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Rigidity of asymptotically AdS2 × S2

spacetimes

Gregory J. Galloway and Melanie Graf

The spacetime AdS2 × S2 is well known to arise as the ‘near hori-
zon’ geometry of the extremal Reissner-Nordstrom solution, and
for that reason it has been studied in connection with the AdS/CFT
correspondence. Here we consider asymptotically AdS2 × S2 space-
times that obey the null energy condition (or a certain averaged
version thereof). Supporting a conjectural viewpoint of Juan Mal-
dacena, we show that any such spacetime must have a special ge-
ometry similar in various respects to AdS2 × S2, and under certain
circumstances must be isometric to AdS2 × S2.
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1. Introduction

An interesting feature of the spacetime AdS2 × S2 is that it arises as the
‘near horizon’ geometry of the extremal Reissner-Nordstrom solution; see
e.g. [6]. For this reason, this spacetime (sometimes referred to as the
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Robinson-Bertotti solution) has been studied in various works in connection
with the AdS/CFT correspondence [8]; see e.g. [10] and references therein.
More recently a class of horizon free supersymmetric solutions to Einstein-
Maxwell theory having AdS2 × S2 asymptotics has been constructed by
Lunin [7]. However, on the basis of an example considered in [10, Section 2.2],
and also a result in [5] (Theorem 2.1), Maldacena has suggested that any
asymptotically AdS2 × S2 spacetime that obeys the null energy condition
(NEC), or more generally the average null energy condition (ANEC), should
be quite special. In fact he has suggested the conjecture that any such space-
time should be isometric to AdS2 × S2 [9]. In particular, consistent with the
example in [10] mentioned above, 4-dimensional spacetimes that satisfy the
ANEC strictly could not have AdS2 × S2 asymptotics. All of this suggests
that the examples constructed in [7] cannot be globally regular, which, in
fact, has since been confirmed by Lunin [9].

In this paper we obtain some results on the rigidity of asymptotically
AdS2 × S2 spacetimes satisfying the NEC, which support the conjectural
picture put forth by Maldacena. While precise statements are postponed to
Section 3, our main result may be paraphrased as follows.

Theorem 1.1. Let (M, g) be an asymptotically AdS2 × S2 spacetime (see
Definition 2.4) that satisfies the null energy condition (NEC), Ric(X,X) ≥ 0
for all null vectors X. Then the following holds.

(i) (M, g) is foliated by smooth totally geodesic null hypersurfaces Nu ≈
R× S2, u ∈ R.

(ii) By time-dualizing, one obtains a second foliation by smooth totally
geodesic null hypersurfaces N̂v ≈ R× S2, v ∈ R, transverse to the foli-
ation {Nu}u∈R. By considering the intersections of the Nu’s and N̂v’s,
this double null foliation gives rise to a foliation of (M, g) by totally
geodesic isometric round (i.e. constant curvature) 2-spheres S(u,v).

The properties (i) and (ii) are, of course, basic features of AdS2 × S2.
One of the main results leading to the proof of Theorem 1.1, Proposition 3.3,
together with a known result concerning the existence of null conjugate
points [2, 14] confirms that there do not exist any asymptotically AdS2 × S2

spacetimes obeying the strict ANEC.
While we have stated Theorem 1.1 and Theorem 1.2 below with respect

to the NEC, in fact both results remain valid under a weaker curvature
condition (which, however, is stronger than the ANEC): It is sufficient to
assume that along all future or past complete null rays η : [0,∞)→M , one
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has,

(1.1)

∫ ∞
0

Ric(η′(s), η′(s))ds ≥ 0 .

In order to simplify a bit the presentation of the proofs of Theorems 1.1
and 1.2, we postpone to an appendix a discussion of the changes needed to
prove these theorems under the curvature condition (1.1).

Theorem 1.1 falls short of showing that (M, g) splits as a metric product
along the totally geodesic 2-spheres. A necessary condition for this is that the
distribution of timelike 2-planes orthogonal to the 2-spheres be integrable.
However, a recent example of Paul Tod [15] shows that even if (M, g) did
admit such a product structure, it need not be isometric to AdS2 × S2. In
general, some additional condition is needed to show that (M, g) is isometric
to AdS2 × S2. Such a condition is considered in the next result.

Although not itself an Einstein manifold, AdS2 × S2 is a product of
Einstein manifolds, and as such its Ricci tensor is covariant constant,∇Ric =
0. Under this added assumption we obtain the following.

Theorem 1.2. Let (M, g) be an asymptotically AdS2 × S2 spacetime that
satisfies the NEC. If the Ricci tensor is covariant constant then (M, g) is
globally isometric to AdS2 × S2.

Remark: AdS2 × S2 has vanishing scalar curvature, R = 0. If one could es-
tablish a local metric splitting along the totally geodesic 2-spheres, then
adding this condition to the assumptions of Theorem 1.1, would be suf-
ficient to give that (M, g) is isometric to AdS2 × S2 (cf. section 4). This
condition, in particular, rules out examples like that of Tod.

We would like to say a word about the approach to the asymptotics
taken here. One possible approach to the asymptotics, which will be consid-
ered in a subsequent paper, is to introduce a notion of a ‘singular’ timelike
conformal boundary. In fact, AdS2 × S2 admits, in a fairly natural way, such
a boundary. The more customary analytic approach taken in the present pa-
per, is to require that the spacetime metric g asymptote at a suitable rate,
with respect to a natural coordinate system, to the AdS2 × S2 metric g̊ on
approach to infinity. This approach to the asymptotics gives strong control
over the causal structure and allows one to obtain rather fine geometric
properties needed to establish Theorem 1.1.

In Section 2 we give the formal definition of an asymptotically AdS2 ×
S2 spacetime, and derive some consequences of the assumed asymptotics.
In Section 3 we establish the existence of a foliation by totally geodesic



i
i

“3-Galloway” — 2019/11/9 — 22:06 — page 406 — #4 i
i

i
i

i
i

406 G. J. Galloway and M. Graf

null hypersurfaces, and a foliation by totally geodesic isometric round 2-
spheres, thereby establishing Theorem 1.1. In Section 4 we present a proof
of Theorem 1.2.
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ments. The authors would also like to thank Eric Ling for his interest in this
work and for helpful comments. GJG’s research was partially supported by
the NSF under the grant DMS-171080. MG’s research was supported by
project P28770 of the Austrian Science Fund FWF and a scholarship from
the Austrian Marshall Plan Foundation to visit the University of Miami.

2. Asymptotically AdS2 × S2 spacetimes

In this section we describe in a precise manner what it means for a spacetime
(M, g) to be asymptotically AdS2 × S2, and we obtain some consequences
of these assumed asymptotics.

2.1. Exact AdS2 × S2 space

Let M̊ = R× R× S2. We set

g̊ = − cosh2(x)dt2 + dx2 + dΩ2.

For future reference, the non-zero Christoffels for this metric are

Γ̊ttx = tanh(x), Γ̊xtt = cosh(x) sinh(x), Γ̊φφθ = cot(θ), Γ̊θφφ = sin(θ) cos(θ),

the Riemann tensor can be expressed as

R̊ = R̊AdS2
+ R̊S2

and the same holds for R̊ic. Explicitly one has

R̊ictt = cosh(x)2, R̊icxx = −1, R̊icθθ = 1, R̊icφφ = sin2(θ).

The scalar curvature vanishes. Note that while AdS2 × S2 is not an Einstein
manifold, one can still nicely express R̊ic in terms of the metric: R̊ic =
−g̊ + 2dΩ2.
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2.2. The metrics g̊α

To get a better handle on the asymptotics of g we will further define a family
of metrics g̊α (α ∈ R+) on M̊ via

g̊α = −α cosh2(x)dt2 + dx2 + dΩ2.

The importance of these metrics for the asymptotics lies in Lemma 2.6,
stating that, in essence, there exist β > 1 and α < 1 such that far out
g̊α ≺ g ≺ g̊β and β, α→ 1 as one approaches infinity. (Recall, for Lorentzian
metrics g1 and g2, g1 ≺ g2 means that the null cones of g2 are wider than
those of g1 in the sense that for any vector X 6= 0, if g1(X,X) ≤ 0 then
g2(X,X) < 0).

Along the null curves of g̊α with θ = θ0, φ = φ0, one has

dt = ± 1√
α coshx

dx .

Integrating gives the following.

Lemma 2.1 (Null curves for g̊α). The curves

s 7→ (fα(s, t0, x0), s+ x0, φ0, θ0)

and

s 7→ (−fα(s,−t0, x0), s+ x0, φ0, θ0),

where

fα(s, t0, x0) :=
2√
α

(
tan−1(es+x0)− tan−1(ex0)

)
+ t0 ,

are future, resp. past, directed achronal null curves in (M̊, g̊α) passing
through the point (t0, x0, φ0, θ0).

Remark 2.2. For future reference we note the following.

lim
s→−∞

fα(s, t0, x0) = t0 −
2 tan−1(ex0)√

α

and

lim
s→∞

fα(s, t0, x0) = t0 −
2 tan−1(ex0)√

α
+

π√
α
≤ t0 +

π√
α
.

