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curves

GIULIO CODOGNI AND FILIPPO VIVIANI

Supersymmetric curves are the analogue of Riemann surfaces in su-
per geometry. We establish some foundational results about
(Deligne-Mumford) complex superstacks, and we then prove that
the moduli superstack of supersymmetric curves is a smooth
Deligne-Mumford complex superstack. We then show that the su-
perstack of supersymmetric curves admits a coarse complex super-
space, which, in this case, is just an ordinary complex space. In the
second part of this paper we discuss the period map. We remark
that the period domain is the moduli space of ordinary abelian va-
rieties endowed with a symmetric theta divisor, and we then show
that the differential of the period map is surjective. In other words,
we prove that any first order deformation of a classical Jacobian is
the Jacobian of a supersymmetric curve.
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1. Introduction

Supergeometry is one of the first example of non-commutative geometry. In
this field, one considers spaces of some type (differentiable, complex, alge-
braic, etc...) with both commuting and anti-commuting coordinates. Super-
symmetric (or susy for simplicity) curves are the generalization in this setting
of Riemann surfaces. The main motivations for studying susy curves and
their moduli superspaces come from supersymmetric string theory, where
they play a central role.

In the first part of this paper, after some foundational material about
complex superstacks, we construct the moduli complex superstack of susy
curves and we show that it admits a coarse superspace, which turns out to
be an ordinary complex space. In the second part of the paper, we give an
algebraic description of the period map, and we prove that the differential
of the period map (whenever defined) is surjective.

Our motivation is twofold. First, we hope to help the development of
supersymmetric string theory. Secondly, we would like to point out a strong
connection between susy curves and classical moduli spaces, aiming to give
a new insight into these objects. Let us briefly go trough the results and the
organization of this paper.

In Section [2] we provide a self contained introduction to complex su-
pergeometry. We want to establish the basic definitions and notation in a
way that it is convenient for superstacks. The main novelty is the descrip-
tion of the canonical involution I' of a (complex) superspace X, and the
corresponding quotient X/I" by I'; which we call the bosonic quotient. The
bosonic quotient functor is left adjoint to the natural inclusion i of (com-
plex) spaces into (complex) superspaces; while its right adjoint is the more
familiar bosonic truncation X + Xj,os. Moreover, we introduce smooth and
étale morphisms and we investigate their behaviors with respect to the above
three functors (natural inclusion, bosonic truncation and bosonic quotient),
see Propositions [2.2] and

Taking a rather algebraic point of view, our main references are [Man97,
Chap. 4] and [Vai88]. Other references about supergeometry are [DM99],
[CCF11], [Wit19a], [LPW90] and the first section of [DW15].

Section |3|is devoted to introduce complex (resp. Deligne-Mumford com-
plex) superstacks and to prove some foundational results about them.

In Subsection [3.1] we introduce the 2-category FIBg of categories fibered
in groupoids (=CFG) over the category S of complex superspaces and the
2-category FIBs,, of CFG over the category Se, of complex spaces. The 2-
Yoneda lemma provides a fully faithful embedding of S into FIBgs and of
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Sev into FIBg, . We define a pair of adjoint 2-functors ¢ : FIBs,, — FIB and
(—)bos : FIBs — FIBs._ , which extend the functors i : Seyv — S and (—)pos :
S — Sev.

In Subsection [3.2] we introduce superstacks (resp. stacks) as a CFG over
S (resp. Sev) that satisfy descent theory with respect to the étale topology.
We prove that the 2-functors i and (—)pes restrict to the 2-subcategories of
stacks and superstacks (see Lemma, and that the CFG over § associated
to a complex superspace is a superstack and similarly for complex spaces
(see Lemma [3.5)).

In Subsection we introduce the 2-category sST (resp. sSTPM) of com-
plex (resp. Deligne-Mumford=(DM) complex) superstacks as superstacks
having a separated and representable diagonal and possessing a smooth
(resp. étale) atlas, and similarly the 2-category ST (resp. STPM) of complex
(resp. DM complex) stacks. It is then clear that the CFG over S associ-
ated to a complex superspace is a DM complex superstack, and similarly for
complex spaces. In Proposition [3.9] we prove that the two 2-functors ¢ and
(—)pos restrict to 2-functors between the 2-subcategories ST and sSTY.

In Subsection we introduce the 2-category sGR (resp. sGR®) of
complex (resp. étale complex) supergroupoids X; = Xy, and similarly the
2-category GR (resp. GR®") of complex (resp. étale complex) groupoids.
The relation between (resp. étale) complex (super)groupoids and (resp. DM)
complex (super)groupoids comes from the existence of the essentially sur-
jective realization 2-functors:

F :sGR) 5 sgT (M) Fou : GR) — gT(DOM)
all
X1:§X0l—>[X1:§X0], X1:§X0i—>[X1:§X0].

In Proposition we define the natural inclusion i : GR(Y — sGR(®Y and
the bosonic truncation (—)pes : sGR®) — GR" and we prove that they
commute with the realization functors F and F.,. Furthermore, adapting
the results of [Moe88] and [Pro96] to our setup, we deduce that the re-
strictions of the realization 2-functors F and Fg, from étale complex (su-
per)groupoids to DM complex (super)groupoids induce isomorphisms of bi-
categories sGR®* [W 1] =sSTPM and sGR[W; ]2 STPM | where sGR* [W 1]
(resp. sGR[W!]) is the localization of sGR® (resp. GR®) with respect to
the collection W (resp. We,) of weak equivalences of étale complex (su-
per)groupoids. Finally, in Theorem we define the bosonic quotient 2-
functor — /T : sGR®* — GR®" and we prove that it descend to the localization
with respect to weak equivalences of étale complex (super)groupoids, so that
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we get an induced pseudofunctor —/I" : sSSTPM — STPM which is left adjoint
to the natural inclusion functor <.
We can summarize all the results proved in Section [3|into the following

Theorem A (Propositions and Theorem ).

1) We have the following commutative diagram of 2-functors among 2-
categories
sGR <i—>GR
]-'i Tom if
sST W—)ST
(—)bos

and moreover (—)pos 1S right adjoint to i.

2) We have the following commutative diagram of pseudofunctors among

bicategories

_/[‘

//_\

sGR® . PGRe

\L/

(=)bos
F Fov
-/T
sGRE[W 1] 2 sSTPM « S8TPM = GReYIWV, ]
e

(=)pos
and moreover (—)pos is Tight adjoint to i and — /T is left adjoint to i.

We are not able to define the bosonic quotient 2-functor (or pseudofunc-
tor) from (general) complex superstacks to (general) complex stack. There
are several reasons which prevented us in defining such a functor. First of
all, we do not know how to extend the bosonic quotient functor /T : § — Sey
to CFG’s, the reason being that /T" does not admit a left adjoint functor
(since it does not preserve fibre products), see Remark If we, instead, try
to define the bosonic truncation using atlas (and therefore passing through
complex supergroupoids), we are stacked with two further problems. First
of all, we do not know if the bicategory of complex (super)stacks is the
localization of the bicategory of complex (super)groupoids with respect to
weak equivalences since the arguments of [Moe88| and [Pro96] seem only to
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work for étale (super)groupoids and DM (super)stacks. And secondly, the
bosonic quotient of a complex supergroupoids does not seem to be a complex
groupoids (and not even a groupoid at all!) due to the fact that the bosonic
quotient does not preserve fiber products and smoothness (see Remark.
We think that these problems deserve further investigation.

Note that our results can easily be extended from (DM) complex su-
perstacks to (DM) algebraic superstacks. We have chosen to work in the
category of complex superspaces/superstacks since the construction of the
superstack of susy curves (see the discussion that follows) is easier in the
complex category (due to the existence of Kuranishi families). For an intro-
duction to algebraic superstack, see also [AG13].

In Section [d] we introduce the notion of a susy curve over a base complex
superspace, and we prove all the results which are needed for the construc-
tion of the moduli space: the equivalence of susy curves over an ordinary
complex space with spin curves (see Subsection , the representability
of the isomorphism functor between two susy curves over the same base
(see Subsection , the construction of the Kuranishi families for a susy
curve over a point (see Subsection . References about supersymmetric
curves are [Man91], [BR99] and [Wit19b]; other sources are [Cod14], [LRSS],
[RR15], [TRO1], [FK14], [FK18] and [Kwol4]. We only consider for simplic-
ity susy curves of genus g > 2; susy curves of genus 0 and 1 are studied in
[FR88|, [Man91l Sections 2.7-8], [Rab95]. Other topics on susy curves that
we do not discuss are: punctures of Neveu-Schwarz and Ramond type (see
[Wit19b]) and theta functions (see [Tsu94]).

In Section [5, we introduce and study the moduli superstack 9, of susy
curves of genus at least 2. We summarize the main results that we get into
the following

Theorem B (= Theorem and Corollary [5.5). Let g > 2.

1) M, is a smooth and separated DM complex superstack of dimension
g

39 — 3|29 — 2 whose bosonic truncation (My)pes is the complex stack S

of spin curves of genus g. Moreover, M, has two connected components,

denoted by im; and M, whose bosonic truncations are (zmg)gos and

(M) are the complex stacks S; and S, of, respectively, even and

odd spin curves of genus g.

(2) There exists a coarse moduli superspace My for Mg, which is indeed
an ordinary complex space and it is also the coarse moduli space for
the bosonic quotient M, /I'". The complex space My is non-reduced; its
underlying reduced complex space (Mg)req is isomorphic to the coarse
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moduli space Sy of spin curves of genus g. In particular, My is separated,
and it has two connected components whose underlying reduced spaces
are the coarse moduli spaces S; and Sg_ of, respectively, even and odd
spin curves of genus g.

We prove part of the above theorem (which is a folklore result among
the experts) by gluing together (a finite number of) Kuranishi families of
susy curves, miming the construction of the moduli stack of Riemann sur-
faces given by Arbarello-Cornalba in [AC09] (see also [ACG11l, Chap. XII.4]).
Regarding the existence of a coarse moduli space as in (2)), note that, in
contrast with the classical case, it is not clear to us if every separated DM
complex superstack has a coarse complex superspace. We establish part
of the above theorem by showing that any map from 9, onto a complex
superspace has to factor through the bosonic quotient M, /T" (see Proposi-
tion, a property which uses in a crucial way the existence of the canonical
automorphism on every susy curve.

The above theorem leaves open some natural questions. For example,
it would be interesting to know whether M, is quasi-projective and if it
can be interpreted as a coarse moduli space for some classical objects (e.g.
spin curves endowed with some extra structure). Also it would be very in-
teresting to investigate whether 9, and M, could be constructed as quo-
tients of Hilbert superschemes of pluri-canonically embedded susy curves,
as in the classical case (see [CodI4l Section 3] for a discussion of this ap-
proach). This could also lead to the construction of 9, and M, as alge-
braic superstacks/superspaces: our choice of working with complex super-
stacks/superspaces is due to the fact that Kuranishi families are easier to
construct in complex supergeometry, and the Hilbert superscheme approach
could bypass this problem (see [ACGI1, Chap. XIIL.5] for a construction of
the algebraic stack of curves using Hilbert schemes of pluri-canonically em-
bedded curves). And finally, it would be interesting to write down the details
of the compactification of 9, via stable susy curves proposed by P. Deligne
in a letter to Y. Manin back in 1987 (recently this letter has been posted on
Deligne’s webpage [Del]), see also [BS87] and [CohS8§].

There are in the literature other approaches to the construction of the
moduli superspace/superstack of susy curves, which we now briefly review.
First of all, fine moduli superspaces of susy curves with level n-structures
(for n > 3) have been constructed as complex “canonical superorbifolds” by
LeBrun and Rothstein in [LR88] and as complex algebraic superspaces by
Dominguez-Perez, Herndndez-Ruipérez and Sancho de Salas in [DPHRSS97].
The advantage of our approach using complex superstacks is that we can
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work with moduli of susy curves without any level n-structure. A com-
pletely different approach to the moduli of susy curves consists in using the
uniformization theorem for susy curves and the super Teichmiiller theory,
see [Rab87], [CR&S], [BBSS]|, [Bry89], [Hod87], [Hod88|, [HodR89], [Hod95,
[UY89], [UY90], [UY92], [BHI3]. Recently, Donagi and Witten have stud-
ied in [DW13| and [DW15] the global geometry of the moduli superstack of
susy curves (assuming for granted its existence) by showing that it is not
projected (hence in particular not split) for genera g > 5, i.e. the natural
inclusion of (My)pos in M, does not admit a section; a problem which was
originally investigated (with some partial results) by Falqui and Reina in
[Fal90], [FR90a], [FRI0D].

In Section [6] we study periods of susy curves. We introduce the period
map as a rational morphism

P: m’t; __')Ng

where N is the classical moduli stack of g dimensional abelian varieties
endowed with a symmetric theta divisor. The map P is defined on the open
subset of split susy curves Cf, € S)ﬁ; such that h%(L) = 0. Its bosonic trun-
cation P : S;‘ --» Ny is the map that sends a spin curve (C, L, ¢) into the
the Jacobian J(C') of C' endowed with the symmetric theta divisor associ-
ated to the spin structure. Note that P,y is defined on the entire moduli
stack Sg.

The period map P factors through the quotient Dﬁ; /T and it gives rise
to a rational map

P/T: T /T > N.

In section [6, we focus on the infinitesimal period map, i.e. the differential
d(P/T) of the period map P/I'. Our results are summarized into the follow-
ing

Theorem C (= Theorem and Theorem . Let Cr, € ML /T be
a split susy curve such that h”(L) = 0.

