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of spin-3 Chern-Simons-like
theories of gravity

M. R. SETARE AND H. ADAMI

In this paper we present the generalization of Chern-Simons-like
theories of gravity (CSLTG) to spin-3. We propose a Lagrangian
describing the spin-3 fields coupled to Chern-Simons-like theories
of gravity. Then we obtain conserved charges of these theories by
using a quasi-local formalism. We find a general formula for entropy
of black holes solutions of Spin-3 CSLTG. As an example, we apply
our formalism to the spin-3 Generalized minimal massive gravity
(GMMG) model. We analysis this model at linearized level and
show that this model propagates two massive spin-2 modes and two
massive spin-3 modes. We find no-ghost and no-tachyon conditions,
which can be satisfied in the parameter space of the model. Then
we find energy, angular momentum and entropy of a special black
hole solution of this model.
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1. Introduction

We know that 3-dimensional gravity is the simplest model for studying grav-
itational dynamics. However since it has rich physics in both classical [I] and
quantum versions [2, B]. So there are many motivations for studying gravity
in 3 dimensions. By this study we can address conceptual issues of quan-
tum gravity, investigate black hole evaporation, information loss, and black
hole microstate counting. Also we can understand the black hole hologra-
phy deeper. Gauge/gravity duality can be extended to the beyond standard
AdS/CFT [], such as warped AdS, asymptotic Schrodinger /Lifshitz, non-
relativistic CF'T's, flat space holography, logarithmic CFTs, and higher spin
gravity, which last topic is the subject of this paper.

It is well known that Einstein-Hilbert action in the presence of nega-
tive cosmological constant in 3-dimensions can be reformulated as a Chern-
Simons theory with gauge group SO(2,2) ~ SL(2,R) x SL(2,R) [2,5]. Sim-
ilarly, a SL(3,R) x SL(3,R) Chern-Simons theory with the following action
describes a three dimensional spin-3 gravity theory [0 [7] ,

(1) Sen = Scs[AT] = Scs[A7],

l

(2) ScslA] = 3 C

tr{A/\dA—i—gA/\A/\A},

where 12 > 0 corresponds to a negative cosmological constant, and G is New-
ton’s constant. In the other hand, there is a class of gravitational theories in
(2 + 1)-dimensions (e.g. Topological massive gravity (TMG) [8], New mas-
sive gravity (NMG)[9], Minimal massive gravity (MMG) [10], Generalized
minimal massive gravity (GMMG) [I1], etc), called the Chern-Simons-like
theories of gravity (CSLTG) [IQ]H The authors of [14] have done the gener-
alization of TMG to higher spins, specifically spin-3 (see also [15]). In this
paper we propose a Lagrangian describing spin-3 fields coupled to CSLTG,

IRecently, further clarifications on models in 3D are also collected in the book
[13].
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then we will obtain conserved charges of black hole solutions of these the-
ories by using a quasi-local formalism. In previous paper we have obtained
conserved charges of spin-3 TMG by this method [16]. In Ref. [17] the energy
of the higher spin black hole solutions of ordinary higher spin gravity has
been obtained by canonical formalism (see also [18§]).

The authors of [I9] have obtained the quasi-local conserved charges for
black holes in any diffeomorphically invariant theory of gravity. By consider-
ing an appropriate variation of the metric, they have established a one-to-one
correspondence between the ADT approach and the linear Noether expres-
sions. They have extended that work to a theory of gravity containing a
gravitational Chern-Simons term in [20], and have computed the off-shell
potential and quasi-local conserved charges of some black holes in TMG.

Our paper is organized as follows. In Section 2 we summarize some
relevant aspects of spin-3 gravity in three dimensions in the first order for-
malism. In Section 3 we introduce our Lagrangian for spin-3 fields coupled
to CSLTG, which is an extension of the ordinary CSLTG. One can obtain
the spin-3 TMG as a special case of our generic Lagrangian. In Section 4 we
find the conserved charges of the spin-3 CSLTG by quasi-local formalism.
By using that formalism, one can obtain conserve charges of solutions which
are not asymptotically (A)dS. Then in Section 5, we consider a black hole
solution of the Spin-3 CSLTG. After that, using obtained general formula
for conserved charges, we find a general formula for entropy of black holes
solutions of Spin-3 CSLTG. In Section 6 we consider spin-3 generalized min-
imal massive gravity (Spin-3 GMMG) as an example of the Spin-3 CSLTG.
In Subsection 6.1 we obtain a class of solutions for that model. In Subsec-
tion 6.2, we do a linear analysis of spin-3 GMMG. We show that model has
two massive spin-2 modes and two massive spin-3 modes. We will obtain the
quadratic Lagrangian for the fluctuations about AdS3 vacuum with vanish-
ing spin-3 field. Then from quadratic Lagrangian L), we find the no-ghost
conditions for spin-2 and spin-3 modes. Also, we will show that no-tachyon
condition is |lmy| > 1. Then in Section 7 we find energy, angular momentum
and entropy of a special black hole solution of Spin-3 GMMG. In this case, if
we set eu‘lb = wﬂab = 0, our entropy formula reduces to the entropy formula
in the ordinary GMMG which is obtained in the paper [21I]. Also in the
limiting case a = 0 , m? — oo, where Spin-3 GMMG model reduces to the
spin-3 TMG model, our results for energy, angular momentum and entropy
reduce to the corresponding results in the spin-3 TMG [16]. Section 8 is
devoted to conclusions and discussions.
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2. Spin-3 gravity in three dimensions

In this section, we summarize some relevant aspects of spin-3 gravity in three
dimensions in the first order formalism. In this frame work, spin-3 gravity
can be described by generalized dreibein and generalized spin-connection
which take values in the Lie algebra si(3,R) [22] 23]:

(3) e = e, Jadat = (e, Ty + €, Top)dat,
(4) w = w, AT adat = (w, Ty + wuabTab)deb,

respectively, where J4 (A =1,...,8) stand for the generators of sl(3,R)
algebra, J, (a =1,2,3) denote generators of sl(2,R) algebra, and Ty, are
symmetric and trace-less in the Lorentz indices (appendix contains more
technical details about eight generators of sl(3,R)). Here, we use the lower
case Greek letters for the spacetime indices, and the internal Lorentz indices
are denoted by the lower case Latin letters. The frame-like formalism can
be translated to the metric-like one by [24]

