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1. Introduction

This is the second companion paper of [Part II], where we give a mathe-
matical definition of the Coulomb branch MC of a 3d SUSY gauge theory
associated with a complex reductive group G and its symplectic representa-
tion M of a form N⊕N∗. Recall that MC is defined as an affine algebraic
variety whose coordinate ring is the equivariant Borel Moore homology group
HGO
∗ (R) of a certain space R, called the variety of triples. The product is

given by the convolution. Here GO is the C[[z]]-valued points of G.
By its definition, we have a projection π : R → GrG, where GrG is the

affine Grassmannian for G. Therefore we have a natural object A in an
approproate Ind-completion DG(GrG) of the derived GO-equivariant con-
structible category on GrG defined by π∗ωR[−2 dim NO], where ωR is the
dualizing complex on R. We can recover HGO

∗ (R) as H∗GO(GrG,A). More-
over the construction of the convolution product gives us a homomorphism
m : A ?A→ A, where ? is the convolution product on DG(GrG). It is an
associative multiplication on A. Then we have an induced multiplication on
H∗GO(GrG,A) from m, which is the same as the product on HGO

∗ (R) defined
in [Part II]. We also prove that it is a commutative object in DG(GrG), and
hence the induced multiplication on H∗GO(GrG,A) is commutative. It is the

second proof of the commutativity of the product on HGO
∗ (R), which is more

conceptual than the first computational proof in [Part II].
In view of the original proposal in [Nak16], we expect that this construc-

tion can be generalized to the case when M is not necessarily of the form
N⊕N∗.

Anyhow if we have a commutative ring object A in DG(GrG), we get
a commutative ring structure on H∗GO(GrG,A), and hence the ‘Coulomb
branch’ as its spectrum.

Our reformulation of the definition of the Coulomb branch via (A,m)
reminds us a construction of the nilpotent cone and its Springer resolution
via a perverse sheaf AR [ABG04]. Here AR is a perverse sheaf correspond-
ing to the regular representation C[G∨] of the Langlands dual group G∨

under the geometric Satake correspondence, and hence is a commutative
ring object in PervGO(GrG). Let us call it the regular sheaf. It is given by⊕

λ(V λ
G∨)∨ ⊗C IC(Gr

λ
G), where (V λ

G∨)∨ is the dual of the irreducible represen-

tation of G∨ with the highest weight λ and Gr
λ
G is the closure of the GO-orbit

of zλ in GrG. We prove that AR is realised as a variant of the above A for a
quiver gauge theory in type A. (We consider the framed quiver gauge theory
of type AN−1 with dimV = (N − 1, N − 2, . . . , 1), dimW = (N, 0, . . . , 0)
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and consider the pushforward to GrPGL(N). See §2(v) for more detail.) This
constuction might be generalized to type BCD, once we can generalize our
definition to the case when M is not necessarily of a form N⊕N∗ (cotan-
gent type). However we do not expect AR arises in a similar way for excep-
tional types. Hence we have more examples of commutative ring objects in
DG(GrG) than our construction.

Once we have a collection {Ai} of commutative ring objects in DG(GrG),
we can construct a new commutative ring object as i!∆(�Ai), where i∆ :
GrG →

∏
i GrG is the diagonal embedding. We call this the gluing construc-

tion. It is motivated by [CHMZ14a]. (See [Nak16, 5(i)] for a quick review
and links to other physics literature.)

The second purpose of this paper is to study Coulomb branches as-
sociated with a star shaped quiver. It is regarded as an example of the
gluing construction of a ring objects from those for legs. It is expected that
Coulomb branches of star shaped quiver gauge theories are conjectural Higgs
branches of 3d Sicilian theories in type A [BTX10]. (See [Nak16, 3(iii)] for
a review for a mathematician.) Expected properties of these Higgs branches
are listed in [MT12]. Recently Ginzburg-Kazhdan [GK] construct holomor-
phic symplectic varieties satisfying (most of) these properties for any type.
The construction of AR as A implies that Coulomb branches of star shaped
quiver gauge theories are isomorphic to Ginzburg-Kazhdan varieties in type
A via [Bap15]. We check two among the remaining properties, which iden-
tify Ginzburg-Kazhdan varieties of type A1, A2 with C2 ⊗ C2 ⊗ C2 and the
minimal nilpotent orbit of E6 respectively.

We do not expect Ginzburg-Kazhdan varieties for exceptional groups
are Coulomb branches of gauge theories. This is compatible with physicists’
expectation that 3d Sicilian theories are not lagrangian theories. Neverthe-
less 3d Sicilian theories are accepted as well-defined quantum field theories.
And there are many such examples. It is compatible with our observation
that

1) We have examples of ring objects on DG(GrG), which may not arise
from any pair (G,N).

2) We have manipulations on ring objects, such as the gluing construction
and hamiltonian reduction (see §5(viii) for the latter).

We thus hope that ring objects are useful to study non-lagrangian theories.
There is an Appendix A, which discusses a result of independent interest.

We construct a complex reductive group hamiltonian action on the Coulomb
branch of a framed quiver gauge theory by integrating hamiltonian vector
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fields of functions introduced in [Quiver, Appendix B]. This extends a torus
action constructed in [Part II, §3(v)] by grading on HGO

∗ (R). The regular
sheaf AR has the G∨-action, which is identified with this group action for
the framed quiver gauge theory mentioned above.

The other parts of the paper are organized as follows. In §2 we show
that π∗ωR[−2 dim NO] and its cousin for gauge theory with a flavor sym-
metry group are ring objects. We observe that Ext∗DG(GrG)(1GrG ,A) is a
commutative ring for a commutative ring object A in DG(GrG), where 1GrG

is the skyscraper sheaf at the base point in GrG. Considering skyscraper
sheaves at other points, we construct line bundles over a partial resolution of
Spec Ext∗DG(GrG)(1GrG ,A). We follow [ABG04] for these constructions. The
gluing construction is explained in §2(viii). In §3 we give a proof of commuta-
tivity of m. The idea is well-known: we use Beilinson-Drinfeld Grassmannian
to deform a situation where the product is manifestly symmetric. Then we
use nearby cycle functors and dual specialization homomorphisms. In §4 we
show that the regular sheaf AR arises as a pushforward in a framed quiver
gauge theory in type A. In §5 we study Coulomb branches associated with
star shaped quivers. Since §§4, 5 depend crucially on the construction in
Appendix A, the authors recommend the reader to go to Appendix A before
visiting §§4, 5.

In Appendix B written by Gus Lonergan, we give another proof of the
commutativity of the convolution product. This proof is more direct than the
proof in the main text. A key ingredient is a global version of the convolution
diagram for the variety of triples R.

Notation

We basically follow the notation in [Part II] and [Quiver]. The Weyl group
is denoted by W in order to distinugish a vector space W used for a quiver.
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2. Complexes on the affine Grassmannian

In this section we interpret the convolution product ∗ in terms of a complex
on the affine Grassmannian. Our goal is to construct a commutative ring
object in DG(GrG), an appropriate Ind-completion of the GO-equivariant
derived constructible category on GrG. Here the multiplication is given by
the product ? appearing in geometric Satake correspondence [MV07].

The construction of this section, except §2(viii), is motivated by the work
of Arkhipov, Bezrukavnikov and Ginzburg [ABG04], where the nilpotent
cone N of the Langlands dual group is constructed from the regular sheaf
AR on GrG.

The construction of §2(viii) is motivated by [CHMZ14a], as we have
mentioned already in Introduction.

2(i). Categorical generalities

Let X be a scheme of finite type over C. Then we denote by D(X) the ind-
completion of the bounded derived category of constructible sheaves on X;
same definition applies to the equivariant derived category DG(X) where G
is a (pro)algebraic group acting on X. It is obvious that for a G-equivariant
morphism f : X → Y the derived direct images f!, f∗ : DG(X)→ DG(Y ) are
well-defined. The same thing is true for the inverse images f !, f∗ : DG(Y )→
DG(X).

Assume that G has finitely many orbits on X. Then a morphism F → G
in DG(X) is an isomorphism if and only if it is an isomorphism on all !-stalks
(the assumption that G acts with finitely many orbits is needed in order to
guarantee that there is an open dense subset of X on which both F and G
are locally constant).

Let now X be an ind-scheme which is a filtered inductive limit of schemes
of finite type over C with respect to closed embeddings. For simplicity we
shall assume that X is just the union of closed subschemes X0 ⊂ X1 ⊂ · · ·
where each Xi is a scheme of finite type over C and each inclusion Xi ⊂ Xi+1

is a closed embedding; we denote this embedding by σi. We shall call such
ind-schemes good. Assume that a (pro)algebraic group G acts on each Xi

and this action commutes with σi’s. Then we shall say that X is a good
G-scheme.
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For a good G-ind-scheme X we define the category DG(X) whose objects
are systems (Fi, κi)∞i=0 where
• Fi ∈ DG(Xi)
• κi : σ!

iFi+1 → Fi is an isomorphism.
A morphism α : (Fi, κi)→ (F ′i , κ′i) is collection of morphisms Fi → F ′i for
each i which commute with the κi’s. It is easy to see that DG(X) is a
triangulated category. Assume that G acts with finitely many orbits on each
Xi; in this case we shall say that X is a very good G-ind-scheme. Then
again a morphism F → G in DG(X) is an isomorphism if and only if it is
an isomorphism on all !-stalks.