1) The infinitesimal period map at Cp,

d(P/T)¢, : Tio, (M /T) = H*(C x C, L' R L™ (=A))*t
— Tp(c,) Ny = Sym® H'(C, 0)

is the even part of the H? of the morphism of sheaves on C x C

L'RL Y (-A)— 0O



352 G. Codogni and F. Viviani

defined by the multiplication with the Szegd kernel Sy, associated to L.
2) The infinitesimal period map d(P/T)c, at Cr, is surjective.

Part (1) of the above Theorem follows from an analytic formula (that
we review in Subsection for the period map which was first discovered
by D’Hoker and Phong in [DP89] and then improved and expanded by Wit-
ten in [Wit19bl Section 8.3]. We prove part (1) in Subsection after a
description of the tangent spaces Tjc, (9.7‘(9+ /T) and TP(CL)/\/'Q, and a review
of the construction of the Szegd kernel S, associated to theta characteristic
L following the algebraic approach of Ben-Zvi and Biswas in [BZB03]. Our
description of the infinitesimal period map as being induced by a morphism
of sheaves on C' x C is influenced by a paper of Bruno and Sernesi [BS].
Part (2) of the above Theorem says, in a more fancy language, that any first
order deformation of a generic classical Jacobian is the Jacobian of a susy
curve. This is in contrast with the classical case: if the genus is at least 4,
the generic first order deformation of a classical Jacobian is not a Jacobian
anymore. Let us also point out that, in contrast to the classical case, the
infinitesimal period map for susy curves cannot be injective for dimensional
reasons, see Remark

It would be interesting to study the infinitesimal period map for susy
curves with Ramond punctures, cf. [Witt15]; in this more general case, which
we do not discuss, the period domain is no longer an ordinary space, but a
super analogue of the Siegel upper half space. A reference about the super
Siegel upper half space is [CEV].

While this paper was under the referee process, Felder, Kazhdan and
Polishchuk posted on arXiv the very interesting preprint [FKP], where they
address the super Schottky problem that we raise in Remark of the
present paper. In particular, they show that the maximal natural number d
such that the super Schottky locus (i.e. the image of the super period map)
contains the d-th infinitesimal neighborhood of the ordinary Schottky locus
(i.e. the image of the ordinary period map) is such that d = g if ¢g is odd
and g —1 < d < gif gis even.
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2. Complex superspaces

The aim of this section is to recall the definition and the basic properties
of complex superspaces, and prove a few facts needed for the theory of
super stacks. A superspace is a locally superringed space (X,Ox), i.e. X
is a topological space (called the underlying topological space) and Ox =
Ox,0® Ox,1 is a sheaf of supercommutative C-superalgebras (called the
structure sheaf) such that the stalk Ox , at any point € X is a local super
ring, i.e. it has a unique maximal homogenous ideal m,. When no confusion
seems to arise, we will denote the superspace (X, Ox) simply by X.

A morphism of superspaces from (X,0x) to (Y,Oy) is a pair (f, f¥)
consisting of a continuous map f: X — Y and a map f!: Oy — f.Ox of
sheaves of C-superalgebras (thus preserving the parity) such that for any
point z € X the induced homomorphism fz : Oy y(;) = Ox is local, i.e.
fﬁ(mf(z)) C m,. When no confusion seems to arise, we will denote such a
morphism simply by f.

Coordinates at a point x of superspace X are homogeneous elements of
m, \ m2 which generate the ideal m,. Given a morphism f: X — Y, vertical
or relative coordinates at a point x in X are homogeneous elements of m, \
m2 whose image generate m,/ 1t (Mp(z))-

An (ordinary) space, i.e. a locally ringed space (M, Ops) where M is a
topological space and Oy is a sheaf of commutative C-algebras such that
Om e is a local ring for every x € M, is in a natural way a superspace by
regarding Oy as a sheaf of supercommutative C-superalgebras concentrated
in degree 0. In this way, we get a fully faithful embedding ¢ of the category
of spaces into the category of superspaces whose essential image consists of
all the superspaces X such that Ox 1 =0 (such superspace will be called
even or bosonic). We are going to show that the inclusion ¢ has a left and a
right adjoint; in particular, this implies that ¢ respects the fibers products
(which are defined via the usual tensor product of sheaves in each of the two
categories).

Given a superspace X, we will denote by ny the ideal sheaf in Oy
generated by the elements of odd degree, i.e. nx = (’)_%(71 ®O0x1COxo®
Ox 1. To any superspace X, we can associate the bosonic superspace (i.e.
the space) Xy0s = (X, Ox/nx), which is called the bosonic truncation of X.
There is a natural closed embedding of X},os < X which is an identity on
the underlying topological spaces and it is the quotient map Ox — Ox/nx
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on the sheaf of functions. The functor X — X5 is a right adjoint of the
inclusion 7. In particular, the inclusion Xy, < X is universal with respect
to morphism from spaces into X. Moreover, the bosonic truncation respects
fibre products since it has a left adjoint; in symbols, we have that (X xy
Z)bos = Xbos XVi.. Zbos- More generally, for any n > 1, we can consider the
closed superspace X (") := (X, Ox /%), which is called the n-th infinitesimal
neighborhood of Xpos in X.

Any superspace X admits a canonical automorphism I'x (or simply I’
when no confusion arises) which is the identity on the topological space
X and on the even degree part Ox of the structure sheaf Ox, while it
acts as —1 on the odd degree part Ox ; of the structure sheaf Ox. Remark
that any morphism f: X — Y is ['-equivariant, i.e. I'y o f = f o I'x. Given
a superspace X = (X, Ox), the quotient X/I' (which we call the bosonic
quotient) by the canonical automorphism is the superspace (X, OE(), where
OE( is the subsheaf of Ox consisting of invariants elements. By the definition
of T, OE is a sheaf of supercommutative C-superalgebras concentrated in
degree 0, so that X/T" is a bosonic superspace (i.e. a space). Note that
there is a natural surjective map X — X/I' which is the identity on the
underlying topological spaces and it is the inclusion O < Ox at the level of
structure sheaves. The functor X +— X/T"is a left adjoint of the inclusion 7. In
particular, the morphism X — X/I" is universal with respect to morphisms
from X into spaces.

Note that the composition

Xpos = X — X/I,

is a morphism of spaces such that (Xys)red = (X/I')req, Where for a space
Z we denote by Z..q the space whose underlying topological space is the
same as the one of Z and whose structure sheaf Oz _, is obtained from Oy
by quotienting out the nilpotent elements.

We will (most of the times) be working with complex superspaces, which
are superspaces locally modeled on closed subspaces of complex superdo-
mains, as we are now going to define. For any p, g, > 0, the superspace CPl4
is (CP,Ocr @ \" V), where O¢» is the sheaf of holomorphic functions on
CP, V is a ¢ dimensional complex vector space, and we give degree zero
to the element of Oc¢r and degree one to the element of V. Remark that
(CPla), o = CP. A complex superdomain is a superspace which is isomor-
phic to an open subset of CPl¢, with the induced structure sheaf. Given a
homogenous ideal sheaf 7 on a complex superdomain U C CPl4, the closed
subspace of U defined by Z is the superspace whose underlying topological
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space is the closed subspace of U defined by the ideal sheaf (Z + ny)/ny
of Oy /ny and whose structure sheaf is the restriction of the sheaf Op. A
superspace is called affine if it is isomorphic to a closed subspace of CPI¢;
it is called quasi-affine if it is isomorphic to a closed subspace of a complex
superdomain.

A complex superspace is a superspace which is locally isomorphic
to a quasi-affine superspace. More intrinsically, a superspace (X,0Ox) is a
complex superspace if and only if (X, Ox ) is complex space and Ox ; is a
coherent O x p-module (see [Vai88, Prop. 1.1.3]). Note that bosonic complex
superspaces are (ordinary) complex spaces and the bosonic truncation and
quotient of a complex superspace is a complex space. Moreover, the infinites-
imal neighborhoods of a complex superspace are again complex superspaces
and X = X for n > 0.

A complex superspace is smooth, or equivalently it is a complex su-
permanifold, if

o Xjos = (X,0Ox/ny) is a complex manifold;
e the sheaf nX/n_2X is a locally free sheaf of Ox /nx-modules;

e Ox is locally isomorphic to the Z/2Z-graded exterior algebra
A®(nx/n%) over nx/n%.

A complex supermanifold is said to be of dimension p|g (for some integers
p,q > 0) if dim Xp0s = p and rk(nx /n%) = ¢. Note that a connected super-
manifold has always dimension p|q, for some (uniquely determined) p,q > 0,
and that a complex supermanifold has dimension p|g if each of its con-
nected components has dimension p|g. Equivalently, a complex superspace
is smooth of dimension p|q if and only if it is locally isomorphic to Cela,
Observe that bosonic complex supermanifolds (i.e. complex superman-
ifolds of dimension p|0) are (ordinary) complex manifolds, and that the
bosonic truncation of a p|g dimensional complex supermanifold is a p di-
mensional complex manifold. On the other hand, the bosonic quotient X /I’
of a complex supermanifold X is a complex space whose reduced structure
(X/I')teq is isomorphic to Xiy,0s. However, X/I' is rarely a complex manifold
(or equivalently is reduced): for example, if X is a complex supermanifold
of dimension p|q then X/I' is a complex manifold if and only if ¢ < 1.
Given integers p, ¢ > 0, we have the free sheaf (9};("7 = 0%|0% = 0% @
IIOY% of rank p|q, where II is the parity change functor. In other words, Ol))('q
is a free O x-module having p even generators and g odd generators. A locally
free sheaf F of rank p|g on a complex superspace is a sheaf of Ox-modules
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that is locally isomorphic to Oz)’(lq, i.e. for any = € X there exists an open

subset © € U C X such that Fjy = (’)]()]lq (see [CCF11, Appendix B.3]). A
coherent sheaf F on a complex superspace X is a sheaf of O x-modules which
is locally of finite presentation, i.e. such that for every x € X there exists
an open subset x € U C X and an exact sequence of even homomorphisms
(’)}'m — (’)1;("1 — F — 0 (see [Vai88, Sec. 1.3]). We denote by Fj,os the pull-
back of F' to Xpes. The sheaf Fjos is a Zg-graded coherent sheaf of Ox,_ -
modules, i.e. it admits a splitting Fios = Fg;s ® F, ., into an even and an
odd coherent subsheaf. We will sometimes write F},os = F&S]F&)S to denote
the splitting of Fi,os into its even and odd part. If F' is locally free of rank p|q,
then Fyos = F;)S\Fb_os, with F;;s and Fy_ locally free of rank, respectively,
p and ¢. A line bundle L is a locally free sheaf of rank either 1|0 or 0|1.

It is possible to construct a complex superspace out of a complex space
M and a locally free sheaf E: the topological space is M, and the struc-
ture sheaf is the Z/2Z-graded exterior algebra A\°* E. We denote this com-
plex supermanifold by Mg = (M, \°* E). In this case, (Mg)pos = M and
s,/ "?\4,3 = E. The inclusion Oy — A® F induces a section of the natural
inclusion M = (Mg)pos < Mg; this section is called the canonical splitting
of Mg. A complex superspace X is called split E| if it is isomorphic to Mg,
for some complex space M and some locally free sheaf E on M (and then
necessarily we must have that M = X5 and E = ny /n%). Note that a nec-
essary condition for a complex superspace X to be split is that ny /n%( is
a locally free sheaf on X}, which is a rather strong property. By defini-
tion, a complex supermanifold is locally split but, in general, not split (see
e.g. [Man97, Chap. IV.10]). Any complex superspace such that nx/n3 is a
line bundle on Xj,us (for example, any n|1 dimensional complex supermani-
fold) is split: the proof of [Man97, Chap. IV.8] for n|1 supermanifolds works
verbatim for the more general case.

The tangent bundle T'x of complex superspace X is the sheaf of deriva-
tion of Ox. It is a coherent sheaf and it is locally free if X is smooth. For a
split complex supermanifold Mg, we have that the (Ths, )pos = TM|EV.

Let us now recall the following properties of a morphism f: X — B of
complex superspaces. We say that:

this is called decomposable in [Man97, Chap. 4.4] and it is stronger than being
split in the sense of [Vai88, 1.1.1], which in particular does not imply that nx /n%
is locally free.
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e f is proper (resp. separated, resp. finite, resp. surjective) if the under-
lying map of topological spaces is proper (resp. separated, resp. finite,
resp. surjective).

o f is étale if, for any x € X, the homomorphism of local superrings
fﬁ : OB f(z) — Ox,z is an isomorphism.

e f is smooth if, for any x € X, there exist a open neighborhood U
of x and a open neighborhood V of f(z) such that f(U)CV and
Jiv : U — V is the composition of an étale map from U to V' X Crla,
for some p and ¢, and the projection to V.

An étale morphism is smooth: it is enough to take p=¢ =0 in the
definition of smooth morphism. Let us stress that if f is a smooth morphism,
then for any point b € B the fibre f~!(b) is smooth. The following Remark
is straightforward and it is recorded here for future reference.

Remark 2.1. If f: X — S is a morphism of complex spaces which satisfies
one of the above properties, then if we interpret f as a morphism of complex
superspaces (via the natural inclusion ¢) then it satisfies the corresponding

property.

The following Proposition is an important direct consequence of the
definition of étale morphism.