Since fα is increasing this means that fα(s, t0, x0) ≤ t0 − 2 tan−1(ex0 )√
α

+ π√
α

for all s.
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The timelike futures I̊+
α (p) are easily seen to satisfy the following.

Lemma 2.3. Let p = (t0, x0, ω0) ∈ (M̊, g̊α). Then{
t > t0 +

π√
α

}
× R× {ω0} ⊆ I̊+

α (p).

2.3. Definition of asymptotically AdS2 × S2 spacetimes

Throughout we shall assume that spacetime is causally simple. Following
[11, Sec. 3.10], we say that a spacetime is causally simple provided J±(p)
is closed for all p ∈M and (M, g) is causal (i.e. contains no closed causal
curves). As a consequence, the sets J±(K) are closed for all compact sets K
in M , and (M, g) is strongly causal.

In order to prove our main results, a careful treatment of the asymp-
totics, as layed out in the following definition, is required.

Definition 2.4. Lat (M, g) be a 4-dimensional causally simple spacetime.
We say that (M, g) is asymptotically AdS2 × S2 provided the following con-
ditions hold.

(a1) There exists a closed subset A ⊆M such that M \A◦ is the disjoint
union of two manifolds with boundary M1 and M2 such that

M1
∼= R× (−∞,−a]× S2 and M2

∼= R× [a,∞)× S2,

p ∈M1 ∪M2 7→ (t(p), x(p), ω(p)) ,

a ≥ 1, and the boundary ∂A is mapped to (R× {−a} × S2) ∪ (R×
{a} × S2).

(a2) For all p ∈ A and k = 1, 2:

I+(p) ∩Mk 6= ∅ and I−(p) ∩Mk 6= ∅

and

A \ (I+(p) ∪ I−(p)) is compact.

(b1) We require that there exist constants cij > 0 and with c00 < a, such
that for any p ∈M1 ∪M2 and any g̊-othonormal basis {ei(p)}3i=0 ⊆
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TpM , with e0 = 1
coshx

∂
∂t ,

(2.1) |h(ei(p), ej(p))| ≤
cij
|x(p)|

,

where h = g|M1∪M2
− g̊|M1∪M2

.

(b2) We further require the following decay on first derivatives of h, i.e., we
assume there exists C1 > 0 such that

(2.2) |ek(h(ei, ej))(p)| ≤
C1

|x(p)|
, |e0(h(ei, ej))(p)| ≤

C1

|x(p)|2

for k = 1, 2, 3 (note the faster decay on the time derivative). Addition-
ally, we require the following decay on second derivatives,

(2.3) |el(em(h(ei, ej)))(p)| ≤
C1

|x(p)|

for l,m = 0, . . . , 3.

It will be convenient to require,

(2.4)
16 max{cij}

a
< 1 .

Remark 2.5. In many of the arguments involving the asymptotics (2.1)–
(2.3) we will not use g̊-othonormal frames but rather work in specific charts
which we will now introduce. Let (U,ψ) denote either of two charts cov-
ering S2, with ψ(U) = {(θ, φ) : π6 < θ < 5π

6 , 0 < φ < 2π}, and let ψ : p→
(t(p), x(p), ψ(p)) be the corresponding chart on M1 ∪M2. From (2.1) we see
that there exists a constant C > 0 such that in these charts

(2.5) |hij | ≤
C

|x|
, |hti| ≤

C cosh(x)

|x|
, |htt| ≤

C cosh2(x)

|x|

for i, j 6= t. And for l,m, i, j arbitrary and k 6= t
(2.6)

|∂khij | ≤
C cosh#t(x)

|x|
, |∂thij | ≤

C cosh#t(x)

|x|2
, |∂l∂mhij | ≤

C cosh#t(x)

|x|

where #t denotes the number of t’s appearing as lower indices.
We are also going to need some estimates for the Christoffel symbols and

the curvature of g. Let now #t denote the number of t’s appearing as lower
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indices minus the number of t’s appearing as upper indices. Using (2.5) and
(2.6) one can show that there exists a constant C such that

(2.7) |̊gij − gij | ≤ C cosh#t(x)

|x|
, |̊Γkij − Γkij | ≤

C cosh#t(x)

|x|

and

(2.8)

|R̊iklm −Riklm| ≤
C cosh#t(x)

|x|
,

|R̊icij − Ricij | ≤
C cosh#t(x)

|x|
, |R̊−R| ≤ C

|x|
.

These estimates follow in a straightforward way from (2.5) and (2.6), nev-
ertheless their derivation is carried out in some detail in the appendix.

To simplify the constants appearing in later arguments we will always
choose C such that additionally

(2.9) C ≥ max{cij , C1} .

2.4. Consequences of the asymptotics

We will start by introducing some notations: First, for any x0 ∈ R with
|x0| ≥ a we will use the shorthand {x = x0} for the submanifold R× {x0} ×
S2 of Mk (where k = 1 for x0 < 0 and k = 2 for x0 > 0). Further, for r ∈ R+

and k = 1, 2 we use Mk(r) := Mk ∩ (R× {x : |x| ≥ r} × S2) to denote the
part of Mk that lies between {|x| = r} and infinity. We also set M(r) :=
M1(r) ∪M2(r).

Lemma 2.6. For any r ∈ [a,∞) there exists βr > 1 and αr < 1 such that
on M(r)

g̊αr ≺ g ≺ g̊βr

and one can choose βr and αr such that βr is decreasing in r and αr is
increasing in r and βr, αr → 1 as r →∞.

Proof. We first show the existence of a suitable αr. Let {ei}3i=0 be a g̊-
orthonormal basis for TpM(r) and let v = viei be such that g̊α(v, v) ≤ 0. We
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may w.l.o.g. assume
∑3

i=0 |vi|2 = 1. Now, g̊α(v, v) ≤ 0 gives

(2.10) α|v0|2 ≥
3∑
i=1

|vi|2 = 1− |v0|2.

Then

g(v, v) = g̊(v, v) + h(v, v) = −|v0|2 +

3∑
i=1

|vi|2 + h(v, v)(2.11)

≤ (α− 1)|v0|2 + h(v, v) ≤ (α− 1)|v0|2 +
16C

|x(p)|

≤ (α− 1)|v0|2 +
16C

r
.

Now if α < 1 we can use |v0|2 ≥ 1
α+1 to further estimate

g(v, v) ≤ α− 1

1 + α
+

16C

r
.

Thus, setting αr <
1− 16C

r

1+ 16C

r

< 1 guarantees g(v, v) < 0 and since
1− 16C

r

1+ 16C

r

→ 1

as r →∞ and is strictly decreasing we can choose αr to be increasing and
αr → 1.

For βr we note that it suffices to show that g̊βr(v, v) ≥ 0 implies g(v, v) >
0. Now g̊β(v, v) ≤ 0 gives 1−

∑3
i=1 |vi|2 = |v0|2 ≤ 1

β

∑3
i=1 |vi|2. So we have

g(v, v) = g̊(v, v) + h(v, v) ≥ −|v0|2 +

3∑
i=1

|vi|2 − |h(v, v)|(2.12)

≥ (1− 1

β
)

3∑
i=1

|vi|2 − 16C

r
≥

1− 1
β

1 + 1
β

− 16C

r
.

This implies the existence of a suitable βr. �

This allows us to bound the time it takes for the entire S2-factor to
be contained in the future of a point depending on how far out (in the
x-direction) this point lies.

Lemma 2.7. For any r ∈ [a,∞) there exists a time τr such that for any
p ∈Mk(r)

{t ≥ t(p) + τr} × {x(p)} × S2 ⊆ I+(p),

τr is decreasing in r and τr → 0 as r →∞.
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Proof. Let γ̄ : I → S2 be a unit speed geodesic (in S2) starting at πS2(p) and
let αr be the constant from the previous lemma. Since |x(p)| ≥ r the curve
γ(s) := (t(p) + 1√

αr cosh(r)s, x(p), γ̄(s)) is causal for g̊αr , hence timelike for g

by Lemma 2.6. Noting that S2 has a finite diameter of π proves the claim
for τr := π√

αr cosh(r) . This is decreasing and goes to zero as r → 0 because αr
is increasing and αr → 1. �

We also note the following consequence for null vectors.

Lemma 2.8. Let qij, i, j = 0, . . . , 3, be smooth functions on U ⊆M1 ∪M2

satisfying the asymptotics |qij | ≤ C cosh#t(x)
|x| (e.g., qij = hij , Γ̊

x
ij − Γxij , R̊icij −

Ricij , . . . ). Then there exists a constant c > 0 such that for any null vector
v ∈ TU we have

(2.13) |qijvivj | ≤
c

|x|
(|vx|2 + |v̄|2S2),

where vi denotes the components of v in one of the charts ψ specified in
Remark 2.5.