Let X,Y be two good G-ind-schemes and let f : X → Y be a G-equi-
variant morphism. Then we can define the functor f∗ : DG(X)→ DG(Y )
(but a priori not the functor f!). It is defined in the following way. Given an
object (Fi, κi) of DG(X) we need to define an object (Gj , ηj) of DG(Y ). Let
Zj = f−1(Yj). This is again a good G-ind-scheme – it is the inductive limit
of Zi,j = Xi ∩ f−1(Yj). Let Fi,j denote the !-restriction of Fi to Zi,j . Let
also fi,j : Zi,j → Yj denote the natural morphism. Since (σ!

i) is right adjoint
to (σi)!, the isomorphism κi gives rise to a map (σi)!Fi = (σi)∗Fi → Fi+1;
!-restricting this to Zj we get a morphism (σi)∗Fi,j → Fi+1,j which gives
rise to a natural map (fi,j)∗Fi,j → (fi+1,j)∗Fi+1,j . Hence the inductive limit
of (fi,j)∗Fi,j ’s (with respect to i) makes sense and we denote it by Gj . The
construction of isomorphisms ηj between the !-restriction of Gj+1 and Gj is
immediate from the usual base change.

In what follows we are going apply it for example to X being GrG
for some reductive group G. In this case we can talk about the equivari-
ant derived category DGO(GrG) which as before we shall simply denote by
DG(GrG) (a priori it depends on a choice of Xi’s above; to simplify the dis-
cussion we are going to make this choice, although it is not difficult to see
that the resulting category is independent of that choice); it is clear that (for
any choice of Xi’s) GrG is a very good GO-ind-scheme. The above general
discussion also shows that given two objects F ,G ∈ DG(GrG) we can define
their convolution F ? G ∈ DG(GrG).

2(ii). Pushforward to the affine Grassmannian

Let N be a finite dimensional representation of a complex reductive group G.
Let R be the variety of triples as in [Part II], and ωR its dualizing complex.
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Proposition 2.1. Let π : R → GrG be the projection and

A
def.
= π∗ωR[−2 dim NO] ∈ DG(GrG).

(1) There exists a natural multiplication homomorphism

m : A ?A→ A,

where the left hand side is the convolution product of A with itself given by
the diagram [Part II, (3.1)].

(2) Let 1GrG denote the skyscraper sheaf at the base point in GrG. Re-
call that it is the unit element in DG(GrG), i.e., we have natural isomor-
phisms 1GrG ?A

∼= A ∼= A ? 1GrG. We have a homomorphism 1: 1GrG → A

such that

A ∼= A ? 1GrG
id ?1−−−→ A ?A

m−→ A, A ∼= 1GrG ?A
1?id−−→ A ?A

m−→ A

are both idA.
(3) Under the natural associativity isomorphism A ? (A ?A) ∼= (A ?A) ?

A, we have

m ◦ (m ? id) = m ◦ (id ?m).

(4) The product on H∗GO(GrG,A) ∼= HGO
∗ (R) induced by m is the same

as the convolution product ∗.
(5) (1)∼(4) remain true for the GO oC×-equivariant setting.

The product in (4) is defined as follows: Let

x, y ∈ H∗GO(A) = Ext∗DG(GrG)(CGrG ,A).

Then x ? y ∈ Ext∗DG(GrG)(CGrG ? CGrG ,A ?A). We have a natural homomor-
phism CGrG → CGrG ? CGrG from the adjunction homomorphism CGrG →
m∗m

∗CGrG . Therefore we combine it with m : A ?A→ A, we get x ? y ∈
Ext∗DG(GrG)(CGrG ,A).
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Proof. Let us combine two diagrams [Part II, (3.1), (3.2)]:

(2.2)

R×R p̃←−−−− p−1(R×R)
q̃−−−−→ q(p−1(R×R))

m̃−−−−→ R

i×idR

y i′
y yī yi

T ×R p←−−−− GK ×R
q−−−−→ GK ×GO R

m−−−−→ T

π×π
y idGK ×π

y yπ̄ yπ
GrG ×GrG ←−−−−

p̄
GK ×GrG −−−−→

q̄
GrG×̃GrG −−−−→

m̄
GrG,

where we have changed the notation for morphisms in the bottom row
putting ‘bar’. We also denote π ◦ i simply by π for brevity.

The restriction with support homomorphism [Part II, (3.7)] induces

A�A = (π × π)∗(ωR×R)[−4 dim NO]

→ (π × π)∗p̃∗(ωp−1(R×R)[−2 dim NO − 2 dimGO])
∼= p̄∗(idGK ×π)∗i

′
∗ωp−1(R×R)[−2 dim NO − 2 dimGO]).

By adjunction, we get

p̄∗(A�A)→ (idGK ×π)∗i
′
∗ωp−1(R×R)[−2 dim NO − 2 dimGO]).

Since q̃ is the quotient by GO, the right hand side is

(idGK ×π)∗i
′
∗q̃

!ωq(p−1(R×R))[−2 dim NO − 2 dimGO])
∼= q̄∗π̄∗ī∗ωq(p−1(R×R))[−2 dim NO].

Applying (q̄∗)−1, we get a homomorphism

(2.3) A�̃A = (q̄∗)−1p̄∗(A�A)→ π̄∗ī∗ωq(p−1(R×R))[−2 dim NO].

We further apply m̄∗:

A ?A = m̄∗(A�̃A)→ π∗i∗m̃∗ωq(p−1(R×R))[2 dim NO].

The left hand side is nothing but the convolution product A ?A defined by
the diagram [Part II, (3.1)].

Since m̃ is proper, we have a natural homomorphism

m̃∗ωq(p−1(R×R))[2 dim NO]→ ωR[2 dim NO].

Thus we obtain the homomorphism in (1).
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Proofs of (2),(3) are already given in the proof of [Part II, Thm. 3.10].
Note that the associativity isomorphism is given by the GrG-version of
the big square diagram appearing in the proof of [Part II, Thm. 3.10]. See
[MV07, Prop. 4.6].

Taking hypercohomology groups, one can check (4). We omit the detail.
�

Remarks 2.4. (1) By [BF08, Thm. 5], A ∈ DGOoC×(GrG) corresponds to
a certain differential graded Harish-Chandra bimodule of G∨. We do not
know anything about it except the example just below.

(2) Let us denote by AR the regular sheaf, i.e., the perverse sheaf corre-
sponding to the regular representation C[G∨] of the Langlands dual group
G∨ under the geometric Satake correspondence. It was denoted by R in
[ABG04], but it conflicts with our notation for the space R. It is endowed
with a natural morphism m : AR ?AR → AR with properties listed in Propo-
sition 2.1. The nilpotent cone N of G∨ and its Springer resolution Ñ were
constructed from AR in [ABG04]. Since it is more natural to compare AR

with A arising in the framework of a flavor symmetry group, more detail
will be given §2(v). Finally, the dg-Harish-Chandra bimodule corresponding

to AR is the ring U
[]
~ nC[G∨] of ~-differential operators on G∨.

The construction in this and the subsequent subsections shows that it is
enough to have A with m : A ?A→ A, i.e., a ring object in DG(GrG) to de-
fine the Coulomb branchMC . For example, AR. Since AR for an exceptional
group is unlikely to arise from any gauge theory (G,N), it is interesting to
find other recipes to construct such an (A,m). We give one example of such
a recipe in §2(viii) below.

2(iii). Commutativity

In this subsection we forget the loop rotation.
Let Θ: A ?A→ A ?A be the commutativity constraint of the convolu-

tion product. Its construction, following [MV07, §5] and also [Gai01], will
be recalled in §3(i).

Theorem 2.5. We have m ◦Θ ∼= m as homomorphism A ?A→ A.

It means that (A,m) is a commutative ring object in (DG(GrG), ?). We
give a proof in §3.

Our proof is indirect. We construct another multiplication mψ : A ?A→
A using nearby cycle functors and dual specialization. We have mψ ◦Θ ∼=
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mψ. Therefore (A,mψ) is commutative, but we cannot check mψ is associa-
tive directly.

Next we show mψ = m for N = 0. This implies that mψ = m holds after
the fixed point localization for general N. We do not have torsion where m
and mψ live, hence this is enough.

2(iv). A complex on the affine Grassmannian of the flavor
symmetry group

We suppose that N is a representation of a larger group G̃ containing G as
a normal subgroup as in [Part II, §3(viii), §3(ix)]. Let GF = G̃/G. We are
going to construct a ring object in DGF (GrGF ).

Let us denote TG̃,N, RG̃,N by T̃ , R̃ respectively for short as before.

Composing T̃ → GrG̃ or R̃ → GrG̃ with the morphism GrG̃ → GrGF , we
have

(2.6) π̃ : T̃ or R̃ → GrGF .

Let us denote the fiber over λ ∈ GrGF by R̃λ, where λ is a coweight of GF
regarded as a point in GrGF . (In [Part II, §3(ix)] it was denoted by λF .)

As in Proposition 2.1, we consider a pushforward of the dualizing sheaf
ωR̃. Here we consider the dualizing sheaf of the larger space R̃, and take the

pushforward A
def.
= π̃∗ωR̃[−2 dim NO] to GrGF . We consider it as an object

in DG̃(GrGF ), an appropriate Ind-completion of the G̃O-equivariant derived
constructible category of GrGF . We also have Qπ̃∗ωR̃[−2 dim NO] = Qid ∗A,
which is a (GF )O-equivariant object on GrGF . Here ‘id’ is the identity of
GrGF and the general pushforward functor Qid ∗, Qπ̃∗ changes the equivari-
ance group from G̃O to (GF )O. See [BL94, §6].