Proposition 2.2. If f: X — B is an étale morphism of complex super-
spaces, then we have that

(i) foos : Xbos — Bbos is an étale morphism of complex spaces;

(ii) f/T: X/T'— B/I is an étale morphism of complex spaces.
Proof. By assumption, for any point x € X, the homomorphism of local

superrings f;g :OB,f(z) = Ox,z is an isomorphism. This implies that
1t (mf(z)) = my and hence that the induced local homomorphism

(foos)t 1 OB, f2) = OB.j(2)/Mf@) = Oxa/Me = Ox,

is an isomorphism, i.e. that fy is etale. Moreover, since fﬁ is equivari-
ant with respect to the action of the canonical automorphism I', by taking
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invariants we get that the induced local homomorphism

(f/T)%: Opr ) = OFB,f(z) = Ok, = Ox/rs
is an isomorphism, i.e. that f/T" is etale. O

We can generalize property of the previous Proposition to smooth
morphisms.

Proposition 2.3. If f: X — B is a smooth morphism of complex super-
spaces, then fros @ Xbos = Bbos 15 a smooth morphism of complex spaces.

Proof. By hypothesis, f is locally the composition of an étale map g: U —
V x CPl9 and the projection to V. Since the bosonic truncation preserves
both etalness (by Proposition ) and fibre products, we deduce that
fios is locally the composition of the étale map ghos: Upos — (V x CPIO), ¢ =
Vbhos X CP and the projection to Vies; hence fios is smooth. O

The following lemma will be a key ingredient in the study of stacks for
the étale topology.

Lemma 2.4. Let f: X — S and g: Y — S be two morphisms of complex
superspaces. There exists a natural morphism 7: X/T Xgs/T Y/T — (X xg
Y) /T, which is an isomorphism at the level of topological spaces; further-
more, if f is étale then w is an isomorphism.

Proof. From the quotient maps X — X/I' S — S/T' and Y — Y/I", we get a
morphism p: X x5 Y — X/T' xg/p Y/T'. The codomain is an ordinary com-
plex space, so this morphism has to factor via a morphism 7: (X xgY)/I' —
X/T' xgr Y/T', whose existence was claimed in the statement.

To show that 7 is an isomorphism at the level of topological spaces, it
is enough to prove that the same property for the morphism of ordinary
complex spaces

Pos © Xbos X Spo. Yoos = (X X5 ¥ )pos = X x5 Y 5 X/T x50 Y/T.

This follows from the fact that the bosonic truncation and the bosonic
quotient of a complex superspace have the same underlying topological
space, together with the fact that the topological space underlying the fi-
bre product of two complex spaces is the fibre product of their underlying
topological spaces (see for example [GK90, II1.1.6]).



Moduli and periods of supersymmetric curves 359

We now focus on the last part of the lemma. Consider the induced mor-
phism of structure sheaves

™ O(xwsvyr = (Ox ®0, Oy)' = Ox/rxg,yyr = Ok ®or Oy,

where, with a slight abuse of notation, we identify Ox with its pull-back to
X Xg Y and similarly for Oy and Og. For any point x € X and y € Y such
that f(x) = g(y) = z € S, consider the induced morphism of local superrings

W?x7y) F O(xxsy)Dey) = (Ox.z ®0s.. Oyy)"

T T
= Ox/rxsry T (ay) = Oxz ot Oy

If f is étale, then W?m y) 18 an isomorphism for every (z,y) € X xgY, since

fﬁq : Og, — Ox 4 is an isomorphism. This implies that the morphism 7 is
an isomorphism, and hence that 7 is an isomorphism as required. O

Remark 2.5. The bosonic quotient does not preserve in general neither
fibre products nor smoothness: the space

(€O 5 Oy /T = CO2/1 = Spec Clz]/(2?)
is not isomorphic to (CO1/T") x (CO1/T") 22 Spec(C), where the fibre product

is taken over Spec(C); a projection 7 from CO%3 to C°2 is smooth, but /T
is not smooth.

3. Superstacks
In this section we introduce complex superstacks and we discuss their rela-

tionship with complex (ordinary) stacks. For the classical theory of (ordi-
nary) stacks, see [Vis05] or [ACGI1I] Chap. XII] and the references therein.

3.1. Categories fibered in groupoids
Let S be the category of complex superspaces.

Definition 3.1. A category fibered in groupoids (or CFG for short) over S
is a pair M = (C,p) = (Car,par) consisting of a category Cpr = C together
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with a functor (called the fibration functor)
ppm=p:C—S

satisfying the following two axioms:

1) Given a morphism f: T — S in § and an object n in C such that
p(n) = S, there exists an object & in C (called a pull-back of n along
f) and a morphism ¢: £ — n in C such that p(¢) = f.

2) All morphisms ¢: £ — 7 in C are cartesian in the following sense. Given
a morphism ¢': ¢ — 7 in C and a morphism h: p(§’) — p(§) in S such
that p(¢) o h = p(¢’), there exists a unique morphism ¢: & — € in C
such that h = p(¢)) and ¢ o) = ¢'.

CFG’s over S form a 2-category, denoted by FIBg, in which 1-morphisms
are functors commuting with the fibration and 2-morphisms between mor-
phisms F,G : M — M’ are natural transformation of functors ¢: F — G
such that pae (t)) = idp,, () for any n € Caq (see [Stacks, Tag02XS]).

The 2-category FIBgs admits fibre products (see [Stacks, Tag 0041]):
given two morphisms f; : M; — N of CFG’s over S, the fibre product of
M1 X My is the CFG over S which is defined as it follows. The objects of
the underlying category are quadruples (S, 71,72, ¢) with S € S, n; € Caq,(S)
and ¢ : fi1(m) = f (m2) is an isomorphism in A (U). A morphism between
(S,m,m2,¢) and (S',n],n5, @) is a pair (u1, u2) where p; = n; — 1) is a mor-
phism in M; such that paq, (u1) = pa, (2) and fa(ue) o ¢ = ¢ o f1(u1). The
fibration functor paf,x M, : Cryxem, — S sends an object (S, 71,12, @)
onto S. The projections p; : M1 xnr Mo — M; are the obvious forgetful
morphisms and there is a natural transformation of functors W : f; o p; —
fa o py which is is given on an object n = (S,n1,m2,¢) by ¥, :=¢: (fio
p1)(n) = fi(m) = f2(n2) = (f2 o p2)(n). The 2-category FIBs admits a final
object, which is given by § = (S,ids). The fibre product of two CFG’s My
and Mo, denoted by M; X Mas, is the fibre product of the two morphisms
M1—>Sand./\/lg—>8.

Given a CFG M over § and an object S € S, the fiber of M over S is the
subcategory M(S) of Caq whose objects are the objects 1 of Cyq such that
p(n) = S, and the morphisms are the morphisms ¢ in C such that pa(¢) =
idg. It follows from axiom that M(S) is a groupoid, i.e. a category in
which every morphism is invertible. Given a morphism f: 7 — S in § and
an object n € M(S), we choose a pull-back of  along f as in (1)) which we
denote by f*(n); the collection of all such choices is called a cleavage of M


http://stacks.math.columbia.edu/tag/02XS
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and we implicitly assume that all our CFG are endowed with a cleavage.
Note that pull-backs are unique up to a unique isomorphisms by axiom
so that most of the constructions that we are going to perform turns out to
be independent of the choice of a cleavage. After the choice of a cleavage has
been made, axiom ([2)) guarantees that the association n € M(S) — f*(n) €
M(T) is a functor, called a pull-back functor (it depends on the choice of a

cleavage). Note however, that given two morphisms V' 2T i) Sin S, we
will in general have that (f o g)* # g* o f* (for any choice of cleavage). In
other words, the association S +— M(S) is in general not a functor. However
the association S +— M(S) is a pseudofunctor from the category S to the
2-category of groupoids, and this pseudofunctor recovers the original CFG
together with the chosen cleavage (see [Vis05, Sec. 3.1] for a discussion of
this equivalence).

We can associate to any complex superspace X a CFG X = (Cx,px)
over S as follows. The objects of Cx are morphisms (f : S — X) in § and
the morphisms between (f : S — X) and (f': S” — X) are the morphisms
g:S— S in S such that f = f'og. The fibration functor px sends (f :
S — X) onto S. Note that the fiber of X over S is the set of morphisms
Hom(S, X)) (regarded as a trivial groupoid in which the only arrows are the
identities) and a pull-back functor along f : S — T is the map f* = —o f:
Hom(T, X) — Hom(S, X) obtained by precomposing with f (note that this
defines a canonical cleavage on X). Given any X € S and any M € FIBg,
there is an equivalence of categories (called the 2-Yoneda lemma, see [Vis05,
Sec. 3.6])

HomFIBS (K, M) i) M(X),

1
. UHM(idX)v

whose inverse is obtained by sending n € M(X) into the morphism y,, which
sends an object (f : S — X) of X onto f*(n) € M(Y). In particular, when
M =Y we get an equivalence of categories

(2) Hompp, (X,Y) = Homg(X,Y).

In other words, the association X — X defines a fully faithful embedding of
S into FIBg.

In a similar way, we can define the 2-category FIBs_, of categories fibered
in groupoids over the category Sey of even complex superspaces (i.e ordinary
complex spaces) and the fully faithful embedding of Sy into FIBs_, .
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The 2-categories FIBs and FIBs_, are related by a pair of adjoint 2-
functors that are constructed starting from the bosonic quotient /T': S —
Sev and the natural inclusion i : Sey — S via fibre product of categories (see
[Stacksl Tag 0040]). More precisely, the first 2-functor (called the natural
inclusion) is given by

i: FIBs,, — FIBg,
(3) N i) e
= i(N) = (Cx Xs., S,p2)

where the tensor product of categories is done with respect to the fibra-
tion functor par: Cyr — Sev and the bosonic quotient /T : S — Sey, and p2
is the projection onto the second factor. Explicitly, the objects of i(N) are
triples (5,7, f) where S € S, n € Cyy and f is an isomorphism in Sey be-
tween S/T" and par(n); the morphisms are the natural ones. In particular,
the fiber of i(N) over S € S is equal to i(N)(S) = N (S/T'). From the fact
that the bosonic quotient /T : § — Sey is left adjoint to the natural inclusion
1: Sev — 8§, it follows easily that the morphism ¢ of extends the natural
inclusion i : Sey — S, or in other words that i(Y) = i(Y") for any complex
space Y € Sey. S

The second 2-functor (called the bosonic truncation) is given by

(_)bos : FIBS — FIBSSV,

(4) M = Mbos = (CM XS Sev7p2)7

where the tensor product of categories is done with respect to the fibration
functor paq : Caq — S and the natural inclusion i : Sey — S, and p9 is the
projection onto the second factor. Explicitly, the objects of My, are triples
(S,n, f) where S € Sey, 1 € Cpq and f is an isomorphism in S between i(.5)
and paq(n); the morphisms are the natural ones. In particular, the fiber
of Myeg over S € Sey is equal to Myes(S) = M(i(S)). From the fact that
the natural inclusion 7 : Sev — S is left adjoint of the bosonic truncation
(= )bos : S = Sev, it follows easily that the morphism (—)pos of extends
the bosonic truncation (—)pes : S = Sey, oOr in other words that (X)pos =
Xpos for any complex superspace X € S.

The 2-functors i and (—)pes satisfy the following properties:

(i) The natural inclusion i exhibits FIBg, as the full sub-2-category of
FIBs consisting of all the elements M € FIBs such that M(S) =
M(i(S/T)) for any S € S.
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(ii) Given M € FIBg, the bosonic truncation My,s can be identified with
the full subcategory of M consisting of all objects nn € Caq such that
pm(n) € Sev, endowed with the restriction of the fibration functor pag.

(iii) The natural inclusion i is left adjoint of the bosonic truncation (—)pes.
In particular, for any M € FIBg there is a morphism i(Mys) — M of
CFG over S which is universal with respect to morphisms from CFG
over Sey (regarded as CFG over S via the natural inclusion) into M.

Remark 3.2. We do not know how to extend the bosonic quotient func-
tor /T': S — Sey to CFG’s. The reason is that /T" does not preserve fibre
products (see Remark , so it does not admit a left adjoint functor. How-
ever, in Theorem [3.13| we will extend the bosonic quotient functor from DM
complex superstacks to DM complex stacks, using atlases.

3.2. Superstacks

In order to define superstacks (which is the aim of this subsection), we will
need to recall the descent theory for CFG’s over S (or over Sey) with respect
to the étale topology, i.e. the Grothendieck topology on & whose coverings
are étale surjective morphisms of complex superspaces.

Let M be a CFG over S and let £ € M(T). Let p: T'— S be an étale
morphism of complex superspaces, and denote by p; (with i =1,2) the
projections from T xg T onto the i-th factor, by p;; (with 1 <i < j < 3)
the projections from T xgT xgT onto the (i,j)-factor, and by ¢; (with
i =1,2,3) the projections from T' x g T' x g T" onto the i-th factor. A descent
datum for ¢ along the étale morphism p : T'— S is an isomorphism

¢: 1§ — poé

satisfying the cocycle condition p35€ o pis€ = P13 : ¢in — q3€. A descent da-
tum £ along p: T — S is called effective if there exists an object n € M(S)
and an isomorphism ¢ : p*n — £ such that ¢ = (phi) o (pep) .

