(a) + [-b/2,b/2)? where c(a) € (bZ)? is the center of a.. Using [—b/2,b/2)?
as coordinates for T(®), we define U* by

(3.43) VY (w) = c(a) + [u+ wl, (w € [~b/2,b/2)%),

where [z] the representative of z € C in [~b/2,b/2)? modulo (bZ)?. Clearly,
the maps W¥ have Jacobian |[d¥%| = 1. We write E¥ for the average over u.
Given the particle profile n = n = (2y) and H, defined in (3.22)), set

(3.44) H(v) =Y Ha(v).

Let wq be the probability measure of the Yukawa gas on (T(®)" and w
their product:

(345)  waldv) = 5o Py, =T

o

Moreover, given the maps V,, define ¥ by

(3.46) [T - TV, O({v}) = {Ta(v*)}) € TV,

where configurations in the image of ¥ have n, = 7, particles in the square
a (in some fixed order that is irrelevant), and ¥*w =[], ¥} w, is a measure
on such configurations of N particles in T.

For such a configuration z, we write z® for the vector of particles in the
square a. Then defining Hy(z) = Y, Ha o U (2%), we have by Jensen’s
inequality,

(3.47) ;log / B @) (1) m(dz) > ;log / o~ BH4(2) () m(dz)
+EY(Hy — HY).

Reversing the change of variables and averaging over the distribution of
maps ¥ with |[d¥| = 1, whose expectation is denoted by E¥, we have

1 { 1 3 @
(3.48) Blog/e_ﬁH X > ﬁlog/e_ﬁHu(" )Hdvo‘

+EYE® (H(v) — H (T(v))).
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It remains to estimate the second term on right-hand side of (3.48)). Let
e, denote either the normalized uniform measure on the square « or the
associated torus T, (the distinction will be clear from the context). We write

fa = fla — fta Where

(3.49) ga(dv):nla S 6, (dv).

Jw; €T

Note that [ dfio = 1. Define
(3.50)

B= SR [ (U= w) = Y (Wa(0) = W) fnl0) ().

The following two lemmas, which we will prove in the remainder of this
section, estimate the second term on right-hand side of (3.48]).

Lemma 3.12. Assume { < b < 1. Then

(3.51) EYE®(H(v) — HY(¥(v))) = E + O(N~>).
Lemma 3.13. Assume { < b < 1. Then

(3.52) E = N°O(N?¢3p™1).

Given Lemmas the proof of Proposition (3.9 is completed as
follows.

Proof of Proposition[3.9. By combining (3.40)—(3.52)), we have
log/e’BHz(z)m(dz)

N 1 g (v
log (n) + E ﬂlog/e—ﬁHQ(v )dv® + N80(N2€3b—1).

(3.53)

>

= =

The first two terms on the right-hand side of (3.53)) together equal F'(n),
completing the proof. O

To complete the proof of Proposition [3.9] it still remains to prove Lem-

mas [5. 12H3. 13l
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Proof of Lemma([3.13. We must prove that

(3.54)
ZE“JE‘“ > e Luer, (U (v = ) Tazs = V! (Wa(0i) — Us(v;)))
i#£]
:E+O( o),

We first note that the contribution of the nonadjacent squares on the left-
hand side is bounded by O(e~°/%) = O(N =), by (3.18) and (2.2). For any
a, B (including a = ), define

355) Vo= [[ Y(Walo) = W) paldo) ()
-/ Y0 ) pafde) (),

where the equality follows from EYE® fi,(dv) = pq(dv) and |[d¥,| = [d¥g| =
1. Denoting by « ~ 3 that the squares o and S are adjacent, therefore

(3.56)

ZE\PEW Z 11),6’]1’ v;ETg (Ub< ) a=p — Ye(\lla(vi> - \I}ﬁ(vj)))

i#]

=S | [ O w) - V)~ Bl (a0

— Z ﬁaT_LgYaﬁ + O(N_Oo).
a~f

Using again |d¥,| =1 and EYE¥[i, = 0, we can rewrite the difference of
the first term in the last line and E as
(3.57)

> [ // L0 =) ) ) — [yt =wnaa ua(dw)] .

We then apply the cancellation below to this term and the last term on
the right-hand side of -, ie, —> o nangyaﬁ Finally, we sum over
the squares a of which there are O(b~2) many. Using O(b=2)O(N~>°) =
O(N7™°°) and the definition of E, the claim follows. O
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Lemma 3.14. For any square o of side length b > £ fixed,

02 [ / / Ui =) ra(d0) o) = [ [ Y0 = 0) po) ()
(3.58) — > fafpYas = O(N ™).
B:B~a

Proof. Using that contributions of pairs with distance > ¢/b are negligible
in Ubé and unfolding the periodization in the definition of Ulf , we have

/I b= 0y (o) ()

= / / V(2 — w) m(dz) m(dw) + O(N~).
a J(UgnaB)Ua

Thus the first two terms on the left-hand side of (3.58) are given by
S [y pstan) + 0 )
Bra
i.e., the left-hand side of (3.58)) equals
o o= 0) [~ ol dohusfan) +O) = OV )
BNO‘ aX
as needed. O

Proof of Lemma[3.13. By the definition (3.50)), i, = Nb?, and since there
are b~2 squares o, we must bound

E =b"3(NV*)’EVE®
U / o (U0 = 0) = Y (W 0) = W) () (),

where « is any of the squares in S. Recall that the expectation EYE“ aver-
ages over the parameter u € [—b/2,b/2)? in the definition of the embedding
U (see Section [3.4) and over the Yukawa gas in T,. We estimate this ex-
pectation in two steps.

Step 1. For v,w € T®) we write v — w = (z, y) in the sense that (z,y) € R?
is a representative for v —w € T® chosen such that |z| < b/2 and |y| < b/2.
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We claim that

(3.60) EY (Uf(v = w) = Y!(Wa(v) = Ta(w)))
_ bla| + bly| — |yl
b2

The proof of uses exactly the same reasoning as that of Lemma
Namely, by the definitions of ¥, and U{, the difference Uf(v—w) —
Y{(Wq(v) — Uo(w)) is O(e=/*) unless v and w have periodic distance of
order ¢ and ¥, (v) and ¥, (w) have Euclidean distance order b (i.e., ¥y (v)
and U, (w) are on opposite sides of the square a)). Assuming that the dif-
ference is not O(e~/¢), the Y term itself is O(e~*/¢), and only the U term
contributes. The prefactor (blx| + bly| — |xy|)/b* on the right-hand side of
is the probability that ¥, (v) and ¥, (w) fall on opposite sides of the
torus under the randomness of EV, i.e., when the center of the square « is
chosen uniformly.

Step 2. We claim that

(3.61) E¥ // bl +b|y| 2 0 (0 — ) i dv) ji(dw) = nfO(E/b)?.

This estimate does not use any cancellations due to the difference in the
definition of [iy as fiq — fiq. We may therefore replace i by fi; the terms

Ul(v —w) + O(e~/%),

involving py obtained when expanding /i are analogous. Moreover, since the
left-hand side of does not depend on the position of the center of the
square «, the expectation EYE“ can be replaced by the expectation of the
Yukawa gas on the torus T(®). Furthermore, by rescaling it suffices to assume
that b =1, i.e., that the torus T(® is the unit torus T. With ~ = ¢/b and
denoting by E” the expectation of the Yukawa gas on the unit torus with n
particles and range -, it is then sufficient to to show that

(3.62) nZIEV/ lv — w| U7 (v —w) fi(dv) a(dw) = nO(ny3).

Note that O(n?v3) is the order of the left-hand side when we replace ji
by the uniform measure. So the proof of the last bound can be understood by
the simple heuristic that the density of the measure i is bounded by uniform
measure at the scale v provided by the regularization of the interaction U7.
We now give the formal proof by using the local density bound for i stated
in Theorem. 2.2l More precisely, dividing the unit torus into squares of length
b=nf v, by the local density estimate, each square contains O(nb2) particles,
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with high probability. Thus, denoting the squares by « and S, the left-hand
side of (3.61)) is bounded by

3.63 n2EY v—w| U7 (v —w) a(dv) a(dw).
(3.63) Z[;//ﬂi |07 (0 — w) f(dv) fdw)

Using the exponential decay of U” (v — w), up to an error of order O(e™""),
only the neighboring or equal pairs of squares «, 8 contribute to this sum.
For each such pair, the contribution is O(n2l;5) with two factors of b? arising
from the integrals over z and w and one from the factor |z — w|. Summing
over the O(b2) terms and using that b = n°y, the left-hand side of is
bounded by O(n253) = O(n?*343). Finally, replacing 3¢ by ¢, the estimate

(3.62) follows. O

3.7. Consequence of quasi-free approximation

The main consequence of the quasi-free approximation for the torus is Propo-
sition below. In preparation, we need two elementary lemmas. The
quasi-free approximation upper bound and the lower bound
are slightly different in that the upper bound is summed over all possible
particle numbers in every small tori while the lower bound contains only
the term that the number of particle in every small tori is identically its
mean. Due to the convexity of free energy, it is not difficult to show that
the fluctuations of number of particles can be estimated and they will be
of lower order. This is the content of the next two lemmas. Once this is
achieved, the quasi-free approximation upper and lower bound match up to
a lower order terms. This establishes the additivity of the free energy up to
negligible errors except that the range of Yukawa interactions are different
for the gas in the original torus and the smaller one. However, the scaling
of the free energy is given in Lemma [3.7] and the error due to the change of
Yukawa range is easy to estimate. Thus we obtain that the existence of the
specific free energy with effective error estimate in Proposition [3.17]

Lemma 3.15. Let
(3.64) ha(n) = 27772(71@ — ﬂ)2 — naC('Y) (nq)

1 1 1
— §na logng — (2 — 5) N log b2,
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Then the quasi-free free energy with particle profile n defined in (3.23]) can
be written as

(3.65) F(n) = ; log <JD + 2m*N? + Za: ha(n) — Nlogt.

Proof. From (3.23) and (3.19)), recall that F(n) = 1 log (]X) — > o Ta(na),

where
1
Ta(na) === log/ e*BZ#k Ua(zi—2x) (dz)
B Tra
= 277°n2 — nylogl — 5157) (Na).-
By the scaling relation (3.21]), we also have
ha(n) = 277 (na —7)* = & (na).

The equality
Z 2my*n? = 22 Z(na — )2 + 21 N?
(03 (6%
therefore implies

> Tu(na) =27l°N* +> " ha(n) — Nlog.

This completes the proof. O

Lemma 3.16. For any functions £, : N — R satisfying |Eq(n) — Ea(m)] <
O(|n — m|(n +m)?), with v =£/b > N~ we have

1
=lo PEM) < £(m) + NOEO(172),
5 gzn: < &(n) ()

(3.66) ) )
Em):=Y [— 2772 (1 — Tia)? + 5a(na)}.

«

Proof. By definition,
(3.67) = logZeﬁg =3 logZe (E(m)—£(@m))

élog Z exp [Zﬁ[ 27rfy - na) + (Ea(ng) — ga(ﬁa)}] .
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To get an upper bound, we drop the constraint > n, = N on n, and
sum each n,, independently. Using the assumption |Ey(n) — Eq4(m)| < O(In —
m|(n + m)), the elementary inequality that for any positive fixed numbers
C,c > 0 and all integers m > 0,

(3.68) Z exp [C\n —m|(n+m)® — ey (n — m)Q]
n=0
< Oy ) (m + 20 A
and that f, = Nb?, the left-hand side of (3.67)) is bounded by

O(log N) > 7y 2(fia + v %)% < NOEO(?).

This completes the proof of the lemma. U

Proposition 3.17. For any o > 0, there is T > 0 such that if £ > N~1/2+¢
and1>b> Nt

(3.69) COW) = DN + O ).
More precisely, O(N~T) is N°O(N#3/b+ 1/(N£?)).

Proof. The assumptions on ¢ and b imply that the error terms in ((3.24)),
(3.25) are O(N'=7). By Propositions together with Lemma

therefore

(3.70) ;log/e_ﬁm(z) m(dz)

1 N _
> —27?N? + Nlogl + 3 log ( >e—52aha<n> —O(N'™),
n

(3.71) ;log / o BH @) 1y (dz)

1 N
— 2N? — B2, ha(n 1-7
< ~27’N? 4 Nlogl +  log §n <n>e Saha() L O(N1-T),

We compute the sums on the right-hand sides of (3.70)), (3.71)). By Stirling’s

formula,

N
.72 1 =N1 — o o .
(3.72) 0g<n> og N ;n logng + O(log N)
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With the definition of h from (3.64)), and En(na) = (5 — %)na log(nab=2) +

naC)(ng) and € of (3.66), we rewrite (3.70), (3.71) as

;log/e_ﬁm(z) m(dz) + 2m¢*N? — Nlog/
1
> E(n) + BNlogN+ O(N'™T),
1 ¢
3 log/e_ﬁH (#) ;m(dz) + 270 N? — N log (
1 1
BE(n 1-—7
= PEm 4 Nlo N +O(N
< g los E g (N77).

By Lemma &, satisfies the assumption of Lemma Lemma [3.16
then shows that the sum over n can be estimated by its dominant term n
with error N°O(¢=2) = O(N'~7). Since

E(n) = <—>anog b2 —i—ZﬁC(V)

— (; _ ;) Nlog N + NCO(Nv?),

this replacement yields
;log/e_ﬁHé(z) m(dz) + 2m¢>N? — Nlog/
= %NlogN + NCO(ND?) + O(N'T),
which completes the proof of . Il
3.8. Existence of torus residual free energy: proof of Theorem

We now prove Theorem [3.I] The main ingredient is the next lemma which
combines the previously proven estimates.

Lemma 3.18. For any o >0 there exists 7 >0 such that for v with
n71/2+0' <r< n71/3707

(3.73) max_|¢¥)(n) = C¥)()] = O(n).

nen,2n]

More precisely, O(n=7) is n°O(nv® + 1/(vy/n)).
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Proof. We will find ug(o) > 0 such that the following statements hold. Given
n €N, let n € [n,2n] NN. Choose 0 < u,u < ug(c) such that B =n" and
B = 7™ are both mtegers and that \B\ﬁ B| < 1 where M =n/n € [1,2].

We also set £ = n~“v and £ = i~ %v. We claim that the following statements
hold:

(3.74) ¢(B*n) = ¢ (n) + O(n™7),
(3.75) ¢O(B%) = ¢(M(@) + 0(n™),
(3.76) ¢O(B%) - ¢(O(B%) = O(n™7),
(3.77) ¢ (B*n) = (O(B*1) = O(n™")

By combining the estimates (3.74)), (3.75)), (3.76)), (3-77), we obtain (3.73).

To prove , we apply Propositionwwith N =B?nand b= 1/B.
For w sufficiently small, the assumptions of this lemma imply that the as-
sumptions of Proposition are satisfied. Thus the resulting error estimate

of Proposition [3.17] becomes

NO(NE b+ 1/(N£2)) = n20(n' =23 + 1/(nm?))
nZeO( 1—2u 3+1/( 1/2+Ul/)) :O(n_T).

This completes the proof of . The proof of can be done analo-
gously.

To prove , we apply Wlth N = BQn This gives the needed
bound since 1/(N€2) < nPu=i)= = O(n?(v=®=7/(\/nv)) = O(1/(y/nv))
when v and @ are small dependlng on o.

To prove , we apply . Since |B*M — B?| < O(B), im-

plies

~ B% — B?n)
3.78 ©O(B2n) — cO(BZR)| =0 |
(3.78) IC(B*n) — V(B 1) B2 1 Bon)i:
B |B2M — B2|n¢ O(n®) .,
- (\BzMJrBQ!H S g © O™,

where the last inequality follows from n°O(1/B) = nO(1/(y/nv)) = O(n™7).
O

Proof of Theorem [3.1. Recall { is defined in (3.2). We set a constant ¢ = 3/8
and for j € N, define the sequences nj; = 27, v; = 27% and (; = ((”J‘)(nj). For
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k > i, we then write
k—1
(3.79) |G = Gl <D 1C¥ (ng) = ¢ (n40))
Jj=t
k—1
+ D1 (1) = ¢ ().
j=i

We estimate the first sum in by using Lemma Note that since
c=3/8 € (1/3,1/2), the assumptions of Lemma [3.18] are satisfied with n =
nj and v = v;. Thus the first sum can be bounded by Zf;l n5O(n;v? +
1/(vj\/nj)) = 0(2-(1/8=9)1) For the second sum in (3-79), we use and
obtain the estimate Ef;ll O(n;1+5u]72) = O(2~(/4=9)),

In summary, with 7 = 1/8 — ¢, we have shown that (; = ¢; + O(27'7) for
k > 1 sufficiently large. This implies the existence of the limit lim; ,o (; = ¢
with the estimate (; = (+ O(2777).

Finally, it remains to pass from the limit along the dyadic sequence

above to that for general N and £ as in the statement of the theorem. Given
N large, we let jy be the smallest integer j such that 27 > N. By (3.4)

respectively (3.73]), then

(3.80) CON) = ¢Won) (N) + O(N72F9),
(3.81) CWn(N) = ¢, + O(NTVE),

Combining these two inequalities then gives the claim with N°O(N —1/8 4
N=29) = O(N—"). O

4. Proof of Theorem quasi-free approximation of
free energy

In this and the following three sections, we prove Theorem and its local
version Theorem The proofs of both theorems will be parallel and we
will give detailed arguments for the proof of Theorem and remark along
the way the modifications needed for the proof of its local version.

We follow the strategy of quasi-free approximation analogously as for the
torus in Section [3] The main differences are that the equilibrium measure
can have a non-constant density and that its support has a boundary. In this
section, we present the set-up of the quasi-free approximation, and give the
proof of Theorem assuming using Propositions 4.5 which are proved
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subsequently in Sections In Section [pl, we prove the upper bound on the
partition function. As in the torus case, this upper bound can essentially
be established using the Jensen inequality and the positive definiteness of
the Coulomb potential. In Section [7| we prove the lower bound. The lower
bound involves estimating the Coulomb energy near the boundary of the
support of the equilibrium measure and is the main difficulty of the proof.

4.1. Main result

We recall the definition of the two-dimensional Yukawa gas with range R and
external potential V' as well as the related potential theory from Section
In particular,

H{(z) =N V() + ) Yz — =)
J JF#k

is the corresponding Hamiltonian, u‘}} is the equilibrium measure, p‘}} denotes
the density of its absolutely continuous part, and [ {; is the minimizing energy
of the variational functional.

Theorem 4.1. Assume that V satisfies the assumptions of Theorem
or more generally those stated in Theorem [{.] below. Then for any o > 0,
there exists a constant k > 0 such that, for all R > N2,

(4.1) Bi\f log - e PV () 1 (dz)

1
= —NI‘I}z+logR+§logN+C

1 1

+ < - > / pitlog pit dm + O(N™"),
2 B)Jc

where ¢ is the residual torus free energy of Theorem [3.1. For R > 1, any

k < 1/24 is admissible.

The remainder of Section [4 is devoted to the proof of Theorem
which is concluded in Section subject to the proofs of Propositions
which will be proved in Sections [5] and [7} Theorem [I.1] for the Coulomb
gas is then a direct consequence, by taking R — oo, which we do in detail
in Section

Throughout this section, we make the standing assumptions R > N2,
and that V satisfies the assumptions of Theorem [I.1} i.e., the asymptotic
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condition ([1.4) and ((1.10)), or more generally that the conditions of the
remark below hold. We denote the empirical measure by & and its difference
with equilibrium measure by i = [1,5, ie.,

(4.2) =Ny 6., == -
J

We denote the expectation of the Coulomb gas with density e AHY by E‘I;.
The following Theorem is a local version of Theorem A more precise
statement with precise scaling and notation will be given in Theorem
We choose to present it in the following way so that it is easier to digest in
the first reading.

Theorem 4.2 (A local version of Theorem . Consider the setting
of Theorem[1.1. Then the good boundary conditions hold with high probabil-
ity. Furthermore, Theorem [1.] hold with respect to the conditional measure
with the error term O(N™") replaced by

(4.3) C(Q, A)(1 4+ K2)(Np?)~ (1)

for any a’ < a, where a is the constant in (2.32)).

4.2. Short-range Yukawa approximation

The first step is a decomposition of the Yukawa potential into a short-
range and a long-range part. This is similar to our strategy in the proof
of Lemma, for the torus. However, due to the presence of a boundary of
the support of the equilibrium measure and lack of rigidity estimates there,
we cannot prove an analog of Lemma [3.3] Therefore we subsequently cannot
drop the long-range part of the interaction near the boundary.

Given 0 < ¢ < R, we decompose the Yukawa potential as Y = Y*(2) +
L%(2). The formula shows that the Fourier transform of L, is positive
and thus that L% is a positive definite function on C. The next lemma
expresses the long-range contribution to the interaction in terms of a effective
potential () and an error. We set

(1.4) Q) = Q) = V() + 2 [ Lyl - w) f(dw),
(4.5) L=Lf = [ Ltz - w) afi(dw) (@),

(4.6) K = K= [ Lt~ w) ufi(dw) (@),
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where K f% is the equilibrium interaction energy of the potential difference
Ly =YR-_vy*

Lemma 4.3. Let 0 </ < R, and let Q, L, and K be as above. Then we
have the identity

(47) N Lz — =) + N Y V(z)
J7#k j
= N> Qk(z) + N’Li — Nlog(R/t) — N°Kp,
j

and in particular
(4.8) H§(z) = H{}(z) — N’Ly + Nlog(R/() + N*K.

Moreover, the minimizers of the variational functionals Ié and Z‘I}z coincide,
i.e., ,ué = ,u{;, and their energies satisfy Ié = I‘I/% + Kf%. The Euler—Lagrange
equation for the measure ufi? 18

(4.9) /Ye(z —w) pg(dw) +3Q(z) =cv g.e. in St and
/Ye(z —w) ug(dw) +3Q(2) 2 ey gee inC,
with the same constant cy as in the Euler—Lagrange equation for u{?.

Proof. The proof of (4.7) is a direct calculation. Indeed, using that L%(O) =
log(R/¢) by (2.2)), it follows that

|, et =)l ) 7fa2)
= [ Lhte - w aftw) i (a2) - 1 log(R/0)

The equilibrium measures (minimizers) of I{} and Ié are characterized by
the Euler-Lagrange equations ([2.13|), which state that in the supports of the
measures, the equalities

1 1
SVAY el =, SQ+Y'euh=cf

hold, and that equality is replaced by inequality outside the supports of the
equilibrium measures. By definition of ) and the Euler-Lagrange equation
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for ,u‘];, the solution ué satisfies (4.9). By the uniqueness of the minimiz-
ers, we thus conclude that ,u‘é = u‘lfv and S = Sé, i.e., the two minimizers
coincide. Moreover, a simple computation yields that I‘If = Ié + K f%. O

In view of the above lemma, we write uy instead of ,u‘]; = ué from now
on, we write py for the density of the absolutely continuous part of uy, and
Sy for its support. The next lemma gives an elementary estimate on ) that
will be useful later.

Lemma 4.4. For z € Sy with distance > £ to the complement of Sy,
(4.10) Q(2) = 2cy — 4nl’py (2) + N°O(UY) ||V py [|oo + O(N ™).

Proof. By Lemma for z € Sy, we have

Qz) = 2ey — 2 / Y(z - w) p(dw)

— 20y — 200 (2) / Y (= — w) m(dw) + N°O(4) | V2py|oo + O(N~).

In the second equality, we used that, by the exponential decay of Y, we
may restrict the integral over w a disk of radius O(¢N¢) around z, up to
an error O(N~°°). Moreover, since z is in the support of the absolutely
continuous part of puy with distance > £ to its complement, we may Taylor
expand the equilibrium density to second order and use that the first-order
term vanishes after integration. The definition of the Yukawa potential
implies [ Y*(z — w) m(dw) = 2m¢2. This implies (4.10). O

4.3. Quasi-free approximation

In this and the next subsections, we approximate the partition function of
the (long-range) Yukawa gas in terms of the quasi-free Yukawa approzima-
tion, which we now define. The idea is the same as in Section with the
additional element that now the boundary requires a special treatment.
Given parameters which we will chose later on with the constraint

(4.11) NV «p<b<V <1, (<R,

we divide C into a grid of squares « of side length b with centers c(a) €
(bZ)* C C. The last constraint (4.11]) will be assumed through out this paper.
It will also be useful to also consider the shifted grid, in which all squares are
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translated by u € [~b/2,b/2)? so that their centers are u + c(«). We write
S, for the set of squares partitioning C such that the square containing 0
has u as its center. We say that the square o € Sy is in the bulk if it and its
translates by u € [—b/2,b/2)? have distance at least b’ to the complement of
Sy (respectively €2 in the situation of Theorem. Denote by Dg the union
of the bulk squares in Sy and by By = Sy \ Dy the remaining boundary
region. For a square a € S,, we define that « is in the bulk if a« — u € Sq is
the bulk. Similarly, we define D,, the union of the bulk squares satisfying
the previous condition and denote by B, = Sy \ D, the boundary region in
this case. We will use the notation « € D,, (or oo C D,,) to denote that «
is a bulk cube. Throughout Section |4}, we assume in addition to the
following condtion:

(4.12) Vo> N4

In the context of Theorem |4.2 we assume that ' > N~2 instead of ' >
N—UA,

Given parameters as above, we consider the quasi-free Yukawa gas ob-
tained by removing the interaction between particles in a bulk square with
particles outside that square, and replacing the interactions between parti-
cles in the same square by a periodic one inside each bulk square. For the
particles in the boundary region, we will use independent particle approxi-
mation with density given by the equilibrium density py near the boundary.
Since the boundary region B has an area of smaller order when compared
with the interior domain D, the independent particle approximation is al-
ready sufficient to approximate the log partition function to order N!=¢.