1
(5) Guv = itr(e(yeu)%
1
(6) Puvd = gtr(e(ueue)\))'

The spacetime metric g, and the spin-3 field ¢, both are invariant under
Lorentz-like gauge transformation

(7) €, = Le, L™,

where L € SL(3,R) and we can write L = exp (\), where X is the generator
of Lorentz-like transformation and it is a si(3, R) Lie algebra valued quantity,

(8) A= MT4 = N0, + AT,
The exterior covariant derivative can be defined as
(9) D,e, = Ope, + [wy, €],

which is covariant under Lorentz-like transformations as well. Generalized
spin-connection transforms as

(10) & =LwL™' + LdL™!,
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under Lorentz-like transformations, where d denotes the ordinary exterior
derivative. One can define the total derivative

(11) DIST)e,, = Opey + [wy, €] — F;\we)\,

where F;}V is affine connection. The metric-connection compatibility condi-
tion Vg, = 0 leads to D,(AT)eV = 0. Similar to ordinary gravity case, one
can define generalized torsion and generalized curvature 2-forms respectively

as

(12) T = e,\T;\wdac“ A dz” = De,
(13) R=dw+wAw,

Also, the ordinary Lie derivative of dreibein along a curve generated by the
vector filed §, £¢e = i¢gde + dige, can be generalized so that it becomes co-
variant under Lorentz-like transformations. Here i¢ denotes interior product
in £. That generalization can occur by adding variation of e, with respect
to an infinitesimal Lorentz-like gauge transformation:

(14) Lee = £56 + [)\5, el.

In order that Eq. to be covariant under Lorentz-like gauge transforma-
tions, generator of Lorentz-like gauge transformation A\¢ must transform as

(15) e = LA\L7' + LLLTY
In this way, under generalized local translations we have

(16) dce = Lee,
(17) (55&) = ,ng - d)\g.

These two equations are covariant under the Lorentz-like gauge transforma-
tions as well as diffeomorphisms.

A is introduced in Eq. as generator of Lorentz-like gauge transforma-
tion where it is just an arbitrary function of coordinates. As we mentioned
earlier, ordinary Lie derivative of a Lorentz-like invariant quantity, say e, is
not Lorentz-like covariant. On the other hand, change in e under Lorentz-
like gauge transformation is given by Eq.. As discussed, by combining the
change due to infinitesimal Lorentz-like gauge transformation and ordinary
Lie derivative one can define generalized Lie derivative which is Lorentz-
like covariant provided that A transforms as under Lorentz-like gauge
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transformation. Simply one can see form Eq. that change in A , under
infinitesimal Lorentz-like gauge transformation, is given by 0\ = —£¢A. So,
we expect that A can be regarded as a function of £ as well, i.e. A = A¢(x).
Another reason for this comes from the fact that we set total variation in-
duced by & equal to generalized Lie derivative with respect to § and A¢ is
obliged to generate variation induced by & (See Eq.). Thus, in the for-
malism presented in this paper, A should be a function of coordinates and
of €.

The following action describes a three dimensional spin-3 gravity theory

1 1
Equations of motion arising from above action are:
1
(19) T(Q) =0, R(Q) + Z—Qe Ne =0,

where w = € is torsion-free spin—connectionﬂ

3. Spin-3 Chern-Simons-like theories of gravity

The ordinary Chern-Simons-like theories of gravity are investigated in some
papers, for instance see [9HI2]. These type of theories are an extension of
general relativity in 3D which is a gauge theory ( to know more about
gauge-theoretic approach to gravity see [27]). The ordinary Chern-Simons-
like theories of gravity can be generalized to spin-3 one (Spin-3 CSLTG) by
introducing Lagrangian

1 1
(20) L=tr {2§T5ar Ada® + gfrstaT Aa® A at} ,

where a" = arA“J adzt are sl(3,R) Lie algebra valued one-forms and r =
1,..., N refers to flavour index. Also, §,s is a symmetric constant metric
on the flavour space and frst is a totally symmetric ”flavour tensor”so that
its components can be interpreted as the coupling constants. We take a” =
{e,w, h, ...}, where h is an auxiliary field and so on. For all of our interesting
spin-3 CSLTG, we have fws = grs. If one sets afﬂb = 0 and uses Eq.
the Lagrangian will be reduced to the Lagrangian of ordinary CSLTG.

2Torsional extension of Einstein’s GR in 3D have been considered in [25], also
rotating black hole solutions in a generalized topological 3D gravity with torsion,
have analyzed in [26].
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The arbitrary variation of Lagrangian is

(21) 0L =tr{éa" N E,} + dO(a,da),
where

(22) E, = Grsda® + frspa® A dl,
and

(23) O(a,da) =tr {;grs&f A as} .

The equations of motion of these theories are E, =0 and ©(a,da) is sur-
face term. By considering equations and , under generalized local
translations, a” transforms as

24 0ca” = Lea” — 6] d)e,
3 3 wlAg

where ¢/, is Kronecker delta. If we take the non-zero components of the
flavour metric and the flavour tensor as

~ - - 1
Jew = —O0, Jen = 1, Juw = —,
(25) ) ] R
feww: —0, fehwzlv fwww: ;7 feee:Aa

the Spin-3 CSLTG reduce to spin-3 topologically massive gravity (Spin-3
TMG) which is investigated at the linearized level in the papers [14] [15]. In
paper [16] we have obtained conserved charges of this model.

