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Topological surgery in cosmic phenomena
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We connect topological changes that can occur in 3-space via
surgery, with black hole formation, the formation of wormholes
and new generalizations of these phenomena, including relation-
ships between quantum entanglement and wormhole formation.
By considering the initial manifold as the 3-dimensional spatial
section of spacetime, we describe the changes of topology occur-
ring in these processes by determining the resulting 3-manifold
and its fundamental group. As these global changes are induced
by local processes, we use the local form of Morse functions to
provide an algebraic formulation of their temporal evolution and
propose a potential energy function which, in some cases, could
give rise to the local forces related to surgery. We further show
how this topological perspective gives new insight for natural phe-
nomena exhibiting surgery, in all dimensions, while emphasizing
the 3-dimensional case, which describes cosmic phenomena. This
work makes new bridges between topology and natural sciences
and creates a platform for exploring geometrical physics.
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1. Introduction

This work is intended for both mathematicians and physicists. For the math-
ematician, it can be seen as a collection of examples where topology is ap-
plied to natural sciences and especially cosmology while, for the physicist, it
covers a large background which is not easily available and provides a clear
and concise toolbox of algebraic topology and Morse theory important for
understanding natural processes and cosmic phenomena.

The mathematics discussed here falls within the topics of low-dimen-
sional topology. A basic aspect of this branch is the use of cobordisms of
1, 2 and 3-manifolds to understand topological and geometric structure.
Such cobordisms can be factored into elementary cobordisms called surg-
eries, which are elementary steps of topology change. This work characterizes
the manifolds resulting from such topology change, it describes the dynam-
ics of those elementary steps and it directly connects them with physical
processes in dimensions 1, 2 and 3. We focus on the formation of Falaco
solitons, black holes and wormholes, but our topological perspective can be
applied to any phenomena exhibiting such topological change.

These mathematical descriptions further explain some of the large-scale
structures and dynamics found in cosmology. Namely, we present a rela-
tion between cosmic phenomena, surgery and the ER = EPR hypothesis,
see [19, 20]. This hypothesis, due to L. Susskind and J. Maldacena, suggests
that the connectivity of space is itself a quantum phenomena and is related
to quantum entanglement. By using the surgery viewpoint in a context of
cobordism we view a wormhole as a cobordism from empty space to the
union of the event horizons of two black holes. In the context of topological
quantum field theory, this cobordism is associated with a linear mapping
from the complex numbers to the tensor product of spaces associated with
the two black holes. The image of unity in the complex numbers in this
tensor product is a candidate for an entangled state associated with the
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Topological surgery in cosmic phenomena 703

wormhole. In this way we provide a topological/geometric context for the
ER = EPR hypothesis.

Further, we show that our surgery hypothesis describes the creation
of a cosmic string black hole which does not end up with a singular 3-
manifold, thus proposing a potential solution to the singularity problem.
Our hypothesis suggests that a cosmic string that collapses would result in
a surgery that could be described in terms of this string and an associated
framing. In this viewpoint the string collapses, giving rise to a singularity
in the sense of Morse functions, and then the process continues with a new
cosmic string expanding from the singularity and filling out a new manifold.
The result is that a new 3-dimensional space arises that can be described
by framed surgery applied to the partially collapsed cosmic string, with the
application of this surgery on the other side of the standard observer’s event
horizon.

The paper is organized as follows: in Section 2 we present the formal
definition of topological surgery for an arbitrary dimension. In Section 3
we describe the process of topological surgery using Morse theory. This de-
scription extends the work done in [1–5] and fits the way surgery is exhibited
in nature. In Sections 4 and 5 we analyze the descriptions in dimensions 1
and 2 and examine how they can be applied to natural processes of these
dimensions. Further, in Sections 6 and 7 we present and visualize the 4-
dimensional process of 3-dimensional surgery, we analyze the topology of
the resulting manifolds and we connect this process with the lower dimen-
sional cases using rotation. We then use these topological tools to describe
the formation of wormholes and black holes in Section 8, where we also
discuss the cosmological implications of our topological perspective.

2. The process of topological surgery

Topological surgery is a mathematical technique introduced by A. H. Wal-
lace [6] and J. W. Milnor [7] which creates new manifolds out of known
ones in a controlled way. It has been used in the study and classification
of manifolds of dimension greater than three while also being an important
topological tool in lower dimensions.

Its key idea is to perform an operation of cutting and gluing by using the
fact that, ifX,Y are manifolds with boundary, the boundary of their product
space X × Y is given by ∂(X × Y ) = (∂X × Y ) ∪ (X × ∂Y ). This property
implies that ∂(Dn+1 ×Dm−n) = (Sn ×Dm−n) ∪ (Dn+1 × Sm−n−1) where
Dn is the n-dimensional disc and Sn is the n-dimensional sphere. Topological
surgery describes the process which removes an embedding of Sn ×Dm−n
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(a (m− n)-thickening of Sn) and glues back Dn+1 × Sm−n−1 (a (n+ 1)-
thickening of Sm−n−1) along the common boundary Sn × Sm−n−1. More
precisely, the well-known definition of surgery is:

Definition 1. An m-dimensional n-surgery is the topological process
of creating a new m-manifold M ′ out of a given m-manifold M by removing
a framed n-embedding h : Sn ×Dm−n ↪→M , and replacing it with Dn+1 ×
Sm−n−1, using the ‘gluing’ homeomorphism h along the common boundary
Sn × Sm−n−1. Namely, and denoting surgery by χ:

M ′ = χ(M) = M \ h(Sn ×Dm−n) ∪h|Sn×Sm−n−1
(Dn+1 × Sm−n−1).

The resulting manifold M ′ may or may not be homeomorphic to M . Note
that from the definition, we must have n+ 1 ≤ m. Also, the horizontal bar
in the above formula indicates the topological closure of the set underneath.
Further, the dual m-dimensional (m− n− 1)-surgery on M ′ removes
a dual framed (m− n− 1)-embedding g : Dn+1 × Sm−n−1 ↪→M ′ such that
g|Sn×Sm−n−1 = h−1|Sn×Sm−n−1 , and replaces it with Sn ×Dm−n, using the
‘gluing’ homeomorphism g (or h−1) along the common boundary Sn ×
Sm−n−1. That is:

M = χ−1(M ′) = M ′ \ g(Dn+1 × Sm−n−1) ∪h−1|Sn×Sm−n−1
(Sn ×Dm−n).

Surgery is a local process in M (exchanging Sn ×Dm−n for Dn+1 ×
Sm−n−1) which induces a global change (the transition of M to M ′). For
example, in dimension 1, for m = 1 and n = 0, the local process of 1-dimen-
sional 0-surgery cuts out two segments S0 ×D1 from M and glues back
the other two segments D1 × S0, see Fig. 1. Note that this local process is
independent of the initial manifold M on which the two segments S0 ×D1

are embedded.
We will discuss the local process in Section 2.1 and the global process in

Section 2.2.

2.1. The local process of surgery

Let us first notice that if we glue together the two m-manifolds with bound-
ary involved in the process of m-dimensional n-surgery, along their common
boundary using the standard mapping h, we obtain the m-sphere which, in
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Figure 1: 1-dimensional 0-surgery.

turn, is the boundary of the (m+ 1)-dimensional disc:

(Sn ×Dm−n) ∪h (Dn+1 × Sm−n−1)
= (∂Dn+1 ×Dm−n) ∪h (Dn+1 × ∂Dm−n)

= ∂(Dn+1 ×Dm−n)

∼= ∂(Dm+1) = Sm.

For example, in dimension 1, (S0 ×D1) ∪h (D1 × S0) = S1, see Fig. 2 (a).
The (m+ 1)-dimensional disc Dm+1 ∼= Dn+1 ×Dm−n is one dimension

higher than the initial manifold Mm. This extra dimension leaves room for
the process of surgery to take place continuously. The disc Dm+1 consid-
ered in its homeomorphic form Dn+1 ×Dm−n is an (m+ 1)-dimensional
(n+ 1)-handle. The unique intersection pointDn+1 ∩Dm−n withinDn+1 ×
Dm−n is called the critical point. For example, Fig. 2 (b) illustrates the 2-
dimensional 1-handle D1 ×D1 in which 1-dimensional 0-surgery takes place
and the corresponding critical point.

The process of surgery is the continuous passage, within the handle
Dn+1×Dm−n, from boundary component (Sn×Dm−n) ⊂ ∂(Dn+1×Dm−n)
to its complement (Dn+1 × Sm−n−1) ⊂ ∂(Dn+1 ×Dm−n). More precisely,
the boundary component (Sn ×Dm−n) collapse to the critical point Dn+1 ∩
Dm−n from which the complement boundary component (Dn+1 × Sm−n−1)
emerges.

For the case of 1-dimensional 0-surgery, this local process within the
handle D1 ×D1 is shown in Fig. 2 (c) where the two segments S0 ×D1

approach each other, touch at the critical point D1 ∩D1, where they break,
reconnect and become segments D1 × S0.

Note that each temporal ‘slice’ of this process is an m-dimensional man-
ifold but the evolution of the process requires m+ 1 dimensions in order to



i
i

“3-Antoniou” — 2019/12/3 — 12:09 — page 706 — #6 i
i

i
i

i
i

706 S. Antoniou, L. H. Kauffman, and S. Lambropoulou

Figure 2: The local process of 1-dimensional 0-surgery.

be visualized. These local intermediate ‘slices’ will be further analyzed in
Section 3.

2.2. The global process of surgery

In order to visualize the global process of surgery which transforms M into
M ′, one also requires m+ 1 dimensions. In fact, surgery on the m-manifold
M determines a cobordism (W ;M,M ′) called the surgery trace which is
made of the temporal ‘slices’ of the global process. More precisely:

Definition 2. An (m+ 1)-dimensional cobordism (W ;M,M ′) is an (m+
1)-dimensional manifold Wm+1 with boundary the disjoint union of the
closed m-manifolds M,M ′: ∂W = M tM ′. Further, an (m+ 1)-dimensional
cobordism (W ;M,M ′) is an h-cobordism if the inclusion maps M ↪→W and
M ′ ↪→W are homotopy equivalences.

Definition 3. The trace of the surgery removing Sn ×Dm−n ⊂Mm is
the cobordism (W ;M,M ′) obtained by attaching the (m+ 1)-dimensional
(n+ 1)-handle Dn+1 ×Dm−n to M × I at Sn ×Dm−n × {1} ⊂M × {1}.

In fact, two m-dimensional manifolds are cobordant if and only if M ′ can
be obtained from M by a finite sequence of surgeries, see [8] for details.
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Figure 3: The cobordism (W ;M,M ′).

The cobordism (W ;M,M ′) of Fig. 3 illustrates these definitions for the
case of 1-dimensional 0-surgery. The local process is part of the global
process, hence one can see the handle D1 ×D1 of Fig. 2 (b) in Fig. 3.
Further, while not explicitly stated so far, the reader might have already
seen from Fig. 1 that a 1-dimensional 0-surgery on M = S1 gives us M ′ =
S0 × S1. This is also shown in Fig. 3 where we see how the initial man-
ifold M = S1 × {0} is cobordant with the resulting manifold M ′ = S0 ×
S1 × {1}, which is shown in Fig. 3 in light green. Hence Fig. 3 shows
(W ;M,M ′) = (S1 × I ∪D1 ×D1;S1, S0 × S1).

However, in order to be able to visualize the temporal ‘slices’ of the
global process as perpendicular crossections of the cobordism of Fig. 3, a
homeomorphic representation of W is needed. This is shown in Fig. 4, where
the local process within handle D1 ×D1 can be seen as part of the the
global process of 1-dimensional 0-surgery on S1 which, in turn, can be seen
as ‘slices’ of W .

3. Morse theory

In this section we will see how Morse theory connects the cobordism of
the global process and the (m+ 1)-dimensional (n+ 1)-handle of the local
process of surgery.

3.1. Definitions

We will start by recalling two basic definitions:
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Figure 4: The cobordism (W ;S1, S0 × S1) and the process of 1-dimensional
0-surgery.

Definition 4. Let f : Mm → Nn be a differentiable map between two man-
ifolds M and N of dimensions m and n respectively.

(i) A regular point of f is a point x ∈M where the differential df(x) :
Rm → Rn is a linear map of maximal rank, that is, rank(df(x)) =
min(n,m).

(ii) A critical point of f is a point x ∈M which is not regular.

(iii) A regular value of f is a point y ∈ N such that every x ∈ f−1({y}) ⊆
M is regular (including the empty case f−1({y}) = ∅).

(iv) A critical value of f is a point y ∈ N which is not regular.

Definition 5. Let f : Mm → R be a differentiable function on an m-dimen-
sional manifold.

(i) A critical point x ∈M of f is nondegenerate if the Hessian matrix

H(x) = ( ∂2f
∂xi∂xj

) is invertible.

(ii) The index Ind(x) of a nondegenerate critical point x ∈M is the num-
ber of negative eigenvalues in H(x), so that with respect to appropriate
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local coordinates the quadratic term in the Taylor series of f near x
is given by

Q(h1, h2, . . . , hm) = −
Ind(x)∑
i=1

(hi)
2 +

m∑
i=Ind(x)+1

(hi)
2 ∈ R.

(iii) The function f is Morse if it has only nondegenerate critical points.

Morse theory studies differentiable manifolds M by considering the crit-
ical points of Morse functions f : M → R, see [9] for details. Among others,
Morse theory is used to prove that an m-dimensional manifold M can be
obtained from ∅ by successively attaching handles of increasing index i:

M =

m⋃
i=0

(Di ×Dm−i ∪Di ×Dm−i ∪ · · · ∪Di ×Dm−i)

3.2. Connecting Morse theory with the process of surgery

The basic connection between Morse theory, cobordisms and topological
surgery comes from the following two propositions [8]:

Proposition 1 ([8], Prop. 2.20). Let f : Wm+1 → I, where I is the
unit interval, be a Morse function on an (m+ 1)-dimensional cobordism
(W ;M,M ′) between manifolds M and M ′ with

f−1({0}) = M, f−1({1}) = M ′

and such that all critical points of f are in the interior of W .
(i) If f has no critical points then (W ;M,M ′) is a trivial h-cobordism, with
a diffeomorphism

(W ;M,M ′) ∼= M × (I; {0}, {1})

which is the identity on M .
(ii) If f has a single critical point of index i then W is obtained from M × I
by attaching an i-handle using an embedding Si−1 ×Dm−i+1 ↪→M × {1},
and (W ;M,M ′) is an elementary cobordism of index i with a diffeomorphism

(W ;M,M ′) ∼= (M × I ∪Di ×Dm−i+1;M × {0},M ′).
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Proposition 2 ([8], Prop. 2.21). If an (m+ 1)-dimensional manifold
with boundary (W,∂W ) is obtained from (W0, ∂W0) by attaching an i-
handle

W = W0 ∪Si−1×Dm−i+1 Di ×Dm−i+1

then ∂W is obtained from ∂W0 by an m-dimensional (i− 1)-surgery

∂W = ∂W0 \ (Si−1 ×Dm−i+1) ∪Si−1×Sm−i Di × Sm−i.