Definition 3.3 (Superstack). A stack in groupoids over S for the étale
topology (or simply a superstack) is a category fibered in groupoids M over
S that satisfies the following two conditions

1) Every descent datum (for the étale topology) is effective.
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2) For any S € S, and any pair of objects  and 1’ in M(S), the con-
travariant functor (called the isomorphism functor between n and 7n’)

Isomg(n,n") : Hom(—, S) — Sets

that associate to every f:7T — S the set of isomorphisms in M(T)
between f*(n) and f*(n) is a sheaf in the étale topology, i.e. for every
surjective étale morphism 7 : X — Y of complex superspaces over S
the diagram

ma

Isomy (17, 7') (Y) —*>Tsoms (1,7) (X) —= Tsoms (1, 7)(X xy X)

is exact, where m := Isomg(n,n')(7) and m; := Isomg(n,n)(m;) with
m; : X Xy X — X is the projection onto the i-th factor.

The 2-category of superstacks is the full sub 2-category of FIBs whose
objects are superstacks (while 1-morphisms and 2-morphisms are the same as
the ones of FIBg). The 2-category of superstacks admits fibre products since
it is easily checked that the fibre product of two morphisms of superstacks
(seen as CFG’s over S) is a superstack.

In a similar way, one can define stacks in groupoids over Se, with respect
to the étale topology, which we call (even or bosonic) stacks. They form a
full sub-2-category of FIBs_ which is closed under taking fibre products.

Lemma 3.4.

(i) The natural inclusion i : FIBs,, — FIBs sends stacks in superstacks.

(ii) The bosonic truncation (—)pes : FIBs — FIBs,, sends superstacks into
stacks.

Proof. Part : let A be a stack and let us prove that i(N) € FIBs is a
superstack by checking that conditions and of Definition are
satisfied.

Consider first a descent datum for £ € i(N)(T') with respect to the étale
morphism p : T"— S of complex superspaces. By applying Lemma this
induces a descent datum for & € N(T/T") = i(N)(T) with respect to the
morphism p/I" : T/T' — S/T" of complex spaces, which is étale by Proposi-
tion . Since N is a stack, this descent datum is effective, i.e. there
exists n € N(S/T) and an isomorphism 1 : (p/T')*n — & in N(T/T) induc-
ing the descent datum for £ with respect to p/I". But then, if we interpret n
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as an element of i(N)(S) = N(S/T') and ¢ as an isomorphism between p*n
and 7 in i(N)(T), n and ¢ induce the descent datum for n with respect to
p:T — S, and thus condition is satisfied.

Consider next the isomorphism functor Isomg(n,n’) between two objects
n and 1’ in i(N)(S). By the definition of i(N'), the functor Isomg(n,n’) is
given by the composition of —/T": Homg(—, S) — Homg, (—/I', S/T") with
the isomorphism functor Isomg,p (7, n') between the same objects n and 7’
considered as objects of N'(S/T") = i(N)(S). Using that —/T" preserves étale
morphisms by Proposition and fibre products by Lemma and that
Isomg,r(n,n') is a sheaf for the étale topology on Sey since N is a stack,
we deduce that Isomg(n,n’) is a sheaf for the étale topology on S, and thus
condition is satisfied.

The proof of part is similar using that for any M € FIBgs the fibers
of its bosonic truncation (M)pes are equal to (M)pes(S) = M(i(S)) and
that the natural inclusion functor i : Sey — S preserves fiber products and
it sends étale morphism of complex spaces into étale morphisms of complex

superspaces (see Remark . O

An important and commonly used criterion to check that condition
is satisfied for a CFG over S, is to show that Isom(n,n’) is representable,
i.e. it is the functor of points Hom(—, X) of a complex superspace X over
S, and then using the following:

Lemma 3.5. Let X be a complex superspace.
(i) The functor of points of X

hx := Hom(—, X) : § — Sets
T +— Hom(T, X)

1$ a sheaf for the étale topology.
(i) The CFG X associated to X is a superstack.

Proof. The proof of part proceeds along the same lines of the proof for
ordinary complex spaces (see e.g. [ACG11, Chap. XII, Thm. 7.4] or [Vis05),
Thm. 2.55]) and it boils down to the following result of supercommutative
algebra: if f : S — T is a surjective flat (e.g. étale) morphism of affine com-
plex superspaces then the sequence of supercommutative C-superalgebras

# €1
0~ I(T,0r) = T(S, 0s) == 1(5,0s) xr@0,) (S, Os)
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is exact, where e1(a) =a® 1 and ez(a) = 1 ® a.

Part follows from the fact that X is the CFG associated to the
functor of points hx as in [Vis05, Prop. 3.26] and the fact that hy is a sheaf
for the étale topology (see [Vis05, Prop. 4.9]). O

In particular, the above Lemma together with the 2-Yoneda lemma says
that the functor X — X is a fully faithful embedding of S into the 2-category
of superstacks. In what follows, we will say that a superstack is a complex
superspace if it lies on the essential image of this embedding, i.e. if it is
isomorphic to X for some complex superspace. The above Lemma holds
true also for the category Sev, so that we get an embedding of the category
of complex spaces into the 2-category of stacks.

3.3. Complex superstacks

In order to introduce complex superstacks (which is the aim of this subsec-
tion), we need to be able to extend the notions of separated /proper/smooth/
étale from morphisms between complex superspace to certain morphism of
superstacks defined as it follows.

A morphism f: M — N between superstacks is called representable if
for every complex superspace S and every morphism S — N, the fibre prod-
uct M xS is a complex superspace. Given any property P of morphisms
of complex superspace which is stable under base change (like separated,
proper, smooth, étale, surjective), we say that a representable morphism
f: M — N of superstacks satisfies property P if for any morphism S — N
from a complex superspace, the morphism between complex superspaces
M xS — S satisfies property P.

We will be interested in superstacks M for which every morphism from
a complex superspace onto M is representable. This property can be char-
acterized as follows.

Lemma 3.6. Let M be a superstack. Then the following properties are
equivalent:

(i) every morphism S — M from a complex superspace is representable;
(i) the diagonal A : M — M x M is representable;

(111) for any complex superspace S and any pair of objects n and 1 in
M(S), the isomorphism functor Isomg(n,n') is the S-relative func-
tor of points of a complex superspace over S, i.e. there erists a com-
plex superspace 1(n,n') together with a map ¢ : I(n,n') — S such that
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Isomg(n,n )(T S) is the set of all morphisms f : T — I(n,1') such

that f = ¢o f.

Proof. The proof of the equivalence of . and (i) is the same as the one of
[ACG11l Sec. XII, Lemma 8.1] using that for every morphisms f: S — M
and g : T' — M we have that

SXMTgM XMXM(SXT).

The equivalence of and follows from the fact that if we have
a morphism S — M x M whose two projections are given by the elements
¢ € M(S) and n € M(S), then for every T — S we have (as in [ACGII]
Chap. XII, Equ. (8.4)]):

(M X atxm S)(T') = Isomg (&, n)(T). 0

Given any property P of morphisms of complex superspace which is
stable under base change (like separated, proper, smooth, étale, surjective),
we say that a representable morphism f: M — A of superstacks satisfies
property P if for any morphism S — N from a complex superspace, the
morphism between complex superspaces M xS — S satisfies property P.

We are now ready to define (DM) complex superstacks.

Definition 3.7 ((DM) complex superstack). A superstack M is called
a complex superstack (resp. a DM (=Deligne-Mumford) complex superstack)
if:

1) the diagonal A: M — M x M is representable and separated;

2) there exists a complex superspace X, and a smooth (resp. étale) sur-
jective morphism X — M, which is called an (resp. étale) atlas.

Given a complex superstack M, we say that:

(i) M is smooth if there exists a smooth atlas, or equivalently if any atlas
is smooth.

(ii) M is separated if the diagonal A : M — M x M is proper.

Given a smooth DM complex superstack M, we say that M has dimen-
sion plq if there exists an étale atlas of M which is smooth of dimension
plg, or equivalently if any étale atlas M is smooth of dimension plg.
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Note that the definition of dimension for a smooth DM complex su-
perstacks is well posed since if f: X — Y is an étale morphism of complex
supermanifolds then the dimension of X is equal to the dimension of Y (this
follows directly from the definition of étale morphisms).

Combining Lemma [3.5] and Lemma [3.6] we get the following remark
which will be useful in what follows.

Remark 3.8. Let M be a CFG over § and suppose that for any S € S
and any two objects 1,7’ € M(S), the isomorphism functor Isomg(n,n’) is
the S-relative functor of points of a complex superspace over S (resp. an S-
separated complex superspace). Then condition of Definition (resp.
condition (|1)) of Definition is satisfied.

The 2-category of complex superstacks, which we will denote by sST, is
the full sub 2-category of the 2-category of superstacks (hence also of the 2-
category FIBs) whose objects are complex superstacks (while 1-morphisms
and 2-morphisms are the same as the ones of FIBg). The 2-category of
complex superstacks admits fibre products since it is easily checked that the
fibre product of two morphisms of complex superstacks (seen as CFG’s over
S) is a complex superstack. The 2-category of DM complex superstacks,
which we will denote by sSTPM is the full sub 2-category of sST whose
objects are DM complex superstacks. Similarly, one defines the 2-category
ST of complex stacks, and its full sub 2-category STPM of DM complex
stacks.

The superstack X associated to a complex superspace is DM complex su-
perstack since the diagonal A : X — X x X = X x X is representable (be-
ing a morphism of complex superspaces) and separated (because this is true
for complex spaces) and an atlas for X is just the identity map X — X.
Therefore, using the 2-Yoneda lemma, the association X +— X is a fully
faithful embedding of the category S of complex superspaces into the 2-
category sSTPM of DM complex superstacks. And similarly, there is a fully
faithful embedding of the category Sy of complex spaces into the 2-category
STPM of DM complex stacks. From now on, we will identify a complex (su-
per)space X with its associated DM complex (super)stack X.

The natural inclusion and the the bosonic truncation extend easily from
complex (super)spaces to complex (super)stacks.

Proposition 3.9.

(i) The natural inclusion i: FIBs  — FIBs sends complex (resp. DM,
resp. separated, resp. smooth) stacks into complex (resp. DM, resp.
separated, resp. smooth) superstacks.
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(i) The bosonic truncation (—)pes : FIBs — FIBgs,, sends complexr (resp.
DM, resp. separated, resp. smooth) superstacks into complex (resp.
DM, resp. separated, resp. smooth) stacks.

Proof. Part (): let A be a complex stack and consider i(N') € FIBs. Note
that i(\) is a superstack by Lemma [3.4ffi). Let us show that i(N\) is a
complex superstack by checking that conditions and of Definition
are satisfied. In doing this, we will also prove that i(N') inherits the same
properties (e.g. DM, smoothness, separatedness) of N.

In order to prove that condition is satisfied, it is enough to check, ac-
cording to Remark[3.8] that for any n,7’ € i(A)(S), the isomorphism functor
Isomg(n, n’) is the S-relative functor of an S-separated complex superspace
I(n,n’). By the definition of i(N), the functor Isomg(n,n’) is given by the
composition of —/T": Homg(—, S) — Homs, (—/T', S/T") with the isomor-
phism functor Isomg,p(n,n') between the same objects n and 7’ considered
as objects of N(S/T') = i(N)(S). Since N is a complex stack, we have that
Isomg,r(n,n’) is the S/T-relative functor of points of an S/T-separated com-
plex space I(n,n'). Then the fact that Isomg(n,n’) = Isomgr(n,n’) o —/T
implies that Isomg(n, n’) is the S-relative functor of points of the S-separated

complex space 1(n,1') := S X;(s/r) i(1(n,1')), as required. Moreover, notice
that if A is separated then I(n,n’) — S/T is proper, which implies that
I(n,n') — S is proper (because they have the same underlying topological
spaces) and hence that ¢(N) is separated.

In order to check condition (2), let Yy — A be a smooth (resp. étale)
atlas of N. Since i preserve smooth and étale maps (see Remark , the
map i(Yp) — i(N) is a smooth (resp. étale) atlas, as required. Observe also
that if N is smooth, then any such atlas Y[ is smooth, which implies that
i(Yp) is smooth, and hence that i(N) is smooth as well.

The proof of part is similar to the proof of part using that the
bosonic truncation preserves fiber products, étaleness of morphisms (see
Proposition ), smoothness of morphism (see Proposition , and it
does not change the underlying topological spaces. We will only prove that
if M is a DM complex superstack then My, satisfies condition of Defi-
nition and we will leave the remaining verifications to the reader.

In order to prove that condition is satisfied for My, it is enough to
check, according to Remark that for any 7,17 € Mypes(T), the isomor-
phism functor Isomp(n,n') is the T-relative functor of a T-separated complex
superspace I(n,7n'). By the definition of My, the functor Isomp(n, ') is
given by the composition of i : Homs,, (—,T) — Homg(i(—),4(T")) with the
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isomorphism functor Isom;(r) (n,n") between the same objects n and 7’ con-
sidered as objects of M(i(T")) = My,os(T'). Since M is a complex superstack,
we have that Isom;p)(n,7') is the i(T)-relative functor of points of a i(T')-
separated complex superspace I(n,n'). Then the fact that Isomp(n,n') =
Isom;(1y(n,1') o i(—) implies that Isomz(n,7n') is the T-relative functor of

points of the T-separated complex space I(n,n') := i(1(n,1"))pos, as required.
g

Let us finish this section with the definition of coarse complex superspace
of a complex superstack.

