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Inspired by the split attractor flow conjecture for multi-centered
black hole solutions in N = 2 supergravity, we propose a formula
expressing the BPS index Ω(γ, z) in terms of ‘attractor indices’
Ω∗(γi). The latter count BPS states in their respective attrac-
tor chamber. This formula expresses the index as a sum over sta-
ble flow trees weighted by products of attractor indices. We show
how to compute the contribution of each tree directly in terms of
asymptotic data, without having to integrate the attractor flow ex-
plicitly. Furthermore, we derive new representations for the index
which make it manifest that discontinuities associated to distinct
trees cancel in the sum, leaving only the discontinuities consis-
tent with wall-crossing. We apply these results in the context of
quiver quantum mechanics, providing a new way of computing the
Betti numbers of quiver moduli spaces, and compare them with the
Coulomb branch formula, clarifying the relation between attractor
and single-centered indices.
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1. Introduction and summary

In four-dimensional supersymmetric field theories and string vacua with
N = 2 supersymmetry, the spectrum of BPS states depends sensitively on
the moduli and marginal deformations. As the value z of the moduli fields
at spatial infinity are varied, some bound states may form or decay, leading
to a jump in the BPS index (or helicity supertrace) Ω(γ, z) counting BPS
states of electromagnetic charge γ with signs. Such decays are only possi-
ble across walls of marginal stability — codimension one hypersurfaces in
the moduli space associated to pairs of charges with non-vanishing Dirac-
Schwinger-Zwanziger (DSZ) pairing 〈γL, γR〉 6= 0. The corresponding wall is
the locus where the phases of ZγL(z) and ZγR(z) align. Here Zγ(z) is the
central charge, a complex-valued linear function of the charges whose phase
determines the supersymmetry preserved by a BPS state of charge γ. On
such a wall the mass |Zγ(z)| of a BPS state with charge γ in the positive
cone spanned by γL, γR coincides with the total mass

∑
i |Zγi(z)| of any set

of BPS states with charges γi in the same cone with
∑

i γi = γ, allowing the
formation of threshold bound states (see e.g. [1] and references therein).

The jump of the BPS index Ω(γ, z) across the wall of marginal stability is
governed by a universal wall-crossing formula, first formulated in the math-
ematics literature by Kontsevich–Soibelman [2] and Joyce–Song [3, 4], and
then established by physical reasoning in a series of papers [5–8]. There are
also refined versions of the index Ω(γ, z) and wall-crossing formula, which
keep track of the spin ~J and R-charge ~I of BPS states via fugacity param-
eters y, t conjugate to the projections J3 and I3, respectively [9–11]. An
important question for various applications, including the study of duality
constraints on BPS indices, is to express the moduli-dependent BPS index
Ω(γ, z) in terms of some physically motivated indices which depend only
on the charges, and possibly on the chemical potentials y, t, but are inde-
pendent of the moduli z. In this work, we investigate two different ways of
answering to this question, which are both motivated by the physics of BPS
black holes in N = 2 supergravity.

As shown in [12, 13], N = 2 supergravity admits a class of stationary
supersymmetric solutions obtained by superimposing n BPS black holes with
charges γ1, . . . , γn, subject to moduli and charge-dependent conditions on
the distances between the centers. In the vicinity of each center, the solution
reduces to the usual spherically symmetric BPS black hole with charge γi,
in particular the moduli are attracted to a fixed value zγi independently of
their value at spatial infinity [14]. Such solutions typically exist only within a
certain chamber of moduli space, whose boundary precisely consists of walls
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Attractor flow trees, BPS indices and quivers 629

of marginal stability. Near one of the walls, the distance between some of
subsets of the constituents grows and becomes infinite exactly on the wall,
providing a clear physical picture of the wall-crossing phenomenon [5, 8] as
well as the substructure of BPS bound states.

In general however, some connected components of the space of multi-
centered solutions are ruled out by the constraint that the metric should
admit no closed time-like curves. While this property is cumbersome to
check explicitly, a simple criterium has been put forward, called the split
attractor flow conjecture [5, 15], which in principle determines the allowed
multi-centered solutions for a given value of the moduli at spatial infinity.
The idea is to model each solution by a nested sequence of two-centered
bound states, represented by a binary rooted tree. The vertices of the tree
are decorated by the corresponding electromagnetic charge, from the total
charge γ at the root to the constituent charges γi at the leaves of the tree (see
Fig. 2). Along each edge of the graph, associated to the vertex γ → γL + γR,
the moduli z vary according to the usual attractor flow for a spherically sym-
metric black hole, until they cross the locus where Im[ZγLZ̄γR ] vanishes (see
Fig. 1). If the central charges ZγL , ZγR at this point are aligned (as opposed to
being anti-aligned), and if the stability condition 〈γL, γR〉 Im[ZγLZ̄γR ] > 0 is
obeyed before reaching the locus where Im[ZγLZ̄γR ] = 0, the flow is repeated
recursively for each of the two constituents, otherwise, the tree is discarded.
When no further splittings are allowed, the flow on each branch terminates
at the attractor point zγi for the corresponding constituent. The split at-
tractor flow conjecture stipulates that the space of admissible multi-centered
solutions is partitioned by stable attractor flow trees [5, 15, 16].

Based on this picture, and building on earlier proposals in the literature
[5, 8, 15, 17, 18], we propose that the total BPS index Ω(γ, z) — or rather
its variant Ω(γ, z) defined in (2.15) so as to properly take into account Bose-
Fermi statistics [8] — can be expressed as a sum over all stable attractor
flow trees rooted at (γ, z). The contribution of each tree is proportional to
the product of attractor indices Ω∗(γi) ≡ Ω(γi, zγi) associated to each center
γi, and to the DSZ pairings ±〈γL, γR〉 for all the vertices, corresponding to
the BPS indices of the nested two-particle bound states. The resulting ‘flow
tree formula’ in principle allows to reconstruct the BPS index Ω(γ, z) in
any chamber of moduli space, in terms of the moduli-independent attractor
indices Ω∗(γi). However, this procedure raises various problems, both at the
practical and conceptual levels, which we outline below and address in this
paper.

The first, practical problem is that this procedure seems to require inte-
grating the full attractor flow equations along the edges of the tree to check
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the stability of each two-centered bound state in the hierarchy. Due to this
difficulty, explicit study of split attractor flows has been mostly confined to
one-modulus models in the literature [15, 19]. However, it was shown in [17]
that for three centers, the stability conditions could in fact be expressed in
terms of the moduli at infinity without explicitly solving the attractor flow
along the edges, and it was suggested that the same could be done for an
arbitrary number of centers. In this work, we demonstrate that indeed, for
the purposes of checking stability, the continuous attractor flow along the
edges can be reduced to a ‘discrete attractor flow’ from one vertex to its de-
scendants. It is important to stress however that this reduction assumes that
the flow tree exists, in particular that the phases of the central charges are
aligned at each vertex and that the flow does not reach a singularity along
the edges. We expect that this assumption is obeyed in regions of mod-
uli space where the central charges of the constituents are nearly aligned,
for example for D4-D2-D0 black holes in type II strings on a Calabi-Yau
threefold in the large volume limit. Granting this assumption, the enumer-
ation of stable flow trees becomes considerably easier and can be efficiently
implemented on a computer.1

The second, more conceptual problem is that the contribution of each
flow tree has additional discontinuities beyond those predicted by the wall-
crossing formula, originating from violations of the stability conditions on
the intermediate bound states. For instance, for a three-centered solution
the tree ((12)3) corresponding to the decay sequence γ → (γ1 + γ2) + γ3 →
γ1 + γ2 + γ3 jumps across the codimension-one locus where the inner bound
state (γ1 + γ2) becomes only marginally stable. This however is not a wall
of marginal stability for the bound state with total charge γ1 + γ2 + γ3 (un-
less γ3 is collinear with γ1 or γ2). Fortunately, the trees ((12)3), ((23)1) and
((31)2) all have discontinuities at the same locus (see Fig. 4 for two rep-
resentative 3-center configurations), and these discontinuities cancel in the
sum [16, 17, 21]. Thus, the total index Ω(γ, z) is constant across the wall
although the internal structure of the bound state does change. We shall
refer to these loci as ‘fake walls’, although the name ‘recombination walls’
is perhaps more appropriate. In this work, we prove that (under the same
assumption as above) the discontinuities of individual flow trees across fake
walls always cancel for any number of centers, leaving only those required
by wall-crossing.

1A new version of the mathematica package CoulombHiggs.m originally released
along with [20] and including an implementation of the ‘flow tree formula’ for quivers
is available from the home page of the second author.
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In fact, we shall provide two alternative proofs of this result. The first,
relegated to Appendix B, makes use of certain ‘flow vectors’, which encode
stability conditions along flow trees. After establishing various symmetry
properties for these vectors and their mutual orthogonal projections, one can
give an elementary proof that discontinuities across fake walls indeed cancel.
The second proof follows from a new representation of the sum over all flow
trees, which is manifestly continuous across the fake walls. This new rep-
resentation is obtained by decomposing the refined tree index gtr({γi}, z, y)
(corresponding to the sum over all flow trees rooted at charge γ and end-
ing on the constituents of charges γi) in terms of a sum (2.57) of ‘partial
tree indices’ Ftr,n({γi}, z), which no longer depend on the parameter y con-
jugate to J3. The partial tree index is obtained by summing over planar
trees only, and is shown to satisfy the recursive equation (2.64). The latter
makes it manifest that the only singularities of the refined tree index gtr (and
therefore also of its limit as y → 1) are those predicted by the wall-crossing
formula. In (2.69) we further conjecture a formula which makes it clear that
gtr is a symmetric Laurent polynomial in y, a fact which is obscured by the
decomposition (2.57), and renders the specialization to y = 1 trivial. The
equations (2.64) and (2.69) can be seen as the main technical results of this
paper.

Having cleared these issues, we then apply the ‘flow tree formula’ in the
context of quiver quantum mechanics, which describes the interactions of
mutually non-local dyons in four-dimensional field theories with 8 super-
charges [22], at least in regions where the central charges of the constituents
are nearly aligned [5]. This framework has many advantages compared to the
general case. Firstly, the charge vector γ is a K-tuple of non-negative inte-
gers (N1, . . . , NK), corresponding to the ranks in the product gauge group, so
that the enumeration of all possible splittings γ =

∑
i γi is straightforward.

Secondly, the stability conditions depend only on the supergravity moduli
z through the Fayet-Iliopoulos parameters ζ = (ζ1, . . . , ζK), on which the
discrete attractor flow naturally acts. Moreover, the central charges of the
constituents can never anti-align (within the validity of the quiver quantum
mechanics) so the use of the discrete attractor flow is justified. Third, the
BPS index is in principle computable by localization for any charge vec-
tor γ and Fayet-Iliopoulos parameters ζ [23] (see also [24, 25]). Finally, the
BPS index in this context has a mathematically rigorous definition as the
Poincaré polynomial of the moduli space of stable quiver representations
[22], which is a central object in algebraic geometry and representation the-
ory. After introducing a suitable notion of ‘attractor point’ (3.6) (already
introduced in [26]), we formulate the flow tree formula in this context in a
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mathematically precise and self-contained way, and outline a proof in the
case of quivers without oriented loops.

Finally, we investigate the relation between the flow tree formula and
the Coulomb branch formula developed in [18, 20, 27] (see [28] for a con-
cise review). While both of them express the BPS index Ω(γ, z) in terms
of moduli-independent indices, the former relies on attractor indices Ω∗(γi),
whereas the latter relies on the concept of ‘single-centered indices’ ΩS(γi).
The difference between these two indices is due to the existence of so-called
scaling solutions, i.e. multi-centered solutions with n ≥ 3 constituents which
can become arbitrarily close to each other and remain allowed in the attrac-
tor chamber [5, 29]. Single-centered indices ΩS(γi) are designed to isolate
the contributions of of single-centered black hole micro-states, for which the
holographic correspondence is supposed to apply [30]. Moreover, the fact
that single-centered BPS black holes can only carry zero angular momentum
[31, 32], strongly constrains their dependence on the refinement parameter
y [27, 33, 34]. The main drawback of single-centered indices however is that
they are defined recursively in a rather complicated way and their math-
ematical significance is unclear (unlike attractor indices which are special
instances of the usual BPS index in the attractor chamber).

In Section 4.1, we show that for charge configurations {γi} described
by quivers without loops, the tree index gtr({γi}, z, y) entering the flow tree
formula and the Coulomb index gC({γi}, z, y) entering the Coulomb branch
formula coincide, so that the attractor and single-centered indices coincide
as well. In contrast, for charge configurations described by quivers with
oriented loops, the two in general differ due to the contributions of scaling
configurations. We compute the difference between gtr and gC for n = 3 and
n = 4 centers, and deduce the relation between the attractor and single-
centered indices in the case where γ decomposes into a sum of at most 4
distinct constituents.

The results obtained in this work will be useful in making further progress
in understanding modularity constraints on the counting of D4-D2-D0 brane
bound states in type II strings compactified on a Calabi-Yau threefold X .
As first suggested in [35] and confirmed in a series of more recent works (see
e.g. [40] and references therein), when the D4-brane wraps an irreducible
divisor D inside X , the generating function of the BPS indices of D4-D2-D0
black holes with fixed D4-brane charge is a weakly holomorphic Jacobi form,
given by the elliptic genus of the superconformal field theory describing an
M5-brane wrapped on the same divisor. In the case where the divisor D is
reducible however, the BPS indices are subject to wall-crossing and, since
the duality group acts both on the charge γ and the moduli, the constraints
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from modularity take a more subtle form. In order to uncover these con-
straints, it is useful to express the total index Ω(γ, z) in terms of suitably
chosen moduli-independent indices. In the present context, it was argued in
[36, 39] that a natural choice is the BPS index in the ‘large volume attractor
chamber’, or ‘MSW invariant’ in the terminology of [39], which is expected
to count BPS states in the MSW superconformal field theory [37, 38]. Using
the formalism developed in the present work, the BPS index for any modu-
lus z (still near the large volume limit) can be expressed as a sum over flow
trees weighted by MSW invariants. Since the latter are invariant under spec-
tral flow, the resulting partition function can still be formally decomposed
as a sum of indefinite theta series, with a kernel given by a sum over flow
trees [17, 36]. While the convergence and modular properties of this theta
series are by now well understood when the reducible divisor D is the sum of
two components [36, 40], the representations of the tree index found in this
paper will be instrumental in extending these results to a general reducible
divisor [41].

The organization of this paper is as follows. In Section 2 we review the
split attractor flow conjecture for multi-centered BPS solutions in N = 2
supergravity, and motivate the ‘flow tree formula’, which expresses the index
Ω(γ, z) in terms of the attractor indices Ω∗(γi). We then express the sum
over stable flow trees gtr({γi}, z, y) purely in terms of asymptotic data, and
find new representations of the ‘tree index’ which make it manifest that it
is smooth away from the walls of marginal stability, despite the fact that
individual flow trees also have discontinuities on the ‘fake walls’. In Section 3
we state a mathematically precise form of the flow tree formula in the context
of quiver quantum mechanics, where it computes the Poincaré polynomial
of quiver moduli spaces. In Section 4 we compare the flow tree formula
to the Coulomb branch formula, and clarify the relation between attractor
indices Ω∗(γi) and single-centered indices ΩS(γi). Some technical details are
relegated to appendices, including several identities between sign functions
widely used in the main text (Appendix A), an alternative proof of the
cancellation of fake discontinuities using flow vectors and their symmetry
properties (Appendix B), and explicit expressions for the partial tree and
Coulomb indices for n ≤ 4 centers (Appendix C).

2. Attractor flow trees and BPS index

In this section we recall basic facts about multi-centered BPS solutions in
N = 2 supergravity and classification of admissible solutions via the split
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attractor flow conjecture. After making general comments about their quan-
tization, we propose the ‘flow tree formula’ expressing the BPS index Ω(γ, z)
as a sum of monomials in the attractor indices Ω∗(γi) associated to the con-
stituents in all possible decompositions γ →

∑
γi. The coefficient of each

monomial is a sum over stable flow trees which we call the ‘tree index’. Af-
ter illustrating this formula in the case of three centers, we explain how to
express the contribution of each tree in terms of the moduli z at infinity,
without having to solve the attractor flow explicitly. We then establish a new
representation for the tree index, which makes it manifest that it is continu-
ous away from walls of marginal stability, despite the fact that contributions
from individual trees typically jump across other loci.

2.1. Multi-centered black holes in N = 2 supergravity

We start by recalling well-known facts about multi-centered BPS solutions
in ungauged N = 2 supergravity in four dimensions. A general class of
stationary BPS solutions with total electromagnetic charge γ = (pΛ, qΛ)
(Λ = 1, . . . , r) can be written as [12, 13, 15] (in units where the Newton
constant G4 = 1)

ds2 = −e2U (dt+ ω)2 + e−2U d~x2,(2.1)

A = 2 eU Re(e−iαZ) (dt+ ω) +Ad,(2.2)

where A = (AΛ, AΛ) denotes the symplectic vector of the electric and mag-
netic gauge fields. The scale factor U and one-forms ω and Ad are determined
by the equations

(2.3) 2 e−U Im(e−iαZ) = −H, ? dω = 〈dH,H〉, dAd = ? dH,

where H = (HΛ, HΛ) is vector-valued harmonic function on R3. Here Z(z) =
(XΛ(z), FΛ(z)) is the usual holomorphic symplectic vector determined by the
holomorphic prepotential F (X), such that

(2.4) Zγ = 〈γ, Z〉 = qΛX
Λ − pΛFΛ

is the central charge of the unbroken supersymmetry algebra. Moreover α
is the (position-dependent) phase of Zγ . The first equation in (2.3) also
determines the spatial profile of the scalar fields z, valued in the vector
multiplet moduli space MSK (a special Kähler manifold determined by the
prepotential F (X)).
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A multi-centered BPS solution is obtained by choosing a specific har-
monic vector on R3, namely

(2.5) H =

n∑
i=1

γi
|~x− ~xi|

− 2 Im(e−iαZ)∞ ,

where the second term is a constant symplectic vector determined by the
total charge γ and the values of the moduli at spatial infinity. This choice
ensures that the solution is asymptotically flat, i.e. U → 0 and ω → 0. The
integrability condition d(dω) = 0 constrains the positions of the centers to
satisfy, for all i,

(2.6)
∑
j 6=i

γij
|~xi − ~xj |

= 2 Im(e−iαZγi)∞ ,

where γij is a shorthand notation for 〈γi, γj〉. While the charge vectors γi
can in principle be chosen at will in the charge lattice Λ, we shall restrict
attention to the case where they all lie in the same positive cone Λ+, defined
as the set of all vectors γ whose central charge Zγ(z∞) lies in a fixed half-
space defining the splitting between BPS particles (γ ∈ Λ+) and anti-BPS
particles (γ ∈ −Λ+).