Proof. Let βa be as in Lemma 2.6. Then v being null implies g̊αa(v, v) > 0,
which gives the estimate |vt|2 < 1

αa cosh2(x)
(|vx|2 + |v̄|2S2). Further, note that

in either chart ψ on S2 one always has |vθ| ≤ |v̄|S2 and |vφ| < 2|v̄|S2 , which
gives the estimates,

|vi||vj | ≤ 1

2
(|vi|2 + |vj |2) ≤ 4(|vx|2 + |v̄|2S2) ,(2.14)

|vt||vj | ≤ 1
√
αa cosh(x)

√
|vx|2 + |v̄|2S2 |vj |(2.15)

≤ 5

2

1
√
αa cosh(x)

(|vx|2 + |v̄|2S2)

for i, j 6= t. Hence

|qijvivj | ≤
∑
i,j 6=t

C

|x|
|vi||vj |+ 2

∑
j 6=t

C cosh(x)

|x|
|vt||vj |(2.16)

+
C cosh2(x)

|x|
|vt|2 ≤ c

|x|
(|vx|2 + |v̄|2S2)

for c = (36 + 15√
αa

+ 1
αa

)C. �
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Finally we want to study maximizing null curves. Generally we say that
a null curve γ : I →M is a future (or past) null ray if I = [a, b) and γ is
maximizing (i.e., its image is achronal) and future (resp. past) directed and
future (resp. past) inextendible. We say that a null curve γ : I →M is a null
line if I = (a, b) and γ is maximizing and inextendible in both directions.

Lemma 2.9 (Null rays must run to infinity). Let γ : I →M be a future
null ray. Then γ is eventually contained in one of the Mk’s and |x(γ(s))| →
∞ as s→ b.

Proof. If q∈γ∩A, then γ must eventually leave the compact set A\(I+(q)∪
I−(q)) and never return to it, but since γ is achronal, that means that
γ cannot return to A at all, i.e., it is contained in Mk, say M2. So we
may assume γ(0) = (t0, x0, ω0) ∈M2 and x0 = a. For any r > 0 the set
[t0, t0 + π√

αa
+ τa]× [a, r]× S2 is compact, so γ must leave it. Since γ is

future directed, we must have t > t0 along γ. Moreover, by applying, first,
Lemma 2.3, then, Lemma 2.7, together with Lemma 2.6, we see that we
must have t < t0 + π√

αa
+ τa along γ, otherwise the achronality of γ would

be violated. It follows that γ must cross x = r. �

Lemma 2.10. There exists r > 0 such that for any null geodesic γ ⊆M1(r)
one has γ̈x > 0, i.e., γ̇x can change sign at most once.

Proof. By the geodesic equation and the estimate (2.13) we have

γ̈x = −Γxij γ̇
iγ̇j ≥ −Γ̊xij γ̇

iγ̇j − |(̊Γxij − Γxij)γ̇
iγ̇j |(2.17)

≥ cosh(|x|) sinh(|x|)|vt|2 − c

|x|
(|γ̇x|2 + | ˙̄γ|2S2)

Finally, γ being null implies g̊βr(γ̇, γ̇) < 0, which gives

|γ̇t|2 >
1

βr cosh2(x(γ))
(|γ̇x|2 + | ˙̄γ|2S2),

so

γ̈x >

(
1

βr
tanh(|x|)− c

|x|

)
(|γ̇x|2 + | ˙̄γ|2S2)(2.18)

>

(
1

βr
tanh(r)− c

r

)
(|γ̇x|2 + | ˙̄γ|2S2) > 0

for r large. �
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Corollary 2.11. Let r > 0 be such that the previous Lemma holds. Then
any null geodesic γ : [a, b)→M1(r) with lims→b x(γ(s)) = −∞ may be
parametrized with respect to the x-coordinate.

Proof. Let γ : [a, b)→M be a null geodesic with image in M1(r). Lemma
2.10 shows that γ̇x is strictly increasing, so if γ̇x(s0) ≥ 0 for any s0 ∈ [a, b)
then γ̇x|[s0,b) ≥ 0 and hence x(γ|[s0,b)) ≥ x(γ(s0)). This contradicts
lims→b x(γ(s)) = −∞. Thus s 7→ x(γ(s)) is strictly monotonically decreas-
ing and so there exists a reparametrization γ̃ : (−∞, x(γ(a))]→M1(r) of γ
with x(γ̃(s)) = s. �

Lemma 2.12. Any future (or past) null ray γ : [0, a)→M is future (or
past) complete.

Proof. By the proof of Lemma 2.9 for any r > 0 γ is eventually contained
in either M1(r) or M2(r) and |x(γ(s))| → ∞ as s→ a. For now, look at
the case where γ is eventually contained in M1(r) (for some large r, at
least r ≥ r(1) from the previous Lemma). We may assume γ : [0, a)→M1(r)
and |γ̇x(0)| = 1 and we have to show that a =∞. By the arguments in
Corollary 2.11 we have γ̇x(0) < 0 and s 7→ γ̇x(s) is strictly increasing, so
|γ̇x(s)|2 ≤ 1 for all s. But this gives |x(γ(s))− x(γ(0))| ≤ |s|, contradicting
x(γ(s))→ −∞ as s→ a if a <∞. The case of the end contained in M2(r) is
analogous (note that the analogues to Lemma 2.10 and Corollary 2.11 show
γ̈x < 0 and γ̇x > 0 on M2(r)). �

Lemma 2.13 (Angular velocities go to zero for null lines). Assume
the null energy condition holds, i.e., Ric(X,X) ≥ 0 for all null vectors X.
For any ε > 0 there exists r(ε) such that | ˙̄γ|S2 < ε on M1(r(ε)) for any null
line γ : I →M with |γ̇x| ≤ 1 on M1(r(ε)).

Proof. Since γ is complete by Lemma 2.12 the Raychaudhuri equation ap-
plied to γ (affinely parametrized) implies that Ric(γ̇, γ̇) = 0 along γ (else γ
would contain a pair of conjugate points). This condition does not change
under reparametrization of γ. We now use R̊ic(γ̇, γ̇) = −g̊(γ̇, γ̇) + 2| ˙̄γ|2S2 and
(2.13) to estimate
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0 = Ric(γ̇, γ̇) ≥ R̊ic(γ̇, γ̇)− c

|x(γ(s))|
(|γ̇x|2 + | ˙̄γ|2S2)(2.19)

≥ −g̊(γ̇, γ̇) + 2| ˙̄γ|2S2 −
c

|x(γ(s))|
(1 + | ˙̄γ|2S2)

≥ −g(γ̇, γ̇) + 2| ˙̄γ|2S2 −
2c

|x(γ(s))|
(1 + | ˙̄γ|2S2)

= 2| ˙̄γ|2S2 −
2c

|x(γ(s))|
(1 + | ˙̄γ|2S2).

So

(2.20)

(
2− c

|x(γ(s))|

)
| ˙̄γ|2S2 ≤

c

|x(γ(s))|

from which the claim follows. �

3. Proof of the main results

Throughout this section we will frequently make use of the null energy condi-
tion, Ric(X,X) ≥ 0 for all null vectors X. This assumption enters in Propo-
sition 3.5 (and thus Remark 3.6) via Lemma 2.13 and in Theorem 3.9 via
both Remark 3.6 and [4, Theorem IV.1]. All further results, in particular all
of subsection 3.2, build upon Theorem 3.9.

3.1. Constructing a foliation by totally geodesic null
hypersurfaces

Lemma 3.1. Let p ∈Mk and x0 ∈ (−∞,−a] ∪ [a,∞). Then I±(p) ∩ {x =
x0} 6= ∅.

Proof. Let w.l.o.g. p ∈M1 and first consider x0 ∈ (−∞,−a]. Then this is
clearly true for any g̊α, hence by Lemma 2.6 also for g. Since {x = −a} ⊆
∂A ⊆ A, condition (a2) from Def. 2.4 then shows that I±(p) ∩M2 6= ∅. Note
that this also must even imply I±(p) ∩ {x = a} 6= ∅ from which the claim
follows for x0 ∈ [a,∞) by the same argument as above. �

Lemma 3.2. For any p ∈M1 there exists a future null ray γp : [0, b)→M
such that γp is eventually contained in M2.
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Proof. By Lemma 3.1 and causality, for each positive integer n ∈ [a,∞),
{x = n} 6= I+(p) ∩ {x = n} 6= ∅, so there exist qn ∈ ∂J+(p) ∩ {x = n}. Ev-
ery qn is the future endpoint of a maximizing null geodesic γn ⊆ ∂J+(p)
which must end in p because J+(p) is closed. Hence, there exists a limit
curve γ starting at p that is maximizing and inextendible (because the qn run
off to infinity). It is eventually contained in M2 because by the ‘no turning
back’ lemma (Lemma 2.10) γn ∩ {x = −r} = ∅ for r large, so |x(γ(s))| → ∞
as s→∞ (see Lemma 2.9) implies x(γ(s))→∞. �

This allows us to construct null lines:

Proposition 3.3. For any u ∈ R there exists a complete null line ηu :
(−∞,∞)→M with past end eventually contained in M1 and future end
eventually contained in M2 and t(ηu(s))→ u as s→ −∞.