In the same way as in Proposition 2.1, we have natural homomorphisms

(2.7) m : A ?A→ A, m : Qid ∗A ? Qid ∗A→ Qid ∗A,

that satisfy the unit and associativity properties. It also satisfies the com-
mutativity.

Let us give a small remark for the construction of the homomorphisms:
When we define the convolution product A ?A, we use (q∗)−1 for GrGF .
For this, we only need the (GF )O-equivariant structure, therefore we can
replace the second factor A by Qid ∗A. However in the definition of the first
homomorphism m, we need to go back to the space R̃, hence we need the



i
i

“1-Nakajima” — 2019/11/8 — 18:46 — page 263 — #11 i
i

i
i

i
i

Ring objects from Coulomb branches 263

G̃O-equivariant structure. The second homomorphism m is induced from the
first by applying Qid ∗ and using the smooth base change.

Let 1GrGF
be the skyscraper sheaf at the base point in GrGF . As in

[ABG04, §7.2] we have an algebra structure on Ext∗DG̃(GrGF )(1GrGF
,A): Let

x ∈ ExtiDG̃(GrGF )(1GrGF
,A), y ∈ ExtjDG̃(GrGF )(1GrGF

,A). We consider x ? y ∈
Exti+jDG̃(GrGF )(1GrGF

? 1GrGF
,A ?A). We compose 1 : 1GrGF

∼= 1GrGF
? 1GrGF

and m : A ?A→ A, we get m(x ? y)1 ∈ Exti+jDG̃(GrGF )(1GrGF
,A).

Note that ext-groups in DGF and DG̃F
are isomorphic:

Ext∗DGF (GrGF )(1GrGF
, Qid ∗A) ∼= Ext∗DG̃(GrGF )(1GrGF

,A),

where the right hand side is regarded as H∗GF (pt)-module via H∗GF (pt)→
H∗
G̃

(pt). See [BL94, §13.5]. Thus the difference between A and Qid ∗A is not
essential, we omit Qid ∗ hereafter.

Since the fiber of π̃ : R̃ → GrGF at the base point is our original R, we
have a natural isomorphism

(2.8) Ext∗DG̃(GrGF )(1GrGF
,A) ∼= HG̃O

∗ (R)

of H∗
G̃

(pt)-modules.

The definition of the multiplication on Ext∗DG̃(GrGF )(1GrGF
,A) uses G̃

(or GF ) equivariance, as we use the descent (q∗)−1.1 On the other hand, the
multiplication on the right hand side given in [Part II, Prop. 3.22] descends
to HGO

∗ (R). In fact, we will see that a simple modification of the definition
gives a multiplication on the left hand side with the group changed from G̃
to G in §2(vi).

Lemma 2.9. The isomorphism (2.8) respects the multiplication. The same
is true for G̃O oC×-equivariant groups.

Proof. Let us consider a modification of the commutative diagram (2.2):
(2.10)

T̃ × R̃ p←−−−− G̃K × R̃
q−−−−→ G̃K ×G̃O R̃

m−−−−→ T̃

π̃×π̃
y ξ×π̃

y yπ̄ yπ̃
GrGF ×GrGF ←−−−−p̄ (GF )K ×GrGF −−−−→q̄ GrGF ×̃GrGF −−−−→m̄ GrGF ,

1We thank Roman Bezrukavnikov for a clarification of this point.
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where ξ : G̃K → (GF )K is a morphism induced from G̃→ GF , and all other
maps are given by replacing G, R, . . . by G̃, R̃, . . ., and composing GrG̃ →
GrGF , etc. We omit the first row for brevity.

Let [1GF ] denote the base point in GrGF . We take the inverse images of
[1GF ]× [1GF ], (GF )O × [1GF ], [1GF ] ? [1GF ], [1GF ] in the first row. They are
T ×R, G̃OK ×R, G̃OK ×G̃O R, T respectively. Here G̃OK = ξ−1((GF )O) is the
group introduced in [Part II, §3(viii)]. Thus we recover the diagram [Part II,
(3.23)]. Now the assertion is easy to check, and hence we omit the detail. �

2(v). An alternative construction of a regular sheaf

Consider a quiver gauge theory of type AN−1 with dimV = (N − 1,
N − 2, . . . , 1), dimW = (N, 0, . . . , 0) with G = GL(V ) =

∏N−1
i=1 GL(i), G̃ =

(GL(V )×GL(W ))/Z, where Z ∼= C× is the diagonal central subgroup. We
have GF = PGL(W ) = PGL(N) and apply the above construction to define
A. It is a complex on GrPGL(N). We also know that the Coulomb branch
MC of this quiver gauge theory is the nilpotent cone in sl(N). (We know
that MC is a transversal slice in the affine Grassmannian by [Quiver, §3]
for a quiver gauge theory of type ADE. And in this case the transver-
sal slice in the affine Grassmannian is the nilpotent cone by [Lus81]. See
also [MV03].) Recall AR in Remark 2.4(2). We take G = PGL(N). Then
Ext∗D(GrPGL(N))

(1GrPGL(N)
,AR) gives also the nilpotent cone [ABG04, 7.3.1].

This is not a coincidence. We have

Theorem 2.11. AR and A are isomorphic as ring objects in

DPGL(N)(GrPGL(N)).

The proof will be given in §4.

2(vi). Line bundles via homology groups of fibers

We now return back to a general situation: we are given a commutative
ring object in DG(GrG), i.e., we are given A ∈ DG(GrG) with 1: 1GrG → A,
m : A ?A→ A satisfying the unit and associativity properties in Proposi-
tion 2.1(2) and the commutativity as in Theorem 2.5. The object constructed
in §2(ii), as well as the object A or Qid ∗A in §2(iv) is an example when we
regard GF as G. In fact, the latter is our primary example.
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Let D(GrG) denote an appropriate Ind-completion of the constructible
derived category on GrG (without GO-equivariance structure). Let For :
DG(GrG)→ D(GrG) be the forgetful functor.

Remark 2.12. In the setting of §2(iv), we could consider DG(GrGF ), an
appropriate Ind-completion of the GO-equivariant constructible derived cat-
egory on GrGF . Note that GO acts trivially on GrGF . Let ResGO,G̃O be
the restriction functor DG̃(GrGF )→ DG(GrGF ) restricting the group action

from G̃O to GO. Then we could consider Ares = ResGO,G̃O A ∈ DG(GrGF ).
This allows us to consider Ext∗DG(GrGF )(1GrGF

,Ares), but the difference be-

tween this Ext group and Ext∗D(GrGF )(1GrGF
,ForQid ∗A) is not essential as

we have remarked above. Therefore we do not keep two groups G, GF , and
just consider the above situation for brevity of the notation.

Let Afor def.
= ForA. Note that Afor ?Afor is not defined as we do not have

(q∗)−1 for non GO-equivariant objects. However we still have Form : For(A ?
A)→ Afor = ForA.

Viewing a coweight λ of G as a point in GrG, we denote the embedding
by iλ : {λ} → GrG.

Recall m : GrG ?GrG → GrG. For a coweight χ, let Gr2
χ

def.
= m−1(χ) and

denote the embedding Gr2
χ → GrG ?GrG by jχ. We have the base change

i!χm∗ = m∗j
!
χ.

Recall A ?A = m∗(q
∗)−1p∗(A�A). Let us set A�̃A = (q∗)−1p∗(A�A).

As the forgetful functor commutes with m∗, we have

For(A ?A) = m∗ For(A�̃A).

We have

(2.13) m∗j
!
χ For(A�̃A) = i!χm∗ For(A�̃A) = i!χ For(A ?A)

i!χ Form
−−−−−→ i!χA

for.

Claim. The embedding {λ} × {µ} → Gr2
λ+µ induces a natural homomor-

phism

(2.14) H∗(i!λA
for)⊗H∗(i!µAfor)→ H∗(j!

λ+µ For(A�̃A)).

Proof. Let us regard λ as an element in GK and denote the embedding
{λ} → GK by ĩλ. The morphism q(̃iλ × iµ) : {λ} × {µ} → GrG×̃GrG factors
through Gr2

λ+µ. Let us write the embedding kλ,µ : {λ} × {µ} → Gr2
λ+µ.
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We note k!
λ,µj

!
λ+µ = (̃iλ × iµ)!q! = (̃iλ × iµ)!q∗[2 dimGO]. Since the for-

getful functor commutes with pull back homomorphisms [BL94, §3.4], we
get

k!
λ,µj

!
λ+µ For(A�̃A)(2.15)

= (̃iλ × iµ)!p∗(Afor �Afor)[2 dimGO]

= (̃iλ × iµ)!p!(Afor �Afor) = (iλ × iµ)!(Afor �Afor).

Since kλ,µ is proper, we have a homomorphism kλ,µ∗k
!
λ,µ = kλ,µ!k

!
λ,µ → id.

Now the assertion is clear. �

Combining (2.13) with χ = λ+ µ and (2.14), we obtain a multiplication

(2.16) H∗(i!λA
for)⊗H∗(i!µAfor)→ H∗(i!λ+µA

for).