The proof of Proposition 1 (i) and (ii) can be found in [9] and [8] respec-
tively, while for Proposition 2 the reader is referred to [9]. For example, in
the case of 1-dimensional 0-surgery, since m = 1 and n = 0, the single criti-
cal point of index i = 1 mentioned in Proposition 1 (ii) is D1 ∩D1 which is
in the interior of the handle D1 ×D1, recall Fig. 2 (b). The corresponding
cobordism W referred to in Proposition 2 and shown in Figs. 3 and 4, is
obtained by attaching the handle D1 ×D1 to W0 = M × I = S1 × I while
∂W = S1 t S0 × S1 is obtained by a 1-dimensional 0-surgery on ∂W0 =
S1 t S1.

We will now present a theorem and a lemma from [8] which will be
used to study the temporal evolution of topological surgery in the following
sections.

Theorem 1 ([8], Thm 2.14). Every m-dimensional manifold Mm admits
a Morse function f : M → R.

See [9] for the proof.

Lemma 1 ([8], Lemma 2.19). For any 0 ≤ i ≤ m+ 1 the Morse function

f : Dm+1 → R; (x1, x2, . . . , xm+1) 7→ −
i∑

j=1

x2j +

m+1∑
j=i+1

x2j

has a unique interior point 0 ∈ Dm+1, which is of index i. The (m+ 1)-
dimensional manifolds with boundary, defined for 0 < ε < 1 by

W−ε = f−1(−∞,−ε], Wε = f−1(−∞, ε]

are such that Wε is obtained from W−ε by attaching an i-handle:

Wε = W−ε ∪Di ×Dm−i+1.
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Figure 5: The local form of a Morse function for m = i = 1.

For example, the case m = i = 1 of the lemma is shown in Fig. 5 where:

f : D2 → R; (x, y) 7→ −x2 + y2

W−ε = {(x, y) ∈ D2 | f(x, y) ≤ −ε},
D1 ×D1 = {(x, y) ∈ D2 | −ε ≤ f(x, y) ≤ ε}, the attached handle,

Wε = {(x, y) ∈ D2 | f(x, y) ≤ ε} = W−ε ∪D1 ×D1.

Lemma 1 connects Morse functions with both the cobordism of the global
process and the handle of the local process. Moreover, the local process of
m-dimensional (i− 1)-surgery within the (m+ 1)-dimensional handle, recall
Fig. 2 (c), can be parametrized by ε. Indeed, comparing Fig. 5 with Fig. 2 (c),
the values ε < 0 correspond to the two segments S0 ×D1 approaching each
other, ε = 0 corresponds to the straighten segments which intersect at the
critical point D1 ∩D1, while the values ε > 0 correspond to the reconnected
segments D1 × S0.

4. Local dynamics of 1-dimensional surgery

In this section, we will see how the local form of a Morse function can be
used to describe the temporal evolution of natural phenomena exhibiting
1-dimensional 0-surgery. Moreover, for phenomena exhibiting this type of
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surgery, we propose the negative gradient of the local form of a Morse func-
tion as a potential energy function giving rise to the local forces related to
surgery.

4.1. Temporal evolution

As mentioned in the end of Section 3.2, the Morse function for the case m =
i = 1 of Lemma 1 is: f(x, y) = −x2 + y2. Its plotting is shown in Fig. 6 (1).
Now, parameter ε can be considered as time so we shall denote it by t. So, we
can describe the process of surgery by varying parameter t of the level curves
−x2 + y2 = t, illustrated in Fig. 6 (2), thus providing a continuous analogue
of the process illustrated in Fig. 5. For −1 < t < 0, these hyperbolas are
shaded in red. As t gets close to 0, the two branches of the hyperbolas
get close to one another and their color whitens. At t = 0 the degenerated
hyperbola −x2 + y2 = 0 consist in two straight white segments along which
the reconnection takes place. Finally, as t starts taking positive values in
the range 0 < t < 1, the two new branches of the hyperbolas start turning
to green.

Figure 6: (1) f(x, y) = −x2 + y2 (2) The level curves −x2 + y2 = t;−1 <
t < 1.

4.2. Gradient description

The gradient vector field ∇f = (−2x, 2y), which is perpendicular to the
level curves −x2 + y2 = t and points in the direction of the greatest rate of
increase of f , is shown in Fig. 7. The flow of S0 which is composed of the
two red points (−1, 0) t (1, 0) in Fig. 7, follows the red vectors along the
x-axis towards the critical point (0, 0). After collapsing to the critical point,
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two new green points emerge, following the green vectors along the y-axis
towards the S0 composed of the green points (0, 1) t (0,−1). In other words,
the process of 1-dimensional 0-surgery can be viewed as the collapsing of the
core S0 of segments S0 ×D1 to the critical point from which the core S0

of segments D1 × S0 uncollapses. The two directions followed by the cores
are the two perpendicular segments D1 that make up the 2-dimensional 1-
handle D1 ×D1. These segments were shown in red and green in Fig. 5 and
the same color coding has been used to show the vectors acting along them
in Fig. 7.

Moreover, the gradient is closely related to the notion of force. For exam-
ple, an object starting from a high place (thus having high potential energy)
and rolling down to a lower place (of lower potential energy) under the in-
fluence of gravity will follow the exact opposite direction of the gradient
vectors. Looking at Fig. 6 (1) and letting two small objects fall from the two
highest points (0, 1, 1) and (0,−1, 1), these objects will meet at (0, 0, 0) and
fall down to the two lowest points (1, 0, 0) and (−1, 0, 0). Their path pro-
jected in 2-dimensions corresponds to the time-reversed process of Fig. 7:
two green points S0 collapsing to the critical point from which the two red
points S0 emerge. We can think of the Morse function as describing the
height (hence related to the potential energy) and of the objects as rolling
down the hills described by the Morse function. The gravitational force and
the motion of the objects are both in the direction of the negative gradient
of the Morse function, perpendicular to its level curves.

More generally, if the forces acting on a particle are conservative, they
are derivable from a scalar potential energy function V as ~F = −(∇V ).
Hence, for phenomena exhibiting such surgery, one can take the local form
of the corresponding Morse function multiplied by−1: (−1) ∗ f as a potential
energy function giving rise to the local forces related to surgery.

4.3. 1-dimensional phenomena

The above analysis provides a way to describe natural phenomena exhibiting
1-dimensional 0-surgery. Such phenomena occur in both micro and macro
scales. It can be seen for example during magnetic reconnection (the phe-
nomenon whereby cosmic magnetic field lines from different magnetic do-
mains are spliced to one another, changing their pattern of conductivity with
respect to the sources), during meiosis (when new combinations of genes are
produced) and in site-specific DNA recombination (whereby nature alters
the genetic code of an organism). These phenomena and their relation to
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Figure 7: The gradient ∇f = (−2x, 2y).

topological surgery have been detailed in [1] where we pin down the forces
that are present in each process.

Note that this analysis also gives us an algebraic description of the pro-
cess. More precisely, we can now use equation −x2 + y2 = t,−1 < t < 1, to
describe the continuous way the 1-dimensional splicing and reconnection oc-
curs. Moreover, it generalizes the notion of forces to the negative gradient
of the local form of the corresponding Morse function. As a result, if we
view the gradient vectors of Fig. 7 as forces, these act not only on the cores
S0 but on the whole segments S0 ×D1 and D1 × S0. Moreover, while the
collapse of the core S0 of the initial segments S0 ×D1 is the effect of at-
tracting forces, we now pin down that the uncollapsing of the core S0 of
the final segments D1 × S0 is the result of repelling forces. Note that we
will keep this color coding throughout the paper. Namely vectors exhibiting
attraction and repulsion will be shown in red and green, respectively.

5. Local dynamics of 2-dimensional surgery

In this section, we will see how the local form of a Morse function can
be used to describe natural phenomena exhibiting 2-dimensional surgery.
Moreover, for phenomena exhibiting this type of surgery, we propose the
negative gradient of the local form of a Morse function as a potential energy
function giving rise to the local forces related to surgery.
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5.1. Types of 2-dimensional surgery

From Definition 1, we know that there are two types of 2-dimensional surgery.
Namely, starting with a 2-manifold M , one can have m = 2 and n = 0 or
m = 2 and n = 1. The first possibility is the 2-dimensional 0-surgery which
removes two discs S0 ×D2 from M and replaces them by a cylinder D1 × S1.
This cylinder gets attached along the common boundary S0 × S1 comprising
two copies of S1. For example, if M = S2 the above operation changes its
homeomorphism type from the 2-sphere to that of the torus, see Fig. 8 (a).
The other possibility is the 2-dimensional 1-surgery where a cylinder (or
equivalently an annulus) S1 ×D1 is removed from M and is replaced by
two discs D2 × S0 attached along the common boundary S1 × S0. For ex-
ample, if M = S2 the result is two copies of S2, see Fig. 8 (b).

Note now that from Definition 1, a dual 2-dimensional 0-surgery is a
2-dimensional 1-surgery and vice versa. Hence, Fig. 8 (a) shows that a 2-
dimensional 0-surgery on a sphere is the reverse process of a 2-dimensional
1-surgery on a torus, while Fig. 8 (b) shows that 2-dimensional 1-surgery on
a sphere is the reverse process of a 2-dimensional 0-surgery on two spheres.
In the figure, the symbol←→ indicates surgeries from left to right and their
corresponding dual surgeries from right to left.

5.2. Temporal evolution

Consider now the Morse function of Lemma 1 for the case m = 2 and i = 1,
namely:

g : D3 → R; (x, y, z) 7→ −x2 + y2 + z2

Applying the line of thought presented in Section 4 one dimension higher,
the local process of 2-dimensional 0-surgery happens inside handle D1 ×D2

and can be described by varying parameter t of the level surfaces −x2 +
y2 + z2 = t. For −1 < t < 0, these are two-sheet hyperboloids. In Fig. 9,
one of these two-sheets hyperboloids is shown intersecting with the x-axis
at the two antipodal red points. As t gets close to 0, the two-sheets of
the hyperboloids get close to one another. At t = 0 the two sheets merge
and become the conical surface −x2 + y2 + z2 = 0 centered at (0, 0, 0), see
the red/green point of Fig. 9, from which, as t takes positive values in
the range 0 < t < 1, the new one-sheet hyperboloids emerge. One of these
one-sheet hyperboloids is shown in Fig. 9 where its intersection with the
(y, z)-plane is the circle shown in green. Similarly, for 2-dimensional 1-
surgery, one could consider the Morse function of Lemma 1 for the case
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Figure 8: (a) 2-dimensional 0-surgery on M = S2 (b) 2-dimensional 1-
surgery on M = S2.

m = 2 and i = 2. However, one can simply reverse the time of the Morse
function of 2-dimensional 0-surgery, g(x, y, z) = −x2 + y2 + z2, to obtain
the level surfaces −x2 + y2 + z2 = (−t), which describe the local process
of 2-dimensional 1-surgery. In Fig. 9, this process starts from a one-sheet
hyperboloid which is continuously transformed to the ending two-sheets hy-
perboloid.

5.3. Gradient description

The gradient vector field ∇g = (−2x, 2y, 2z) which is perpendicular to the
level surfaces −x2 + y2 + z2 = t describing 2-dimensional 0-surgery is shown
in Fig. 9. The flow of S0, which is composed of the two red points (−1, 0, 0) t
(1, 0, 0) in Fig. 9, follows the red vectors along the x-axis towards the critical
point (0, 0, 0). After collapsing, the new green circle S1 emerges along the
(y, z)-plane as a result of the green vectors. In other words, the process of
2-dimensional 0-surgery can be seen as the collapsing of the core S0 of discs
S0 ×D2 to the critical point from which the core S1 of cylinder D1 × S1

uncollapses. The two directions followed by the cores are along the (red)
segment D1 on the (x)-axis and the (green) disc D2 on the (y, z)-plane that
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make up the 3-dimensional 1-handle D1 ×D2 in R3. If we view the gradient
vectors of Fig. 9 as forces, the attracting forces acting on the core S0 are
fleshed out to the whole S0 ×D2 until the critical point is reached after
which, the repelling forces uncollapsing the core S1 are fleshed out to the
cylinder D1 × S1.

Taking the one dimension higher analogue of 1-dimensional 0-surgery
presented in Section 4.2, if the forces acting on a particle are conservative,
then the local form of the Morse function g can be used as a potential energy
function giving rise to the local forces related to 2-dimensional 0-surgery:
~F = −(∇V ) = ∇g. The gradient vector field perpendicular to the level sur-
faces describing 2-dimensional 1-surgery can be described analogously.

Figure 9: The gradient ∇g = (−2x, 2y, 2z).

5.4. 2-dimensional phenomena

The above analysis provides a way to describe natural phenomena exhibiting
2-dimensional surgery, that is, phenomena where 2-dimensional merging and
recoupling occurs. Roughly speaking, 2-dimensional 0-surgery can be seen in
phenomena where a cylinder is created, while 2-dimensional 1-surgery can
be seen in phenomena where a cylinder is collapsed.
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Examples of 2-dimensional 0-surgery comprise the formation of torna-
does, drop coalescence (the phenomenon where two dispersed drops merge
into one), gene transfer in bacteria (where the donor cell produces a con-
necting tube called a ‘pilus’ which attaches to the recipient cell) and the
formation of Falaco solitons, see Fig. 10 (1). Each Falaco soliton consists of
a pair of locally unstable but globally stabilized contra-rotating identations
in the water-air surface of a swimming pool, see [10] for details. The cylinder
that is being created can take various forms. For example, it is a tubular vor-
tex of air in the case of tornadoes, a pilus joining the genes during bacterial
gene transfer and transverse torsional waves in the case of Falaco solitons,
see Fig. 10 (2).