For a given choice of charges γ1, . . . , γn and moduli z∞, the equations
(2.6) impose n− 1 independent constraints (indeed, the sum of these n equa-
tions trivially vanishes) on 3n variables {~xi}i=1...n. Ignoring the three trans-
lational degrees of freedom, this in general leaves a 2n− 2-dimensional space
of solutionsMn({γ1, . . . , γn}, z∞). The latter carries a canonical symplectic
form $ and an Hamiltonian action of the rotation group SO(3) generated
by the total angular momentum [42]

(2.7) ~J =
1

2

∑
i<j

γij
~xi − ~xj
|~xi − ~xj |

.

For these solutions to be physical however, one must check in addition that
they are smooth everywhere (except possibly near the location of the cen-
ters), and have no closed timelike curves. This typically rules out some of
the connected components in the phase space Mn({γi}, z∞), leaving only a
(possibly empty) subset that we shall denote by Mad

n ({γi}, z∞).
For a single center, the solution is static, spherically symmetric and

manifestly free of closed timelike curves. The radial profile of the scalar
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fields z(r) follows from the attractor flow equation

(2.8) e−U
Im[Zγ′Z̄γ(z(r))]

|Zγ(z(r))|
=
〈γ, γ′〉

2r
+

(
Im(Zγ′Z̄γ)

|Zγ |

)
r=∞

,

obtained by pairing the first equation in (2.3) with an arbitrary vector γ′.
We denote by A(γ,z∞) the solution of (2.8) with z(r) = z∞ at r =∞, and
by zγ the value of the moduli at the attractor point r → 0. If zγ lies in the
interior ofMSK, the solution interpolates between R3,1 at spatial infinity and
AdS2 × S2 near the horizon [14]. If instead zγ lies on the boundary ofMSK,
it may still be trusted outside some shell of radius r, inside which massless
states can condense. For future reference, we note that at the attractor point
zγ it follows from (2.8) that

(2.9) sgn Im[Zγ′Z̄γ(zγ)] = sgn〈γ, γ′〉

for all γ′. From now on, we omit the dependence of Zγ(z) on z whenever it
is evaluated at spatial infinity, i.e. Zγ ≡ Zγ(z∞).

For two centers, it is easily seen that the solution to (2.6) exists only if
[12]

(2.10) γ12 Im(Zγ1Z̄γ2) > 0,

in which case the (inverse) distance between the two centers is given by

(2.11)
1

2|~x1 − ~x2|
=

Im(Zγ1Z̄γ2)

γ12 |Zγ1 + Zγ2 |
.

If the condition (2.10) is satisfied, the phase space M2 is the sphere S2

parametrizing the orientation of the dipole, otherwise it is empty. In the
former case, M2 carries a symplectic form $ = 1

2γ12$S2 where $S2 is the
volume form.

While the condition (2.10) is necessary, it is not sufficient. Indeed, note
that the distance |~x1 − ~x2| in (2.11) coincides with the radius r = r1 where
the attractor flow (2.8) crosses the wall of marginal stability Im[Zγ1Z̄γ2(z1)] =
0. In order for the two-centered solution to be admissible, the central charges
Zγ1 and Zγ2 should also satisfy

(2.12) Re[Zγ1Z̄γ2(z1)] > 0,

in other words they should have the same phase at this point (modulo 2π),
as opposed to having opposite phases [12, 16]. If the condition (2.12) is
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Figure 1: The profile of scalar fields around a two-center bound state
γ = γ1 + γ2 can be represented by a trajectory in MSK, which starts from
z∞ and follows the usual attractor flow for a single black hole of charge γ
until it reaches the locus where the phases of Zγ1 and Z̄γ2 become aligned.
At this point z1, the trajectory forks into two parts which follow the usual
attractor flow for charge γ1 and γ2, respectively, and converge to the respec-
tive attractor points zγ1 and zγ2 . In reality, the scalar fields z(x) map R3

to a 3-dimensional, amoeba-like domain inMSK which concentrates around
this forked trajectory in the regions near z∞ and zγi , while the value z1 is
reached in the crossover region where |~x− ~xi| is of the order of the distance
between the two centers.

obeyed, then the admissible phase spaceMad
2 coincides withM2, otherwise

it is empty.
Outside the radius r1, the solution is well approximated by the spheri-

cally symmetric solution with charge γ = γ1 + γ2 and moduli z∞ at spatial
infinity, while in the vicinity of each center, it is approximately given by a
spherically symmetric solution with charge γ1 or γ2, and moduli z1 = z(r1)
far away (but not infinitely far) from the center. As explained in Fig. 1, the
behavior of the scalar fields around the two-centered solutions can be ap-
proximated by a ‘split attractor flow’ in the moduli spaceMSK, which forks
at the point z1 where the phases of Zγ1 and Z̄γ2 become aligned (in particu-
lar, Im[Zγ1Z̄γ2(z1)] vanishes). Although we cannot compute z1 explicitly, we
can constrain the central charges evaluated at this point. Indeed, substitut-
ing (2.11) into (2.8), one finds that for γ = γ1 + γ2 and any vector γ′,

(2.13) e−U(r1) Im[Zγ′Z̄γ(z1)]

|Zγ(z1)|
=
〈γ, γ′〉
〈γ1, γ2〉

Im(Zγ1Z̄γ)

|Zγ |
+

Im(Zγ′Z̄γ)

|Zγ |
.
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This property will be key for expressing the stability of more general multi-
centered solutions in terms of asymptotic data, as explained in the next
subsections (specifically in §2.6).

2.2. Split attractor flow conjecture

For more than two centers, determining the subsetMad
n ⊂Mn of admissible

solutions (i.e. corresponding to metrics without closed time-like curves) is in
general a difficult problem. In [15] (see also [5, 16] for subsequent develop-
ments), it was conjectured thatMad

n is partitioned into components2 labeled
by ‘split attractor flows’, also known as ‘attractor flow trees’ or simply ‘flow
trees’. The latter are obtained by iterating the basic splitting depicted in
Fig. 1, and correspond to nested sequences of two-centered bound states.

More precisely, these trees are (unordered, full) rooted binary trees T
with endpoints (or leaves) labelled by γ1, . . . , γn and satisfying stability con-
ditions at each vertex.3 To spell out these conditions, we first introduce
some useful notations. Let VT denotes the set of vertices of T excluding
the leaves. Each vertex v ∈ VT has two descendants L(v), R(v) and parent
p(v) (see Fig. 2). Furthermore, to each vertex v ∈ VT we assign a charge γv
and a point zv ∈MSK, both of them defined recursively. For the former, we
start from the leaves with charges γi and assign charge γv = γL(v) + γR(v) to
the parent of two vertices L(v) and R(v). The root of the tree then carries
charge γv0 = γ ≡

∑n
i=1 γi. For the latter, we instead start from the root of

the tree, and assign zp(v0) = z∞, the value of the moduli at spatial infinity,
to its (fictitious) parent. We then follow each edge of the graph downward
from the root and, to a vertex v with parent p(v), assign the value zv of
the moduli where the attractor flow A(γv, zp(v)) crosses the wall of marginal
stability for the bound state γv → γL(v) + γR(v) (i.e. ZγL(v)

Z̄γR(v)
(zv) ∈ R+).

With these definitions, the admissible attractor flow trees are those which
satisfy, for all v ∈ VT ,4

(2.14) γL(v)R(v) Im
[
ZγL(v)

Z̄γR(v)
(zp(v))

]
> 0 and Re

[
ZγL(v)

Z̄γR(v)
(zv)

]
> 0,

2As pointed out in [16], the components are not necessarily disconnected, but the
main point is that the complement of Mad

n in Mn is not covered by any flow tree.
3Ignoring stability conditions, the number of unordered rooted binary trees with

n leaves is bn = (2n− 3)!! = (2n− 3)!/[2n−2(n− 2)!] = {1, 3, 15, 105, 945, ...}.
4The original formulation of split attractor flows [5] also required that the at-

tractor points zγi are regular inMSK. We shall implement this condition by setting
Ω∗(γi) = 0 if this is not the case.
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Figure 2: An example of attractor flow tree corresponding to the bracketing
((13)(2(45))).

where γLR = 〈γL, γR〉. We denote the set of all flow trees with n leaves by
Tn({γi}, z), and the set of admissible trees by T ad

n ({γi}, z). When all the
charges γi are distinct, it is convenient to label trees by bracketings of the
unordered set {1, . . . , n}, e.g. the tree displayed in Fig. 2 corresponds to
((13)(2(45))).

As we shall see shortly, the split attractor flow conjecture is not only use-
ful for classifying admissible classical solutions, but also naturally suggests
a formula for computing the BPS index Ω(γ, z) in terms of the attractor
indices Ω∗(γi) associated to the leaves of the tree.

2.3. Quantizing multi-centered solutions

The BPS index Ω(γ, z) counts all states with total charge γ which exist in
the discrete spectrum for a given value z of the moduli at spatial infinity,
weighted by a sign (−1)2J3 corresponding to the parity of the total angular
momentum in R3 (after factoring out the center of motion degrees of free-
dom). In the presence of a R-symmetry, it is also natural to consider the
refined index Ω(γ, z, y, t) including fugacities y2J3 and t2I3 for the angular
momentum and the R-charge.5 In the following we shall retain only the de-
pendence on y, but the parameter t can be easily restored at any point,

5In string vacua, the refined index is typically not protected away from y = 1, but
in N = 2 field theories the value at y = t is protected, and known as the protected
spin character [11].
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keeping in mind that the interactions between the centers are insensitive to
its value [27].

In the regime where the supergravity description is supposed to be
valid6, the index Ω(γ, z) is expected to receive contributions from all con-
sistent multi-centered solutions with an arbitrary number of constituents n
of charges γi ∈ Λ+ such that γ =

∑n
i=1 γi, for a fixed value of the moduli

at spatial infinity. Assuming that the internal dynamics of the black holes
decouples from their relative motion, it is natural to expect that for a given
splitting, the contribution will be proportional to the product of the BPS
indices Ω∗(γi) = Ω(γi, zγi) counting BPS states associated to each center,
evaluated at the respective attractor point since the moduli z are attracted
to their attractor value zγi in the vicinity of each center. Moreover, its con-
tribution should also include the BPS index g({γi}, z, y) of the supersym-
metric quantum mechanics describing the relative motion. Since the BPS
sector of this quantum mechanics is described classically by the phase space(
Mad

n , $
)
, it is also reasonable to identify g with the equivariant index7 of

the Dirac operator on
(
Mad

n , $
)

[18, 43].
This simple picture however assumes that all of the charges γi are dis-

tinct, so that the centers are distinguishable. When some of the γi’s are
equal, it is necessary to take into account Bose-Fermi statistics, which re-
quires to project on symmetric or antisymmetric wave functions depending
on the sign of Ω∗(γi). In [8], it was shown that the simpler rules of Boltzmann
statistics can be applied provided one considers the rational invariant

(2.15) Ω(γ, z, y) =
∑
m|γ

y − 1/y

m(ym − 1/ym)
Ω(γ/m, z, ym),

where m runs over all positive integers such that γ/m is in the charge lattice.
If γ is a primitive vector, Ω(γ, z) of course coincides with Ω(γ, z). Thus,
based on this physical reasoning we expect that the total index Ω(γ, z) can
be written as

(2.16) Ω(γ, z, y) =
∑

γ=
∑n
i=1 γi

g({γi}, z, y)

|Aut{γi}|

n∏
i=1

Ω∗(γi, y),

6Namely, when the coupling governing the genus expansion in type II strings
becomes strong. In this regime, the horizon area of BPS black holes becomes much
larger than the Planck length and supergravity is in fact weakly coupled.

7In the limit where the symplectic form $ is scaled to infinity, the latter reduces
to the equivariant symplectic volume

∫
Mad

n
e$ log y, or to the ordinary symplectic

volume when y = 1.
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where the sum over {γi} runs over unordered decompositions of γ into sums
of vectors γi ∈ Λ+ (i.e. two decompositions differing only by the order of
the γi’s are considered identical). The symmetry factor |Aut{γi}| is the
cardinality of the stabilizer of the ordered n-tuple (γi) inside the permutation
group Sn for any fixed choice of ordering of the γi’s. In order to make this
formula useful, it remains to find a practical way of computing the BPS
index g({γi}, z, y) for the quantum mechanics of the configurational degrees
of freedom.

In previous work [8, 18, 20], Manschot, Sen and the second author ap-
plied localization techniques to evaluate the equivariant index of the Dirac
operator on (Mn, $). Namely, they used the fact that this phase space ad-
mits an Hamiltonian action of the rotation group SO(3) generated by the
angular momentum ~J in (2.7), to reduce the problem to the enumeration
of collinear black hole configurations, i.e. one-dimensional solutions to (2.6).
The main difficulty with this approach however is that for n ≥ 3, the space
Mn is generically non-compact (despite having finite volume), due to the
existence of scaling solutions, where some subset of the centers can become
arbitrarily close [5, 29].8 As a consequence, the index of the Dirac operator
is not well-defined and the naive result from localization is not a symmet-
ric Laurent polynomial in y. In [18, 20, 27], a prescription was proposed to
repair this problem, leading to a more intricate version of the (2.16) known
as the ‘Coulomb branch formula’ which we shall discuss in Section 4. Note
however that this prescription does not take into account the condition that
collinear solutions should have no closed time-like curves.

In the next subsection, we shall propose a different way of computing
the BPS index g({γi}, z, y) which instead relies on the split attractor flow
conjecture, and which is in principle free of these issues.

2.4. The flow tree formula

Since, according to the split attractor conjecture, Mad
n is partitioned into

components labelled by stable attractor flow trees, it is natural to propose9

8For three centers, this can happen whenever the DSZ products γ12, γ23, γ31 are
all of the same sign and satisfy the triangular inequalities: γ12 < γ23 + γ31 and its
cyclic permutations [5, 29]. More generally, scaling solutions can occur when the
total angular momentum (2.7) of a subset of charges vanishes [18].

9Various precursors of the formula that we are about to state have appeared in
the literature, including [5, 15, 17]. Our proposal is novel inasmuch as quantum
statistics is properly taken into account and the sum over attractor flow trees has
been reduced to a combinatorial problem.
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that the index g({γi}, z, y) can be obtained as the sum of the indices of the
corresponding nested sequences of two-centered bound states.

In the simplest case of two centers, as noted earlier, the phase space
Mad

2 (γ1, γ2; z) is either empty when the conditions (2.10) or (2.12) are vio-
lated, or a two-sphere equipped with the symplectic form $ = 1

2γ12$S2 . The
index of the Dirac operator coupled to $ is well-known to be equal (up to
sign) to |〈γ1, γ2〉|, corresponding to the number of states in an angular mo-
mentum multiplet of spin J = 1

2 |〈γ1, γ2〉| − 1. Accordingly, the equivariant
Dirac index is equal to the character of this representation,

(2.17) g(γ1, γ2; z, y) = −sgn(γ12)κ(γ12),

where we denoted10

(2.18) κ(x) = (−1)x
yx − y−x

y − y−1
,

as in [8]. This answer can also be obtained by directly solving the quantum
mechanics describing two mutually non-local dyons [22], or by localization
with respect to rotations along a fixed axis. In that case the two opposite
powers of y in the numerator arise from the north and south pole on the
sphere. The two-centered configuration corresponds to the single flow tree
γ → γ1 + γ2, corresponding to the bracketing (12). Assuming that the con-
dition (2.12) is automatically satisfied for the range of moduli z of interest,
the contribution of this tree to the rational index Ω(γ, z) is then

(2.19) Ω(12)(z) = −1

2

[
sgn Im(Zγ1Z̄γ2) + sgn(γ12)

]
κ(γ12) Ω∗(γ1) Ω∗(γ2).

The ‘sign factor’ in square brackets ensures that this contribution is absent
unless the stability condition (2.10) is obeyed [36]. In particular, due to (2.9),
it is always absent in the vicinity of the attractor point zγ .

For more than two centers, the contribution of each tree should then be
given by the product of indices of two-centered bound states (2.17) appearing
at each level of the tree, namely (up to a sign εT ≡

∏
v∈VT sgn(γL(v)R(v))

which we will treat separately)

(2.20) κ(T ) ≡ (−1)n−1
∏
v∈VT

κ(γL(v)R(v)).

10For brevity we shall always omit the dependence of κ on y.
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Assuming that identical constituents can be treated as distinguishable par-
ticles at the expense of replacing the index Ω(γ) by its rational counterpart
(2.15), as discussed in the previous subsection, we are therefore lead to con-
jecture that the total index is given by

(2.21) Ω(γ, z, y) =
∑

γ=
∑n
i=1 γi

gtr({γi}, z, y)

|Aut{γi}|

n∏
i=1

Ω∗(γi, y),

where the sum over {γi} runs over unordered decompositions of γ into sums
of positive vectors γi ∈ Λ+, and the ‘tree index’ gtr is a sum over all stable
flow trees,

(2.22) gtr({γi}, z, y) =
∑

T∈T ad
n ({γi},z)

εT κ(T ) =
∑

T∈Tn({γi},z)

∆(T )κ(T ).