Fix u € [~b/2,b/2)?. The following definitions depend on u, but we do
not make this explicit in the notation. Firstly, we write S = S, for the set

(4.13) S.={u+a:a€Syac D,}U{B,},

i.e. the set of bulk squares together with the boundary region. Let n = (n,)
be a particle profile with > n, = N. Similarly as in (3.23]), we define the
quasi-free free energy for particle profile n by

(4.14)  F(n) = ;log (jr\f > +1 > log / a e () ;(dv) — Hp,
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with

Ho(v) = Z UL (v; — vj) + NnaQ(a),
(4.15) i#j
Hp = N?Ig p +2cyN(ng — Nuy(B)),

where Q(a) := Q(c(a)) and I p is a constant defined in below. We
denote by n = (n,) the approximate mean number of particles in «, where
« is either a square or the boundary region. More precisely, we choose n,, to
be an integer at distance at most 1 to Ny (a); we assume that this rounded
choice is such that > 7, = N. The precise choice of 7, is not important
as long as it is within 1 distance to n, and ), 7o = N. We also impose the
convention that sums over n will always be over all particle profiles with
Y aNa=N.

We will prove the following upper and lower bounds on the partition
function in terms of the quasifree free energy.

Proposition 4.5 (Upper Bound). Assume that the parameters b,b’ sat-
isfy (&.11)) and (&.12)). Then there exists u € [—b/2,b/2)? such that

(4.16) ;log / o BHE®) (dz) — Nlog(R/() — N2K,

1 _
<3 log; MW 4 NO(N?E~" + N26b) || pv || oo,2

+ O(nplog N),
where ||py ||co2 is defined in (1.7)).

The error terms in can be understood as follows. The error
N203b=1 = (N£?)(N?¢b~1) is the number of pair interactions via a Yukawa
gas of range ¢ for particles in neighboring squares; the error N2¢2b is the
variation of the effective potential ) over a square of size b. The error terms
in the following lower bound cannot be obtained by a simple counting as the
bound relies on higher order cancellations which we will explain later on.

Proposition 4.6 (Lower Bound). Assume N~/2t7 < ( < b <« N—2/5
for some small ¢ >0, £ <R, and 1> £/b>> (Nb*)~Y%. Then, with T =
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20/5, for all u € [-b/2,b/2)?,
1
g

> F(n) + N°O(N'T + 204
+O(N? (6" + £20))([lpvlloos + llv 13 5)
+ 0 %log N + nplog N).

(4.17) log / e PRI m(dz) — Nlog(R/l) — N2KY%

More precisely, O(N'~7) is NSO(N*/>¢=2/5> 4 Nb).

Propositions and will be proved in Sections In the remain-
der of Section [, we complete the proof of Theorem assuming these
propositions. They assert that the free energy of a Yukawa gas with (long)
range R can be approximated by that of the quasi-free Yukawa gases with
range ¢ < R, for appropriate choices of the parameters b,b and ¢. These
propositions are analogous to Propositions and with the additional
treatment of the boundary and taking into account that the density of the
equilibrium measure is in general not constant.

We end this subsection by recording the following simple estimates for
the bulk and boundary regions. In the following, we usually omit the param-
eter u from D,, (the union of bulk squares) and write B = Sy \ D to denote
the boundary region. We write (VD =, D, and D = J,, Du.

Lemma 4.7. The following bounds hold uniformly in the shift parame-
ter u € [—b/2,b/2)2. The number of bulk squares (which is independent of
u) is O(b=2), the number of bulk squares touching the boundary region is
O(b™1), and the equilibrium mass covered by the bulk squares is uy ([ D) >
1—O0(). In addition, for any o C D,

o = O(NB)lpvlloes e = NE2p(a) + O(NB) [V oo,

(4.18) np = O(NV).

Proof. The claim about the number of bulk squares follows immediately
from the fact that the support of Sy has diameter of order 1. The statements
about the number of squares touching the boundary region and the mass not
covered by the squares follow from the assumption that the the boundary
of Sy is piecewise C'. In the more general situation of Theorem the
estimates hold by the assumption stated in the remark. Finally, follows
immediately from the fact that, by construction, py is C' on the squares a.

O
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4.4. Consequence of quasi-free approximation

With the upper and lower bounds established in Propositions[4.5land [4.6] the
remainder of the proof is similar to that for the torus. In fact, the following

proof is simpler since the limit of the torus free energy has already been
established.

First, analogously to (3.64]), we define

1 1

1
_ 2 = N\2 4 .
(4.19) ha(n) = 279 (ng —7g ) —nal 2na log ng, (2 3

where v = £/b.

)nalogb 2

Then, similarly to Lemma we have the following estimate for F'(n)
defined in (4.14)).

Lemma 4.8. Assume that b satisfies (4.11). There exists T > 0 such that
F(n) + Nlogl — N?K% — N?I%

1
:B10g< ) ™ haln) + O(N226)(1 + [|pv oo1)? + O(N'7),
aCD

where ||pvloco1 s deﬁned in . More precisely, the error O(N'=T) is
NEO(NT/8 b1/ 4 =2y,

Proof. From (4.14]), recall that
1 N N
F(n) = Blog <n> — Za:Ta(na) — Hp,

To(ng) == —;log /Tna e Fla(2) m(dz),

where here and in the rest of this proof, all summations over a are over
a C D. Recall the defintion of Hp from (4.15)), hence Lemma follows

from

> Tu(na) + N’Igp + 2cyN(ng — Nuy(B)) — N?Kp

a

= NI{ = Nlogl + > ha(n) + O(N*b(1 + || pvlec1)?) + O(N'T),
aCD
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which we now prove. By definition of Ty,
—nglogl — & (na)
—nglogl — naC(V) (nq)

1 1 1
—3Ma logng — <2 — 5) ng logb™>.

To(na) = NnaQ(a) + 2nv*n
= NnoQ(a) + 21y*n

O QN

By Theorem 10 (n4) = naC + N°O(n4 A 1/~?%) so that
> 1aC™M (na) = NC+ b 2NO((NV)"/® + (¢/b)?)
= N¢+ NSO(NT/8 )bt/ 4 172),

Therefore
> Ta(ne) =) <NnaQ<oz) + 27y ng,

(0%
1 1 1 _
— ina log ng — (2 — ﬁ) ng logb 2)

— Nlogl — N¢+ NSO(N"/8/p/* 4 172,
By definition of hy(n) in and since

Z 27w n = 27772 Z — Tay) 24 47r'y Enana — 27r'y2 Z g,
we obtain

> Tu(na) =Y ha(na) + Nlogt

[0}

= Z (NnoQ(a) + 4ry*nang — 2ny*0Z) + O(Ns%¢ /b7 4 £72).

«

We now compute the right-hand side of the last equation. Using that v = ¢/b,
that 2m(? = [Y!(z)m(dz) = [, Y*(z) m(dz) + O(N~>°), and that

i = N¥py (2 > L O(NB) Vv lso
- N / pv(w) m(dw) + O(NB)|Vpy [l
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for any z € «, we obtain

(4.20) 2%722773 :NQZ/D Y(z — w) pv(2) pv (w) m(dz) m(dw)
+ON2D) v [V v [l
= N? 2 —w z w
=N [ ¥ = () )
+O(N?20) | v sV v o

Analogously, we have
47Ty = 2N / V(o — 2)py () m(dz) + O(N L) Vpy [lso.
It follows that

Z[NnaQ(a) + 47y ng ]
=N Y Q@) +2 [ Vil - 2 (a9)] + 00Ty

£V Y na [ Vi - 2) oy () mide) - v (d2)
= 2cy N(N — ng) + O(N?*) | Vv || o

2o [ Vi w )y (du) + OV ),
DxB
where the second equality follows from the Euler-Lagrange equation (4.9))
and >, no = N — np, and using that in the computation of [[, ,Y*(z—

w) py (dz) py (dw), the contribution of the absolutely continuous part of py
in B is of order N2¢2||py % . Using also that

Iop —2cvpy(B) = — //B . Y*(z — w) py(dz) py (dw)

by (5.13]), in summary, we have proved

> Tu(na) + N?Ig s + 2y N(ng — Ny (B)) = Y ha(na) + Nlogt

« «

= 2cyN? — N? // Y(z — w) py(dz) py (dw)
+O(N?Eb)(lpvllso + IV v llo)?.
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Lemma now follows from the Euler-Lagrange equation (4.9)), which im-
plies

2cy = 2/ Y2z — w) py (dz) py (dw) + /V(z) py (dz)
= [[ ¥ = why (@) ) + 18
= / V(2 — w) py(dz) py (dw) + K% + IE.

This completes the proof. O

We need the following bound showing that in the sum over n the domi-
nant term is n = n. The torus version of this lemma was given in Lemma/|3.16

Lemma 4.9. Recall the condition (4.11)). Suppose that we have a collection
of functions E, : N — R satisfying |Eq(n) — Ea(m)| < O(In — m|(n + m)F).
Define

(4.21) Em)=Y" [— 2172 (Ne — Tia)? + Ealna)l.
aCD

Assume that n satisfies ([£.18) and that v = £/b > N=C. Then

(4.22) glog > PEHEOns 18 N) < £(h) + NTO(NY + L7 pv[|oo),

where the sum on n is under the constraint N = Za Ng =Np + ZaCD Ne -
Notice that £ contains only contribution from the squares in the bulk.

Proof. By definition,

(423) ;logZeﬁg(nHﬁO("B logN) g(ﬁ)

1 _
=_—1lo oB(E(M)—£(R))+BO0(np log N)
E g;

= ;log Z exp Z g [—2%72(71& —70)? + (Ea(na) — Ea(ﬁa)]

+ O(Bnp log N)] .
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By the constraint N =) no =np+ Y ,cp Na, We can add the factor

]l(nB —np = Z(ﬁa —na)) < ﬂ(\nB —np| < Z |ﬁa—na|)

aCD aCD
B2m~? _ o f2m? _ 5
<oxp |~ (np 3 (0~ na)? .
exp [ %0 C D}(nB ng)° + 5 QCD(na Ne)

where we used 1(a < b) < e A% +4% for any constant A > 0 and (XCach a)?
< #{a C D} Y, p a2 where #{a C D} = O(b~?) is the number of squares.
Thus, at the cost of replacing 27v? by 7?2 in , we can add the following
factor to the right hand side of :

oxp [—eBb*y*(np — np)?] = exp [~Bel(np — p)?]

where ¢ is a constant of order one. With this preparation, to get an up-
per bound, we now drop the constraint ) n, =N on n, and sum each
ne independently. For the bulk squares, we use |E,(n) — Eq(m)| < O(jn —
m|(n +m)®) and the elementary inequality (3.68)), as in the torus case. For
the boundary layer B, we similarly use

Z exp [Cn log N — cEQ(n — m)Q] < O(g—l)e()(mM*z)(logN)Z'
n=0

In summary, using fiq = O(NO?)|pv /e for o € D and np = O(NV) by
(4.18), the left-hand side of (4.23) is of order

(log N) > v (0 +72)*lpvlle + (log N)*(np + £72)
aCD
< O(N*72)||pv[lo + O(NY' (log N)?).

This completes the proof of the lemma. O

4.5. Existence of free energy of Yukawa gas: proof of
Theorem [4.7]

The proof of Theorem below is analogous to that of Proposition

Proof of Theorem [[.1. We first show that if 1 > R > N~1/2%9 there is some
k = k(o) > 0 such that holds. Subsequently we will observe that any
k < 1/24 is admissible if R > 1. To do this, we apply Propositions
and consider the different error terms.
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First, for any choice N~/4 < I/ < 1 the error terms involving b’ are
N¢O(np) = N°O(NV) using (4.18). In particular, in the situation of Theo-
rem we can choose b’ < N7 as needed. In the situation of Theorem
this error term is N°O(N'7%) as claimed in the remark.

Next we emphasize that, in the upper and lower bounds (Propositions
and7 the range parameter £ is not required to be the same, but we always
require £ < R. We denote the value of ¢ by ¢, for the upper bound and by
£_ for the lower bound.

We first consider the case N~1/279 < R < 1. Take b = N—1/2+0/10 For
0y = N—1/240/100 the error terms in are bounded by N1=¢/1000 fop
(_ = N~Y/2+99/100 the error terms in are also bounded by N1—¢/1000
(we used g = O(NV)).

With Lemma for some k = k(o) > 0 we therefore obtain

(4.24) ;log / e PHEE) 1 (dz)
—N%1 4+ Nlog R + ; log (JD e Alaha(®) _ O(N1H),
1 p

(4.25) 3 log/e_ﬁHV(z)m(dz)

1 N - n —K
—N215+N10g3+ﬁ10g2n: <n>e BYoha(m) L O(NL7F),

For the rest of this proof, all summations of « are over o C D.

By Stirling’s formula as in (3.72), and using the definitions of h in
4.19) and of £ in ([{:21)) with £, (na) = (5 — %)na log(nab~?2), we can rewrite
4.24)), (4.25) as

(4.26) élog / ¢ PHYE) 1 (dz) + NI
1
>E&(M) +(+ NlogR + BNlogN+ O(N'7),

(4.27) log / e PHYE) 1 (dz) + N2IE

?b\ 1—‘111\ =

1
gZeBg +(+ NlogR+ ENlogN+O(N1_”).

By Lemma we can replace the sum over n in (4.27) by the dominant
term @i with error smaller than O(N17%). By a Riemann sum approximation
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using that py is C! in D,

£(n) = (; - ;) Ea:ﬁa log(fab~?)

_ (; - ;) N [ ovie)tog pr(z) m(az)
; (; - ;) Nlog N + O(N(b+ ) oy oo

This completes the proof of (1)) when N~/2t7 < R < 1.
To show that if R > 1 then any x < 1/24 is admissible, we consider all
error terms in details. In the upper bound (4.16f), the error is

(4.28) O(N?) [Nzéib’l + N%ib} ,
while, in the lower bound (4.17)), it is of order

(4.29) O(N) [N20 4+ N2+ Nb+ (BP0t + N2 /0207)].

Lemma gives analogues of (4.24) and (4.25) with an error term

O(N®) [NT/S ot/ 1102 4 1/¢2 .
Optimizing the parameters yields b= N~1/3 ¢, = N=23/48 ¢ — N-7/18
Note that this choice of parameters satisfies the hypothesis £_ /b>> (Nb?)~1/4

and /1 < R. The common error then becomes O(N 23/ 24+€) for arbitrarily
small € > 0. The rest of the proof is unchanged. O

4.6. Existence of free energy of Coulomb gas: proof of
Theorem [1.1]

We now choose R = N2 to deduce Theorem [1.1] from Theorem [4.1]

Proof of Theorem[I.1l The equilibrium measure py of the Coulomb gas in
Theorem is characterized by the Euler-Lagrange equation

1
(4.30) Ur 45V =cv
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in its support Sy and inequality in all of C. Define the potential Vg via the
equation

(4.31) Vg(z) = V(z)+2/ <log ~ YR (z—w)+Yy+log R) py (dw).

|2 —wl

Explicitly, one can check that in Sy,
1
(4.32) URY + 5 Vi = At l=cy + Yy +1logR,

holds and with the inequality > c{i outside the support of Sy. Thus uy is
also the equilibrium measure with respect to the Yukawa interaction and
external potential Vz. Moreover, by (2.2),

(433) i, = [k @) + [ Vi) (e
~ [Up @) + [V v
+ 2/(U“V(z) _ UM (2) + Yo + log R)
1

:I{C/—i-(l/()—&-logR)—i—O(R).

Thus we have

1 y i 1 c
ﬁlog/e_ﬁH"R m(dz) = Blog/e_ﬁH" m(dz)

- NN -1)(Yo+1logR)+ O (@;2)

Moreover, (2.2) and an analogous estimate for derivatives of (2.1)) imply

1
k — = —_
(4.34) f,?g;(’\ VE(VR = V)|l =0 <R> :

Thus, we may apply Theorem with V replaced by Vg and with R = N2,
and Theorem [1.1] then follows with ¢§ = ¢ — Y. O
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5. Proof of Proposition free energy upper bound
5.1. Upper bound: proof of Proposition [4.5

In this section, the condition R > N? is imposed. Recall from the proof of
Propositionthat, to each square u + «, we associate a map ®% : v 4+ a —

T®) defined by (3.26)([3-27). Analogously to (B.28)), we define a two-body

potential

(5.1) Yf@a“’) = Z Uf(‘bg(z) — ¢ (w)Lzeutalweuta
OéGSo

+ Ye(z - w)]lZQDu,wQDua

and Q, by replacing Q in the bulk squares u 4+ o C Dy, by its value at the
centers of the squares, and outside D, by adding the equilibrium contribu-
tion from the pair interaction with the bulk, i.e.,

(5:2)  Qu(z)= Y Qe(u+ ) licura

a€ESy

+ <Q(Z) + 2N/ Yz —w) uv(dw)> 1.¢p,.
D,
Denote by ﬁﬁ the corresponding Hamiltonian on C¥:

(5:3) Hi(2) =Ny Qulz) +)_ Yz 7).
i i#i

The main work towards Proposition [4.5] is contained in the proof of Propo-
sition [5.1] below.

Proposition 5.1. Under the assumptions of Proposition [{.5, there exists
u € [—b/2,b/2)? such that (the constant K% is defined in (4.6))

(5.4) ;log/e_ﬂH‘I}(z)m(dz)

< ;log/eﬂgﬁ(z) m(dz) + Nlog(R/¢) + N2K¥%

+ N°O(N2630~! + N26%)|| pv || so 2-
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In preparation of the proof, we collect some notation and bounds. We
write Ef(u) = b2 f[_b/Zb/z)g duf(u) for the average over wu, and analo-

gously to (3.30)), we denote
(5.5) Y (z,w) = E“Y(z,w), Q(z) = E*Qu(2).

The following lemma provides estimates on Y, extending the analogous
Lemma [3.10] for the torus. The estimates are stated in terms of the function

g defined in (3.32]).

Lemma 5.2. Assume that ¢ < b. Then

(i) Inside the bulk, i.e., for z,w € (D, we have Y (z,w) = g(z — w) +
O(e=%) and g(z — w) — Y¥(z —w) = O(£/b).

(ii) Away from the bulk, i.e., for z,w&\JD, by definition we have Y (z,w) =
Yz —w).

(iii) In general, and in particular near the boundary, we have the inequali-
ties

(5.6) gz —w)+ O(e~") <V (z,w) < Yz — w) + O(e~/")
if |2 — wloo < /2.

Proof. (i) This case is exactly the same as Lemma

(ii) In this case, since z,w ¢ D,, by the definition we directly have
Y(z,w) = Yz, w).
(iii) By the exponential decay of Y*, the definition and using that U’ is
the periodization of Y, we have the bound Y (z,w) < Y*(z — w) + O(e=?/%)
for |z — w|eo < b/2.

For the lower bound on Y for |z — w|s < b/2, we notice that Y (z, w) =
Y(z — w) 4+ O(e~/%) if and only if either z and w belong to the same square
o C D, or z,w ¢ Dy, and in other cases Y!(z,w) = 0. The probability of
first event, with respect to the u-average, is bounded below by that of the
event that z and w are both in the same square, irregardless of whether the
square is in D,, or not. This probability is (b — z)(b — y)/b?, and therefore

f/(z,w) > (b_ml))gb_y)yg(z —w) + O(e—cb/l) =g(z—w)+ O(e_d’/é).

This completes the proof. O
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Proof of Proposition[5.1 By Jensen’s inequality,

1 R 1 (7L ~
(5.7) 3 log/e_ﬁHV(Z) m(dz) < 3 log/e_BHu(z) m(dz) + ER(HS — HL),

where we recall that IE‘I; denotes the expectation of the probability measure
with density e PHY The last term can be rewritten as

(5.8) E{ (H,, — Hy') = B (H, — Hy) + EJ (Hy, — Hy).

Using that L% is positive definite, L% >0, and by (4.8), the last term in
(5.8) is bounded by

El(H{ — HY) = —N?EELY, + Nlog(R/0) + N2 K¥,
< Nlog(R/f) + N2 K&,

To bound the first term in for some wu, it suffices to bound the average
of over u in the square [—b/2,b/2]?. Indeed, by the mean-value theorem
for continuous functions, there then exists a choice of u that achieves the
bound of the average. By the definition of ¥ and @ in , we have

(5.9) % duBE(HS — HY)
0% Ji-b/2/22
= Ef [N Y (Q() — Q)| + BE [ (F (20, 2) — Yi(zi — )]
J 1#]

For the particles in the bulk, the term involving @ is bounded using (4.10]).
Indeed, the term 2cy in (4.10)) cancels and using that £<b and N/*<¢%b
the difference of the other two terms in (4.10]) is estimated by

(5.10) NZ(Q(%) = Q(z))1z,ep = ON*EH) (| Vpvloo + Vv [loo)-

For the particles outside the bulk, the difference of @ and Q is by the
definition (5.2 equal to

2N [ ¥1(ey = w) v (dw) = ONE) gy .

By the decay of the Yukawa potential, only particles z; within distance N°¢
to D give a nonnegligible contribution to this term. By the local density
estimate, Theorem there are O(N'T¢¢) such particles, so that the sum
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of the last expression over the particles z; in the boundary region is bounded
by N2te¢3 < N2/2b.

Similarly, dividing the sum over ¢ # j for the pair interaction in
into bulk and boundary contribution, Lemma below implies

EF [V (2, 2) — Yi(zi — 2))] = NSO(N?¢*% 7).
i#]

Here we used that the contribution for the above sum where both z; and
z; are outside |J D vanishes since then Y (z;,2;) = Y*(2; — 2;). Moreover,
for the contributions where at least one of the particles is in the bulk, we
may assume with negligible error that the other particle is at most distance
N¢/{ from it and thus also far from the boundary so that the local density
estimate is applicable. This completes the proof. O

The following lemma is analogous to Lemma for the torus.

Lemma 5.3. For any u,
(11)  Ef Z L., enplo(zi — ) = Y(zi — )] = O(N*N?65 ),

(5.12) IEV Z 1.en zJeUD[ (26 25) — Yz - zj)] = O(N°N?%).

7]

Proof. We use the local density for the Yukawa gas, Theorem stating
that balls of radius r > N~/? contain O(Nr?) particles with high proba-
bility (provided that the distance to the boundary is at least ¥’ > N -1/ 4.
In addition, we use that for |z; — z;| = £N® we have Y¥(2z; — z;) < e N so0
that contributions to the corresponding contributions to the double sums in
the statement contribute lower order errors. As a consequence, exactly as in

the proof of (3.37)),

ERZ 2= 2j) = Y'(2 — )] = O(N*N(N£)(¢/b))

since each of the at most N particles z; interacts with O(N°N/2). particles
zj, and the difference g — Y is of order ¢/b by Lemma (i). This proves
(5.11)).

The estimate for the boundary layer (5.12)) is analogous. Indeed, by
definition, the boundary layer has distance at least b’ to the boundary of the
support of the equilibrium measure, so that the local density estimate can
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still be applied. Then we similarly have

B} S Lcnseunly (2 ) — VV(z — )] = O(NO(NE)).
i,J
To see that this inequality holds, we note that, up to exponentially small
errors, the only pairs we need to consider are that one particle is in the
boundary and the other one is in the bulk with the distance of these two
particles of order £. Since, by the local density estimate, with high probability
the total number of particle near boundary corridor of width £ is N/ and

each particle interacts with N¢? particles, the left side of the last inequality
is of order N/N/2. O

To bound the boundary contribution, we will need the following esti-
mate. For z € Sy \ D, recall from (5.2) and the Euler-Lagrange equation

(A.9) that

Q=) = Q) +2 [ Y/ w) v (dw) = 20y =2 [ V(= w)pv(aw),
and define the constant

613 Ton= [ Qe w(a)+ [[ Y= w)p(@s) piaw)
—2ev(B) ~ [[ Y- w) v (d) v (dw).

Proposition 5.4. For any u,

1 o 4
(5.14) 5lo /( . ¢ BN T, Q)BT 0 Y (2=50) py(dz)

< —N?Ig5 — 2cyN(ng — Nuy(By)) + O(nglog N).

Proof. We fix u and abbreviate D = D,, and B = B, throughout the proof.
Let

= in )(z) w(dz {2 — w)w(dz) w(dw
Bng) = inf [N [ e+ [ v we ).