Proof. Let u ∈ R, fix any ω0 ∈ S2 and set pn := (u,−n, ω0) ∈M1. Then
by Lemma 3.2 there exist maximizing future inextendible null curves γn :
[0,∞)→M starting at pn that are eventually contained inM2. We now show
that the sequence γn contains an accumulation point. Let tn,m be the maxi-
mal t-coordinate of the set γn ∩ {x = −m} 6= ∅ for n ≥ m. Clearly tn,m ≥ u
for n ≥ m. By Lemmas 2.6, 2.1 (and Remark 2.2) and 2.7 we see that

tn,m ≤ u+ τm + π√
αm
− 2 tan−1(e−n)√

αm
< u+ τm + π√

αm
< c (because all points

p in {x = −m} with larger t-coordinate belong to I+(pn)). Thus the sequence
{tn,m}n≥m has an accumulation point for m large.

By the no turning back lemma, for large enough m each γn meets {x =
−m} in a unique point. We reparametrize such that this point is always
γn(0).

Thus there exists a limit curve ηu which is maximizing and both past
and future inextendible, hence complete by Lemma 2.12. Since γn|[0,∞) ⊆
{x ≥ −m} ∪A ∪M2 the same holds for γ|[0,∞), so the future end of γ is
eventually contained in M2 (by a similar argument to Lemma 3.2). And
since γn|[an,0] ⊆ {x ≤ −m} ⊆M1 the past end of γ must lie in M1.

Finally, we need to argue that t(ηu(s))→ u as s→ −∞. Since t(γn) ≥
u (as long as γn remains in M1) the same holds for t(ηu). Assume now
that t(ηu(s))→ u1 with u1 > u. This implies that t(ηu(s)) > u1 > u+ ε for
all s. But this is a contradiction to tn,m ≤ fαm(n−m,u,−n) + τm = τm +
π√
αm

(tan−1(e−m)− tan−1(e−n)) + u < u+ ε for m large and n ≥ m. �

While the construction above depends on the choice of ω0 ∈ S2 and
hence is not unique, we are now going to argue that any null line η with
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t(η(s))→ u is contained in a totally geodesic null hypersurface Nu that only
depends on u. We first note the following:

Proposition 3.4. Given two past inextendible causal curves η1, η2 :
(−∞, 0]→M with past end contained in M1, lims→−∞ x(ηi(s)) = −∞ and
lims→−∞ t(η1(s)) > lims→−∞ t(η2(s)) one has η1 ⊆ I+(η2).

Proof. Use Lemma 2.7, note that τr → 0 as r →∞ and that by assumption
|x(ηi(s))| → ∞ as s→ −∞. �

Proposition 3.5. Let η1 : (−∞,∞)→M be a null line and η2 : (−∞, b]→
M be a past null ray, both with past end contained in M1, such that
lims→−∞ t(η1(s)) = lims→−∞ t(η2(s)). Then η1 ⊆ I+(η2). If η2 extends to
a null line this further implies η1 ⊆ ∂J+(η2) and vice versa.

Proof. We may assume that, far enough out, both curves are parametrized
with respect to the x-coordinate, so |η̇x1,2| = 1. We also note that by Lemma
2.13 since η1 is assumed to be maximizing and both future and past inex-
tendibile we have that | ˙̄η1(s)|2S2 ≤ 1.

We will first show that η1 ⊆ I+(η2). This follows immediately if we can
find r > 0 such that η1|(−∞,−r] can be approximated by curves δη1 ⊆ I+(η2).
We are now going to construct such approximating curves.

To do this we estimate |g(t1,x,θ,φ) − g(t2,x,θ,φ)| in terms of |t1 − t2|. Since g̊
is independent of t this is just the difference of the corresponding h-terms and
and 1

cosh(x) |∂thij | ≤
C cosh#t(i,j)

|x|2 , (2.13) gives (assuming v is null and satisfies

the same estimates as η̇1)

|h(t1,x,θ,φ)(v, v)− h(t2,x,θ,φ)(v, v)| ≤ |∂thij ||vi||vj ||t1 − t2|(3.1)

≤ 2c cosh(x)

x2
|t1 − t2| .

For a function f > 0, ḟ > 0 (which will be determined later), we define
the curve δη1 := (ηt1(s) + δ + δf(s), s, η̄1(s)). Clearly these curves approxi-
mate η1. And by the above and η1 being null we may estimate

gδη1(s)(η̇1(s), η̇1(s)) ≤ 2c cosh(s)

s2
(δ + δf(s)).
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This, together with 1
βs cosh2(s)

≤ |η̇t1(s)|2 ≤ 2
αs cosh2(s)

, leads to

gδη1(
δη̇1,

δ η̇1)(3.2)

≤ 2c cosh(s)

s2
(δ + δf(s)) + 2δgδη1(η̇1, (ḟ , 0, 0̄)) + δ2ḟ2gtt

≤ 2c cosh(s)

s2
(δ + δf(s)) + 2δg̊(η̇1, (ḟ , 0, 0̄)) + |2δḟhitη̇i1|

≤ 2c cosh(s)

s2
(δ + δf(s))− 2δ cosh2(s)√

βs cosh(s)
ḟ(s) + |2δḟhitη̇i1| .

Finally, |hitη̇i1| ≤ |htt||η̇t1|+
∑

i 6=t |hit| ≤
( √

2√
αs

+ 3
)
C cosh(s)
|s| ≤ 5C cosh(s)

|s| for s

large enough to ensure αs >
1
2 . So

(3.3) gδη1(
δη̇1,

δ η̇1) ≤ δ cosh(s)

(
2c

s2
(1 + f(s))− 2√

βs
ḟ(s) +

5C

|s|
ḟ(s)

)
Now if f(s) = |s|−κ with 0 < κ < 1 we have that f is bounded by one

and ḟ(s)→ 0 slower than 1
s2 as s→ −∞. So there exists r (independent

of δ) such that δη1|(−∞,−r] is timelike. Since by construction lim t(δη1(s)) =

lim t(η1(s)) + δ = lim t(η2(s)) + δ Proposition 3.4 implies δη1 ⊆ I+(η2).
If both curves are null lines, we may apply the same argument to η2

to get get η1 ⊆ I+(η2) and η2 ⊆ I+(η1). From this we see that I+(η2) ⊆
I+(I+(η1)) = I+(η1), hence η1 ∩ I+(η2) = ∅ by achronality of η1, proving
the claim. �

Remark 3.6. Note that this implies that for any future directed null
line η with past end contained in M1 the set ∂J+(η) depends only on
lims→−∞ t(η(s)). In particular for two lines ηu,ω1

and ηu,ω2
constructed as

in Proposition 3.3 one has ∂J+(ηu,ω1
) = ∂J+(ηu,ω1

) =: ∂J+(ηu).

Proposition 3.7. For any u ∈ R and any x0 ∈ (−∞,−a] ∪ [a,∞) the set
∂J+(ηu) ∩ {x = x0} ⊆ R× {x0} × S2 is a graph over S2 with continuous
graphing function Tu,x0

: S2 → R. In particular, it is connected.

Proof. Let π : {x = x0} ≡ R× {x0} × S2 → S2 be the projection onto S2

and define S := ∂J+(ηu) ∩ {x = x0}. Being the intersection of an achronal
locally Lipschitz hypersurface with a timelike hypersurface, S is itself an
achronal locally Lipschitz hypersurface in {x = x0}. Clearly, π|S is injec-
tive since S is achronal and ∂t is timelike. Hence we may define Fu,x0

:=
(π|S)−1 : π(S) ⊆ S2 → S. Next we will argue that S is actually compact: Let
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(t0, x0, ω0) ∈ S. Then by Lemma 2.7, any p ∈ {x = x0} with t(p) < t0 − τ|x0|
lies in I−(S) and any p ∈ {x = x0} with t(p) > t0 + τ|x0| lies in I+(S). So
by achronality S ⊆ [t0 − τ|x0|, t0 + τ|x0|]× {x0} × S2, hence it must be com-
pact. This implies that πS : S → π(S) ⊆ S2 is actually a homeomorphism
onto its image. In particular π(S) is compact and Fu,x0

is continuous. Since
S is itself a two dimensional (topological) manifold, invariance of domain
implies that π|S : S → S2 is an open map. Hence π(S) = S2.

Thus, Fu,x0
is a homeomorphism, and hence S is homeomorphic to S2,

in particular connected. The graphing function Tu,x0
: S2 → R, defined via:

Tu,x0
(ω) = t(Fu,x0

(ω)) is clearly continuous. �

Corollary 3.8. For any u ∈ R the set ∂J+(ηu) has only one connected
component.

Proof. Any point in ∂J+(ηu) lies on a past inextendible achronal null geo-
desic γp contained in ∂J+(ηu). By the time dual of Lemma 2.9 we know
that γp eventually enters M1 or M2 and hence meets {x = x0} for some
x0 ∈ (−∞,−a] ∪ [a,∞). Now since ηu meets every {x = const.} slice and
{x = x0} ∩ ∂J+(ηu) is connected, p lies in the same connected component
as ηu. Since this is true for every p, connectedness follows. �

Theorem 3.9. For any u ∈ R there exists a smooth closed achronal totally
geodesic null hypersurface Nu such that there exists a null geodesic generator
η with u = lims→−∞ t(η(s)). Further lims→−∞ t(η(s)) is independent of the
choice of the null generator η and determines Nu uniquely. We have Nu =
∂J+(η) = ∂J−(η).