On the other hand, 2-dimensional 1-surgery can be seen during soap bub-
ble splitting (where a soap bubble splits into two smaller bubbles), when the
tension applied on metal specimens by tensile forces results in the phenom-
ena of necking and then fracture and in the biological process of mitosis
(where a cell splits into two new cells). These phenomena are characterized
by a ‘necking’ occurring in a cylinder D1 × S1, which degenerates into a
point and finally tears apart creating two discs S0 ×D2. The cylinder that
is about to collapse can be embedded, for example, in the region of the
bubble’s surface where splitting occurs, on the region of metal specimens
where necking and fracture occurs, or on the equator of the cell which is
about to undergo a mitotic process. These phenomena and their relation to
topological surgery have been detailed in [1] where we pin down the forces
that are present is these processes.

With this analysis, the local form of the Morse function g can be used
to describe algebraically the processes of 2-dimensional surgeries. Moreover,
our analysis provides a novel description of these processes if the gradient
vectors ∇g of Fig. 9 are viewed as forces.

5.5. Non-trivial embeddings

In this section, based on the phenomenon of Falaco solitons creation, we will
examine the local process of topological surgery for non-trivial embeddings
(recall Definition 1).

Let us start by pointing out that, for phenomena exhibiting 2-dimen-
sional 0-surgery, the various forms of the attached cylinder are homeomor-
phic representations of the cylinder D1 × S1 shown in Fig. 9. For exam-
ple, during the formation of Falaco solitons, the cylinder (and the whole
3-dimensional 1-handle D1 ×D2 inside which the local process takes place)
is bended and twisted, see Fig. 10 (2). Note that the singular thread shown
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in Fig. 10 (1) is the segment D1 joining the core S0, which in this case
comprises the two central points of the Falaco solitons.

Figure 10: (1) Falaco solitons (2) Homeomorphic representation of handle
D1 ×D2.

Up to now, when referring to the embedding h of Definition 1, we have
assumed that the standard (or trivial) embedding, which we will denote by
hs, was used. For example, the process of 2-dimensional 0-surgery shown in
Fig. 9 does not involve twisting. The same process is shown in Fig. 11 (1)
where the key instances have been discretized for the purpose of clarity.
However, many phenomena, including the formation of Falaco solitons, cor-
respond to a non-trivial embedding, say ht, which involves twisting. The
two indentations of Fig. 10 (1) can be seen as the first instance of the local
process of 2-dimensional 0-surgery, which can be described by an embed-
ding ht(S

0 ×D2) twisting the two discs. An example of such an embedding
can be seen in the leftmost instance of Fig. 11 (2). The cylindrical vortex
D1 × S1 made from the propagation of the torsional waves around the sin-
gular thread seen in Fig. 10 (2) can be considered as the final instance of
the process, corresponding to the rightmost instance of Fig. 11 (2).

The difference between the two embeddings h = hs and h = ht is shown
in Fig. 11 (1) and (2) respectively. More precisely, if we consider counter-
clockwise rotations as positive, embedding ht rotates the two initial discs by
−3π/4 and 3π/4 respectively, see the passage from the leftmost instance of
Fig. 11 (1) to the leftmost instance of Fig. 11 (2). If we define the homeomor-
phisms ω1, ω2 : D2 → D2 to be rotations by −3π/4 and 3π/4 respectively,

then ht is defined as the composition ht : S0 ×D2 ω1qω2−−−−→ S0 ×D2 h−→M .
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This rotation induces the twisting gt of angle −3π/2 of the final cylinder,
see the rightmost instances of Fig. 11 (1) and (2).

Figure 11: 2-dimensional surgery with (1) the standard embedding h = hs
(2) the non-trivial embedding h = ht.

When the topological thread is cut, for example when the Falaco solitons
hit an obstacle perpendicular to their displacement, the cylindrical vortex
tears apart and slowly degenerates to the two discs until they both stop
spinning and vanish. Note that since the dissipation of Falaco solitons is
slower than their creation, the intermediate instances of this process can be
visualized in real time in experiments such as [11]. This reverse process is the
passage from Fig. 10 (2) to Fig. 10 (1) and corresponds to the 2-dimensional
1-surgery shown from right to left in Fig. 11 (2).

In this case, the initial cylinder is twisted. In our example, homemor-
phism gt rotates the top and bottom of the cylinder by −3π/4 and 3π/4
respectively, see the passage from the rightmost instance of Fig. 11 (1) to
the rightmost instance of Fig. 11 (2). This rotation induces the twisting of
the two final discs, as in the leftmost instance of Fig. 11 (2).

Let us finally conclude that the homeomorphisms ht and gt as illustrated
in Fig. 11 provide a better description of the creation (or dissipation) of
Falaco solitons and, more generally, of phenomena involving twisting with
‘drilling’ (or twisting with ‘necking’).

6. Local dynamics of 3-dimensional surgery

In this section, we describe locally 3-dimensional surgery using the local
form of a Morse function, we propose ways to visualize this 4-dimensional
process and we connect the processes of surgery in dimensions 1, 2 and 3
via rotation. This section together with the next one set the ground for the
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analysis of cosmic phenomena exhibiting 3-dimensional surgery, which will
be discussed in Section 8.

6.1. Types of 3-dimensional surgery

From Definition 1, we know that there are three types of surgery in dimension
3. Namely, starting with a 3-manifold M , for m = 3 and n = 0, we have the
3-dimensional 0-surgery, whereby two 3-balls S0 ×D3 are removed from M
and are replaced in the closure of the remaining manifold by a thickened
sphere D1 × S2:

χ(M) = M \ h(S0 ×D3) ∪h (D1 × S2)

Next, for m = 3 and n = 2, we have the 3-dimensional 2-surgery, which
is the reverse (dual) process of 3-dimensional 0-surgery.

Finally, for m = 3 and n = 1, we have the 3-dimensional 1-surgery,
whereby a solid torus S1 ×D2 is removed from M and is replaced by another
solid torus D2 × S1 (with the factors now reversed) via a homeomorphism
h of the common boundary:

χ(M) = M \ h(S1 ×D2) ∪h (D2 × S1)

This type of surgery is clearly self-dual.

6.2. Temporal evolution, gradient and core description

Consider the Morse function of Lemma 1 for the case m = 3 and i = 1:

f : D4 → R; (x, y, z, w) 7→ −x2 + y2 + z2 + w2

Applying the line of thought presented in Sections 4 and 5, the local pro-
cess of 3-dimensional 0-surgery happens inside the 4-dimensional handle
D1 ×D3 and can be described by varying parameter t of the level hyper-
surfaces −x2 + y2 + z2 + w2 = t. These hypersufaces and the perpendicular
gradient vector field ∇f = (−2x, 2y, 2z, 2w) require four dimensions in order
to be visualized. However, we can describe and visualize the behaviors of the
cores and the gradient along their direction of movement. We will refer to
this visualization as the ‘core view’ of 3-dimensional 0-surgery. The process
starts with the core S0 of S0 ×D3, see the two red points in the leftmost in-
stance of Fig. 12 (1). These two points are attracted towards (0, 0, 0, 0) under
the influence of the gradient ∇f = (−2x, 2y, 2z, 2w) which is negative along
the horizontal axis x. Along x, the local form of the corresponding Morse



i
i

“3-Antoniou” — 2019/12/3 — 12:09 — page 722 — #22 i
i

i
i

i
i

722 S. Antoniou, L. H. Kauffman, and S. Lambropoulou

function is −x2 = t for −1 < t < 0. The two points touch at the critical
point (0, 0, 0, 0) which is the intersection D1 ∩D3 (within the 4-dimensional
handle D1 ×D3), see the middle instance of Fig. 12 (1). Then, the core
S2 of D1 × S2 uncollapses along the axes y, z, w under the influence of the
gradient ∇f = (−2x, 2y, 2z, 2w) which is positive along axes y, z, w, see the
rightmost instance of Fig. 12 (1). The local form of the corresponding Morse
function along y, z, w is w2 + z2 + y2 = t for 0 < t < 1. Note that the core
S0 (respectively the core S2) bounds the disc D1 (respectively the 3-ball D3)
of the 4-dimensional handle D1 ×D3 in which the process takes place. If we
view the gradient of Fig. 12 (1) as a force, one can imagine the 4-dimensional
process by following the line of thought presented in Section 5.3. Namely,
the attracting forces acting on the cores S0 are fleshed out to the two 3-balls
S0 ×D3 until the critical point is reached, after which the repelling forces
uncollapsing the core S2 are fleshed out to the thickened sphere D1 × S2.

Figure 12: Core view of (1) 3-dimensional 0-surgery (2) 3-dimensional 1-
surgery.

Similarly, for 3-dimensional 1-surgery, we consider the Morse function
of Lemma 1 for the case m = 3 and i = 2:

g : D4 → R; (x, y, z, w) 7→ −x2 − y2 + z2 + w2

In this case, the local process of 3-dimensional 1-surgery happens inside
the handle D2 ×D2 and can be described by varying parameter t of the
level hypersurfaces −x2 − y2 + z2 + w2 = t. In Fig. 12 (2), the ‘core view’
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of 3-dimensional 1-surgery is presented. The process starts with the core
S1 (shown in red) of the solid torus S1 ×D2. The points of this circle
are attracted towards (0, 0, 0, 0) under the influence of the gradient ∇g =
(−2x,−2y, 2z, 2w) which is negative along axes x, y, see the leftmost in-
stance of Fig. 12 (2). Along these axes, the local form of the corresponding
Morse function is −x2 − y2 = t for −1 < t < 0. The circle collapses at the
critical point (0, 0, 0, 0) = D2 ∩D2, see the middle instance of Fig. 12 (2).
Then, the core S1 (shown in green in the rightmost instance of Fig. 12 (2))
of the solid torus with the factors reversed, D2 × S1, uncollapses along axes
z, w under the influence of the gradient ∇g = (−2x,−2y, 2z, 2w) which is
positive along axes z, w. The local from of the corresponding Morse func-
tion along z, w is z2 + w2 = t for 0 < t < 1. Note that each core S1 bounds
a disc D2 of the 4-dimensional handle D2 ×D2 in which the process takes
place. If we view the gradient of Fig. 12 (2) as a force, the 4-dimensional pro-
cess can be imagined as follows: the attracting forces acting on the core S1

are fleshed out to the solid torus S1 ×D2 until the critical point is reached,
after which the repelling forces uncollapsing the other core S1 are fleshed
out to the other solid torus D2 × S1.

6.3. 3-dimensional surgery via rotation

In [2], it is was remarked that 2-dimensional surgery can be obtained from
1-dimensional surgery by rotation. Here, we will prove this fact using Morse
functions. Let us start by remarking that the level surfaces of 2-dimensional
surgery can be obtained by rotating the level curves of 1-dimensional 0-
surgery. Indeed, for any given time t ∈ (0, 1), rotating the hyperbolas −x2 +
y2 = t around the x-axis creates the surfaces −x2 + y2 + z2 = t which de-
scribe 2-dimensional 0-surgery, see passage of Fig. 7 to Fig. 9. Note that,
instead of rotating each such temporal slice, one can rotate the whole handle
which is comprised of them. For example, rotating the handle D1 ×D1 made
of the parametrized hyperbolas of 1-dimensional 0-surgery gives us the han-
dle D1 ×D2 made of the parametrized surfaces of 2-dimensional 0-surgery.
The rotation happens around the x-axis in the (y, z)-plane thus turning
D1 ×D1 to D1 ×D2 by creating the new repelling direction in the z-axis,
see the passage from Fig. 13 (1) to (2). As also shown in Fig. 13 (1) to (2),
the collapsing segments S0 ×D1 are expanded to S0 ×D2 while the rotation
of core S0 of the uncollapsing segments D1 × S0 turns into core S1 of the
uncollapsing cylinder D1 × S1. Note that the reverse process of Fig. 13 (2)
results in a necking of the cylinder D1 × S1, collapsing to the center and
recoupling, thus, it describes, 2-dimensional 1-surgery via rotation.



i
i

“3-Antoniou” — 2019/12/3 — 12:09 — page 724 — #24 i
i

i
i

i
i

724 S. Antoniou, L. H. Kauffman, and S. Lambropoulou

Figure 13: (1) 1-dimensional 0-surgery (2) 2-dimensional 0-surgery via ro-
tation (3) 3-dimensional 0-surgery via rotation (4) 3-dimensional 1-surgery
via rotation.

Moving one dimension up, the instances of both types of 3-dimensional
surgery can be seen as rotations of the instances of 2-dimensional 0-surgery
taking place in D1 ×D2. More precisely, for 3-dimensional 0-surgery, a ro-
tation of D1 ×D2 around the x-axis in the (y, z, w)-hyperplane turns it to
D1 ×D3 by creating the new repelling direction in the w-axis, see Fig. 13 (3).
The resulting handle D1 ×D3 is made of the layering of the hypersur-
faces −x2 + y2 + z2 + w2 = t, −1 < t < 1. In this case, the collapsing discs
S0 ×D2 are thickened to collapsing 3-balls S0 ×D3 while the core S1 of
the uncollapsing cylinder D1 × S1 turns into the core S2 of the uncollaps-
ing thickened sphere D1 × S2, see the passage from Fig. 13 (2) to (3). Note
that as handle D1 ×D3 is 4-dimensional, only the core view is shown in
Fig. 13 (3).

Similarly, for 3-dimensional 1-surgery, a rotation around the y-axis in the
(x, z, w)-hyperplane turns D1 ×D2 to D2 ×D2 by creating the new attract-
ing direction in the w-axis, see Fig. 13 (4). In this case, the resulting handle
D2 ×D2 is made of the hypersurfaces −x2 + y2 + z2 − w2 = t, −1 < t < 1.
Here, the rotation of the core S0 of the collapsing discs S0 ×D2 creates the
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core S1 of the collapsing solid torus S1 ×D2, while the uncollapsing of the
cylinder D1 × S1 creates via rotation the uncollapsing solid torus D2 × S1,
see the passage from Fig. 13 (2) to (4) where only the core view is shown.
Note that, in the local form of the Morse function presented here, directions
y and w are interchanged compared to the Morse function g presented in
the previous section. This is just a matter of convention and is due to the
fact that, in Lemma 1, Morse functions sum up the negative coordinates
first, hence considering that directions x and y are attracting, whereas here
the two attracting directions are x and w because we rotated the prede-
fined coordinates of the local form of the Morse function of 2-dimensional
0-surgery.

Remark 1. The rotations creating the handles comprised of the instances
of both types of 3-dimensional surgery correspond to thickenings of the core
views of Fig. 13 (3) and (4). However, as already mentioned, this requires
the fourth dimension in order to be visualized. Yet, one can visualize the
initial and the final instance of both processes of 3-dimensional surgery in
R3 by using stereographic projection. This visualization is presented in the
Appendix A.