Jw=ng

where w is a positive measure of total mass np supported on C\ D. Using
the standard technique to replace point particle by a smooth distribution of
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radius 1/N, the left-hand side of (5.14)) is bounded above by
(5.15) — E(ng) + O(nplog N).
(A more sophisticated form of this method will be presented in the proof of
Proposition [B-8] where the regularity of the equilibrium measure was used
only in the proof of the lower bound of the partition function.)
It thus suffices to show that
E( ) N IQB QCvN(nB—Nﬂv(B))

To do so, with @ = w — Npuy inside the infimum, we write

E(np) — NQIQB

:firian_N O(2) w(dz) + //D)z (= — w) w(dz) w (dw)]
—N?/ch ) v (d2) N// w) v (d2) py (dw)

¥(z — w) Mv(dw)]

= inf |N [ @(dz) [Q(z) +2

f w=npg [ Dec Dec

+ / C Yz —w) Q(dz)a’(dw)] '

The last term on the right-hand side is nonnegative, and can therefore be
dropped. By definition of @ and the Euler-Lagrange equation (4.9)), also

Q) +2 [ Y- w)avldw) = Q@) +2 [ Y~ w) () > 2ev.
Dc
Since the same relation holds with equality on the support of uy, therefore
E(ng) — N%Igp > 2cyN | @&(d2) = 2cvyN(npg — Nuy(B)).
Dc

This completes the proof. O

Proof of Proposition[{.5. Summing over the possible particle profiles, we

have
/e—ﬁlflﬁ(z) m(dz) — Z <N> /e—ﬂﬁﬁ(z) ]ln(z):nm(dz),
n

n
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where n(z) is the particle profile of the configuration z € CN. By definition
of H, for any u, the integral on the right-hand side factorizes as

o PHa(2) m(dz))
(L

(C\D)"5

The claim now follows from Propositions and O

5.2. Summary

We summarize some of the key facts used in the proof of the upper bound
of the partition function of the Yukawa gas:

(i) The local densities are bounded at the scale ¢ of the interaction.

(ii) The solution of the ground state is regular in terms of derivatives of
pv; this is reflected in the estimate (5.4)).

(iii) We used the independent particle approximation for particles within
distance b’ to the boundary of the support of the equilibrium measure.
In order to control the error due to the interactions between boundary
particles and bulk particles, we used that the local density at the scale
¢ for particles at a distance of order b’ to the boundary is bounded.

6. Decoupling estimate

The proof for the lower bound on the partition function, Proposition will
be presented in Section[7] This proof is based as on a trial state similar to the
one used in Section for the torus case. Notice that the Yukawa potential
has range R in the current setting instead of £ in the torus case. Since our
grid size b satisfies / < b < R, many error terms which are negligible in the
torus case need now to be estimated carefully. In particular, the embedding
map V¥ has to be chosen differently from the simple average used in —
. In preparation of Section we construct this choice in Proposition
below. We call it a decoupling estimate because it allows us to pass from
the original Yukawa gas to the quasi-free Yukawa gas in which cubes are
decoupled. By rescaling, we state the estimates for the Yukawa gas on the
unit torus.
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More precisely, the next proposition asserts the existence of a random
choice of maps

(6.1) U:T—[-1/2,1/2)> CR*  with Jacobian |d¥| =1,

such that the estimates stated in the proposition hold. Here T is the unit
torus. The expectation corresponding to the randomness defining the maps
¥ is denoted by E¥ (and is independent of everything else). In the statement
of the estimate in the following proposition, U7 is the Yukawa potential on
the unit torus , Y7 is the Yukawa potential on the plane , but
E7 denotes the expectation of the Yukawa gas with N particles and range
~ on the unit torus. As usually, we also denote /i the empirical measure
and i = i —m where m is the uniform probability measure on T. In the
statement below and this section, it is understood that all double integrals
are evaluated on {z # w}.

Proposition 6.1. Assume that N~'/* < v < 1 and v < R. Let EY denote
the expectation of the N -particle Yukawa gas of range v on the unit torus T.
There is a random choice of ¥ : T — [—1/2,1/2)? with |d¥| = 1 such that

©2)  NEE [[ @-w) - Y(¥0) - vw) o) ilde)
TxT
= NTO(NY5 /7% 4471,
03)  NEE [[ (M) - ww) -y (e - vw)ido)id)
TxT

_ NEO(N4/5/72/5 + 7—4>.

The remainder of this section is devoted to the proof of this proposition.
The main reason to introduce randomness into ¥ is to resolve the issue that
the torus distance and Euclidean distance are incompatible. The range of
the Yukawa interaction ¢, appearing in the quasi-free gas, is small. On the
other hand, we wish to use it to approximate the Coulomb energy which
corresponds to Y® with R > 1. The Coulomb interaction will be pushed
back to the torus; this creates discontinuities since the torus is periodic.
The naive embedding of the square onto the torus used in Section is
discontinuous along a horizontal and a vertical line. This discontinuity can
be averaged out using the translational invariance of the torus, but the
resulting interaction on the torus is still not smooth enough to apply the
rigidity estimate. Therefore we now choose ¥ to involve a more sophisticated
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average than the simple mean over the discontinuity lines so as to have a
smooth interaction after pushing back the Coulomb interaction to the torus.

In Section [7} we will apply this estimate with the unit torus T rescaled
to the torus T(® of side length b. For later reference, we state the rescaled
version below.

Corollary 6.2. Let { < b< 1, { <R, and assume that v := £/b satisfies
n~V* <« vy < 1. Let ]EE denote the expectation of the n-particle Yukawa gas

of range £ on the torus T®). Then there is a random choice of ¥ = W®) .

T®) — [=b/2,b/2)% with |[d¥| = 1 such that

o) BR[| (U0 w) - V) - Bw) ) i)
T®) X T®)

= O /1% 4474,

©5)  wEUE ([ R 0w) Y0 - Uw)aldoide)

T®) X T®)

_ nEO(n4/5/72/5 + ,7—4)‘
Proof. The corollary is immediate from Proposition [6.1] by rescaling. U

6.1. Choice of the maps ¥,

To define the maps ¥, we define [u] through

1
(6.6) — 50 U~ [u] € Z for u € R,

([z1],[22]) € T for z € C = R2.

< fu] <

Then we define maps ®1,P5 : T — T by
(6.7) P1(z) = ([z1 + mus(z2)], 22),  Pa(z) = (21, [22 + m2s(z1)]),

where we will choose s(z) = sin(27z) (or any smooth periodic function with
similar oscillation). Let ® = ®; o ®5. We choose m1, ms as independent ran-
dom variables with the distribution of tX with X a random variable with
smooth and compactly supported density, E(X) = 0, and N N wtxlis
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some mesoscopic scale. Eventually, we will choose
(6.8) t=N"14,

Finally, let U, = [®(2) + (a1, a2)], where (a1, a2) is a random shift, with
a; and ag independent and uniform on [-1/2,1/2). Note that ® and ¥ are
smooth function on the torus and they preserve volumes:

(6.9) d®| = |dP| = 1.

6.2. From euclidean to periodic interaction

All terms we need to bound can be written as in the left-hand side of ,
so Proposition will be our main tool. However, these terms involve in-
teractions for the Fuclidean distance on the square while Proposition
applies to the unit torus. We therefore first need the next Lemma to
turn the Euclidean interaction into a periodic one; subsequently, we decom-
pose the resulting singularities carefully. For the lemma, we first need the
following definition of an average of interaction over translations.

Definition 6.3. For any G : T? — R and h € C, we define
Ta(h) = [ Gl [z + Hmicz),
T

where m is the Lebesgue measure on T and we used the notation .
If G(z,w) = g(|z — w]|) is a function of the Euclidean distance, 7¢ will
also be denoted by 7, (and is obviously equal to Ty(h) = [, g(|[z+ h] —

We remark that in the above definition and below, z — w for (z,w) € T x
T is defined as the difference of two elements in C? through the identification
of T =[-1/2,1/2)2.

Lemma 6.4. Consider a Yukawa gas on the unit torus T, G : T? =R, and
assume all integrands below are integrable. The following holds:

610 E | /# Glzvw) i) dw) = E [ |, Tellz =) () ptaw).
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Moreover, if G(z,w) = g(|z —w|) is a function of the Euclidean distance,
for any h = (h1,ha) € T we have

(6.11) Tg(h) = (1 = [ha|)(1 = |h2|)g1(h) + [h1|(1 — |h2])g2(h)
+ [ha|(1 = |h1])g3(R) + [h1]|h2lga(h),
where
g1(h) == g(\/1h|? + [ha]?),
(6.12) g2(h) == g(v/ (1 — [h])? + |ha|?),
g3(h) == g(\/|ha|? + (1 — [h2])?),
ga(h) == g(v/(1 = [h1])? + (1 — |ha)?).

Remark 6.5. The above calculation is stated for h € T, and it shows that
Ta = T4 is not smooth for hy = 0 or hy = 0. This non-smoothness prevents
us from using the rigidity estimate and is the main source of diffi-
culty we will address in this section. In addition to the non-smoothness for
hi =0 or hy =0, one may wonder if 7; has additional singularities (i.e.,

non-smoothness) at hy = +£1/2 or hy = +1/2, as a function on the torus
It has not, as shown by the followmg argument. Assume —1/2 < hy < 1/2
is fixed. The right-hand side of (6.11)) admits an obvious smooth extension
to hy € (0,1), called 7g. One readlly sees that for such hy € (0, 1), we have
Ta(hi, he) = Ta(1 — hi, he): Te is smooth and symmetric with respect to
hi1 =1/2, so all its odd derivatives vanish there, meaning 7¢ is smooth at
hi = £1/2. The same reasoning applies on hy = +1/2.

Proof. Recall that py is the two point correlation function for the Yukawa
gas on T. By translation invariance of the distribution of the Yukawa gas,
we have

/ MG 2 w)ldz)(dw) / WG z,w)pa([z — wl)m(dz)m(dw)

//a [z + 1)) pa(h)ym(dz)m(dh
~ [ ([ et h]>m<d2>) m(dh)

- / pa(h)Ta(hym(dh) = / pa()Te(Bym(dh)ym (d)

_E / [ Tollz ~ ahi(aitaa),
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In the case G (z,w) = g(]z — w|), the assertion follows from a direct calcula-
tion of Tg(h) = [;9(|[z + h] — z|)m(dz). O

Denote by E(,; integration with respect to the shift (a,b) of ¥, and
write

(6.13) AY = [B, — B,).

Then the functional 7 from Definition [6.3|naturally appears in the following
calculation:

E(ap) (G(P2, ¥y / G([V, + 2], [V + 2]) m(d2)
/G [Z+ AY],2)m(d2) = Ta(AY).
In particular,
(6.14) E(ap) (9102 — o)) = Ty(AY).
This will be useful in the following proof of Proposition
6.3. Proof of estimate (/6.2

First note that, by (2.4) we have UY(z —w) = Y7 ([z — w]) + O(e™""), so
that it will be sufficient to prove both of the following estimates:

(6.15) EYEY N2 // Y7 ([z —w]) = Y([¥, — ¥,))) fu(dz) fi(dw)
— O N1+5t
(6.16) EYEY N2 / (YU, — W,]) — YV (U, — Wy,)) fi(dz) ji(dw)

N
= O(N* — .
(N°) (74 -
From and the hypothesis v < 1, the sum of both error terms above is
dominated by the right hand side of (6.3]).
For the proof of 1’ let N2 < r < ~ be some intermediate scale.

Let x : Ry — [0, 1] be a smooth function such that x(z) = 1 on [0, 1], x(z) =
0 on [2,00) and define ¢ = Y7, q(z) = q(2)x(|z|/r). The proof of (6.15) will
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consist of the following two estimates (note that [V, — U, ] = [®, — ®y)):

(6.17) E®EYN? // ([®2 — Pu]) — q([z — w])) f(dz) p(dw)
_ Ns N2t2 2
(618) E’EN? / / ¢ - DB — ®)) — (g - D[z — w])) fild) fildw)

-v<o ().

Optimization over r shows that (| - holds (note that the optimum r*
(Nt)~1/2 is smaller than v because t = N~ 1<
For , we proceeds by Taylor expansion around |z —w + a| < N¢r,
where a = il, +i. We treat the case a = 0, the other ones being identical.
As @ is supported on |z| < N¢r, for all z,w contributing to we have
[z —w] =2z —wand [, — &, = P, — §,,. For such z, w, from the definition
® = &) o Py with , we have
_ ma (s(wz +mas(w1)) — s(22 + mas(21)))
(6.19) [y —P,] = [w— 2]+ < mo (s(wr) — s(21)) )

Expanding (6.19)),

([P = P2])2 — ([w = 2])2

= ' (w1) (w1 — 21) + O(Jw — 2|?),

= ' (wa) (w2 — 22) + O(|w — 2[*)
+mg O(Jw — z[) + m5 O(|w — 2[*),

where, here and in the following, the O error terms are non-random, namely,
they do not depend on m1, mo. Denoting

A ( my (' (w2)(wz—22) +O(Jw—2[?) +m20(|w— ) +m30(jw—2| )))
ma (8" (w1)(wy — 2z1) + O(|]z — w}?)) ’

we have

(P> = Pu]) —q([z— w])zvi([z—w])'AJrO( sup |V2§1)|AI2-

[lz—wl/2,2]z—w]]
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As mjy, mg are centered (under the random choice of @), the linear terms
vanish under expectation. This gives, for any fixed small € > 0,

E® (q([®. — ®u)) — §([z — w])) = E(m?)|(V?)(z — w)|O(|z — w|?)
= O(N*#*)1),_ < ner-

We have therefore proved that

(6.20) ECEN? / / (@[ — B,)) — @([z — w])) fi(d2) fi(dw)
< OB (supi({u: |1 - wll < N°7))).

From the local density estimate for the Yukawa gas on the torus implied
by Theorem the above parenthesis is bounded by (N®r)? with high
probability. We have therefore proved .

Equation is a consequence of Proposition Indeed, let (xx)k>1
be a partition of unity in the sense that >opXk(x) =1 for any > r, xx
is supported on [2¢71r, 2517 and HX Hoo < Cp(2Fr)™. We denote f =
g — ¢ and apply Proposition 2.5 to Gy (z,w) = f([z — ])Xk(HZ —w]|) and
s = s, = N~¢2Fr for some fixed small ¢ > 0. For any k such that 2¥r < yN¢,
we have

VI Gr(z,y)| = O (|[z — Yl 7/ L jjey)cpor—2r20+20))

and the same estimate holds for (Gk)](g) (x,y), defined in (2.24). Proposi-
tion [2.5] gives

N? / Gz w) i(dz) fi(duw)

1 22 N3
) 2 D s sk N2 4 N2 (5 N)2 P —O< 2),
5k =0 Sk

where we chose p = [10/¢]. Summation of the above estimate over 1 < k <
log N gives

(6.21) N? // z,w) ) i(dw) = O (ZX25>

which proves (6.18) for the term involving f([z — w]). The same estimate
holds for the integral of f([®, — ®,]), because for any fixed m,ms = O(t)
the function (z,w) — f([®, — ®,]) has the same regularity properties as
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(z,w) = f([z —w]) (& =1d + t¢ for some function ¢ smooth on a scale 1).
This concludes the proof of (6.15]).

For equation ([6.16)), we first consider the averaging in the shift (a,b)
from W: denoting |h| = (|h1], |he|), for any h € T we have

Egua) (V7 ([0 + (a,5)] — (a, ) = Y7 (1),
Equay (V7 (h + (a,5)] — (@.5))) = (1 [ ])(1 — [ha)¥7(|A]) + O(e ™),

where the second equation comes from (6.14]) and the fact that Y7 is es-
sentially supported on |z| < N¢v. Equation (6.16]) is therefore equivalent
to

E°EN? / / ((A®)1 + [(A®)o] — [(AD)[|(A®)s]) Y7 (| AV]) f(dz) fi(du)

— O(N?) <714 + \/tﬁ> .

On the left side of the above equation, we would like to calculate the inter-
action after the ®-averaging. However, this expression is not a function of
[z — w], which would be convenient for our proof. We therefore perform an
additional averaging over the torus: the above equation is equivalent to

(622)  E'N? / K'([z — w]) i(d2) fi(dw) = O(N°) (714 " “f)

where K*(h) = E® [ f(AP™)m(dv) and f(h) = (|ha] + |ha| — [haha|)Y 7 (R).
The proof of (6.22)) is delicate, so before giving the technical details, we
list below the main difficulties and ingredients.

(i) The function K is smooth on T except on h; =0 or hy = 0, as ex-
plained in Remark This prevents a direct application of Proposi-
tion [2.5] and is the motivation for our averaging over ®.

(i) The function K® now gained some smoothness in neighborhoods of
h1 = 0 and hy = 0 thanks to the convolution with the distribution of
tX. For example, around h; = 0, K! is smooth on a scale |thy|: for
kE>1, 8§1Kt(h) = O(|hq|[the|~**1), thanks to the definition of ®; in
(6.7) and the asymptotics t X s(ha) ~ 27wt X ha. Proposition can now
be applied for the function K¢, after some surgery removing some small
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singular set corresponding to the cross {|the| < N~Y2 hy < N~1/2}U
{Jthy| < N=V2 hy < N~V/2},

We now implement the above outline. The function K is a linear com-
bination of the terms

(6.23) F{0) =B [ (Al hm(do),

where AP is defined in (6.13) and

(6.24)  fi(h) = |m|Y7(h), fa(h) = [ha|Y (R), f3(h) = [h1ha|Y 7 (R).

Figure 6.1: The functions FY (left) and F{(right) in [-1/5,1/5)%, v =t =
1/20.

We first bound the contribution from F} (and therefore F} by a similar
argument), by exploiting its smoothness properties. Thus a calculation on

{h1 # 0} gives

hq
O ()] < C (% T |Y7<h>|) ,
O FO(h)| < O%,
C .
(6.25) 052 052 F ()] < ‘ h|kfi’:f—1’ if ky + kg > 2.

Here we have used [0} 02 Y7 (h)| < Cp, g,|h|~®1*2) and [@,, — @] = [w —
z] when t = 0.

Recall that @ is defined in with mj, mg given by independent ran-
dom variables with distribution ¢tX with X a compactly supported random
variable of order one. Thus AL”HL] ~ h with a distortion of order ¢, which

makes the function ](ALUHL})H differentiable on {h; = 0}. With this in mind
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and explicitly writing F} with the definition (6.19)), a simple calculation and
the Taylor expansion extends the estimate (6.25)) to

h th

O Pl < C (‘ 1 |+h,' 2|, \YW) ,
o, F{ () < oL 1]
FI < O

1 1
ooy Fi(h)| < C 1
’ h1“hs 1( )| X Yk keo |h|k1+k2_1+’thg’kl_”hg‘k? [hy|<t|hz|,k1>1

For some mesoscopic scale N~1/2t¢ < r <« t, define a partition of unity
Tjo1y(z) = 27i2 Xi where n is of order log IV, Xo is supported on [0, 2r], x; is
supported on [2¢7 17 201yr] and ||XZ(‘m)”oo < Crn(2'7)™. We define F;(h) =
FL(h)X i (1h1])Xji(|h2l) for [i], |j| < n. By symmetry, we only need to bound
cach [[ F}; in one quadrant: we now assume 0 < 7,7 < n.

First for i = j = 0 (in fact for i + 7 bounded), the local density estimate
and || F} ||OO = O(r!*e) give

(6.27) N2EY / / w)) fi(dz) fi(dw) = O(N®)N?3,

We now assume i + j > 0.
For 2° > 2/ (in other words |h1| > t|hal), (6.26) yields

1
max (2ir, 277 )kitha—1"

|0 942 Bl (R)| < Chey ey

The area of the support of Fj; is O(r?27+7). We proceed as in the proof
of (6.21]). We use Proposition with the parameter s in the Proposition
chosen to be max(2'r, 2/r)N—¢. Thus (2.25) gives

N2E / / ) ji(dz) fi(dw)

O(NE) <’y4 + (max(er, 2jr))4> max(21r, 231")(7‘22z+3)'

Notice that the error term in (2.25)) is negligible here by choosing pe > 10,
say. We will often use this argument and from now no we will not repeat it
in details.
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After summation over i, j, we obtain
6.28 > N fi(dz) fi(dw) = O(N°® L,z
(6.28) (Z)(w)—();vL;-
20429
For i > 0 and 2¢ < t27 (|h1] < t|hs|), from (6.26) we have

1

k1 aks 1t IV IRy N L]
\8 o, F (h)|<ck17kz (t2j7.>k1+k2—1'

The area of the support of Fj; is still of order 72277 so that Proposition
now yields

e [ F(e - ) alas) ) = 00V 5 + i ) (@2 6%29),

vt (i)t

The contribution of such terms is therefore

620) Y NE // )i(d2)i(dw) = O(N?) <t2 + 7~1t>

21<t27,4>0 ’}/

For i = 0 and t27r > N~1/2%¢ (|thy| > N~1/2%%) we have from (6.26)

1

k1 qks 1t
|6h13h2Fij(h)| < Ckh/ﬁW

so that Proposition gives

NE [ [ Bz - w) ) ) = O0V°) <71 * @

) (t2j7“) (T22j),

and therefore

(6.30)
> wE [ A - et itaw) o) (54 ).

N-1/2+e<t2ir 7

For the terms corresponding to i =0, j > 0 and 2/r < N~1/2+¢ we
need one more decomposition. Let 7/ = N~1/2+" « r_and decompose ng =

Aj + Bj with

(i) A; supported on {|hy| < 2r'} N{2771r < hy < 2711}, ||Ajll0o < 7/,



The two-dimensional Coulomb plasma 915

(ii) B, smooth, supported on {|h1] < 2r} N{2771r < hy < 2717}, satisfy-
ing ||Bjlloc <1, and

k1 ks r r
|8hlah2B](h)’ < Ck‘1,k2 <|h2|k1+k2 + (r/)k1+k2]l|h1|<rl> .

More explicitly, A; and B; can be constructed from Fp; as follows. Let a > 0
be smooth on Ry, a =1 on [0,1], a >0 on [1,2] and a =0 on [2,00). Let
g > 0 be a smooth, compactly supported function on C with | g = 1. Define

1 z
90(2) = Gra(mm? (T’a(ln!)> ’

with the convention g, = dp when |n| > 2, and
Bj(z) = (Foj * gn,r) (2), Aj = Foj — Bj.

Then the functions A; and B; satisfy (i) and (ii): for example, note that
that in the region {r’ < hy < r} N {27 < hy < 277} B ~ h1Y7(h), and
this function satisfies the estimates in (ii).

The function A; is supported on a domain of area O(2/rr’) and [|A[|oc <
r’, and the local density implied by Theorem gives

N’EY // A;([z — w]) fi(dz) fi(dw) = O(N'+227r).
The contribution of all A; terms is therefore

(6:31) N1/2+3e
> v [ Al - ul) i) dw) = 0 (t) .

§>0: 420 N—1/2+¢

For the contribution from Bj, consider the following partition of T: 1 =

Zfl/(2r)<a,b<1/§2r) Xab Where X is supported on a disk of radius 10r around

n

(ar,br), and ||x,; [lcc < Cpr~". The contribution of B; is of order at most

a

NE [ B - w)voe xaw)i(d)idu).

la| <5,20-1 <b< 2+
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Let E be the event that all particles at distance 4r from 0 are known. Then

N2 [ By( — whle)xalw)ia:)ia)
_ B ( [ Nz | E)

where f(z) = [ B([z — w]xa(w)Nf(dw). By the local law Theorem the
set of such that

f<>—O<Nr3>
Vi(z / V(B([z — w]xap(w)) Nfi(dw) = O(N7?),

Af() = / AB([z — w])Xap () Ni(duw) = O(N7),

has measure at least 1 — N~109. Using the (conditioned version of the) local
law, Theorem for E in such a good set we therefore have

2 ([ i) | B)|

< <Nr2 </V(fXOO)‘Q"i‘,ylg/(fXOO)2>)1/2+N€T‘2|]A(fXOO)HOO
= O(N3/21).

Hence the contribution of B; is at most
N2EY / / [z — w]) i(dz) a(dw) = O(N®)27 N3/2:2,

All B; terms are therefore bounded by

(6.32) N2EY / / ([z — w]) fi(dz) ju(dw) = O(Nf)j\i !

§>0: t2Jr<N 1/2+¢

Equations (6.27), (6.28), (6.29), (6.30), (6.31)) and ( show that r =
N—1/2%¢ for arbitrarily small ¢ is the best choice. We therefore proved
1 N
(6.33)  NZEY // Fi([z — w]) i(dz) i(dw) = O(N®) (4 + \F) -
~y

t
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The contribution from F} can be bounded following the same method, and
the resulting estimate is smaller due to the extra small |hg| factor in f5.
Inserting the estimate (6.33)) for F,i = 1,2, 3 into (6.23)), we have completed

the proof of (6.22)) and thus (6.2)).

6.4. Proof of estimate (|6.3))
By (6.14]) we need to bound
031 NEUE [[ TL(AY) i) fdu), L= L+

where ¢ is an arbitrary constant. Without loss of generality, we choose ¢ =
log R — log v, so that from (2.2 we have

(6.35) L(z) = O(|z[/7)

for |z| < 7. Equation (6.34)) is equivalent to

(6.36) N2E / D!z — w]) i(dz) fi(duw),

where D'(h) = E® / To (A (do),

and we remind the reader that ® depends on ¢ (note that we introduced an
additional averaging over v for the same reasons as in )

Our estimate of is similar to , up to two differences. First,
it is easier to bound (6.36)) when the contributions from g1, g2, g3, g4 from
are isolated, but this cannot be performed directly: smoothness of D,
across hi, hg = +1/2 requires the combination of these four terms. In the
first step, we therefore prove that the long-range contribution of D;, which
we will denote by Fj, is negligible (this problem was not present for K?,
which is essentially supported in a small neighborhood of 0).

Second, the most delicate decompositions of K; are not necessary for
D; as we have the additional small factor for the interaction at small
distance.

First step. In this paragraph we prove that the contribution of the long range
part in D! is of order

031 N [[ Bl - ul) i) fdw) = 0 () (7} ' ;4) ,
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where Ef(h) = E? [ T AP 1 — ) (AP m(dv) and  is a smooth cut-
off function equal to 1 on |hi| + |ha| < 1/10, 0 on |hy| + |he| > 1/5.