In the second equality, following [17] we extended the sum to all trees T ∈ Tn,
at the cost of inserting a factor vanishing unless the stability condition (2.14)
is obeyed at each vertex, in which case it is equal11 to εT ,

(2.23) ∆(T ) =
1

2n−1

∏
v∈VT

[
sgn Im

[
ZγL(v)

Z̄γR(v)
(zp(v))

]
+ sgn(γL(v)R(v))

]
.

Again, in writing (2.23) we assumed that the second condition in (2.14) is
automatically satisfied for the range of moduli z of interest.

Several comments about the proposal (2.21), (2.22) are in order:

11The equivalence between the stability condition (2.14) and the condition
∆(T ) 6= 0 only holds provided none of the arguments of the sign functions in (2.23)
vanish. If one of the DSZ pairings γL(v)R(v) vanishes, the prefactor κ(T ) vanishes
as well, so the second equality in (2.22) is still valid. More problematic is the case
where Im

[
ZγL(v)

Z̄γR(v)
(zp(v))

]
vanishes for some vertex v. If we assume that z does

not sit on any wall of marginal stability, then this cannot happen for the root vertex
v0, but it may still happen for one of its descendants. A simple example is that of a
3-node tree (1(23)) with γ3 = γ1: on the locus where Im[Zγ1Z̄γ1+γ2(z1)] = 0, which
defines the moduli z1 at the first splitting, the quantity Im[Zγ2Z̄γ3(z1)] relevant
for the bound state γ2 + γ3 also vanishes, so that ∆(T ) becomes ill-defined. (We
thank J. Manschot for pointing out this issue.) This issue can be traced to the
matrix γij = 〈γi, γj〉 being non-generic, in the sense that some linear combinations∑
i<j pijγij with integer coefficients pij vanish. To avoid this problem, we follow

the prescription of [20] and define gtr by perturbing γij infinitesimally so that it
becomes generic. Since gtr is manifestly a continuous function of the γij ’s for generic
values of z, due to the factor κ(T ) multiplying ∆(T ), the result does not depend
on the choice of the perturbation.
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i) By construction the tree index (2.22) is a Laurent polynomial in y with
integer coefficients, symmetric under y → 1/y.

ii) Due to the observation in (2.9), the factor in ∆(T ) associated to
the root vertex automatically vanishes at the attractor point z = zγ .
Therefore the tree index gtr vanishes at this point, except in the case
n = 1. Thus, (2.21) automatically holds at the attractor point z = zγ .
In order to prove that it is true for any z, it suffices to prove that it is
consistent with the wall-crossing formula.

iii) To evaluate the sign factor (2.23), it appears that one needs to compute
the attractor flow along each edge and find the value zv at which it
crosses the wall of marginal stability for the bound state γv → γL(v) +
γR(v). While this is a non-trivial problem in general, the precise value
of zv is however irrelevant, since we only need to evaluate the sign of
Im
[
ZγL(v)

Z̄γR(v)
(zp(v))

]
for each vertex, in terms of moduli at infinity

z∞. In Section 2.6 below, we shall show that these signs can actually be
determined in terms of z∞ for an arbitrary flow tree, without solving
the attractor flow along the edges explicitly (but assuming that such
a flow does exist).

iv) Across the wall of marginal stability Im[ZγLZ̄γR(z)] = 0 defined by
a pair of primitive12 vectors (γL, γR), the discontinuity of Eq. (2.21)
with γ = γL + γR arises from the contribution of all flow trees which
start with the same splitting γ → γL + γR at the root of the tree. The
discontinuity is then

(2.24) ∆Ω(γL + γR) = −sgn(γLR)κ(γLR) Ω(γL, z) Ω(γR, z),

where ∆Ω is defined as the difference between the value of Ω(γL +
γR, z) in the region where γLR Im(ZγLZ̄γR) > 0 (the bound state ex-
ists), minus the value in the region where γLR Im(ZγLZ̄γR) < 0 (the
bound state does not exist). The jump (2.24) is indeed consistent
with (refined) primitive wall-crossing formula [5, 9]. When γ = NLγL +
NRγR with NL and/or NR bigger than one, all trees whose first
splitting (γL(v0), γR(v0)) lies in the two-dimensional lattice spanned by
(γL, γR) can contribute. We have not proved that the resulting discon-
tinuity is consistent with the general wall-crossing formula of Kontse-
vitch and Soibelman [2], but the similarity of (2.21) with the Coulomb

12Here, by primitive we mean that all charges with non-zero index in the two-
dimensional lattice spanned by γL and γR are linear combinations NLγL +NRγR
with coefficients NL, NR of the same sign.
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branch formula discussed in Section 4.1 strongly suggests that this is
the case (see Section 3 for a more detailed discussion).

v) In addition, the contribution of each tree is also discontinuous
whenever zp(v) crosses the wall of marginal stability associated to
(γL(v), γR(v)) for any vertex v in the tree. Unless v is the root ver-
tex, this locus does not coincide with any wall of marginal stability.
We shall demonstrate that these apparent discontinuities in fact cancel
after summing over all trees. Thus, the sum over trees in (2.22) is dis-
continuous only on the walls of marginal stability for the bound states
of charge γ, as predicted by the primitive wall-crossing formula (2.24).
The appearance or disappearance of individual trees across ‘fake walls’
reflects a change in the internal structure of the bound state inside a
given chamber, as noted previously in [16, 17, 21].

vi) As a side remark, if none of the charges γi coincide (and assuming that
the matrix γij is generic for all possible splittings, see footnote 11), the
symmetry factor in (2.21) is equal to one and the sum over splittings
and flow trees can be generated by iterating the quadratic equation13

Ω(γ, z) = Ω∗(γ)−
∑

γ=γL+γR
〈γL,γR〉6=0

1

2

[
sgn Im

[
ZγLZ̄γR(z)

]
+ sgn(γLR)

]
(2.25)

× κ(γLR) Ω(γL, zLR) Ω(γR, zLR),

where zLR is the point where the attractor flow A(γL + γR, z) crosses
the wall of marginal stability Im(ZγLZ̄γR(zLR)) = 0, and we omit the
dependence on y on both sides.

In the remainder of this section, we shall explain how to evaluate the
tree index gtr purely in terms of asymptotic data, introducing the notion of
‘discrete attractor flow’ along the tree, and provide alternative representa-
tions for gtr which make the cancellation of discontinuites across ‘fake walls’
manifest.

13As a baby version of this phenomenon, note that the generating function B(z)
of the numbers bn of unordered full binary trees with n leaves satisfies

z = B(z)− 1

2
B(z)2, B(z) = z +

∑
n≥2

bn
zn

n!
= 1−

√
1− 2z.
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Figure 3: Attractor flow tree with three centers.

2.5. Example: three centers

As a warm-up, we first consider the case n = 3, which has been analyzed in
detail in [17] and nicely illustrates the mechanisms at play. In the following
it will be useful to define14

(2.26) ci(z) = Im
[
ZγiZ̄γ(z)

]
, cij(z) = Im

[
ZγiZ̄γj (z)

]
.

When the argument is omitted, these parameters will be implicitly evaluated
at infinity, i.e. ci ≡ ci(z∞). Note that due to γ =

∑n
i=1 γi, they satisfy

(2.27)

n∑
j=1

cij(z) = ci(z),

n∑
i=1

ci(z) = 0.

We shall abuse notation and write γi+j = γi + γj , γi+j,k = γik + γjk, ci+j =
ci + cj , etc.

For three centers, the three possible flow trees are related to the tree
((12)3) depicted in Fig. 3 by cyclic permutations of the charges. The moduli
z1 and z2 at the two vertices are defined by the conditions Im[Zγ1Z̄γ2(z1)] =
Im[Zγ1+γ2Z̄γ3(z2)] = 0. Using the notations (2.26), the formula (2.23) implies

14Since the stability condition is unaffected by an overall rescaling, the parameters
ci(z) are really valued in the real projective space RPn. In Section 3 we shall see that
they coincide with the Fayet-Iliopoulos parameters in quiver quantum mechanics,
again up to an overall scale.
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that the contribution of this tree to the BPS index Ω(γ, z) is given by

Ω((12)3)(z) =
1

4

[
sgn(γ1+2,3) + sgn(c1+2)

] [
sgn(γ12) + sgn(c12(z2))

]
(2.28)

× κ(γ12)κ(γ1+2,3) Ω∗(γ1) Ω∗(γ2) Ω∗(γ3).

Our first goal is to express sgn(c12(z2)) in terms of z∞. To this end, let
us substitute (γ1, γ2, γ

′)→ (γ1+2, γ3, γ1) in (2.13), obtaining

(2.29) e−U2
c1(z2)

|Zγ(z2)|
=
〈γ, γ1〉
〈γ, γ3〉

c1+2

|Zγ |
+

c1

|Zγ |
.

Therefore, one finds

sgn(c1(z2)) = sgn
[
γ1+2,3(〈γ, γ1〉 c1+2 + 〈γ, γ3〉 c1)

]
(2.30)

= sgn(γ1+2,3) sgn(γ23c1 + γ31c2 + γ12c3).

Since by assumption Zγ1+2
(z2), Zγ3(z2) and their sum Zγ(z2) all have the

same phase, it follows that

(2.31) sgn(c12(z2)) = sgn Im(Zγ1Z̄γ1+2
(z2)) = sgn(c1(z2)),

which was computed in (2.30). Thus, the contribution of the tree ((12)3) to
the BPS index becomes

Ω((12)3)(z) =
1

4

[
sgn(γ1+2,3)− sgn(c3)

]
(2.32)

×
[
sgn(γ12) + sgn(γ1+2,3) sgn(A123)

]
× κ(γ12)κ(γ1+2,3) Ω∗(γ1) Ω∗(γ2) Ω∗(γ3),

where we defined

(2.33) A123 = γ23c1 + γ31c2 + γ12c3.

Assuming that the only possible splittings of γ involve the charge vectors
γ1, γ2, γ3, the total index is then given by

Ω(γ, z) = Ω∗(γ) + Ω(1,2+3)(z) + Ω(2,3+1)(z) + Ω(3,1+2)(z)(2.34)

+ Ω((12)3)(z) + Ω((23)1)(z) + Ω((31)2)(z),

where Ω(1,2+3) denotes (2.19) with γ2 replaced by γ2+3, and Ω((23)1), Ω((31)2)

are obtained by cyclic permutations of (γ1, γ2, γ3) in (2.32). In particular,
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(23)1

(31)2

(12)3

c1=0

c2=0

c3=0

A123=0

γ12=1 , γ23=-2 , γ31=4

(23)1

(31)2

(12)3

c1=0

c2=0

c3=0

A123=0

γ12=1 , γ23=2 , γ31=4

Figure 4: In these two figures we depict the regions of stability of the flow
trees for n = 3 centers as a function of the ci’s (subject to the constraint
c1 + c2 + c3 = 0) for two representative choices of the products γ12, γ23, γ31.

The horizontal and vertical axis are x =
√

3
2 (c2 − c3) and y = −3

2(c2 + c3), so
that a cyclic permutation of 1, 2, 3 amounts to a rotation by 2π/3 around the
origin. The lines ci = 0 are walls of marginal stability for the decay γ → γi +
γj+k, while the red line A123 corresponds to a “fake wall”, or recombination
wall. On the left, the trees ((23)1) and ((12)3) co-exist in the region between
c1 = 0 and A123 = 0, and BPS bound states only exist in the colored region
between c2 = 0 and c3 = 0. On the right, the trees ((31)2) and ((12)3) coexist
in the region between c2 = 0 and A123 = 0, and BPS bound states exist in
the colored region between c1 = 0 and c3 = 0, but there are scaling solutions
for any value of the c′i’s. In both cases, the index is constant across the fake
wall A123 = 0, even though the allowed trees differ on both sides.

the tree index for three centers is given by

gtr =
3

4
Sym

{
κ(γ12)κ(γ1+2,3)

(
sgn(γ1+2,3)− sgn(c3)

)
(2.35)

×
(

sgn(γ12) + sgn(γ1+2,3A123)
)}
,

where Sym denotes the complete symmetrization over all charges (with
weight 1/n!).

It is straightforward to check the consistency of the representation (2.34)
with the primitive wall-crossing formula (2.24). For example, on the wall of
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marginal stability where c3 = Im(Zγ3Z̄γ1+2
) vanishes we have z∞ = z2 and,

as noted above (2.31), Zγ1+2
, Zγ3 and Zγ all have the same phase, so (2.33)

reduces to

(2.36) A123|c3=0 = γ23c1 + γ31c2 = γ1+2,3c12.

Using this in (2.32), the discontinuity of Ω(γ, z) is then proportional to

κ(γ1+2,3)

(
Ω∗(γ1+2)− 1

2

[
sgn(γ12) + sgn(c12)

]
κ(γ12) Ω∗(γ1) Ω∗(γ2)

)
Ω∗(γ3)

=κ(γ1+2,3) Ω(γ1+2, z) Ω(γ3, z),

(2.37)

consistently with the primitive wall-crossing formula (2.24).
On the other hand, it appears that (2.34) is discontinuous on the codi-

mension one locus where the sign of A123 changes, which does not coincide
with any wall of marginal stability. However, due to the cyclic symmetry of
A123, the discontinuity arises simultaneously for the flow tree ((12)3) and
its images under cyclic permutations (see Fig. 4 for a plot of the stability
regions of the various trees for two representative examples). As a result,
while each of these contributions is discontinuous across A123 = 0, the sum
over flow trees turns out to be smooth. Indeed, the coefficient of sgn(A123)
in (2.34) is the product of the Ω∗(γi)’s times

(2.38)
[
1− sgn(γ1+2,3c3)

]
κ(γ12)κ(γ1+2,3) + cycl .

The key property ensuring the vanishing of this expression is the identity
(valid for any y)

(2.39) κ(γ12)κ(γ1+2,3) + cycl = 0.

Using it, one finds that (2.38) reduces to

(2.40)
[
sgn(γ1+2,3c3)− sgn(γ2+3,1c1)

]
κ(γ23)κ(γ2+3,1) + (1↔ 2).

Rewriting (2.33) as A123 = γ1+2,3c1 − γ2+3,1c3, it is now clear that this ex-
pression vanishes on the locus A123 = 0. Thus, after summing all trees, the
total index is smooth across this locus and does not have any discontinuities
beyond those predicted by wall crossing.

Given the fact that the discontinuity at A123 = 0 cancels, one may won-
der whether it is possible to rewrite the index in a form which does not
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involve sgn(A123) at all, but only sgn(ci) corresponding to the decay γ →
γi + γj+k. To this end, let us rewrite the tree index (2.35) as

gtr =
3

4
Sym

{
κ(γ12)κ(γ1+2,3)

[
−sgn(γ−1

1+2,3c3) sgn(A123)(2.41)

+ sgn(γ12)
(

sgn(γ1+2,3)− sgn(c3)
)]}

,

where we used the identity (2.39) to drop the term proportional to
[sgn(γ1+2,3)]2. Next, we use the same identity to replace

κ(γ12)κ(γ1+2,3) =
2

3
κ(γ12)κ(γ1+2,3)(2.42)

− 1

3

(
κ(γ23)κ(γ2+3,1) + κ(γ31)κ(γ3+1,2)

)
and relabel the charges after this replacement, arriving at

gtr =
1

2
Sym

{
κ(γ12)κ(γ1+2,3)

[(
sgn(γ−1

2+3,1c1)− sgn(γ−1
1+2,3c3)

)
sgn(A123)

(2.43)

+ sgn(γ12)
(

sgn(γ1+2,3)− sgn(c3)
)

− sgn(γ23)
(

sgn(γ2+3,1)− sgn(c1)
)]}

.

Finally, taking into account that A123 = γ1+2,3c1 − γ2+3,1c3 and using the
sign identity (A.1), one obtains that the tree index takes the form

gtr =
1

2
Sym

{
κ(γ12)κ(γ1+2,3)

[
sgn(γ2+3,1)sgn(γ1+2,3)− sgn(c1)sgn(c3)

(2.44)

+ sgn(γ12)
(

sgn(γ1+2,3)− sgn(c3)
)

− sgn(γ23)
(

sgn(γ2+3,1)− sgn(c1)
)]}

.

This representation involves sign functions whose arguments are all ex-
pressed through the moduli at infinity and vanish only on the walls of
marginal stability corresponding to the bound states of total charge γ.

2.6. Discrete attractor flow

As mentioned in §2.4, it appears that in order to compute the weight factor
(2.23) ensuring the stability condition, one needs to solve the attractor flow
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along each edge in order to determine the explicit values of the moduli zv
attached to each vertex. However, the weight factor (2.23) only depends
on the moduli through the sign of Im

[
ZγL(v)

Z̄γR(v)

]
evaluated at the parent

vertex zp(v). We now explain how these signs can be determined in terms
of asymptotic data without knowing zp(v) itself, generalizing the procedure
used above for n = 3.

The key property is again Eq. (2.13). Recalling the notation (2.26) and
specializing to (γ1, γ2, γ

′) = (γL, γR, γi), it may be rewritten as

(2.45)
e−U(r1)|Zγ(z)|
|Zγ(z1)|

ci(z1) =
〈γ, γi〉
〈γL, γR〉

n∑
j=1

mj
Lcj(z) + ci(z),

where mi
v are the coefficients (equal to 0 or 1) of the charge γv at the

vertex v ∈ VT on the basis spanned by the vectors γ1, . . . , γn assigned to
the leaves, i.e. γv =

∑n
i=1m

i
vγi. This equation relates the coefficients ci(z1),

determining the stability of the BPS bound state γL + γR, in terms of the
coefficients ci(z), up to an irrelevant overall positive scale factor. While the
relation (2.13) was derived in the context of a two-centered black hole with
z labelling the moduli at infinity, it holds just as well for nested sequences
of two-centered bound states, where z now labels the moduli at the parent
vertex p(v) and the total charge should be replaced by γv. Thus, it allows to
determine the coefficients cv,i = Im

[
ZγiZ̄γv(zp(v))

]
at all vertices of the tree,

starting from the root where cv0,i = ci(z∞) and propagating them down the
tree using the ‘discrete attractor flow’

(2.46) cv,i = cp(v),i −
〈γv, γi〉
〈γv, γL(v)〉

n∑
j=1

mj
L(v)cp(v),j

at each vertex. Note that this relation is invariant under exchanging γL
and γR, and ensures that

∑
mi
L(v)cv,i =

∑
mi
R(v)cv,i = 0. It is important

however to keep in mind that the relation (2.46) assumes that the flow
starting from zp(v) can be continued all the way until it crosses the locus
where Im

[
ZγL(v)

Z̄γR(v)
(zv)

]
= 0 (as opposed to terminating on a point where

Zγv vanishes), and moreover that the central charges ZγL(v)
and ZγR(v)

are
actually aligned at this point (as opposed to being anti-aligned).