6.4. m-dimensional surgery via rotation

In the previous section we showed how one can obtain the instances of
surgery and the local forms of the corresponding Morse functions for di-
mensions 1, 2 and 3. In this section we generalize this idea for an arbitrary
surgery dimension m.

Figure 14: m-dimensional n-surgery within Dn+1 ×Dm−n.
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The local process of an m-dimensional n-surgery is abstracted in Fig. 14.
Its instances are made of hypersurfaces given by:

−
n+1∑
j=1

x2j +

m+1∑
j=n+2

x2j = t, −1 < t < 1

By varying parameter t, one continuously collapses the core Sn of the
thickened sphere Sn ×Dm−n to the critical point Dn+1 ∩Dm−n from which
the core Sm−n−1 of the thickened sphere Dn+1 × Sm−n−1 uncollapses. The
handle Dn+1 ×Dm−n made of these instances can be obtained by (m− 1)
successive rotations in increasingly higher dimensions of the initial handle
D1 ×D1 made of the instances of 1-dimensional 0-surgery.

6.5. Outlining the 4-dimensional process

One can provide an outline of the 4-dimensional process of 3-dimensional
surgery by analogy to what happens in one dimension lower. We start by il-
lustrating in Fig. 15 (1) the 3-dimensional process of 2-dimensional 0-surgery.
In the figure we deliberately choose a homeomorphic representation, as the
one exhibited by Falaco solitons in Fig. 10, where the two discs S0 ×D2

start embedded in the plane R2, see instance (a) of Fig. 15 (1), but the rest
of the process happens in R3, see instances (b)-(e) of Fig. 15 (1).

In analogy, if a 3-dimensional 0-surgery starts with two 3-balls S0 ×D3

embedded in R3, see instance (a) of Fig. 15 (2), then the rest of the process
takes place in R4, see instances (b)-(e) of Fig. 15 (2). Instances (b) and (c)
of Fig. 15 (2) illustrate the fact that the two 3-balls S0 ×D3 ‘bend’ and
touch in the fourth dimension while instances (d) and (e) of the same figure
illustrate the emerging of the thickened sphere D1 × S2. Note that instances
(b)-(e) are deliberately shown with increased transparency to depict the fact
that the higher dimensional merging and recoupling is not visible in R3.

Similarly, if a 3-dimensional 1-surgery starts with a solid torus S1 ×D2

embedded in R3, see instance (a) of Fig. 15 (3), then the rest of the process
in R4 is outlined in instances (b)-(e) of the same figure. More precisely,
instances (b) and (c) sketch the higher dimensional collapse of the solid
torus S1 ×D2 while instances (d) and (e) of Fig. 15 (3) sketch the emerging
of the solid torus D2 × S1 (with the factors reversed).
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Figure 15: (1) 2-dimensional 0-surgery (2) Outline of 3-dimensional 0-
surgery (3) Outline of 3-dimensional 1-surgery.

7. Global topology and 3-dimensional surgery

In this section we discuss the global effect of both types of 3-dimensional
surgery on a 3-manifold M and present some examples and visualizations.
As we will see in Section 7.1, the result of 3-dimensional 0-surgery on a
3-manifold M is homeomorphic to M#(S1 × S2). On the other hand, 3-
dimensional 1-surgery is a much more powerful topological tool. Indeed, as
explained in Section 7.2, starting with M = S3, this type of surgery can
create the whole class of closed, connected, orientable 3-manifolds.

7.1. 3-dimensional 0-surgery

In Section 7.1.1, we present the process of 3-dimensional 0-surgery on M =
S3. In Section 7.1.2, we define the connected sum of two manifolds and
show the result of 3-dimensional 0-surgery on a 3-manifold. Finally, in Sec-
tion 7.1.3, we characterize the effect of surgery by determining the funda-
mental group of the resulting manifold.

7.1.1. 3-dimensional 0-surgery in S3. Let us start by recalling that
the 3-sphere S3 is made by gluing two 3-balls along their common bound-
ary. Hence, S3 = B3

1 ∪θ B3
2 , via a homeomorphism θ along the boundary
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S2 = ∂B3
1 = ∂B3

2 . By the Alexander Lemma (see for example [12]), any such
homeomorphism θ extends to a homeomorphism between the two 3-balls, so
the result of this gluing will always be homeomorphic to S3.

This decomposition is very helpful in examining the effect of 3-dimen-
sional 0-surgery on M = S3 as we can consider that one of the two 3-balls
to be removed, S0 ×D3, is B3

1 while the other one is embedded inside B3
2 ,

see Fig. 16 (1) where the curved vectors in grey represent ‘gluing along the
common boundary’.

Figure 16: (1) S3 = B3
1 ∪θ B3

2 (2) S0 ×D3 collapses (3) D1 × S2 emerges.

The process of 3-dimensional 0-surgery in S3 collapses two 3-balls S0 ×
D3 to a singular point and we are left with S3 \ (S0 ×D3) = B3

2 \D3, a
thickened sphere, see Fig. 16 (2). Then, another thickened sphere D1 × S2

(which is a 3-dimensional tube) uncollapses and is glued with B3
2 \D3 along

the two common spherical boundaries, see Fig. 16 (3) and the resulting
manifold is:

χ(S3) = χ(B3
1 ∪θ B3

2) = (B3
1 ∪θ B3

2) \ hs(S0 ×D3) ∪hs|S0×S2
(D1 × S2)

= (B3
2 \D3) ∪hs|S0×S2

(D1 × S2).

As we will see in next section, there is a simpler homeomorphic repre-
sentation of the resulting manifold.

7.1.2. 3-dimensional 0-surgery in M3. Let us start by defining the
connected sum:

Definition 6. The connected sum of two m-dimensional manifolds M , M ′

is the m-dimensional manifold M#M ′:

M#M ′ = (M \Dm) ∪ (D1 × Sm−1) ∪ (M ′ \Dm)

obtained by excising the interiors of two embedded m-discs, Dm ↪→M
and Dm ↪→M ′, and joining the resulting boundary components Sm−1 ↪→
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(M \Dm) and Sm−1 ↪→ (M ′ \Dm) by an m-dimensional tube (or a thick-
ened sphere) D1 × Sm−1.

Equivalently, the connected sum M#M ′ can be viewed as the effect
of an m-dimensional 0-surgery on the disjoint union M tM ′ which re-
moves the embeddings S0 ×Dm ↪→M tM ′ defined by the disjoint union
of embeddings Dm ↪→M and Dm ↪→M ′ and connects M and M ′ by an m-
dimensional tube D1 × Sm−1. Conversely, an m-dimensional 0-surgery can
be viewed as a connected sum. More precisely, in the following proposi-
tion we show that the result of m-dimensional 0-surgery on an m-manifold
M is homeomorphic to connecting M and S1 × Sm−1 by a higher dimen-
sional tube D1 × Sm−1, see Fig. 17. Note that, in the figure all manifolds are
shown for m = 2. For example Dm, D1 × Sm−1 and S1 × Sm−1 are shown
as D2, D1 × S1 and S1 × S1 respectively.

Proposition 3. The result χ(M) of m-dimensional 0-surgery on a m-
manifold M is homeomorphic to the connected sum M#(S1 × Sm−1).

Proof. We will first show that

χ(Dm
0 ) ∼= (S1 × Sm−1) \Dm (?)

In other words, the result of m-dimensional 0-surgery on the disc Dm
0 is

homeomorphic to the punctured S1 × Sm−1. For seeing this, we first consider
S1 as made up by two segments D1: S1 × Sm−1 = (D1 ∪D1)× Sm−1. With
this decomposition, we can remove a D1 × Sm−1 from both sides of equation

(?) : Dm
0 \ (S0 ×Dm) ∪ (D1 × Sm−1) \ (D1 × Sm−1)

∼= (D1 × Sm−1) ∪ (D1 × Sm−1) \Dm \ (D1 × Sm−1)
⇐⇒ Dm

0 \ (S0 ×Dm) ∼= (D1 × Sm−1) \Dm.

So, with the handles D1 × Sm−1 removed, we only need to show that
the remaining manifolds are homeomorphic. View Fig. 18 (1) where both
D1 × Sm−1 are shown with increased transparency. This is made clear in
Fig. 18 (2) where both Dm

0 \ (S0 ×Dm) and (D1 × Sm−1) \Dm are decom-
posed into Morse levels. For m = 2 the Morse levels start as one circle (see
levels −4 to −1 in Fig. 18 (2)), which passes through a critical point (see level
0 in Fig. 18 (2)) and is divided into two circles (see levels 1 to 4 in Fig. 18 (2)).

Since the Morse levels of both D2
0 \ (S0 ×D2) and (D1 × S1) \D2 have been
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corresponded, these two manifolds are homeomorphic. The same decompo-
sition can be generalized for Dm

0 \ (S0 ×Dm) and (D1 × Sm−1) \Dm by
considering level spheres Sm−1 instead of circles S1.

Figure 17: (1) M = M0 ∪Dm
0 (2) χ(M) (3) M#(S1 × Sm−1) (4) Homeo-

morphic representation of M#(S1 × Sm−1).

Figure 18: (1) Removing (D1 × Sm−1) (2) Homeomorphic representations
of Dm

0 \ (S0 ×Dm).

Now, if we consider M0 and Dm
0 such that M = M0 ∪Dm

0 , see Fig. 17 (1),
with Dm

0 containing h(S0 ×Dm), see Fig. 17 (2), then

χ(M) = M \ h(S0 ×Dm) ∪h (D1 × Sm−1)
= M0 ∪ (Dm

0 \ h(S0 ×Dm)) ∪h (D1 × Sm−1)
= M0 ∪ (Dm

0 \ h(S0 ×Dm)) ∪h (D1 × Sm−1),

which, using (?), gives

χ(M) ∼= M0 ∪ (S1 × Sm−1 \Dm
0 ) = M \Dm

0 ∪ (S1 × Sm−1 \Dm
0 ).
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Notice now that elongating the punctured S1 × Sm−1 by a tube D1 × Sm−1
results in a homeomorphic manifold:

S1 × Sm−1 \Dm
0
∼= (D1 × Sm−1) ∪ (S1 × Sm−1 \Dm

0 ),

see the passage of Fig. 17 (3) to Fig. 17 (4). Hence, χ(M) ∼= M \Dm
0 ∪

(D1 × Sm−1) ∪ (S1 × Sm−1 \Dm
0 ) = M#(S1 × Sm−1). �

Let now M be an arbitrary 3-manifold. The process of 3-dimensional 0-
surgery onM is analogous to the process described in Section 7.1.1 for S3. By
Proposition 3, the effect of 3-dimensional 0-surgery on M is homeomorphic
to connecting M and the lens space S1 × S2 by a higher dimensional tube
D1 × S2. Recall Fig. 17 where all manifolds are shown one dimension lower.

7.1.3. Fundamental group. Another way of characterizing the effect of
m-dimensional 0-surgery on an m-manifold M is by determining the fun-
damental group of the resulting manifold. The fundamental group records
basic information about a manifold and is a topological invariant: home-
omorphic manifolds have the same fundamental group. For details on the
fundamental group see Appendix B. The fundamental group of χ(M) can
be characterized using the following lemma which is a consequence of the
Seifert–van Kampen theorem (see for example [13]):

Lemma 2. Let m ≥ 3. Then the fundamental group of a connected sum is
the free product of the fundamental groups of the components:

π1(M#M ′) ∼= π1(M) ∗ π1(M ′)

Based on the above, a 3-dimensional 0-surgery on M alters its funda-
mental group as follows:

π1(χ(M)) ∼= π1(M#(S1 × S2))

∼= π1(M) ∗ π1(S1 × S2)

∼= π1(M) ∗ (π1(S
1)× π1(S2))

∼= π1(M) ∗ Z.

7.2. 3-dimensional 1-surgery

In Section 7.2.1, we present the process of 3-dimensional 1-surgery on M =
S3 when a trivial embedding is used. Then, in Section 7.2.2, we introduce
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the notion of ‘knot surgery’, which also includes non-trivial embeddings,
and we present the Lickorish-Wallace theorem stating that knot surgery can
create all closed, connected, orientable 3-manifolds. Finally, in Section 7.2.3,
we characterize the effect of knot surgery on M = S3 by determining the
fundamental group of the resulting manifold.

7.2.1. 3-dimensional 1-surgery in S3. In Section 6.1, we described
briefly the mechanism of 3-dimensional 1-surgery. Let us now recall that the
3-sphere S3 can be obtained as the union of two solid tori, S3 = V1 ∪θ V1c,
where V1c stands for the complement of V1 and θ is the standard torus
homeomorphism along the common boundary mapping each longitude (re-
spectively meridian) of V1 to a meridian (respectively longitude) of V1c. A
visualization of both solid tori in R3 using the stereographic projection can
be found in Appendix A, see Fig. A3 (3a) or Fig. A3 (3b). This decomposition
is clearly very helpful for examining the effect of 3-dimensional 1-surgery on
S3 for the case of a trivial embedding hs of V1. Namely, the complement
solid torus V1c remains identically fixed throughout the process while V1 is
replaced by a solid torus V2 with the factors reversed via a homeomorphism
hs from the boundary of V1 to the boundary of V2.

To avoid confusion and keep the color coding consistent with previous
sections, the solid tori V1 and V2 will be considered as the initial and final
instances of the local process of surgery (keeping the respective red-green
color coding of their core curves) while the complement torus of V1 in S3 will
be V1c and its core curve will be shown in blue. The initial manifold M = S3

can be seen in Fig. 19 (1) where the curved vectors in grey represent ‘gluing
along common boundary’. We will consider Fig. 19 (1) as the initial setup
for 3-dimensional 1-surgery on S3.

Figure 19: (1) S3 = V1 ∪ V1c (2) V1 collapses (3) V2 emerges.

One key difference compared to 3-dimensional 0-surgery where the em-
bedding of the core S0 of S0 ×D3 didn’t influence the resulting manifold
is that, here, the higher dimension of the core S1 allows for knotted em-
beddings of the solid torus S1 ×D2. As we will see, this knotting plays a
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crucial role in the result of surgery. We will start by discussing the trivial
embedding in this section and then introduce the notion of ‘knot surgery’
in Section 7.2.2.