Remarks 2.17. (1) Note that the embedding iλ is TO-equivariant. There-
fore we can use the restriction functor ResTO,GO from GO to TO instead of
the forgetful functor For. Then the same construction gives a multiplication

(2.18) H∗TO(i!λ ResTO,GO A)⊗H∗TO(i!µ ResTO,GO A)→H∗TO(i!λ+µ ResTO,GO A).

(2) Suppose G = T . Then GrT =
⊔
λ∈Y {λ}, hence

H∗TO(GrT ,A) =
⊕
λ∈Y

H∗TO(i!λA).

The multiplication explained after Proposition 2.1 is Y -graded, hence gives
H∗TO(i!λA)⊗H∗TO(i!µA)→ H∗TO(i!λ+µA). It is clear that this multiplication is
same as (2.18).

Suppose λ = µ = 0. We have a commutative diagram
(2.19)

Ext∗DG(GrG)(1GrG ,A)⊗ Ext∗DG(GrG)(1GrG ,A)
m(•?•)1−−−−−→ Ext∗DG(GrG)(1GrG ,A)

For

y yFor

H∗(i!0A
for)⊗H∗(i!0Afor) −−−−→

(2.16)
H∗(i!0A

for)

via the isomorphism ExtD(GrG)(1GrG ,A
for) ∼= H∗(i!0A

for).
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In fact, the only place we need to check is the commutativity of

Ext∗DG(GrG)(1GrG ,A)⊗ Ext∗DG(GrG)(1GrG ,A)
(q∗)−1p∗−−−−−→ Ext∗

DG(GrG×̃GrG)
(C[1G]?[1G],A�̃A)

For

y yFor

H∗(i!0A
for)⊗H∗(i!0Afor) −−−−→

(2.16)
H∗(j!

0 For(A�̃A)),

where the right vertical arrow is defined as the embedding of [1G] ? [1G] into
GrG×̃GrG factors through Gr2

0. This commutativity is clear from (2.15).
In the setting of the previous subsection, the upper row of (2.19) is the

same as the multiplication on HG̃O
∗ (R) by Lemma 2.9, hence the lower row

is also the same as ∗ on HGO
∗ (R). In this sense the multiplication in (2.16)

is a generalization of ∗.
Thus

⊕
H∗(i!λA

for) is an algebra graded by the coweight lattice of G.
For λ = 0, we have a subalgebra H∗(i!0A

for), which is isomorphic to HGO
∗ (R)

in the setting of the previous subsection. One can also take a direct sum over
dominant coweights λ of G.

For a fixed coweight λ, we consider the direct sum of H∗(i!nλA
for) with

degrees nλ (n ∈ Z≥0). It is an algebra graded by Z≥0. The associated Proj

Proj

⊕
n≥0

H∗(i!nλA
for)


has a natural projective morphism to Spec(H∗(i!0A

for)). We have a natu-
ral line bundle O(1) on Proj(

⊕
n≥0H

∗(i!nλA
for)) such that H∗(i!nλA

for) is
identified with the space of sections of O(n) = O(1)⊗n. Under some cir-
cumstances we expect Proj(

⊕
n≥0H

∗(i!nλA
for)) is a (partial) resolution of

Spec(H∗(i!0A
for)).

In the example in Remark 2.4, AR gives the Springer resolution of the
nilpotent cone N of G∨, the Langlands dual group of G. See [ABG04, 8.5.2].

See [Nak16, §5.1] (and also [Part II, Remark 3.26]) for a physical origin
of this construction.

Remark 2.20. In view of Remark 2.17(2), the construction in [Part II,
§3(ix)] and the above construction is the same for A in §2(iv). Here the
construction in [Part II, §3(ix)] is as follows: Let us suppose G C G̃ as in
§2(iv) and further assume GF = G̃/G is a torus. Let us write TF = GF .
The Coulomb branch MC(G̃,N) for the larger group G̃ has an action of
π1(TF )∧ = T∨F , and [Part II, Prop. 3.18] says thatM(G,N) is the Hamilto-
nian reduction of M(G̃,N) by T∨F . Let us denote the moment map by µT∨F .
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The hamiltoian reduction more precisely means the affine algebro-geometric
quotient µ−1

T∨F
(0)//T∨F . If we have a cocharacter λF of TF , we view it as a

character of T∨F and consider the GIT quotient µ−1
T∨F

(0)//λFT
∨
F .

2(vii). Wakimoto sheaves

The original definition of the multiplication (2.16) in [ABG04] was given
by Wakimoto sheaves, and the above definition is taken from the proof of
[ABG04, Thm. 8.5.2]. Although it is unnecessary, let us review the construc-
tion for the sake of the reader.

Let I be the Iwahori subgroup of GK and let FlG = GK/I be the affine
flag variety. We have a smooth proper morphism $ : FlG � GrG of ind-
schemes. Let Wλ be the Wakimoto sheaf on FlG for G corresponding to a
coweight λ. See [ABG04, §8] for the definition (due to Mirković). By [ABG04,
§8.4], we have a ‘multiplication’

(2.21) Eλ ⊗ Eµ → Eλ+µ, Eλ = Ext∗DI(GrG)(1GrG ,Wλ ?A),

where ? is the convolution product on I-equivariant complexes on FlG and
GrG: Let x ∈ Eλ, y ∈ Eµ. We consider the composite

y · x : 1GrG
y−→Wµ ?A =Wµ ? 1GrG ?A

Wµ?x?A−−−−−→Wµ ?Wλ ?A ?A

=Wλ+µ ?A ?A
m−→Wλ+µ ?A.

Note that Wµ ? x is well-defined as x is an I-equivariant homomorphism,
and hence Wµ � x descends for the morphism q.

We have an isomorphism Eλ∼=H∗TO(i!λ ResTO,GO A) (see [ABG04, (8.7.2)]),
and the above multiplication is the same as (2.18).

2(viii). Gluing construction

One of motivations of [CHMZ14a] extending the monopole formula from the
Hilbert series of the coordinate ring of the Coulomb branchMC to the char-
acter of the space of sections of a line bundle (see [Part II, Remark 3.26]) is
to write down the Hilbert series of a complicated Coulomb branch from sim-
pler ones. We use the machinery prepared in earlier subsections to introduce
the corresponding construction at the level of commutative ring objects in
DG(GrG).

The setting in [CHMZ14a] is as follows. Suppose that we have a finite
collection {(Gi,Ni)} (i = 1, 2, . . . ) of gauge theories sharing the common
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flavor symmetry group, i.e., Ni is a representation of a larger group G̃i
containing Gi as a normal subgroup with GF = G̃i/Gi, independent of i.
Then we define G as the fiber product of G̃i over GF , and N =

⊕
Ni. The

monopole formula for the Hilbert series of the Coulomb branch of (G,N) is
given by extended monopole formula for (Gi,Ni). See also [Nak16, §5(i)] for
a review.

An example is a star shaped quiver gauge theory, which is the 3d mir-
ror of the Sicilian theory of type AN−1, reviewed in [Nak16, §3(iii)]. See
Figure 1. We have three copies of type AN−1 quiver gauge theory with
dimV = (N − 1, N − 2, . . . , 1), dimW = (N, 0, . . . , 0) as in §2(v). We divide
the group GL(V ) =

∏
GL(Vi) by the diagonal central subgroup Z and take it

as the gauge group. The common flavor symmetry group is GF = PGL(N).

N N−1 N−2 2 1

N−1

N−2

2

1

N−1

N−2

2

1

Figure 1: A star shaped quiver gauge theory.

The variety RG,N is the fiber product of RG̃i,Ni
over GrGF . Let us de-

note the natural projections RG,N → GrGF and RG̃i,Ni
→ GrGF by π and

πi respectively. Then

π∗ωRG,N [−2 dim NO] = i!∆

(
�πi∗ωRG̃i,Ni [−2 dim(Ni)O]

)
,

where i∆ : GrGF →
∏
i GrGF is the diagonal embedding. Note that

πi∗ωRG̃i,Ni [−2 dim(Ni)O]

is the commutative ring object in DGF (GrGF ), considered in §2(iv).
Motivated by the above example, we consider the following setting.

(We use the convention in §2(vi), i.e., replace GF by G.) Suppose that we
have a finite collection {Ai} of commutative ring objects in DG(GrG). Let
i∆ : GrG →

∏
i GrG be the diagonal embedding. Then the following is clear:
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Proposition 2.22. A
def.
= i!∆ (�Ai) is a commutative ring object in DG(GrG).

In particular, we can consider the affine scheme SpecH∗GO(GrG,A).

In fact, we have �m : (�Ai) ? (�Ai) = �(Ai ?Ai)→ �Ai from m : Ai ?
Ai → Ai. Then we apply i!∆. We claim that there is a natural homomorphism

(2.23) i!∆(�Ai) ? i
!
∆(�Ai)→ i!∆ (�(Ai ?Ai)) ,

hence its composition with i!∆(�m) gives the desired multiplication homo-
morphism of i!∆(�Ai). We prove the claim by comparing the convolution
diagrams [Part II, (3.1)] for GrG and

∏
i GrG. Since p, q are smooth, p∗, q∗

commute with i!∆. The last part of the convolution diagram for G and
∏
iG

is

GrG×̃GrG
m−−−−→ GrG

i′∆

y yi∆∏
i GrG×̃GrG = Gr∏

iG
×̃Gr∏

iG
−−−−→∏

im
Gr∏

iG
=
∏
i GrG,

where we denote the diagonal embedding of the left column by i′∆ to dis-
tinguish it from the right column. Let �(Ai�̃Ai) denote the complex on
Gr∏

iG
×̃Gr∏

iG
obtained in the course of the convolution product for

∏
iG.