For some purposes, it can be useful to have a formula expressing ∆(T )
directly in terms of the moduli at spatial infinity, or more precisely in terms
of the corresponding parameters ci = ci(z∞). To this aim, let us consider a
branch inside a flow tree, starting from the root v0 and consisting of `− 1
edges (see Fig. 5). We denote by α1, . . . , α` the charges attached to the
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Figure 5: A branch of a flow tree and its labeling relevant for the expression
of the stability conditions in terms of z∞.

descendants of the vertices along the branch, such that it corresponds to the
nested sequence of bound states

(2.47)
γ → α̂`−1 → · · · → α̂2 → α1

+ + +
α` α3 α2

and α̂k = α1 + · · ·+ αk. The charges αi (i = 1, . . . , `) are in general linear
combinations of the charges γi, (i = 1, . . . , n) of the constituents attached
to the leaves of the full tree, from which the branch has been extracted. We
denote the moduli at the vertices along the tree by zi in the same order as
charges, z` = z∞ corresponding to the moduli at spatial infinity.

Our goal is to express the sign factor sgn Im
[
Zα1

Z̄α2
(z2)

]
governing the

stability of the innermost bound state in terms of z∞. For this purpose, we
define the following family of sign functions

(2.48) Sk({ai}) = sgn Im

[(
k∑
i=1

aiZαi(zk)

)
Z̄α̂k(zk)

]
,

where k = 2, . . . , `. The real parameters ai will be fixed momentarily in such
a way that Sk−1({ai}) is related to its counterpart Sk({ai}), in which the
central charges are evaluated one step up along the attractor flow. To this
end, we note that the discrete attractor flow equation (2.46) specialized for
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the vertex vk−1 implies

(2.49) Im[ZαiZ̄α̂k(zk−1)] ∝ Im[ZαiZ̄α̂k(zk)] +
βki
βkk

Im[Zα̂k−1
Z̄α̂k(zk)],

where the proportionality coefficient is independent of i and positive, and
we defined

(2.50) βki = 〈α1 + · · ·+ αk, αi〉.

Since by definition zk−1 is the point where the attractor flow A(α̂k, zk)
crosses the wall of marginal stability Im[Zα̂k−1

Z̄αk(zk−1)] = 0, the central
charges Zα̂k−1

(zk−1) and Zα̂k(zk−1) have the same phase. Hence, one can
replace the latter by the former in the left-hand side of (2.49), which then
reproduces one term in the sum in (2.48). Thus, we find

(2.51) Sk−1({ai}) = sgn Im

[
k−1∑
i=1

ai

(
Zαi −

βki
βkk

Zαk

)
Z̄α̂k(zk)

]
= Sk({ai}),

where in the definition of Sk({ai}) on the right-hand side, we choose the
first k − 1 coefficients a1, . . . , ak−1 to be identical to the original ones, while
the k-th coefficient is related to the preceding ones by

(2.52) ak = −
k−1∑
i=1

βki
βkk

ai.

The recursive relation (2.52) fixes all coefficients ak in terms of a1 and
a2. Moreover, due to

∑k
i=1 βki = 0, a shift of the initial conditions a1, a2 by

λ results into an overall shift ak → ak + λ for all k, which does not affect
the Sk’s. Therefore, we can choose a1 = 0. Then (2.52) leads to

a1 = 0, a2 = −1, a3 =
β32

β33
, a4 =

β42

β44
− β43β32

β44β33
, . . .(2.53)

More generally, we find

(2.54) ai =

i−1∑
r=2

∑
2=j1<j2<···<jr=i

(−1)r
r−1∏
`=1

βj`+1,j`

βj`+1,j`+1

for all i ≥ 3. Using these relations, we can finally evaluate the relevant sign,
which determines the stability of the innermost bound state in terms of



i
i

“2-Pioline” — 2019/11/26 — 17:06 — page 654 — #28 i
i

i
i

i
i

654 S. Alexandrov and B. Pioline

z` = z,15

sgn Im
[
Zα1

Z̄α2
(z2)

]
= −S2(a1, a2) = −S`({ai})(2.55)

= −sgn

(∑̀
i=1

ai Im
[
ZαiZ̄γ(z)

])
.

Since the charges α1, . . . , α` are linear combinations of the charges γi
attached to the leaves of the full tree from which the branch is extracted,
the argument of the sign can be written as a linear combination

∑n
i=1 avici,

where ci are defined in (2.26), and avi form a n-dimensional real vector
associated to the vertex v and constructed out of the coefficients ai found
above. In terms of these vectors, the weight factor (2.23) is rewritten as

(2.56) ∆(T ) =
1

2n−1

∏
v∈VT

[
−sgn

(
n∑
i=1

avici

)
+ sgn(γL(v)R(v))

]
,

which only depends on the asymptotic moduli z through the variables ci =
ci(z) defined in (2.26). This result gives a straightforward, algorithmic way of
evaluating the tree index (2.22) in terms of asymptotic data without having
to integrate the flow along each edge, provided such a flow exists. Further-
more, it shows that the tree index only depends on the charges through the
DSZ matrix γij and on the moduli z through the vector ci. The fact that
the factor ∆(T ) comes multiplied by κ(T ) in the definition (2.22) also shows
that the tree index is a continuous function of γij for generic values of the
ci’s, justifying the prescription given in footnote 11 for dealing with the case
of non-generic DSZ matrix.

Using the result (2.56), in Appendix B we show that the tree index is
also continuous across the ‘fake walls’ associated to the stability of inter-
mediate bound states, despite the fact that contributions of distinct flow
trees may jump on these loci. This is done with help of certain ‘flow vectors’
constructed from the coefficients avi. The recursive relation (2.52) allows to
prove various symmetry properties of these vectors, which in turn reduce
the proof of cancellation of the fake discontinuities to the cyclic property
(2.39) of κ-factors. We defer this proof to the appendix because in the next
subsection we shall provide a new representation for the BPS index which
is manifestly smooth across all fake walls.

15Note that, upon multiplying ai by the largest denominator
∏m
j=3 βjj , the ar-

gument of the sign becomes a homogenous polynomial of degree n− 2 in the βij ’s.
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2.7. New formulae for the tree index

We have seen at the end of Subsection 2.5 that for n = 3, it was possible to
rewrite the tree index in such way that it was manifestly constant away from
the physical walls of marginal stability corresponding to splittings of the
total charge γ into γL + γR. It is natural to expect that this should also be
possible for any number of centers. Unfortunately, it is not straightforward
to extend the tricks used for n = 3, due to the weights κ(T ) appearing
explicitly in (2.22). While this can be done with some effort for n = 4, this
procedure becomes extremely cumbersome.

To overcome this problem, we shall first rewrite the tree index in a form
which does not contain the κ-factors anymore and is expressed in terms
of another, y-independent ‘partial index’. This form was inspired by the
representation (4.4) of the Coulomb index, which will be the subject of
Section 4.

Proposition 1. The tree index defined in (2.22) can be decomposed as

(2.57) gtr({γi}, z, y) =
(−1)n−1+

∑
i<j γij

(y − y−1)n−1

∑
σ∈Sn

Ftr,n({γσ(i)}, z) y
∑
i<j γσ(i)σ(j) ,

where σ runs over all permutations of {1, . . . , n} and the ‘partial tree index’
Ftr,n({γi}, z) is defined by16

(2.58) Ftr,n({γi}, z) ≡
∑

T∈T pl
n ({γi},z)

∆(T ),

where the sum runs over the set T pl
n ({γi}, z) of planar flow trees with n

leaves carrying ordered charges γ1, . . . , γn.

Note that it is crucial to consider the refined index at y 6= 1 for getting
the representation (2.57), since each term in the sum over permutations is
singular at y = 1. Nevertheless, the sum must be smooth in this limit, since
the tree index gtr (unlike the Coulomb index gC) is a symmetric Laurent
polynomial.

Proof. To see the origin of the representation (2.57), let us expand all factors
κ(γij) in (2.20) using the definition of κ(x) in (2.18). Then each of the bn

16The subscript n on Ftr,n is redundant since it equals the cardinality of the set
{γi}. Nevertheless, we find it useful to display it and instead sometimes omit the
arguments, the set of vectors γi and moduli z.
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flow trees produces, up to a factor of (−1)
∑
i<j γij

(y−1/y)n−1 , a sum of 2n−1 monomials

of the form y
∑
i<j εijγij where εij = ±1. For each assignment of εij , there

exists a unique permutation σ ∈ Sn such that
∑

i<j εijγij =
∑

i<j γσ(i)σ(j).
For a given permutation σ, all trees T contributing a term proportional to
y
∑
i<j γσ(i)σ(j) are planar flow trees ordered with respect to σ, i.e. trees ending

on ordered points zσ(1), . . . , zσ(n) which can be drawn on the upper half plane
without crossings.17 As for the usual flow trees, they are labelled by charges,
with the charges γσ(i) assigned to the end-points, and contribute the weight
∆(T ) given in (2.23) or (2.56). �

Since planar trees with n end-points may be generated by merging two
planar trees with ` and n− ` leaves, with ` running from 1 to n− 1 (see
footnote 17), it is easy to see that the partial index satisfies the following
iterative equation18

Ftr,n({γi}, z) =
1

2

n−1∑
`=1

(
sgn(S`)− sgn(Γn`)

)
(2.59)

× Ftr,`({γi}`i=1, z`)Ftr,n−`({γi}ni=`+1, z`),

where we defined

(2.60) Sk =

k∑
i=1

ci(z), Γk` =

k∑
i=1

∑̀
j=1

γij , βk` =

k∑
i=1

γi`,

while z` is the value of the moduli where the attractor flow crosses the
wall for the decay γ → (γ1+···+`, γ(`+1)+···+n). According to (2.46), this value
corresponds to the parameters

(2.61) ci(z`) = ci(z)−
βni
Γn`

S`.

While Eq. (2.59) allows for a very efficient evaluation of Ftr,n, it is also the
starting point for obtaining new representations for the partial index which
satisfy the properties stated at the beginning of this subsection.

17 For any σ, the number of such planar trees is b̃n = Cn−1, where Cn = (2n)!
(n+1)(n!)2

is the n-th Catalan number (Cn = 1, 1, 2, 5, 14, . . . for n = 0, 1, 2, 3, 4, . . . ). The
Catalan numbers satisfy the recursion relation Cn+1 =

∑n
i=0 Ci Cn−i, so that

b̃n =
∑n−1
`=1 b̃` b̃n−` corresponding to the obvious ways of constructing a planar tree

with n leaves by merging two planar trees with ` and n− ` leaves, respectively.
18Throughout this section we assume that the second condition in (2.14) is au-

tomatically satisfied for the range of moduli z of interest.
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To formulate our results, let us define the following quantities

(2.62)

F (0)
n ({γi, ci}) =

1

2n−1

n−1∏
i=1

sgn(Si),

F̃ (0)
n ({γi, ci}) =

1

2n−1

n−1∏
i=1

(
sgn(Si) + sgn(γi,i+1)

)
,

and their specialization at ci = βni, which we denote by

(2.63)

F (?)
n ({γi}) =

1

2n−1

n−1∏
i=1

sgn(Γni),

F̃ (?)
n ({γi}) =

1

2n−1

n−1∏
i=1

(
sgn(Γni) + sgn(γi,i+1)

)
.

For n = 1 all these objects are understood to be equal to one. For n = 2 we

have the vanishing property F̃
(?)
2 = 0. In terms of these notations one can

give two iterative representations for the partial index:

Proposition 2. The partial tree index satisfies the following two recursion
relations

Ftr,n({γi}, z) = F (0)
n ({γi, ci})(2.64)

−
∑

n1+···+nm=n

nk≥1, m<n

Ftr,m({γ′k}, z)
m∏
k=1

F (?)
nk (γjk−1+1, . . . , γjk)

= F̃ (0)
n ({γi, ci})

−
∑

n1+···+nm=n

nk≥1, m<n−1

Ftr,m({γ′k}, z)
m∏
k=1

F̃ (?)
nk (γjk−1+1, . . . , γjk),

where the sum runs over ordered partitions of n, with largest size n− 1 in
the first relation, or n− 2 in the second.19 For k = 1, . . . ,m, where m is the
number of parts, we defined

(2.65) j0 = 0, jk = n1 + · · ·+ nk, γ′k = γjk−1+1 + · · ·+ γjk .

19The restriction m < n− 1 in the sum in the second line can be relaxed to
m < n. The stronger inequality is then automatically fulfilled due to F̃

(?)
2 = 0.
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Note that the two representations differ only by a redistribution of the

function F
(?)
2 : in the first one it contributes only to the sum over splittings of

the set of charges into subsets, where in particular it arises as a factor in the
last product, whereas in the second its effect is incorporated by the terms
proportional to sgn(γi,i+1) in (2.63). The two representations may be useful
for different purposes. For instance, the second representation is suitable for
the proof of convergence of the BPS partition function, whereas the first
representation is more convenient for analyzing its modular properties [41],
this is why we give here both of them. Since their proofs are essentially
identical, we only present the proof for the first representation.

Proof. Our proof will be inductive. It starts from n = 2 in which case the
formula (2.64) coincides with the definition of F2 (see (C.3)). Let us now
assume that it holds up to n− 1. Our aim is to show that the iterative
equation (2.59) reduces to (2.64). Defining xk = Sk/Γnk, we find that

(2.66)

k∑
i=1

ci(z`) = Γnk(xk − x`),
k∑

i=`+1

ci(z`) = Γnk(xk − x`).

Substituting (2.64) and (2.62) into the r.h.s. of (2.59) and denoting the

second term in (2.64) by F
(+)
n ({γi}, z), one therefore gets

Ftr,n =
1

2n−1

(
n∏
i=1

sgn(Γni)

)
n−1∑
`=1

(
sgn(x`)− 1

) n−1∏
k=1

k 6=`

sgn(xk − x`)(2.67)

− 1

2

n−1∑
`=1

(
sgn(S`)− sgn(Γn`)

)
×
[
F

(+)
` F

(0)
n−` + F

(0)
` F

(+)
n−` − F

(+)
` F

(+)
n−`

]
z→z`

=
1

2n−1

(
n∏
i=1

sgn(Si)−
n∏
i=1

sgn(Γni)

)
,

− 1

2

n−1∑
`=1

(
sgn(S`)− sgn(Γn`)

)
×
[
F

(+)
` Ftr,n−` + Ftr,`F

(+)
n−` + F

(+)
` F

(+)
n−`

]
z→z`

,

where we have used the sign identity (A.7). In the first contribution we im-

mediately recognize the difference F
(0)
n − F (?)

n , whereas in the second con-
tribution all terms can be combined into one sum over splittings by adding
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the condition ` ∈ {jk}. Denote the index k for which this happens by k0.
Then this contribution reads

− 1

2

n−1∑
`=1

(
sgn(S`)− sgn(Γn`)

)
(2.68)

×
∑

n1+···+nm=n

nk≥1, m<n, `∈{jk}

Ftr,k0(z`)Ftr,m−k0(z`)

m∏
k=1

F (?)
nk

= −
∑

n1+···+nm=n

nk≥1, 1<m<n

[
1

2

m−1∑
k0=1

(
sgn(Sjk0 )− sgn(Γnjk0 )

)
× Ftr,k0(z`)Ftr,m−k0(z`)

]
m∏
k=1

F (?)
nk .

Here we interchanged the two sums which allows to drop the condition
` ∈ {jk}, but adds the requirementm > 1 (following from ` ∈ {jk} in the pre-
vious representation). In square brackets one recognizes the r.h.s. of (2.59)
with n replaced by m < n. Hence, it is subject to the induction hypothe-
sis which allows to replace this expression by Ftr,m({γ′k}, z) and shows that

(2.68) is equal to −(F
(+)
n − F (?)

n ) where the second term is due to the con-
dition m > 1 in the sum over splittings. Combining the two contributions,

one finds F
(0)
n − F (+)

n which is exactly the first line in the required formula
(2.64). The proof of the second line is similar using instead the sign iden-
tity (A.5). �

It is easy to verify the consistency of the representation (2.64) with the
primitive wall-crossing formula (2.24). Since this essentially amounts to per-
forming the manipulations used in the above proof in reverse, we shall omit
this check, which is at any rate guaranteed by the previous results. On the
other hand, for convenience of the reader, we have collected in Appendix C.1
the explicit expressions for the partial indices Ftr,n in the form (2.64) up to
n = 4. These expressions have been also checked by a direct recombination
of signs in the original definition (2.58).

The representation (2.64) solves the problems about the sum over attrac-
tor flow trees formulated in Section 2.4. However, it raises a new question:
how can one extract the value of the tree index gtr at y = 1? Since by con-
struction gtr is a Laurent polynomial in y, the limit y → 1 is smooth, and
therefore can be obtained by applying l’Hôpital’s rule to Eq. (2.57), i.e.
acting on the numerator and on the denominator by (y∂y)

n−1 before set-

ting y = 1. This amounts to replacing the factor y
∑
i<j γσ(i)σ(j)

(y−y−1)n−1 inside the sum
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by
[
∑
i<j γσ(i)σ(j)]

n−1

2n−1(n−1)! . Although this answers the question in principle, it may
be desirable to have an alternative representation of the refined tree index
where the monomials in y are all combined into products of κ-factors. For
n = 3, the result (2.44) provides such a representation. Ater recognizing the
expression in the square brackets as the partial tree index Ftr,3 in (C.4), it
is natural to conjecture the following simple formula for any n,

Conjecture 1. The tree index defined in (2.22) can be expressed as

(2.69) gtr({γi}, z, y) = (−1)n−1 (n− 1)! Sym

{
Ftr,n({γi}, z)

n∏
k=2

κ(βkk)

}
,

where βkk =
∑k−1

i=1 γik.