The function 77,(h) has discontinuous derivative on {h; = 0} U {ha = 0},
which imposes a detailed analysis around these axes. We first gain some
order of magnitude of 77,(1 — x) around these singularities by removing the
following function,

A(R) = (X(a)[(1 = hal)gr(h) + halgs (R)]
+ X(h2)[(1 = [i])g (k) + halga(B)] ) (1 = x(R),

where x is a smooth cutoff equal to 1 on [0,1/200] and vanishing outside
[0,1/100]. The function A is smooth on T for the following two reasons.
First, the function is smooth on h; = 0 because the following three es-
timates cannot be simultaneously satisfied: |hq| < 1/1000, x(h2) # 0 and
(I —x)(h) # 0. Similarly, the function is smooth on hy = 0. Second, A is
smooth on h; = £1/2 and he = £1/2. Indeed, assume —1/2 < hy < 1/2 is
fixed. Then (1 — |h1|)((1 = x)g1)(h) + |h1|((1 — x)g2)(h) admits an obvious
smooth extension to h; € (0, 1), and this extension is symmetric in a neigh-
borhood of h1 = 1/2, hence all its odd derivatives vanish there, so that A is
smooth at hy = +1/2. The same reasoning applies to he = £1/2.

We define A(h) =E?® [ A(Aq[}ﬂrh]) m(dv). As A is smooth at the scale of
order one, from Proposition with ¢ chosen to be N™¢ and p large enough,
we obtain

(6.38) N2E? / / Al — w]) ji(dz) ji(dw) = O ({;) .

It thus remains to estimate N?E" [[ H'([z — w]) fi(dz) fi(dw) where H' =
E' — A. To understand the regularity properties of H!, assume first that
the distortion vanishes, i.e., t = 0. We have H° = T7(1 — x) — A, so that
HY is smooth on {h; # 0} N {hy # 0}, vanishes on {h; = 0} U {hg = 0} (this
is the purpose of removing the contribution from A) and satisfies (on the
smoothness domain {h; # 0} N {hg # 0})

sup |97 HO(h)| < Cp.
kitko=k 7
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The distortion ¢ smooths the singularities on {h; = 0} U {ha = 0} as follows:

[H'(h)| < C(t + min(|ha], |ha]),

(6.39) Ly <t

1
kl k2 h1 <t
|8h18h2Ht(h)\ < Cky ks <1 + a1 + t|kl—‘1 ) :

The above bounds are elementary after writing H? explicitly in terms of
91,92, 93, g4, X and X. It amounts to the observation that the function r(z) =
Ex|x 4+ tX| satisfies ]r,gk)(x)| < Cr(1+ Lpceut' ™). Intuitively, ry(z) is a
regularized absolute value function which is smooth at the scale ¢ and
ri(x) = |z| for |z| > 2t.

Let ; = {|h1]| < t} U{|h2| < t}. Consider a partition of unity 1 =" x;
on the torus with O(log N) summands, yo with support on 4, x; (i >
0) supported on (2°710Q;)\(2°71€)), and the derivative bound ngn)Hoo <
Cn(2t)™™ for all integer n. Note that for H = H'y; we have |V/H(z,y)| =
O((2)~7*1), and the same estimate holds for HY when s = (2it)N .
Moreover, (2:710;)\(271€);) has area O(2t), so that Proposition gives
(take p = [10/¢])

NE? / Y[z — w)i[z — w])ji(dz)i(duw)

. 1 2it ;
= O(N?) ((2%)3 +’y4>’ for 2't < 10.

Summation of the above equations over i gives

(6.40)
v [ = w1 = (0~ ul) ) i) = 0V (5 + 7 ).

Equations ([6.38) and (6.40) prove (6.37]).

Second step. In this paragraph we prove that the contribution of the short
range is

1/2 4/5
(6.41) NZEY // U'([z — w]) fi(dz) f(dw) = O(N®) (714 + NT + ];/5 ) ;

where Ut(h) =E?® [ ﬂ(ALv+h])x(ALv+h]) m(dv). From our expression (6.11
for 77, we only need to bound NEY [ Uj([z — w])fi(dz)a(dw) (1 <j <3
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where
(6.42) Ul(h) =E? / uj(AlH)m(dv),
with
ur(h) = L(h)x(h), ua(h) = [h1|L(h)x(h), u3(h) = |h1ho|L(h)x(h).

The terms above all involves g1; the other ones involving g¢s, g3, g4 can be
bounded in an easier way, because go, g3, g4 are smooth on scale 1 with no
singularity at 0.

We first consider U}. Let N™1/2 <« u < 7 be some intermediate scale. Let
x be as before and define L(h) = f1(h)x(h/u). Then the local law, Theorem

and the bound (6.35]) give
6.43 NZEY [ [ Ui([z — w]) fi(dz) ji(dw) = O
1(

where U}(h) = E® / LA+ m(dw).

N2+su3
v ) ’

On the other hand, the same reasoning as the paragraph from (6.20) to
(6.21)) gives

N [ [0t - 0 - w) ataz) iaw) = 0 (ﬂ;) .

Optimization the parameter u in both previous estimates shows that the
contribution from U7 is

(644)  N2EY / / UL([z — w]) fi(dz) fi(dw) = O (%)

We now consider the most delicate terms U} and Uf. We decompose
L}, = YE Y74+ 0(e™N"), we can just replicate the proof for F} and F}
and get the same estimates as (note that, as for U{, we could also
have used the short range bound ([6.35) for an improved but unnecessary
estimate). This concludes the proof.

7. Proof of Proposition [4.6; free energy lower bound

In this section, we construct a trial state to give a correct lower bound for
the free energy, and thus prove Proposition 4.6l Recall the assumptions of
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the proposition

(7.1) 1> 0/b> (NV)V4, N Ve« i« b N7,
(<R, T=2c/5,

which we will assume throughout this section.

7.1. The trial state and embedding of the torus

Throughout the proof of the lower bound the parameter u € [—b/2,b/2)?
is fixed arbitrarily, and all estimates will be uniform in the choice of u. To
obtain a lower bound on the partition function, we first restrict the particle
profile to fn. For this, we define the indicator function

(7.2) x(z) = IL(nB(z) = ﬁB> H]l(na(z) = ﬁa) H]l(zj eDU B)

where n(z) is the particle profile of the configuration z € CV, i.e., n(z) =
(na(z)) where nq(z) is the number of particles z; € a (with « either a bulk
square or the boundary region B).

We then start with the trivial bound

1 1
(7.3) ﬂlog/e_ﬁH‘}}(z)m(dz) > 6log/e_ﬁH‘}}(z)X(z)m(dz).
Next we break the permutation symmetry of the particles. We order the
squares « arbitrarily as aq,ag,... and write x(z) for x(z) multiplied with
the indicator function of the event in which the particles z1,. .., z5, are in
a1, the particles Py 415 -+ 3 P, +iig, A€ in as, and so on. Then

1 ~BHE() _1 <N) 1 ~BHEG) 5
ﬂlog/e X(z) m(dz) 5log n + Blog/e X(z) m(dz).

As in the lower bound for the torus in Section to each bulk square
«, we associate a map

(7.4) U, :TO -

The main difference between these two settings is the choice of the embed-
dings ¥,. We now choose ¥, as the re-centered version of the map defined
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by Corollary
(7.5)  Ua(v) =c(a) + ¥O(v) = ¢(a) +bU(v/b) (v eT®).

This choice of the maps will enter in this section only through the estimates
given by Corollary and the fact that [d¥| = 1.

The remaining set-up is parallel to that for the torus in Section Let
wq be the measure of the Yukawa gas on Tph~, with density

(7.6) wa(dv?®) = iefﬂH&("a)m(dva),
Zo

where H, was defined in as the energy of a torus Yukawa gas in
T, with range ¢ (in principle, there is an external potential Q(«a). Since
it is a constant, we remove it). For the boundary, we take wp to be the
measure under which the particles are independently distributed according
to the equilibrium measure, i.e., wp = MV\ "2 on B and ¥p: B — B to
be the identity map. With the ﬁxed particle profile n = n, the quasi-free
approximation is the product measure w = [[ ws (Where the product also
includes o = B). Given the maps ¥, define ¥ by

(7.7) U [[Toe x B™ - CY, ¥({v}) = {¥av*}) e CV.

In particular, ¥*w =[], ¥} w, is a measure on configurations of N particles
in C. Under the map ¥, using that |d¥,| = 1, the measure w, transforms

to
Zla B qu, = e e [as,

a

where we write U, 1(z) = (\11_1(21),\11a1(22),...) if z=(z1,22,...). Thus

] o
defining H\p( ) = H, o W-1(z%), by Jensen’s inequality,

« « (

Reversing the change of variables and averaging over the distribution of
maps ¥ with |d¥| = 1, whose expectation is denoted by EY,

1 R 1 ¥ a
(7.9) Blog/e_ﬂHVf( > Blog/e_ﬁH(’(v )Hdva+Q
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where Q = EYEY (H (v) — HE(Uv)) with H(v) = 3, Ha(v®). We abbrevi-
ate by EYE“ the expectation EYE® with w = 1, wa, where w, is the mea-
sure of a Yukawa gas of range ¢ defined in the previous paragraph. Then, in
summary, we need to estimate ) = 1 + Q9 where

0 == EYE®(H(v) — H5(¥v)),
4

(7.10) Qp i= EVE® (HS (Uv) — HE(Iv)),

and we recall that H é is the Yukawa energy of range ¢ with potential ). Thus
) is the error of a short range Yukawa gas in the quasifree approximation
and is similar to that in for the torus. The second term was absent
for the torus because it was essentially handled by Lemma [3.3| at an earlier
stage; the choice of / < b in is the key reason that this term is much
simpler on the torus than the current general setting. The control of this
term requires a more careful choice of the maps W.

7.2. Lower bound I: the short-range term €24

In the next two lemmas we estimate the short-range contribution €2;. These
lemmas are analogous to Lemmas for the torus setting. Besides
the density of the equilibrium measure is not constant, that there is a small
contribution from the boundary, we also need precise estimate on 27 in the
dependence of the parameters ¢ and b. With the current more sophisticated
choice of the map ¥ and the decoupling estimate, Corollary we will be
able to estimate 2 effectively.

First recall notation similar to that discussed around . As previ-
ously, Uf is the Yukawa potential on the torus T(®) 2 T,. Also, fia = fia — fta
where 4, is the normalized uniform measure on T, and where i, is defined
in . We observe that, by construction, the expected empirical measure
i under EYE® in each square « is uniform with total mass n,/N:

(7.11) NEYE® (fi|la) = Napia;, where g (dz) = b1 ,cq m(dz).

The next lemma replaces Lemma for the torus. Similarly as in ([3.50)),
we define
(7.12)

=Y nievE [ =) =Y () 1) i) i),

aCD
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We also write Hp = . wcD H,, and decompose HQ( z) into bulk and bound-
ary contributions as

HQD NZQ 2] z; € D+ZY _Zk zJ,zkEDv
(7.13) j#k

Hg p(z ):HQ( ) — H p(2).

Lemma 7.1. Assume 1 < ¢ < b and recall that E is defined in (7.12)).
Then

(7.14) EYE“(Hp(u) — HG p(¥u)) = E+ N°O(N?(£* + b20%))| pv || % 2.
(7.15) N?Ip g —EYE“(H§ p(u)) = N*O(N?6?0)||Vpy [|lsc + O(fip log N).

The proof of the above lemma occupies the remainder of this subsection.
Before proceeding with the proof, we state the estimate for F in the following
lemma.

Lemma 7.2. Assume the parameters b and ¢ satisfy the condition (7.1)).
Then E defined in (7.12)) satisfies

(7.16) E= Nso(zf2 ((Nb2)4/5 (/)25 + (E/b)*“) )
— NEO(N4/5/€2/5 + b2£74) — O(le‘r + N€b2€74).

Proof. This is of Corollary - 6.2|and the fact that there are O(b~2) bulk
squares accordlng to (4.18). O

We now prove Lemma The main error in is the one with the
factor N2(¢3 + b2¢?), which is of order b smaller than the main error term
in the upper bound . The reason we gain an additional factor b here,
roughly speaking, is due to the fact that the leading error from the left side
of a square is canceled by that from the right side provided that the densities
of the two neighboring squares are the same. Since the density variation is
of order b, the next order error carries an additional factor b. (A similar
cancellation could have been obtained also in the upper bound . Since
this refined estimate is not needed in this paper, we chose not to present it
for the sake of simplicity.)
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Proof of ([7.14). Estimating @ by (4.10) and 1, by (4.18)), the difference of

the contributions of the external potential is

EYE«¥

N Z Z(Q(Zz) - Q(a)ﬂziea)] |

aCD i

= 'N > na / (Q(2) = Q) pa(d2)

< AnlP’N Z Ne
aCD

+ N Y ONE[|pv [lso) O(N=E[ V2 py || o)
aCD
< O(N?* (Vv [1%) + O(N=N?E | pv ool Vo1 [l oo).

/ (ov (@) — py(2)) pra(d2)

To estimate the two-particle interactions, it suffices to show that

Z E\IIE“) Z 1vi€’]fﬂ 1vj€’]I‘ﬁ(U£(Ui — ’l)j)]la:/g — YZ(\IJQ(%') — \Ifg(vj)))
a,BCD 1#£]
(7.17) = E+ON*C)(llov Il + IVov ).

The outline of the proof is analogous to that of (3.54)) for the torus. Again,
the contribution of the nonadjacent pairs of squares on the left-hand side is
bounded by O(e~%/*) = O(N~>°). For any squares «, 3, define

18 Taa= [ Y(Wal) = W5(0) ) sl

-/ / Y 0 ol ().

Denoting by « ~ 8 that the squares « and § are adjacent, exactly as in

(3.56), therefore
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(7.19)

D BYEY | Ly, Loer, (Up (0i—0)Lazp =Y (Wa (v:) = Us(v))))
a,BCD i£j
= n2EYEY Lly—w)—Y* v)— w))) g (dv) ftg (dw
=3 na'e U/Tamwb( )Y (W () — V(1)) () ()
=) afgYas + O(N~™)
a~B

The difference between E and the first term on the right-hand side of the
above equation is

(720) S| [, vt = ) e o)

aCD

- //a Y (v = w) pa(dv) pra(dw)|

where we have used that fiq, = fiq — 4. For the squares o C D not touch-
ing the boundary, we use the cancellation below and for the squares
touching the boundary instead the weaker estimate . By these esti-
mates, and summing over a using that there O(b~2) squares o not touching
a boundary square and O(b~!) squares touching the boundary, it follows
that the last display equals

> nangYas + OV ) ([lpvlles + [ Vov o).
aCD B:f~a

This proves ([7.17)). O

The following lemma replaces Lemma, for the torus. The argument
requires more care since we here do not have n, = ng.
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Lemma 7.3. Assume that b > £. For any bulk square o whose neighboring
squares do not touch the boundary region B,

(7.21) n? [// Ul (v — w) pra(dv) pia (dw)
ToXTq
/ Yg (v —w)) pa(dv) pe(dw } Z nangYag
Bra
= O(N?0°6||pv |0 IV pv [lo0) + O(N ™).
For all other squares «, we still have
a2 | [ 0w ) el
ToXTq
// Y (v — w)) pia(dv) po(dw) } Z NafpYas
aXo ,8~a

= O(N*06) || pv I3

Proof. For any fixed square « of side length b >> [, using that contributions
for distances > ¢ are negligible, by unfolding the periodized interaction we

have
ALUZ(U —v)m(du) m(dv)

_ /a /U o V(2 — w) m(du) m(dv) + O(N~),

and thus

J @ =) = Y= ) ol ol
—Z / Xﬁy“‘ ) Ha(d2) pg(duw) + O(N ).

Therefore the left-hand side of ([7.21]) equals

o 3 (=) [ ¥ wa(dohustan) + O(V),

B:B~a
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Note that for a # 3,

/ Y1 ez ns(an)

— O(b=2)0(tb~1) sup / Y2(z — w) m(dw) = O(b—3¢%).
zEex

Using |7iq — 15| = O(NV?)||Vpy |lso and fig = O(NV?) | pv o, the claim (7.21)

follows.

For the boundary squares, we do not use any cancellation between the
difference of U’ and Y* and Y in , but we still use the cancellation
between U’ and Y*. Analogously to the above, the difference between U*
and Y and the Y terms are each bounded by

O(NB*)?0(b~°C)llpv |13, = O(N?bE%) | pv .

This completes the proof. U
Proof of (7.15)). By definition, we have

E\IIEw [Hé,B] = EIPEw Z YE(Zi - zj)]lzivszB
i#£]

+NZQ(Z]‘)+QZ ZYZ(ZZ‘—Z]') .

Moreover, by definition of the expectation EYE“, the particles in B are
distributed independently according to the restriction of the equilibrium
measure py . If the particles in D were also distributed independently ac-
cording to the equilibrium measure, the above right-hand side would be
N%Ig g + O(fiplog N), with the error term O(7iglogm(B)) = O(iiglog N)
resulting from the inclusion of the diagonal ¢ = j in the first sum. In reality,
the particles in D are distributed according to the periodic Yukawa gas in
the squares «; under this measure the expected empirical measure is uniform
on the squares a with constant density n,//N; we may replace this constant
density in the bulk squares by the density of the equilibrium measure with an
error O(Nnpgl?bt)||Vpv|leo = O(Nnpf?b)||Vpy||eo- In summary, we have

EVE®[HY 5] = N*Ig.5 + O(N*(b)| Vvl + O(np log N)

as claimed. O
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7.3. Lower bound II: the long-range term {22 and conclusion

In the next lemma we estimate the term 5. It is in this estimate where

the randomness of the ¥, enters in an essential way through the decoupling

estnnate of Corollary We recall the decomposmon HQ Hé pTt

% g of the energy into bulk and boundary part from and decompose
i analogously.

Lemma 7.4. Assume the parameters b and ¢ satisfy the condition (7.1
and recall K% from ({.6]). Then

(7.23) Qy = Nlog(R/l) + N?K% + N*O(N'™" 4+ v2~%)
+O(N*0Y) || Vpl% 2 + O((log N)b™? + np log N).

More precisely, with O(N'~7) = NeO(N*/5/¢2/5), we have

(7.24) EVE“(H{ p(¥v) — H{f 5(¥v)) — Nlog(R/¢) — N*K§
= NO(N'"7 + 0274 + NTO(N?bY)||Vp||%, 2 + O((log N)b~?),
(7.25) EVE“(H{ p(¥v) — H{5(¥v)) = O((log N)b~2 + nplog N).

Assuming this Lemma, we can now prove Proposition

Proof of Proposition[{.6. By (7.3)—(7.10),

1 R 1 N 1 g (e
7.26) —lo /eﬁHv(z)m dz) > = 1lo ( ) + —lo /eﬁH‘*(“ )du®
(7.26) 3 log (dz) > Zlog | | Zﬁ g

aCD

1 ] B
—|—ﬁlog/e_’8HB(“ Jdu® + Q1 + Qo

where the combinatorial factor %log (]X ) arises analogously as in .
By definition, the first three terms on the right-hand side give F(n). By
Lemmas and the last two terms on the right-hand side, Q1 + Qa,
contribute the explicit terms N log(R/f) + N2K f% as well as the error terms
in the statement of the proposition. O

The rest of this section is devoted to a proof of Lemma We start

with a proof of (7.24)).
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Proof of (7.24). We start with (4.8)), which implies that

(7.27) EYE®(HG o U — H{f o ¥) — Nlog(R/¢) — N°Kp
= —N?EYE¥ (L% o W)
= —N’EVE® ) (Qapo®),
a?IB

where we define (note that Q,s should not be confused with €; and )
(7.25) Qusta) = [[ (= ) ) ()
aX

here % = i* — u}‘; and we have made its dependence on z € CV through
the empirical measure i = * explicit. Recall ¥ from and note that
Qqp o ¥ is a function on [, Tpe. For any v € [[, Ta*, denote by fiy,(dv) =
ngt >_jw,er, Ov,(dv) the normalized empirical measure on Ty as in (3.49).
We also denote by g4 (dv) = b~2m(dv) the normalized uniform measure on
Te, and set fiq = flo — fto- We rewrite Q0,5 0 ¥ as

(7.29) Qus(T(v)) = / / L Th(Wa(0) = ()
x [2 (o) = 1oy (Wa(0)) pra(dw)

< | i) = Pov (w500 st

where we changed variables v — ¥, (v) and used (6.9). We then rewrite

(7.30) [ty (dv) — N6 py (Vo (0)) o (dv)]
— i (dv) — [NOpy (¥a (v)) — ] o (dv).

Using that E“fY(dv) = 0 to see that the cross terms between the Y and
pg or fug terms vanish. This gives
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(7.31)  N?EYE“Qup = 1o—pnangE E®
<[ L) = aw) ) i)
2m¥mw L v) — w
+veEvee ff v, ) = 05t
< [ov (W) - 575

x m(dv) [pv(qzﬁ(w)) - ]352] m(dw).

The proof is completed by bounding the sums of the two term in ([7.31])
over «, 3. The first term with a = (8 is the key difficulty requiring the so-
phisticated averaging over V. Indeed, by of Corollary and using
that there are O(b~2) bulk squares «, we have

13 L REEY [[ LaWa() - Waw) (o) i (de)

aCD aXTa
= Nb20((NbHY2 /(£/6)%5 + bre*)
= NEO(NY/® /> 4 b2

as needed. The sum over «, 8 of the second term on the right-hand side of
(7.31)) is bounded as needed in Lemma stated below. O

In the statement of the following lemma, a naive bound of the left-hand
side is N2b%2. We gain an extra factor b for each integration variable due
to the cancellation of the integrand, and thus obtain the resulting stronger
estimate.

Lemma 7.5. Assume the parameters b and { satisfy the condition ([7.1)).
Then we have

(7.33) N? ;EWE“’ //TQXTB L5 (W, (v) — Wg(w))
< [pv(Wa(v)) = 55| m(av)
< ov(watu) - 2| miaw

= N°O(N*b")|[Vpv % 3 + O((log N)b~?)
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where the sum is over bulk squares a, 3.

Proof. By changing variables, the claim is equivalent to

Na

Liy(z = w) [pv(2) = 2o | m(d2)

(7.34) N? ) EVE® / /
a,BCD axp

< ovtw) = 2| miaw)

— NTO(N?)[[Vpv % 5 + O((log N)b~2).

By definition of 7, we have |n, — Nuy(a)| < 1, and thus (recalling that uy
has density py)

(7.35)  pv(z) - % = pv(2) — vaga) +0 (Nlb2>
1

== /am(dC) (pv(2) = pv(€))dC+ O <N1bg)

as well as
(7.36)  py(w) — T _ / m(d§) (pv(w) — pv(§))dE + O <Nlb2> :

We will use these bounds below and also bound L%(z — w) by O(logt) =
O(log N) in the integral.

We first consider the diagonal terms o = 3 on the left-hand side of .
We claim that the contribution of each such term is O (log N)[N2b%||V py ||%, +
1]. To see this, note that the factor log N is due to L%, and a factor b2
arises from each of the integration of z and w. The first terms on the right-
hand sides of ([7.35)—(7.36]) contribute a factor b||Vpy ||« each from bounding
[pv (2) — p(C)] respectively [py (w) — p(€)], while the error term are of order
1/(Nb?). Since there are O(b~2) many bulk squares «, this bounds the sum
over the terms o = 8 as claimed.

Next we consider the off-diagonal terms a # §; we drop sub- and super-
scripts from L and p to shorten notations. We use a Taylor expansion to
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find that the sum of these terms is bounded, up to remainder terms, by

i) L] 5ot =0+ Tt o]

X |Vp(B)(w &) + V2p(B)(w — £)?]
x [Lia =)+ VL =€)z = ¢ —w+) + V2L{a = €)(z = ¢ — w +€)?
x m(dz) m(dw) m(d¢) m(dg).
The remainder term are bounded similarly without using symmetry and
produce the error terms depending on || V3p||. We return to the main terms.

By symmetry, the odd terms in (z — §) and (w — ¢) do not contribute. The
leading terms are therefore the quartic terms. These terms are bounded by

N2 ([[Vplloo + 1V plloc)?.

The factor b* comes from b~%b*b* with the factor b~* coming from the sum-
mation over squares; the b* factor coming from the volume of the integration
of z and w, and the last b* factor comes from the size of products of (z — ¢)
and (w — &) in the formula. This concludes the proof. O

Proof of (7.25). We now bound EYE“Q,s for =B and a C D. Since
fov = fi — py and EYE“j|, is the uniform measure on o with total mass
No /N, we have

BV ivla(d2) = (s — 1) Avlalds)

EYE (vl (42) = (5 1) wvlafds),

Since fi|p and the fi|, are independent under E¥E®, and since the number
of squares a is O(b~2) and bounding L% by O(log N), therefore

W SEE [ [ () Wl 02 )

- (wm ™) 2 [y [ e (g ) et

=0 ((logN)}'ﬁB — Npuy(B)| Z‘ﬁa - NMV(Q)’) =0 ((logN)b_Q) .
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Similarly, for « = 8 = B, we have

VBV [ [ L= ) Lo i) )
1S we

= (u;(BB) - N>2//BX3 Lz (2 — w) py (dz) py (dw)

_ 2
— (/MBB) _ N) O(log N)uy (B)? = O(ng log N).