We define the homomorphism as

m∗i
′!
∆(�(Ai�̃Ai)) = m∗

!⊗
(Ai�̃Ai)→

!⊗
m∗(Ai�̃Ai)

= i!∆

(∏
i

m

)
∗

� (Ai�̃Ai))

by the natural homomorphism [KS90, (2.6.24) or the dual of (2.6.22)].
See §5 for an application of the gluing construction.

3. Proof of commutativity

We denote GrG by Gr for brevity in this section. In this section we closely
follow [MV07, §5], [Gai01] and [BeiDr, §5.3].

3(i). Commutativity constraint

Let us give a definition of the commutativity constraint Θ.
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Let us choose a smooth curve X. We define GrX the moduli space of
triples (x,P, ϕ) of a point x ∈ X, a G-bundle P on X and its trivialization ϕ
over X \ {x}. We also have a group scheme GX,O, the global analog of GO.

More generally, we introduce an ind-scheme GrXn as the moduli space
of (x1, . . . , xn,P, ϕ) of n ordered points in X, a G-bundle P on X and its
trivialization ϕ over X \

⋃
{xi}. We also have GXn,O, which is the moduli

space of (x1, . . . , xn,P, κx1,...,xn) where (x1, . . . , xn) ∈ Xn, P the trivial G-
bundle on X, and κx1,...,xn is a trivialization of P on X̂x1,...,xn .

Then we define the convolution product of A, B ∈ DGX,O(GrX) as before,
using the global version of the diagram [Part II, (3.1)]:

(3.1) GrX ×GrX
pX←−−−− ˜GrX ×GrX

qX−−−−→ GrX×̃GrX
mX−−−−→ GrX2 .

Here ˜GrX ×GrX is the moduli space of (x1, x2,P1, ϕ1, κ,P2, ϕ2), a pair of
points (x1, x2) ∈ X2, two G-bundles P1, P2 and their trivializations ϕi over
X \ {xi} together with a trivialization κ of P1 on the formal neighborhood of
x2. The twisted product GrX×̃GrX is the moduli space of (x1, x2,P1, ϕ1,P, η)
as above, but η : P1|X\x2

∼= P|X\x2
instead of ϕ2 and κ. The morphism qX

is given by defining P as the gluing of P1|X\x2
and P2|X̂x2

by ϕ−1
2 ◦ κ over

(X \ x2) ∩ X̂x2
= X̂x2

\ x2. (When X = D, the formal disk, P and P2 are
isomorphic. Hence this construction was omitted before.) The definitions of
morphisms pX , mX are as before, and are omitted. (See [MV07, §5].) Note
that pX is a GX,O-torsor by the action changing κ. The second projection
qX is also a GX,O-torsor by the action changing κ and ϕ2 simultaneously.

The diagram (3.1) gives a GX2,O-equivariant object defined on GrX2 by

AX ?X BX
def.
= mX∗(q

∗
X)−1p∗X(AX �BX) for AX , BX ∈ DGX,O(GrX).

We take X = A1. We have GrX ∼= X ×Gr thanks to a choice of a global
coordinate on A1. In particular, we have a projection τ : GrX → Gr. For an
object A ∈ DG(Gr), we can attach AX ∈ DGX,O(GrX) by τ∗A[1]. In fact, we
can do more generally if we use the Aut(O)-bundle over X parametrizing
all choices of local coordinates and consider Aut(O)-equivariant objects as
in [BeiDr, Gai01].

Let ∆ denote the diagonal in X2 and U denote the complement X2 \∆.
The restrictions of GrX2 to ∆ and U are isomorphic to GrX and (GrX ×
GrX)|U respectively. In fact, the restriction to ∆ is obvious. For a given
(x1, x2,P, ϕ) with x1 6= x2, we define Pi by gluing Pi|X\xi = (X \ xi)×G
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and Pi|X\x3−i = P|X\x3−i by ϕ on X \ {x1, x2}. Hence we have the diagram

(3.2)

GrX
ι−−−−→ GrX2

←−−−− (GrX ×GrX)|Uy y y
∆ −−−−→ X2 ←−−−− U.

We consider the nearby cycle functor

ψGrX2 : D(GX,O×GX,O)|U ((GrX ×GrX)|U )→ DGX,O(GrX).

See [KS90, §8.6], where we change the source domain to objects defined on
(GrX ×GrX)|U , and shift by −1, following the convention in [Gai01].

Then an argument in [Gai01, Prop. 6] shows there is a natural isomor-
phism

(3.3) ψGrX2 ((AX �BX)|U ) ∼= (A ?B)X .

We have the isomorphism (AX �BX)|U ∼= (BX �AX)|U exchanging the fac-
tors. Therefore together with (3.3) it gives us an isomorphism A ?B ∼= B ?A.
This is the definition of the commutativity constraint Θ used in Theorem 2.5.

Let us briefly explain how (3.3) is constructed. For a later purpose, we
give a slightly different explanation from [Gai01].

By the definition of the nearby cycle functor, we have a natural homo-
morphism

(3.4) ps : ψGrX2 ((AX ?X BX)|U )→ ι!(AX ?X BX)[1].

It is the dual of the specialization homomorphism. See [KS90, (8.6.7)]. We
restrict the diagram (3.1) to the diagonal to see that

(3.5) (A ?B)X ∼= ι!(AX ?X BX)[1].

Therefore we need to check

Claim.

We have a natural isomorphism (AX ?X BX)|U ∼= (AX �BX)|U .(3.6a)

ps in (3.4) is an isomorphism.(3.6b)

Proof. Let us denote the restrictions of pX , qX , mX to inverse images of U
by pU , qU , mU respectively.
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Over U , we have a natural commutative diagram
(3.7)

(GrX ×GrX)|U ˜GrX ×GrX |U
pUoo qU // GrX×̃GrX |U

mU

∼=
// GrX2 |U

(GrX ×GrX)|U GX,O ×X (GrX ×GrX)|Uoo //

∼=

OO

(GrX ×GrX)|U

∼=

OO

(GrX ×GrX)|U

∼=

OO

where GrX ×GrX → X in the bottom middle term is through the projec-
tion X ×X → X to the second factor. Here the second vertical isomorphism
is given by regarding κ as a trivialization of the trivial bundle over X̂x2

via

the trivialization ϕ1 : P1|X̂x2

∼=−→ X̂x2
×G. The third vertical isomorphism is

given by considering η as a trivialization of P. The lower left arrow is given
by forgetting GX,O. The lower right arrow is given by the action of GX,O on
the second factor of GrX ×GrX . Since we are considering equivariant ob-
jects, we have a canonical isomorphism (q∗U )−1p∗U ((AX �BX)|U ) ∼= (AX �
BX)|U . We now apply mU∗ and observe that mU∗(q

∗
U )−1p∗U ((AX �BX)|U ) =

(AX ?X BX)|U . Thus we have checked (a).
Let us turn to the assertion (b). The idea is to consider nearby cycle

functors for four spaces in (3.1).
Let us start with mX . Since nearby cycle functors commute with proper

morphisms, we have

ψGrX2 (mU∗(AX�̃BX)|U ) ∼= m∆∗ψGrX×̃GrX ((AX�̃BX)|U ),

where m∆ is the restriction of m to ∆.
Next consider pX and qX . They are both smooth ([MV07, p.114]), and

hence commute with nearby cycle functors. Therefore

ψGrX×̃GrX ((AX�̃BX)|U ) ∼= (q∗∆)−1ψ ˜GrX×GrX
(p∗U (AX �BX)|U )

∼= (q∗∆)−1p∗∆ψGrX×GrX ((AX �BX)|U ),

where p∆, q∆ are restrictions of pX , qX to ∆. Hence

ψGrX2 ((AX ?X BX)|U ) ∼= m∆∗(q
∗
∆)−1p∗∆ψGrX×GrX ((AX �BX)|U ).

Now GrX ×GrX = X ×X ×Gr×Gr, hence ψGrX×GrX ((AX �BX)|U )
is just (A�B)X . More precisely, the isomorphism is given by the dual spe-
cialization homomorphism

ps: ψGrX×GrX ((AX �BX)|U )
∼=−→ ι!(AX �BX)[1] = (A�B)X ,
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thanks to vanishing of the vanishing cycle functor ϕGrX×GrX (AX �BX).
Thus

ψGrX2 (AX ?X BX)|U )
m∆∗(q∗∆)−1p∗∆ ps−−−−−−−−−−→∼=

m∆∗(q
∗
∆)−1p∗∆((A�B)X).

Notice that the restriction of (3.1) to the diagonal is just the product of X
and the diagram [Part II, (3.1)]. Therefore the right hand side is (A ?B)X .
Now one can check that dual specialization homomorphisms commute with
proper pushforward and smooth pull-backs so that they are compatible with
the commutation of nearby cycle functors. (See the argument in the proof
of Lemma 3.10 below.) Therefore m∆∗(q

∗
∆)−1p∗∆ ps is equal to ps over GrX2 .