4. Quasi-local conserved charges

In this section we want to find the conserved charges of the spin-3 CSLTG.
Since e, w and auxiliary fields appeared in CSLTG are invariant under gen-
eral coordinates transformation it is clear that the Lagrangian of spin-3
CSLTG is invariant under such a transformation. Now we recall that
under general Lorentz-like gauge transformation, e and w transform as
and (| ., respectively. Also it is easy to check that under general Lorentz-
like gauge transformation generalized curvature 2-form (13)) and generalized
torsion 2-form (| . ) transform as R = LRL™' and T = LTL L. Therefore
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it is inferred that three dimensional spin-3 gravity theory described by ac-
tion is a covariant theory under general Lorentz-like gauge transfor-
mation. Also, it is clear that equations of motion of spin-3 gravity theory,
Eq., are covariant under general Lorentz-like gauge transformation. Nev-
ertheless, there may be exist theories which are not covariant under general
Lorentz-like gauge transformation. In other words, theories described by the
Lagrangian may contain terms that can break covariance under gen-
eral Lorentz-like gauge transformation. Spin-3 topologically massive gravity
term, itr (w A dw + %w Aw A w), is an example of such terms. This term
is appeared in the spin-3 TMG [14H16] and in spin-3 generalized minimal
massive gravity which will be introduced in Section 6. Under generalized
local translations, the Lagrangian transforms as

(26) d¢L = LcL + di)e,
where

1.
(27) e = tr {2gwrd)\§ A aT} .

which is equivalent to the statement that a symmetry is a transformation
which leaves the Lagrangian form invariant, up to a total derivative. De-
spite the fact that a Lagrangian is not invariant under general Lorentz-like
gauge transformation, if a Lagrangian behaves like under generalized
local translations, then & could be a symmetry generator. Although the
Lagrangian is not invariant under general Lorentz-like gauge transfor-
mation, but by virtue of equations and , it is invariant under the
infinitesimal Lorentz-like gauge transformation. Also, it is enough in obtain-
ing generally covariant equations of motion that Lagrangian behaves like
under generalized local translations. Now, we consider the variation of
Lagrangian induced by generalized local translations

(28) d¢eL = tr{dca” N E.} + dO(a, d¢a),
Comparing Eq. and Eq. leads to the following relation
(29) d(O(a,dca) —igl —p¢) = —tr{oca” N E,}.
We can rewrite Eq. as

’

5§(ITI = DigaW + igDaT, + [()\5 - igw), a” ],

30
( ) (55&) = igR — D()\g — igw),
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where the prime on r indicates that the sum runs over all the flavour
indices except w. Now, we substitute equations into Eq. and we
find that

(31) dJe = —tr{(\¢ — i¢w)(DE, +a" A E. — Ex Aa” )}
+tr{ica” DE, —i¢Da" A Ep — iR A B},

where J¢ is given by

(32) Je = O(a,0¢a) —igL — e + triica"E, — A\ By}

We expect that the last line in Eq. can be rewritten as

(33) tr{ica” DE, —i¢Da" A Ep — iR A By} = triica” X, (a)},

see [16] for the Spin-3 TMG case. In order to have an off-shell conserved
current J¢ we must have

(34) DE,+d" NEy —E.Ad" =0,  Xu.(a)=0.

These equations give us the Bianchi identities and they reduce to the fol-
lowing one for the Spin-3 TMG model [16]

DR =0,

35
(35) DT +eAR—-RAe=0.

In this way, through the Bianchi identities, J¢ is conserved off-shell, i.e.
dJe = 0. Accordingly, by virtue of Poincaré lemma, we find that

(36) Je = dKg,

where K¢ is given by
[ r.s__ = T
(37) Ke =tr S drsiga’a’ — GraoAea” ¢ .

It is straightforward to show that under generalized local translations,
©(a,da) transforms as

(38) 0¢O(a, b6a) = £:O(a, ba) + I,



602 M. R. Setare and H. Adami

where
1.
(39) I = tr {2gmd>\§ A &zr} .
By taking arbitrary variation of the equation and using Eq. we have

40 d(6K¢ —1¢0(a,da)) = tr{da” Ni¢E, +ica"0E, — A\eOE,,
13 3 3 3 €
+00(a,d¢a) — 0¢0(a, da),

where we have used the relation Il = )¢ in the last step of calculations.
On the other hand, if we demand that £ be a Killing vector field admitted
by spacetime everywhere, we have the following configuration space result
given in [28]

(41) 50(a, 6¢a) — 0¢O(a, 6a) = 0,
then the right hand side of the equation is the off-shell ADT current,
(42) Japr = trida” Ni¢E, + ica"SE, — A\eSE,}.

By substituting the components of flavour metric and flavour tensor from
Eq. into above equation, current J4pp reduces to the off-shell ADT cur-
rent appearing in the Spin-3 TMGJ[I6]. By demanding that field equations,
FE,. =0, and linearized field equations, d F,. = 0, be held the right hand side
of the equation is simply the symplectic current

43 Qsymplectic(a, da, d¢a) = 5@(6175 a) — 0, @(a,éa).
ymp 3 3 3

Hence, it seems reasonable to generalize the off-shell ADT current so that
it becomes conserved when spacetime admits £ as an asymptotically Killing
vector field rather than a Killing vector field admitted by spacetime every-
where. So, we can define generalized off-shell ADT current as

(44) jADT = jADT + stmplectic‘

As mentioned above, this generalized off-shell ADT current will reduce to
the ordinary one when ¢ is a Killing vector field admitted by spacetime
everywhere and to the symplectic current when F, = §E, =0, and £ is an
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asymptotically Killing vector field. By substituting Eq. into we have
(45) Japr = d (K¢ —i¢O(a,da)),

so, it is obvious that the generalized off-shell ADT current is conserved
for Killing vectors which are admitted by spacetime everywhere as well
as asymptotically Killing vectors. Hence we can define generalized off-shell
ADT conserved charge as

(46) QADT(CL’ 6&, 5) = 5K§ - ng(a’ (;CL),

for which Jupr = dQapr. Now, in the manner of papers [19, 20], we define

quasi-local conserved charge conjugate to (asymptotically) Killing vector
field & as

1
(a7) Q6) = 5= [ s [ Qaprtals).

where Y denotes an arbitrary codimension two space-like surface and inte-
gration with respect to s runs over one-parameter path in the solution space,
where s = 0 and s = 1 are corresponded to the background solution and the
interested solution, respectively.

By substituting the explicit forms of K¢ and ©(a,da) into Eq. we
find that

1
(48) Q©) = - [ s [[tr{(Gnica’ — o).

The advantage of this formalism is that it is applicable to solutions that
are not asymptotically (A)dS. Assuming that (§102 — d2d1)a” = 0, the con-
served charge satisfy the integrability condition (d1d2 — d201)Q(§) =0
[28]. Hence, the result of Eq. does not depend on the given path on the
solution space.