This completes the proof. O

7.4. Summary

In order to prove the lower bound for the partition function of the Coulomb
gas, we used a quasi-local approximation whose main building blocks are
Yukawa gases on torus. Due to the natural that the lower bound is proved
via a variational trial state, all estimates needed are with respect to a Yukawa
gas on tori. In particular, the rigidity estimate needed in the lower bound is
with respect to a Yukawa gas on a torus. This rigidity estimate is done in

Appendix [A]
8. Proof of Theorem [1.2k central limit theorem

In this section, we prove Theorem Our proof uses a modification of the
loop equation, which is a relation between one- and two-point correlations.
It allows to obtain the moment generating function for linear statistics of
the Coulomb plasma in terms of expectations of terms involving one-point
and two-point correlations with respect to a tilted measure. The density
estimates of Section [2| provide sufficient control on the one-point terms in
the loop equation. The two-point correlation term in the loop equation is
singular and can be decomposed into short- and long-range contributions.
The long-range part can be decomposed further into scales which can then
be bounded using local density estimates for all scales. Thus the short-range
contribution, which we call the local angle term, is the main difficulty to
obtain the CLT.

In [5], the loop equation was used to prove a central limit theorem for 5 =
1, by bounding the two-point contribution using the determinantal structure
of the microscopic point process (which holds only for § = 1). In [6], we used
the loop equation approach for Coulomb plasma for any S > 0 to obtain
rigidity estimates, by introducing the local density estimates to estimate
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the long-range part of the two-point contribution and bounding the angle
term by a trivial bound. In this section, we obtain an effective estimate for
the angle term for general 8 > 0. We deduce this estimate from Theorem [1.1]
and the fact that the estimates for the remaining terms in the loop equation
can be obtained also for version of the Coulomb plasma that is tilted by a
small two-body interaction.

We remind the reader that all estimates in this section are with respect
to a Coulomb gas with or without an angle correction term; the Yukawa gas
is used only in the approximation of the free energy of the Coulomb gas, in
Sections [4}f7] In particular, the estimate of the angle term, to be presented
in this section, is with respect to a Coulomb gas. This estimate requires not
just the local density bound, but the sophisticated rigidity estimate which is
a consequence of the loop equation. The rigidity estimate will also be needed
for Yukawa gases on a torus, to be presented in the Appendix [A]

8.1. CLT for macroscopic test functions

We first prove Theorem for macroscopic test functions f. For this, we
first prove that a version of Theorem holds up to certain random shift,
the local angle term A{/ defined by

Z—w

1) A= Gme [ I ) ),

where § = N~1/2+7 Note the integrand is singular at z = w since

hz) = 1MW) _ a2y 4+ on() 2=

zZ— W z —

w
” + O(|z — w)).

We recall the definitions of X{; and Y‘f from and , as well as
the norms from (L.7), and that we write || f||oox for || f|lcokp With b= 1.

In the proof of [6, Theorem 1.2], more precisely in [6, Lemma 7.5], we
showed that is bounded by O(/N¢) with very high probability. Assuming
this term was < 1 instead of O(NN¥), a small modification of the argument
in 6l Section 7] would already imply Theorem A similar strategy was
used in [4, 5], where a version of was shown to be approximately
equal to —%Y‘f for g = 1, by using the exactly known correlation kernel for
the microscopic correlation functions in this integrable case. Our strategy
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now is to first prove a version of Theorem [I.2] in which the contribution
of the angle term has been removed (in Proposition below), and
then subsequently, by combining this argument with Theorem prove
that the angle term is in fact negligible up to the constant —%Y‘; (in

Proposition .

Proposition 8.1. Suppose that V satisfies conditions and , or
more generally the conditions stated in Remark[{.2. Then for any small o,
the following holds. For any function f satisfying the same assumptions as in
Theorem (in particular the support of f has distance of order 1 to dSy ),
for small e and th™2N?7 + tb™2|| f|lcc.ap < 1, we have for any 0 < |u| < O(t)

(8.2) tﬁlN log By AN AL ,))
tN 1
o [ v Pm) - v

+ O(N71/2+3cr+€b71 + N70+E)Hf||oo,3,b
+ 0N flZenp + ONT2HED]| Fllap).

Proposition 8.2. There ezists k > 0 such that if 0 = k/6 and 0 < |u|,t <
N—ZH/S’

(8.3) 1 log EyefNtAv1us = _lyg + O(NT*3 1+ || flloos)?
t6BN 2 ’

The above two propositions will be proved in Sections below.
We first note that the estimate given by Proposition without the
angle term fl{/ fuf OD the left-hand side would imply a CLT for X{;. This
angle term is controlled by of Proposition By combining the two
estimates, we can complete the proof of Theorem for macroscopic test

functions. For mesoscopic test functions, a similar argument applies after
conditioning (see Section .

Proof of Theorem for macroscopic test functions. By assumption, f is a
macroscopic test function with || f||, 5 bounded. Let o and « be as in Propo-
sition [8.2] Then, with A = Nt in the identity

1 - 5 1 - s At i
(8.4) w—NlogEVe ﬁNtXV:m (logEVe BNt(X{ AV)—logEVerﬁNtAV)

the claim follows by using the estimates (8.2)), (8.3) for the two terms on the
right-hand side of (8.4), and finally replacing x by 3k. g
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8.2. Loop equation with angle term

We start the proof with an integration by parts formula. Consider a smooth
bounded function v : C — C, and G smooth, defined on z; # 2o such that
G(z1,22) = G(22,21), and

(8.5) lim sup(|G(z1, 22)|/ log |22]) < 1

|z2]—00

for any fixed z;. For any z € CV we define

(8.6) W (z) = =Y (v(z5) = v(2))05, G (25, 21)
Jj#k
+ /13 > 0ju(z) = N Y v(z)dV (z)).
J

J

The following elementary lemma is often referred to as Ward identity or
loop equation. For example, it was used in [5] to study fluctuations of the
empirical measure when § =1, and in [6] to prove rigidity for all 5 > 0,
with in both cases the interaction G being the Coulomb potential C. Its
relation to Conformal Field Theory is discussed in [29]. In this work we
need a perturbation G of the Coulomb interaction by the local angle term.

Lemma 8.3. Under the above assumptions, we have

E$ (W5v> — %E‘(f ;(v(z]) +v(2x))(0z, +02,)G (25, 2k) |

where the expectation is with respect to PJ(\;V defined in .

Proof. The proof is a classical simple integration by parts: for any j € [1, NJ,
we have

E (9,,0(2)) = BE (v(2)0., H(2)) ,

where both terms are absolutely summable and the boundary terms vanishes
because (i) with probability 1, no two z;’s have the same real or imaginary
part, (ii) v is bounded, G satisfies the growth condition , V satisfies the
growth condition . Summation of the above equation over all j € [1, N]
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therefore gives

1
N
=FE (Z v(z) <8ZjV(Zj) + Z(asz(zj, zk) + 02;G(zg, zj)))
J=1 k#j
N
-F (Z v(z;) (azjV(zj) +) (92 — 0z)G 7, zk))
J=1 k#j
+E

( v(2)(0zj + 02,)G (25, zk)> .
J=1 k#j

J

Using G(zj, 2,) = G(2, 2;), we can continue the equation with

N
—F ( Z v(25)0.,V (25)
j=1
1
153 (0z) @2 — 050G (21, 24) + (1) 02 — 95)G Zj))>
7k
+ %E Z(U(ZJ) +v(2)) (025 + 021) G (24, 21,)

N
=B (D 0(:)0: Vi) + 5 3 (vlz) — () (025 — 020G 25, 2)

=1 J#k
1
+ §IE Z(U(Zj) +v(2k)) (025 + 0z1)G(25, k)
J#k
This concludes the proof. O

Before considering the interaction GG with additional angle term, we tem-

porarily restrict our attention to the Coulomb case, where 0,,C(z; — 2z1,) =
1 -1
=2z —2)

Lemma 8.4. For any f : C — R of class €2 supported on Sy and z € CV,
recall X{; defined in (1.11)) and h, depending on f and V, defined in (§8.1]).
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With these notations, we have
(8.7) xi = —WV Zah %)

o //#w M=) iy a2) v (e,
where iy = i — py and we used the notation W& = Wg’h.

Proof. First remember the following two identities:

(8.8) /“V(d“’) _oV(z), f(z) = jr/af(“’)m(dw).

Z—w Z—w

The first equation holds for z € Sy and is obtained by the Euler-Lagrange
equation, the second equation is a simple integration by parts. We therefore

can write
w - [[ 2

—N// D (@) ) + 3 R(z)0V (25)

/ [ M= w2 |

h(zj) — h(
2N E— +Zh 2;)0V (z;)
Jj#k J

o5 ], s ),

which is equivalent to (8.7)). In the first equation we used (1.6) and (8.8)),
and in the second equation we used (8.8)). O

,UV (dw)py (dz)

We now decompose the last term in (8.7]) into a sum of the long-range and
short-range terms. For this purpose, let p(z) = e ” and, given a mesoscopic
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scale 0 = N_é‘H’, we define

lz—w|?
dr e 207

6
(8.9) @;(z — w) = /0 ‘I>(z — w,r)r—5 -

|2 = w]?’

lz—w|?

* dr  1—e 202
+ _ _
@g(z—w)—/a @(z—w,r)r—f)— W

(8.10) Uy (z,w) = By (z —w)(z — w)(h(2) — h(w)),
UM (z,w) = U (z,w) + U, (2,w).

As in the proof of [0, Lemma 7.5] (see also [20]), we have decomposed the
last term in (8.7)) into a relatively long range part and, essentially, a local
angle term:

N h(z) — h(w) _ 7 _
2//@@ S v () fiv (dw) = At Al

where
(8.11) A= ] i) (42 o (),
(5.12) Ay =5 [ witew) () v aw).

By definition ({.1]), we also have

z—wl? . _
(813) 6 - Re //i T w )e 202 Mv(dz) /,LV(dw) = Re A}‘;’ 5

ie., fl{/ is just Re A}‘L/’_ with h chosen according to .

Note that, in the above decomposition, we could have considered any
fixed non-negative function ¢ € C°°(C) with compact support or fast decay
at infinity, as in [0, Lemma 7.5]. We here chose the Gaussian scale function
for the sake of concreteness and some convenient simplifications. Compared
with [6], we also write the mesoscopic scale as 6 rather than N—1/24.

8.3. Coulomb gas with angle perturbation

We now define the perturbed Coulomb gas. The Coulomb gas, exponen-
tially tilted by the real-part of the local angle term, is defined to have pair
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interaction and potential given by
t
(8.14) Gt:C—iRe\Ifﬁ, Vi=V +1tf +tF,
F=Re [ W (,u) py(dw)

where h = % (we will see that h = hg defined in (8.17) below). We also

include a t-dependent constant in the perturbed Hamiltonian and define

t _
(8.15) Hy = H{' — 5N2 Re // W, (2, w) py (dz) py (dw)
= H\C/+tf a NtA{/-

Notice that the interaction term 1nvolv1ng Re ¥, , the potential term involv-
ing tF and the constant term in were recombined into Af which was
defined in . Notice further that the subscript V is dlﬂ'erent from the
subscript V + tf in the Hamiltonian in (8.15)).

For the proof of Proposition we require the following Proposition
regarding a local density estimate for this interaction.

Proposition 8.5. Consider the Coulomb gas with Hamiltonian , with
V,f € 6% andtN* <1 and ||Vh||e <1 andt € [0,1]. Foralls € ( 1), for
all f supported in ball of radius b = N~° contained in Sy with dzstance of
order 1 to the boundary, we have the local density estimate

(8.16) X7 < VNV flloo,2

with respect to the measure PG’ In particular, for any ball as above, the
number of particles in that ball is bounded by O(Nb?) with high probability.

Proof The proposition is a direct consequence of Theorem [2.3] Indeed,
corresponds to the choice G(z,w) = Me l=wl*/(20%) i ([2.8)
Wthh satisfies since ||VhA|oo < 1. O

For 0 <t <« 1, we define

0f(2)
8.17 hi(z) = == ) h = hg.
(&40 &) = 9 + 17 ’
In the next lemma, we collect some elementary estimates for h; and F;. Recall
that V satisfies the growth condition ([1.4)) and the regularity assumption
(1.10).
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Lemma 8.6. Assume that the support of f has distance > N~1/2%7 o
0Sy, and that

(8.18) 02 flloca < 1.

Recall § = N=Y219_ Then the following estimates hold:

(8.19) el < 07 Flloosr1p[1 4 072 flloc,b+2,)
(8.20) tF(z) = O(N"2)th 2| fl oo 2,6
(8.21) tAF(2) = O(N Y250 73| £l o

Proof. Using that t||Af||cc < 1 and (8.18]), we have

IV3fllse 10V @IV + t5))lse
OV +thle 00V T thI
< 72 ooz [L+ 0720| Fllooso)-

HVhtHoo S
10

Similar estimates hold for higher derivatives and we get in general (8.19)).
We can bound tF by

tF(z) = L‘/ Me_lz;ﬁ‘Q py (dw)

Z—w

= O(N™2)t[|Vhl|oo = O(NT2) 072 floc 2,0,

which is a small correction to V + tf. Similarly, we have

_lz—w|?

tAF(2) = tAR(2) / = _w pv (dw) — 26Vh(2) / (vwez - >uv(dw)
+th(z) / <Awez _w ) v (dw) = O(N—V/2Ho+e),

where for the last estimate we integrated w by parts to avoid the singularity.
O

By using the local law of Proposition in the loop equation, as in [0,
Section 7], we obtain the following estimate. Recall that A{/ was defined in

(8.1) and satisfies ([8.13]).
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Lemma 8.7. Suppose that the assumption (8.18)) holds. Recall o is the
parameter in the definition (8.1). Then for any 0 < |u| < O(t)

_tBN(X‘f/ _A\f/+uf)

(8.22) BN logEye
_tN miaz) - L bre [BG (4l
== /|Vf(2)| m(dz) ﬁYV + . Re ; EVS (AV; ) ds
+ON T2 ) + O(EN0> N7 £3,)
T ONTYEY £y,
1 tBN XY,
(8.23) tﬁN log Eye™
_ v m(dz) — fo
/\f )= ¥

hs,
+ - Re / Vtsf <A Visf +AV+sf> ds
+ow T flly ) + OUNT TN f])
+ OV ).

Proof. We focus on ; the second bound can be proved in a
similar way. Note that the expectation on the right-hand side of is
with respect to the standard Coulomb gas without local angle term, and
that the terms Avsjrsf are with respect to the external potential V + sf.
The estimate was essentially obtained in [0, Section 7] already. The
short range angle term7 A}‘l/j__sf, was difficult to estimate in [0, Section 7).
In , we added an angle term in the Hamiltonian so that there is no
such short range angle term on the right side of . The following proof
is written for u = 0 for the simplicity of notations; we will remark on the
modification needed for the general case in the proof. Furthermore, the error
A}‘Z’_ — A}‘L/;u 7 will be estimated in Lemma

We denote by Z; the partition function corresponding to the Hamilto-

nian (8.15)). Then the left-hand side of (8.22)) can be written as

I 1
tﬁN(IOth log Zy) +N/fd,uv—t/ [ BNlOgZ +N/fd,uv]

Using the definition (8.15)) of G, we get

1 )
8tﬁNloth+N/fdm/:N/f(duv—duw)+Re]E%<—X(Z+A{/>.
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As t <1 and Af is bounded and supported in Sy, the supports Sy and
Sy, coincide. Together with the explicit formula for the equilibrium mea-

t

sure ([1.6) and with (8.20]), we have

Nt N
N [ sy = apn) =5 (1952 dms 3 [ irear|dm
T 4
Nt

= [ 194 dm e O 2N

where we have integrated by parts twice in getting the last inequality and
also used that the support of the integrand has area O(b?). Using with
the choice V; for the external potential (and the unperturbed Coulomb pair
interaction), we have

(8.24) EG (- X7, +Ap7)

1 1
G ht E hi,+ hi,— h,—
k

The perturbed interaction Gy satisfies G¢(2;, z,) = Gy(2k, 2;) and the growth

assumption ({8.5)), so Lemma applies. Together with the definition of Gy
3 h C7

and recalling Wy; = Wi, we have

(8.25) EG | Wi+ (h(z) — he(21))0z, Re Wy, (25, 2)
j#k
G{, Gt»ht
- 5 (w5

1
- 51@3; > (hi(z)+hi(2r)) (D, + 02,)Gi(z5, 21)
j#k

In summary, equations (8.24)) and (8.25)) give
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1 Nt
(8.26) 8tloth+N/fduV: M/]Vdem

BN
+ ReES: ( - Nlﬁ Zk:aht(zk) — Al Al oAl
- % (he(2) — hu(2))0=, Re U5, (25, 2)
J#k
+ % (he(25) + he(2k)) (02, + 02,)Gi(2j, zk)>
J#k

+O(tb 2 N) | 1% 2

We now evaluate all terms in the above expectation. The difference A}‘L/:’f —
Az/’_ is bounded in Lemma [8.8) below. For the general cases with u # 0,
A )

v should be replaced by Ay, 5 Notice that Lemma is valid for all
0 <lul <O(1).
The other terms are bounded as follows. By (8.16)),

1
(8.27) Re (' <—Nﬁ > 8ht(2k)>
k
1
=3 Re / Ohy dpy, + O(N~Y240) [V hel o 2.6-
To compute the main term on the right-hand side, recall that V; = (V +

tf) + tF. By integration by parts and the explicit formula for the equilibrium
density,

(8.28) - ;Re / Ohy dpiy,

_ b __of
~ 4B Re/a (88(V+tf)> AV +if)dm

+0 <t/8htAF dm)

:—LL;B/AflogA(V%—tf)dm—l-O(tfahtAde>

1
:—f¢+OG/Mﬂ%@»HMF%WWNQM

1 _ o
= ¥ + 02N s
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Finally, differentiating ¥ and using give

N Z (hi(zj) — hi(2))0:, Re ¥, (zj,zk)
J#k

t l25— =52 2 — z1)? .
cﬁuvmugo d e <1+’”92’“’>+e—N,

j;ﬁkZZjEQ

where (2 is the N¢#-neighborhood of the support of h. Using the boundedness

of the local density, implied by (8.16|), we have, under the assumption ({8.18)),
that

t
(8.29) Re IE‘G,: ~ Z(ht(zj) — he(21))0z, Re U}, (2, 2)
j#k

= O(tN?750%)||Vhe || % = Ot > N>7*9) || 1%, 2,
Similarly, yields
1
N D (he(z5) + he(2))(02, + 02)Ge(2), 2)

Jj#k
- % Z(ht(zj) + ht(zk))ah(zj) — ah(zk)e*%

I
J#k o

t _lzgmal? _Ne
=0 NHhtHooHVQhHoo Y oe @ | +0(e ™)
j#kleGQ

|z —2p 12

=0 4||f||oo3b Z e me +0(e™).

JF#k:z;€Q

The local density estimate (8.16]) then again gives

1
(8.30) ReEy | > (he(2) + ha(21))(9z, + 0:,)Gi(2, 21)
jk
—O(Lb INZTE) 1130 3.0 = O N27T) [ £I5, 5.

N
Collecting the error terms and using (8.32)) and b > 6, we get the error terms

(8.31)  NTUEIERT | flgp + tNTOEN FF ), + NV ]|



The two-dimensional Coulomb plasma 947

This concludes the proof. 0

Lemma 8.8. Recall assumption (8.18)) and that hy is defined in (8.17). For
any 0 < |u| < O(t) we have the estimate

(832)  EG (A% - AYL,,) = OV | £y
+OMN" b )%, 4

An analogous estimate holds with E% replaced by Eg/

Proof. To simplify notation, we set u = 0 in the following proof as the general
case is proved in the same way. By definition,

_ N
(8.33) Ah“ Ah // (z,w) iy, (dz) fry, (dw)
#w
=, (2,w) pv (dz) v (dw) |
Decompose the integrand into

(830 (W5, — Uz w) v (d2) iy, (du)
05 (2 w) [iv, (d2) fiv (dw) — v (d2) fiv (du)]

To estimate the first term, using that
(8:35)  950hs(2) = O (IV flloclV? flloo + V2 fII%) = OO f 156 3.

with high probability with respect to the measure P‘gj * we have

(836) N / / ) (2, w) fiv, (d2) fv; (dw)

(837) <N /0 ds / /m 10:0h4(2)| 1(|z — w| < 0) v, (=) fiv, (duw)
(838) < OUN*"b72)|fl% 55

where we used the local density estimate Proposition and the factor

62b? comes from the integration restriction that z is in the support of f and
lw—z| < 0.
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Similarly we can estimate the second term in (8.34]). We start with the
bound that, with high probability,

N / / [v, (d2) — fiv1e(d2)] fiva (dw)

= O(N // (z,w) tAF(z) m(dz) fiy, (dw)
= O(N'2020?)|| Vi oo |[tAF || 0o

= O(N 279 | £l o 2.0t0 2| flloo,a

_ O(N71/2+30+5)b71||f||oo72’b

where we have used Lemma [8.6[ to bound || VA oo ||[tAF||oo and assumption
(8.18) in the last step. Similar argument also leads to

N [ [ 5w [ (@2) = s (@) g (o)

— O(NY) // (2, w) Af (=) m(dz) jiv (dw)
= O(N'2t0%0%) | Vil oo | A flloo = O(NZTH0™2) | £I[30 2,0-
Collecting all these bounds and using || fHOO a5 < |l fHOO 34+ We have proved

Lemmam 8.8l Notice that we have used assurnptlon in the proof so that
the right side of (8.32) does not involve || f||4,. This completes the proof. [

8.4. Proof of Proposition

The proof of Proposition follows the strategy in [6] by first estimating
the sum of the long and short range angle terms with the local law Propo-
sition

Lemma 8.9. For anye > 0, uniformly in 0 < t < 1 with t|Af]le < 1, we
have

(8.39) Eg (Agv;+ + A%;‘) = O(NV)bl[glloo,2.b-

Proof. The proof is exactly the same as that of [0, Lemma 7.5], using the
local density estimate Proposition Here A~ corresponds to t < N~1/2+9
in that proof and A1 to t > N—1/2+9, O

Inserting these bounds into (8.23)), we obtain the following rigidity esti-
mate. This estimate is essentially the same as the rigidity estimate for the
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Coulomb gas, i.e., [0, Theorem 1.2]. The only difference is that the estimate
is with respect to the Coulomb gas with an angle term, i.e., the measure
PG

Vv,

Proposition 8.10. Assume the same conditions as in Proposition[8.5. For
any € >0, s € (0,1/2), for any f supported in a ball of radius b= N—*°
contained in Sy with distance of order 1 to 0Sy,

(8.40) Xy < looap
with respect to the measure ]P"C}:t.

Proof. The proof is exactly the same as the proof of [0, Theorem 1.2]. O

Finally, using this rigidity estimate instead of the local law of Proposi-
tion we obtain the following improved bound on A*, which consists of
correlations at range longer than N~1/2t¢_ The proof of Lemma uses a
loop equation and will be given in Section [A.4] where a systematical treat-
ment of loop equation will be presented. We remark that a similar estimate
for Coulomb gas was already proved in [6].

Lemma 8.11 (Refined estimate on the long range angle term). For
any € > 0, uniformly in 0 < t < 1 with t||Af|lcc < 1 and for any function
g, we have

(8.41) EG (Af,’f) = O(N~7")b]|glloo,2,6-

In particular, when g = hy, the last term is bounded by O(N~77¢)|| f|l3p. For
a Coulomb gas satisfying (2.32) a similar estimate holds, i.e.,

(8.42) Ef iy (A%itf) = O(N"7")bllglloc,20-

Proof of Proposition[8-1 Proposition follows immediately from (8.22))
and Lemma R.11] O

8.5. Concentration of the angle term (macroscopic case): proof
of Proposition

In this subsection, we assume b is of order 1. The main input of the proof of
Proposition is the following estimate of large deviations type, which is a
direct consequence of Theorem
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Corollary 8.12. Assume that V satisfies the conditions of Remark[{.Z. Let
0<t<1and k< 1/24. Then for any f € €° whose support is contained
in Sy and has distance of order 1 to the boundary of Sy, assuming that
t|Aflo < 1, we have

1 f tN 1 1
—_logE —WVXv:/ 24 ——
N ogEye o [V f]*dm + v

+ONT /(L +[|Afllc,3)? + O | AfIZ-

Proof. By Theorem we have

1 _ f N
(8.43) w—NlogEve BINXy — N/fd/w - vy = Iv)

1 1\1 1A
+ (2 - 5) n (/ pv+tflog pvyey — /PV 10ng> +O(t'N7"),

with an f-dependent error term. More precisely, by Remark with V
fixed, the f-dependence of the error term can be taken to be O(t~!N—%)(1 +
N

Using that py = =AV1g, and pyip = £ (AV + Af)Lg, for f with
compact support contained in Sy such that tAf < AV in its support, an
explicit calculation (see, e.g., [0, Proposition 3.1]) shows that

2
(844) IV+tf — IV = t/fdMV — 8771' / IVdem,
and that
1
(8.45) n </ pv+if 108 pv ity — /Pv 10gpv>

1 1 PV +tf
== [ Af1 - log [ 241
47r/ flog py + ” /PVthf 0g< P

_ 6 Aflogpy +0 [t [ (Af)?),
47r/ </ >

where for the last equality we expanded log(1 + tAf/AV) to first order and
used [Af = 0. Equations (8.44) and (8.45)) in (8.43)) conclude the proof. [

Proof of Proposition[8.2. Let r be as in Corollary B.12] and write W =V —
tf. By an elementary identity as in (8.4)), we have

L log ]E,VetﬁNA{/-%—uf =

BN <1Onge—/3Nt(Xé—AC+uf) — 1Onge—/3NtX‘£> _

1
t3N
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We can replace X{; by X{V in the two exponents in the above equation
since X‘J; — XI]:V is a constant which cancels in the above expression. Also,

A{/+uf = A€V+(t+u)f' By Proposition
t;N log EweiﬁNt(XgViACVJr(tJru)f)

1
= SVl + NTO(N> + N7 4 N7V (1| ] c.0)”.