Proof. Let ηu be any of the null lines from Prop. 3.3. Note that by Lemma
2.12 the null geodesic generators of ∂J+(ηu) and ∂J−(ηu) are complete, so
we may apply the null splitting theorem [4, Theorem IV.1] to ηu by [4, Re-
mark IV.2]. This gives that the connected component of ∂J+(ηu) containing
ηu is a smooth closed achronal totally geodesic null hypersurface which by
construction contains a null geodesic generator η with u = lims→−∞ t(η(s)).
Now since ∂J+(ηu) and ∂J−(ηu) are connected (the same arguments as in
Prop. 3.7 and Cor. 3.8 also give connectedness of ∂J−(ηu)) the null splitting
theorem further shows ∂J+(ηu) = ∂J−(ηu). The remaining claims follow
from Prop. 3.4 and Remark 3.6. Hence, Nu := ∂J+(ηu) is the null hypersur-
face we were looking for. �

Theorem 3.10. For any p ∈M there exists a unique up ∈ R such that
p ∈ Nup.
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Proof. That Nu1
∩Nu2

= ∅ for u1 6= u2 is clear from Theorem 3.9. We need
to show that for any p ∈M there exists up such that p ∈ Nup . We start
by showing that there exists r > 0 such that M(r) is covered by the union⋃
u∈RNu.

Let σ = R× {x0} × {ω0} ⊆M(r) be any t-line in M(r). We define a
function f : R→ R as follows: For each u ∈ R there is an associated totally
geodesic null hypersurface Nu. By Proposition 3.7, Nu meets σ in a unique
point; let f(u) be the t-coordinate of that point. Using Proposition 3.4, one
sees (in order to avoid an achronality violation) that f is strictly increasing.

We will now argue that f is continuous and onto. Fix an interval [a, b],
and let u0 ∈ (a, b). We have f(a) < f(u0) < f(b). We first show that f is
continuous from the left, i.e., limu→u−

0
f(u) = f(u0).

To each u < u0 we have an associated null hypersurface Nu, and hence an
associated null geodesic generator ηu determined by whereNu meets σ. Note,
for u1 < u2, we have ηu2

⊂ I+(ηu1
). By considering their intersection with

σ and noting that f(a) < f(u) = t(ηu ∩ σ) < f(b), we see that as u↗ u0

the null lines ηu accumulate to a unique null line η passing through σ at
a t-coordinate t = sup{f(u) : u < u0} = limu→u−

0
f(u). By the null splitting

thorem, η determines a totally geodesic null hypersurface Nv for some v.
Then η = ηv is the null geodesic generator of Nv determined by where Nv

meets σ. Clearly we must have v ≥ u0, otherwise, by Proposition 3.4, ηu
would lie to the future of ηv for u sufficiently close to u0, which would
contradict f(u) < f(v). If it were the case that v > u0 then ηv would be in
the timelike future of ηu0

. But then, f(v) > f(u0), so by the convergence,
f(u) > f(u0) for u sufficiently close to u0, contradicting monotonicity of f .
Hence, v = u0, and we conclude that limu→u−

0
f(u) = f(u0).

A similar argument shows limu→u+
0
f(u) = f(u0). Thus for any a < c <

d < b, f is continuous on [c, d], and, since increasing, onto [f(c), f(d)]. Since
[a, b] is arbitrary, this is enough to imply the claim.

Thus, we have shown that every t-line in M(r) is covered by ∪u∈RNu,
so M(r) ⊆ ∪u∈RNu. Let now p ∈M be arbitrary. By a dual argument to
Lemma 3.2 there exists a past inextendible maximizing ray γp that is eventu-
ally contained in M1(r) ⊆ ∪u∈RNu. Now for any s0 with γp|(−∞,s0] ⊆M1(r)
either γp|(−∞,s0] ⊆ Nup for up := lims→−∞ t(γp(s)), then p ∈ Nup since Nu is
totally geodesic and we are done. Or there exists u 6= up with γp|(−∞,s0] ∩
Nu 6= ∅. If u > up this contradicts achronality of γp because by Prop. 3.4
Nu ⊆ I+(γp). If u < up this contradicts achronality of Nu because γp ⊆
I+(Nu). �



i
i

“3-Galloway” — 2019/11/9 — 22:06 — page 421 — #19 i
i

i
i

i
i

Rigidity of asymptotically AdS2 × S2 spacetimes 421

Remark 3.11. From this we get the following structure: For any u ∈ R the
spacetime M is the disjoint union of I+(Nu), Nu and I−(Nu). Let p ∈M ,
then p ∈ Nup for some up. If up = u, then p ∈ Nu. If up > u, then p ∈ I+(Nu)
by Prop. 3.4. Finally, if up < u, then I−(Nu) ∩Nup 6= ∅ (by the argument
in the proof of Prop. 3.4). Thus Nup ⊆ I−(Nup) since Nup ∩ ∂I−(Nu) = ∅
(because ∂I−(Nu) = Nu by Theorem 3.9 and Nu ∩Nup = ∅).

Theorem 3.12. The null hypersurfaces {Nu : u ∈ R} form a continuous
codimension one foliation of M .

Proof. Let (t, x1, x2, x3) be coordinates on some open set U with ∂t timelike.
We will show that ψ : U → R4 defined by ψ(p) := (up, x1(p), x2(p), x3(p)) is
a continuous chart on U , for which clearly {p ∈ U : up = c} = Nc ∩ U . Fur-
ther, p 7→ up is continuous on M : Let pn → p0, then the null lines ηn ⊆ Nupn
corresponding to pn accumulate to a null line η ⊆ Nup0

at p0. From this
continuity follows as in the previous proof. Finally, ψ is injective. Assume
ψ(p1) = ψ(p2), then xi(p1) = xi(p2) for i = 1, 2, 3 and it remains to show
that t(p1) = t(p2). If not, w.l.o.g. t(p1) > t(p2) so, by t being the time coor-
dinate, p1 ∈ I+(p2) which contradicts up1 = up2 by achronality of the Nu’s.
From this invariance of domain implies that ψ is a homeomorphism, i.e., a
continuous chart. �

3.2. Obtaining a foliation by totally geodesic round 2-spheres

The same way one constructed the foliation {Nu}u∈R one may obtain a
second, transverse foliation with the same properties except that its null
geodesic generators will be past instead of future directed. We denote this
transverse foliation by {N̂v}v∈R. The idea is now to show that Su,v := Nu ∩
N̂v (if non-empty) are isometric 2-spheres and to use the asymptotics to
argue that they must even be isometric to round 2-spheres.

We will first aim to characterize the pairs (u, v) for which Su,v 6= ∅.
To do so, let ηu be a future directed null geodesic generator of Nu and
η̂v be a past directed null geodesic generator for N̂v. Then we define u∞ :=
lims→∞ t(ηu(s)) and v∞ := lims→∞ t(η̂v). These do not depend on the choice
of ηu, η̂v by an analogue of Prop. 3.5.

Lemma 3.13. Let (u, v) ∈ R2. Then the following are equivalent:

(i) Su,v 6= ∅,

(ii) u < v and u∞ > v∞,
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(iii) any (future directed) null geodesic generator of Nu starts in I−(N̂v)
and ends in I+(N̂v),

(iv) any null geodesic generator of Nu meets Su,v exactly once.

Proof. We begin by showing that (i) implies (ii). If Su,v 6= ∅ then there ex-
ists a (future directed) null geodesic generator ηu of Nu with ηu ∩ N̂v 6= ∅.
Since ηu intersects N̂v transversally and M = I+(N̂v) ∪ N̂v ∪ I−(N̂v) (by the
analogue of Remark 3.11) it intersects N̂v only once, say in ηu(s0). Because
it is future directed we have ηu|(−∞,s0) ⊆ I−(N̂v) and ηu|(s0,∞) ⊆ I+(N̂v).

So there exists r large such that ηu ∩M1(r) ⊆ I−(N̂v). Then t(ηu ∩ {x =
−r}) < t(η̂v ∩ {x = −r}) for an appropriately chosen (past directed) gener-
ator of N̂v. This gives u < v because t is decreasing along ηu and increasing
along η̂v as s→ −∞. An analogous argument in M2(r) shows u∞ > v∞.

Now, if u < v and u∞ > v∞ it immediately follows from (a slight varia-
tion of) Prop. 3.4 that any null geodesic generator of Nu starts in I−(N̂v)
and ends in I+(N̂v). This shows (iii).

If any null geodesic generator of Nu starts in I−(N̂v) and ends in I+(N̂v)
then it must intersect N̂v = ∂I+(N̂v) and hence Su,v at least once. Further,
it can intersect Su,v at most once by the same argument as in the first
paragraph. This shows (iv).

Finally, that (iv) implies (i) is obvious. �

Proposition 3.14. For any (u, v) ∈ R2 with u < v and u∞ > v∞ the set
Su,v is a totally geodesic, spacelike codimension 2 submanifold homeomorphic
to S2. Further for any two such pairs u1, v1 and u2, v2 the spheres Su1,v1 and
Su2,v2 are isometric.

Proof. That the intersection is a totally geodesic, (smooth) spacelike codi-
mension 2 submanifold follwos immediately from Nu and N̂v intersecting
transversally and being totally geodesic.