Definition 3.10 (Coarse superspace). Let M be a complex superstack.
A complex superspace M together with a map p: M — M is a coarse su-
perspace for M if

1) the map p is bijective on C-valued points;

2) given any other complex superspace Z and a map f: M — Z, the map
f factors trough p.

When it exists, we will denote the coarse superspace for M (which is unique
by property (2)) by |M].

If M is equal to a complex superspace X, then clearly X itself is its
own coarse superspace. In a similar way, we can define the coarse space of a
complex stack. A classical result of Keel and Mori [KM97] asserts that any
separated DM complex stack admits a coarse space. It would be interesting
to extend this result to separated DM complex superstacks.

3.4. Complex Supergroupoids

There is a close relation between complex superstacks and complex super-
groupoids, which we are going to explain in this subsection. See also [Ler10]
and [Moe02] for some nice surveys on this relation.

Definition 3.11 ((Etale) complex supergroupoids). A separated
smooth (resp. étale) complex supergroupoid, or simply a complex super-
groupoid (resp. an étale complex supergroupoid), is the datum of two com-
plex superspaces Xy and X; and two smooth (resp. étale) morphisms s, :
X1 — X (called source and target) such that (s,t) : X1 — Xo x X is sep-
arated, together with a unit morphism u : Xy — X1, an inverse morphism
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t : X1 — X1 and a composition morphism m : X1,x;:X; — X7 satisfying the
following relations

(s,t)ou=Ax,, (s,t)or=mnx,0(s,t), (s,t)om=(sxt),
(5) mo (uot,idy,) =idx,, mo (idx,,uos)=1idx,,

mo (idx,,m) = mo (m,idx,),

where Ax, : Xo — Xo x Xo is the diagonal of Xy and nx, : Xo x Xo —
Xo x X interchanges the two factors. A complex supergroupoid will be
denoted by

<X1:s>>X0 , U, L,m> or by X1:s>>X0 or by X1 = Xg or simply by X,.
t t

Complex supergroupoids form a 2-category, which we will denote by
sGR:

e a l-morphism (or simply a morphism)

s s’
f = (f17f0)1 (Xl ?Xo ,U,L,m) — <X{ ?X(l) ’U/’L/’m/)
is a pair of maps f;: X; — X/, with ¢ = 0,1, such that the natural
compatibility conditions hold:

foOS:S/th foOt:t/Ofl’ flou:ulof07

(6) fiov="ofi, fiom=m'o(fi x f1);

e a 2-morphism « between two morphisms f = (f1, fo), ¢ = (91,90) :
Xo — X as above is a map a: Xy — X/ such that

go(x) for every x € X,
, f1(a)) for every a € Xj.

7) s(a(z)) = fo(z) and t(a(z)) =
m(g1(a), a(s(a))) = m(a(t(a))

The 2-category of étale complex supergroupoids, which we will denote
by sGR®, is the full sub 2-category of sGR whose objects are étale com-
plex supergroupoids. Similarly, one defines the 2-category GR of complex
groupoids and its full sub 2-category GR®' of étale complex groupoids.

To any complex (rep. étale) supergroupoid X; = Xy, we can associate
(as in [ACG1I), p. 303-304]) a complex (resp. DM) superstack, denoted by
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[X1 = Xo], whose fiber over a complex superspace T is given by

(8) [X1 = Xo|(T) = Tl/ing Hom(T' x7T' =T, X1 = Xp) .

where the (inverse) limit runs over all the surjective étale morphisms 77 — T
and Hom(T" xp T' = T, X; = Xj) is the category whose objects consists
of pairs (®g, ®1) of morphisms ®y: T — Xy and @1 : T/ x7 T" — X3 sat-
isfying the obvious compatibility relations. It is easily checked that 1 and
2-morphisms of complex supergroupoids induce 1 and 2-morphisms of the
associated complex superstacks; hence we get a 2-functor

F :sGR — sST,

9)
X1 =X~ [Xl = Xo],

which sends sGR®" into sSTPM. Similarly, one defines a 2-functor
Fev : GR — ST

which sends GRe! into STPM,

Notice that the complex superstacks that are in the image of F comes
id

with a canonical morphism Xy = [ X 1:; Xo ] = [X1 = Xo|, which is sur-
id

jective and smooth (resp. étale if and only if the complex supergroupoid
X1 = X is étale), i.e. it is an atlas of [X; = Xj|. Conversely, given an atlas
Xo — M of a complex superstack M, the fiber product X; := Xy x 1 Xp
is a complex superspace, the two projections (called source and target)
s,t: X1 — Xy are smooth (and étale if and only if M is DM) and the
composite map (s,t) : X1 — X x X is separated. Moreover there are the
following morphisms: the unit morphism u : Xy — X; (the diagonal), the in-
verse ¢ : X1 — X; (which interchanges the two factors) and the composition
morphism m : X3,x: X7 = Xo X am Xo X Xo = X7 = Xo x um Xo (which is
the projection onto the first and third factor), which satisfy the relations (f]).
In order words, starting with a complex (resp. DM) superstack and an at-
las Xy — M, we have constructed a complex (resp. étale) supergroupoid
X1 = Xo xpm Xog = Xp, and we have an isomorphism

(10) M = [X1 = Xo,

which is called a supergroupoid presentation of M (clearly it depends
on the chosen atlas Xy — M).
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Observe that, given a supergroupoid presentation of M as in , we
have that M is smooth if and only if Xy is smooth, and M is separated if
and only if (s,t) : X1 — Xy x X is proper.

The natural inclusion and the bosonic truncation can be extended from
complex (super)stacks to complex (super)groupoids.

Proposition 3.12.

(i) The association

i: GR — sGR,

s i(s)
( Y1 ?YO U, L,m) — < i(Y1) %;i(YO) ,z(u),z@),z(m))

defines a 2-functor which sends GR®® into sSGR®® and such that i([Y1 =
Yo]) = [i(Y1) = i(Yo)].

(i) The association
(—)bos : SGR — GR,

S Sbos
( Xl T> XO , Uy Ly m) = ( (Xl)bos — (XO)bos » Ubos s Lbos mbos)

bos

defines a 2-functor which sends sGR®" into GR®" and such that [X; =
XO]bos - [(Xl)bos = (XO)bos]-

(iii) The 2-functor i is 2-fully faithful and it is left adjoint of the 2-functor

<_)bos-

Proof. : consider a separated smooth (resp. étale) complex groupoid Y7 =
Yy with maps (s,t,u,t,m) satisfying . Since ¢ preserves fibre products,
étaleness or smoothness and it does not change the underlying topologi-
cal spaces, the pair of complex superspaces i(Y1),4(Yp) together with maps
(i(s),i(t),i(u),i(c),i(m)) satisfies (5), the morphism (i(s),i(t)): (Y1) —
i(Yp) x i(Yp) is separated and the maps i(s) and i(¢) are smooth (resp. étale);
hence it defines a separated smooth (resp. étale) complex supergroupoid
i(Y1) = i(Yp). The fact that i is a 2-functor follows easily from the defini-
tion of 1-morphisms and 2-morphisms together with the above mentioned
properties of 4.

Let NV := [Y1 = Yp] be the complex stack associated to Y1 = Y{. Since i
preserves smooth maps and fiber products, the map i(Yy) — i(N) is smooth
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and it holds that i(Yp) x;nr) i(Yo) = i(Yo xn Yo) = i(Y1); this implies that
i(N) = [i(Y1) = i(Y0)], as required.

The proof of part is similar to the proof of part using that the
bosonic truncation preserves fiber products, étaleness of morphisms (see
Proposition ), smoothness of morphism (see Proposition , and it
does not change the underlying topological spaces.

Part : the fact that ¢ is 2-fully faithful, i.e. that for any two ob-
jects Ys, Y, € GR we have an equivalence of categories i(—) : Hom(Y,, Y]) —
Hom(i(Ys),i(Y])), follows from the fact that i defines a fully faithful embed-
ding of Sey into S together with the fact that ¢ preserves fibre products. The
fact that ¢ is right adjoint of the functor (—)pos, i.e. that for any X, € sGR
and any Y, € GR there is an equivalence of categories Homggr (i(Ys), X, ) =
Homgr (Ye, (Xe)bos), follows from the fact that i : Sey — S is left adjoint of
(—)bos : S = Sev together with the fact that 7 and (—)pos both preserve fibre
products. O

The aim of the remaining part of this section is to define the bosonic
quotient. We will define it for étale complex supergroupoids and then descent
it to DM complex superstacks. In order to do this, we have to study more
careful the properties of the 2-functor F : sGR®* — sSTPM of @D (and of
the analogous 2-functor Fe, : GR®" — STPM),

First of all, since every DM complex superstack admits a supergroupoids
presentation as in , we deduce that the 2-functor F is essentially sur-
jective. However, the 2-functor F is not an equivalence of 2-categories since
there are some non-invertible morphisms of étale complex supergroupoids
which become invertible, i.e. equivalences, at the level of DM complex su-
perstacks. Indeed, it turns out that the 2-functor F realizes sSTPM as a
suitable localization of sGR®', as we are now going to recall.

In [Pro96] (generalizing the construction of |GZ67] for 1 categories), it
is explained how to define the localization C[WW ~!] of a 2-category C at a
convenient collection of 1-morphisms W, namely those that admit a right
calculus of fractions (see [Pro96, Sec. 2.1]). Let us recall that:

e The objects of C[W 1] are the objects of C.

e A l-morphism of C[W~!] between two objects A and B is a diagram
of 1-morphisms of C (sometimes called a roof)

A& o B
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such that w € W. For the composition of 1-morphisms, see [Pro90,
Sec. 2.2].

e A 2-morphism of C[IW~!] between two l-morphisms A < C} ELN
and A <= Cy . Bis a quadruple (up,ug,«, ), where u; : E — Cy
and ug : £ — (5 are 1-morphisms of C such that w; ouj,waous € W
while o : w1 ouy = we oug and B : f1 ouy = f2 o ug are 2-morphisms
of C. Such a quadruples are considered up to a natural equivalence
relation, see [Pro96), Sec. 2.3]. The horizontal and vertical compositions
of 2-morphisms are defined in [Pro96, Sec. 2.3].

The localization C[W 1] is not in general a 2-category, but only a bicate-
gory: this means that the associativity and unity laws of horizontal com-
position hold only up to natural isomorphisms (and indeed C[W~!] can be
constructed even starting with a bicategory C).

There is a pseudofunctor (i.e. a functor which preserves composition and
identities only up to natural isomorphisms) of bicategories U : C — C[W 1]
which is defined by:

U(A) = A for any object A of C,

U(f)=( dda g B) for any 1-morphism f: A — B of C,
U(a) = (ida,id4,idiq,, ) for any 2-morphism a : f = g of C.

The homomorphism U sends 1-morphisms in W into equivalences of C[W 1]
and it is universal among the pseudofunctors of bicategories C — D that send
1-morphisms in W into equivalences of D (see [Pro96, Sec. 3]).

Let us go back to étale complex (super)groupoids. A morphism f =
(f1, fo): Xe — Ys between two étale complex (super)groupoids is called a
weak equivalence if fo: Xo — Yy and f; : X1 — Y7 are étale and surjective,
and

8><f1><t:X1—>X0f0 Xg Y1t><f0 Xo

is an isomorphism of complex (super)spaces. We denote by W (resp. Wey)
the collection of all weak equivalences among étale complex supergroupoids
(resp. groupoids).

Mimic the proof of [Pro96, Sec. 4.1] for étale topological groupoids, it
can be shown that W and W, admits a right calculus of fraction. Therefore,
we can form the localizations sGR[W 1] and GR®[W1].

Arguing as in [Moe88, Thm. 3] (where the author deals with étale topo-
logical groupoids), one can show that if f € W (resp. f € Wey) then F(f)
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(resp. Fey(f)) is an equivalence of complex supergroupoids (resp. groupoids).
Therefore, from the universal property of the localization recalled above, the
strict 2-functors F and Fe, factors through pseudofunctors of bicategories

(11) Fioe: sGRW T = sSTPM and  (Fou)ioe : SGR[W,'] = STPM.,

Adapting the proof of [Pro96l Sec. 7] for DM algebraic stacks (which is
similar to the proof for topological stacks in Sec. 5 of loc. cit. and differen-
tiable stacks in Sec. 6 of loc. cit.), it can be shown that Fioc and (Fey)ioc are
isomorphism of bicategories.

We have now all the ingredients we need to introduce the bosonic quo-
tient for DM complex superstacks by descending it from the bosonic quotient
at the level of étale complex supergroupoids. In what follows, etalness will
play a key role via Lemma

Theorem 3.13.

(i) The association

—/T : sGR®* — GR*,
s AN
<X1$X@,U,L,m> <X1/F / Xo/r ’LL/F L/F m/F)

defines a 2-functor which is left adjoint to the natural inclusion i :
GR® — sGR*t.

(ii) The bosonic truncation defined above preserves weak equivalences, hence
it gives a pseudo-functor

/T sSTPM _ gTPM

which is left adjoint to the natural inclusion i : STPM — sSTPM  More-
over, a DM complex superstack M is separated if and only if M/T is
separated.