We have checked this conjecture by hand for n = 4 and on Mathematica
for higher n. Since already the n = 4 case is quite involved, we do not provide
here these computations.

3. Attractor flows and quivers

In this section, we apply the flow tree formula to the context of quiver
quantum mechanics, which describes the interactions of a set of mutually
non-local BPS dyons in gauge theories or string theories with N = 2 super-
symmetry in four dimensions [22]. Using the well-known relation between
the Higgs branch of this system and the moduli space of stable quiver repre-
sentations, we obtain a formula which expresses the Poincaré polynomial of
this moduli space, for arbitrary values of the stability conditions, in terms of
Poincaré polynomials of quiver moduli space with lower dimension vectors
evaluated at their respective attractor points.

3.1. A brief review of quiver quantum mechanics

Quiver quantum mechanics is a special class of 0+1 dimensional gauge theo-
ries with four supercharges [22]. Its field content is encoded in a K ×K anti-
symmetric integer matrix αab and a vector of positive integers (N1, . . . , NK)
known as the dimension vector. The model then includes vector multiplets
for the gauge group G =

∏K
a=1 U(Na) and |αab| chiral multiplets transform-

ing in the bifundamental representation (Na, N̄b) if αab > 0, or its complex
conjugate (N̄a, Nb) if αab < 0 (note that we do not allow loops from any node
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Figure 6: An example of quiver with 4 nodes.

to itself). We shall denote the bosonic component of these chiral multiplets
by φab,A,ss′ , where 1 ≤ A ≤ |αab|, 1 ≤ s ≤ Na, 1 ≤ s′ ≤ Nb. The field content
is conveniently represented by a quiver, i.e. a set of K nodes associated to
the U(Na) gauge groups, and |αab| arrows going from node a to node b if
αab > 0, or in the opposite direction if αab < 0. The antisymmetric matrix
αab is the adjacency matrix of the graph formed by the nodes and arrows
(see Fig. 6). When the quiver has oriented loops, the Lagrangian depends on
a superpotential W(φ), which is a sum of G-invariant monomials in the chi-
ral multiplets φab,A,ss′ . In addition, the Lagrangian depends on a real vector
ζ = (ζ1, . . . , ζK), whose entries are known as the Fayet-Iliopoulos (FI) pa-
rameters and associated to the U(1) center in each gauge group U(Na). For
the purpose of counting BPS states, the overall scale of the ζa’s is irrelevant,
so this vector can be viewed as a point in real projective space RPK .

This supersymmetric quantum mechanics describes the interactions of a
set of mutually non-local BPS dyons consisting of N1 dyons of charge α1,
N2 dyons of charge α2, etc., upon identifying αab = 〈αa, αb〉, and fixing the
FI parameters as

(3.1) ζa(z) = Im
[
ZαaZ̄γ(z)

]
,

where γ =
∑K

a=1Naαa. Note that for an Abelian quiver (Na = 1), this coin-
cides with the definition of ci(z) in (2.26). The superpotentialW(φ) (in case
the quiver has oriented loops) may have a complicated dependence on the
moduli, and we shall assume that it is generic in the sense that the Hessian
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at the critical points has maximal rank. Moreover, we stress that the quiver
description is only valid in a region where the central charges Zαa are nearly
aligned [5].

It will be convenient to introduce the K-dimensional charge lattice Λ
spanned by the basis vectors αa, and the cone Λ+ spanned by linear combi-
nations γ =

∑K
a=1 naαa with non-negative integer coefficients (and not van-

ishing simultaneously). Note that Λ+ admits a natural partial order, γ ≤ γ′
if na ≤ n′a for all 1 ≤ a ≤ K. For any charge vector γ = (n1, . . . , nK) ∈ Λ+,
we denote (ζ, γ) =

∑K
a=1 naζa. For the special case of the dimension vector

γ = (N1, . . . , NK), it follows from (3.1) that (ζ, γ) = 0. Since the only de-
pendence on the moduli z arises through ζa(z), we shall often use the symbol
z to denote the vector of FI parameters, without necessarily implying that
they originate from a central charge function Zαa(z) via (3.1).

Semi-classically, the quiver quantum mechanics admits two branches of
supersymmetric vacua:

• the Higgs branch, where the gauge symmetry is broken to the U(1)
center by the vevs of the chiral multiplet scalars φab,A,ss′ ; the su-
persymmetric vacua are in one-to-one correspondence with the set
of stable orbits of the action of the complexified gauge group GC =∏K
a=1GL(Na,C) restricted to the critical locus of the superpotential
W(φ), where the stability condition is determined by the FI param-
eters. The set M of supersymmetric vacua thus coincides with the
moduli space of stable quiver representations widely studied in math-
ematics (see e.g. [44, 45] for entry points in the vast literature on this
subject).

• the Coulomb branch, where the gauge symmetry is broken to
U(1)

∑K
a=1Na and all chiral multiplets as well as off-diagonal vector mul-

tiplets are massive; the space of supersymmetric vacua is then isomor-
phic to the phase space Mn({αNaa }, z) which governs multi-centered
BPS solutions in N = 2 supergravity, where n =

∑K
a=1Na and αNaa

indicates Na copies of the vector αa.

Quantum mechanically, BPS states on the Higgs branch are harmonic forms
on the moduli space of quiver representations [22], while BPS states on the
Coulomb branch are harmonic spinors on Mn({αNaa }, z) [42]. The group
SO(3) associated to physical rotations in R3 acts on the cohomology of
the Higgs branch via the Lefschetz action generated by contraction and
wedge product with the Kähler form, while it acts on the cohomology of the
Coulomb branch by lifting the Hamiltonian action of (2.7) onMn({αNaa }, z).
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For the reasons explained below, the BPS index Ω(γ, z, y) of interest
in this set-up is the refined index of the BPS states on the Higgs branch.
Mathematically, it is defined as the Poincaré polynomial of the moduli space
M =M(γ, ζ) of quiver representations with dimension vector γ and sta-
bility conditions ζa, rescaled by a factor (−y)−d where d is the complex
dimension of M:

(3.2) Ω(γ, z, y) =

2d∑
p=0

bp(M) (−y)p−d.

Here, bp(M) are the topological Betti numbers20 ofM and z stands for the
set of FI parameters ζa. In the case where the dimension vector γ is primitive
and the superpotential W is generic, M is compact, so Ω(γ, z, y) is a sym-
metric Laurent polynomial in y, which can be viewed as the character of the
Lefschetz action of SO(3) on the moduli spaceM. When γ is not primitive,
M is no longer compact, but one can still define the Poincaré polynomial
using intersection cohomology. In that case, we define the rational invariant
Ω(γ, z, y) in the same way as in (2.15).

The simplest example is the Kronecker quiver, with two nodes of rank
1 and α12 arrows from the first node to the second. The Higgs branch is
either empty when sgn(ζ1) = −sgn(α12), or given by the complex projective
space P|α12|−1. Its Poincaré polynomial is given by the same formula (2.17)
which was arrived at by quantizing the Coulomb branchM2(α1, α2; z) with
α12 = 〈α1, α2〉. This coincidence between the cohomology of the Coulomb
and Higgs branches is in fact a general property of quivers without oriented
loops [20], and reflects the fact that the support of the BPS wave functions
shifts from the Higgs branch to the Coulomb branch as the string coupling
is increased [22]. For quivers with loops, the Coulomb branch is in general
non-compact so the corresponding index is ill-defined. In contrast, the Higgs
branch is compact for a generic choice of superpotentialW(φ), at least for a
primitive dimension vector. This is why we focus on the BPS index on this
branch.

20It is also possible to define a two-variable polynomial Ω(γ, z, y, t) which keeps
track of the Hodge numbers hp,q(M) and reduces to (3.2) at t = 1, and to the χy2-
genus at y = t [27, §2.3]. Here we set t = 1 for simplicity, but the flow tree formula
has an immediate generalization to t 6= 1.
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3.2. Flow tree formula for quivers

Since quiver quantum mechanics describes the dynamics of black hole bound
states, it is natural to expect that the flow tree formula also applies in this
context, and allows to express the total rational index Ω(γ, z, y) in terms of
sums of monomials in moduli-independent indices Ω∗(γi) associated to all
decompositions γ =

∑n
i=1 γi where the γi’s lie in the positive cone Λ+. In

order to formulate it however, we need to define the notions of ‘attractor
flow’ and ‘attractor point’ in the context of quivers.

The first notion is obvious from the discussion in §2.6: the discrete at-
tractor flow (2.46) only involves the parameters ci and the DSZ products
γij associated to the constituents γi. In our setup they can be evaluated in

terms of the coefficients of γi =
∑K

a=1 niaαa on the basis αa associated to
the nodes of the quiver as

(3.3) γij =

K∑
a,b=1

nianjb αab, ci =

K∑
a=1

niaζa.

Note that these quantities define an auxiliary Abelian quiver with n nodes
associated to the constituents in the decomposition γ =

∑n
i=1 γi. From this

data, one can then compute the tree index gtr by constructing all stable at-
tractor flow trees with n leaves. The latter are rooted unordered binary trees
T , whose vertices v ∈ VT are decorated by charge vectors γv =

∑n
i=1m

i
vγi

with mi
v ∈ {0, 1}, such that the root carries charge γ, the leaves carry charges

γ1, . . . , γn, and the charges add up at each vertex, γv = γL(v) + γR(v). For a
given decoration, we assign stability parameters cv,i at each vertex, equal
to ci in (3.3) at the root and satisfying the ‘discrete attractor flow’ relation
(2.46) along each edge,21

cv,i = cp(v),i −
〈γv, γi〉
〈γv, γL(v)〉

n∑
j=1

mj
L(v)cp(v),j(3.4)

= cp(v),i −
〈γv, γi〉
〈γv, γR(v)〉

n∑
j=1

mj
R(v)cp(v),j .

21Note that (2.46) assumed that the central charges were aligned on the walls of
marginal stability, as opposed to being anti-aligned, but this assumption is auto-
matically satisfied in the regime of validity of quiver quantum mechanics.
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The tree index is then obtained via (cf. (2.20), (2.22), (2.23))22

gtr({γi, ci}, y) =
(−1)n−1

2n−1

∑
T∈Tn

∏
v∈VT

κ(γL(v)R(v))(3.5)

×

[
sgn

(
n∑
i=1

mi
L(v)cv,i

)
+ sgn(γL(v)R(v))

]
,

where we recall that κ(x) is defined in (2.18). In practice, it is easiest to
generate the trees recursively, and discard those which do not satisfy the
stability condition at one vertex without exploring further splittings. Al-
ternatively, one may wish to use the representation (2.57) of gtr as a sum
of ‘partial tree indices’ Ftr,n({γi, ci}) defined by a sum over planar trees
(see (2.58)), or the recursion formulae (2.59) and (2.64) of the previous sec-
tion (see also (2.69) for a conjectural relation which does not require taking
y 6= 1).

As for the notion of attractor point, we observe that for a given dimension
vector γ =

∑K
a=1Naαa, the FI parameters defined by

(3.6) ζ∗,a(γ) = 〈γ, αa〉 = −
K∑
b=1

αabNb

are such that for any decomposition γ = γL + γR, the sign of 〈γL, γR〉 is
always opposite to the sign of (ζ∗(γ), γL), mimicking the property (2.9) of
the supergravity attractor point [26]. Moreover, (3.6) automatically satisfies
the condition (ζ∗(γ

′), γ′) = 0, and is mapped to zero by the discrete attractor
flow, as expected since a single-centered black hole should be described by
a single node quiver. It is therefore natural to identify the attractor index
Ω∗(γ) with the Poincaré polynomial (3.2) evaluated for the charge vector γ
and stability parameter ζ∗(γ). Of course, the attractor point ζ∗(γ

′) can be
defined in the same way for any vector γ′ =

∑K
a=1 naαa ∈ Λ+, whether or

not it coincides with the dimension vector of the original quiver.
With these identifications, we can now state the flow tree formula for

quiver moduli in a mathematically precise way:

Conjecture 2. For a K-node quiver with adjacency matrix αab, dimension
vector γ = (N1, . . . , NK), stability parameters ζ = (ζ1, . . . , ζK) and generic

22While gtr only depends on vector γi through the DSZ matrix γij = 〈γi, γj〉 and
parameters ci, for clarity we denote its arguments by {γi, ci}.
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superpotential W(φab,A,ss′), the rescaled Poincaré polynomial (3.2) of the
quiver moduli space is given by (cf. (2.15))

(3.7) Ω(γ, z, y) =
∑
m|γ

µ(m)
y − 1/y

m(ym − 1/ym)
Ω(γ/m, z, ym),

where µ(m) is the Moebius function and (cf. (2.21))

Ω(γ, z, y) =
∑

γ=
∑n
i=1 γi

gtr({γi, ci}, y)

|Aut{γi}|

n∏
i=1

Ω∗(γi, y).(3.8)

Here, the sum runs over all distinct unordered splittings of γ into sums of
vectors γi = (ni1, . . . , niK) with non-negative entries, |Aut{γi}| is the order
of the subgroup of the permutation group Sn preserving the ordered set {γi},
gtr({γi, ci}, y) is the ‘tree index’ defined using (3.3), and Ω∗(γi, y) are the ra-
tional ‘attractor indices’, i.e. the same quantities as in (3.7) but evaluated for
the dimension vector γi and stability parameters ζ∗,a(γi) = −

∑K
b=1 αabnib.

This conjecture is easily proven for Abelian quivers, i.e. when all Ni ≤ 1.
Indeed, (3.8) gives the correct value at the attractor point, since gtr for n > 1
vanishes by construction at that point, and it also satisfies the primitive wall-
crossing formula, as shown in §2.4. In order to prove that (3.8) also holds
for non-Abelian quivers, one would have to prove that it satisfies the general
Kontsevich–Soibelman wall-crossing formula [2]. Unfortunately, we do not
yet have a general proof of that fact.

For non-Abelian quivers without loops, however, we shall show in Sec-
tion 4.2 that the tree index gtr coincides with the Coulomb index gC, so that
the attractor indices Ω∗(γi) coincide with the single-centered indices ΩS(γi),
and the flow tree formula becomes equivalent to the Coulomb branch for-
mula reviewed in the next section. Since the latter has been shown [20] to be
equivalent to Reineke’s formula [46] for non-Abelian quivers without loops, it
follows that (3.8) also holds in this case. In particular, it must be consistent
with the general wall-crossing formula.

For the most general case of non-Abelian quivers with loops, we do not
have a direct proof that (3.8) is consistent with the general wall-crossing
formula, but it is physically clear that the validity of the latter can only de-
pend on general factorization properties of the tree index, and so should not
be sensitive to the existence of loops (indeed, loops are responsible for exis-
tence of scaling solutions, but those are insensitive to wall-crossing). Hence
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we believe that the conjecture is true also in this general case, although this
argument falls short of being a mathematical proof.

Alternatively, it may be possible to derive the flow tree formula from the
Joyce-Song formula [3, 4], which relates the BPS indices Ω(γ, z) and Ω(γ, z′)
in arbitrary distinct chambers. Applying this formula for z′ = zγ , we obtain
a sum of products of Ω(γi, zγ) with γ =

∑
γi, all evaluated at the point zγ .

One can then repeat this process and express each of the Ω(γi, zγ)’s in terms
of BPS indices at their respective attractor points zγi . Since the charge of
the constituents γi is always less than that of the total charge, this process
terminates after a finite number of steps. It is interesting to note that the
Joyce-Song formula also involves a sum over rooted decorated trees, albeit
of a somewhat different type.

4. Comparing attractor and single-centered indices

In this final section, we compare the flow tree formula (2.21), expressing the
total index Ω(γ, z) in terms of attractor indices Ω∗(γi), with the Coulomb
branch formula which expresses the same index in terms of single-centered
indices ΩS(γi). In §4.1, we briefly recall the statement of the Coulomb branch
formula and the definition of the ‘Coulomb index’ gC which plays a central
rôle in it. In §4.2 we show that the latter coincides with the tree index gtr

for charge configurations which do not allow scaling solutions, and conclude
that Ω∗(γ) = ΩS(γ) for quivers without oriented loops. In the case where
scaling solutions are allowed, corresponding to quivers with oriented loops,
gC and gtr in general differ, and so do Ω∗(γ) and ΩS(γ). While we do not
yet know how to relate them explicitly in general, in §4.3 we work out their
relation in the special cases of 3-centered and 4-centered configurations.

4.1. Review of the Coulomb branch formula

The Coulomb branch formula conjecturally expresses the total rational index
Ω(γ, z) defined in (2.15) in terms of single-centered indices ΩS(γi) as follows:

Conjecture 3 ([18, 20, 28]).

Ω(γ, z, y) =
∑

γ=
∑n
i=1 γi

gC({γi}, z, y)

|Aut{γi}|
(4.1)

×
n∏
i=1


∑
mi∈Z
mi|γi

y − 1/y

mi(ymi − y−mi)
Ωtot(γi/mi, y

mi)

 ,
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where Ωtot is determined in terms of ΩS via

(4.2) Ωtot(γ, y) = ΩS(γ, y) +
∑

γ=
∑m
i=1miβi

Hm({βi,mi}, y)

m∏
i=1

ΩS(βi, y
mi).