When a trivial embedding hs is used, the embedding hs(V1) = hs(S
1
1 ×

D2) corresponds to taking the tubular neighborhood of an unknotted core
S1
1 where longitudes `1 are parallel to the core. As S3 = V1 ∪hs

V2, the in-
duced ‘gluing’ homeomorphism along the common boundary S1

1 × S1
2 maps

each longitude (respectively meridian) of solid torus V1 to the meridian (re-
spectively longitude) of solid torus V2. Hence, hs(`1) = m2 and hs(m1) = `2.
The process of surgery collapses S1

1 ×D2, see Fig. 19 (2) and then uncol-
lapses D2 × S1

2 , see Fig. 19 (3). Given that the solid torus V2 = D2 × S1
2 is

homeomorphic to V1c = D2 × S1
1c as they are both complements of V1 in S3,

the resulting manifold is:

χ(S3) = S3 \ hs(S1
1 ×D2) ∪hs|S1

1
×S1

2

(D2 × S1
2)

= (D2 × S1
1c) ∪hs|S1×S1

2

(D2 × S1
2)

∼= (D2 × S1
2) ∪hs|S1×S1

2

(D2 × S1
2)

= (D2 ∪hs|S1
D2)× S1

2 = S2 × S1
2 .

7.2.2. Knot surgery. We start with the following fundamental theorem
by A. H. Wallace [6] and W. Lickorish [14]:

Theorem 2 ([6] Thm 6, [14] Thm 2). Every closed, connected, ori-
entable 3-manifold can be obtained by surgery on a knot or a link in S3.

Let us mention that a knot K is an embedding of S1 in R3 or S3 while a
link is a collection of knots which do not intersect, but which may be linked
(or knotted) together. It can be shown that this theorem is equivalent to
saying that, starting with M = S3, we can create every closed, connected,
orientable 3-manifold by performing a finite sequence of 3-dimensional 1-
surgeries, see [14] or [15] for details.

In this type of surgery, the role of the embedding is crucial. When using
the standard embedding hs, the core S1

1 and the longitude `1 of the removed
solid torus V1 are both trivial loops (or unknotted circles) and 3-dimensional
1-surgery generates a restricted family of 3-manifolds. Indeed, starting from
S3, standard embeddings hs can only produce S2 × S1 or connected sums
of S2 × S1 while more complicated 3-manifolds require using a non-trivial
embedding h, where the core curve and the longitude of the removed solid
torus h(S1

1 ×D2) can be knotted. One such 3-manifold is the Poincaré ho-
mology sphere which is obtained by doing surgery on the trefoil knot with
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the right framing, see Fig. B8. For the definition the blackboard framing of
a knot, see Appendix B.2. For details on the Poincaré homology sphere, see
Appendix B.5.

Hence the process of 3-dimensional 1-surgery can be also described in
terms of knots. We will call this process ‘knot surgery’ in order to differen-
tiate it from the process of 3-dimensional 1-surgery where hs is used. Here,
we can view the embedding h(V1) = h(S1

1 ×D2) as a tubular neighbourhood
N(K) of knot K: N(K) = K ×D2 = h(S1

1 ×D2). The knot K = h(S1
1 ×

{0}) is the surgery curve at the core of solid torus N(K) = h(S1
1 ×D2). On

the boundary of N(K), we further define the framing longitude λ ⊂ ∂N(K)
with λ = h(S1

1 × {1}), which is a parallel curve of K on ∂N(K), and the
meridian m1 ⊂ ∂N(K) which bounds a disk of solid torus N(K) and inter-
sects the core K transversely in a single point.

A ‘knot surgery’ (or ‘framed surgery’) along K with framing λ on a
manifold M is the process whereby N(K) = h(V1) is removed from M and
V2 = D2 × S1

2 is glued along the common boundary. The interchange of fac-
tors of the ‘gluing’ homeomorphism h along S1

1 × S1
2 can now be written as

h(λ) = m2 and h(m1) = l2.
Unlike the case of the standard embedding hs discussed in Section 7.2.1,

the possible knottedness of h makes this process harder to visualize. How-
ever, the manifold resulting from knot surgery can be understood by deter-
mining its fundamental group. This is done in next section.

7.2.3. Fundamental group. In this section, we present the theorem
which characterizes the effect of knot surgery on M = S3 by determining
the fundamental group of the resulting manifold. We then apply it on the
simple case of framed surgery along an unknotted surgery curve.

The fundamental group of the 3-sphere S3 is trivial, as any loop on
it can be continuously shrunk to a point without leaving S3. To examine
how knot surgery alters the trivial fundamental group of S3, let us consider
the tubular neighborhood N(K) of knot K. The generators of the group of
∂N(K) are the longitudinal curve λ and the meridional curve m1. Note now
that in V1 = N(K) meridional curves bound discs while it is the specified
framing longitudinal curve λ that bounds a disc in V2 = D2 × S1

2 , since,
after surgery, the disc bounded by m2 is now filling the longitude λ. Thus,
λ is made trivial in the fundamental group of χK(S3). In this sense, surgery
collapses λ. This statement is made precise by the following theorem which
is a consequence of the Seifert--van Kampen theorem (see for example [13]):

Theorem 3. Let K be a blackboard framed knot with longitude λ ∈
π1(S

3 \N(K)). Let χK(S3) denote the 3-manifold obtained by surgery on
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K with framing longitude λ. Then we have the isomorphism:

π1(χK(S3)) ∼=
π1(S

3 \N(K))

< λ >

where < λ > denotes the normal subgroup generated by λ ∈ π1(S3 \N(K)).

For a proof, the reader is referred to [16, 17]. The theorem tells us that
in order to obtain the fundamental group of the resulting manifold, we have
to factor out < λ > from π1(S

3 \N(K)).

Example 7.2.1. When the trivial embedding hs is used, then the ‘gluing’
homeomorphism is hs(l1) = m2, K = the unknot, λ = l1 and l1 is a trivial
element in π1(S

3 \N(K)), so < λ >=< 0 >. In this case, we obtain the lens
space L(0, 1) = S2 × S1 and the above formula gives us:

π1(χ(S3)) ∼=
π1(S

3 \ hs(S1
1 ×D2))

< λ >
=
π1(D̊2 × S1

1c)

< 0 >
=

Z
{0}
∼= Z

Example 7.2.2. When we use a non-trivial embedding N(K) = h(S1
1 ×

D2) where the specified framing longitude λ performs p curls, the ‘gluing’
homeomorphism is h(λ) = m2 and we can consider that K = the unknot,
see Appendix B.2 for details. In order to use Theorem 3, we have to find
the subgroup generated by λ = l1 + p ·m1 in π1(S

3 \N(K)). This subgroup
is < λ >=< l1 + p ·m1 >∼=< p ·m1 >∼= p· < m1 >∼= pZ. In this case we ob-
tain the lens space L(p, 1) and its fundamental group is the cyclic group of
order p:

π1(χ(S3)) ∼=
π1(S

3 \ h(S1
1 ×D2))

< λ >
=
π1(D̊2 × S1

1c)

pZ
= Z/pZ

As we saw in Example 7.2.2, if λ is not a bounding curve in the knot
complement, then we need to work out just what element λ is in the fun-
damental group of the knot complement. This can be done by using one of
the known presentations of the fundamental group, such as the Wirtinger
presentation. A detailed presentation on the fundamental group of a knot K
and how we can use this presentation to determine the resulting manifold
for knot surgery on M = S3 along K is done in Appendix B.
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8. Topological processes of cosmic phenomena

In this section, we describe cosmic phenomena using topological surgery
by exploring the mathematical setting and developing the ideas presented
in essay [18]. More precisely, we use 3-dimensional surgery to analyze the
temporal evolution and the topology change occurring during the formation
of wormholes and cosmic string black holes and we connect both of these
cosmic phenomena with the ER = EPR hypothesis of L. Susskind and J.
Maldacena, see [19, 20]. Wormholes and cosmic string black holes are ana-
lyzed in Sections 8.1 and 8.2 respectively. Significant outcomes of our study
include the presentation of a possible entangled quantum state for worm-
holes, in Section 8.1.3, and the avoidance of the singularity by conjecturing
that a new 3-manifold is created behind the event horizon, in Section 8.2.1.

In all subsequent sections we consider ‘space’ as being the 3-dimensional
spatial section of the 4-dimensional spacetime manifold of the universe. More
precisely, given some natural definition of time, one can use this time func-
tion to slice up the spacetime (at least locally) into a set of hypersurfaces,
which might each be thought of as ‘space’. Let us consider the initial space
M as being the 3-sphere S3 or the 3-space R3 or a 3-manifold correspond-
ing to the aforementioned 3-dimensional spatial section, and suppose that
a cosmic phenomenon induces a topological change transforming M into
M ′. Then, the 4-dimensional spacetime manifold with past boundary the
spacelike component M and future spacelike boundary M ′ coincides with
the 4-dimensional cobordism W bounded by M on one end and M ′ on the
other. If this topological change is surgery then M ′ = χ(M) and the cobod-
ism W describes the global process of surgery as detailed in Section 2.2.
Moreover, as also explained in Section 2.2 and illustrated in Fig. 4, the tem-
poral ‘slices’ of the global process of surgery are perpendicular crossections
of the cobordism W .

8.1. Wormholes

Einstein and Rosen [21] introduced in 1935 what would be called the
‘Einstein-Rosen bridge’ as a possible geometric model that avoided singu-
larities via a coordinate change of the Einstein field equations. This ‘bridge’
evolved to the modern term ‘wormhole’ introduced by Wheeler in [22]. Since
then, a great variety of wormholes have been considered by the physics com-
munity.

From a geometrical point of view, Wheeler’s diagram of a wormhole
in [22] is a tunnel connecting two mouths. As he mentions, the number
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of space dimensions have been reduced from three to two, hence his dia-
gram depicts the 3-dimensional tunnel D1 × S2 by a 2-dimensional cylinder
D1 × S1 joining the two mouths. Similar representations are found in subse-
quent works [23, 24], where circular crossections along a cylinder represent
2-spheres. For the purpose of our work, we consider that a wormhole is a
higher dimensional tunnel D1 × S2 joining two spherical regions of space.
With this consideration at hand, we provide a topological description of
wormhole formation and present a novel perspective on its association with
entanglement. See Sections 8.1.2 and 8.1.3.

More precisely, in Section 8.1.1 we describe wormhole formation via 3-
dimensional 0-surgery and we pin down the core topology of this process,
which can be seen independently of the physical theories of its formation.
In Section 8.1.2 we use our description in the context of the ER = EPR
hypothesis to view wormholes as a continuous process resulting from two
entangled black holes. In Section 8.1.3 we present a way to associate a pos-
sibly entangled state with a wormhole.

8.1.1. The topological process of wormhole formation. If one con-
siders an initial 3-manifold M corresponding to space (as previously de-
fined), then a wormhole joins the 3-dimensional neighborhoods S0 ×D3 of
two points in space via a tunnel D1 × S2, as sketched in instance (e) of
Fig. 15 (2). This is, by definition, the effect of a 3-dimensional 0-surgery on
M . Recall from Section 6.5 that the higher dimensional merging and recou-
pling which produces the wormhole is not visible from the 3-space M . For
instance, let us consider a ‘mathematical’ observer living in M , who is not
subject to the restrictions of physical laws. The only difference for him is
that, after surgery, he can exit from any point on the boundary of one 3-ball
and re-emerge from any point on the boundary of the other 3-ball.

As also mentioned in Section 6.5, this tunnel is a higher dimensional ana-
logue of the cylinder seen during the formation of Falaco solitons where the
2-dimensional neighborhoods S0 ×D2 of the two indentations are joined by
the cylindrical vortex D1 × S1. In fact, a possible connection between Falaco
solitons and wormholes has already been mentioned by R. M. Kiehn. Namely,
in [25] he conjectures that ‘the universal coherent topological features of the
Falaco solitons can appear as cosmological realizations of Wheeler’s worm-
holes’. Our surgery description reinforces this connection.

Further, let us point out that the formation of certain wormholes are
followed by their annihilation. For example, the dynamical evolution of the
Schwarzschild wormhole starts with two singularities annihilating each other,
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Figure 20: Entangled black holes connected by a wormhole.

thus creating the wormhole. The wormhole then grows in circumferences un-
til its maximum size is reached, from which the wormhole starts contracting
until it pinches off by creating two other singularities, see [26]. The nu-
merical calculations done in [23] show that this process is the same as the
creation of a pair of Falaco solitons followed by their annihilation. Indeed
the simulations of [23] amalgamate the instances of Fig. 15 (1) from left to
right followed by the reverse process, which is made up of the instances of
Fig. 15 (1) from right to left. Although we focus on wormhole formation, the
topological process of their annihilation can be seen as the reverse process
of their formation.

Viewing wormholes as the result of a 3-dimensional 0-surgery on M ,
allows us to apply the topological tools developed in previous sections, thus
providing a simpler dynamical description in terms of hypersurfaces, which
is coupled with a topological characterization of the resulting manifold.

Namely, as analyzed in Section 2.2, the instances of the global process of
this topological change from the initial manifold M to the resulting manifold
χ(M) make the spatial 4-dimensional cobordism W obtained by attaching a
handle D1 ×D3 to M × I. The effect of this topological change on space M
can be characterized by determining the fundamental group of the resulting
manifold χ(M) as shown in Section 7.1.3. Moreover, the global change of
topology occuring during wormhole formation can now be also considered
as a result of a continuous topological change of 3-space. Namely, as seen
in Section 6, the local changes of surgery can be algebraically described by
the hypersurfaces resulting from the local form of the corresponding Morse
function. Further, the Morse function can be seen as a potential energy func-
tion whose gradient field controls the topological evolution of the surgery,
recall Section 6.2.
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Following the core description of Section 6.2, we can now think of a
wormhole as a topological change starting with two sites in space (an S0)
which collapse to one site (the singular point) and re-emerge as a sphere
S2 (the core of the wormhole), see Fig. 12 (1). Inversely, if the core S2 of
a wormhole collapses then the handle (the wormhole itself) is removed and
we receive a new manifold with two special sites S0.

Note finally that wormhole formation can be viewed in the context of
different physical theories. For instance, according to J. A. Wheeler, worm-
holes can be seen as resulting from quantum fluctuations at the Planck
scale [27]. Further, they can be seen as a result of entanglement [19, 20].
Our perspective describes the core topology of wormholes, independently of
the physical theory in which it is viewed. In the next section we will see
how the core description applied to the ER = EPR hypothesis [19, 20] can
provide a ‘classical path’ to this quantum perspective.

8.1.2. Wormholes as entangled black holes. Our topological perspec-
tive may shed light on certain suggestions about quantum gravity and black
holes. Specifically, we consider the ER = EPR hypothesis, see [19, 20],
which states that an Einstein-Rosen bridge (that is, a wormhole) is equiv-
alent to the quantum entanglement of two concentrated masses that each
forms a respective black hole. This entanglement implies, by ER = EPR,
that the two black holes will not collapse individually, but rather form a sin-
gle wormhole. The connectivity of the wormhole is, according to ER = EPR,
a consequence of the quantum entanglement of the masses prior to the worm-
hole formation. See Section 8.1.3 for a specific discussion of this point.