Note that the bosonic quotient functor does not preserve smoothness (see
Remark . Let us also stress once more that the bosonic truncation in-
troduced in (fil) preserves the composition of 1-morphisms and the identities;
whereas the bosonic truncation introduced in preserves the composition
of 1-morphisms and identities only up to natural isomorphisms, because we
need to pass trough the localization at the weak equivalences.
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Proof. Part . Consider an étale separated complex supergroupoid

S
(Xl —= X0 )uvbam>
t

and let us show that
s/T
X1 /T —= Xo/T ,u/T,¢/T,m/T
t/T

is an étale separated complex groupoid. The map (s/I',¢/T'): X1/T" —
Xo/T x Xo/T is separated since the bosonic quotient does not change the
underlying topological spaces. The maps s/I" and t/T" are étale since the
bosonic quotient preserves étale maps by Proposition . Therefore, we
are left with checking the axioms . The last three axioms follow from
the fact that the bosonic quotient preserves fiber products as soon as one
of the maps is étale, see Lemma, In order to prove the first three ax-
ioms for X;/T' = X /T, we first apply the bosonic quotient functor to the
corresponding three axioms for X; = Xy and we get

(12) (s,t)/Tou/T = Ax, /T, (s,t)/Tot/T =nx,/T o (s,t)/T,
(s,t)/Tom/T = (s x t)/T.

Consider the natural map 7: (Xo x Xo)/I' = Xo/I" x Xo/T" introduced in
Lemma By functoriality, we clearly have that

7TOAXO/F:AXO/IV WO(S,t)/F:(S/F,t/F),

(13) Tonx, =nx,rom wol(sxt)/I'=(s/T xt/T).
Post composing with 7 the relations in and using the identities in ,
we get the desired first three axioms for X;/T" =% X/T.

Given a l-morphism f = (f1, fo): Xe — X/, the morphisms f;/T":
X,;/T — X[/T for i = 0,1 satisfy the relations (6): the fist four identities
are obvious and the last one follows from the fact that

X1s%¢ X1 /T = X1 /Uy pxyr X1/T,
and similarly for X/, by Lemma which can be applied because s (and

also t) are étale. Hence we get a 1-morphism f/T" := (f1/T, fo/T) : X¢/T —
X! /T.
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Given a 2-morphism a: Xy — X between two 1-morphisms f = (f1, fo),
g =(91,90): Xe — X, the morphism «/I': Xo/T' — X/ /I" satisfies the re-
lations : the first two identities are obvious and the last one again from
follows from the fact that X;,x,X; /T = Xl/Fs/F xt/le/I‘ and the similar
fact for X{. Hence we get a 2-morphism «/I" : X(/T' — X|/T" between the
two 1-morphisms f/T",¢/I': Xo/T' — X, /T.

Finally, the fact that — /T is left adjoint of 4, i.e. that for any X, € sGR®®
and any Y, € GR®" there is an equivalence of categories

Homgget (Xo/I', Yo) = Homggre (X, i(Ys)),

follows from the fact that —/T': S — Sey is left adjoint of i : Sey — S to-
gether with the fact that ¢ preserve fibre products and —/I" preserves fiber
products in which at least one of the maps is étale by Lemma [2.4]

Part : let us show that the bosonic quotient preserves weak equiva-
lences. Let f = (f1, fo) : Xe — Yo a weak equivalence of étale complex su-
pergroupoids. Since fy and f; are étale, we get that fo/T" and f1/I" are étale
by Proposition . By Lemma we have a canonical isomorphism

(X()t X f1 Ylfl XSX())/F = X()/Ft X £ YI/I‘fl Xs Xo/F.

This implies that s/I" x f1/I' x t/I" is equal to (s x f; x t)/T", and hence
that is an isomorphism. We conclude that f/T': Xo/I' = Y, /T" is a weak
equivalence of étale complex groupoids.

Using that the bosonic quotient preserves weak equivalences and the uni-
versal property of the localization recalled above, we infer that the bosonic
quotient descends to a pseudofunctor

— /T : sGR®[W ™Y — GR W1

Using that the functors Fioe and (Fey)ioe Of (11]) are equivalences of bicat-
egories, we deduce the existence of the required bosonic truncation pseudo-
functor

JT: sSTPM — gTPM |

The fact that this bosonic quotient pseudofunctor —/I" is left adjoint of the
natural inclusion i : STPM — sSTPM follows from the analogous statement
at the level of étale complex (super)groupoids, which was proved in .
Finally, M = [X; = X{] is separated if and only if (s, ) : X; — X x Xp
is proper, similarly for M/T" := [X;/T' = X /T']. Again because of Lemma
since o (s,t)/I' = (s/I',t/T") and both the bosonic truncation and the
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morphism 7: (Xo x Xo)/T' = Xo/T" x Xo/T" do not change the underlying
topological spaces, we have that (s,t) : X7 — X x Xy is proper if and only
if (s/T,t/T) : X7 /T — Xo/T x Xo/T is proper. O

Remark 3.14. It is possible to define a canonical automorphism I'c on a
category fibered in groupoids (C, F). Given an object 1, we define I'(n) as
the pull-back of 1 via the automorphism I' of the complex superspace F(n).
When the category fibered in groupoids comes from a groupoid, then the
action of I' is the natural action on the presentation.

At least in the case of Deligne-Mumford superstacks, one could use
a standard argument to define the quotient of C by I'¢, see for instance
[Rom05]. However, given an ordinary complex space X, the quotient of the
complex superstack i(X) by I' is not isomorphic isomorphic to i(X): for
instance, if X is a point, the quotient is BZs. This means that this sort of
bosonic quotient is not the left adjoint of the natural inclusion ¢ from DM
complex stacks to DM complex superstacks; in particular, it is different from
the definition that we gave above, and we will not discuss it further in this

paper.

4. Susy curves
4.1. The definition

Let us start with the definition of 1|1 curves and susyﬂ curves over a fixed
complex superspace S.

Definition 4.1.

1) A 1|1 curve over S is a complex superspace C endowed with a proper
smooth morphism 7: C — S of relative dimension 1|1. In particular,
the fibers of 7 (over C-points of S) are proper complex supermanifolds
whose bosonic truncations are compact Riemann surfaces of a certain
genus g, which is called the genus of C.

2) A susy curve (C,D) over S is a 1|1 curve C over S endowed with a
rank 0|1 maximally non-integrable distribution D C T¢/g; maximally

Zsusy stands for supersymmetric; sometimes, they are called SUSY; (as in
[Man91])) or super Riemann surfaces (as in [DW15]).
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non-integrable means that the map

t1 @ty — [tl, tz] mod D
is an isomorphism. In particular, we get an exact sequence of locally
free sheaves
(15) 0D —Te/s — D> — 0.

We should think to 1|1 (resp. susy) curves over S as a family of 1|1
(resp. susy) curves parametrized by S. For this reason, coordinates on S are
sometimes called the moduli of the family; in particular, odd coordinates on
S are called the odd moduli of C. Sometimes we denote a susy curve (C, D)
just by C.

Given two susy curves (C,D) and (C', D’) over, respectively, S and ', a
morphism F : (C,D) — (C’,D’) is a commutative diagram of morphisms of
complex superspaces

c 5 ¢
{ {
s L g

such that dF (D) = D’. In this way, we get a category of susy curves over S,
whose objects are susy curves over S and whose morphisms are morphisms
of susy curves.

In the special case where (C,D) and (C’,D’) are two susy curves over
the same base S, we introduce a slightly stronger notion: a morphism F :
(C,D) — (C', D) over S is a commutative diagram as above in which f =
idg.

We should often be using the fact (see [DW15, Lemma 3.1]) that locally
at every point of a susy curve (C, D) over S we can choose coordinates z and
(called superconformal coordinates) such that z is a local relative coordinate
for the underlying families of Riemann surfaces and the distribution D is
locally generated by the odd vector field

Note that, in such coordinates, [D, D] is generated by the even vector field
0

0z’
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Given a 1|1 curve C over S, its bosonic truncation C' := Cps is a curve
over Spos (i-e. a smooth family of compact Riemann surfaces). On the other
other hand, the pullback Cypit := C X g Shos is smooth of relative dimension
1|1 over a bosonic base; hence L :=n¢_ . / n%spm is a line bundle over C' and
we have that Cgpii = Cr. Following [Cod14], we say that Cgpig is the split
model of C (some authors say that Cgpit is obtained by “turning off the odd
moduli”). More generally, for any k > 1, we denote by Cj, the pull-back of C
to S*): this is a susy curve over the k-th infinitesimal thickening of Sy,.¢ in
S. Note that C; = Ceplis-

4.2. Relation with spin curves

Recall that a spin curve (C, L, ) over a complex (bosonic) space S is a
curve C over S, together with a line bundle L on C' and an isomorphism
¢: Kgys =, L®L.Ona spin curve we always have an action of us, which
acts as the identity on C' and ¢ and as —1 on the line bundle L. The following
is a reformulation of standard results; here we would like to stress the role
of the canonical automorphism T'.

Proposition 4.2. Let S be an ordinary complex space. There exists an
equivalence of categories between spin curves over S and susy curves over
S. Under this equivalence, the action of uo is mapped to the canonical au-
tomorphism I'.

Proof. First, we associate a susy curve to a spin curve. Given a spin curve
(C, L, ¢), we define C to be the split manifold Cr,. To define locally D, pick a
local trivialization 6 of L and a local co-ordinate z such that ¢(dz) =60 ® 6.
Now we let D to be the span of % + 0%. It is standard to check that this
definition makes sense globally and satisfies all the requested properties.
We now do the converse, associating a spin curve to a susy curve. Let C
be a susy curve over an even base S. The total space C has odd dimension
equal to one, so it is split, and we can write C = Cp; we thus have a curve
C and a line bundle L, and to give a spin curve we just need to construct
the isomorphism ¢. Pick conformal co-ordinates and let v = % + 9% be a
generato(g of D. With this local description, we can see that Dyos = L1, and

[v,v] = 7. The bracket of vector fields thus gives the requested isomorphism

¢V: L_l & L_l = Dbos & Dbos — T7r
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The statement about the automorphism follows because the non trivial
element of ps acts as —1 on D. This constructions also identifies morphisms
of susy curves with morphisms of spin curves. O

In the following, we will denote by C, the susy curve associated to the
spin curve (C, L, ¢) over a complex space S, according to Proposition

4.3. The isomorphism functor

Given two susy curves C and C’ over a complex superspace S, consider the
controvariant functor (called the isomorphism functor between C and C’)

Isomg(C,C") : Hom(—, S) — Sets

that associates to any morphism 7" — S the set Isomg(C,C")(T) consisting
of all T-isomorphisms from Cr :=C xgT to Cf. :=C" xgT.

Proposition 4.3. Given two susy curves C and C' of genus g > 2 over a
complex: superspace S, the isomorphism functor Isomg(C,C’) is represented
by an S-complex superspace ¢ : Isomg(C,C") — S having the property that ¢
1s finite and with injective differential at any point.

Proof. First, we show that Isomg¢(C,C’) is represented by a complex super-
space ¢ : Isomg(C,C’) — S. We argue similarly to the classical case. Any
isomorphism of susy curves preserves the Berenzinian line bundle. By the
main result of [Cod14], the fifth (or higher) power of this line bundle is very
ample, and the dimension of the space of sections depends only on the genus
of the susy curves. We conclude that Isomg(C,C’) is represented by a closed
subspace of Isomg(E, E'), where E (resp. E’) is the locally free sheaf on S
defined as the push-forward of the fifth power of the Berenzinian line bundle
of C (resp. C’).

Let us now show that ¢ is finite. By definition, this is equivalent to
showing that ¢pes : Isomg(C,C’ )pos — Shos 18 finite. Consider the split mod-
els Coplit 1= C X g Sbhos — Shos and Céplit :=C' X5 Shos — Shos Of, respectively,
C — S and ' — S. Consider the fibered product Isomg(C,C’) X g Spos with
its two projections

Isomg(C,C") 2 Isomg(C,C") X5 Spos LENy S .

By construction, Isomg(C,C’) X g Spos represents the isomorphism functor

from Cgpiiy to Cépht and also, by Proposition the isomorphism functor
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between the associated spin curves over Spes. Since the stack S, of spin
curves is separated, we conclude that the second projection po is finite.
Observe also that the first projection p; is a closed embedding since it is the
base change of the closed embedding Spes < S.

Now the natural inclusion map ¢ : Isomg(C,C’)pos — Isomg(C,C’) to-
gether with ¢0s determine a map

p = (t, Ppos) : Isomg(C,C )pos — Isomg(C,C") X5 Spos

such that ¢pes = p2 0 p and ¢ = py o p. Since ¢ and p; are closed embeddings,
also p is a closed embedding. Hence we conclude that ¢, = p2 o p is finite
because ps is finite and p is a closed embedding.

Finally, we have show that the kernel of d¢, is trivial for any complex
point = € Isomg(C,C’). This kernel consists of global vector fields on the
susy curve Cy(y) = C;) ) which commute with the susy structure. But the
only such global vector field is the zero vector field as proved in [LR8S8|
Prop. 2.2]. O

4.4. Kuranishi family

We introduce the notion of deformation and Kuranishi family. A pointed
complex superspace (.59, 0) is a complex superspace S together with a marked
point 0.

Definition 4.4 (Deformation). Let C, be a susy curve over a point, and
(S,0) a pointed complex superspace . A deformation of Cr over (S,0) is
a susy curve C over S and an isomorphism between C7, and the fibre of C
over 0.

Definition 4.5 (Kuranishi family). Let Cf, be a susy curve over a point.
A Kuranishi family for Cp, is a deformation of Cf, over a base (U, 0) such that
for any other deformation C’ of C, over a base (S,0) there exists, possibly
up to shrinking S, a unique morphism from (.5,0) to (U,0) such that C’ is
the pull-back of C.