By Corollary m with V replaced by W, we can estimate the last term
log Eye #NtXw - Recall from (8.28) that YV{/ = Y‘f +O (¢t [|Af]*dm).
Putting all these bounds together, we have arrived at

i 1
locE tBNA(/+“f — _7yf N¢O tNZo' N—°

+ T INTE 4 NTYEBOY 1 4| flloes)?

This proves (8.3) in the specific case t = N7 = N —2/35  Moreover, the
bound also holds as claimed for smaller ¢ by the monotonicity of ¢ —
-1 X : : : _ Af 1vf

t~1logE(e!*) applied with the choice X = BN(Ay oy +2Y7)- O

8.6. CLT for mesoscopic test functions

To extend the proof of the central limit theorem to test functions on meso-
scopic scales, it suffices to prove the following estimate for the local angle
term. Recall that A{/ was defined in (8.1)) and satisfies (8.13)).

Proposition 8.13. Suppose that V satisfies the conditions and .
Let s € (0, %) and assume that f is supported in a ball of radius b= N—%
contained in Sy with distance of order 1 to the boundary 0Sy. Then there
exists T = 7(s) > 0 such that with high probability under the measure P‘g,

o1 .,
(5.46) A+ 53| < (V)

This proposition can be proved by following the strategy used in the
proof of Proposition [8.2] after conditioning on the particles outside a meso-
scopic ball with radius of order b containing the support of f. Before imple-
menting this, we complete the proof of Theorem using .

Proof of Theorem[1.3 for mesoscopic test functions. We apply (8.23) and we

need to estimate the term % Re fg ng tsf (A?,Jr_s st A}‘;Jj; f) ds on right hand
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side of (8.23]). The term A™ is again bounded by Lemma To estimate
the expectation of A~, we now use (8.46)) which implies that with high
probability

1
hs,— _
AViap = =5 e + O fllocs

1 . -
_ _§Y‘f +OM T3 4 5b72) || Flloosn

where we have used Y‘}cﬂf = Y‘; + O (s [|Af]*dm) as in (8.4F). Clearly,
the high probability estimate immediately implies the same estimate under
expectation. Integrating s from 0 to ¢, this implies an estimate on the term
1 Re fot ES ,of (A]‘l/+_,5f + A}"/J:;f) ds. Inserting this estimate into (8.23)), we
have completed the proof of Theorem O

In the remainder of this section, we prove Proposition [8.13l For this,
we use the approach of local conditioning of [6] and then proceed as in
the proof of Proposition The local conditioning and its properties are
given in Section [2.6] Relative to the conditioned measure, for f compactly

supported in Sy C Sy, the definitions (1.11)), (1.12) translate to

X{y =X =S fG) - M / Fdpuw,
J

1
YJ:YV{, = 47T/Aflogpwdm,

where py is the density of the absolutely continuous part of uyy; inside the
support of f, this density equals that of py up to rescaling. The angle term
relative to the conditioned measure is

(8.47) _
of (2)

. . M - 7 7
Al =l =i [ |, T i) i (dw), By = s,

The following proposition is a conditioned version of Proposition [8.2)
Note that Lemma [2.6]implies that the assumptions of this proposition holds
with high probability. Thus by the Markov inequality, the following Propo-
sition [8.14] immediately implies Proposition [8.13]

Proposition 8.14. Let W be the conditional potential defined above and
assume that it satisfies the conclusions of Lemma [2.6 Choosing the local
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angles cutoff 0 = M~Y/247 with o = 7/6, for any 0 <t < M~27/3 we have

i1
(8.48) log Eyye!™M (At 2Y5) = O(M /) (1 + || fllows.)*

tBM

To prove Proposition we need a version of Theorem for the
conditioned measure. Recall that uy denotes the unique minimizer of the
energy functional

349 T = [ [ on = (a2 ) + [ W) ula),

defined for probability measures supported in B, and that its minimum value
is IW = IW(/JW)'

Theorem 8.15. Let W be the conditional potential defined above and as-
sume that it satisfies the conclusions of Lemma[2.6. Then there exists T > 0
(depending on the constant T in Lemma but possibly smaller; here we
have abused the notation and use the same symbol T) such that with (¢8 € R
defined in Theorem

1 c
i log e PHw (@) @M (4g)
BA{

1
= —MIy + %P + 5 log M

; (; - ;) | o) 1og pus(2) m) + O ),

where pyw is the density of the absolutely continuous part of pywy .

Proof. We apply the local version of Theorem [I.1] i.e., Theorem to the
conditional Coulomb gas satisfying the properties stated in Lemma [2.6] To
apply Theorem we first rescale and center the domain B, which is a
disk of radius b, to the unit disk D with center at 0. Since the translation is
trivial, we will assume that the center of B is already at the origin. Denote
the rescaling by z = bu and define the new Hamiltonian HS,(u) through the
identity

(8.50) / e*BHSV(Z)m®M(dz):/ e*ﬁﬁg‘/(“)m@)M(du).
BM DM
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Hence HS,(u) is a Coulomb gas with external potential W (u) = W (bu) up
to a constant. More precisely,

HS,(u) = HS (u/b) — 2M B logb

1
= HE (u) — M(M —1)logh — BMlog b2

By Theorem there exists 7 > 0 such that

1 c
— 1o e PHW(2) @M (g,
M %% | (dz)
1 1 1
= ——1o e P (W) m®M (qu) + M logb — ( - ) log b?
BM %% [y (du) 77 \27 )"
1
= —M(I;, —logb) + ilogM
1 1
+ (2 — ﬁ) [/ pyir (u) log py, (u) m(du) — log bQ} +O(M™T).
D

Recall the normalization conditions for the densities [ py (uw)m(du) =1 =
[ pw(z)m(dz). Hence pyi,(u) = pw (bu)b® and we have

[ v () 10g @y mica) ~ dogt = [ () 1og pg (2) m(d).
D B

A similar argument shows that (Ij;, —logb) = Iyy. We have thus proved
Theorem . 0

Proof of Proposition [8.14 By assumption, the potential W satisfies the con-
ditions of Theorem and therefore the assumptions of Proposition (8.1
Together with using Proposition to replace Theorem the proof
of Proposition follows in exactly the same way as that of Proposi-
tion O

As in the proof of Theorem 8.15] one can also derive a conditioned version
of the CLT, stated below; we omit the details of the proof.

Theorem 8.16. Suppose W is the conditional potential defined above and
assume that it satisfies the conclusions of Lemma[2.6 Then for any B > 0,
c € (0,1) and large C > 0, there a positive constant T > 0 such that the
following holds. For any f: C — R supported in the ball with same center
as B and radius b(1 — c) and satisfying | |4, < C, and for any 0 < A <
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M'"72" we have
VIS S SN
(8.51) log (EMwﬁe 23l ~(5 -9 )>

/|Vf m(dz) + O(M™™).

Note that the measure associated to the external potential W + ﬁ fis
a perturbation of the original measure provided that

IMNAf| < IMAW| = [NAV].

Our assumptions || f||;, < C and A < M'~?7 guarantee this condition. Also
note that, in the context of the above Theorem [8.16] our test function has
shrinking support so that

1

v = /Af( )10gpw( ) dm(2)

AV(z)
/Af AV( )dm(z)

Hf”oob2||v||sv,oo3 (1)?

where we used (2.30)) and denoted the center of J by z9. Thus Theorem
with A of order 1, implies there is no shift of the mean in the convergence
to the Gaussian free field for mesoscopic observables:

d
X7, N%;w(o 3 |Vf]2>.

Appendix A. Rigidity estimates for Yukawa gas on torus
In this appendix, we prove Theorem [2.4] and Proposition 2.5 The proofs use

the same ideas as that of [6] Theorem 1.2]. We will also prove Lemma
by the same argument.

A.1. Loop equation

As the first step, we state the loop equation for the Yukawa gas on the torus.
Given a function v : T — R, the function W : TN — C was defined by
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(8-6)). For simplicity of notation, we denote it by W (z) in this section, i.e.,

(A.1) Wi (z) = =Y (v(z)) — 0(21)OU" (25 — z)
i#k

+ ; Z div(z)) — NZ v(z)OV ().

By Lemma EgZ(W{}) = 0 since the Yukawa interaction Y* (and there-
fore U*) are functions of zj — z. Given ¢ : C — R supported in Sy, further
abbreviate

where py denotes the density of uy (2.14) with respect to the Lebesgue
measure. The following lemma extends Lemma from the Coulomb gas
to the Yukawa gas.

Lemma A.1. Foranyq:T — R of class €% supported on Sy and z € TV,
recall X7 defined in (1.11). Then we have

(A3) X0 ——iwh@)+ L Z Oh(z)
+N / [ (42) = w)oU"z )y (@) ()
Ry / 90— ) (@) (),

where m = £~ an h is defined in (A.2). Thus for any smooth enough f :
T — R with

(A1) 0=~ [ fam-mia (f -/ fdm)

supported in Sy, where A is the Laplacian on the torus, we have

(A.5) X/ = —WV Zah )

LN / / . (w))OU (=2 — w)jiy (d2)fiv (dw).
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Proof. As in the proof of Lemma we have

(A8) 2 [0 w v (du) =0V (),
(A7) ale) =5 [ (~409g(w) + mP(w)U'(: — wm(du)

— 5 [ (400w)OU"(: ~ w) + mig(w)U"(z ~ w))m(dw),
where again the first equation holds for z € Sy by the Euler-Lagrange equa-
tion, the second equation holds by the definition of the Yukawa potential as

the Green’s function of —A + m? and integration by parts — the boundary
term vanishes by periodicity. We therefore have

X7 —22/ w)OU (2 — w)py (dw) —l—Z/ YU (2 — w)py (dw)
—2N // h(w)OU*(z — w)py (dw) py (dz)
m2
=25 [ [ ot - @y (@z)
=2 [ [ (htw) = WOV (: — w)ady (du) + 3 hlz)aV ()

J

N / / (h(w) — h(2))0U* (= — w)y (duw) v (d2)
L // w)T(z — w)iv (dz)py (dw).

In the first equation we used (A.2)) and (A.7)), and in the second equation
we used (A.6)). Since the integrands in the double integrals are symmetric,
we arrive at

= _72 h(z1))0U* (2 — z1)
Jj#k
oy / ()OU* (= — w)jiy (d=) v (dw)
Nm?

+Zh<2j>av<zj> o , 90— Wi (@) (),

which is equivalent to (A.3)).
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For the consequence, note that moving the last term on the right-hand
side to the left-hand side, the left-hand side becomes X/ with

fz)=a(z) = 5 q(w)U*(z — w) m(dw) = (1 = K)q)(2),
where
1-K=1-(1-£A)" = WZAZA—l’ (1-K)'=1-m?A~1,

Therefore, given f as in the assumption, we can choose ¢ = f — m?A~Lf.
Finally, since [ duy = 1, we have X"; = X‘];_c for any constant c. Hence
the assumption f,ﬂ, fdm = 0 is trivial to remove. (]

A.2. Estimate on two-point correlations

For the analysis of the loop equation, we need weak decorrelation estimates
for two-point observables. The following simple estimate based on Taylor
expansion and the boundedness of the local density. Let w; be a nonnegative
mollifier such that f wt(z) dz = 1, wy has support in a square of side length ¢,
and Hw§")\|oo < Cpt=2m for all n > 0. In the lemma below g is an arbitrary
function on T?, unrelated to the normalization .

Lemma A.2. Consider the Yukawa gas on the unit torus with range
N~12+t0 <0 < 1. Recall the definition and the notations of Propo-
sition . Fiz a scale t with N~Y29 <t < N~7. Then for any fized p € N
and € > 0, there exist functions |FU%) (z,y)| = O(|V7g(z,y)|) such that the
following bound holds with high probability:

(A.8) [[ atzvwyitaz) igaw

—ZZ// FUR (2, ) m(dz) m(dy)

J=13 k=)
< ([ ot wdints — ohat — ) atas) aw)
+ 0l I1),
where || - ||1 is the L*-norm over T x T, and

ok(z,y,z,w) = cx(x — z)k (z — z)k2 (y — w)k3(y - U_))k4.
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Remark A.3. This lemma uses only that the density is locally bounded
w.r.t. the Yukawa gas. In its application, we choose ¢ such that

tpnggp)HLl(Tx'ﬂ‘) <N

If g is a function smooth at the scale W, say, then t = WN"¢ is such a
choice.

Proof. By Taylor expansion, for any (z,y) € B(z,t) x B(w,t) (defined in
(2.24)) we can write

p—1 4
(A9)  glz,w) =) > (H((%J’“Q(%@) ox(,y, 2,w)

=03 ki=j,a;€{z,z,y,5} \i=1
+ RP(Z7w LT, y)a

where
Ry(z,w:z,y)

1
e / (1= $)PVPg(z + s( — ),y + s(w — 1)) ds @p(a,y, 2 w)
0

is the remainder term. Here VP is understood as a multi-indices differentia-
tion operators with total degree p and the right-hand side of R, is understood
as a sum over all indices with |p| = p. We now rewrite

(A.10) / / oz w) fi(dz) fi(dw)
- / / 9z w) i(dz) fi(dw) wi(z — o) wi(w — y) m(dz) m(dy),

and insert the equation (|A.9)) into this identity. This gives the sum in (A.8))
with

4
(A1) PO @,y) = > (H(aai)kig(w,y)>=O(|Vj9(rc,y)\).

a;e{z,z,y,y}; \i=1
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To complete the proof, it remains to bound the remainder term

‘// By(z,w: 2, y) fi(dz) [L(dw)‘

=C // /01(1 — $)PVPg(z + s(z —x),y + s(w —y)) ds

< [ J[ oot 0 i(02) afdw) wn(z - ) wnteo - y>] m(dz) m(dy)

<c [[o(s)w.w) midz) m(ay
] oot w)iants = o)t = ) ) )

X sup
x?y

By the local law, Theorem i.e., that the empirical density is bounded
with high probability, for any function k supported in a square of size w >
N—1/2 we have

(A12) / k()] A(d2) < Cu? koo,

and the same estimate holds with ji replaced by [ since it is trivially true
for py . Hence

sup
x?y

/ / oo (21, 5 w) wi(z — 2 wi(w — y) fi(dz) i(dw)| = O).

This proves the the bound on the error term and completes the proof of the
lemma. Il

A.3. Analysis of loop equation and proof of Theorem

We next analyze the terms in the loop equation.

Lemma A.4. For any A >0, there is a constant C such that for any
smooth f : T — R supported in a ball of radius b with b > N=Y2_ there exists
fs support in a ball of radius bs := b+ Cslog N for 0 < s <log N such that
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h(z) = mé(l —m2A~Y f(2) can be written as
1 log N ds -
(413 = ey (29 e
+O(NT AHfHoo,l,b),
(A.14) 1 £slloc e, < CbA 8)2 N flloo b

It is useful to keep in mind that if f is dimensionless then fs has a linear
dimension 2.

Proof. We write

00 M o)
AL F(2) — DG F(y) — YT —tAGF(2).
(A.15) OA~'f(z) /0 dte2af(2) /0 dte" 28 ( )+/ dt e 29 f(2)

Since A has a spectral gap of order one w.r.t mean zero function and Of is
mean zero for any f with compact support, there is ¢ > 0 such that

/ dt e’ Gf(z) < / dt e 8 (2)ll2 < [l lloonpe M.
M M

We choose M = (log N)? so that this term is an error term of the form
N=4|f|l1 for any A > 0.
The heat kernel on the unit circle is given by

gt(x) =27 Z ki(x + 2mk) = ﬁeﬂﬁz/# 1+2 Z e ™R cosh(mka /t)

keZ k>1

where k() = (4mt)~1/2e=**/4 The heat kernel on the two dimensional unit
torus is given by Gy(2) := g¢(x)g:(y). Now change variables s> = t. Clearly,
the function Gy decays exponentially at scale s. Rewrite Gy = Gl + G2
with G1(2) = Gs2(2)nsc10g () where C' is a large constant and 74(z) is a
mollifier in a ball of radius a with n,(z) = 1 if |z| < a/2 (note that we have
changed the subscript from s? to s in G* so that the subscript indicates the
scale of the support for the functions G*). Define

z) = SQ/G;(Z —w) f(w) m(dw).

Clearly, fs is supported in a ball of radius bs and satisfies the bound (A.14]).
Certainly, when bg > 1, f, is supported on the entire torus. The error term
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involving G2 can be trivially bounded and the constant A can be arbitrary
large by choosing C' large depending on A. O

In next lemma, which is parallel to [6, Lemma 7.5], we estimate the last
term in (A.5)). The proof of this lemma uses only the local law (2.18)) (In the
later application, we only need V = f/N.)

Lemma A.5. Forany f: T — R, defineh as in Lemma and G(z,w) =
(h(2) — h(w))OU (2 — w). Then, for the Yukawa gas on the unit torus, we
have

a16) B (¥ [ Glevu) (s i (@w) =0 (v (145)) 1o

Proof. We first write

(A.17) oU (z) =Y _Ui(z) + U™ (2)

i<m
where U; is supported in £;/2 < |z| < 2¢; with ¢; = 27"/ and U™ is sup-
ported in |z| < 20, = N~1/2+e,

Case 1: U™ For any function k supported in a ball of radius b, using the
fact that the empirical density is locally bounded up to a factor N¢, with
high probability we have

(A.18) ‘N / / (Ok(z (w)U™ (z — w) fi(dz) f(dw)
< N2 p? \V2k||oo < NP2 11K so.2.00

wherel? b% comes from the volume in the integration and we have used |(z —
w)|U™)(z —w)| < C.

Recall that h is defined in Lemma [A74] We can apply the previous in-
equality to k = f. To bound the other contribution due to the integral of
(~20f,, we use that f, is supported in a ball of size b, and apply and
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(A"14)) to obtain (ignoring the small error N=4 from (A.13))

ez/ ds/ (9fu(2) = Bfs (W)U (z = w) i(d2) f(dw)

Nl—l—ag%n log N ds
< /0 © A5 s

72
< N*[1+ (\/Nem)_ ] bl|Alloo,2,
< N* [1+ (\/Ngmrlf”f’\oo,?,,b-

Case 2: U; for a scale ¢; := g < ¢ (notice that ¢ is also used to denote the
function in Lemma and ) Suppose that k is a function supported
in a ball of radius r (note that r can be either smaller or bigger than ¢). We
will prove

(a19) B (N //m = KUz 0 v (42 v ()
— O(N*)A(q)r| Kl

where A(q) := 14 ¢/~ + (v/Nq)~!. Summation over i < m will give an ap-
propriate bound Let M;(z,w) = (k(z) — k(w))U;(z — w). Our goal is to
bound fo (z,w) fry (dz) oy (dw). Treating k(z) — k(w) as a multi-
plicative factor we can apply Lemma m to the function U;(z — w) with
the scale s in the lemma replaced by ¢N ~¢. By applying the decomposition
for fixed and large enough p, for each 1 < j < p and k we need to
estimate

(A.20) // F(j’k) (x,y)Q ym(dz)m(dy),
Ly = [ [ (62) = bw)ono, .2,z — b - ) ),

where wy is a smooth mollifier at scale ¢ (more precisely, ¢ N ~¢ as mentioned
in Remark The reader can follow through this minor change in the
following proof).

We now prove that the contribution from j = 0 in the decomposition of
the left hand side of is bounded by the right hand side of (A.19).
Recall that when j = 0, ox(z,y,z,w) =1 in (A.20). Rewrite k(z) — k(w) =
(k(2) — k(z)) + (k(y) — k(w)) + (k(x) — k(y)) and we consider the term in-
volving k(z) — k(x). The other two terms can be estimated in a similar way.
Let Ry(2) = (k(z) — k(z))wy(z — x). To prove (A.19), we apply the local law
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to have
(a21) | f(h:) = kool — ) e

< AN IV R () ) IR (D)) O+ N H AL R ()

and

(a2 | [t —pitaw)| < v 190w - )l

(w0 = )l 2
+ N7Eq| Ay (w0 = )]
< g INTETEA(g).

We now claim that
(A.23) ' [ vt pmiarmay)
X VB a(e) + IR (D)o O+ N2l AL Ra(2) o] \
<@ o+ 0+ N2 ko = Alg)r Hllr

If this holds, then the last three inequalities imply the 7 = 0 case of (A.19).
To prove (A.23)), we first consider the case r > ¢. Recall |U;(z,y)| <
¢ '1(]z — y| < q). Furthermore,

IVeRe(2)l|La(z) < (R(2) = k(7)) Vg (z = @)l Ly(2) + llwg(z = 2) VE(2) || La(2)-

Clearly, the contribution of this first term involving ||V, Rz (2)1,(-) on the
left hand side of (A.23) is bounded by

] / / Us(, y)m(dz)m(dy) || (k(2) — k() Vosg(z — 2) | ooy
< ql| Vhlloo / m(da)1(dist(z, supp k) < ) |qVwq(z — 2) | 1a(e)
<12 VE]oo < rllklloo 2

All other terms are bounded similarly and we obtain (A.23) in this case
r>q.
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We now assume that r < ¢. In this case, we view

k(z)wq(z - .’L‘) ~ k('z)ﬂdist(x,supp kz)gqq_Q

and obtain

[ Kt o) e

N o , v
< Latmm oo iy | IK s + g2 4 AR e

_ _1
< ]ldist(:p,supp k)<q4 2TN 2+€Hk||0072,7"7

where we have used r < ¢ </f and N —1/2 < r. This implies that

/ / Ui, y)m(dz)m(dy) / K2z — 2) pldz) = O (arN =+, ).

Similar inequality holds with k(z) replaced by k(x). This concludes the proof
of , and therefore the contribution from j = 0 in .

One can check in a similar way that the same bound holds for any j
since the factor ¢~/ induced by the derivatives on U; is compensated by the
size of the function @y. Notice that for all j, we need at most two derivatives
on k; all other derivatives will apply to explicit functions depending on U;.
Summing over all j and ¢ and using ¢ < C¥, we have thus proved

(A.24) ZN// M;(z,w) iy (dz) ay (dw)

i<m

<N AW Ellco 2.

i<m

< N%[1 4+ (VNL) )27kl oo,
From the definition of h in Lemma[A.4] we need to consider two contributions
of h: one is k = Jf, the other involves the s integration. Since f is supported
in a ball of radius b, the contribution from 0f can be trivially bounded by

N%[1 4+ (VNL) P8l co2s < N2 (14 (VNLL) 1 f oo 0

where we have replaced r in (A.24) by b.
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Applying now ([A.24) to k = df,, we bound the other term of A involving
s integration by

log N ds
—bsll0 slloo 2, + N7 Flloo 1

log N ds
— (0N I flloc+ N1l

NE[L+ (VNG R [

0

< NE[1+ (\/mmYl]zﬂ/
0

b2
< N[+ (V) 1 oo+ N4 fllso s

where we have again used (A.14)).
Combining Case 1 and 2, we have bounded (A.16) by

2
(a25) 8%\ (14 (V) ) 4 N (1t G 1 llan N

where the term N2 [1 + 2—2] comes from the Case 1 and the other terms
come from Case 2. Recalling ¢,, = N~1/2%¢ we have proved (A.16). O

Proof of Theorem [2.4, We will assume V' = 0; the general case can be proved
in a similar way. We again employ the loop equation and calculate

3logEf e — 2 / ds T og B e
:/0 ds <—]Esf/NXsf/N+N/f(,uo—#sf/N)>
/ dSEsf/N<NWshf/N ]\;ﬁ Zahs(zj)
N [[[ul2) = ma@)OU" e — )i (d2) g ()
+N/f(ﬂo—usf/zv)),

where hg(z) = mé(l —m?A~1) f(z) and sz as in (A.2). By Lemma
[A.5]

B

sf/N // W)U (2 — w)jisp/n (d2)fis /v (dw)

O( (1+ ))ufnoogb
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By Lemma EsU;/NWff/N 0. Using m = 1/¢, we have

/OtdSN/f(#O_st/N)
- —N/Otds/f(z) [MSN(A —m?) f(z)m(dz) + Zi(CO = Csf/N)

t S
=0 [[as gt [ Fa 4w ) OO

where we have used (co — c4s / N) = 5% [ f(z)m(dz) which is a consequence
of (2.14)) and the normalization condition f MV = 1. Finally, using the fact
that the local density is bounded and (A.14)), we have

t 1 e
/0 s 75E4 v D Oha(z) = 000 DF =~ m* A7)
J

b2\ o
—0(0) (1+ 2 ) 1l

Collecting these estimates gives

2

. (b
(4.26)  LlogEle Wo—o(zv (1 52))[t\|f||oo3b+t2uf||oo3b]

B

By Markov’s inequality with ¢ = 1/||f[[., 3, thls implies X = O(N®)(1+
b?/0?)| f|l 35 With probability at least 1 — e™™", which proves Theorem.