In both (4.1) and (4.2) the sums run over unordered decompositions of
γ into sums of positive vectors γi or {βi,mi} with mi ≥ 1. The functions
Hm({βi,mi}, y) are determined recursively by the so called “minimal modi-
fication hypothesis” (see [20, 28] for details) and their role is to ensure that
the full refined index Ω(γ, z) is a symmetric Laurent polynomial in y. The
function gC({γi}, z, y), known as the Coulomb index, is the only quantity on
the r.h.s. of (4.1) which depends on the moduli z. It is defined as the equiv-
ariant index of the Dirac operator on Mn({γi}), computed by localization
with respect to rotations around a fixed axis. The fixed points of the action
of J3 onMn({γi}) are collinear solutions to the equations (2.6), classified by
the order of the centers along the axis. Equivalently, they are critical points
of the potential23

(4.3) V ({xi}) =
∑
i<j

γij sgn(xi − xj) log |xi − xj | −
n∑
i=1

ci xi .

The sum over fixed points may be represented as a sum over all permutations
σ of {1, 2, . . . n},

(4.4) gC({γi}, z, y) =
(−1)n−1+

∑
i<j γij

(y − y−1)n−1

∑
σ∈Sn

FC,n({γσ(i)}, z) y
∑
i<j γσ(i)σ(j) ,

where the ‘partial Coulomb index’ FC,n({γi}, z) ∈ Z counts the critical points
for a fixed ordering x1 < x2 · · · < xn along the axis, weighted by the sign of
the Hessian of V after removing the trivial translational zero-mode. Under
the reversal symmetry i 7→ n+ 1− i, FC,n picks up a sign (−1)n−1, so that
(4.4) is invariant under y → 1/y.

While the computation of the one-dimensional solutions to (2.6) becomes
quickly impractical as n increases, it was shown in [20] that the partial tree
index FC,n can be efficiently evaluated by first rescaling γij by λγij unless

23It is worth noting that at the attractor point (3.6), the potential (4.3) be-
comes a sum of pairwise interactions, V ({xi}) = −

∑
i<j γijV (xj − xi) with V (x) =

sgn(x) log |x|+ x, which is attractive for x > 0 and repulsive for x < 0.
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|i− j| = 1, and then dialing λ from 0 (where only nearest neighbor interac-
tions are kept) to λ = 1 (the configuration of interest).24 The value at λ = 0

turns out to coincide with the function F̃
(0)
n ({γi, ci}) already introduced in

(2.62).25 In the absence of scaling solutions (or for quivers without loops),
one can show that no jumps occur as λ increases from 0 to 1, so that FC,n
is still given by its value at λ = 0,

(4.5) FC,n({γi}, z) = F̃ (0)
n ({γi, ci}).

In the presence of scaling solutions, the partial Coulomb index FC,n may
jump several times as the deformation parameter λ is varied from 0
to 1. These jumps occur whenever the parameter λ = λk,` is such that∑

i,j∈A γij(λk,`) = 0 for some subset A = {k, k + 1, . . . `} of {1, . . . , n}, cor-
responding to all consecutive centers in A colliding at one point. FC,n is then
given by a sum over all possible jumps,

FC,n({γi}, z) = F̃ (0)
n ({γi, ci})(4.6)

+
∑

1≤k<`≤n

1

2

sgn

 ∑
k≤i<j≤`

γij

− sgn

(
`−1∑
i=k

γi,i+1

)
×G`−k+1(γ′k, . . . , γ

′
`)

× FC,n+k−`({γ′1, . . . γ′k−1, γ
′
k+···+`, γ

′
`+1, . . . , γ

′
n}, z),

where γ′k are charge vectors with deformed inner product 〈γ′i, γ′j〉 = γij(λk,l),
and Gn({γi}) is the Coulomb index for colliding solutions. The latter van-
ishes for n < 3 and satisfies its own recursion relation (see [20, §2.3.2]),

24This prescription assumes that the initial matrix γij is generic, in the sense
explained in footnote 11 on page 643. For non-generic cases, one should first perturb
the γij ’s such that they become generic, apply the previous prescription and then
take the limit where the relevant γij ’s become zero. The value of the individual
partial Coulomb indices FC,n may depend on the choice of deformation, but after
summing over all permutations, the limit is independent of that choice [20].

25In order to match this result with [20, (2.9)], observe that Θ(xy)(−1)Θ(−x) =
1
2 (sgn(x) + sgn(y)), where Θ(x) is the Heaviside step function, and x, y are non-
zero real numbers. Similarly, to make contact between (4.6) below and [20, (2.32)],
note that

∑
k≤i,j≤`
i≤j−2

γij and
∑
k≤i<j≤` γij necessarily have the same sign whenever∑

k≤i<j≤` γij ×
∑`−1
i=k γi,i+1 < 0.
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initialized with the result for n = 3,

(4.7) G3(γ1, γ2, γ3) =
1

2

(
sgnγ12 + sgnγ23

)
.

Using this procedure, we can compute the Coulomb index gC({γi}, z, y)
for an arbitrary collection of non-zero vectors γi and generic stability pa-
rameters ci (collectively denoted by z). When the charges γi are such that
no scaling solution is allowed, the result is the equivariant Dirac index of
the compact phase spaceMn({γi}, z) [18, 43], and is therefore a symmetric
Laurent polynomial in y with integer coefficients. In the presence of scaling
solutions however, the phase spaceMn is non-compact and the above defini-
tion of gC produces instead a rational function of y. While it might in princi-
ple be possible to construct a compactification ofMn and incorporate addi-
tional fixed points from boundary components in order to produce a Laurent
polynomial in y, the Coulomb branch formula uses the rational function gC

as defined above, but requires adjusting the functions Hm({βi,mi}, y) in
such a way that the full index Ω(γ, z) obtained via (4.1) is a symmetric
Laurent polynomial, provided the single-centered indices ΩS(γi) are. The
minimal modification hypothesis of [20] gives a unique prescription for com-
puting Hm, based on the assumption that the missing contributions from
the boundary of Mn carry the minimal possible angular momentum. Note
that this prescription does not take into account the condition of absence
of closed timelike curves, which is presumably irrelevant in the context of
quiver quantum mechanics, but needs to be checked by hand in more gen-
eral cases (see e.g. [18, §3.2] for an example where this condition makes an
important difference).

It follows from the results in [8] that the formula (4.1) is consistent
with the general wall-crossing formula of [2, 3]. In cases where none of the
decompositions γ =

∑
γi allow for scaling solutions, relevant for quivers with

no loops, all the factors Hm in (4.2) vanish, so the Coulomb branch formula
reduces to

(4.8) Ω(γ, z, y) =
∑

γ=
∑n
i=1 γi

gC({γi}, z, y)

|Aut{γi}|

n∏
i=1

ΩS(γi, y),

which closely resembles (2.16). Indeed, we shall see in §4.2 than in this
simplified case, the single-centered indices ΩS(γi) agree with the attractor
indices Ω∗(γi).

A different simplification occurs when γ is primitive and such that all
charge vectors γi appearing in each decomposition γ =

∑
γi are distinct and
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primitive. In this case, relevant for Abelian quivers, the Coulomb branch
formula (4.1) simplifies to

Ω(γ, z, y) =
∑

γ=
∑n
i=1 γi

gC({γi}, z, y)(4.9)

×
n∏
i=1

ΩS(γi, y) +
∑

∑mi
j=1 βj=γi

Hmi
({βj}, y)

mi∏
j=1

ΩS(βj , y)

 .

In this case, the rational functions Hm({βj}, y) are fixed by demanding that
the coefficient of the monomial

∏m
j=1 ΩS(βj , y) in Ω(γ, z, y) be a Laurent

polynomial in y. Requiring that Hm({βj}, y) are invariant under y → 1/y
and vanish at y =∞ fixes them uniquely [18]. The reason why (4.9) differs
from (2.16) is that the attractor indices Ω∗(γi) include contributions both
from single-centered black holes and scaling solutions.

4.2. Quivers without loops

In this subsection, we shall show that for quivers without loops, such that
no scaling solutions are allowed, the tree index gtr and Coulomb index gC

coincide for any set of charges and moduli. This will turn out to imply that
the attractor and single-centered indices, Ω∗(γi) and ΩS(γi), also coincide
for all γi.

In order to show the equality gtr = gC, the main observation is that the
corresponding partial indices Ftr,n and FC,n are locally constant functions
of the parameters ci whose only discontinuities lie on the walls of marginal
stability where

∑k
i=1 ci = 0, where they both jump according to the primitive

wall-crossing formula. Therefore, it suffices to show that they coincide at one
value of the c′is.

A convenient choice is to take the attractor point (3.6) which in our
case is c∗i (γ) = βni. It is an immediate consequence of the iterative equation
(2.59) that at this point the partial tree index Ftr,n vanishes. On the other

hand, the partial Coulomb index (4.5) reduces to the function F̃
(?)
n ({γi})

defined in (2.63). We shall now show that this function vanishes whenever
γij is the adjacency matrix of a generic n-node quiver without loops. The
result for non-generic matrices γij then follows by continuity.

First, note that there exists n! different choices of signs for γij (out of
2n(n−1)/2) such that the quiver has no oriented loops, and all those choices
are related by permutations (indeed, any generic quiver defines a total order
on [1, n]). For each of these choices of signs, there exists a unique source s
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and sink t. Consider the restricted quiver obtained by keeping only nearest
neighbor interactions. The restricted quiver has a set of sources {si} and
sinks {ti} which lie either at the endpoints v1, vr+1, or at the points vr
where γr,r+1 changes sign. Obviously, s ∈ {si} and t ∈ {ti}. Now, assume

that F̃
(?)
n ({γi}) was non-zero. This means that for each r in [1, n− 1], the

sign of γr,r+1 is the same as the sign of Γnr. Thus, whenever γr,r+1 changes
sign, so does Γnr. The key observation is the following: whenever Γnr and
Γn,r+1 have opposite sign, then the sign of Γnr is opposite to the sign of
Γn,r+1 − Γnr, which is equal to

∑
i γi,r+1. Thus, if vr+1 is a sink of the

restricted quiver distinct from the endpoints, i.e. γr,r+1 > 0, γr+1,r+2 < 0,
then Γnr > 0, hence

∑
i γi,r+1 < 0, which shows that vr+1 cannot be a sink

of the full quiver. Similarly, if vr+1 is a source of the restricted quiver distinct
from the endpoints, then it cannot be a source of the full quiver. Thus, the
source and sink of the full quiver must be the endpoints. But again, v1

cannot be the source nor the sink, since γ12 and Γn1 have the same sign.
Similarly, vn+1 cannot be the source nor the sink. Thus, we have reached a

contradiction with the hypothesis that F̃
(?)
n ({γi}) was non-zero. Therefore,

the partial Coulomb index at the attractor point vanishes for any generic
quiver without oriented loops. As a result, we conclude that Ftr,n = FC,n,
and therefore gtr = gC. Since both gtr and gC are continuous functions of γij
(for generic, fixed values of ci), this equality continues to hold even if γij is
not generic.

Having established that gtr = gC, we can now apply the Coulomb branch
formula (4.8) for z equal to zγ . Since gtr (and therefore gC) vanishes at that
point whenever n ≥ 2, it immediately follows that Ω∗(γ) = ΩS(γ) for any
dimension vector. The flow tree formula (2.21) is therefore equivalent to
the Coulomb branch formula (4.8), which is known to agree with Reineke’s
formula for quivers without loops provided ΩS(γ) = 1 whenever γ is one of
the basis vectors α1, . . . , αK and zero otherwise [20]. We conclude that the
flow tree formula holds for quivers without loops.

4.3. Abelian quivers with loops

Let us now allow for loops in the quiver diagram, and hence for the presence
of scaling solutions, restricting to the Abelian case. This corresponds to the
inclusion of the second term in the partial Coulomb index (4.6) and, given
the results of the previous subsection, of the second term in the second
representation of the partial tree index given in (2.64). Besides, we have
to take into account the contributions to the BPS index generated by the
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functions Hm({βj}, y) and captured by the formula (4.9). Unfortunately, we
have not yet been able to find general relation between the attractor and
single-centered indices following from equating the two expansions. Below
we provide explicit results for two particular cases: n = 3 and n = 4.

4.3.1. Three centers. For n = 3, the partial tree index can be found in
(C.4), whereas the partial Coulomb index is given in (C.6). In the latter
formula, the term in the first line is the result for a quiver with nearest-
neighbor interactions, while the second line arises from contributions of
scaling solutions when the parameter λ is changed from λ = 0 to λ = 1.
It is easy to check that the second line vanishes unless γ12, γ23, γ31 all
have the same sign (so that the quiver has an oriented loop) and satisfy
|γ12|, |γ23| < |γ31| < |γ12|+ |γ23|, in which case it equals −1. The latter con-
dition implies that |γ12|, |γ23|, |γ31| satisfy the triangular inequalities (so that
scaling solutions are allowed), the restriction that |γ31| be the largest of all
three being due to the special choice of ordering.

The matching of the first terms in (C.4) and (C.6) is just the statement
(4.5). The second terms are however different. Using the sign identity (A.1)
repeatedly, one can rewrite the difference between the two partial indices as

FC,3 − Ftr,3 =
1

4

(
sgn(γ12 + γ23 + γ13)− sgn(γ1+2,3)

)
(4.10)

×
(
sgn(γ12 + γ23 + γ13)− sgn(γ1,2+3)

)
,

which is moduli-independent and vanishes unless γ12, γ23, γ31 all have the
same sign and satisfy |γ12|, |γ23| < |γ31| < |γ12|+ |γ23|. The moduli-
independence is a consequence of the fact that FC,3 and Ftr,3 have the same
discontinuities across the walls of marginal stability c1 = 0 and c3 = 0. Be-
cause Ftr,3 vanishes at the attractor point, the conditions for non-vanishing
of the difference are, of course, the same which ensure the non-vanishing of
FC,3 itself.

The difference between the Coulomb and tree indices, gC and gtr, can
be obtained by summing (4.10) over permutations. If, for example, γ12 >
γ23 > γ31 > 0, which is a configuration allowing scaling solutions, then the
difference reads

(4.11) gC − gtr = (−1)γ12+γ23+γ31 y
γ23+γ31−γ12 + y−γ23−γ31+γ12

(y − 1/y)2
.

Note that in this case gC is a rational function with a double pole at y = 1,
while gtr is always a symmetric Laurent polynomial in y.
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We can now relate the single-centered invariant ΩS(γ) to the attractor
index Ω∗(γ). For this purpose, we compare the Coulomb branch formula
(4.9) with (2.21) for γ = γ1 + γ2 + γ3. Using the fact that Ω∗(γi) = ΩS(γi)
for basis vectors, Ω∗(γi+j) = ΩS(γi+j) for sums of two basis vectors, and
gC(γL, γR) = gtr(γL, γR) for any pairs of vectors γL, γR, we conclude that

Ω∗(γ) = ΩS(γ) +
[
gC(γ1, γ2, γ3; z)(4.12)

− gtr(γ1, γ2, γ3; z) +H3(γ1, γ2, γ3)
] 3∏
i=1

ΩS(γi).

Applying the minimal modification hypothesis to determine H3(γ1, γ2, γ3)
[20], for the case considered in (4.11) we arrive at

Ω∗(γ) = ΩS(γ)+κ
(

1
2 (γ23 + γ31 − γ12 + ε)

)
(4.13)

× κ
(

1
2 (γ23 + γ31 − γ12 − ε)

) 3∏
i=1

ΩS(γi),

where ε is the parity (0 or 1) of γ12 + γ23 + γ31. By construction, the differ-
ence is a symmetric Laurent polynomial.

4.3.2. Four centers. For n = 4, the two partial indices are given in (C.5)
and (C.10). While the first terms in each expression coincide, the remaining
terms are quite different, and the moduli-dependence does not cancel in
their difference Ftr,4 − FC,4. This is in fact consistent with the structure of
the two expansions of the BPS index. Indeed, comparing (4.9) and (2.21)
and taking into account (4.12), one finds

Ω∗(γ) = ΩS(γ)+
[
gC(γ1, γ2, γ3, γ4; z)−gtr(γ1, γ2, γ3, γ4; z)+H4(γ1, γ2, γ3, γ4)

(4.14)

+
(
gtr(γ1, γ2+3+4; z)

(
gtr(γ2, γ3, γ4; z)− gC(γ2, γ3, γ4; z)

)
+ perm

)] 4∏
i=1

ΩS(γi).

Thus, the moduli-dependence of the difference of the two indices at n = 4
must be non-trivial, so as to cancel the moduli-dependence in the second
line. To check that this is indeed the case, note that the relation (4.14) can
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be rewritten as

Ω∗(γ) = ΩS(γ) +

[
H4(γ1, γ2, γ3, γ4)(4.15)

− 3 (−1)
∑
i<j γij

(y − y−1)3
Sym

{
D4({γi}) y

∑
i<j γij

}] 4∏
i=1

ΩS(γi),

where

D4 = 8
[
FC,4(γ1, γ2, γ3, γ4)− Ftr,4(γ1, γ2, γ3, γ4)(4.16)

+ Ftr,2(γ1, γ2+3+4)
(
Ftr,3(γ2, γ3, γ4)− FC,3(γ2, γ3, γ4)

)
+ Ftr,2(γ1+2+3, γ4)

(
Ftr,3(γ1, γ2, γ3)− FC,3(γ1, γ2, γ3)

)]
.

Evaluating this combination using in particular (4.10), one arrives at

D4 = sgn

∑
i<j

γij

[(sgn(γ12) + sgn(γ23)
)
sgn(γ12 + γ23 + γ13)(4.17)

+ (sgnγ23 + sgnγ34) sgn(γ23 + γ24 + γ34)

+ sgn(γ12)sgn(γ34)− 1
]

− sgn (γ12 + γ23 + γ34)
[
sgn(γ12)sgn(γ23) + sgn(γ23)sgn(γ34)

+ sgn(γ12)sgn(γ34) + 1
]

−
(
sgn(β41) + sgn(γ12)

)(
sgn(β4,1+2) + sgn(γ23)

)
×
(
sgn(β44)− sgn(γ34)

)
− sgn(β41)

(
sgn(γ23 + γ34 + γ24)− sgn(γ23)

)
×
(
sgn(γ23 + γ34 + γ24)− sgn(γ34)

)
− sgn(β44)

(
sgn(γ12 + γ23 + γ13)− sgn(γ12)

)
×
(
sgn(γ12 + γ23 + γ13)− sgn(γ23)

)
.