5. A general formula for the entropy of black holes

Let us consider a black hole solution of the Spin-3 CSLTG. We take the
codimension two surface Y to be the bifurcation surface B. Suppose that
¢ is the horizon-generating Killing vector field, so we must set £ =0 on
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BE| Since Eq. is conserved for Killing vectors which are admitted by
spacetime everywhere and for asymptotically Killing vectors, so we can use
Eq. to find the entropy of black holes in the context of considered theory
as a conserved charge corresponds to the horizon-generating Killing vector
field. Thus, the conserved charge expression reduces to

I 5
(49) Q&) = ~%n ds/ tr{groAcda’}.

T Jo B
Now, we take s = 0 and s = 1 correspond to the interested black hole space-
time and the perturbed one respectively. Thus, the equation becomes

1

(50) Q(E) = —g=tin [ trirebar.

Since A\¢ does not depend on dynamical fields at all, we obtain

ay Q) = ~grins [ tr{xca’)

By demanding that the generalized Lie derivative of generalized dreibein
vanish explicitly when £ is a Killing vector field, one can find an expression

for A¢ [16]

1
(52) Ae = dew + i[e”, D, (ice) + (i¢T). .
One can use Eq. and Eq. to show that Eq. satisfy the transfor-
mation property (15). It has been shown that Eq.(52) reduces to [16]
K

(53) Ae = €,
S Vaee ¢

on bifurcation surface B, where « is surface gravity. By substituting Eq.
into Eq., we can define the entropy of a given black hole solution as

(54) S=—Q&) = —gru

3 Here, we consider stationary black hole solutions and we assume that the event
horizon of considered black hole is a non-degenerate Killing horizon. As we know, a
cross-section of non-degenerate Killing horizon is bifurcation surface where £ = 0.
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6. Spin-3 generalized minimal massive gravity

In this section, we introduce spin-3 generalized minimal massive gravity
(spin-3 GMMG) and analysis it at linearized level.

6.1. The model

We consider spin-3 GMMG as an example of the Spin-3 CSLTG. The or-
dinary GMMG have studied originally in [IT]. The GMMG model is real-
ized by adding the CS deformation term, the higher derivative deformation
term, and an extra term to pure Einstein gravity with a negative cosmo-
logical constant. In Ref.[11], it has been discussed that this model is free
of negative-energy bulk modes, and also avoids the aforementioned “bulk-
boundary unitarity clash”. By a Hamiltonian analysis one can show that
the GMMG model has no Boulware-Deser ghosts and propagates only two
physical modes. In this model, there are four flavours of Lie algebra valued
one-form a" = {e,w, h, f} and the non-zero components of flavour metric
and flavour tensor are

- - - 1 - 1
Jew =—0, Geh =1, Gro=—"75, Guw=
m 7
~ ~ ~ 1 ~ 1
(55) feww = —0, fehw =1, ffww = T fwww =
m u
~ ~ ~ 1
f666:A07 fehh:ay feff:_m'

Thus, equations of motion (22)) reduce to

1
—0R(w) +Ape Ne+ D(w)h +ah ANh — Wf/\sz,
1 1
(56) —oT(w)+;R(w)+e/\h+h/\e—WD(w)sz,
R(w)+eNf+fAe=0,
T(w)+aleANh+hAe)=0.
It is clear that the Spin-3 GMMG is not a torsion-free theory, but by redefini-

tion of generalized spin-connection, as w = {2 — ah, we make it torsion-free.
In this case we have

R(w) = R(Q) — aD(Q)h + o’k A h,

(57) D(w)f=D(Q)f —a(h A f+ fAh),
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then equations of motion can be rewritten as

(38)  —0R(Q)+ Ape Aet (1+ao)(DQh —ah Ah) - #f Af=0,

(59) R(Q) —aD(Q)h+?h Ah+ u(l+ac)(eANh+hAe)
—%D(Q)f+%(f/\h+mf) ~0,

(60) R(Q) —aDQ)h+a*hAh+eAf+fAe=0,

(61) T(Q) =0.

Now, we want to find some solutions of the considered model. For this pur-
pose, we consider the following ansatz for h and f

(62) h = 667 f = r}/e’
where e is generalized dreibein and [ and v are constants. By substituting
Eq.(62) into equations (58)—(60) we have
2
—oR() + (Ao —a(l+ao)p? - 2) eNe=0,
m

(63) R(2) + <a2ﬂ2 +2u(1l 4+ ao)p + 2m'u;1ﬂ'y> eNe=0,

R(Q) + (a®B%+27) ene =0.
By comparing these equations with Eq. we find that

2

¥ o
2ua 1
(65) a8 +2u(1 4+ ao)B + W57 =2
1
(66) a?B% 4+ 2y =

2

In this way, all solutions of the spin-3 gravity (for instance, see [29-31]) are
solutions of the Spin-3 GMMG when £, v and parameters of the considered

model satisfy equations f. From equations 7, one finds that

—1
(67) 12 = [a252 + 20m? £ 2/m? (02m? — af? 1 Ao)} :
(68) e = om? £ /m2 (62m?2 — a2 + Ay),
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where 3 should satisfy following quartic equation

(69) — Aom* + 2um? [ahg — om?(1 + ao)] B
+ [1Pm?* (1 + ao)(1 + 3ao) + a (m* — ap®Ag)] B2
—2ua®m?B3 + padpt = 0.

We have following conditions on roots of quartic equation

(70) B? <ol (J2m2 + Ao) for a >0,
B2 >a ! (o?m? 4+ Ag) for a<0,

which ensure that [? and v are real. It should be noted that 3 and v could
not be complex numbers because they appear in energy, angular momentum
and entropy experssions (see equations (113)), (116) and (119)).