Thus (b) is checked. �

3(ii). Factorization version of R

We define a global version of the variety of triples R in this subsection.
Let us assume that we are given a smooth connected curve X, an alge-

braic group G and a representation N of G and a finite set I. Consider a
functor Schemes/C→ Sets which sends a scheme S to the following data: 1)
A map f : S → XI . We shall think about f as a collection of maps fi : S → X
for i ∈ I and we denote by Γ the union of graphs of fi – this is a closed sub-
scheme of S ×X.

2) A G-bundle P on S ×X.
3) A trivilalization ϕ of P over S ×X\Γ.
4) A section s of the associated bundle PN over the formal neighbour-

hood of Γ in S ×X and a section s′ of the trivial N - bundle over the
same formal neighbourhood which are equal on the “formal punctured neigh-
bourhod” (this makes sense because of 3). These notions (formal neighbour-
hood, formal punctured neighbourhood) are explained in [KV04].

Now we claim that this functor is representable by an ind-scheme. More-
over, this ind-scheme has a natural closed embedding into GrXI ×

XI
JN,XI

where
a) GrXI is the factorization (a.k.a. Beilinson-Drinfeld) Grassmannian

over XI

b) JN,XI is the Kapranov-Vasserot factorization version of the N-jet
space over XI .

Indeed it is enough to construct this closed embedding (as a closed sub-
functor of an ind-scheme is also an ind-scheme). But an S-point of GrXI ,G,BD

is precisely the data of 1), 2), 3) and an S-point of JN,XI is the data of 1),
2) and s′ from 4). Since s is obviously uniquely determined by all the data
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and since the existence of s is a closed condition on the other data we get
the above closed embedding.

Let us denote the above ind-scheme by RXI . Then obviously from 1) we
get a morphism πXI : RXI → XI and it is clear that the restriction of RXI

to the complement U of all the diagonals in XI is naturally isomorphic to
the similar restriction of (R(1))I .

On the other hand, assume that we are given a surjective morphism
I → J of finite sets. Such a morphism defines a closed embedding XJ ↪→ XI

(as a partial diagonal) and it follows that the restriction of RXI to XJ is
naturally isomorphic to R(J).

Similarly, we can define a factorization version of the bundle T over
Gr. By definition an S-point of TXI is a quadruple (f,P, ϕ, s) as above
(i.e. no s′).2 We claim again that this functor is representable by an ind-
scheme. For this it is enough to show that the morphism TXI → GrXI (which
corresponds to forgetting s) is representable. This can be done by a word-
by-word repetition of the proof of the fact that the factorization version of
the jet scheme is representable by a scheme (cf. again Section 3 of [KV04]).

In what follows we shall only need the above spaces when I = {1, 2}.

3(iii). Definition of another multiplication

We consider the spaceRX2 , its dualizing complex ωRX2 and the pushforward
π∗ωRX2 . Its restriction to U is isomorphic to (π∗ωRX � π∗ωRX )|U under 
in (3.2). We consider two dual specialization homomorphisms

(3.8)

ψGrX2 (π∗ωRX2 |U )
ps // ι!π∗ωRX2 [1]

ψGrX2 ((π∗ωRX ?X π∗ωRX )|U )
ps

∼=
//

∼=

OO

ι!(π∗ωRX ?X π∗ωRX )[1]

OO

where ι : GrX → GrX2 is the inclusion, and the vertical arrow is given by
π∗ωRX2 |U ∼=(π∗ωRX � π∗ωRX )|U ∼=(π∗ωRX ?X π∗ωRX )|U . (See (3.6a).) The
lower homomorphism is an isomorphism thanks to (3.6b). Note that π∗ωRX
is (π∗ωR)X [1]. Therefore the right bottom term is (π∗ωR ? π∗ωR)X [2] by
(3.5). Note also ι!π∗ωRX2 [1] = π∗ωRX [1] = (π∗ωR)X [2]. Therefore we obtain

2Note that if we instead only choose s′ and do not choose s then the resulting
functor is represented by GrXI ×

XI
JN,XI .
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a homomorphism

(3.9) mψ : A ?A→ A, A = π∗ωR[−2 dim NO],

by specializing the dotted arrow at a point in X.
The degree shift should be checked by going back to finite dimensional

approximation of R. We have shifts by dim NO/z
d1NO and dim NO/z

d2NO
for two factors in ψGrX2 ((π∗ωRX � π∗ωRX )|U ). Then we have a shift

dim NO/z
d1+d2NO

for π∗ωRX .
Now our goal is to check two properties:

(i) mψ = m,

(ii) mψ is invariant under the exchange of factors of AX ?AX . (More pre-
cisely, exchange after going back to (A�A)|U .)

The property (ii) is clear as the diagram (3.2) is invariant under the
exchange of two factors of X2 = X ×X.

We will check (i) for N = 0 in the next subsection. We have a difficulty
to check (i) directly for general N, so we will argue indirectly by reduction
to the case N = 0.

3(iv). The case N = 0

We first consider the case N = 0.
We consider the dual specialization homomorphism for ωGrX×̃GrX :

ps′ : ψGrX×̃GrX ((ωGrX � ωGrX |U )→ ι!′ωGrX×̃GrX [1] = ωX×Gr×̃Gr[1]

where ι′ : X ×Gr×̃Gr = (GrX×̃GrX)|∆ → GrX×̃GrX is the embedding from
the definition of the nearby cycle functor. Here we have used ωGrX×̃GrX |U ∼=
(ωGrX � ωGrX |U ) from (3.7).

The following two assertions identify (3.9) with the pull-back of m under
(3.3), hence we obtain the property (i) for N = 0.

Lemma 3.10. (1) ps is equal to the composition of m∆∗ ps′ and the natural
morphism m∆∗m

!
∆ = m∆!m

!
∆ → id.

(2) The homomorphism ps′ coincides with the homomorphism ωGr�̃ωGr

→ ωGr×̃Gr constructed in (2.3), pull-backed by GrX×̃GrX → Gr×̃Gr. It is
an isomorphism.
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Proof. (1) Recall the definition of the nearby cycle functor and the dual
specialization morphism ([KS90, §8.6]). We have f : GrX2 → X2 = C2 → C,
where the second map is (x1, x2) 7→ x1 − x2. We then consider p : C̃× → C,
the composition of the universal covering C̃× → C× and the inclusion C× →
C. We then pull back p by f to get p̃ : G̃r×X2 → GrX2 . Then

ψGrX2 ((ωGrX � ωGrX )|U ) = ι∗p̃∗p̃
∗ωGrX2 [−1] ∼= ι∗Hom(f∗p!CC̃× ,ωGrX2 [−1])

and ps is defined from C{0} → p!CC̃× [2].
Let us write the identification

(GrX×̃GrX)|U
∼=−→ GrX2 |U ∼= (GrX ×GrX)|U

explicitly as mU , the restriction of mX to U . The commutativity of

ψGrX2 (mU∗ω(GrX×̃GrX)|U )
ps−−−−→ ι!mX∗ωGrX×̃GrX [1]

∼=
y y∼=

m∆∗ψGrX×̃GrX (ω(GrX×̃GrX)|U ) −−−−−→
m∆∗ ps′

m∆∗ι
!
′ωGrX×̃GrX [1]

is clear as both vertical arrows are given by base change and adjunction. This
property has been already used in the construction of the commutativity
constraint above. Next the commutativity of

ψGrX2 (mU∗ω(GrX×̃GrX)|U )
ps−−−−→ ι!mX∗ωGrX×̃GrX [1]

ψGr
X2

(mU!m!
U→id)

y∼= ymX!m!
X→id

ψGrX2 ((ωGrX � ωGrX )|U ) −−−−→
ps

ι!ωGrX2 [1]

is also clear from the definition. Therefore we get the assertion.
(2) The following diagram is commutative:

q∗∆ψGrX×̃GrX (ω(GrX×̃GrX)|U )
q∗∆ ps′−−−−→ q∗∆ι

!
′ωGrX×̃GrX [1]

∼=
y y∼=

ψ ˜GrX×GrX
(q∗Uω(GrX×̃GrX)|U ) −−−−→

ps′′
ι!′′q
∗
XωGrX×̃GrX [1],

where ι′′ : GK×GrX → ˜GrX×GrX is the inclusion given by ˜GrX×GrX |∆ ∼=
GK ×GrX , and ps′′ is the dual specialization for ω ˜GrX×GrX

= q∗XωGrX×̃GrX .
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In fact, the left vertical arrow is given by the composition of

q∗∆ψGrX×̃GrX (ωGrX×̃GrX |U ) ∼= q∗∆ι
∗
′Hom(m∗Xf

∗p!CC̃× ,ωGrX×̃GrX [−1])
∼= ι∗′′q

∗
XHom(m∗Xf

∗p!CC̃× ,ωGrX×̃GrX [−1])
∼= ι∗′′Hom(q∗Xm

∗
Xf
∗p!CC̃× , q

∗
XωGrX×̃GrX [−1]) ∼= ψ ˜GrX×GrX

(q∗UωGrX×̃GrX |U )

where we have used [KS90, Prop. 3.1.13] and q!
X = q∗X [2 dimGO] for the

third isomorphism. Now we apply C{0} → p!CC̃× [2].
In the same way, we have another commutative diagram

ψ ˜GrX×GrX
(p∗Uω(GrX×GrX)|U )

ps′′−−−−→ ι!′′p
∗
XωGrX×GrX [1]

∼=
y y∼=

p∗∆ψGrX×GrX (ω(GrX×GrX)|U ) −−−−→
p∗∆ ps′′′

p∗∆ι
!
′′′ωGrX×GrX [1],

where ι′′′ : X ×Gr×Gr→ GrX ×GrX is the embedding given by GrX ×
GrX |∆ ∼= X ×Gr×Gr. Now the assertion is proved. Note p∗∆ ps′′′ is an iso-
morphism, hence so is ps′. �

Remark 3.11. We have a difficulty to generalize the argument in §3(iv) to
N 6= 0 since we lack anR-version of GrX×̃GrX , as a well-defined ind-scheme.
This difficulty will be overcome in Appendix B written by Gus Lonergan.