Let nu be a null vectorfield defining Nu with ∇nunu = 0. Then its flow
Φnu : R×(Nu ∩ {x = −r})→Nu is a diffeomorphism (for r sufficiently large):
By Lemma 2.9 and Corollary 2.11 every integral curve of nu intersects
Nu ∩ {x = −r} exactly once and clearly every point of Nu lies on an in-
tegral curve. Since by Lemma 3.13 any integral curve also intesects Su,v
exactly once we may rescale nu such that Φnu(1, .) : {x = −r} ∩Nu → Su,v
is a diffeomorphism. Thus Su,v is homeomorphic to S2 by Prop. 3.7.

Next we show that Su,v1 is isometric to Su,v2 if both are non-empty.
This follows by a fairly standard argument from the fact that Nu is totally
geodesic (see e.g [1, Appendix A]): We rescale nu such that Φnu

1 ≡ Φnu(1, .) :
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Su,v1 → Su,v2 is a diffeomorphism. Let X1, X2 be a basis for TpSu,v1 . We need
to show that g(Xi, Xj) = g((Φnu

1 )∗(Xi), (Φ
nu
1 )∗(Xj)). For s ∈ (0, 1] we set

Xi(s) := (Φnu
s )∗Xi. Then a straightforward computation shows LnuXi = 0.

Setting gij(s) = g(Xi(s), Xj(s)) we have

d

ds
gij = nu(g(Xi, Xj)) = g(∇nuXi, Xj) + g(Xi,∇nuXj)(3.4)

= g(∇Xinu, Xj) + g(Xi,∇Xjnu) = 0,

because the null second fundamental form of Nu vanishes since Nu is totally
geodesic. The same argument (only using N̂v instead of Nu) applies to show
that Su1,v and Su2,v are also isometric. Since one can see that any two (non-
empty) spheres Su1,v1 and Su2,v2 can be connected via finitely many steps of
this form. �

Now we will estimate the curvature of such spheres Su,v ⊆M(r) for r
large.

Proposition 3.15. For any ε > 0 there exists r (depending only on ε)
such that any (non-empty) Su,v ⊆M(r) has Gauss curvature 1− ε ≤ Ku,v ≤
1 + ε.

Proof. Let nu and n̂v be null vector fields defining Nu and N̂v, respectively.
We assume that they are normalized to nxu = n̂xv = 1. To simplify notation,
we will drop the indices u, v. Let X ∈ TS be any vector tangent to S with
|Xx|2 + |X̄|2S2 ≤ 1 and hence in our charts |Xθ| ≤ 1, |Xφ| ≤ 2. We will first
estimate |Xt|: Since X ∈ TS we have g(X,n− n̂) = 0 and X is g-spacelike,
so g̊αr(X,X) > 0, i.e., |Xt| ≤ 1√

αr cosh(x) ≤
2

cosh(x) for r large. Thus, we esti-
mate

|̊g(X,n− n̂)− gS2(X̄, n̄− ¯̂n)|(3.5)

≤ |h(X,n− n̂)|+ gS2(X̄, n̄− ¯̂n)

≤ |hij ||Xi||nj − n̂j |+ 2 sin2(θ)|n̄φ − ¯̂nφ|+ 2|n̄θ − ¯̂nθ|

≤ 6C cosh(x)

r
|nt − n̂t|+ 6C

r

3∑
j=1

|nj − n̂j |

+ 2 sin2(θ)|n̄φ − ¯̂nφ|+ 2|n̄θ − ¯̂nθ|

=
6C cosh(x)

r
|nt − n̂t|+ 6C

r

∑
j 6=θ,φ

|nj − n̂j |

+ 2 sin2(θ)|n̄φ − ¯̂nφ|+ 2|n̄θ − ¯̂nθ|.
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Using Lemma 2.13 we see that for any ε there exists r such that
|n̄|2S2 , |¯̂n|2S2 < ε2, i.e., in our charts |nφ| < 2ε, |n̂φ| < 2ε and |nθ| < ε, |n̂θ| < ε.
By Lemma 2.6 we estimate |nt|2, |n̂t|2 < 1+ε2

αr cosh2(x)
. Thus

| − cosh2(x)Xt(nt − n̂t)| ≤ 6C

r

6ε+ 2

√
1 + ε2

αr

+ 12ε.

Because n is future pointing and n̂ is past pointing we see that |nt − n̂t| =
nt + |n̂t| ≥ 2√

βr cosh(x)
, so |Xt| ≤ 1

cosh(x)

(
c
r + c′ε

)
for some c, c′. Thus for any

ε > 0 there exists r such that

(3.6) |Xt| ≤ 1

cosh(x)
ε.

Next we derive a similar estimate for |Xx|: Proceeding as before but
looking at g̊(X,n+ n̂) yields

(3.7) | − cosh2(x)Xt(nt + n̂t) + 2Xx| ≤
( c
r

+ c′ε
)

for some c, c′. We now need to estimate |nt + n̂t|. Since 1√
βr cosh(x)

≤ |nt|,
|n̂t| ≤ 1+ε√

αr cosh(x) we have

|nt + n̂t| = |nt − |n̂t|| ≤ 1

cosh(x)

(
1 + ε
√
αr
− 1√

βr

)
≤ 1

cosh(x)
ε

for r large. Combining this with (3.6) we see | cosh2(x)Xt(nt + n̂t)| < ε2 and
hence for any ε > 0 we can find r such that also

(3.8) |Xx| ≤ ε.

Note that these estimates also ensure that S is g̊-spacelike.
We now use this to estimate K: Let p ∈ S, let X,Y be a g̊-orthogonal

basis for TpS with |Xx|2 + |X̄|2S2 = 1 and denote the Riemann tensor for
(S, g|S) by RS . Then

(3.9) K(X,Y ) =
g(RS(X,Y )Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
=

g(R(X,Y )Y,X)

g(X,X)g(Y, Y )− g(X,Y )2

because S is totally geodesic in M .
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We start by estimating K(X,Y )− K̊(X,Y ) (where K̊(X,Y ) =
g̊(R̊(X,Y )Y,X)
g̊(X,X )̊g(Y,Y ) ). First note that by (3.6)

(3.10) |̊g(X,X)− 1| = |̊g(X,X)− |Xx| − |X̄|2S2 | = cosh2(x)|Xt|2 < ε

and the same for |̊g(Y, Y )− 1|, i.e., X and Y are close to being g̊-othonormal.

From |R̊ijkl −Rijkl| ≤ C cosh#t(x)
r (see Remark 2.5) and using (3.6),(3.8) for

X,Y and |Xi|, |Y i| ≤ 2 for i = θ, φ (which follows from our choice of charts
and X̄, Ȳ having unit gS2-norm) we see that

(3.11) |̊g(R̊(X,Y )Y,X)− g(R(X,Y )Y,X)| ≤ c

r

for some c > 0. Similarly, using |hij | ≤ C cosh#t(x)
r , we get |g(X,Y )| =

|g(X,Y )− g̊(X,Y )| < c
r and

(3.12) 1 +
c

r
+ ε ≤ |g(X,X)|, |g(Y, Y )| ≤ 1− c

r
− ε

(note that g̊(X,X), g̊(Y, Y )∈(1−ε, 1+ε)). Putting these estimates together
shows that indeed for any ε there exists r such that

|K(X,Y )− K̊(X,Y )| ≤ ε

as long as S ⊆M1(r) ∪M2(r).
To estimate K̊(X,Y ) note that because g̊ = gAdS2

+ gS2 , KS2 = 1 and
(3.6),(3.8) we have

|̊g(R̊(X̄, Ȳ )Ȳ , X̄)− 1| = |̊g(X̄, X̄ )̊g(Ȳ , Ȳ )− g̊(X̄, Ȳ )2 − 1|(3.13)

≤ |̊g(X,X )̊g(Y, Y )− g̊(X,Y )2 − 1|+ cε.

So for any ε > 0 we can find r such that

(3.14) |̊g(R̊(X̄, Ȳ )Ȳ , X̄)− 1| < ε.

Finally,

|K̊(X,Y )− 1| =
∣∣̊g(R̊(X,Y )Y,X)− 1

∣∣(3.15)

≤
∣∣̊g(R̊(X̄, Ȳ )Ȳ , X̄)− 1

∣∣+ cε < (c+ 1)ε

and we are done. �
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Theorem 3.16. The family {Su,v}(u,v)∈Q, where Q = {(u, v) ∈ R2 : u <
v and u∞ > v∞}, gives a continuous foliation of M by totally geodesic round
2-spheres.

Proof. We start by showing that Su,v is isometric to S2. Let r0 be large
enough for Lemma 2.10 to apply. We will show that for any (u, v) ∈ Q
and r > a there exists u0 ≡ u0(v, r) such that [u, u0]× {v} ⊆ Q and Su0,v ∩
M1(r0) ⊆M1(r). For any past null generator ηu : (−∞, xp]→M ofNu start-
ing in a point p = (tp, xp, ωp)∈M1(r0) with |xp| = r we have ηu(s)∈J−((tp +
τr, xp, ω(ηu(s))) by Lemma 2.7. So, since such a generator must be contained
inM1(r), we get ηu(s) ∈ I−g̊βr ((tp + τr, xp, ω(ηu(s))) by Lemma 2.6, and hence
by Lemma 2.1

(3.16) t(ηu(s)) <
2√
βr

(tan−1(es)− tan−1(e−r)) + tp + τr

if ηu is parametrized with respect to the x-coordinate. Letting s→ −∞ we
get

(3.17) tp ≥ u+
2√
βr

tan−1(e−r) + τr.