6.2. Linearized Analysis

The Lagrangian of spin-3 GMMG up to a surface term can be written as

A
(71) Lgpin-3 cvMG = tr{ —oe AN R(w) + ?06 NeNe+hANT(w)

1 2
+aeANhANh+ — <w/\dw+w/\w/\w>
2u 3

(f/\R(w)+e/\fAf)}.

m2

We assume that the background generalized dreibein and torsion-free gener-
alized spin-connection are given by € and € respectively, where éu“b =0 and
Qu“b = 0E| Also, €,% and QM“ describe AdS3 vacuum. We can take h = e
and f = e, where § and ~ are just constant parameters, and then back-
ground is a solution of equations of motion f provided that equations

f are satisfied. Therefore, we have

1

(72) D(Q)e =0, R(Q) + zene=0.

o~

4Refer to [10, B2] to see such analysis for minimal massive gravity, and new
version of generalized zwei-dreibein gravity, respectively. See also [14], [15] for spin-3
topologically massive gravity.
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We now expand e, w, h and f about the background as follows:
(73)

where £ is a small expansion parameter. By substituting these expressions

into the Lagrangian and using —, one can show that linear
term in Lagrangian expansion vanishes and quadratic Lagrangian for the
fluctuations u, v, w and z is given by

1 1 _
(74) L(2):tr{2ﬂl2u/\Du—l—Mv/\Dv— <0‘—|—Of—|—’y2)’u,/\D’U

a2 _ 25 B
+w/\Dw+<1+aa++> A Dw
2p Iz

_ 1 _ _

—gvADw——QvADz%——ﬂu/\Dz
1 m

PN +a5+ e AU N
—z w — — eEANUNU
m? 27 2

af _ 1 _
+—+— ENVAV+ — (EAuANV+EANVAu)
I pl?

o?p
<1+a0++ )é/\w/\w
w

a _
——(EANuAwt+eAwAu)

ul

a’p
<1+a0+,u+> (ENvAw+eEeNwAD)
of

+-—(EANvAz+ENZAD)
m

1
a2 (e/\qu+eAzAu)}

where D = D(Q). One can extract the linearized equations of motion from
the Lagrangian , or equivalently, from linearization of the equations of
motion 7. Then, linearized equations of motion are
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(75) Du+ (eAv+vAe)=0,
_ 1
Dv—l—l—Q(é/\u—}-uAé)—i-[l—i-aa—%} (ENz+2NE) =0,
Dw—aﬁ(é/\w—l—w/\é)—k[a—%} (ENz+zNE) =0,
m

> m? 2 oy
Dz—{—[—a,@](é/\z—i—z/\é)—m [1+aa+m}(é/\w+w/\é):0.
o

Now, we introduce a transformation from (u,v,w,z) to new Lie algebra
valued one-form fluctuations (¢4, q—,q1,q2):

u=Biqy + B_q- + Biq1 + B2go,
v=m4Biqr +m_B_q- +m1Biq1 + m2Baqo,
w =C1B1q1 + C2Baga,

z =F1B1q1 + F2Bago,

where {B,, B_, B, Ba} are arbitrary constants and {m4,m_, mj, ms} are
given by

1 1
= 7 m_ = ——
m4 l, I
2 4 2 3
_m m ary 2
2 4 2 3
m m «
me = — —af — [2+’y+’y2—(1+aa)m20] ,
7 n m
also,

C) = , s = :
(78) m? (14 a0)’ ~ (53)’] Com (1+a0)” - (23)°]

p Rl L (i)

T rac-a] P [Tac- 9]

By using Eq. we can diagonalize the linearized equations as follows
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Dgy+my (ENgy +q4 NE) =

)=0
Dqg_ +m_(eNqg_+q_ NeéE)=0
)=0
)=20

)

(79) - _ O
Dg+mi(eNqg+q Ne) =

Dga+my(ENq2+qaNeE) =

)

In this manner, we expect that the introduced transformation, Eq., di-
agonalize the Lagrangian . So we can rewrite the Lagrangian in the
diagonalized form, in terms of new Lie algebra valued 1-form fields,

(80)
@) af v 1 5 .
- =tr{ o+ —+—F5—— B+m+(q+/\Dq++m+e/\q+/\q+)
nwoom ul
« 1 _
+[0+ﬁ+72+}B2m_(q_/\Dq_+m_e/\q_/\q_)
nwoom ul
+ B%Bﬂm (CI1 A Dgp +mie A qp A ql)
+ B3Bymy (g2 A Dga + mi€ A ga A CJ2)}7
where
s 1 af v aCi | ki 1 a?C?
B =—— — 4+ —= — 4+ = - —
! 2,um1+<0+ +m2>+ i +m2 2ul?my  2umy
2
@ @ C afF oy C
—<1+0¢U—|—6+Z>1— GRS
(81) m miq memi m=mi
B 1 n +aﬁ+ v Jr0<C’2 Fy 1 a2022
=——m o+ —+ — —+ = - —
2 2 ° m2 i m2  2ul?mo  2ume
2
« « C afF: aFyC
—<1+aa+ﬂ+z>2— ’52 - =22
% m mao memso m=ms

Two first terms in Lagrangian can be written as difference of two lin-
earized SL(3, R) Chern-Simons 3-forms and then the ¢y fields have no local
degrees of freedom for spin-2 and spin-3 fields. Each of two last terms in La-
grangian describes a single spin-2 massive mode and a single trace-less
spin-3 massive mode. Therefore spin-3 GMMG model propagate 2 massive
graviton modes and 2 massive spin-3 modes. The massive modes are not
ghosts as long as B; and B, are both positive definite.
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Now, we want to find the mass of spin-2 and spin-3 modes which are
appeared in this model. To this end, we use Eq. and Eq. to write

(82) e=e+£y Bigy, (I=+,-,1,2).
I

where g7 is a SL(3, R) Lie algebra valued 1-form

(83) qju - QIMGJG + QIuabTaba

with qmaa =0, that is qluab is trace-less in Lorentz indices. In this way,

equations can be written as
(84) Dqr+my(€Nqr+qr Ne) =0,

where I = +,—,1,2. By substituting Eq. into Eq., we find metric
fluctuations about AdS3z metric g, as

1 _
(85) hy,, = itr {euar} = euaar”,

where tr {é[#q Il,]} = 0 was assumed. Let @u denote covariant derivative with

respect to the connection I’W compatible with background metric g, and

EuvA = Eabc€y ‘e, é ‘. Let D( ) denote total derivative compatible with the

A

L Le D£ )e,, = Ol Therefore, we can write

background dreibein e
—afre _ 1 —afv 1 —a,BV
(86) E"Vhy,, = 3 D [tr {epan}] = ze*”tr {€,Daqp } .

By substituting Eq. into Eq. and using trace-less condition h;* =
0, we find a first-order equation for hy:

(87) Dlm,]* h;*, =0,
where
(88) D[ml]”y = m[(S‘uV + E“ﬁl,?lg.

In order to find the second-order equation, we apply the operator D[—m;]
on the equation , that is

(89) D[_mf]uap[ml]aﬂhlﬂy =0.