As expected, the result is moduli-independent, as required for the consis-
tency of (4.15). Moreover, D4 vanishes if γij is the adjacency matrix of a
generic quiver without loops. Unfortunately, the result (4.17) does not im-
mediately suggest a generalization to n ≥ 5.
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Appendix A. Sign identities

In this appendix we collect several sign identities which are used in the main
text. The basic identity, which is used in most manipulations, is

(A.1) (sgn(x1)− sgn(x2)) sgn(x1 − x2) = 1− sgn(x1) sgn(x2).

Its validity follows from that its two sides are locally constant functions with
the same discontinuities and having the same value for, say, positive xi.

Next, let us prove the following identity26

(A.2)

n∑
j=1

n∏
i=1

i6=j

(sgn(xi − xj) + yi) =
1

2

n∏
i=1

(yi + 1)− 1

2

n∏
i=1

(yi − 1) .

We proceed by induction. For n = 2 it trivially holds. Assuming that it holds
for n− 1, we find the smallest xi and order the variables so that this is xn.
This allows to write

n∑
j=1

n∏
i=1

i6=j

(sgn(xi − xj) + yi)(A.3)

= (yn − 1)

n−1∑
j=1

n−1∏
i=1

i6=j

(sgn(xi − xj) + yi) +

n−1∏
i=1

(sgn(xi − xn) + yi)

=
1

2
(yn − 1)

[
n−1∏
i=1

(yi + 1)−
n−1∏
i=1

(yi − 1)

]
+

n−1∏
i=1

(yi + 1)

=
1

2

n∏
i=1

(yi + 1)− 1

2

n∏
i=1

(yi − 1) ,

where at the second step we have used the induction hypothesis.

26If yi = sgn(zi), the r.h.s. can be rewritten as
∏n−1
i=1 (sgn(zi) + sgn(zi+1)).
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The identity (A.2) can be used to derive another one. Let us choose i, j
in (A.2) to run from 0 to n and take x0 = y0 = 0. Then the identity gives

−
n∑
j=1

sgn(xj)

n∏
i=1

i6=j

(sgn(xi − xj) + yi) +

n∏
i=1

(sgn(xi) + yi)(A.4)

=
1

2

n∏
i=1

(yi + 1) +
1

2

n∏
i=1

(yi − 1) .

Taking the sum of this new relation with (A.2) and rearranging the terms,
one then obtains

n∑
i=1

(sgn(xi)− 1)

n∏
i=1

i6=j

(sgn(xi − xj) + yi)(A.5)

=

n∏
i=1

(sgn(xi) + yi)−
n∏
i=1

(1 + yi) .

Finally, a useful particular case of the above identities is obtained by
setting yi = 0. In this way, one finds

n∑
j=1

n∏
i=1

i6=j

sgn(xi − xj) = ε(n),(A.6)

n∑
j=1

(sgn(xj)− 1)

n∏
i=1

i6=j

sgn(xi − xj) =

n∏
i=1

sgn(xi)− 1,(A.7)

where ε(n) is the parity of n, i.e. it equals 1 if n is odd and 0 if n is even.

Appendix B. Flow vectors and cancellation of fake
discontinuities

Given the results of Section 2.6, it is natural to attach to each vertex v ∈ VT
on the flow tree a `-dimensional vector

(B.1) A (`)
v = (a1, . . . , a`) ∈ R`,

where `− 2 is the depth of the vertex and the coefficients ai are constructed
from charges αi, attached to the branch of the tree joining the vertex with the
root (see Fig. 5), as in (2.54). The arguments of the sign functions appearing
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in the stability conditions will then reduce to inner products of A
(`)
v with

the ‘central charge vector’ Z (`) = (cα1
, . . . , cα`) where cα = Im

[
ZαZ̄γ

]
(cf.

(2.26)). However, this construction must be slightly modified in order to
take into account that the coefficients ai are defined only up to an overall
shift. Moreover, it is useful to allow for a non-trivial metric gij(`) on R`,
depending on the physical context,27 so that the inner product takes the
form (A ,A ′) ≡

∑`
i,j g

ij
(`)AiA ′j . The results presented here are completely

independent of this metric, so for the purposes of the present analysis we
could take gij = δij .

Thus, we define the flow vector assigned to a vertex v ∈ VT as the projec-

tion of A
(`)
v on the hyperplane orthogonal to the unity vector 1 = (1, . . . , 1),

(B.2) C (`)
v ≡ A

(`)
v⊥1 = A (`)

v − (A (`),1)

(1, 1)
1,

or in terms of components

(B.3) C
(`)
vi = g−1

(`)

∑̀
j=1

(ai − aj)gj(`),

where gi(`) =
∑

j g
ij
(`) and g(`) =

∑
i g
i
(`) = (1,1). We also modify the defini-

tion of the central charge vector Z (`) taking its components to be

(B.4) Z
(`)
i =

∑̀
j=1

(g−1
(`) )ij cαj .

It is then easy to see that by virtue of (1,Z (`)) = 0 we have

(B.5) sgn(C (`)
v ,Z (`)) = sgn(A (`)

v ,Z (`)) = −sgn Im
(
ZγL(v)

Z̄γR(v)
(zp(v))

)
,

i.e. the flow vectors correctly encode the moduli dependent signs entering
in (2.23).

Note that if one of the charges, say αi0 , can be decomposed into a sum
αi0 =

∑r+1
s=1 α

′
s (for instance, α′s can be the charges assigned to the leaves of

the tree), then the above construction has a natural embedding into R`+r.

27For instance, for the D4-D2-D0 brane system on a Calabi-Yau threefold, the
relevant metric is gij = κabcp

a
i t
btc δij where κabc are the triple intersection numbers,

pai is the D4-component of the electromagnetic charge αi, and ta are the Kähler
moduli of the Calabi-Yau.
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To display it, let us introduce two operations: embedding and contraction.
For arbitrary vectors V (`) and U (`+r), they are defined by V (`+r) ≡ ιi0,rV (`)

and U (`) ≡ ςi0,rU (`+r) where

(B.6)

V
(`+r)
i = V

(`)
i , i < i0, U

(`)
i = U

(`+r)
i , i < i0,

V
(`+r)
i = V

(`)
i0
, i0 ≤ i ≤ i0 + r, U

(`)
i0

=
∑i+r

i=i0
U

(`+r)
i ,

V
(`+r)
i = V

(`)
i−r, i > i0 + r, U

(`)
i = U

(`+r)
i+r , i > i0,

and have also obvious extension to matrices. Then, if we require that g(`) =

ςi0,rg(`+r) and take the `+ r-dimensional central charge vector Z (`+r) to be
defined as above with the set of charges {αi} replaced by {α1, . . . , αi0−1,

α′1, . . . , α
′
r+1, αi0+1 . . . , α`}, it is easy to check that the vector C

(`+r)
v ≡

ιi0,rC
(`)
v satisfies (C

(`+r)
v ,Z (`+r)) = (C

(`)
v ,Z (`)). Thus, both constructions

are equally suitable for describing the stability conditions of the flow tree.
This freedom allows to avoid the inconvenience of working with vectors of

different size. To this end, it is sufficient to expand all charges αi in the basis

of charges assigned to the leaves of the tree and embed all vectors C
(`)
v into

Rn using the above prescription. In practice, however, this is not necessary. In
this appendix we will work simultaneously with at most two vectors when we
define their mutual orthogonal projections. In such case the relevant branch
is shown in Fig. B1 and in the notations of the picture it is enough to embed
the vectors corresponding to vertices v and v′ in the minimal common space
R`+r. Moreover, if r = 0 (i.e. v′ belongs to the branch connecting v with
the root), only one of the vectors requires the embedding. Below we always
choose the flow vectors in the minimal possible representation and drop the
dimension label.

The flow vectors turn out to be very handy for showing the cancellation
of discontinuities across ‘fake walls’ in the sum over flow trees. Moreover,
very similar vectors play a crucial role in the study of convergence and mod-
ular properties of indefinite theta series defining the BPS partition function
for D4-D2-D0 black holes [41, 47, 48]. Before turning to the first of these
topics however, we state some important properties satisfied by the flow
vectors, referring to Subsection B.1 for the proofs.

Proposition 3. If v is not the root vertex, the vector Cv has the form

(B.7) Cv =

 ∏
v′∈℘(v)

γL(v′)R(v′)

−1

C̃v,
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Figure B1: The relevant branch of an attractor flow tree connecting the root
and two vertices.

where ℘(v) is the set of vertices on the path from v towards the root (in-
cluding the root), and C̃v is a vector which is cyclically symmetric in γL(v),
γR(v) and γR(p(v)) (assuming that v belongs to the left branch of p(v), i.e.
that γL(p(v)) = γL(v) + γR(v)).

Next, let us introduce the projection of Cv′ on the subspace orthogonal
to Cv

(B.8) Cv′⊥v = Cv′ −
(Cv′ ,Cv)

(Cv,Cv)
Cv.

Such projections naturally appear when one evaluates the discontinuities of
BPS indices across walls determined by equations (Cv,Z ) = 0. It turns out
that the projections also possess certain symmetry properties summarized
in the following proposition:

Proposition 4. Depending on the relative position of vertices v and v′ on
the tree, one has four different situations:

1) If v is the root vertex of an attractor flow tree T and v′ belongs to
its left branch, then Cv′⊥v coincides with C T1

v′ which is constructed for
the tree T1 obtained from T by removing the root and its right branch.
Equivalently,

(B.9) sgn(C T1

v′ ,Z ) = −sgn Im
(
ZγL(v)

Z̄γR(v)
(zp(p(v)))

)
,
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Figure B2: Three attractor flow trees relevant for the case 2 of the Propo-
sition. Here the circles denote the branches of the flow tree attached to
the corresponding vertices, whereas the dots indicate that there can be any
number of vertices with the corresponding branches.

i.e. the attractor flow is undone by one step and the central charges are
evaluated at the moduli corresponding to the parent to parent vertex.

2) If v is not the root vertex and is either ancestor of v′, or a child of
one of its ancestors, then Cv′⊥v is the same for the three trees shown
in Fig. B2.

3) If v is a descendant of v′, then

(B.10) Cv′⊥v = γL(v′)R(v′) C̃v′⊥v,

where C̃v′⊥v has the same symmetry as C̃v, i.e. it is cyclically symmet-
ric in γL(v), γR(v) and γR(p(v)).

4) If the pair v, v′ does not correspond to any of the previous cases, i.e.
a path from v to v′ goes at least 2 steps up and some steps down, then
Cv′⊥v is cyclically symmetric in γL(v), γR(v) and γR(p(v)).

The first part of Proposition 4 immediately allows to see the consistency
of the attractor flows with the primitive wall-crossing formula (2.24). Indeed,
the discontinuity of the weight ∆(T ) (2.56) due to the sign factor arising at
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Figure B3: Three trees whose contributions are discontinuous on the same
fake wall, but which conspire to give a smooth contribution to the BPS
index.

the root vertex v0 evaluates to

(B.11) discv0∆(T ) = ∆v0(TL;T ) ∆v0(TR;T ),

where TL and TR are the two branches of the tree T growing from the root
vertex and we defined

(B.12) ∆v(T
′;T ) =

∏
v′∈T ′0

1

2

[
sgn(C T

v′⊥v,Z )− sgn(γL(v′)R(v′))
]

for a subtree T ′ ⊂ T not containing v. Here we indicated explicitly with
an upper index that the vector Cv′⊥v is defined for the tree T . But due to
Proposition 4 (case 1), for v = v0 it coincides with the vector Cv′ defined for
either TL or TR so that ∆v(TL,R;T ) = ∆(TL,R). Thus, one obtains

(B.13) discv0∆(T ) = ∆(TL) ∆(TR).

After multiplying by κ(T ) = −κ(γL(v0)R(v0))κ(TL)κ(TR), by the product of

the attractor indices
∏n
i=1 Ω∗(γi), and summing over all trees, this is indeed

in agreement with the primitive wall crossing formula.
While only the first part of Proposition 4 entered this proof, the remain-

ing three parts ensure the cancelation of the fake discontinuities appearing
due to the sign factors in (2.23) attached to non-root vertices. To see this,
note that due to Proposition 3, the same fake wall arises for three differ-
ent trees whose parts containing vertex v are shown in Fig. B3. They are
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obtained by cyclic permutations of the subtrees T1, T2 and T3. Their discon-
tinuities at the fake wall are given by

discv
[
κ(T )∆(T )

]
(B.14)

= κ(T ) ∆v(Tv;T )

3∏
i=1

∆v(Ti;T )
∏

v′∈℘(v)

sgn(γL(v′)R(v′)),

where the factors ∆v have been defined in (B.12), Tv = T \ (T1 ∪ T2 ∪ T3 ∪
{v}) is the part of T not shown in Fig. B3, and the last factor comes from
(B.7). Case 2 of the Proposition 4 ensures that the factors ∆v(Ti;T ) are the
same for all three choices of T , whereas cases 3 and 4 tell us the same about

(B.15) ∆v(Tv;T )
∏

v′∈℘(v)

sgn(γL(v′)R(v′)).

Finally, one finds that

(B.16) κ(T ) = κ(γL(v)R(v))κ(γL(p(v))R(p(v)))

[
κ(Tv)

κ(γL(p(v))R(p(v)))

3∏
i=1

κ(Ti)

]
,

where the factor in the square brackets is the same for all trees shown in
Fig. B3. Thus, only the first two κ-factors in (B.16) differ the three disconti-
nuities. It remains to note that in the notations of Fig. B3, for the first tree,
γL(v)R(v) = α12 and γL(p(v))R(p(v)) = α1+2,3, whereas for other trees they are
given by cyclic permutations. Then the cancellation of fake discontinuities
follows from the identity (2.39).

B.1. Proof of the symmetry properties of the flow vectors

Now we fill the gap and prove the symmetry properties of the flow vectors
and their orthogonal projections stated above. We concentrate only on the
relevant branch of the tree and label the charges as in Fig. B1. The flow
vectors are constructed from the coefficients ai (2.54) as explained in the
beginning of this section. These coefficients satisfy an important symmetry
property under permutations of (α1, α2, α3), which will be the starting point
of our analysis.



i
i

“2-Pioline” — 2019/11/26 — 17:06 — page 684 — #58 i
i

i
i

i
i

684 S. Alexandrov and B. Pioline

Lemma 1. Under a permutation σ of α1, α2, α3, the coefficients ai trans-
form as

(B.17) β33ai 7→ εσβ33(aσ(i) − aσ(1)),

where εσ is the parity of the permutation.

Proof. Let us use the freedom of shifting all ai by the same constant and
define

(B.18) a′i = α23 + β33ai,

where, as usual, αij = 〈αi, αj〉. Then

(B.19) a′1 = α23, a′2 = α31, a′3 = α12

are permuted under permutations of α1, α2, α3 with the sign given by εσ,
while a′i≥4 are invariant up to the same sign, as can be shown inductively
from the recursion

(B.20) βiia
′
i = −

i−1∑
j=4

βija
′
j − γ23βi1 − γ31βi2 − γ12βi3 (i ≥ 4)

and the fact that βij is invariant under cyclic permutations of α1, α2, α3

whenever i, j ≥ 4. Returning to the original coefficients ai, we arrive at the
transformation (B.17). �

Using this Lemma, it is straightforward to prove Proposition 3.

Proof of Proposition 3. In this case it is sufficient to consider only the branch
of the tree connecting vertex v to the root. Our aim is to prove that β33Cvi is
mapped by a cyclic permutation σ to β33Cvσ(i).

28 This can be done using the
explicit expression (B.3) for the components of the vector Cv and Lemma 1.
Indeed, the transformation law (B.17) implies (for a cyclic permutation

28We multiply the argument of the sign by β33 only, whereas in (B.7) the factor∏n
j=3 βjj is extracted. But βjj for j > 3 depend on the first three charges only in the

combination α1 + α2 + α3 and therefore are cyclically symmetric in these charges.
Thus, they are irrelevant for the present discussion.
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εσ = 1)

β33Cvi 7→ β33g
−1
∑̀
j=1

(aσ(i) − aσ(j))g
σ(j)(B.21)

= β33g
−1
∑̀
j=1

(aσ(i) − aj)gj = β33Cvσ(i),

which is the required statement. �

In the following we will also need the coefficients of C
(`)
vm+1 ≡ ι1,mC

(`−m)
vm+1 ,

which is, in the notations of Fig. 5, the flow vector assigned to vertex vm+1

and embedded into R`, the habitat of the flow vector for v1. From (B.6) it
follows that

(B.22) C
(`)
vm+1,i

= g−1
∑̀
j=1

(
a

(m)
i − a(m)

j

)
gj ,

where the coefficients a
(m)
i are obtained by the following substitution

a
(m)
i = 0, i ≤ m+ 1,

a
(m)
i = ai−m|α1→α1+···+αm+1

αj→αj+m, j≥2

, i > m+ 1 .
(B.23)

Note that under this substitution, βij → βi+m,j+m for j > m. For m = 1,
only such βij appear in the expression for ai (2.54). Then one has the fol-
lowing

Lemma 2. Under a permutation σ of α1, α2, α3, the coefficients a
(1)
i trans-

form as

(B.24) a
(1)
i 7→ Aσ

(
a

(1)
σ(i) − a

(1)
σ(1)

)
+A(1)

σ

(
aσ(i) − aσ(1)

)
,

where

Aσ = εσ
(
aσ(1) − aσ(2)

)
=
β3σ(3)

β33
,

A(1)
σ = εσ

(
a

(1)
σ(2) − a

(1)
σ(1)

)
.

(B.25)
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Proof. The check of the transformation for i = 1, 2, 3 is straightforward. For
i ≥ 4 we use the recursive formula

(B.26) a
(1)
i = −

i−1∑
j=3

βij
βii

a
(1)
j .