Applying our description to the ER = EPR hypothesis leads to con-
jecturing a classical counterpart to the formation of such a wormhole. In
‘classical’ surgery description the two sites in space (the S0) are the cen-
ters of formation for the black holes that then become the core S2 of the
wormhole.

More precisely, the process starts with Fig. 20 (initial) and ends with
Fig. 20 (final), where we show 1-dimensional analogues of the 3-dimensional
instances (χ(M) is shown as the result of a 1-dimensional 0-surgery on line
M while S0 ×D3, D1 × S2 are shown as S0 ×D1, D1 × S0). In instances (a)
to (e) of Fig. 20, we zoom in the region where the local process of surgery
happens and present 2-dimensional analogues of the 3-dimensional instances
(S0 ×D3 is shown as S0 ×D2 and D1 × S2 is shown as D1 × S1).

In this scenario, as surgery happens within the event horizons of the
black holes, the thickenings D3 are inside the Schwarzschild radii of the
black holes, see instance (a) of Fig. 20. In fact, the whole handle D1 ×D3
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(see the upper part of Fig. 20 for its 1-dimensional analogue), that contains
all instances of the process, is within the event horizons of the black holes.
The process brings the two black holes together to form a wormhole where
their singularities S0 have been transformed to the core S2 of the wormhole,
see instances (b) to (e) of Fig. 20.

Note that a quantum description of the formation of such a worm-
hole would directly pass from the initial instance at the beginning of the
black hole formation to the final instance of the wormhole. Here however,
3-dimensional 0-surgery gives a continuous description of the creation of this
entangled pair of black holes forming the wormhole. This could be regarded
as a possible classical path from the initial event to the wormhole. Inversely,
the collapsing of the core of a wormhole can be seen as the disentanglement
of the black hole pair.

8.1.3. A possible entangled quantum state for wormholes. In this
section, we present a way to associate a possibly entangled state with a
wormhole that is coherently related to the ER = EPR hypothesis. Recall
that a cobordism between two manifolds M and M ′ is a manifold W of one
higher dimension such that the boundary of W is the union of M and M ′.
If M ′ is empty, then we say that W is a cobordism of M to the empty
manifold and, of course, this simply means that the boundary of W is M.
View Figure 21. We illustrate a wormhole as a cobordism between an empty
manifold and two spheres, drawn as circles in the figure. For a spacetime
wormhole, the spheres would each be two-dimensional (forming the event
horizons of two black holes). This view of a wormhole fits precisely with the
surgery description for the wormhole that we have given in this paper.

Figure 21: The quantum state of a wormhole.

In Topological Quantum Field Theory one considers functors from the
category of manifolds (as objects) and cobordisms (as morphisms) to the
category of vector spaces and linear transformations. In this point of view a
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wormhole as in Figure 21 would be sent by the functor to a linear mapping

T : k −→ V ⊗ V

where the two-sphere S2 (depicted as a circle in the figure) maps to V , the
disjoint union of the two two-spheres maps to V ⊗ V, and the empty object
maps to the ground field k.

Here T is the map corresponding to the wormhole itself. With this point
of view, we can see how an entangled quantum state can be associated with
a wormhole.

The possible state would occur with k = C, the complex numbers, and
V a finite dimensional complex vector space associated with the two-sphere.
Then T (1) is a vector in the tensor product V ⊗ V, and is a possibly entan-
gled quantum state to be associated with the wormhole. It remains to be
seen whether properties of the wormhole resulting from the formation and
amalgamation of two black holes imply the existence of such an entangled
state. Nevertheless, the surgery picture of the wormhole as a cobordism is
fundamental for this investigation. The possibly entangled state T (1) can be
interpreted as an element of the tensor product of Hilbert spaces associated
with each black hole (represented by their respective event horizons). Thus
this viewpoint also provides a framework in which to discuss the L. Susskind
and J. Maldacena principle that quantum entanglement of two black holes
should correspond to a wormhole that they form together. Here T (1) would
represent the quantum entanglement of the black holes.

At this writing we do not know a general condition in the spacetime
manifold that would imply the entanglement of the state T (1). For more
information about topological quantum field theory, quantum entanglement
and its relation to wormholes, see [19, 28–30].

8.2. Cosmic string black holes

Cosmic strings are hypothetical topological defects which may have formed
in the early universe and are predicted by both quantum field theory and
string theory models. Their existence was first contemplated by Tom Kib-
ble [31] in the 1970s. Then, in [32] S. W. Hawking estimated that a fraction
of cosmic string loops can collapse to a small size inside their Schwarzschild
radius, thus forming a black hole. As he mentions, under certain conditions,
‘one would expect an event horizon to form, and the loop to disappear into
a black hole’. We will call such black holes ‘cosmic string black holes’.
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In Section 8.2.1 we describe the formation of cosmic string black holes
via 3-dimensional 1-surgery and present how this description proposes a con-
jecture resulting in the creation of a non-singular 3-space. In Section 8.2.2,
we examine the possible 3-manifolds than can occur if such processes are
followed, we focus on the example of the Poincaré dodecahedral space and
discuss possible implications of observing such 3-manifolds in our universe.
In Section 8.2.3 we use our description in the context of the ER = EPR
hypothesis, to present how the example of Section 8.1.2 can be generalized
to a cosmic string of entangled black holes forming a wormhole.

8.2.1. Using topological surgery to avoid singularities. Except from
S. W. Hawking’s original estimation in [32], other estimations of the fraction
of cosmic string loops which collapse to form black holes have been made in
subsequent works, see [33] and [34]. While the details of the different estima-
tions have no direct implications on this analysis, it is worth mentioning the
following two statements. In [33], R. R. Caldwell and P. Casper point out
that the loop ‘collapses in all three directions’ and in [34], J. H. MacGibbon,
R. H. Brandenberger and U. F. Wichosk give the following example for a
collapsing symmetric string loop: ‘For example, a planar circular string loop
after a quarter period will collapse to a point and hence form a black hole.’

Topologically, the aforementioned loop can be considered to be a solid
torus S1 ×D2 embedded in the 3-space M . The thickening D2 can be con-
sidered to be very small, as the diameter of a cosmic strings is of the same
order of magnitude as that of a proton, that is, ≈ 1 fm or smaller. The
loop S1 ×D2 collapses to a small size inside its Schwarzschild radius, thus
creating a black hole the center of which contains the singularity. In this
scenario, M becomes a singular manifold at that point. Physicists are unde-
cided whether the prediction of this singularity means that it actually exists
or that current knowledge is insufficient to describe what happens at such
extreme density. This singularity can be avoided by considering that the
collapsing of a cosmic string loop is followed by the uncollapsing of another
cosmic string loop. In other words, we propose that the creation of a cos-
mic string black hole is a 3-dimensional 1-surgery which changes the initial
3-manifold M to another 3-manifold χ(M) by passing through a singular
point.

The process starts with Fig. 22 (initial) and ends with Fig. 22 (fi-
nal), where we show 1-dimensional analogues of the 3-dimensional instances
(χ(M) is shown as the result of a 1-dimensional 0-surgery on line M , while
S1 ×D2, D2 × S1 are shown as S0 ×D1, D1 × S0). In instances (a) to (c)
of Fig. 22, we zoom in the region where the local process of surgery happens
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Figure 22: 3-dimensional 1-surgery inside the event horizon.

and we present a sketch of the 4-dimensional process. More precisely, in in-
stance (a) of Fig. 22, we show a knotted embedding of the loop S1 ×D2. As
we consider that the cosmic string has already shrunk to a radius smaller
than its Schwarzschild radius, the event horizon is also shown in instance (a)
of Fig. 22. Fig. 22 (b) shows the loop shrinking to the critical point which
coincides with the physical singularity. After the collapsing, the process does
not stop, but another manifold, D2 × S1, which corresponds to another cos-
mic string loop, grows from the singular point of Fig. 22 (b). In instance (c)
of Fig. 22 we show the uncollapsing of the cosmic string D2 × S1 which
transforms the initial manifold M to χ(M), see Fig. 22 (final). As in pre-
vious section, the whole handle D2 ×D2 (see the upper part of Fig. 22 for
its 1-dimensional analogue), which contains all instances of the process, is
within the event horizon of the black hole.

Thus, considering black hole formation as a knot surgery (or 3-dimen-
sional 1-surgery) on a cosmic string loop allows us to go through the singular
point of the black hole without having a singular manifold in the end. Instead,
we end up with a topologically new universe with a local topology change from
the 3-space M to the 3-space χ(M) and, as suggested in Fig. 22, this topology
change happens within the event horizon.

In analogy with the previous section, the instances of this global pro-
cess also make a spatial 4-dimensional cobordism W which, in this case, is
obtained by attaching a handle D2 ×D2 to M × I, recall Section 2.2 for de-
tails. The effect of this topological change on space M can be characterized
by determining the fundamental group of the resulting manifold χ(M) as
shown in Section 7.2.3. Further, as seen in Section 6, the local changes of
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surgery can be algebraically described by the local form of the corresponding
Morse function. As pointed out in Section 6.2, the gradient of this function
can be seen as a force which, in this case, corresponds to the string tension,
which collapses the cosmic string, see [32] for details.

Following the core description of Section 6.2, we can now think of a
cosmic string black hole as a knot surgery starting with a cosmic string
in space (a possibly knotted S1) which collapses to one site (the singular
point) and re-emerges as another cosmic string (or possibly knotted S1).
See Fig. 12 (2) for a core view of the unknot and Fig. 22 for the case of a
non-trivial knot.

8.2.2. New 3-manifolds behind the event horizon and the Poincaré
dodecahedral space. As mentioned in Section 7.2, starting withM = S3,
knot surgery can produce every closed, connected, orientable 3-manifold.
This means that, if we consider the initial 3-space to be M = S3, our ap-
proach, apart from avoiding a singular 3-space, also gives rise to a very large
family of 3-manifolds. One such 3-manifold, which is of great interest to
physicists, is the Poincaré dodecahedral space. This space can be described
by taking a dodecahedron and identifying the opposite faces, as shown in
Fig. B9, and has been proposed as a possible shape for the geometric uni-
verse, see [35–37]. As J-P. Luminet states in [38], the 2015 release of Planck
data remains consistent with more complex shapes, such as the spherical
Poincaré dodecahedral space.

From our viewpoint, this manifold is obtained by doing knot surgery on
the trefoil knot with the right framing. See for example [15]. Further details
on the Poincaré dodecahedral space and its fundamental group are given in
Appendix B.5. Hence, in such a scenario, our approach suggests that:

The shape of the universe came about via a knot surgery following the
process showed in Fig. 22, where the collapsed knot is a trefoil cosmic string.

Let us now take this scenario further and suppose we have observers in
an initial spherical universe M = S3. After surgery, a ‘mathematical’ ob-
server would be able to see the Poincaré dodecahedral space and detect the
topology change. From his point of view, he could exit from any point on
the boundary of the thickened trefoil knot and re-emerge from any other
point of its boundary. However, a physical observer, who is subject to the
restrictions of physical laws, would only see the event horizon in which the
trefoil cosmic string has collapsed. Let us call this observer, Observer 1. Af-
ter surgery, Observer 1 would see the same universe S3, the only change
being the formation of the spherical event horizon, shown as an S1 in the
lower dimensional analogue of Fig. 23. On the other side of the event horizon
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Figure 23: Observer 1 and 2.

we can conjecture that a new universe has emerged in which new observers
might evolve. Such an observer, say Observer 2, will see a Poincaré dodec-
ahedral space and the event horizon from the other side, unaware that the
original S3 universe is behind it, see Fig. 23.

Hence, finding the Poincaré dodecahedral space (or some other non-
trivial 3-manifold) in our universe may indicate that we are observers that
evolved inside the event horizon of a collapsed trefoil cosmic string (or some
other cosmic string).

8.2.3. String of entangled black holes as a generalized wormhole.
Continuing the example of Section 8.1.2, we will discuss the relation of cos-
mic string black holes with the ER = EPR hypothesis, see [19, 20]. As we
will see, our topological perspective makes cosmic string black holes equiv-
alent to wormholes made from a string of entangled black holes.

To see this, we will first present a visualization, which will allow us to
connect both types of surgery. Recall, from Section 8.1, how the core de-
scription of the process of 3-dimensional 0-surgery of Fig. 12 (1) fits the
formation of a wormhole from an entangled pair of black holes. In the fig-
ure, the two centers of the black holes S0 (in red) represent the boundary
component S0 ×D3 of the handle D1 ×D3, while the wormhole core S2 (in
green) represents the other boundary component D1 × S2 of D1 ×D3.

In Fig. 24 (1) we show both the initial and the final stage of the pro-
cess in one instance. We further simplify Fig. 12 (1) by representing the
boundary component D1 × S2 of D1 ×D3 with D1 instead of S2. Hence, in
Fig. 24 (1) the two black holes S0 (in red) come together to form the core D1

of the wormhole (in green), which is also the core D1 of the handle D1 ×D3

containing the temporal ‘slices’ of the process of 3-dimensional 0-surgery.
Let us now consider a cosmic string loop made of several pairs of entan-

gled concentrated masses. When each pair of masses collapses, they become
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Figure 24: (1) Pair of entangled black holes (2) String of entangled black
holes.

connected by a wormhole, as shown in Fig. 24 (1). Given that all these pairs
of masses have started on the same cosmic string, the distinct wormholes
merge and the entire collection of wormhole cores (the green arcs D1 in
Fig. 24 (1)) forms a 2-disc D2, see Fig. 24 (2), which is the core of the
higher dimensional handle D2 ×D2 containing the temporal ‘slices’ of the
process of 3-dimensional 1-surgery. Note that, as D2 cups off a circle while
D1 joins two points, one can rotate Fig. 24 (1) to receive Fig. 24 (2).

Hence, a cosmic string black hole can be seen as a collection of Einstein-
Rosen bridges, which generalizes having a separate bridge for each pair of
entangled black holes.

The process of surgery amalgamates these bridges to form a new 3-
manifold resulting from surgery on the cosmic string. The effect of knot
surgery is that, from any black hole location on the cosmic string to any
other, there is a ‘bridge’ through the new 3-manifold.

9. Conclusions

In this paper, we use tools from Morse theory and algebraic topology to
describe the process of topological surgery both locally and globally. This
approach provides continuous paths to wormhole and cosmic string black
hole formations. Adding the ER = EPR hypothesis, we also describe the
entanglement of a pair (or a string) of black holes, thus binding the quan-
tum connectivity of space with the rich structure of 3- and 4-dimensional
manifolds.