With Theorem proved, we can now prove Proposition

Proof of Pmposmon . We apply the identity (A.9) which expands the
left hand side of (2.25]) into a Taylor series with error term To prove ,
we only have to estimate each term in the summation in . From the
rigidity estimate Theorem we have

2
(A20) N [(o =2 @ - 2.z - 0)lds) = OV)s 2 (14 7)",
and a similar estimate holds around y. These two bounds together imply that

each term in the summation in (A.8) is bounded by O(N®) (& + &) s7(|Vig|
and this completes the proof of the proposition. O
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A.4. Proof of Lemma [8.11]

In this subsection, we prove Lemma, which is an estimate with respect
to the Coulomb gas with an angle correction term. Recall the definition of

the long range interaction in (8.11)), given by
N - -
At =3 [ W w @) v dw),
z#w

where

Uy (z,w) = @f (2 — w)(2 — @) (h(2) — h(w)),

lz—w|?
T 1 —e 20

o0 d
Ol (z—w)= [ ®(z—w, 1)+ =
fe—w)= [ a-wn

|z —w]?

Our proof of Lemma is based on transporting a proof for the Yukawa
gas to the Coulomb setting. For this purpose, recall that the long range part
in the decomposition (A.17)) for the Yukawa gas is of the following form

(A.28) Go(z,w) = (h(z) — h(w)) Y Ui(z —w

<m

with £, ~ N~Y/27 for some o > 0 fixed. Using the rigidity estimate ([2.23))
for the Yukawa gas, we claim that

(A.29)

Y <N / / Gl v(d2) [J,V(dw)>‘ < N7+ |[ |

To prove this bound, we keep the estimate (A.21]) unchanged but for (A.22]),
instead of the local law, we apply the rigidity estimate (2.23))

(030 | [ew - i) 8514 2t = Dl
Using |lwg(: — ¥)|loo,3.¢ < ¢ 2, we therefore improved (A.24)) to

(A.31) ZN// M;(z,w) v (dz) fry (dw)

<m
2
) Plllsor,

<¢Jzivem< m
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gaining a factor (VN4,)~! over (A-24). This proves (A.29). Notice that the
extra derivative required in applying the rigidity estimate is performed on
the test function w, so the number of derivatives required on h remains the
same when compared with the earlier results relying on the local law.

We return to estimating A™, ie.e the proof of Lemma for Coulomb
gases with or without an angle correction term. Notice that \I/; (z,w) is of the
form k(z — w)(h(z) — h(w)) with k(z —w) = ®; ( — w)(z — w). Hence we
can apply the decomposition and express A1 similarly to G in .
Due to the short range cutoff by @ in the definition of ®;, we effectively
have a cutoff at the scale @ = N~1/2t9_ This is consistent with the choice
of £y, ~ N~V/2to ip . Instead of the rigidity estimate for the
Yukawa gas, we apply the one with respect to the Coulomb gas with an
angle correction term, i.e., (8.40). Notice that in (8.40), [lwg(- — ¥)|l0,3,¢ in
(A.30) was replaced by ||wy(- — y)|loc,4,q- Since w is a smooth mollifier, both
norms are of the same order. Following the argument in the proof of ,
we have therefore proved Lemma [8.11

The key observation in this proof is that the application of the rigid-
ity estimate yields an improvement over the local law for all functions of
scales bigger than N~1/2+¢. So any estimates based on the local laws can be
improved by a factor N—¢ for functions at scales greater than N—1/2t7,

Appendix B. Local law for the Yukawa and Coulomb gas

In this appendix, we prove Theorems[2.2}2.3] Our presentation follows closely
that of [6] and we therefore mainly present the differences. The interaction
in Theorem is a Yukawa potential instead of the Coulomb potential in
[0, Theorem 1.1]. To allow for this change, we first develop generalizations
of the basic potential estimates used in [6] to the Yukawa potential. Once
these estimates are given, the rest of the proof is parallel to that of [6, The-
orem 1.1]. The proof of Theorem is essentially the as same as that of [6]
Theorem 1.1] under slightly generalized assumptions. Its proof requires only
minor adjustment to the original proof which we will comment on later in
this appendix.

B.1. Some potential theory for the Yukawa potential

We start with properties of the Yukawa potential. They are parallel to those
of the Coulomb potential used in [6].

The following proposition characterizes the Yukawa potential of the equi-
librium measure in terms of an obstacle problem. The proposition is similar
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to the analogous result for the Coulomb case, but requires a slightly differ-
ent characterization of the admissible potentials than the one stated for the
Coulomb case in [24], for example. We give a proof for completeness, as we
were unable to locate a suitable reference.

Proposition B.1. Under the assumptions of Theorem the following
holds. Define

(B.1) uy(2) = sup{~UL(2) +c: ~U,+ ¢ < Vv >0,v(C) < 1},

v,c

where the supremum is over measures v and constants c. Then uy = —Uﬁv +

cy where cy is the constant in (2.13)).

Proof. By definition, uy,, > U , +cv since the rlght hand side is a sub-
solution of the same form as 1n51de the supremum in . To prove that
in fact equality holds, suppose otherwise that wy ¢(z9) > —U ﬁv (z0) + cy for
some zg € C. Then there exists some positive measure 7 with 7(C) < 1 and
constant ¢ € R for which —Ug(zo) +ec> —Uﬁv (20) + cv. By considering 7| g,
for R > 0 large enough we may suppose that 7 is compactly supported, and
by convolving with a smooth mollifier we may suppose 7 has a smooth den-
sity. Consider the function

g(z) = max(—Ug(z) +¢, —Uﬁv (2) +cv).

By writing max(a,b) = “TH’ + @ and convolving the absolute value by
a smooth, compactly supported, symmetric mollifier, we may check that
g(z) = —Uﬁ (2) + ¢ for some positive measure 7, and necessarily ¢ =
max (¢, cy ). To show that g is a subsolution of the form in we need to
show that n(C) < 1. For this, suppose without loss of generality that ¢ = ¢.

Denote D = {z: —Ug(z) +c< —Uﬁv(z) + cy}. Then

n(aD):/aDa( Ut - /A (~U’.))
=/(ﬁ—uv>+m /(—Ug—(—Uﬁv))
D D
~ [ =) +? [ (U= (U, w4 [ e -2
< (D) — py (D).
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n(C\ (0D U D)), we have n(C) < 7(C) < 1. Now,
g— (—Ufiv +ecy) =0,
(A= m)(UL = (<UL,) = n—p > mie—cy) > 0.

Since strict inequality holds in the first inequality for zg and the functions in-
volved are continuous, equality (as distributions) cannot hold on the second
line. But this implies 7(C) > uy(C) = 1, a contradiction. O

We also require the following properties of the Yukawa potential (2.1]).
Recall that

B2 Y=gl a= . whereglo)= [ el
1

In fact, g(a) = Ky(2a) where K is a modified Bessel function of the second
kind. In particular, the gradient of the Yukawa potential has the expression:

B3) vy =g

Vil _ 2l ] _ 7l
2£ —f(a)7

_— = / _— = —
20 =9 G =3 YA
where

fla) = / a(s + 1/5)6_‘1(8‘*‘1/“”)E = / (14 a?/s?)e5Ta%/9)qs.
1 s

a

The function f is smooth in a > 0, satisfies f(0) =1, and is positive and
decreasing. As a consequence we have |VY*(2r)| < |[VY*(r)|/2.

Since VY*(z) ~ Vlog ﬁ for z — 0, the following formula follows
as in [6, (3.21)]. Let v € C be a C*' curve and 7 a measure supported on =y
for which the potential Ug is continuous on C. Then for z € v we have

(B.4) 8;U£(z) = lim n(Br(2)) + / VY42 —w) - an(dw),
g

r—0+ $(By(2))

where 0;; denotes a one-sided derivative in the normal direction n = n(z)
and s denotes the arclength measure of ~, if the limit on the right-hand side
exists.
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The formula (B.4) implies the following estimate for the density of a
measure supported on JD. For the statement, define

1 |1 — w|

B.5 I' = — d 0,1

(85 o [ 1 (M5 stawy e 0.,

and note that I* is increasing in ¢ with I* = 14+ O(1/¢) as £ — oo and I* =

O(¢) as £ — 0. The proofs of the following Lemma [B.2and are based on
elementary potential theory.

Lemma B.2. For any (signed) measure w supported on 0D, denote by
W= % [ dw the constant part of w. Then

(B:5) % -5] < Zetorttimom,

(B.7) ‘ d < 75105 Vbt

and

B8) UL = 5o [ 07Ul s(a2) < [0 ULl

Proof. By (B.4), we have

d 1

(B.9) d—c:(z) =5 ( ;U (2) — 2/VY£(Z —w) - ﬁ(z)w(dw)) .
For z,w with |z| = |w| =1 and z # w,

z—w oz z—w 1—w/z 1
Bl —_— s — = [ — — P Sn— J——
®10) e () e (i) <
and, by (B.3]), therefore
(B.11) —2VY Yz —w) -n(z) = f <|Z ;€w|> .

It follows that

(B.12) %‘;’(2) - <zanUfj(z) +/f ("" %“”) w(dw)) .




The two-dimensional Coulomb plasma 973

Integrating (B.12]), we obtain the identity

(B.13) (1—1 /w _ % [ o) s(a2),

Applying this identity to , since [dw = [ dw, we obtain

B14) O ULQ) l/ma;Uf;(z)s(dz) _ 2;/@@8;U£(z)s(dz).

:27r

This shows (B.8]). Similarly, from (B.12)), we obtain

dw

2 o1t
< —
dS ~ 27_‘_"671 UwH007

(B.15) (1-1%

which shows (B.7]), and also similarly,

dw 1 | - —w| 2 s
. —_— = — < oo-
w5 g [r(Bg) )| < e

d 20

To show , ie.,

dw 1

4 4
< — 71}
ds 2 = 27T||a" wlloo:

(B.17) It

HOO

write
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Taking absolute values on the supremum over dD, and using (B.15)), there-

fore
dw 1 |+ —wl
S M G B

dw 1 dw 1 1
>||l——-=—/d —a-IH|I1= - = [d —a-15=[ad
’ds or woo( )ds o woo( )27T/w’
dw 1 2
S el L 2 Ut

Together with (B.16)), we obtain (B.17)). O

We will also need the following properties of the function

(B.18) () = (Yf . ;213«”)) (2).

Clearly, [,(z) is radial, so we can define h, through VI,(z) = —(z/|z|)h-(|2|)
for z # 0.

Lemma B.3. For any ¢ > 0, the function h.(t)is positive, increasing for
t < r, decreasing fort = r, and

(B.19) he(t) > |[VY*(t)| fort>r.

Proof. That h,(t) is increasing for ¢ < r can be seen as follows. For ¢ > 0,
since Y is symmetric,

Vi(t) = VY (2 — t)m(dz)

|z[<r

= / Re VY (z — t)m(dz) = / Re VY*(2) m(dz)
U () U, (t)—t

where U,.(t) is {|z| < r} minus the region {|z| < r : Rez > t} and the reflec-
tion of the latter region about the axis Rez = t. In particular, the region
U,(t) — t is increasing in ¢.

To prove and that h,(t) is decreasing for ¢t > r, we use the Yukawa
version of Newton’s shell theorem: there is M*(r) > 1 such that for ¢ > r,

1

Dy YVt — 2) s(dz) = M (r)Y*(t).
nr ‘

(B.20)

z|=r
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Denote the left-hand side by f(t). Then f is a bounded and radially sym-
metric solution to (—A + 1/£2)f(z) = 0 for |z| > r. Therefore, for t > r,

(B.21) () + 1

1
—f(t) - ng(t) =
and the solutions to this ODE are of the form
(B.22) f(t) = Aly(t/0) + BKy(t/¢),

where the I, are the modified Bessel functions of the first kind and the
K, are the modified Bessel functions of the second kind, and A, B are
constants depending on r. The Yukawa potential equals Y*¢(z) = Ko(|z|/£).
Since Iy(t) — oo as t — oo, therefore A =0 and thus f(t) = BKy(t/¢) =
BY*(t) for some constant B = M*(r).

To see that B > 1, we assume that » =1 and ¢ = 1/2 to simplify the
notation (the general case is analogous). Denote by 6 the angle of z with
respect to the real axis so that |t — z|? = t? — 2t cos@ + 1. Recall ( and
note that the function g(z) = [* e~ Valstl/s) CLS is convex for x > 1 W1th
x =12 — 2tcosf + 1 and using the Jensen inequality, we have

f(t) =Eg(t* — 2tcosf +1) > §(t* — 2tEcosf + 1) = g(t* + 1),

E = (277)_1/d9.

It is elementary to check that

(B.23) lim M

tSo0 G(£2) =1

Hence we have proved that B > 1. (In fact, B > 1 for any r, ¢ fixed, but we
will not need this.)
In particular, for ¢t > r

(B.24) I(t) = — Yz —1t)
T Jz|<r

0. Ndr — MDY
_sz Y0 =Y
with MY(t) = #fg(2777‘)M£( )dr > 1. Thus, for t >

(B.25) Vi(t)] = M*(r)|VY*(t)] > [VY*(1)].
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The first equality implies that |V1,(t)| is decreasing for ¢ > r since |VY*(t)|
is decreasing. The inequality implies that (B.19]) holds. O

In Section[B:2]below, we require the following two technical lemmas to lo-
cate the bulk of the support of a perturbed equilibrium measure. Lemma [B.4]
is a small adaption of [6l Lemma 3.6] to the Yukawa case; Lemma is
a similar statement that applies to a radially symmetric potential on the
boundary of a disk instead of a point charge outside a disk.

Lemma B.4. For any z0 € C,w e C, o > %, and r € (0,1) such that that
|z0 — w| = 2r, there exist Z € C and k € R such that

(B.26) o(l(z0—2)+ k) = %Yz(zo —w) and
o(lr(z—2)+k) < %Ye(z —w) for all z € C.

Moreover, the point Z lies on the line passing through zo and w at distance
at most v from zg between zy and w.

Proof. By and since o > 3, the map z — oV, (20 — z) takes B,(z)
onto Ba|Vlr(r)\ (0) D BU|VYZ(T)\ D B|VY’5(2T)| (0), where we also used |VY€(2T)|
< 3|VY¥(r)|. Therefore, as in [6, Lemma 3.6], it follows there exists a unique
choice of Z € B, (z) so that the gradients of ol,(- — Z) and 3Y*(- — w) match
at zg. By choice of k, we can in addition arrange

1
(B.27) o(lr(z0—2)+ k) = iYé(zo —w).
It remains to be shown that with the above choice it is in fact true that

1
(B.28) o(ly(z—2)+k) < iYe(z —w) forall z € C.
As in the Coulomb case, the point must Z lie on the line between the points
2o and w, and it suffices to show the inequality on this line (by the same
argument as in the Coulomb case, [0l Lemma 3.6]). Moreover, without loss
of generality, we can assume that w =0, zg > 0, Z > 0, so that this line is
R. Thus it needs to be shown that

1 -
f(z) = §Y£(a:) >o(ly(x—2)+k)=g(z), zecR

As in the Coulomb case, denote by h the common tangent of the graphs
of f and g drawn at x = zy. Since f is convex and g is concave on [Z —
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r,Z 4 r|, the graph of f lies above h and the graph of g lies below h on this
interval. Especially g(z) < f(x) on [Z —r, Z 4 r]. Moreover, since f'(x) <
0 and ¢'(x) > 0 for z € (0, 2), the inequality g(x) < f(z) holds by these
observations for z € (0, Z + 7].

To prove the inequality for x € [Z + r,00), we have ¢'(t) < f'(t+ 2) <
f'(t) by (B.19), for t € [+ r,00). It follows that

o) =gz+r) = [ g0ar< [ rod= i@ -G,

which by g(Z + r) < f(Z 4+ r) implies the desired inequality g(z) < f(z), now
proven for x € (0,00). The case x < 0 is actually not required for the appli-
cation, but true. Indeed, for x € (—o0,0) it also holds that ¢’(z) < f/(z) and
it is clear that f(z) > g(x) as x — 07, so it remains to check the inequality
as  — —oo. As in the Coulomb case, this follows from k < 0, which follows
from

1 1
ok = 3Y"(20) —oly(20 — ) < 5Y*(2r) = ol (r) < 0.

This completes the proof. O

Lemma B.5. Let r € (0, %) and o = oo and ¢ > £y, where oy and fy are
sufficiently large absolute constants. Then for any zy € C with |zo| < 1 — 2r,
there exists a constant k € R and Z € C with |Z] <1 —r on the line through
0 and zy such that

(B.29) o(lr(z0—2)+ k) = +021y(|z0|/€)  and
o(l(z — 2) + k) < £021o(|2|/¢) for all z € D,

where + is either always + or always —, and Iy is a modified Bessel function
of the first kind.

Proof. Throughout the proof, x > 1 means that z is larger than a large
absolute constant. Let

(B.30) 1(2) = (I (|2]/0) ~ 1).
Replacing k by k — ¢2 /o, the claim (B.29) is equivalent to the claim

(B.31) o(lr(z0— 2)+ k) =1(20) and
o(lr(z—2)+ k) <I(z) for all z € D.
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For the right-hand side, for £ > 1, we have

(B.32) I(z) = i\z|2(1 +0O(|=]/¢)), VI(z)= (; + O(l/ﬁ)) z,

V2I(z) = %12@ +0(1/0).

For £>>1, the map z+ oV, (z) takes B,(0) onto By vy« (r)(0) D By(1—z)/r(0)
D B1(0). Thus, by appropriate choice of Z and k, the derivatives of ol,(z — 2)
and £ can be matched at any |zp| < 1. It remains to show the inequality in
(B-29). By definition of I/, and since, by (B-3), the derivatives of Y*(z) are
well approximated by those of —log|z| for £ > 1, we have

(B.33) V20, (z) = —%(1“2 +O(1/0) for |2 < 1.

Together with , using that 1/72 > 1 > 1/2, it follows that the function
l.(z — Z) + k stays below +I(z) for |z — Z| < r, provided that ¢ > 1. Using
further that [,(0) — I,(r) = 1 + O(1/¢), we can choose o > oo and £ > (g
large enough that

o(l-(0) = 1(r)) > i(l +0(1/0)) = S%p(:%:l) - i%f(:I:I).

Since o(l,(0) + k) < supp(+I), it follows that o(l,(z — 2) + k) < infp(£])
for |z — Z| = r. Since [,(z — Z) is decreasing in |z — Z| the inequality then

holds on all of D. O

B.2. Perturbed Yukawa equilibrium measure

As in [6], to prove the local law, we will condition on the particles outside
small disks. To handle this conditioning, we next state adaptations of the
results of [6, Section 3.3] to the Yukawa case. As in [0, Section 3.3], we can
assume here that Sy = pD for some p > 0, where D C C is the open unit
disk. Furthermore, we assume the density of py is bounded below by ﬁa
in pID for some parameter o > 0. The class of perturbed potentials W that
we consider is as follows. Let v be a positive measure with supp v N pD = &,
t >0 and let R € €(pD) satisfy (A —m?)R = 0 in pD. Then W is given by
(B.34) W) = {tV(z) +2UL(2),+2R(2), z € pD,
o, z € pD*,
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where we write D* = C\ D for the open complement of the unit disk. Both
perturbations U. and R are m-harmonic inside pD, i.e., (A — m?)R = 0 and
analogously for U’. In particular, by , this implies that the density of
pw is equal to tuy + constant in Syy. For z € 9(pD) we write n = n(z) =
z/|z| for the outer unit normal, and we write 0;, f(z) = lim. o M
for the derivative in the direction 72 taken from inside pDD.

The next two propositions show that the bulk of the equilibrium measure
Wy is stable under suitable perturbations W of the form , and that the
density of puy on the boundary remains bounded. To prove the stability of
the bulk we use the obstacle problem characterization of the support.

Proposition B.6. Suppose that V and W are as above (B.34)). Then, for
any £ > 0, the support Sy of the equilibrium measure with Yukawa interac-
tion of range £ and potential W satisfies

(B.35) Sw D {z € pD : dist(z, pD*) > s},
where s = C\/ (. 105 Ao+ 0~ 1)
(6%

Proof. As in the proof of [0, Proposition 3.3, except that we must now
replace ¢ by ¢/p, we may assume that p =1, and we define D = {2z € D:
dist(z,D*) > k}. The replacement of ¢ does not matter since the estimate
is uniform in ¢. By Proposition to prove the proposition, it suffices to
exhibit, for any 29 € D, a test function v,, = v = —U.(2) + ¢ with v(z) =
%W(zo) and satisfying the requirements for the potential in with W
instead of V.

This test function is chosen almost exactly as in the Coulomb case, with
the small difference in the handling of the perturbation R. Indeed, recall that
by assumption R = Uﬁ for a (signed) charge distribution p supported in D*.
Up to an additive constant, we may replace p by its balayage w onto 0D, i.e.,
we choose the measure w supported on 9D such that R = U’ + ¢ in D. The
existence of w follows as in the Coulomb case; see e.g. [43]. We choose ¢j to
be the sufficiently large absolute constant from Lemma For ¢ > £y, we
decompose w = wy + w4 — w_ with wy a measure of constant density with
respect to the arclength measure on D such that [dw = [ dwy and with
w4+ positive measures. For £ < £y, we simply decompose w = wy — w_ with
w4 positive measures and set wy = 0. In both cases, Lemma [B.2)implies that
the total charge of w4 is estimated by

(B.36) lwz]] = OW)[|8;, Rl|o.0m-
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Then, similarly as in [6, Proposition 3.3, we will choose the function v of
the form

(B.37) v(2) = tuyy(2) + oL(z) + vLo(2) — U (2),

L) = [ (1o(e = 2w)) + blw) (7-+ 01)(dw)

where 0 > 0, r >0, k : supprv — R and Z : suppv — I are parameters, and
the function [, is now defined by (B.18)), and Lg(z) is chosen of the form

L()(Z) = lr(z — 50) — ko

for some Zy € C and kg € R to be chosen later.
Step 1. With the choice

_ 1 (t—1)—~v+ |lw_
= O()||8; Rlloo.0m, a:max<< )=+ ”),

2’ [+ w|]
\/||V+W+IIU+7 1
r=2\/—— = =&,
at 2

the function v is of the form —U fi + ¢ for a positive measure pu of total mass
at most t + [|w_|| — v — o||v + wy| < 1. Indeed, by definition, —tuy,; + U,
is the potential of a positive measure of mass t + ||w_|| and —oL —vLg is
the potential of a negative measure of total mass —ol|v + w4 || — 7. Their
sum is the potential of a positive measure since

(B.38) (A —m?)(tuyy — U“~ + oL +vL)
20 2y
2 2mtpye + 2mw_ — —[lv +wi| = — =0,
T T

where we used the assumption py, > o/ (4m).
Step 2. For appropriate choice of the parameters Z and k (depending on zp),
we have v(z9) = W (z) and v < W in D. Indeed, replacing [6, Lemma 3.6]

by Lemma [B.4] stated below the proof, we choose the parameters z and k
exactly as in the proof of [6, Proposition 3.3] to achieve

(B.39) oL(z) < ;/Yf(z —w) (v +wy)(dw) forall z €D,

(B.40) oL(z0) = % / V(20 — w) (v + w, ) (duw).
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This concludes the proof for ¢ < £y. For £ > fy, it remains to handle the
remaining part of the perturbation, which is the potential Ué generated by
the constant part @ of w. Since the Yukawa potential of @ is m-harmonic
in |z| < 1, radially symmetric and bounded as |z| = 0, as in (B.22), it is
explicitly given inside D by

Us(2) = £ACL(|21/0) (|2 < 1),

for some constant A > 0 depending on ¢ and @, where I, are the modified
Bessel functions of the first kind. Using that ) = I; by general relations
between Bessel functions,

_ 2o Ii(|z]/¢) =
VUL (2) = iA2€Il(\z|/€)m =0, Uﬁ(l)mg.

The modified Bessel functions satisfy the asymptotics

1 1
(B.41) Io(t) ~ 1+ ZtQ, L(t) ~ 5t ast—0.

Therefore, with (B.8)), the constant A is given by

(B.a2) 4= +2nUsll) O

2 Gy = 0+ 00/0), U5

< (L+0(1/0)[10, Ugllos,o0 = O(1)[|0;, Rllos,om-

By Lemma [B:5] there exists a large constant o such that we can choose ky
and Zy and v = O(1)||0,, R||cc,op such that with v =0 A,

(B.43) yLo(z0) = Ub(20), ~Lo(z) < UL(z) for all z € D.
This concludes the proof. O

Proposition B.7. Suppose that V and W are as above and assume
in addition that py is absolutely continuous with respect to the 2-dimensional
Lebesgue measure. Then pw = p+n, where p is absolutely continuous with
respect to py, and n absolutely continuous with respect to the arclength mea-
sure s on 0pD with the Radon—Nikodym derivative bounded by

B.44) p| | < C(lall+ 191+ 20005 Rl + 11 = 107V o)
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Proof. The only change in the proof of Proposition compared to [0] is
the change of the logarithmic potentials to Yukawa potentials. In particular,
the formula (B.4) holds and VY*(2) is proportional to V log O

Ell
B.3. One-step estimate for the Yukawa interaction

As in [6l Proposition 4.1], we use a simple mean-field partition function
estimate to obtain a bound on the fluctuations of smooth linear statistics.
In the following, dm denotes the Lebesgue measure and is not related to the
mass m.