,(LT)é,, = 0,8, +[Qu,e] — T, ex.
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In this way, one obtains a second-order equation

_ 2
(90) (D — M3 z2> hy,, =0,
with
1

where transverse condition Voh, %, = 0 was used. It is clear that, for =1
and 2, Eq. is Fierz-Pauli spin-2 field equation in AdSs for a spin-2 field
h;,, of mass M;j H

Now, by substituting Eq. into Eq.@, we obtain spin-3 fluctuations

1 o
(92) Hs = Str{eueuqint = Enalubdr™,

where tr {é[ﬂéyqp\]} = 0 was assumed. Also, it should be noted that ¢,,\ =
%tr(éuéyéx) = 0. Therefore, we can write

_ 1 _
(93) ?"BAV5H]W,)\ = iﬁﬂéﬁ)\t’r’ {é,uéVng])\} .

By substituting Eq. into Eq.7 we find a first-order equation for Hy:

(94) Dmy]" H," ) =0,
with
(95) ﬁ[mﬂ“u =2mpo", + E“Bl,?g.

where trace-less condition H;* | w = 0 was used. Now, we apply the operator

D[—my] on the equation (94)), that is
(96) Dl-mq]*, Dim]*sH," | = 0.
Then, one obtains a second-order equation

(97) (i _ M%) Hj, = 0,

6The massless graviton in three dimensions has no degrees of freedom, which
is why people call Einstein-Hilbert three dimensional gravity a topological theory.
But in the higher-derivative theories one gets in addition to the massless graviton
(which is pure gauge), several massive gravitons which all have 2 degrees of freedom
each.
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with

(98) M2 =aM2 =14 <m§ - z12> ,

where transverse condition V,H i~ w = 0 was used. For I = 1 and 2, Eq.
is the spin-3 field equation in AdS3 for a spin-3 field Hy,, of mass M.
It is clear from Eq. and Eq. that ”"no-tachyon” conditions can be
written as |lmy| > 1. Because g+ fields have no local degrees of freedom,
then Hy,,» and H_,, ) are not propagating modes. Thus, we have two
massive propagating modes Hy,,» and Hgy,, .

7. Example

In this section we consider the Spin-3 GMMG, then we find energy, angu-
lar momentum and entropy of a special black hole solution. In higher spin
theories the metric is gauge dependent, so may be one say that the no-
tion of an event horizon for a black hole is not well defined concept [33].
However different black hole solutions in higher spin gravity have been ob-
tained [I77, (18, 22, 29, B0, B3+42]. In some of these papers also different
methods for deriving entropy of higher spin black holes have been presented
[18, 22} 29], 40]. In spin-3 gravity in contrast to the ordinary gravity, where
black hole entropy is given by the area of the horizon, since the metric is
gauge dependent, this statement should be replaced with a gauge invariant
criterion [33]. Until now there is not a general formula for entropy of all
black hole solutions in higher spin gravity models. Also there are some dis-
crepancy between assumptions and results of different methods which have
been presented for deriving the entropy of higher spin black holes. Here we
present a formula for obtaining entropy of higher spin black holes.

In order to relate Chern-Simons gauge theory to the first order for-
malism based on dreibein and spin-connection, we introduce two indepen-
dent connection one-forms

(99) AT =w+ %e.

Consider following gauge connections which solve the spin-3 gravity field
equations [24] 29]

(100)
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where b(p) = exp (pLg) and & = t/l & ¢. Also, a™(zF) are given by

(101) at(at) = (L1 — LT (") Ly = WH(aT)W_y) dat

(@)= (Lo — L (27 )Ly + W (z7)Wa) da™.
where four functions £*(2*) and W¥*(2%) transform under gauge trans-
formations which preserve the asymptotic conditions (see [24] for details).

By substituting the given gauge connections (100 into Eq. we can find
generalized dreibein as

((ep — L e YLy + (e — LTe )L
+We Wy — Whe #W_,)

€t =

N

(102) ep = é((ep + L e )Ly — (e’ + LTe )L

— W e *W, - Whe 2P W_,)

€p = ZL()

Similarly, space-time components of generalized spin-connection can be find
as

1
(103) W = 3¢, w, = 0, We = €.

By using Eq., one can extract metric,

(104)  ds? = — (LTL e AWIW—e™ — LT — L7 + &%) dt?
+12dp? + 21(LT — L£7)dtde
FP(LTLTe P+ AWTW e ™+ LT + L7 + ) do”.

which is of the form
(105) ds? = gudt® + g,pdp* + gpsdd* + 2gi4dtde.

We have gfq5 — gtt9s¢ = 0 on the Killing horizon H which leads to the fol-
lowing equation

(106) LYLT e 2P L AWTW e 0m 1 2P = 9/ L+ L~

Here we assume that Killing horizon is located at p = pg. In previous pa-
per [16] we have shown that pp is a real positive-definite root of Eq.(106]).
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However we are not sure that the metric for non-zero W+ can de-
scribe a black hole solution of higher-spin gravity. But if we extend a*(2%),
given by Eq., so that they contain chemical potential conjugate to the
W charges, then we have a black hole with spin-3 chargem Also we should
note that an important property of higher-spin gravity is that the gauge
transformation of higher-spin field acts nontrivially on the metric. Due to
this feature of the theory, the event horizon of black hole become gauge de-
pendent [31]. The authors of [31] have discussed on the solutions of spin-3
gravity previously introduced in [29], and have shown that those solutions
describe a traversable wormhole connecting two asymptotic region, instead
a black hole. Then they have shown that under a higher spin gauge trans-
formation these solutions can be transformed to describe black holes with
manifestly smooth event horizons.

Generalized off-shell ADT conserved charge of the Spin-3 GMMG can
be obtained as

~ ) 1. Q. 1 .
(107) Qapr(a,da; &) = tT{ - <az£e + W%f + ;Qh - ;(ng - /\5)> 0
. 1 a a? |

+ (1+ ao)(igedh + ichde) + %(ig FOh + ich f) }

and, for h and f given by ansatz (62)), it reduces to

- ‘ L.
(108) Qapr(a,da;§) = —tr{ ((a + % + Of) g€ — ;(QQ — Ag)) Y’

. 1.
+ <<0+ % + Of) (12 — A¢) — Ml2156> 56}.