Our knot surgery hypothesis for cosmic strings suggests that there should
be a generalization of the ER = EPR hypothesis to relate quantum entan-
glement with more general cobordisms and in particular with the new 3-
manifold structure that results from cosmic string collapse. This will be the
subject of a sequel to the present paper.
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We also describe how we can receive the Poincaré dodecahedral space
and a plethora of non-trivial 3-manifolds from the formation of cosmic string
black holes. In our description, the formation of such a black hole does not
result in a singular 3-manifold but rather a topologically new universe with
a local topology change of 3-space. As the proposed process avoids the sin-
gularity problem, we are currently working on the physical implications and
the potential observational evidence of this novel topological perspective.
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Appendix A. Visualizing surgery using stereographic
projection

We present here a way to visualize the initial and the final instances of
m-dimensional surgery in Rm and discuss the cases of m = 2 and m = 3.

Let us first be reminded from Section 2.1 that, if we glue together the
two m-manifolds with boundary involved in the process of m-dimensional
n-surgery along their common boundary using the standard embedding we
obtain the m-sphere Sm. The idea of our proposed visualization of surgery is
that while Sm is embedded in Rm+1, it can be stereographically projected to
Rm. Hence, for every m, one can visualize the initial and the final instances of
the local process ofm-surgery one dimension lower. In the following examples
we deliberately did not project the intermediate instances, as this cannot be
done without self-intersections.

A.1. Visualizing 2-dimensional 0-surgery in R2

For m = 2 and n = 0, the initial and final instances of 2-dimensional 0-
surgery that make up S2 are shown in Fig. A1 (1). If we remove the point at
infinity, we can project the points of S2 \ {∞} on R2 bijectively. We will use
two different projections for two different choices for the point at infinity.
The first one is shown in Fig. A1 (2a) where the point at infinity is a point



i
i

“3-Antoniou” — 2019/12/3 — 12:09 — page 748 — #48 i
i

i
i

i
i

748 S. Antoniou, L. H. Kauffman, and S. Lambropoulou

of the core S1
2 of D1 × S1

2 . In this case, the two great circles S1
2 = ` ∪ {∞}

and `′ ∪ {∞} of S2 are projected on the two perpendicular infinite lines `
and `′ in R2. In the second one, shown in Fig. A1 (2b), the point at infinity
is the center of one of the two discs S0

1 ×D2. In this case the great circle
`′ ∪ {∞} in S2 is, again, projected to the infinite line `′ in R2 but the great
circle S1

2 = ` is now projected to the circle ` in R2.

Figure A1: (1) (S0
1 ×D2) ∪ (D1 × S1

2) = S2 (2a) First projection of S2 \
{∞} to R2 (2b) Second projection of S2 \ {∞} to R2.

As mentioned in Section 2.1, the one dimension higher of the disc Dm+1

leaves room for the process of m-dimensional surgery to take place continu-
ously. For 2-dimensional surgery, the third dimension allows the two points
of the core S0

1 to touch at the critical point, recall Fig.15 (1). Using the two
stereographic projections discussed above and shown again in Fig. A2 (1a)
and (1b), we present in Fig. A2 (2a) and (2b) two different local visualiza-
tions of 2-dimensional surgery in R2. Note that in Fig. A2 (1b) and (2b), the
red dashes show that all lines converge to the point at infinity which is the
center of the decompactified disc and one of the points of S0

1 . The process
of 2-dimensional 0-surgery starts with either one of the first instances of
Fig. A2 (2a) and (2b). Then the centers of the two discs S0

1 ×D2 collapse to
the critical point which is shown with increased transparency to remind us
that this happens in one dimension higher, see the second instances of either
Fig. A2 (2a) or (2b). Finally the cylinder D1 × S1

2 uncollapses, as illustrated
in the last instances of Fig. A2 (2a) and (2b). Clearly, the reverse processes
provide visualizations of 2-dimensional 1-surgery.
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Figure A2: (1a) First projection (1b) Second projection. (2a), (2b) Corre-
sponding initial and final instances of 2-dimensional 0-surgery in R2.

A.2. Visualizing 3-dimensional surgery in R3

Moving up one dimension, the initial and final instances of 3-dimensional
surgery form S3 = ∂D4. Since, now, S3 \ {∞} can be projected on R3 bijec-
tively, we will present a new way of visualizing 3-dimensional surgery in R3

by rotating appropriately the projections of the initial and final instances of
2-dimensional 0-surgery in R2.

The underlying idea is that, in general, Sn which is embedded in Rn+1

can be obtained by a 180◦ rotation of Sn−1, which is embedded in Rn.
So, a 180◦ rotation of S0 around an axis bisecting the interval of the two
points (e.g. line ` in Fig. A1 (2a)) gives rise to S1 (which is `′ ∪ {∞} in
Fig. A1 (2a)), while a 180◦ rotation of S1 around any diameter gives rise to
S2. For example, in Fig. A1 (2b)), a 180◦ rotation of `′ ∪ {∞} around the
north-south pole axis results in the 2-sphere shown in the figure. Now, the
creation of S3 (which is embedded in R4) as a rotation of S2 requires a fourth
dimension in order to be visualized. Instead we can obtain its stereographic
projection in R3 = S3 \ {∞} by rotating the stereographic projection of S2 \
{∞} = R2. Indeed, a 180◦ rotation of the plane around any line in the plane
gives rise to the 3-space.
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As we will see, each type of 3-dimensional surgery corresponds to a
different rotation, which, in turn, corresponds to a different decomposition
of S3. As we consider here two kinds of projections of S2 \ {∞} in R2, see
Fig. A2 (1a) and (1b), these give rise to two kinds of decompositions of S3

via rotation, see Fig. A3 (1a) and (1b). Each decomposition, now, leads to
the visualizations of both types of 3-dimensional surgery.

Let us start with the first projection. In Fig. A3 (1a), we show this
decompactified view in R2 and the two axes of rotation `′ and `. As we will
see, a rotation around axis `′ induces 3-dimensional 0-surgery in R3 while a
rotation around axis ` induces 3-dimensional 1-surgery in R3.

Namely, in the case of 3-dimensional 0-surgery, a horizontal rotation
of 180◦ around axis `′ transforms the two discs S0

1 ×D2 of Fig. A2 (2a)
(the first instance of 2-dimensional 0-surgery) to the two 3-balls S0

1 ×D3

of Fig. A3 (2a) (the first instance of 3-dimensional 0-surgery). After the
collapsing of the centers of the two 3-balls S0

1 ×D3, the rotation trans-
forms the decompactified cylinder D1 × (S1

1 \ {∞}) of Fig. A2 (2a) (the
last instance of 2-dimensional 0-surgery) to the decompactified thickened
sphere D1 × (S1

2 \ {∞}) of Fig. A3 (2a) (the last instance of 3-dimensional
0-surgery). Indeed, the rotation of line ` along `′ creates the green plane
that cuts through R3 and separates the two resulting 3-balls S0

1 ×D3. This
plane is shown in green in the last instance of Fig. A3 (2a) and it is the
decompactified view of the sphere S2

2 in R3. Note that it is thickened by the
arcs connecting the two discs S0

1 ×D2 which have also been rotated.
Similarly, in the case of 3-dimensional 1-surgery, a vertical rotation of

180◦ around axis ` transforms the two discs S0
1 ×D2 (the first instance

of 2-dimensional 0-surgery shown in Fig. A2 (2a)) to the solid torus S1
1 ×

D2 (the first instance of 3-dimensional 1-surgery), see Fig. A3 (3a). After
the collapsing of the (red) core S1 of S1

1 ×D2, the rotation transforms the
decompactified cylinder D1 × (S1

1 \ {∞}) of Fig. A2 (2a) (the last instance of
2-dimensional 0-surgery) to the decompactified solid torus D2 × (S1

1 \ {∞})
of Fig. A3 (3a) (the last instance of 3-dimensional 1-surgery). Indeed, each of
the arcs D1 connecting the two discs S0

1 ×D2 generates through the rotation
a 2-dimensional disc D2, and the set of all such discs are parametrized by
the points of the line ` in R3.

In both cases, in Fig. A3 (1a), S
3 is presented as the result of rotat-

ing the 2-sphere S2 = R2 ∪ {∞}. For 3-dimensional 0-surgery, S2 is rotated
about the circle `′ ∪ {∞} where `′ is a straight horizontal line in R2. The
resulting decomposition of S3 is S3 = (S0

1 ×D3) ∪ (D1 × S2
2), a thickened

sphere with two 3-balls glued along the boundaries, which is visualized
as S3 \ {∞} = (S0

1 ×D3) ∪ (D1 × (S2
2 \ {∞})). For 3-dimensional 1-surgery,



i
i

“3-Antoniou” — 2019/12/3 — 12:09 — page 751 — #51 i
i

i
i

i
i

Topological surgery in cosmic phenomena 751

Figure A3: (1a),(1b) Representations of S3 \ {∞} as rotations of S2 \ {∞}
using first and second projection. (2a),(2b) 3-dimensional 0-surgery in R3

using first and second projection. (3a), (3b) 3-dimensional 1-surgery in R3

using first and second projection.

S2 is rotated about the circle ` ∪ {∞} where ` is a straight vertical line
in R2. The resulting decomposition of S3 is S3 = (S1

1 ×D2) ∪ (D2 × S1
2),

two solid tori glued along their common boundary, which is visualized as
S3 \ {∞} = (S1

1 ×D2) ∪ (D2 × (S1
2 \ {∞})).
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Analogously, starting with the second projection of Fig. A2 (1b), the
same rotations induce each type of 3-dimensional surgery and their cor-
responding decompositions of S3, see Fig. A3 (1b). More precisely, a hor-
izontal rotation of the instances of Fig. A2 (2b) by 180◦ around axis `′

induces the initial and final instances of 3-dimensional 0-surgery visualized
in R3, see Fig. A3 (2b). The 3-sphere S3 is now visualized as S3 \ {∞} =
((S0

1 \ {∞})×D3) ∪ (D1 × S2
2), a thickened sphere union two 3-balls with

the center of one of them removed (being the point at infinity).
Similarly, a rotation of the instances of Fig. A2 (2b) by 180◦ around the

(green) circle ` induces the initial and final instances of 3-dimensional 1-
surgery visualized in R3, see Fig. A3 (3b). Note that ` is now a circle and not a
(vertical) line. The easiest part for visualizing this rotation is the rotation of
the middle annulus of Fig. A3 (1b) which gives rise to the solid torus D2 × S1

2

in Fig. A3 (3b). The same rotation of the two remaining discs around ` can be
visualized as follows: each radius of the inner disc lands from above the plane
on the corresponding radius of the outer disc. At the same time, that radius
of the outer disc lands on the corresponding radius of the inner disc from
underneath the plane. So, the two corresponding radii together have created
by rotation an annular ring around `. Note that the red center of the inner
disc will land on all points at infinity, creating a half-circle from above and,
at the same time, all points at infinity land on the center of the inner disc and
create a half-circle from below. Glued together, the two half-circles create
a (red) circle. Now, the set of all annular rings around ` and parametrized
by ` make up the complement solid torus S1

1 \ {∞} ×D2 whose core is the
aforementioned red circle. The 3-sphere S3 is visualized through this rotation
as S3 \ {∞} = ((S1

1 \ {∞})×D2) ∪ (D2 × S1
2), the decompactified union of

two solid tori.
Finally, it is worth pinning down that the two types of visualizations pre-

sented above are related. Indeed, the (D1 × (S2
2 \ {∞})) shown in the right-

most instance of Fig. A3 (2a) is the decompactified view of the (D1 × S2
2)

shown in the rightmost instance of Fig. A3 (2b). Likewise, the (D2 × (S1
2 \

{∞})) shown in the rightmost instance of Fig. A3 (3a) is the decompactified
view of the the solid torus (D2 × S1

2) shown in the rightmost instance of
Fig. A3 (3b). Further, the (S0

1 \ {∞})×D3 and (S1
1 \ {∞})×D2 shown in

the leftmost instances of Fig. A3 (2b) and (3b) are the decompactified views
of S0

1 ×D3 and S1
1 ×D2 shown in the leftmost instances of Fig. A3 (2a)

and (3a) respectively.
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Appendix B. The fundamental group

The fundamental group is one of the most significant algebraic construc-
tions for obtaining topological information about a topological space. It is a
topological invariant: homeomorphic topological spaces have the same fun-
damental group.

B.1. Topological spaces

The fundamental group of an arbitrary topological space X with reference
to a basepoint p in that space is denoted as π1(X, p) and is generated by
continuous paths in X that start and end at p (loops at p in X). These
loops in X are taken up to an equivalence relation called homotopy where
two loops α and β are said to be homotopic if one can be continuously
deformed to the other. In other words, there is a continuous family of loops
based at p starting with α and ending with β, which is usually parametrized
in the unit interval [0, 1]. The collection of all loops based at p, taken up to
homotopy, forms a group where the inverse of a loop is the loop obtained
by reversing the direction of its parametrization.

For example, the Euclidean space Rn for n ≥ 1 and the n-sphere Sn for
n ≥ 2 have trivial fundamental groups, as all loops in these manifolds can be
shrunk to a point. However, the fundamental group of S1 is not trivial. In
fact it is the infinite cyclic group generated by a single element. It contains
all loops which wind around the circle a given number of times, which can be
positive or negative, depending on the winding direction. The ‘product’ of a
loop which winds around the circle m times with another that winds around
n times is a loop which winds around m+ n times. So the fundamental
group of S1 is isomorphic to Z, the additive group of integers.

An interesting property is that the fundamental group of a product
space X × Y is the direct product of the fundamental groups of X and Y :
π1(X × Y ) = π1(X)× π1(Y ). Note that given groups G and H we define the
direct product G×H as the set of ordered pairs (g, h) with g ∈ G and h ∈ H
and we define (g, h) · (g′, h′) = (gg′, hh′). With this structure, G×H is a
new group with identity e = (eG, eH). This property allows us to calculate
the fundamental group of more complicated spaces. For instance, the fun-
damental group of the n-dimensional torus Tn = S1 × · · · × S1 which is the
product of n circles is π1(T

n) = π1(S
1)× · · · × π1(S1) = Zn. Similarly, the

fundamental group of the 3-manifold S1 × S2 is π1(S
1 × S2) = Z× {1} = Z.
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B.2. The blackboard framing

In addition to the definition given in Section 7.2.2, a framing of a knot can
be also viewed as a choice of non-tangent vector at each point of the knot.
The blackboard framing of a knot is the framing where each of the vectors
points in the vertical direction, perpendicular to the plane, see Fig. B2 (2).
The blackboard framing of a knot gives us a well-defined general rule for
determining the framing of a knot diagram. Here the knot diagram is taken
up to regular isotopy, namely up to Reidemeister II and III moves (see [39]
for details on the Reidemeister moves). We use the curling in the diagram
to determine the framing for an embedding corresponding to the knot, as
will be explained below. Note that once we have chosen a longitude for the
blackboard framing we can allow Reidemeister I moves (that might eliminate
a curl) and just keep track of how the longitude now winds on the torus
surface.