For a general introduction to Kuranishi families the reader can look at
[ACGII) Section 11.4]. In this set up, combining the existence of Kuranishi
families for spin curves with [LR88, Thm. 2.8] or [Vai88| 3.4.5], we have the
following theorem
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Theorem 4.6 (Existence of Kuranishi family). Let Cp, be a susy curve
of genus g > 2 over a point. Let w: (C,L) — (V,0) be a Kuranishi family
for the spin curve (C, L), where V is complex manifold of dimension 3g — 3.
Denote by (U, 0) the split complex supermanifold of dimension 3g — 3|2g — 2
associated to (V,0) and the locally free sheaf R*m.L. Then, (U,0) is the base
of a Kuranishi family C for the susy curve Cp,.

The following result on Kuranishi families will be crucial for the next
section.

Proposition 4.7. Let n: C — (U,0) be a Kuranishi family for the susy
curve Cr, over C. Consider the two susy curves p;C — U x U where p; :
U x U — U is the i-th projection, for i = 1,2. Then the morphism

W Tsompwy (070, p5C) S U x U 25 U
1s €tale and surjective.

Proof. Let A denote the diagonal of U x U. Since pjC|a = p5C|a, the image
of ¢ contains the diagonal A. Since p; maps A isomorphically into U, we
deduce that 1 is surjective.

Let x be point of Isomy«(p7(C), p5(C)) and set (u1,u1) := ¢(x) € U X
U. To prove that v is étale at z, it is enough to show that v is locally an
isomorphism around z. Since C — U is a Kuranishi family at u; and uy (by
the openness of versality), we can find open neighborhoods u; € V3 C U and
ug € Vo C U such that there exists a unique pair of isomorphisms f: V; —
Vo and F': Cjy, = f*(Cjy,)- Then the pair (f, F') defines the inverse of v
from the open neighborhood Vi C U of ¥)(x) = u; to an open neighborhood

of z in Isomy«u (p;(C), p5(C)).
U

5. The moduli superstack and superspace of susy curves

We are now ready to study the moduli superstack of susy curves, using the
language introduced in Section

Definition 5.1 (Moduli CFG of genus g susy curves). Let g > 2.
The category fibered in groupoids over S of genus g susy curves is the
CFG whose objects are susy curves m: C — .S over some complex superspace
S, whose morphisms are Cartesian diagrams, and whose fibration is the
forgetful functor F(m: C — §) = S.
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Proposition implies that the bosonic truncation (9y)pes of M, (as
in ) is the CFG over S,y of genus g spin curves, denoted by &,, whose ob-
jects are spin curves (C, L, ¢) — S over some complex space S € Sey, whose
morphisms are Cartesian diagrams and whose fibration is the forgetful func-
tor F((C,L,¢) — S)=S. We are going to use the following well-known
properties of S;.

Fact 5.2. Let g > 2.

(i) Sy is a smooth and separated DM complex stack of dimension 3g — 3.
Sy has two connected components: S;‘ parametrizes respectively even
spin curves, i.e. spin curves (C, L, ) over C such that h°(L) is even;
S, parametrizes respectively odd spin curves, i.e. spin curves (C,L,9)
over C such that h°(L) is odd.

(i1) Sy has a coarse moduli space Sy which is a quasi-projective variety and
it does have two connected components S; and S, which are the coarse
moduli spaces of S; and S, , respectively.

In the next theorem, we show that 9, is a complex superstack and we
collect its geometric properties.

Theorem 5.3. For any g > 2, M, is a smooth and separated DM complex
superstack of dimension 3g — 3|29 — 2 such that (My)pos = Sy. Moreover,
M, has two connected components, denoted by Qﬁ; and M, whose bosonic
truncations are (M) = S and (M) =S, -
Proof. Let us prove that 9, is a complex superstack by checking the con-
ditions of Definition and Definition

Condition of Definition and condition of Definition follow
from Remark and Proposition [4.7]

Let us now show that condition of Definition holds true for 9,
i.e. that descent data for susy curves are effective. We are going to use the
notation introduced in the definition of descend data. We first pull-back
everything to Tjes and Spes. Here, we are working on a spin curve, and we
already know that descend data are effective, so we obtain a susy curve Cgplis
over Spes. To extend it to a susy curve over S, we need to construct just
the structure sheaf and the susy structure, because the topological space
is already there. The descent data from C’ give us a open cover of C, and
a sheaf and the susy structure on each open set. We use the descent data
to glue together these sheaves and get the structure sheaf O¢ and the susy
structure.
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Let us finally show that condition ({2 of Deﬁnition holds true for M,
i.e. that 9, admits an étale atlas. To this end we use Kuranishi families,
whose existence has been proved in Theorem Since S, can be covered by
a finite disjoint union of Kuranishi families of spin curves, and (9y)pos = S,
taking a suitable disjoint union X of a finite number Kuranishi families of
susy curve, we obtain a complex superspace X with a map towards 9, such
that Xy is an atlas for S;. Now, the fact that the map from X to 9,
which is surjective because the map Xy,os — Sy is surjective, is étale follows
from Proposition [4.7] as in the proof of [ACGI1], Thm. XII.8.3].

Since the atlas X is smooth of dimension 3g — 3|29 — 2 by Theorem [4.6
we get that 9, is smooth of dimension 3¢ — 3|2¢g — 2. Moreover, since
(Mg)bos = Sy is separated and it has two connected components S; and
S, by Fact we deduce that 9, is separated and it has two connected
components M F and M, whose bosonic truncations are S and S, respec-
tively. O

Recall that the moduli stack S, of spin curves is a po-gerbe. This means
that for every object C — S, we have an injection of u9 in the group Autg(C)
of automorphisms of C over S, and this is compatible with base change. In
this set up, we can construct the rigidification, which is a DM complex stack
denoted by Sy /2, and the projection 7: So — Sy /2 is a us-gerbe (see
[Rom035]).

In the case of the moduli superstack 9, of susy curves, for every object
C — S, the canonical involution I'¢ gives an embedding of uo in the group
Aut(C) of automorphisms of C, and this is compatible with base change.
However, the forgetful functor maps I'¢c to I'g, which, in general, is not equal
to Idg; hence, I'c does not belong in general to Autg(C), so that 9, is not a
1o gerbe. The existence of the automorphism I'¢c € Aut(C) can be rephrased
by saying that, given a family of susy curves C — S, which is equivalent
to giving a map from S to M,, we have an embedding v = I'dg x I's of §
into S xgn, S = Isomgx5(piC, p5C), see also [ACG11, Chap. XII, Equ. (8.5)].
This “gerbe-like” structure, which, in some broad sense, could be typical of
all moduli superstacks of super objects, implies the following proposition.

Proposition 5.4. Let M be a complex superspace, any map ¢: My — M
factors trough the quotient Mg /I

Proof. Recall that a supergroupoid presentation of M is Me = M = M,
where both arrows are the identity. Since the pseudofunctor Fi. of
is an isomorphism of bicategories, we can pick a supergroupoid presenta-
tion X, = X7 = Xo of M, such that ¢ is induced by a map of groupoids
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[ ="(fo,[1): Xe = M,, i.e. ¢ = Fioc(f). Since M,/I' = [X/T' = Xo/T] by
definition (see Theorem [3.13|(ii)), it is enough to show that f factors through
the quotient m = (7o, m1) : Xe — Xo/T.

To this aim, consider the map v = Idx, x I'x,: Xo — X1 discussed above
and the diagonal embedding A : Xo — X7 = X xgn, Xo. Since v and A are
both sections of the source map s : X1 — X and both the arrows in the pre-
sentation of M are the identity, we have that

JioA=foosoA=fposoy=fion.

Similarly, using the above equality and the relations ¢ o A = Idx, andtoy =
I'x, where t : X7 — Xj is the target map, we get that

fo=footoA=fioA=fioy=footoy= foolx,.

0

This shows that fy factors through the quotient mp : Xg — Xo/I". Moreover,
using that Mypes — M is universal with respect to morphisms from spaces
into M, we deduce that fy has to factor through the inclusion Mo — M.
Since f; = fpos (because the target morphism of M, is the identity), this
implies that also f; has to factor via the inclusion My, < M. Since the
bosonic quotient is left adjoint to the inclusion of spaces into superspaces,
we infer that f; has to factor via the quotient m : X7 — X;/T". We conclude
that f factors trough 7 as required. O

This result has the following key corollary. The idea underlying it is that,
locally around a point [C], the coarse moduli space of curves looks like a
Kuranishi family for C' modulo Aut(C), cf [ACG11], Section XII.2]; when
C' is a susy curve, Aut(C) contains I', hence the coarse moduli space is an
ordinary non-reduced space.

Corollary 5.5. The coarse superspace My of MM, does exist and it is even,
or in other words it is an ordinary complex space. Moreover, My is also the
coarse space of the bosonic quotient Mgy /T

The complex space Ml is not reduced; its reduction (Mg)req is isomorphic
to the coarse moduli space Sy of genus g spin curves. In particular, M is
separated, and it has two connected components.

Proof. Because of Proposition the coarse superspace of M, if it exists, is
equal to the coarse space of M, /I'; moreover, the map from M, to its coarse
superspace factors though the quotient 9, — M, /T". The stack M /T is
an ordinary separated DM complex stack, hence its coarse space exists by
[KMI7]. We denote this space by M.
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We now focus on the second part of the corollary. The first assertions
come from the fact that M, is the coarse space of M, /T", an atlas for M, /T’
is X/I', where X is a finite union of Kuranishi families (see the proof of
Theorem [5.3)), and X/T is not reduced since X has dimension 3g — 3|2g — 2
and 2g — 2 > 2. To describe (M)yed, recall that (9 /I)rea = (My)bos = S,
hence (M )yeq is the coarse space of Sy, which is nothing but S,. A space Z
is separated if and only if Z,.q is separated, cf. [EGAL 1.5.5.1 (vi)], hence M,
is separated. By the same token, since S; has two connected components,
the same is true for M. g

We do not know if M is quasi-projective; the fact that the underlying
reduced space is quasi-projective does not suffice (see [EGA| 11.5.3.5]). We
also do not know if Ml; can be interpreted as a moduli space of some more
classical object.

Remark 5.6. There is an analogy between the situation described in Corol-
lary and the way the hyperelliptic locus sits inside the moduli stack of
curves; hoping to help the reader, we briefly describe it. One can look at
the first and second infinitesimal neighborhoods H; and Hs of the hyper-
elliptic locus inside the moduli stack of genus g > 3 curves. These spaces
are non-reduced DM complex stacks. The hyperelliptic involution acts on
Hy and Hs; more specifically, it is the identity on the underlying reduced
stacks, but acts non-trivially in the normal direction. The associated coarse
moduli spaces of H; and Hy are equal to the coarse moduli spaces of their
respective quotients by the hyperelliptic involution. In particular, the coarse
moduli space of H; is the coarse moduli space of hyperelliptic curves, while
the coarse moduli space of Hy is a thickening of the coarse moduli space
of hyperelliptic curves. One might think at Hy with the action of the hy-
perelliptic involution as a sort of toy model for 9, with the action of the
canonical involution I'.

6. Periods of susy curves
6.1. Global period map

In this section we define periods of super symmetric curves and prove some
of their properties. We are going to take an Hodge-theoretic approach; the
reader can found in [CMSPO03, Section 1.2] a nice introduction to period
matrices and period map in the classical setting.

Let m: C — S be a susy curve, and m: Cypiiy = Cr, — Spos its split model.
The line bundle Ber(C) is the Berenzinian of the relative cotangent bundle.
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The following lemma is well-known, see for instance [Wit19bl, Section 8] or
[Cod14l Criterion 2].

Lemma 6.1. The line bundle . Ber(C) is locally free on S when m L =0
on Shes; in this case, its rank is g|0.

From now on, we consider susy curves w : C — S such that m,L = 0. As
explained in [Wit19b, Section 8.1] or [BR99, Section 2.4], we can integrate
sections of the Berenzinian line bundle along closed topological 1-cycle in
C; moreover, the value of the integral depends just on the homology class
of the cycle. This means that to any global section of the Berenzinian line
bundle we can associate a cohomology class in H'(C,C).

The global sections of Ber(C), because of Lemma are even; in other
words, they are invariant under the canonical automorphism I'. Roughly
speaking, this means that the integral of a global section of the Berenzinian
line bundle along a fixed closed 1-cycle is an even function on the base
S. Let us formalize this idea. Assume that C, as a topological space, is
homeomorphic to C' x Sy.s, where C'is a fibre. Integration gives a morphism

/ . 7, Ber(C) — HY(C,Z) @7 (0s)"

where H'(C,Z) is the singular co-homology of the underlining topological
space. In a more general set up, we should write R! f.Z rather than H'(C,Z).

Riemann bilinear relations hold (see for example [BR99| Section 2.8] and
[Wit19bl Section 8.2]), so the image is isotropic for the intersection pairing
on H'(C,Z). Combining this with Lemma we learn that the image of the
integration map is an isotropic g-dimensional subspace of the 2g-dimensional
OL-module H'(C,Z) ®7 (Os)". In a more fancy language, this means that
we have a morphism

P: ST — A

where Ay is the classical moduli stack of principally polarized abelian vari-
eties of dimension g. We land in A, because (Og)' is a sheaf of even com-
mutative ring on Spes. Similarly, since the values of the integral is invariant
under I', the morphism P factors trough the quotient S/T.