A similar argument applied to η̂v : (−∞, xp]→M , using that η̂v(s) ∈
J+((tp − τr, xp, ω(η̂v(s))), shows

(3.18) tp ≤ v −
2√
βr

tan−1(e−r)− τr.

So if p ∈ Su,v, then

(3.19)
4√
βr

tan−1(e−r) + 2τr ≤ v − u.

Hence by choosing u0(v, r) < v as close to v as necessary it follows that
Su0,v ∩M1(r0) ⊆M1(r). That [u, u0]× {v} ⊆ Q is clear from u 7→ u∞ being
increasing, so ū∞ > u∞ > v∞ for all ū > u.

Now connectedness of Su0(r),v implies that even Su0(r),v ⊆M1(r) for any
r > r0. Then by Prop. 3.15 the Gauss curvature Ku0(r),v → 1 uniformly on
Su0(r),v as r →∞. But because all the Su0(r),v are isometric to Su,v, their
Gauss curvatures (in corresponding points) have to be equal, so Ku,v =
1. Together with Su,v being homeomorphic to S2 this shows that Su,v is
isometric to the round 2-sphere.
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It remains to show that {Su,v}(u,v)∈Q is a continuous foliation. This
follows from the Frobenius theorem if we can show that p 7→ TpSup,vp is a
continuous distribution (it clearly is integrable, because it consists of tangent
spaces to (smooth) submanifolds). Since TpSup,vp = span{np, n̂p}⊥, where
np and n̂p denote the future pointing null tangents (normed w.r.t. some
Riemannian background metric) to Nup and N̂vp in p, it is sufficient to show
continuity of p 7→ np and p 7→ n̂p. Let pk → p0 and let ηn be the unique null
geodesic generators of Nupk

with η̇k(0) = npk . Then the ηk accumulate to a
null line η0 passing through p0 with η ⊆ Nup0

. Hence npk = η̇k(0)→ η̇0(0) =
np0 . �

4. Asymptotically AdS2 × S2 spacetimes with parallel
Ricci tensor

In this section we will use the assumption of ∇Ric = 0 to first obtain a
general local splitting result, see Thm. 4.1, and finally a full rigidity result,
see Thm. 4.4. For k > 0 we denote by AdS2(k) and dS2(k) two dimensional
anti-de Sitter space with scalar curvature −2k and two dimensional de Sit-
ter space with scalar curvature 2k, respectively. Similarly S2(k) and H2(k)
denote the two dimensional sphere with scalar curvature 2k and two dimen-
sional hyperbolic space with scalar curvature −2k.

Theorem 4.1. Let (M, g) be a (four dimensional, connected) spacetime
with ∇Ric = 0. If R = 0 and Ric is non-degenerate, then there exists k > 0
such that any p ∈M has a neighbourhood U that is isometric to an open
subset V of AdS2(k)× S2(k) or dS2(k)×H2(k).

Proof. First note that Ric cannot be proportional to the metric because
R = 0 but Ric 6= 0 because it is non-degenerate. So [13, Lemma 3.1] applies
showing that for any open simply connected domain (D, g) ⊆ (M, g) either
the holonomy group is non-degenerately reducible or there exists a covari-
antly constant null vector field X. But by the definition of Ric one clearly
has Ric(X,Y ) = 0 for any vector field Y if ∇X = 0. So the existence of a co-
variantly constant vector field contradicts the non-degeneracy of Ric. Hence
the holonomy group of (D, g) is non-degenerately reducible.

Now [16, Prop. 3] gives that any point p in M has a neighbourhood U
that is isometric to a direct product, say U = L× P , where L is Lorentzian
and P is Riemannian. First note that RicL and RicP are non-degenerate (as
bilinear forms on TL× TL, respectively TP × TP ): By the direct product
structure Ric(X,Y ) = 0 for X ∈ TL and Y ∈ TP so if RicL or RicP were
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degenerate, then so would be Ric. Thus, dim(L) > 1 and dim(P ) > 1, so
the only possibility is dim(L) = 2 = dim(P ). Neither L nor P splits, since
any further splitting would give a one-dimensional factor contradicting non-
degeneracy of Ric. So both RicL and RicP have to be proportional to the
respective metrics on L and P , i.e., RicL = λLgL and RicP = λP gP with
λL + λP = 0. Setting k := |λP | = |λL|, non-degeneracy of Ric implies k > 0.
So we have shown that for any p ∈M there exists a k and a neighbourhood
U that is isometric to an open subset V of AdS2(k)× S2(k) (if λP > 0) or
dS2(k)×H2(k) (if λP < 0). Clearly λP , and thus k, is unique and locally
constant, hence constant. �

Remark 4.2. It is actually sufficient to assume that there exists a point
p0 such that Ricp0 is non-degenerate and a sequence pn such that Rpn → 0.
This is obvious from the fact that ∇Ric = 0 implies ∇R = 0, so R = const.,
and that if Ricp0(Xp0 , .) = 0 then Ric(X, .) = 0 for any X that is the parallel
transport of Xp0 along any curve.

If (M, g) is asymptotically AdS2 × S2, then λP = 1 and the structure
obtained in the previous section is consistent with this local product struc-
ture.

Corollary 4.3. Let (M, g) be asymptotically AdS2 × S2 (in the sense of
Def. 2.4) and assume that the null energy condition holds and that ∇Ric = 0.
Then any p ∈M has a neighbourhood U that is isometric to an open subset
V ≡ L× P of AdS2 × S2 (with metric g̊). Further, the tangent space TqL is
spanned by the vectors nq, n̂q and TqP = TqSuq,vq for all q ∈ V .

Proof. Clearly Rpn → 0 as x(pn)→∞ by the asymptotics (2.8). Also, there
must exist a point p where Ricp is non-degenerate: Else we can find a se-
quence pn ∈M2 with x(pn)→∞ and vectors Xn ∈ TpnM with Ric(Xn, .) =
0. We may assume that these Xn are normed to cosh2(x(pn))|Xt

n|2 + |Xx
n |2 +

|X̄n|2S2 = 1, so setting Yn := Xt
n∂t −Xx

n∂x + X̄n we have R̊ic(Xn, Yn) = 1
and |Ric(Xn, Yn)− R̊ic(Xn, Yn)| ≤ C

|x(pn)| . This contradicts Ric(Xn, .) = 0 for

large enough x(pn).
Thus, by Remark 4.2, we can apply Theorem 4.1, to get U ∼= L× P . We

have that n, n̂ ⊆ TL: If not, then 0 = gL(n, n) + gP (n, n) and gP (n, n) 6=
0, so −gL(n, n) = gP (n, n) > 0 because gP is Riemannian. So Ric(n, n) =
−kgL(n, n) + kgP (n, n) 6= 0, contradicting Ric(n, n) = 0 (which follows from
the NEC and n, n̂ being tangent to null lines). Thus TqL is spanned by nq, n̂q
and TqSuq,vq = span{nq, n̂q}⊥ = TqP . Finally, because Su,v is isometric to
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the round 2-sphere by Theorem 3.16, we must have λP = 1, so L× P ⊆
AdS2 × S2. �

Finally, the fact that the spheres Su,v are isometric to S2 and hence
geodesically complete allows us to globalize this splitting:

Theorem 4.4. Let (M, g) be asymptotically AdS2 × S2 (in the sense of
Def. 2.4) and assume that the null energy condition holds and that ∇Ric =
0.Then M is isometric to AdS2 × S2.

Proof. From the local splitting in Cor. 4.3 we see that the foliation F :=
{Su,v}(u,v)∈Q from Theorem 3.16 must be smooth. Further, the distribution

q 7→ span{nq, n̂q} = TqS
⊥
uq,vq ⊆ TqM must be smooth as well and hence by

the Frobenius theorem give rise to a smooth foliation K with leaves per-
pendicular to the leaves of F . Also, from the local product structure we
immediately see that both of these foliations are totally geodesic (i.e., their
leaves are totally geodesic).

For F we know even more: Note that the leaves are exactly the spheres
Su,v which are totally geodesic submanifolds isometric to (S2, dΩ2) by Theo-
rem 3.16 and hence even geodesically complete. Finally, note the M is simply
connected because it is homeomorphic to R2 × S2 (for any x0 < −a the flow
Φn : R× (R× {x = x0} × S2)→M of n is a homeomorphism).