Proposition B.8. Let > = Xy be a smooth domain with boundary 0% or
Y =T (with 0¥ = 0). Given a potential W € C’llo’cl(ZW) possibly depending
on the number of particles M, assume that there exist u: Xw — Ry and
v: 08w = Ry (if 0w # 0) such that duy = udm + vds, where dm is the
2-dimensional Lebesgue measure and ds is the arclength measure on 0¥y (if
OXw #0). Assume the conditions (i)-(iv) as stated in [6, Proposition 4.1]
but replace the bounds on ﬁAW (which is the density in the Coulomb case)
more generally by the same bound on the density of the equilibrium measure
u and also modify the assumption (iv) by replacing ¢ by ¢ = Uﬁw + %V —
cy, where the constant cy is the one in . Then, for any constant A,
for any bounded f € C*(C) with compactly supported (A —m?)f,

(B.45) log / o~ BHuw @Iy (dg)

< —BM2Ify () + M(f, nw) + 555 (F, —(A = m?)f)
+O(M )| Afllos + O(M log M),

(B.46) log/e_ﬂHM*W(z) m(dz) > —BM?If, (uy) + O(M log M),

and consequently for any £ > 1+ 1/8,

(B.47) S f(s) - M / F iy
J

= 0(&) (VM1og M(f, (A +m*) )/ + M~ Afll )

with probability at least 1 — e~$PM1e M “yyith the implicit constant depending

only on the numbers A in the assumptions (i)—(iv).
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Proof. The probability estimate is obtained as in [6] from the partition
function bounds and , which are analogous to [0, Lemmas 4.3
and 4.4] except that |V f||2=(f, (=A)f)/? is replaced by (f, (—A+m?)f)1/2.
The lower bound can be proved exactly the same way; for the upper bound
we may bound the energy slightly differently from below, as follows, avoiding
the need that the support of (A —m?)f is contained in Sy .

All the properties of the Coulomb potential used in the proof of [0,
Lemmas 4.3] also hold for the Yukawa potential and on the torus. Replacing
the point charges by charged disks of radius ¢, and denoting by D’(-,-) the
Yukawa analog of D(-,-), we get the bound

> M?D(p®), p®)) + M2 (W — a2 g) +0 (M log i)
= M2 (D@, i) + (W, ) - (54 £.29)))
+ M (g7 £, — ) + 0 (Mlog i) .
Writing

D9, 4 ®)y = D (pw, pw) + 2D (uwr, 41 — pw)
+ DA — o, 4 — )

and further using the Euler-Lagrange equation (2.13)) to write

2D (uw, 1) — pw) + (W, f2)
= (W, puw) +2(¢ o — pw) +2(UL 1 — o),

where Qz = Uﬁw + %W —cw =0 on Sy, we therefore can the bound
Hyy(2) — 537 22, f(25) by

M? <I‘€”(“W) + DA — p, 19 — ) — (ﬁf, ﬂ(g)))
+20M3(C o= o) + M (G 1) - )
+ 2M2(U£W7ﬂ(€) — 1)+ O(Mloge™t).
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We write

D) = iy, i — ) — (54 £,

= i (ﬁLMf + Uﬁ(s)*uw7 _(A — mZ)Ué(E)f,uw) - (6LMf’ ,LLW) .

The Yukawa potentials decay exponentially at infinity, so we may integrate
by parts and use the elementary inequality —|ab| + [b|> > —|a|?/4 to get

& (550 + Vbt (AU )
L (ﬁLMVf + VUﬁ(E_HW,VU;;(EWW)
> — g (VS V) = —ggmm (L (- A) ).

By the same inequality we have
3 (542 + Uy Ui, ) > — st (£.1).
In conclusion,
MQDE(/-AL(E);/}(E)> + M2 (W o BLMJ(', Ia)
> M2 (Hylow) = Sy (Foiw) = segbas (£, (8 = ) )
F M )+ M (5 £ 1)

1
+2M? (Uﬁw, ale) — g) +0 (M log 6) .

In the same way as in [6], for the error terms on the last line,

M

3 C||Aflloe < MTHAS oo

M
gw@ — foi)] <

and

2M?|(Uye,, i) — )| < CE2MA + C/eM™ < 1,

by choosing ¢ sufficiently small depending on A and such that log% =
O(log M). Finally, we use that 2M?(¢*, i — ) > 0 by the Euler-Lagrange
equation to conclude the proof. O
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Remark B.9. For test functions f supported in S{} and satisfying the
condition [ fdm =0,

/fdﬂfvz/f;ﬂ(AV—m?V)dm.

(We recall that dm is the Lebesgue measure and not related to the mass m.)
Consequently, if V is replaced by V + R with (A — m?)R = 0, and assuming
that f is supported in the intersection of the supports of the equilibrium
measures of V and V + R, and that [ fdm = 0, we have

/fdlt€/ = /fdu€/+R-

Since we are ultimately interested in test functions without the condition
f fdm =0, some additional care is required. (The condition was not nec-
essary in the Coulomb case in [6].) This problem will be addressed at the
beginning of the proof of Proposition

B.4. Yukawa gas on the torus: proof of Theorem

We follow the proof of [6l Theorem 1.1] to improve the estimate of Propo-
sition to the stronger one asserted by Theorem by using local con-
ditioning. Compared with [0, Theorem 1.1], there are two main changes in
Theorem (i) the domain is now a torus rather than the plane, (ii) the
interaction is the Yukawa potential rather than the Coulomb potential. The
domain change is only visible in the first step of the induction in the proof;
it does not have any effect after the first step when we take local condi-
tioning. The change from the Coulomb potential to the Yukawa potential
does require changes in the local conditioning; it will be taken into account
by replacing the potential theory estimates in [6] by their generalizations in
Sections [B.IHB.2l

First, we note that [0 Section 5] applies without changes except that
the Coulomb potential log1/|z| is replaced by the Yukawa potential Y*(z)
in all expressions, and with the additional condition that [ fdm = 0 in the
assumption of [0, Proposition 5.3]. This condition is necessary because, with
the m-harmonic perturbation V,, inside the support of uy we now have

N t
HUw = — Uy -+ const.
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by . As explained in Remark the additional constant has no effect
if both sides are integrated against a test function f with support in the
support of s that satisfies [ fdm = 0.

Next, we adapt [6, Section 6] to the Yukawa case. Here two modifications
are required. First, the scaling of the Yukawa gas is different, which leads
to a different recursion of scales. Second, in the case of the Yukawa gas, as
noted above, the density of the equilibrium is only stable under m-harmonic
perturbations up to a constant, and thus a small extra argument is required
to remove the mean zero condition.

As previously, we write £ = N~Y/2+9 for the range of the Yukawa poten-
tial. Given £ > 0 (and assuming ¢ < §), we set 5o = 0 and

51 = ((i + )AL +5)) .

for € > 0 fixed sufficiently small. As long as the second term in the mini-
mum above dominates, the sequence s; grows linearly as j(0 — ) until the
scale s = % — 20 is reached. After that, the first term dominates. Then s;
evolves according to % — 0 —¢g; then % — %5; then % — ié — %5 and converges
geometrically to % — 2¢. In particular, given s € (0, %), we can fix € > 0 and
n < oo such that s, = s, and we will assume such a choice from now on.
The induction assumption (A,) is modified as follows (as a formal re-
mark, note that compared to [6], we changed the index of the condition A;
into A, as, in the current paper, ¢ refers to the argument of the Laplace

transform).

Assumption (A,). For any bounded f € C*(T) with supp(A —m?)f C
B? N Sy, we have

Ba48) |5 )~ [ fdu| < NTET( A+ mh)}
J
N A

Proposition B.10. For arbitrary e > 0, (A, ) implies (As) for any 0 < r <
s < (3+37)A(r+6)—e (with the implicit constants depending on ).

Proof. First, we show that, for any s as asserted in the proposition, it suffices
to prove that (A,) implies (A%), where (A’) is defined exactly as (As) except
that the test functions f are required to obey the additional mean zero
condition [ fdm = 0. Indeed, assume (A,) and that we have proved (Al)
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for all s as in the statement of the proposition. Recall from above that
B = B; is a disk of radius N™¢ and that By the disk with the same center
and half the radius. For any test function f supported on By we define
fi(z) =272 f(27%2), and write

f= fk+z = fi+1),

where k is the largest integer such that 2N =% < N~*. Then

1A filloo = 27 1A floo,

(B.49) (fl-,(—A—I—m2)fz‘)<2_2i(fv(_A+m2)f)'

Therefore, with s; = s — (i 4 1) /logy N fori = 0,1,...,k — 1, applying (A} )
to the mean zero function f; — f;11, we obtain

= Z Fe3) = fia(s)) = [ (= fia) dny

= 22”\7—1 ZlAfi = firn) o

+ QiN_%_s(fi — firt, (A +m?)(fi — fir))V?
<27 ANTIEY A f oo + N7T275(f, (A +m?) f)M2

Similarly, applying (A;) to f, we have

N ) - [
J

< (N2 A filloo + N 727" (fry (A +m2) fr)?)
< (27* NI A oo + 27ENTET(f, (A +m2) )Y?)
< @TENTE A oo +27EN TS (<A +m?) )).

Then
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}V;ﬂzj)—/f
:Jif%:(fk ;) +I:z:§fl (2j) = fixr ZJ)> /(fk‘i'z fz+1>

k

<3 @ AN A oo + NTE(S (A + m?) f)?)
=0

< NTE2YAf oo + N7275(f, (A + m?) )2,

It remains to prove that (A,) implies (A’) for s as in the statement of
the proposition. This proof proceeds exactly as in [6, Section 6.1], with the
only essential changes in [6, Lemmas 6.2-6.3], since now m? > 0 in .
Indeed, the required properties of the conditional equilibrium measure follow
from Propositions as soon as [0, Lemmas 6.2-6.3] are adapted.

In [6, Lemma 6.2], which states that 7 =1+ O(N~%) (where we recall
that 7 = £ 4/(B)) and v(C) = O(N~%), with high probability, the follow-
ing changes are necessary. Recall that xy+ are smooth cutoff functions with

Be — 07 X—|Bf - 17

X+lB=1, x+lp: =0, X

obeying || V*x4|loo = O(N**/n%) for k = 0,1,2 (see [6] for the definitions of
the expressions). We replace the estimates on (x+, —Ax+) by

(Xt (A +m?)xs) = O(N "N /i) + O(N' " N~*)
= 0(1/77) + O(N1726725)7

and thus

N7 (g, (A +mP)x) = O(N 274 /) 4+ O(N %)
— O(Nf4sfc€)'

Using this, the rest of the proof of [6l, Lemma 6.2] proceeds as in [6].

In [0, Lemma 6.3], which states the estimate N ~* HVRHLOO(B) = O(N™%),
with high probability, we make the following changes. We change the defini-
tion of f from f(w) = N"°V(¢(w)log ‘Zflw') to f(w) = N=*V(¢p(w)Y*(z —
w)). In particular, the property that Af =0 on A€ is replaced by (A —
m?)f =0 on A, and using this, the estimate on (f, —Af) is replaced by
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(here again we use a notation from [6], namely a = N~%),

N_l_Qr(f, (_A + mZ)f) = N_l_QTO(N_QS]\ﬂS’ log a|/a2)
+ N—1—2r0(N1—26N25‘ loga!2)
_ O(Nfélsfcs)’

so that, again, the rest of the proof of [0, Lemma 6.3] proceeds as in [6]. O

Proof of Theorem[2.3. Proposition applied to the torus ¥ = T and with
M = N verifies Assumption (Ag). We then apply local conditioning, exactly
as in the proof of [6, Theorem 1.1]. For the conditioned measure, since ¢ <
N~¢ we may replace the torus Yukawa potential by the full plane Yukawa
potential since

Hpyo(z ZUZ i — z) + O(N ZY[ i —z) + O(N™™)
J7#k J7#k

with error bound uniform in z € TV. By inductive application of Proposi-
tion the assumption (A,) is verified for all s € (0, 1). This completes
the proof. O

B.5. Coulomb gas on the plane: proof of Theorem

Theorem is generalization of [6, Theorem 1.1] in the following three
ways: (i) the distance of the support of the test function to the boundary
of the support of the equilibrium measure can be > N~Y4 4 /4 rather
than order 1; (ii) the Coulomb potential can be replaced by the perturbed
Coulomb potential; (iii) or replaced by the Yukawa potential Y with £ > N2.
We will show that all these changes have only minor effects on the proof.
The condition > N~4 + t1/4 arises because N~Y4 4+ 1/ is the scale that
can be controlled without induction. Indeed, the requirement of distance
> N~1/4 was already implicit in [6], but the distance requirement was simply
estimated crudely by order 1 there. When the perturbation is present, i.e.,
t # 0, there is an additional error term which leads to the condition > t'/4;
see below.

We begin with the condition on the distance to the boundary. In the
proof of [0, Theorem 1.1], in [0, Section 6], by replacing V' (z) by V(z — 2¢)
for some fixed zg € Sy, it was sufficient to restrict the induction to functions
supported in the centered balls B¢ = B(0,2N~*) C By = B(0, N~*). For
test functions whose support has distance > N4 4 ¢1/4 to the boundary of
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the support of the equilibrium measure, we now choose zy to be N-dependent
points with dist(z, S{,) > N~Y4 4 /4 This requires no changes in the
proof because the initial estimate (here given by Proposition below)
has no restriction on the support of the test function f. Writing ¢t = N—2¢,
in the first inductive step, we can choose the scale as N™% with s; = (1/4 A
a/2) — e. By assumption the ball of this radius centered at zy is contained
in the support of the equilibrium measure and has density bounded below
there. Hence there is no change in the remaining steps. Thus the condition
> N4 4 /4 arises because N~1/4 4+ ¢1/4 is the scale that the density in
that scale can be controlled without induction.

As a preliminary step towards Theorem [2.3] we prove the following es-
timate, which provides a weaker fluctuation bound than asserted in Theo-
rem However, once this bound is established for all scales, Theorem
then follows from the same estimates.

Proposition B.11. Assume the same conditions as in Theorem[2.3. Write
t = N2 and suppose that supp f has diameter at most N=°. Then

X 1 o 1 9a_
LN L NV S+ (N 4 N2 A

To prove this bound, we proceed as in the proof of [6, Theorem 1.1].
The first ingredient is the following generalization of the one-step estimate
[0, Proposition 4.1].

Proposition B.12. Assume that the potential W and the number of parti-
cles M satisfy the assumptions of [6, Proposition 4.1]. Consider the proba-
bility measure on Z% with density proportional to e PH(2) where we assume
that for some constant K the Hamiltonian H : E% — R satisfies the uniform
estimate

(B.50) |H(z) — Hf;w(z)| < tMK.
Then for any bounded f € C?(C) with supp Af compact,
(B.51) S =M [
J
= 0(&) ((tMK + Mlog M)/ [V flls + M| Af | )

with probability at least 1 — e $BAME+MlogM) g6 gny € > 141/8. The
same estimate holds for the Yukawa gas with ¢ > M?>.
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Proof of Proposition [B.13. The proof of the proposition is completely paral-
lel to the one without the perturbation G, only with an additional error term

from (B.50]). Namely, by the assumption (B.50]), we may trivially estimate
log/e_ﬁH&vW m®M(dz) —tMK < log/e_ﬁH m®M (dz)

< log/e_ﬁHJCW»W m®M (dz) + tMK.

By [0, Lemmas 4.3-4.4], the partition function of the Coulomb Hamiltonian
(without perturbation term) can be estimated as

;log/eﬁH&/ m®M(dz) > M2Iy + O(Mlog M),
log/e_ﬁHSHf m®M(dz) < M*Iy + ! (f,—Af)

832
+O(M M)A f oo + O(M log M).

1
B

Here we have used the improvement commented in the proof of Proposi-
tion which gives the improved factor for the error term proportional to
IAf|lc and avoids the restriction on ||Af||s that was assumed in [6, Lem-
mas 4.3-4.4]. From this and with f replaced by f/s, we obtain the estimate

1

1 G Xy /e
—logEyre™//s = Srs2 2

B

with E = tMK + M log M. As in the proof of [6, Lemmas 4.1], choosing

(.= A1) + O )2 |Af o + O(E),

s=E3||Vfo+M AEY AL,

this implies

;logE%eXf/s = O(E).

By Markov’s inequality, P(X; > O(sE)) < e, and since the same estimate
also holds with f replaced by —f, we have

]P’(Xf =0 <E1/2”VfH2 + M_AHAfHoo)> o196 F,

which implies the claim (B.51)).
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Finally, we note that for the Yukawa gas with ¢ > M? we have
Y¥(2) + log|z| = constant + O(|z|/M?)

by . The constant part of the energy does not affect the measure and
the error term O(1/M?) is uniformly bounded by O(1) when summed over
all M? pairs of particles (which we may assume to be at distance of order
1 due to the growth of the external potential) and therefore does not affect
the estimate either. g

As in the proof of [6 Theorem 1.1], the proof of Proposition now
follows from iterated applications of Proposition to the conditioned
measures associated to increasingly small balls. This induction proceeds al-
most exactly as in [6, Section 6], with the additional element that, in each
step, we improve also the bound K for the conditioned measure. We first
give an outline of this induction now. Recall that we write t = N 2%,

First step. In the first step, using (2.9)), the difference H —Hg[,,N is
bounded uniformly by

(B.52) > Gz )| <ty e 1T <MK,
Jik:g#k J#k
with M = N and K = N. From Proposition we therefore get the high
probability estimate
X

5 SN TA oo+ (N7 N7V 2.

This estimate proves an effective estimate on the number of particles on
scales N=° for s < 1/4 A a/2, ie., > N4 4 1/4,

Induction. By induction, supposing we can control particle numbers on
the distance scale N7, in Proposition applied to the conditional mea-
sure in a ball of the former scale, we have M ~ N'=2" and a = N/M ~ N?".
With the range of the perturbation in the interaction given by § = N—1/2+7,

it follows that (B.50) holds (see Lemma below) with
K =0(MV N%).

Using this estimate, by conditioning exactly as in the proof of [6, Theo-
rem 1.1], for any f whose support has diameter at most N~", we obtain
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from Proposition the estimate

X M v N2 a1
Af nva N A
N*<t e ta 1Af oo
<1Mv(MN2<’)é
+(tz2——m ———
N
< (N7 4 N Al 4 (N2 4 N7E)|[ D)

; MiNl) IV 1l

This is an effective estimate on particle numbers on scales N™° for s <
(r+ %)V (5 + %) +e¢, improving the assumed estimate. We remark that, as
far as the scales are concerned, this is the same recursion as in the case of
the Yukawa gas, with § replaced by a/2.

To set up the induction formally, we replace the assumption (A,) of
[6] by the following one. (Note also that as before we changed the index ¢
from condition A; from [6] into A, as, in the current paper, t refers to the
argument of the Laplace transform).

Assumption (A,). For any bounded f € C?(C) with supp Af C BS N Sy,
we have

X —1-2r —2a—4r -1y —a—2r
(B53) T < (N 4 N2 A S|l + (N72 7 4 N7 [V 1o

As shown above, for r = 0 this is (B.51)) applied with M = N and V =W
and the trivial estimate K = N. To prove Proposition it is enough to
prove the next proposition.

Proposition B.13. For arbitrary € > 0, (A,) implies (As) for any

1 r a
(B.54) 0<r<s<<4+2>A<2+r>—g,

with the implicit constant in (B.53|) depending only on e.

To prove Proposition exactly as in [0, Sections 5-6], we condition on
the outside of a ball B on scale s and replace the Coulomb potential of the
outside charges with the Coulomb potential of the equilibrium measure. To
ensure that the equilibrium measure of the conditional system inside B does
not move much under this replacement, we use [6, Propositions 3.3 and 3.4]
and the analogues of [0, Lemmas 6.2 and 6.3], where the input assumption is
replaced by our new assumption (A,); the lemmas are checked exactly as in
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the case of the Yukawa gas. The additional required estimate is the bound
K on (B.50]), which is given by the following lemma.

Lemma B.14. Assume (A, ). Then, with high probability, uniformly for all
configurations of the M charges inside Bs, the estimate (B.50)) holds with

K =O(N'™2"v N§?).

In particular, if B is at scale N™" and 0 = N~Y2%9 then the right-hand side
is O(M v N%7).

Proof. Recall that the perturbation term in the Hamiltonian is bounded by
>k e lzi—zl?/(20%)

We split this term into the three contributions: (1) both particles are
inside B, (2) one particle is in B and one outside B, and (3) both parti-
cles are outside B. The contribution (3) with both particles outside B is a
constant for the conditioned measure and thus irrelevant for the estimate
on the conditioned measure. Contribution (1) is trivially estimated by M?2.
Contribution (2) is bounded by O(M(N§? + N'=27)) by the local density
estimate, with r-HP for the configurations outside B. This gives the claimed
estimate. O

Proof of Theorem[2.3, As in the proof of Proposition we condition on
the particles outside a ball B of radius N ~° and assume that f is supported in
the ball with the same center and half of the radius. However, since (A;/5_,)
has already been proved, by Lemma[B.14] we now have the optimal estimate
K = O(N?7). The theorem then follows directly from the one-step bound
on any scale b as in the assumption of the theorem using this bound
on K, implying that tK = tO(N??) = O(1). O

B.6. Conditioned versions: proof of Theorems [2.8

The proofs of the conditioned versions of the local density estimates are
analogous to the original (unconditioned) versions. Namely, we prove the
unconditioned versions by inductive conditioning on increasing small balls.
The assumptions of the conditioned versions are exactly such that the in-
ductive assumption is satisfied for the conditional measure. We omit the
details.
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Notation index

Interaction

C 2d Coulomb interaction, page 842

G generic two-body interaction, page 842

G generic perturbation of the interaction, page 851

Ly difference between Yukawa interactions U* with ranges ¢ = w and
{ = v, page 860

Ta Interaction G averaged over translations of the unit torus, page 906

Ut periodic Yukawa interaction on T with range ¢, page 850

U, f; periodic Yukawa interaction on the torus T, with range ¢, page 866

Ulf periodic Yukawa interaction on T(") with range ¢, page 864

Y interaction YUK averaged over u, page 867

Yyt Yukawa interaction on C with range ¢, page 849

Yug sum of periodic Yukawa interaction on tori T,, with origin w,
page 867

Potential

Q= Q% effective potential for the Yukawa gaz with range ¢, page 883

U f; Yukawa potential with range ¢ associated to a measure u, on the
torus, page 852

V external potential, for the Coulomb of Yukawa gas, on the plane
or torus, page 842

Yf Yukawa potential with range ¢ associated to a measure p, on the

plane, page 852

Hamiltonian, energy

A,

Al
Al
HEy

¢
Hy

local angle term for the test function f, page 935

long-range angular term, page 940

short-range angular term, page 940

Hamiltonian for interaction G and external potential V', page 842

Hamiltonian for the Yukawa interaction on T with range ¢ and
external potential V', page 851



L,

G,v
WV

Measure

EA

Hv

=t ™

G
Pyvs

2%

Bauerschmidt, Bourgade, Nikula, and Yau

Hamiltonian for the interaction Ué, page 866
Hamiltonian associated to interaction fﬁf , page 867
minimum of Zy , page 843

energy functional with Coulomb interation and external potential
V', page 843

energy functional with Yukawa interaction with range ¢ and ex-
ternal potential V', page 851

equilibrium energy of the Yukawa potential from scale ¢ to R,
page 884

LY, = [ LY (2 — w) fi(dw) a(dz), page 860
evaluated Hamiltonian in the Ward identity, page 937

expectation for the Gibbs measure associated to a Hamiltonian A,
page 859

Lebesgue measure on C or on the torus, page 842

equilibrium measure for external potential V' and Coulomb inter-
action, minimizer of 7y, page 843

equilibrium meaure for external potential V' and Yukawa interac-
tion with range ¢, minimizer of I‘é, page 852

empirical measure, page 844

difference between empirical measure and equilibrium measure,
page 853

Gibbs measure for interaction G, external potential V' inverse
temperature 3, page 842

density of py, page 843

Partition function

&7 (n)
¢O(N)
¢O(N)

a normalized version of log ZIE'L), page 864

a normalized version of log Zj(\f), page 859

)

torus residual free energy, a normalized version of log ZJ(\? , page 859

quasi-free free energy for particle profile n, page 866

associated to Hamiltonian H ](5), at inverse temperature 3, page 858
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Zéwn) associated to Hamiltonian with interaction Uf , at inverse temper-
ature 8 (y = £/b), page 864

Z](\;,y, s associated to Hamiltonian H ﬁy, at inverse temperature 3, page 842

Other Symbols

« index of the squares, page 865

b mesoscopic scale for test function, also noted N~*, page 844

b torus side length, page 864

AY increments of the map ®, AY = [®, — &,,], page 908

y relative interaction range, v = £/b, page 864

l range of the Yukawa gas, page 849

Cg universal constant in partition function second order asymptotics,
page 845

m inverse of the Yukawa interaction, m = 1/¢, page 852

n = (ny) particle profile, assignment of number of particles to squares «,
page 865

n = (ny) expected particle profile, page 866

mesoscopic scale for test function, also noted b, page 844

oY embedding of the square alpha, shifted by u, in T(®), page 867
v A distorted map defined along subsection [6.1], page 905
Y a map from T, to «, with discontinuity lines having origin wu,

declared to be flat, page 871

vy another map from T, to a based on ¥, with distortions, page 921
S. set of squares such that square containing 0 has center u, page 886
Sy equilibrium set, support of uy, page 843

Sé equilibrium set, support of Mf/, page 852

T unit torus, page 850

T, torus of side length b associated to the square «, page 866

T®) torus of side length b, page 864

X‘J; linear statistics of function f centered with uy, page 845

Y‘; limiting shift for the expectation of X{;, page 845

lI'lloox  0o-norm up to k-th derivative, page 844



998 Bauerschmidt, Bourgade, Nikula, and Yau

[l kp ©oo-norm on scale b up to k-th derivative, page 844

O(N~°°) subpolynomially small error term, page 849
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