3(v). Completion of the proof

Let zX2 : GrX2 → TX2 be the factorization version of the embedding z :
Gr→ T discussed in [Part II, §5(iv)]. It factors as zX2 = i ◦ z̃X2 , where
z̃X2 : GrX2 → RX2 , and i : RX2 → TX2 is the embedding. Since TX2 → GrX2

is a vector bundle, we have

z∗X2ωTX2 → ωGrX2 [2 dim NO],

and also

ωRX2 [−2 dim NO]→ z̃X2∗ωGrX2

by the pull-back with support. We apply π∗ to obtain

z∗X2 : π∗ωRX2 [−2 dim NO]→ ωGrX2 .
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We now apply the nearby cycle functor ψGrX2 and the dual specialization
homomorphisms:

ψGrX2 (π∗(ωRX2 [−2 dim NO])|U )
ps−−−−→ π∗ωRX [−2 dim NO + 1]

z∗
X2

y yz∗

ψGrX2 (ωGrX2 |U ) −−−−→
ps

ωGrX [1].

This is a commutative diagram by the argument in the proof of Lemma 3.10.
Removing the unnecessary factor X, we get

(3.12)

A ?A
mψR−−−−→ A

z∗?z∗=z∗
X2

y yz∗

ωGr ? ωGr −−−−→
mψGr

ωGr,

where we put the superscript ψ to emphasize that the multiplication is
defined via nearby cycle functors. Since the restriction of z∗X2 to U is z∗ � z∗,
the left vertical arrow is equal to z∗ ? z∗.

Let us view m, mψ as elements of Ext∗DG(Gr)(A ?A,A). It is a module
over H∗G(pt). We consider the restriction functor ResTO,GO from the GO-
equivariant derived category to the TO-equivariant one. Then we have

Ext∗DG(Gr)(A ?A,A)→ Ext∗DT (Gr)(ResTO,GO(A ?A),ResTO,GO(A)),

and the latter is a module over H∗T (pt) = C[t].
We have

(i)’ mψ and m are equal in Ext∗DT (Gr)(ResTO,GO(A ?A),ResTO,GO(A))⊗C[t]

C(t). Hence m is commutative up to an element which vanishes in
Ext∗DT (Gr)(ResTO,GO(A ?A),ResTO,GO(A))⊗C[t] C(t).

This statement recovers (i), as Ext∗DG(GrG)(A ?A,A) is the Weyl
group invariant part of Ext∗DT (GrG)(ResTO,GO(A ?A),ResTO,GO(A)), and
Ext∗DT (GrG)(ResTO,GO(A ?A),ResTO,GO(A)) is a free C[t]-module: More gen-
erally, for F ,G ∈ DG(Gr), Ext∗DT (Gr)(ResTO,GO(F),ResTO,GO(G)) is a free
C[t]-module. Indeed, by devissage it reduces to the case of irreducible per-
verse F ,G where it is well known, see e.g. [Gin91].

Let us suppress ResTO,GO hereafter.
Let us consider the commutative diagram (3.12). We have the corre-

sponding diagram for mR, the multiplication constructed in Proposition 2.1,



i
i

“1-Nakajima” — 2019/11/8 — 18:46 — page 280 — #28 i
i

i
i

i
i

280 A. Braverman, M. Finkelberg, and H. Nakajima

where the lower arrow is mGr, cf. [Part II, Lemma 5.11]. We compose z∗ to
get

Ext∗DG(Gr)(A ?A,A)
z∗−→ Ext∗DG(Gr)(A ?A,ωGr).

The commutativity of the diagram and mGr = mψ
Gr (§3(iv)) imply that z∗mψ

R
and z∗mR are equal in Ext∗DG(Gr)(A ?A,ωGr). Therefore it is enough to
check that

Ext∗DT (Gr)(A ?A,A)⊗C[t] C(t)
z∗−→ Ext∗DT (Gr)(A ?A,ωGr)⊗C[t] C(t)

is an isomorphism. The argument is almost the same as the one in the proof
of [Part II, Lemma 5.13].

By the definition of z∗, it factors through

Ext∗DT (Gr)(A ?A, π∗ωT [−2 dim NO])⊗C[t] C(t).

Since T →Gr is a vector bundle of rank 2 dim NO, we have π∗ωT [−2 dim NO]
∼= ωGr. Therefore it is enough to check that the morphism

Ext∗DT (Gr)(A ?A,A)⊗C[t] C(t)
i∗−→ Ext∗DT (Gr)(A ?A, π∗ωT )⊗C[t] C(t)

given by the closed embedding i : R → T is an isomorphism. Let j : T \ R →
T be the inclusion of the complement. We have the distinguished trian-
gle i!i

!ωT → ωT → j∗j
∗ωT . From the associated long exact sequence, it is

enough to show that Ext∗DT (Gr)(A ?A, π∗j∗j
∗ωT )⊗C[t] C(t) vanishes. But

Ext∗DT (Gr)(A ?A, π∗j∗j
∗ωT ) = Ext∗DT (T \R)(j

∗π∗(A ?A),ωT \R) is an equiv-
ariant cohomology group over T \ R which does not contain T -fixed points
by [Part II, Lemma 5.1]. Therefore it is torsion and vanishes once we take a
tensor product with C(t).

4. Proof of Theorem 2.11

In this section we prove Theorem 2.11.3

During the proof, the C×-action on the Coulomb branch will play an
important role. The C×-action is given by the homological grading, shifted

3The second named author thanks Roman Bezrukavnikov for his numerous ex-
planations about the Andersen-Jantzen sheaves on Kleinian surfaces and nilpotent
cones.
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according to the convention in [Part II, Remark 2.8(2)]. Then the monopole
formula in [Part II, Prop. 2.7] is modified to

(4.1) Pmod
t (R) =

∑
λ

t2∆(λ)PG(t;λ).

As mentioned in [Part II, Remark 2.8(2)], this modification is harmless as
the difference dλ − 2〈ρ, λ〉 −∆(λ) depends only on connected components
of R. Nevertheless we will see that this convention is a correct choice.

4(i). Characters of global sections of line bundles on Kleinian
surfaces

Recall that SN is the hypersurface in A3 given by the equation zy = wN . It
is the categorical quotient A2//(Z/NZ) where ζ ∈ Z/NZ takes (u, v) ∈ A2

to (ζu, ζ−1v). We consider the following action of C× × C× on A2 : (x, t) ·
(u, v) = (t−1x−1u, t−1xv). This action descends to SN . The action of the
second C× t · (u, v) = (t−1u, t−1v) is a restriction of an SU(2)-action on A2 =
R4 rotating hyper-Kähler structures. Hence it is natural in view of [Part II,
Remark 2.8].

We are interested in characters of certain C× × C×-equivariant sheaves
on SN . The tautological characters of C× × C× will be denoted by x and
t. We denote by π : S̃N → SN the minimal resolution of SN . The action of
C× × C× lifts to S̃N . We recall the well known facts about the C× × C×-fixed
points in S̃N .

We will denote these points by p0, . . . , pN−1, so that the exceptional
divisor E ⊂ S̃N consists of projective lines E1, . . . , EN−1, and Er contains
pr−1, pr. The character of the tangent space Tpr S̃N is tN−2r−2x−N + t2r−NxN .

The Picard group Pic(S̃N ) is canonically identified with the weight lattice
of SL(N). Namely, S̃N ⊂ T ∗B is the preimage of a subregular (Slodowy)
slice in the Springer resolution T ∗B → N of the nilpotent cone for SL(N).
For an SL(N)-weight λ the corresponding line bundle Lλ on S̃N is the re-
striction to S̃N ⊂ T ∗B of the pullback to T ∗B of the line bundle O(λ) on
the flag variety B. The line bundle Lωi corresponding to the fundamental
weight ωi, 1 ≤ i ≤ N − 1, admits a natural C× × C×-equivariant structure
such that the character of its fiber at pr is tN−ixi−N provided 0 ≤ r ≤ i− 1,
and tixi provided i ≤ r ≤ N − 1. This is defined so that Γ(S̃N ,Lωi) is the
space of semi-invariants C[A2]χi where χi(ζ) = ζi. Under the above identi-
fication, OS̃N (−Er) is nothing but Lαr where αr is the r-th simple root of
SL(N).
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We will write a dominant SL(N)-weight λ as a partition λ1 ≥ λ2 ≥ · · · ≥
λN defined up to simultaneous shift of all λi. In other words, λ =

∑N−1
i=1 (λi −

λi+1)ωi. Then Lλ admits a natural C× × C×-equivariant structure (as a ten-
sor product of fundamental line bundles) such that the character of its fiber
at pr, 0 ≤ r ≤ N − 1, is t

∑N
i=1 |λi−λr+1|x

∑N
i=1(λi−λr+1). If λ is not necessarily

dominant, we get the character t
∑r
i=1(λi−λr+1)+

∑N
i=r+2(λr+1−λi)x

∑N
i=1(λi−λr+1).