"The classical solutions of higher spin generalization of TMG, include AdS pp-
wave (with higher spin hair), the spacelike, timelike, null warped AdS3 spacetimes
and also spacelike warped AdSs black hole have been obtained in [4I]. Also the
higher spin black holes in a truncated version of higher spin gravity in AdS3 have
been studied in [42].
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Now, we take AdS3 spacetime as background solution, where

1 {
=5 Lt L), ep=ge(ln=La), e =lLo

1
Qt = ﬁ€¢, Qp = O, Q¢, = €t

(109)

and its perturbation is given by [24]

1
Sep = 76—%’ (6L7Ly + 6L YLy + e POW Wa + e PWHTIW_,)

(110) 5e, = —ée_p (=0L™ Ly + 0L Ly — e POW~Wa + e POWH W) |
de, =0,

Energy corresponds to the Killing vector {;) = —0¢, and for that Killing
vector we have

. 1
(111) Aoy — lg, S = Z—Q%.

Therefore, Eq.(108) becomes
(112)
~ o
QADT(—@) =2 {(0'+ % + B

1
I

LY +6L
)oct o)+

(6L — 5c+)] do.

We take ¥ as a circle of arbitrary radii, then by substituting Eq.(112]) into
Eq. we find energy of the considered solution as

(113) E— 417T/027Td¢> [<a+732+of> (£++c—)+;l(£— —Lﬂ] .

Angular momentum corresponds to the Killing vector {4y = 04 and for that
Killing vector we have

(114) Mgy — Te 2 = et
Therefore, for this case, Eq.(108]) becomes

1

3 _ o, o - _
(115) QADT(8¢)—QZ|:<U+WL2+M> (0L 5£+)+Hl(5£++5£ )| do.
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By substituting Eq.(115]) into Eq. we find angular momentum of the
considered solution as

(116) 4 L 2qu5 +—+—B (£~ £+)+i(£++£—)
e o wul ’
Now, we apply the formula to calculate the entropy of the considered
black hole solution. Since the components of the flavour metric are given by

Eq. and Q2 = w — ah, then

do 1 1 «
117 S—/ tr{aee + —epfo— —epfd —I—eh}.
(117) s V0 06 T acels = colls + - eshy

By substituting f and A from Eq. into above equation we find that

2T d 1
(118) 5’:2/0 \/%[(0—1—722—%5)9@—#9@].

where, in the last step of calculations, Eq.(b)) was used. If we set e,
"b =0, then Eq.(117) reduces to the entropy formula in the ordmary
GMMG which was obtained in the paper [2I]. One can substitute g4 and

gty from Eq.(104)) into Eq.(118) then
a9 s=2 [ [(o4 2+ 90) VE +VED) - LvE - vED)
0

In the limit Where Spin-3 GMMG model reduces to the spin-3 TMG model,
i.e.a — 0and m? —> 00, energy, angular momentum and entropy expressions
obtained in Egs. , and will reduce to the corresponding
results in the sp1n—3 TMG [16] Also as we have shown in [16], in the limiting
case i — 0, where TMG action reduces to the Einstein-Hilbert action, our
conserved charge will reduce to the result presented in papers [17, [I8]. This
coincidence of results confirm that the quasi-local formalism works correctly
for these types of theories.

Now, we want to compare Eq. with entropy of the BTZ black hole
[43] in ordinary MMG model (see Ref.[44]). The ordinary MMG can be seen
as a limiting case of ordinary GMMG model. To find corresponding result in
that model, we set e#"b = wuab =0 and m? — oo. In this limit Eq. and

Eq. become

(120) Ao — a(l + ao)B? = f%,
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(121) ?B% +2u(1+ ao)B = 112

In this case we do not consider Eq. because it was derived from the
variation of Lagrangian of spin-3 GMMG with respect to auxiliary field f
and we lose dependence on f as m? tends to infinity (see Eq.(71)). From

equations ([120)) and (121f), one finds

1 — alAgl?

122 = —.
(122) 2ul2 (1 + ao)?

For the BTZ black hole we have
+r_\?
12 £ _ (=
(123) e (m55)

where ry and r_ are outer and inner horizon radiuses, respectively. By
substituting Eq. and into the Eq. and taking m? — oo we
will obtain entropy of the BTZ black hole in ordinary MMG which has been
calculated in [44]. The same arguments are held for energy and angular
momentum of the BTZ black hole.

8. Conclusion

In this paper, we considered the spin-3 gravity in the first order formalism,
then we generalized that to the Spin-3 CSLTG. It should be noted that
the Spin-3 TMG [14], [15] is an example of such theories. We provided a
general formula to compute conserved charges and entropy of solutions in
these theories which are generalizations of the standard three-dimensional
higher spin gravity.

We found the off-shell ADT current associated to a vector field £ for
the Spin-3 CSLTG. This current is conserved when ¢ is a Killing vector field.
We defined the generalized off-shell ADT current by , so that it becomes
conserved for an asymptotically Killing vector field as well as a Killing vec-
tor field admitted by spacetime everywhere. The generalized off-sell ADT
current reduces to the ordinary one when ¢ is a Killing vector field admitted
by spacetime everywhere and to the simplectic current when equations of
motion and linearized equations of motion are satisfied. We defined the gen-
eralized off-shell ADT conserved charge through the generalized off-sell
ADT current. We used the generalized off-shell ADT conserved charge in or-
der to define quasi-local conserved charge Eq.. The obtained quasi-local
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conserved charge is associated to an asymptotically Killing vector field
¢ and the integration surface ¥ can be chosen arbitrarily. The advantage of
this formalism is that it is applicable to solutions that are not asymptotically
(A)dS. In Section 5, we found a general formula for entropy of black holes
in the context of Spin-3 CSLTG . In Section 6, we considered the Spin-3
GMMG as an example of the Spin-3 CSLTG and we have obtained a class
of solutions for that model. We have found the quadratic Lagrangian for the
fluctuations u, v, w and z. Then, by introduction of a transformation from
(u,v,w,z) to new Lie algebra valued one-form fluctuations (¢, q—,q1,q2),
we were able to diagonalize quadratic Lagrangian. The two first terms in
the diagonalized quadratic Lagrangian can be written as difference of
two linearized SL(3, R) Chern-Simons 3-forms. Then, g+ fields have no lo-
cal degrees of freedom for spin-2 and spin-3 fields, as we expected. Each
of two last terms in the diagonalized quadratic Lagrangian describes
a single spin-2 massive mode and a single trace-less spin-3 massive mode.
So spin-3 GMMG model propagates 2 massive graviton modes and 2 mas-
sive spin-3 modes. The massive modes are not ghosts as long as B, and B
are both positive definite. We have shown that the spin-2 fluctuations hy,,
satisfy the Fierz-Pauli spin-2 field equation in AdSs space of mass M
and, the spin-3 fluctuations Hy,,\ satisfy the spin-3 field equation in
AdS; space of mass M;. Also, we deduced that no-tachyon conditions are
|lmy| > 1. Eventually, in Section 7, we obtained energy, angular momentum
and entropy of a special black hole solution in the context of the Spin-3
CSLTG.