Figure B1: (1) Longitude l1 (2) Longitude λ = l1 + 3 ·m1.

An example is shown in Fig. B1 (2). This case corresponds to a non-
trivial embedding N(K) = h(S1

1 ×D2) where both the knot K and the lon-
gitude λ perform three curls. As also shown in Fig. B1 (2), there is an isotopic
embedding of N(K) where the surgery curve K at the core of N(K) is un-
knotted while the curls of λ have become windings around K. This allows
us to express λ in terms of the unknotted longitude l1 of the trivial embed-
ding shown in Fig. B1 (1). Namely, as λ performs 3 revolutions around a
meridian, it can be expressed as λ = l1 + 3 ·m1, see Fig. B1 (2).

More generally, if a longitude λ performs p revolutions around a merid-
ian, it can be expressed as λ = l1 + p ·m1. The induced ‘gluing’ homeomor-
phism along the common boundary S1

1 × S1
2 maps each λ of V1 to a meridian

of V2, hence h(l1 + p.m1) = m2, while the meridians of V1 are mapped to lon-
gitudes of V2, hence h(m1) = hs(m1) = l2. The resulting manifolds obtained
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by doing a 3-dimensional 1-surgery on M = S3 using such framings on the
unknot are the lens spaces L(p, 1). For p = 0 we have h(l1) = hs(l1) = m2

and L(0, 1) = S2 × S1, which was the case presented in Section 6.1. For more
details on lens spaces see, for example, [15]. Note that the multiple of the
meridian p is also called the framing number.

Figure B2: (1) Isotopy of λ (2) Blackboard framing of λ.

Recall that in Fig. B1 the framing was p = 3, as λ performs 3 revolutions.
However, determining the framing of a knot diagram requires a well-defined
general rule. For instance, that rule should give the same framing p = 3 for
the isotopic curve shown in Fig. B2 (1). This general rule is to take the
natural framing of a knot to be its writhe, which is the total number of
positive crossings minus the total number of negative crossings. The rule for
the sign of a crossing is the following: as we travel along the knot, at each
crossing we consider a counterclockwise rotation of the overcrossing arc. If
we reach the undercrossing arc and are pointing the same way, then the
crossing is positive, see Fig. B2 (2). Otherwise, the crossing is negative, see
also Fig. B2 (2).

Using this convention we can calculate λ and be sure that isotopic knots
will have the same framing. For instance, in Fig. B2 (1), the framing number
is the writhe of the knot diagram which is p = Wr(λ) = 4− 1 = 3.

B.3. The knot group

The fundamental group of a knot K (or the knot group) is defined as the
fundamental group of the complement of the knot in 3-dimensional space
(considered to be either R3 or S3) with a basepoint p chosen arbitrarily
in the complement. The group is denoted π1(K) or π1(S

3 \N(K)), where
N(K) is a tubular neighborhood of the knot K. To describe this group, it
is useful to have the concept of the longitude and meridian elements of the
fundamental group of a knot. The longitude and the meridian are loops in
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the knot complement that are on the surface of a torus, the boundary of
N(K).

Figure B3: (1) Trefoil knot T (2) Tubular neighborhood N(T ).

For the case of the trefoil knot T shown in Fig. B3 (1), the meridian
m and the longitude λ on the tubular neighborhood N(T ) are shown in
Fig. B3 (2). N(T ) is homeomorphic to a solid torus with the knot at the
core of the torus. The meridian bounds a disk in the torus, that intersects
T transversely in a single point. The longitude runs along the surface of the
torus in parallel to T , and so makes a second copy of the knot out along the
surface of the torus.

Figure B4: (1) Generators represented as meridian loops (2),(3) Homotopic
loops (4),(5),(6),(7) Trivial curve.

The presentation of a knot group is generated by one meridian loop for
each arc in a diagram of the knot. For the case of the trefoil, in Fig. B4 (1),
we illustrate the three generators a, b, c (in red) which are meridian elements
associated with the corresponding arcs a, b, c (in black). Each crossing gives
rise to a relation among those elements. For example, let us examine the
crossing of the trefoil circled in Fig. B4 (1). By considering a loop u in the
close-up view of this crossing shown in Fig. B4 (2), it is shown that u wraps
around arcs a and c but can also slide upwards to wrap around arcs c and b.
In both cases, a homotopy of loop u shows that we can write u as a product
of the generators of the fundamental group, see Fig. B4 (3). Since both
homotopies describe the same loop u, we have ac = cb which gives relation
b = c−1ac. Another way to obtain the same relation is by observing that
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curve acb−1c−1 contracts to a point and is therefore a trivial element of the
fundamental group: acb−1c−1 = 1, see Fig. B4 (4),(5),(6),(7).

Figure B5: (1) Positive crossing (2) Negative crossing.

Similarly, we can show that the relations obtained by the other two
crossings are a = b−1cb and c = a−1ba. More generally, given a diagram D
of an oriented knot K, if we label each arc of D, then the fundamental group
of K is the group whose generators are the labels of the arcs of D, and
whose relations are the relations coming from the products of loops up to
homotopy as we have just described them above. This presentation of the
knot group is called the Wirtinger presentation and its proof makes us of
the Seifert--van Kampen theorem, see for example [40]. Hence for the trefoil
knot, we have the presentation:

π1(T ) = π1(S
3 \N(T )) = (a, b, c | a = b−1cb, b = c−1ac, c = a−1ba).

The fundamental group of a knot can be also defined in a combinatorial
way as follows: consider a diagram of the knot and a crossing in diagram, as
in Fig. B5 (1) or (2), where the incoming undercrossing arc is labeled a, the
overcrossing arc is labeled c and the outgoing arc is labeled b. Then write a
relation in the form b = c−1ac for each positive crossing, as in Fig. B5 (1),
and a relation b = cac−1 for each negative crossing, as in Fig. B5 (2). The
combinatorial approach defines the fundamental group as the group having
one generator for each arc and one relation at each crossing in the diagram
as we just specified them. One can show that this group is invariant under
the Reidemeister moves. This means that all diagrams of the same knot have
the same fundamental group.

This combinatorial description is equivalent to the Wirtinger presenta-
tion. Indeed, see for example the relation coming from the positive crossing
of Fig. B5 (1) and the relation coming from homotopic loops in Fig. B4 (3)
or (4). However, as we will see in Section B.5, for the purpose of doing
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surgery we need the topological approach, so that we can express the lon-
gitude in terms of the generators of the fundamental group of S3 \N(K).
For more details on combinatorial group theory, the reader is referred to [41]
or [42].

B.4. Differentiating knots

We can use the fact that isotopic knots have the same fundamental group
to show that two knots are different. As an example, we will show that the
trefoil knot is different from the trivial knot.

Figure B6: (1) R : π1(T ) −→ S3 (2) ABA = BAB.

The trivial knot U , also called the unknot, is an embedding of S1 as
a geometrically round circle. Its diagram is a single arc a with no cross-
ings. Hence, its fundamental group π1(S

3 \N(U)) has a single generator a
corresponding to arc a. This group is the infinite cyclic group Z which, as
mentioned earlier, is the fundamental group of the circle S1. Hence, showing
that the group of a knot is not isomorphic to Z proves that this knot is not
trivial.
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Let us now compare the unknot to the trefoil knot. One can substitute
c = a−1ba into the first two relations of π1(T ) presented in previous section
and see that the group of the trefoil has the simpler presentation π1(T ) =
(a, b|aba = bab). As we will show, this new presentation allows us to produce
a surjective homomorphism of π1(T ) to the permutation group of three
letters denoted by S3. This proves that the trefoil knot is indeed knotted.
Otherwise we would have a surjective homomorphism from the commutative
group Z to the non-commutative group S3.

To see the relation between π1(T ) and S3, consider permutations as
represented by diagrams in Fig. B6 (1) where we indicate the mapping from
a set {1, 2, 3} to itself by drawing vertical arcs from a point to an image
point. We compose two such diagrams by attaching the bottom row of one
diagram to the top row of another. Two diagrams are equivalent if they
represent the same permutation of the end points. In Fig. B6 (1) we have
indicated a representation R : π1(T ) −→ S3 of the trefoil group into the
permutation group {1, 2, 3} denoted by S3, with A = R(a) an interchange of
the first two strands and B = R(b) an interchange of the second two strands.
In Fig. B6 (2), we also show the relationship ABA = BAB that proves that
this is indeed a representation of the trefoil fundamental group.

In fact it is not hard to show that the permutation group S3 has pre-
sentation S3 = (σ1, σ2|σ1σ2σ1 = σ2σ1σ2, σ

2
1 = 1, σ22 = 1) where 1 denotes the

identity element in the group. With A = R(a) = σ1 and B = R(b) = σ2, we
see that S3 is a quotient of π1(T ) that is obtained by forcing a and b to have
order 2. In fact, one can prove that a and b have infinite order in π1(T ) by
a remarkable coincidence that the fundamental group of the trefoil knot is
isomorphic to the braid group on three strands. We have not, in this paper,
discussed the braid group and so we refer further information about this
point to [15].

B.5. Computing π1(χK(S3))

When the core curve K of a non-trivial embedding h(S1
1 ×D2) = N(K) is

knotted, one cannot express λ in terms of trivial longitudes and meridians,
as was the case in Examples 7.2.1 and 7.2.2. In general, in order to compute
the fundamental group of a 3-manifold that is obtained by doing surgery on
a blackboard framed knot K, we have to describe first how to write down
a longitudinal element λ in the fundamental group of the knot complement
S3 \N(K).

To do so, we homotope λ to a product of the generators of π1(S
3 \N(K))

corresponding to the arcs that it underpasses. In this expression for the
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Figure B7: (1) Longitude λ in N(T) (2)(3)(4) Homotopy of λ.

longitude, the elements x that are passed underneath will appear either as
x or as x−1 according to whether the knot is going to the right or to the left
from the point of view of a traveler on the original longitude curve. Once
the longitude λ is expressed in terms of the generators of the fundamental
group of S3 \N(K), we can calculate the fundamental group of χK(S3) using
Theorem 3.

Figure B8: Projection of the trefoil with total blackboard framing 1.

For example, in Fig. B7 (1) we show a trefoil knot and the longitudinal
element λ in the fundamental group running parallel alongside it. Note that,
for convenience, the basepoint p is on the boundary of the torus but it could
be anywhere in the complement S3 \N(K). Each time that λ goes under the
knot we can run a line all the way back to the base point p and then back to
the point where λ comes out from underneath the knot, see Fig. B7 (2), (3)
and (4). By doing this, we have written, up to homotopy, the longitude as a
product of the generators of the fundamental group that are passed under
by the original longitude curve. Thus in the trefoil knot case, as shown in
Fig. B7 (4), we see that the longitude is given by λ = cab.

Example B.5.1. We will now calculate the fundamental group of a 3-
manifold obtained by doing 3-dimensional 1-surgery on the trefoil knot for
two different projections. The first one is the simplest projection of the trefoil
shown in Fig. B7 (1). It has three positive crossings yielding a blackboard
framing number of 3. The second one has two additional negative crossings
thus having a blackboard framing number of 1, see Fig. B8.
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As mentioned in Section 7.2.3, surgery collapses the longitude λ, so the
resulting fundamental group depends on how longitude λ is expressed in the
following relation:

π1(χ(S3)) =
π1(S

3 \N(T ))

< λ >
=
π1(T )

< λ >
= (a, b, c | aba = bab, λ = 1)

In the first case, by substituting λ = cab and c = a−1ba to λ = 1, we
have a−1baab = 1⇔ a = ba2b. Given that aba = bab, this implies that a2 =
baaba⇔ a2 = babab⇔ a3 = (ba)3. Notice now that (aba)2 = aba · aba = bab ·
bab = (ba)3. Thus by setting A = a,B = ba and C = aba we have that A3 =
B3 = C2 and we only need to show that this is equal to ABC. Indeed,
ABC = a · ba · aba = (ba)3. Hence, the fundamental group of the resulting
manifold is isomorphic to the binary tetrahedral group (A,B,C | A3 = B3 =
C2 = ABC) denoted < 3, 3, 2 >. It is also worth mentioning that the result-
ing manifold is isomorphic to S3/ < 3, 3, 2 >, the quotient of the 3-sphere
by an action of the binary tetrahedral group. For details on group actions
the reader is referred to [43].

In the second case, the longitude λ in the projection shown in Fig. B8
is the same as the one in Fig. B7 (1) with two additional negative cross-
ings along arc a. Hence, in this case λ = caba−2. By substitution, we have
a−1baaba−2 = 1⇔ a3 = ba2b. Given that aba = bab, this implies that a3 =
baaba⇔ a4 = babab⇔ a5 = (ba)3. Thus by setting A = a,B = ba and C =
aba we have that A5 = B3 = C2 and ABC = a · ba · aba = (ba)3. The fun-
damental group of the resulting manifold is isomorphic to the binary icosa-
hedral group (A,B,C | A5 = B3 = C2 = ABC) denoted by < 5, 3, 2 >. The
resulting manifold is isomorphic to S3/ < 5, 3, 2 >, the quotient of the 3-
sphere by an action of < 5, 3, 2 >.

Figure B9: Poincaré sphere.
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This manifold is also known as the Poincaré homology sphere, which can
be described by identifying opposite faces of a dodecahedron according to the
scheme shown in Fig. B9 (for more details on this identification, see [44]). It
can be shown from this that the Poincaré homology sphere is diffeomorphic
to the link of the variety V ((2, 3, 5)) = {(z1, z2, z3) | z12 + z2

3 + z3
5 = 0},

that is, the intersection of a small 5-sphere around 0 with V ((2, 3, 5)). From
this it is not hard to see that the Poincaré homology sphere can be also
obtained as a 5-fold cyclic branched covering of S3 over the trefoil knot. For
more details on the different descriptions of the Poincaré homology sphere,
the reader is referred to [45].

This manifold has been of great interest, and is even thought by some
physicists to be the shape of the geometric universe, see [35–37]. See also [5].
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