It is well-known that the image of a split curve is just the Jacobian of the
reduced curve; let us write out the computation for the reader convenience.

Lemma 6.2. The period matriz of a split curve Cr, with h°(L) = 0 equals
the period matriz of C.
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Proof. Fix a symplectic basis A;, B; for the homology of C, let wy,...,wy
be the corresponding basis of the holomorphic differentials and 7 the period
matrix. Let (zq4,604) be a conformal atlas for Cf. Locally we write

Wi = fi(za)dza .
Locally, a basis of HY(Cp,Ber(Cp)) is given by
(f.)l' = fi(za)ﬁa[dza ‘ d@a]

since can check directly that f;(z,)0, transforms as a section of the
Berenzinian. We are using that h°(L) =0 to assume that &; spans all
H°(Cp,Ber(Cyp)). Integrating @; along the cycles Bj one gets again the
period matrix 7. O

The morphism P we defined above is functorial; so we have a period
map

P: m;r -—=> Ag7

where M is the connected component of 9, such that (M )pes = S, is
moduli stack of even spin curves. The locus where P is not defined is theta
null divisor, which consists of all even spin curves (C, L, ¢) such that h®(L) >
0. Lemma implies that P is an extension of the classical period map. In
other words, (P)pes on (MM )nes maps a spin curve (C, L, ¢) to the Jacobian
J(C) of C.

We can define a slightly more refined version of the period map; namely,
we can lift it to a morphism

P: 93?; -+ Ny,

where N is the moduli stack of abelian varieties endowed with a symmet-
ric theta divisor. To do this, we first observe that (ﬁ)bos admits a natural
lifting to N, by mapping a spin curve (C, L, ¢) to the Jacobian of C' en-
dowed with the symmetric theta divisor associated to the spin structure L,
Le. the translation via L™! of the natural theta divisor O¢ € Pic?(C). The
morphism from Ny to Ay is étale, so the lift of (P)pes gives a lift of P. The
classical Torelli theorem implies that this new morphism P is injective on
complex points. However, the morphism P is far from being an embedding
since it factors trough the quotient by the canonical automorphism, so that
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we can write
P/T: T /T > N.

The moduli stack NV, admits a coarse space Ny, so by the universal properties
of the coarse moduli spaces we have a third version of the period map at
the level of coarse moduli spaces

P: M;‘ -=+ Ny.

6.2. The classical formula

There is a classical formula for the super period map: it was first discovered
by D’Hoker and Phong in [DP89]; their argument has been improved and
expanded in [Wit19bl Section 8.3]. Both the proof and the statement are
quite analytic; let us briefly explain their formula.

We fix a complex point [Cp] of 9} such that hO(L) = 0; we work locally
on a Kuranishi family for C. On the base we have 2g — 2 odd coordinates,
let us call them 71,...,724—2. The local co-ordinates come from a basis of
the co-tangent space; so the 7; are a basis of H(C, K¢ ® L). After fixing
a symplectic basis of the homology of C, we can now consider the period
matrix 7 = (7;;) as a function on the base. We want to study the Taylor
expansion of 7 in the odd variables around the point 0 := [Cf]. Being the
period matrix an even function, this expansion will look like

Tig =T (0)+ U((f,}f)%??b
a,b

modulo functions of order at least 3 in ;. We omit the dependance on the
even moduli. The quantity afj’bj) lives in tangent space to N, at 7(0). In
[Wit19bl Section 8.3 Formula 8.38], the following formula is proven

(16) ol — / P1(fatr) A S A 3w ).
cxC

In this formula, the f; are a basis of H'(C, L™1) Serre-dual to the 7;, so they
are L™ !-valued (0, 1) forms on C. The w; are a normalized basis of H°(C, K).
The kernel Sy, is the Szegd kernel associated to the spin structure L; we are
going to describe it in Section [6.3.3] The p; are the projections on the two
factors of C' x C.
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6.3. Infinitesimal period map

We want to study the differential of the period map
.ot
P. mg i d Ng

from an algebraic point of view. Being the period map I'-invariant, the odd
tangent space of sm; is in the kernel of the differential of dP. It is thus more
interesting to look at the differential of the period map for the quotient by I

P/T: S /T --» N.

Fix a complex point [Cz] in M} such that h%(C,L) = 0. Our goal is to
describe the differential at the point Cf,

d(P/F)CL : T[CL](QJTQ/F) — TP(CL)Nga

which is called the infinitesimal period map at Cf.
To start with, let us describe explicitly the domain and the codomain of
d(P/T)¢, and some background about the Szeg6 kernel Sy, associated to L.

6.3.1. First infinitesimal neighborhood of Cr, in M, /T'. Thanks to
the description of the Kuranishi family for Cp given in Theorem we
know that the tangent space of M, /T" at [Cz] splits non-canonically into the
sum of A2 HY(C, L™1) and H(C,T¢). To avoid this non-canonical splitting,
we give the following more intrinsic description.

Consider the following exact sequence associated to the diagonal A inside
the surface C' x C:

L

(17) 0= 00— 0(A) = Oa(A)=Tc — 0,

where we have used the well-known fact that the normal sheaf of A inside
C x C' is isomorphic to the tangent sheaf T once we identify A with the
curve C. By tensoring with L71 X L~ (—A) we get the exact sequence

(18) 0—=L'RL Y (-A) =L 'RL ' LT'RL Y a=Tc —0.
Taking cohomology we obtain the exact sequence of C-vector spaces
0— HY (C,T¢) - H*(C x C,L"*R L7 (-A)) — H'(C,L71)®? - 0.

The invariant part of the above sequence with respect to the canonical in-
volution ¢ on C' x C switching the two factors (using the sign conventions
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of [DW13, Sec. 3.1]) is
(19) 0— HYC,To) = H*(C x C, L' R L7} (—A)"
2
= Te, (My/T) — N\ H(C, L") — 0.

This sequence coincides with the sequence (3.13)" of [DW13], and it is the
dual of the sequence (3.11)" of [DW13] that represents the first obstruction
to the splitness of the superstack 9, of susy curves over the stack of spin
curves S;.

6.3.2. First infinitesimal neighborhood of P(CL) in Nj. Since the
map Ny, — A, is étale and the image of P(Cr) in A, is equal to the Jaco-
bian of C' by Lemma @ the tangent space TP(CL)Ng is equal to Ty)Ay,
which is well-known to be equal to Sym? H'(C, ). We want now to de-
scribe Sym? H'(C, O) as a middle term of a canonical short exact sequence
which is suitable for the study of periods in the super setting. We look at
the following part of the long exact sequence associated to

(20) HY(C,Tc) S H*(C x C,0) — H*(C x C,0(A)) =0
Proposition 6.3. We have
HYC,To)"T = HY(C,Te) and H?*(C x C,0cxc)™ =Sym? HY(C,0¢),

and the even part of the map map c from 1s Serre dual to the multipli-
cation map

m: Sym? H°(C, K¢) — H°(C,2K¢).

Proof. We first compute the Serre dual of the sequence . Applying the
functor Hom(—, O) to , we get the following short exact sequence of
sheaves on C' x C

(21) 0= O(=A) > O 2 Ext' (OA(A),0) — 0,

where 91 is the first coboundary map. In the sequence , we have
Ext (Oa(A),O) = Op and the coboundary map d; is the restriction to the
diagonal. This follows from the fact that, if the genus of the curve C'is at least
2, there exists a unique up to a scalar morphism from O(—A) to O. Tensor-
ing the exact sequence with the canonical bundle Koxo = Ko X K¢,



394 G. Codogni and F. Viviani
we thus obtain the exact sequence
01
(22) 0— KCXC(_A) — KC><C — KC><C|A = 2KC — 0,

which by definition is the Serre dual of . The map d; is just the restriction
to the diagonal, so H%(81) is the multiplication.

As explained in [DW13], Section 3.3], the sheaf 2K supported on the
diagonal A is entirely even (in the notation of [DW13| Section 3.3], we
are taking a =1 and ¢ = 0). Arguing as in [DW13], we deduce that that
HY(C,2Kc)t = HY(C,2K(¢), and H(C x C, Kcxc)t = Sym? H(C, K¢).
We obtain the proposition by Serre duality. U

Recall also that the kernel of the multiplication map m is the vector
space I2(C') of quadrics containing the canonical model of C' and that m is
surjective if and only if C' is not hyperelliptic by Noether’s Theorem.

6.3.3. The Szeg6 kernel Sy. In this section we recall the definition of
the Szegd kernel Sy, associated to a theta characteristic L such that h°(L) =
0. We adopt the algebraic point of view of [BZB03] rather than the classical
analytic approach.

Tensoring the exact sequence by LX L, we obtain the exact se-
quence

0> LKXL—LXL(A)— Op—0.

Since hY(L) = h'(L) = 0, we obtain an isomorphism
H(C x C,LRL(A)) = HY(A,04) = C.

The Szegd kernel Sy, is the preimage of 1 € H°(A, Oa) = C under the above
isomorphism.

Notice that, since L = K¢ ® L', the above isomorphism can also be
identified with the residue map along the diagonal

H(C x C,LRL(A)) 2 HO(C,End(L)).

Therefore, the Szegd kernel Sy is the preimage of the identity under the
residue map Res.

The Szeg6 kernel is symmetric with respect to the involution on C' x C|
as explained for instance in [BZB03, Remark 5.1.4].
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6.3.4. The infinitesimal period map. We are now in position to de-
scribe the infinitesimal period map

d(P/F)CL : T[CL} (f)ﬁ;—/l—‘) — TP(CL)Nga
under the assumption h°(L) = 0. Recall that
Tic,) (Mg /T) = H*(LT R L7 (=A)*

sits in the exact sequence while Tp(c, )Ny = Sym? H'(C, O) sits in the
exact sequence

(23)  HY(C,To) <25 Sym® HY(C, 0) = Tp(c, Ny = Iy =0,

by Proposition [6.3
The infinitesimal period map d(P/T")¢, is a morphism

d(P/T)¢,: HA(LT'R LY (-A))T — Sym? H'(C, 0)

which is the identity on H'(C,T() since it extends the differential of the
classical period map Ppos : Sg — Nj.

Lemma 6.4. Assume that h%(L) = 0. The multiplication by the Szegd ker-
nel St is the unique morphism form the exact sequence of sheaves (@ on
CxC

0= L 'RL N -A) = L 'RL ' 5 L' RL A =Tc =0
to the exact sequence on CxC

0—0—0(A) = 0aA(A)=Tc—0

which extends the identity on T .
Proof. The multiplication by Sy, restricts to the identity on T because of

the definition of Sy, (see the end of [6.3.3]). The claim now follows from the
fact h%(C x C, L X L(A)) = 1, which was proved in m O

Our description of the infinitesimal period map is contained in the fol-
lowing
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Theorem 6.5. Fiz a complex point [CL] in 9th+ such that h%(C, L) = 0.
The infinitesimal period map

d(P/T)¢, : Tic,)(MF/T) = H*(C x C, L' R L™ (—-A))*
— Tp(c, Ny = Sym® H'(C, 0)

s the map
H*(CxC,L'RLY(-A))" = Sym? H'(C,0)
given by the even part of the H? of the morphism of sheaves on C x C
LR (-A) =0

defined by the multiplication with the Szegd kernel St associated to L.

In particular, the differential d(P/T")c, induces a morphism from the
exact sequence to the exact sequence , which restricts to the identity
on HY(C, Tc).

If we were able to prove that, a priori, the infinitesimal period map has to
be the push forward of a morphism of sheaves on C' x C, then Theorem
would follow form Lemma [6.4l Unfortunately, we are not able to complete
this argument; we claim that Theorem is correct because it matches up
with the formula described in Section

Now, let us draw a consequence from our description.

Theorem 6.6. Fix a complex point [Cr] in IS such that h°(C, L) = 0.
The infinitesimal period map

d(P/T)c, : Tic,) (M /T) = Tp(c, Ny
18 surjective.

Proof. We use the description of the differential of the period map given in
Theorem Let D be the zero divisor of the Szeg6 kernel Sy, and consider
the exact sequence of sheaves on C' x C

0025 LRLA) » OD)|p — 0,

where the first morphism is induced by the multiplication by Sy. Tensoring
by L=! X L='(—A) we obtain a sequence

0L 'RL Y (-A) 2505 Fi= LT'RLY(~A) @ O(D)|p — 0.
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Remark that F is still supported on D. The period map is obtained by
taking the even part of the cohomology, namely we have the exact sequence

AEMDew, som? HY(C,0) — HX(C x C, F)*

H*(CxC,L'RLY(-A)T
Since F is supported on the (one-dimensional) divisor D, we must have that
H?(C x C,F) = 0, which then gives the surjectivity of d(P/T") as claimed.

O

Remark 6.7. The infinitesimal period map described above can not be
injective for dimensional reasons since

. 29 —2 . +1
dlmT[CL](i)ﬁ;/T) =3g—3+ < 92 > > dim Tp(c, )Ny = <g ; )

Remark 6.8 (Super Schottky problem). Composing with the projec-
tion from N to the moduli stack of principally polarized abelian varieties
Ag, we can look at the image of zm; in A, via the period map. This is a
schematic thickening of the image of the classical moduli space Mg, and it
make sense to ask for its description. This should be the super version of the
Schottky problem. In genus 4, the image of zmgf is, up to embedded points,
cut out by a power of the classical Schottky form. In view of Theorem
one needs to take at least the second power.
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