Proceeding by induction and noticing that the sum in (B.26) can be extended
to start from j = 1, one obtains

a
(1)
i 7→ −

i−1∑
j=1

βiσ(j)

βii

(
Aσ

(
a

(1)
σ(j) − a

(1)
σ(1)

)
+A(1)

σ

(
aσ(j) − aσ(1)

))
(B.27)

= Aσ

(
a

(1)
σ(i) − a

(1)
σ(1)

)
+A(1)

σ

(
aσ(i) − aσ(1)

)
,

where we changed the summation variable j → σ−1(j) and used the property∑i
j=1 βij = 0 as well as the two recursion relations (2.52), (B.26). �

These shifted coefficients are useful, in particular, to make explicit the
properties of ai under the exchange of αm+2 and αm+3 for m ≥ 1. Indeed,
whereas for i < m+ 2, ai are independent of these charges, for i > m+ 2
we can write

(B.28) ai = −am+2a
(m)
i + b

(m)
i , i > m+ 2,

where b
(m)
i are defined by the recursion relation (cf. (2.52))

(B.29) b
(m)
i = −

m+1∑
j=2

βij
βii

aj −
i−1∑

j=m+3

βij
βii

b
(m)
j .

It is immediate to see that

(B.30) b
(m)
i = −b(m)

m+3a
(m+1)
i + c

(m)
i , i > m+ 3,

where

(B.31) b
(m)
m+3 = −

m+1∑
j=2

βm+3,j

βm+3,m+3
aj ,
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whereas c
(m)
i , defined by

(B.32) c
(m)
i = −

m+1∑
j=2

βij
βii

aj −
i−1∑

j=m+4

βij
βii

c
(m)
j ,

are invariant under the exchange of αm+2 and αm+3.
Let us also introduce

(B.33) d
(m)
ij = aia

(m)
j − aja(m)

i .

Using (B.28), one finds

(B.34) d
(m)
ij =


0, i, j < m+ 2,

aia
(m)
j , i < m+ 2, j ≥ m+ 2,

b
(m)
j , i = m+ 2, j > m+ 2,

b
(m)
i a

(m)
j − b(m)

j a
(m)
i , i, j > m+ 2.

Furthermore, using (B.30), one obtains

(B.35) d
(m)
ij =



b
(m)
m+3, i = m+ 2, j = m+ 3,

−b(m)
m+3a

(m+1)
j + c

(m)
j , i = m+ 2, j > m+ 3,

b
(m)
m+3

(
a

(m)
j + a

(m)
m+3a

(m+1)
j

)
− c(m)

j a
(m)
m+3,

i = m+ 3, j > m+ 3,

b
(m)
m+3

(
a

(m+1)
j a

(m)
i − a(m+1)

i a
(m)
j

)
+ c

(m)
i a

(m)
j − c(m)

j a
(m)
i ,

i, j > m+ 3.

Lemma 3. Under the exchange of αm+2 and αm+3, the coefficients d
(m)
ij

transform as

(B.36) βm+3,m+3d
(m)
ij 7→ −βm+3,m+3d

(m)
σ(i)σ(j).

Proof. It is straightforward to check this transformation using (B.34), (B.35),

(B.31), a
(m)
m+3 = βm+3,m+2

βm+3,m+3
, and that under this exchange a

(m)
i and a

(m+1)
i

transform as in (B.17) and (B.24), respectively, where one should replace

ai by a
(m)
i , a

(1)
i by a

(m+1)
i , and β33 by βm+3,m+3. �

Now we are ready to prove Proposition 4.
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Proof of case 1. If v is the root vertex, the components of Cv′ and Cv em-
bedded into R` are given by

Cvi = −g−1g`, i < `, Cv` = g−1g′,(B.37)

Cv′i = g−1
∑̀
j=1

(ai − aj)gj ,(B.38)

where g′ =
∑`−1

j=1 g
j and we label the charges as in Fig. 5 with v1 = v′ and

v`−1 = v. One finds for these vectors

C 2
v = g−1g′g`, C 2

v′ =
1

2g

∑̀
i,j=1

(ai − aj)2 gigj ,(B.39)

(Cv,Cv′) = g−1

`−1∑
i=1

∑̀
j=1

(aj − ai)gigj − g′
`−1∑
j=1

(aj − a`)gj
(B.40)

= g−1g`
∑̀
j=1

(a` − aj)gj .

This implies

Cv′⊥v,i = (gg′)−1
∑̀
j=1

(g′ai + g`a` − gaj)gj

= g′−1
`−1∑
j=1

(ai − aj)gj , i < `,

Cv′⊥v,` = 0.

(B.41)

This is precisely the vector corresponding to the tree obtained by removing
the root. This proves the first statement of the Proposition. �

Proof of case 2. Labeling the charges as in Fig. B2, the components of the

vectors C
(1)
v′ and C

(1)
v , corresponding to the first tree and embedded into

R`, can be found in (B.38) and (B.22), respectively. For these vectors, one
obtains
(B.42)

(C (1)
v )2 =

1

2g

∑̀
i,j=1

(
a

(m)
i − a(m)

j

)2
gigj , (C

(1)
v′ )2 =

1

2g

∑̀
i,j=1

(ai − aj)2 gigj ,
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(C (1)
v ,C

(1)
v′ ) =

1

2g

∑̀
i,j=1

(ai − aj)
(
a

(m)
i − a(m)

j

)
gigj .(B.43)

This implies

C
(1)
v′⊥v,i =

∑`
j,l=1(ai − aj)

(
a

(m)
i − a(m)

l

)(
a

(m)
j − a(m)

l

)
gjgl

1
2

∑`
j,l=1

(
a

(m)
j − a(m)

l

)2
gjgl

(B.44)

= g−1(C (1)
v )−2

∑̀
j,l=1

(
d

(m)
ij +

1

2
d

(m)
jl

)(
a

(m)
j − a(m)

l

)
gjgl,

where d
(m)
ij is defined in (B.33).

First, to show the equality of Cv′⊥v for the first two trees, we need to
show that the vector (B.44) is invariant under the exchange of αm+2 and

αm+3. Using that under this exchange a
(m)
i transform as in (B.17) where one

should replace ai by a
(m)
i and β33 by βm+3,m+3, whereas the transformation

of d
(m)
ij is given by Lemma 3 (see (B.36)), it is immediate to see that

(B.45) C
(1)
v′⊥v,i 7→ C

(2)
v′⊥v,i = C

(1)
v′⊥v,σ(i).

For the third tree, we need to consider the embedding ιm+2,1C
(`−1)
v′ . The

components of such vector are given by

(B.46) C
(3)
v′i = g−1

∑̀
j=1

(ãi − ãj)gj ,

where

ãi = ai, i < m+ 2,

ãm+2 = am+2|αm+2→αm+2+αm+3
,

ãi = ai−1|αm+2→αm+2+αm+3
αj→αj+1, j>m+2

, i > m+ 2,

(B.47)

On the other hand, the vector C
(3)
v , due to Proposition 3, coincides up to a

factor, which anyway cancels in the orthogonal projection, with C
(1)
v . Thus,
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now

C
(3)
v′⊥v,i = g−1(C (1)

v )−2
∑̀
j,l=1

(
d̃

(m)
ij +

1

2
d̃

(m)
jl

)(
a

(m)
j − a(m)

l

)
gjgl,(B.48)

where

(B.49) d̃
(m)
ij = ãia

(m)
j − ãja(m)

i .

Let us find the coefficients ãi explicitly. First, we have

(B.50) ãm+2 = ãm+3 = −
m+1∑
j=2

βm+3,j

βm+3,m+2 + βm+3,m+3
aj .

Note, in particular, the following property

(B.51) ãm+2

(
1 + a

(m)
m+3

)
= b

(m)
m+3,

where the quantity on the r.h.s. was defined in (B.31). Next, we have
(cf. (B.28))

(B.52) ãi = −ãm+2ã
(m)
i + b̃

(m)
i , i > m+ 3,

where the tilde means the same substitution as in (B.47). In particular, one
has

b̃
(m)
i = b

(m)
i−1|αm+2→αm+2+αm+3

αj→αj+1, j>m+2

(B.53)

=

−m+1∑
j=2

βi−1,j

βi−1,i−1
aj −

i−2∑
j=m+3

βi−1,j

βi−1,i−1
b
(m)
j


αm+2→αm+2+αm+3
αj→αj+1, j>m+2

=

−m+1∑
j=2

βij
βii

aj −
i−1∑

j=m+4

βij
βii

b̃
(m)
j

 .
The resulting recursive relation coincides with (B.32), which allows to con-
clude that

(B.54) b̃
(m)
i = c

(m)
i .
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Furthermore, using the linearity of a
(m)
i in βj,m+2 (which follows from the

linearity of ai in βj2), it is easy to see that

(B.55) ã
(m)
i = a

(m)
i−1|αm+2→αm+2+αm+3

αj→αj+1, j>m+2

= a
(m+1)
i + a

(m+1)
i |αm+3↔αm+2

.

The last term can be evaluated using Lemma 2, which gives

ã
(m)
i =

(
1 +

βm+3,m+2

βm+3,m+3

)
a

(m+1)
i + a

(m)
i(B.56)

=
(

1 + a
(m)
m+3

)
a

(m+1)
i + a

(m)
i .

As a result, one obtains

(B.57) ãi = c
(m)
i − b(m)

m+3a
(m+1)
i − ãm+2a

(m)
i .

Substituting this into the definition (B.49), it is straightforward to verify
that the result coincides with (B.34) and (B.35), i.e.

(B.58) d̃
(m)
ij = d

(m)
ij .

Then comparing (B.48) and (B.44), one concludes that the vectors describing
orthogonal projections for the two trees indeed coincide,

(B.59) C
(3)
v′⊥v,i = C

(1)
v′⊥v,i.

This completes the proof of the second statement of the Proposition. �

Proof of case 3. In this case, if v is not a child of v′, the statement is trivial.
Indeed, in this case Cv′ depends on γL(v), γR(v) and γR(p(v)) only through
the sum of these charges so that it is automatically cyclically symmetric.
Furthermore, by Proposition 3, Cv is also cyclically symmetric up to an
overall factor, but this factor cancels in the orthogonal projection Cv′⊥v. This
allows to conclude that Cv′⊥v is cyclically symmetric, and since γL(v′)R(v′)

also depends only on the sum of the permuted charges, the statement follows.
Thus, it remains to analyze the case when v is a child of v′. Let us label

the charges as in Fig. 5 with v1 = v and v2 = v′ so that the components of



i
i

“2-Pioline” — 2019/11/26 — 17:06 — page 692 — #66 i
i

i
i

i
i

692 S. Alexandrov and B. Pioline

the vectors Cv and Cv′ are given by

(B.60) Cvi = g−1
∑̀
j=1

(ai − aj)gj , Cv′i = g−1
∑̀
j=1

(
a

(1)
i − a

(1)
j

)
gj ,

where the coefficients a
(1)
i are defined in (B.23). For these vectors, one ob-

tains

C 2
v =

1

2g

∑̀
i,j=1

(ai − aj)2 gigj , C 2
v′ =

1

2g

∑̀
i,j=1

(
a

(1)
i − a

(1)
j

)2
gigj ,(B.61)

(Cv,Cv′) =
1

2g

∑̀
i,j=1

(
a

(1)
i − a

(1)
j

)
(ai − aj) gigj .(B.62)

This implies

(B.63) Cv′⊥v,i =

∑`
j,l=1

(
a

(1)
i − a

(1)
j

)
(ai − al)(aj − al) gjgl

1
2

∑`
j,l=1(aj − al)2 gjgl

.

Applying the transformations (B.17) and (B.24) for a cyclic permutation
(εσ = 1), one finds

β−1
33 Cv′⊥v,i 7→

1
1
2

∑`
j,l=1(aj − al)2 gjgl

×
∑̀
j,l=1

[
β−1

33

(
a

(1)
σ(i) − a

(1)
σ(j)

)
+A(1)

σ β−1
3σ(3)

(
aσ(i) − aσ(j)

)]
×
(
aσ(i) − aσ(l)

) (
aσ(j) − aσ(l)

)
gσ(j)gσ(l)

= β−1
33 Cv′⊥v,σ(i)

+A(1)
σ β−1

3σ(3)

∑`
j,l=1

(
aσ(i) − aj

) (
aσ(i) − al

)
(aj − al) gjgl

1
2

∑`
j,l=1(aj − al)2 gjgl

= β−1
33 Cv′⊥v,σ(i),(B.64)

where the last term vanishes due to symmetrization in j, l. This result proves
the third statement of the Proposition. �

Proof of case 4. The proof in this case is analogous to the previous one for
the case when v was not a child of v′. Indeed, in the present case again Cv′

depends on γL(v), γR(v) and γR(p(v)) only through their sum, whereas Cv is
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cyclically symmetric by Proposition 3 up to a factor which is canceled in the
projection. Thus, Cv′⊥v is indeed cyclically symmetric. �

Appendix C. Explicit expressions for partial indices

In this appendix we provide explicit expressions for the partial tree and
Coulomb indices up to n = 4. The results are conveniently formulated in
terms of

(C.1) Sk =

k∑
i=1

ci, Γkl =

k∑
i=1

l∑
j=1

γij , Γkl,m =

k∑
i=m+1

l∑
j=m+1

γij .

C.1. Tree index

Recombining the sign functions in the definition (2.58) and writing the result
in the same form as in (the second line of) (2.64), one obtains

Ftr,1 = 1,(C.2)

Ftr,2 =
1

2

[
sgn(c1) + sgn(γ12)

]
,(C.3)

Ftr,3 =
1

4

[(
sgn(S1) + sgn(γ12)

)(
sgn(S2) + sgn(γ23)

)
(C.4)

−
(
sgn(Γ31) + sgn(γ12)

)(
sgn(Γ32) + sgn(γ23)

)]
,

Ftr,4 =
1

8

[(
sgn(S1) + sgn(γ12)

)(
sgn(S2) + sgnγ23

)
(C.5)

×
(
sgn(S3) + sgnγ34

)
−
(
sgn(Γ41) + sgn(γ12)

)(
sgn(Γ42) + sgnγ23

)
×
(
sgn(Γ43) + sgnγ34

)
−
(
sgn(S1)− sgn(Γ41)

)(
sgn(Γ42,1) + sgn(γ23)

)
×
(
sgn(Γ43,1) + sgn(γ34)

)
−
(
sgn(S3)− sgn(Γ43)

)(
sgn(Γ31) + sgn(γ12)

)
×
(
sgn(Γ32) + sgn(γ23))

)]
.

It is easy to see that the structure of these expressions is exactly the same
as predicted by (2.64).
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C.2. Coulomb index

The partial Coulomb index FC,2 coincides with (C.3), whereas the result for
n = 3 follows from (4.6) and is given by [20, (2.57)]

FC,3 =
1

4

[(
sgn(S1) + sgn(γ12)

)(
sgn(S2) + sgn(γ23)

)
(C.6)

+
(
sgn(γ12) + sgn(γ23)

)
×
(
sgn(γ12 + γ23 + γ13)− sgn(γ12 + γ23)

)]
.

The expression for FC,4 is already much more complicated. It is found
to be [20, (2.61)]

FC,4 =
1

8

3∏
k=1

(
sgn(Sk) + sgn(γk,k+1)

)
(C.7)

+
1

2
G4(γ

(1)
1 , . . . , γ

(1)
4 )

sgn

∑
i<j

γij

− sgn(γ12 + γ23 + γ34)


+

1

4
G3(γ2, γ3, γ4)

(
sgn(γ23 + γ34 + γ24)− sgn(γ23 + γ34)

)
×
(
sgn (γ12 + λ2γ1,3+4) + sgn(S1)

)
+

1

4
G3(γ1, γ2, γ3)

(
sgn(γ12 + γ23 + γ13)− sgn(γ12 + γ23)

)
×
(
sgn (γ34 + λ3γ1+2,4)) + sgn(S3)

)
and is determined by the function [20, (2.59)]

G4 =
1

4

[(
sgn(γ12) + sgn(γ23)

)(
sgn(γ34)− sgn(γ1+2+3,4)

)
(C.8)

+
(
sgn(γ23) + sgn(γ34)

)(
sgn(γ23 + γ34 + γ24)− sgn(γ23)

)]
evaluated at γ

(1)
ij = γij if |i− j| < 2, and γ

(1)
ij = λ1γij if |i− j| ≥ 2, where

the parameters λ1,2,3 are given by29

(C.9) λ1 = −γ12 + γ23 + γ34

γ14 + γ24 + γ13
, λ2 = −γ23 + γ34

γ24
, λ3 = −γ12 + γ23

γ13
.

29The necessary condition that λi ∈ [0, 1] is ensured by the fact that a rational
number −a/b lies in ]0, 1[ iff a(a+ b) < 0 (in which case ab < 0 and b(a+ b) > 0)
and by non-vanishing of the sign factors in (C.7) multiplying the sign dependent
on given λi.
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Substituting G4({γ(1)
i }) into (C.7) and applying repeatedly the sign identity

(A.1), one can show that

FC,4 =
1

8

[
3∏

k=1

(
sgn(Sk) + sgn(γk,k+1)

)
+ sgn(S1)

((
sgn(γ23) + sgn(γ34)

)
sgn(γ23 + γ24 + γ34)

− sgn(γ23)sgn(γ34)− 1
)

+ sgn(S3)
((

sgn(γ12) + sgn(γ23)
)

sgn(γ12 + γ23 + γ13)

− sgn(γ12)sgn(γ23)− 1
)

+ sgn

∑
i<j

γij

((sgn(γ12) + sgn(γ23)
)

sgn(γ12 + γ23 + γ13)

+
(
sgn(γ23) + sgn(γ34)

)
sgn(γ23 + γ24 + γ34)

+ sgn(γ12)sgn(γ34)− 1
)

− sgn (γ12 + γ23 + γ34)
(

sgn(γ12)sgn(γ23) + sgn(γ23)sgn(γ34)

+ sgn(γ12)sgn(γ34) + 1
)]
.(C.10)
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