In Subsection [6.2] we analysed spin-3 fluctuations. We focused on its
traceless part. There is actually a trace part of spin-3 fluctuations. Such a
problem has been studied in the context of spin-3 TMG [I5]. The spin-3
GMMG Lagrangian will reduce to spin-3 TMG one when we set m? — oo
and « = 0. In that case the diagonalized quadratic Lagrangian just
contains one massive mode Lagrangian (i.e. in the spin-3 TMG limit, one of
the coefficients B; or By will vanish.). In the spin-3 TMG model, massive
trace mode has zero energy and becomes pure gauge at the chiral point.
In a similar way, in the context of spin-3 GMMG, we expect that massive
trace modes become pure gauges at the chiral point o + %’8 + % = ﬁ when
two operators D[m1]| and D[ms] are degenerate (namely, when m; = mg).
Therefore, our conclusions are unaffected for chiral spin-3 GMMG with
mi = may.

It would be interesting to study a Hamiltonian analysis of Spin-3 CSLTG
as the authors of [12] have done for ordinary CSLTG. For example a Hamil-
tonian analysis shows that the GMMG model has no Boulware-Deser ghosts
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and this model propagates only two physical modes [11]. GMMG also avoids
the aforementioned “bulk-boundary unitarity clash”. So it is a semi-classical
quantum gravity model in 2 4+ 1 dimensions which in both bulk and bound-
ary is unitary. Therefore it is clear that study of Spin-3 GMMG following
what have done in the papers [11 [14], 15] is interesting request. We let this
study for future work.

Before the end, we would like to discuss the relation between our analysis
and other results in the literature. Three dimensional spin-3 gravity theory
has been investigated in [0, [7]. Generalization of TMG to higher spins has
been done in [14] 15]. Such a generalization motivated us to extend ordinary
CSLTG to spin-3 one. As an example of such theories, we have introduced
spin-3 GMMG and analized it at linearized level. Although linearization in
metric-like formalism has been used in spin-3 TMG [I4] but it could not be
used here. Instead, in order to have such an analysis, we have used a method
which is appropriate in frame-like formalism. Such a extension of ordinary
CSLTG to spin-3 one allows us to investigate other spin-3 versions of gravity
theories in three dimensions, like exotic massive 3D gravity [45] etc. The
concept of conserved charges is a very important matter in gravity theories
as well as in other physical theories. Therefore, we found an expression for
conserved charges and a formula for black hole entropy in spin-3 CSLTG.
These two formulae should be examined for other solutions, which have been
obtained in [17, 18] 22] 29, B30, 33H42]. For black holes containing higher spin
charges, if a modification is required, we just need to fix gauge in another
way, i.e. we need to find a new expression for A¢ rather than , without
changing the arguments that lead to the formulae.
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Appendix A. SL(3,R) generators
The algebra si(3,R) have 3 generators J, and 5 generators T,;, with the
following commutation relationg?]

[Jaa Jb] = €ap"Je, [Ja7 Tbc] = 25da(ch)da

(A.1) . .
[T(lb7 T ] = -2 (na(c‘?d)b + Mb(cEd)a ) Je,

8In this paper, we use the ordinary symmetrization by a pair of parentheses, for
instance A, B,y = %(AMBV + A,B,,), i.e. we divide by the number of terms in the
symmetrization.
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where T, is symmetric and trace-less in the Lorentz indices. Here 7, and
Eape are Minkowski metric and Levi-Civita symbol, respectively. In this rep-
resentation, the inner product of the generators are [30]

tT‘(Ja) =0, tT(Tab) =0, 757"(JaT’bc) =0,

(A.2)
tT(Jan) = 27ab, tr(Tachd) = 477a(c77d)b

4
- gnabncw

In this paper, we use the following basis of SL(3,R) generators [24], 29]

(A.3)
0 0 0 10 0 0 -2 0

Li=[1 0 0 Ly=[ 0 0 o0 La=|0 0 -2
010 00 -1 0 0 0
00 0 0 0 o1 0 0

Wo=10 0 0 wi=| 1 0 Wo==>|0 -2 0
200) 010) 3(001
0 —2 0 00 8

Wa=|0 0 2 Wo=100 0|,
0 0 0 00 0

which are related to the previous one via the isomorphism

1 1
Jo==(L1+ L), Jp = §(L1 — L), Jo = Ly,

2
1 1
Too = = (Wa + W_g + 2W)), Tor = - (W2 — W_s),
(A.4) i 1
T = Z(Wz + W_y — QWO), Too = §(W1 + W—1)7

1
Too = W, Tho = §(W1 —W_y).

In other words, we take J4 = {Lo, L+1, Wy, Wi1, Wia}. These generators
obey the following commutation relations

[Li, L] = (i — ) Lisy
(A.5) [Lis Win] = (20 — m)Wigm
(Win, Wa] = *é(m —n)(2m* + 2n% — mn — 8) Ly+y.
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where —1 <4,7 <1 and —2 < m,n < 2. Also, the non-zero traces are

tT(LQLo) =2, tT’(LlL_l) =—4
(A.G) 8
tT’(W()W()) = g, tT(W1W_1) = —4, tr(WQW—Q) = 16.

The Killing form in the fundamental representation of s/(3,R) is defined as
1
(A7) Kuap = §tT(JAJB),

and anti-symmetric and symmetric structure constants of the Lie algebra
are given by

(A8)  fasc = tr(liaJule),  dase = yir(Lia, Ja} o).
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