So we may apply [12, Cor. 2] to obtain that M is globally isometric to a
product L× P such that K and F correspond to the canonical foliations of
the product L× P . Since P is a leaf of F , we see that P = (S2, dΩ2). And
since L is a leaf of K it must be isometric to a non-empty open subset U of
(AdS2, gAdS2

). Further L is null geodesically complete because the only null
geodesics in Q are null geodesic generators of the achronal null hypersurfaces
Nu and N̂v, hence complete by Lemma 2.12. So all that remains is to show
that any null geodesically complete non-empty open subset U of AdS2 must
already be all of AdS2: For any p ∈ AdS2 \ U all null geodesics emanating
from p must also lie in AdS2 \ U . So if U 6= AdS2 then AdS2 \ U = AdS2

because any two points in AdS2 can be connected by a curve consisting
solely of null geodesic segments. �

Appendix A. Asymptotics for the curvature

In this appendix we give some details on the derivation of (2.7), (2.8) from
(2.5), (2.6). Throughout this appendix we use C to denote a running con-
stant.



i
i

“3-Galloway” — 2019/11/9 — 22:06 — page 430 — #28 i
i

i
i

i
i

430 G. J. Galloway and M. Graf

In general, if two pairs of functions f̊1, f1 and f̊2, f2 satisfy |f1 − f̊1| ≤
C
|x| |f̊1(x)| and |f2 − f̊2| ≤ C

|x| |f̊2(x)| on R \ [−a, a] then |f1| ≤ C|f̊1|, |f2| ≤
C|f̊2| and

(A.1) |f̊1f̊2 − f1f2| ≤
C

|x|
|f̊1(x)f̊2(x)| on R \ [−a, a].

Using this, (2.5) and the form of g̊ (note that sin(θ) is bounded away from
zero in the charts we use) allows us to estimate

| det(̊g)− det(g)| ≤ |det(̊g)−
4∏
i=1

gii|+
∑
σ 6=id

4∏
i=1

|giσ(i)|(A.2)

≤ C

|x|
cosh2(x) +

C cosh2(x)

|x|2

(
1 +

1

|x|
+

1

|x|2

)
≤ C

|x|
cosh2(x).

From this we get

(A.3)

∣∣∣∣ 1

det(̊g)
− 1

det(g)

∣∣∣∣ ≤ C

|x|
1

cosh2(x)

and using A−1 = 1
det(A)adj(A) this gives

|̊gtt − gtt| ≤ C

|x|
1

cosh2(x)
,(A.4)

|̊gti − gti| ≤ C

|x|
1

cosh(x)
and |̊gij − gij | ≤ C

|x|

for i, j 6= t. Note that these imply

|gtt| ≤ C

cosh2(x)
, |gti| ≤ C

|x|
1

cosh(x)
,(A.5)

|gii| ≤ C and |gij | ≤ C

|x|
for i 6= j.

Regarding the Christoffel symbols we note that

Γlij =
1

2
glk (∂jgki + ∂igkj − ∂kgij) .

Since only ∂xg̊tt, ∂θg̊φφ are non-zero, the estimates of all Christoffels
not containing either of those derivatives follow from (A.5) and |∂kgij | ≤
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C cosh#t(x)
|x| for (k, i, j) 6= (t, x, x), (θ, φ, φ). So we have

(A.6) |Γkij | ≤
C

|x|
cosh#t(x)

if (k, i, j) 6= (t, t, x), (x, t, t), (φ, φ, θ), (θ, φ, φ). The remaining Christoffels are
Γttx, Γxtt, Γφφθ and Γθφφ. For these, the summands appearing in |̊Γ− Γ| for
which the g̊-part does not vanish can be estimated using |∂xg̊tt − ∂xgtt| ≤
C
|x| |∂xg̊tt| ≤

C
|x| cosh2(x) (since cosh and sinh have the same behaviour at

infinity) and |∂θg̊φφ − ∂θgφφ| ≤ C
|x| |∂θg̊φφ| ≤

C
|x| by (2.6), (A.4) and (A.1).

This gives

(A.7) |̊Γkij − Γkij | ≤
C

|x|
cosh#t(x) and |Γkij | ≤ C cosh#t(x).

for these four Christoffels.
For the components Riklm of the Riemann tensor we use

Riklm =
1

2
(∂k∂lgim + ∂i∂mgkl − ∂k∂mgil − ∂i∂lgkm)(A.8)

+ gnp (ΓnklΓ
p
im − ΓnkmΓpil) .

Again, if those products always contain at least one factor that is zero
for g̊, the desired estimates follows easily from the assumption on ∂2h,
h and (A.6),(A.7). The remaining two cases are Rxtxt and Rθφθφ where

g̊tt

(
Γ̊ttxΓ̊txt − Γ̊tttΓ̊

t
xx

)
= g̊tt(̊Γ

t
tx)2 = sinh2(x) and g̊φφ

(
Γ̊φφθΓ̊

φ
θφ − Γ̊φφφΓ̊φθθ

)
=

g̊φφ(̊Γφφθ)
2 = cos2(θ), respectively. For these cases we again use A.1 (and

that sinh and cosh behave the same at infinity and that in our charts sin(θ)
is bounded away from zero).

Finally, the asymptotics for Ric and R follow from (A.4),(A.5) and the
asymptotics of Riklm using the same arguments.

Appendix B. Weakening of the null energy condition

In this appendix we wish to indicate how the results of this paper as summa-
rized in Theorems 1.1 and 1.2 continue to hold under the weaker integrated
curvature condition (1.1).

The NEC enters into the proof of Theorem 1.1 in two ways:

(i) It is used in the proof of Lemma 2.13.
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(ii) It is used in results such as Theorem 3.9 which rely on the ‘null splitting
theorem’, Theorem IV.1 in [4].

The following is sufficient to ensure that Lemma 2.13 holds under the
curvature condition (1.1).

Proposition B.1. Assume (M, g) satisfies the curvature condition (1.1).
If η : (−∞,∞)→M is a complete null line then Ric(η′(s), η′(s)) = 0 for all
s ∈ R.

Proof. This follows almost immedetiately from Corollary 3.3 in [2]. Since η is
a complete null line, it is free of conjugate points. Then, by [2, Corollary 3.3],∫ ∞

−∞
Ric(η′(s), η′(s))ds ≤ 0 .

But then the curvature condtion (1.1) implies that we have equality in the
above. In this case, [2, Corollary 3.3] further implies that Ric(η′(s), η′(s)) = 0
for all s ∈ R. �

The NEC enters into the proof of [4, Theorem IV.1] in only one place,
namely through Lemma IV.2. The following proposition shows that this
lemma remains valid under the curvature condition (1.1).

Proposition B.2. Suppose S is an achronal C0 future null hypersurface in
(M, g) whose null generators are future geodesically complete. If along each
null generator η : [0,∞)→ R the Ricci curvature satisfies (1.1) then S has
null mean curvature θ ≥ 0 in the sense of support hypersurfaces.

We refer the interested reader to [4] for the definitions of terms being
used in the statement of this proposition. The proof makes use of the fol-
lowing lemma which is proved in [3, Section 3].

Lemma B.3. Consider the intial value problem

x′′ + p(s)x = 0

x(0) = 1(B.1)

x′(0) = a

If p ∈ C∞([0,∞)) satisfies

(B.2)

∫ ∞
0

p(s)ds > a
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then the unique solution to (B.1) has a zero on [0,∞).

Proof of Proposition B.2. Given p ∈ S, let η : [0,∞)→ R be a null genera-
tor of S starting at η(0) = p. For any ε > 0, we have,

(B.3)

∫ ∞
0

Ric(η′(s), η′(s))ds > −(n− 2)ε .

By the lemma, the unique solution x=x(s) to the initial value problem (B.1),
with

(B.4) p(s) =
1

n− 2
Ric(η′(s), η′(s)) and a = −ε

satisfies x(r∗) = 0 for some r∗ ∈ (0,∞). We may assume r∗ is the first zero
of x(s).

Fix r > r∗. As in the proof of [4, Lemma IV.2], by considering ∂J−(η(r))
we obtain a smooth null hypersurface Sr defined in a neighborhood of η|[0,r)
such that Sr is a past support hypersurface for S at p.

Let θ = θ(s) be the null expansion of Sr along η|[0,r); θ satisfies the
Raychaudhuri equation [4, (II.4)]. Let y = y(s) be defined by the substitu-
tion,

y′

y
=

1

n− 2
θ(s)

with y(0) = 1. A standard computation shows that y satisfies the IVP (B.1)
with

(B.5) p(s) =
1

n− 2

(
Ric(η′, η′) + σ2

)
and a =

1

n− 2
θ(p) .

Suppose θ(0) < −(n− 2)ε. By a basic ODE comparison result we have
y(s) ≤ x(s) (up to the first zero of y), where x(s) is the solution to (B.1)+
(B.4). In particular y(s) must go to zero somewhere on [0, r∗]. This implies
that θ is not defined everywhere on this interval, which is a contradiction
since θ = θ(s) is smooth on [0, r). Thus we must have θ(0) ≥ −(n− 2)ε.
Since ε is arbitrary, this proves the proposition. �

With regard to Theorem 1.2, the additional arguments of Section 4, be-
yond those of Section 3, show that it is sufficient for the NEC, Ric(X,X) ≥ 0,
to hold for vectors X tangent to null rays. But this follows trivially from
(1.1), since, under the assumption that Ric is covariant constant, the inte-
grand is constant.
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