Lemma 4.2. For dominant λ, the character of Γ(S̃N ,Lλ) equals∑
m∈Z

x
∑N
i=1(λi−m)t

∑N
i=1 |λi−m|(1 + t2 + t4 + · · · ).

Proof. We compute the above expression as

x
∑N
i=1 λi

1− t2

( ∞∑
m=λ1

x−Nmt−
∑N
i=1(λi−m) +

λ1−1∑
m=λ2

x−Nmtλ1−m−
∑N
i=2(λi−m)

+ · · ·+
λN−1∑
m=−∞

x−Nmt
∑N
i=1(λi−m)

)

=
x
∑N
i=1 λi

1− t2

(
x−Nλ1t−

∑
i>1(λi−λ1)

1− x−N tN
− x−Nλ1t−

∑
i>1(λi−λ1)

1− x−N tN−2

+
x−Nλ2tλ1−λ2−

∑
i>2(λi−λ2)

1− x−N tN−2
+ · · · − x−NλN t

∑
i<N λi−λN

1− x−N t−N

)
.

We combine (2r − 1)th and (2r)th terms (1 ≤ r ≤ N) to get

x
∑
i(λi−λr)t

∑
i<r(λi−λr)−

∑
i>r(λi−λr)

1− t2

(
1

1− x−N tN−2r+2
− 1

1− x−N tN−2r

)
=
x
∑
i(λi−λr)t

∑
i<r(λi−λr)−

∑
i>r(λi−λr)

(1− x−N tN−2r+2)(1− xN t2r−N )
.

This is the contribution of pr−1 to the Lefschetz fixed point formula to
the Euler characteristic of Lλ. (The denominator is Λ−1T

∗
pr−1
S̃N , and the

numerator is (Lλ)pr−1
.) Since λ is dominant, higher cohomology vanishes.

Hence this is the character of Γ(S̃N ,Lλ). �

4(ii). Pushforwards of line bundles on Kleinian surfaces

For dominant λ we denote by Fλ the torsion free sheaf Rπ∗Lλ = π∗Lλ on
SN . We also set λ̄ = ω|λ| (mod N) where ω0 := 0.
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Lemma 4.3. For dominant weight λ let F be a C××C×-equivariant torsion-
free sheaf on SN such that the character of Γ(SN ,F) coincides with the
character of Γ(SN ,Fλ). Then

(a) The restriction F|S◦N is a line bundle, isomorphic to Fλ̄|S◦N . Here
S◦N := SN \ {0}.

(b) An isomorphism in (a) is defined uniquely up to multiplication by a
scalar, even if one forgets the C× × C×-equivariance.

(c) The composition of isomorphisms F|S◦N ' Fλ̄|S◦N ' Fλ|S◦N gives an

isomorphism F|S◦N
∼−→ Fλ|S◦N which extends to an isomorphism F ∼−→ Fλ.

Proof. An automorphism of a line bundle on S◦N is given by multiplication
by an invertible function on S◦N . Any invertible function on S◦N is constant.
Indeed, it lifts to A2 \ {0} where all the invertible functions are constant.
Hence uniqueness in (b).

A torsion free sheaf F is locally free on the complement of SN to finitely
many points. Due to the C× × C×-equivariance, F is locally free on S◦N .
Let us denote by j : S◦N ↪→ SN the open embedding. Then F ↪→ j∗(F|S◦N ).
Since we know the character of Γ(SN ,F), we conclude that F is generically
of rank one, i.e. F|S◦N is a line bundle. Now Pic(S◦N ) = Z/NZ, and any line
bundle on S◦N is isomorphic to Fµ̄|S◦N for µ̄ ∈ {0, ω1, . . . , ωN−1}. Thus F ↪→
j∗(Fµ̄|S◦N ) (if we disregard the C× × C×-equivariant structure). But any two
C× × C×-equivariant structures on the line bundle Fµ̄|S◦N are isomorphic up
to twist by a character χ of C× × C×. So we have a C× × C×-equivariant
embedding F ⊗ χ ↪→ j∗(Fµ̄|S◦N ). We claim that µ̄ is congruent to λ modulo
the root lattice, that is µ̄ = ω|λ| (mod N) = λ̄. Indeed, we take a sufficiently
negative m in the formula of Lemma 4.2 for the character of Γ(SN ,F), so
that λi −m > 0 for any i. Then

∑
i(λi −m) = −Nm+

∑
i λi, and so |λ|

(mod N) is determined from the character of Γ(SN ,F).
However, Fλ̄

∼−→ j∗(Fλ̄|S◦N ) (see Lemma 4.6 below and restrict to a sub-
regular slice SN ⊂ N ). Thus we have F ⊗ χ ↪→ Fλ̄ ←↩ Fλ, and we have to
check that the images of F ⊗ χ and Fλ inside Fλ̄ coincide, and χ = 1. But
the character of (global sections of) Fλ̄ is multiplicity free, and the charac-
ters of Fλ1

⊗ χ1, Fλ2
⊗ χ2 coincide if and only if λ1 = λ2, χ1 = χ2, so the

equality of characters of F and Fλ guarantees χ = 1 and the coincidence of
the images of F and Fλ in Fλ̄. �
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4(iii). Line bundles on Kleinian surfaces via
homology groups of fibers

Recall the setup of §2(iv) and §2(vi). We consider the quiver gauge the-
ory of type A1 with dimV = 1, dimW = N with G = GL(V ) = C×, G̃ =
GL(V )×GL(W )/Z, GF = PGL(W ) = PGL(N), and varieties of triples R,
R̃ for (G,N), (G̃,N) and the corresponding complex A on GrPGL(N). See
§2(iv). We are interested in its costalks at the points λ ∈ GrPGL(N) where
λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ) is a dominant coweight of PGL(N). According
to (2.16), the costalk i!λA

for forms a module over the algebra i!0A
for. The alge-

bra i!0A
for is nothing but the Coulomb branch HGO

∗ (R) ' C[SN ] where N =
Hom(W,V ) by [Part II, §4(iv)]. The costalk i!λA

for is nothing but HGO
∗ (R̃λ)

where R̃λ is the fiber of π̃ : R̃ → GrGF = GrPGL(N) over λ ∈ GrGF , see (2.6).

Lemma 4.4. The i!0A
for-module i!λA

for is torsion free.

Proof. Both i!0A
for and i!λA

for are free H∗G(pt)-modules. So if i!λA
for had

torsion, then it would still have torsion after the base change to H∗T (pt) and
localization to the generic point of H∗T (pt). However, this is impossible since
after this localization, i!λA

for becomes a free (rank 1) i!0A
for-module by the

Localization Theorem. �

Recall that HGO
∗ (R) has an additional grading induced from π0(GrG) =

π1(G) = π1(C×) ∼= Z compatible with the convolution product (see [Part II,
§3(v)]). We also have an additional grading on HGO

∗ (R̃λ) compatible with
the HGO

∗ (R)-module structure from π0(GrG̃) = π1(G̃) in the same way. We

choose π0(GrG̃)→ Z so that the connected component of R̃λ corresponding

to the m-th component of GrG goes to
∑N

i=1(λi −m). This is well-defined
as it is invariant under simultaneous shift of all λi and m.

Proposition 4.5. Under the identification i!0A
for = HGO

∗ (R) ' C[SN ],
the i!0A

for-module i!λA
for = HGO

∗ (R̃λ) is isomorphic to the C[SN ]-module
Γ(SN ,Fλ). More precisely,

(a) The localization of i!λA
for to S◦N is a line bundle isomorphic to Fλ|S◦N .

(b) An isomorphism in (a) is defined uniquely up to multiplication by a
scalar.

(c) An isomorphism in (a) extends to an isomorphism i!λA
for ∼−→

Γ(SN ,Fλ).

Proof. By the monopole formula of [Part II, Prop. 2.7] with the convention
[Part II, Remark 2.8(2)], the Hilbert series of the bigraded module HGO

∗ (R̃λ)
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is
∑

m∈Z x
∑N
i=1(λi−m)t

∑N
i=1 |λi−m|(1 + t2 + t4 + · · · ). By Lemma 4.4,HGO

∗ (R̃λ)
is a torsion-free HGO

∗ (R)-module. Comparing its Hilbert series with the for-
mula of Lemma 4.2 and applying the criterion of Lemma 4.3 we obtain the
desired result. �

Let us write down the isomorphism more concretely when λ is the n-th
fundamental coweight ωn.

Recall w, y, z are identified with elements in HGO
∗ (R) as follows (see

[Part II, §4(iv)]):

• w is the generator of H∗G(pt).

• y is the fundamental class of the fiber π−1(1), where π : R → GrG ' Z.

• z is the fundamental class of the fiber π−1(−1).

The space Γ(S̃N ,Lωn
) of sections of the line bundle corresponding to ωn

is identified with the space of semi-invariants C[A2]χn where χn(ζ) = ζn. It
has a linear basis

unzmwk, vN−nymwk (m, k ∈ Z≥0),

where w = uv, z = uN , y = vN .
Let us consider a coweight (m, 1, . . . , 1︸ ︷︷ ︸

n times

, 0, . . . , 0︸ ︷︷ ︸
N − n times

) (m ∈ Z) of G̃, where

the first m is a coweight of G. Let rm denote the fundamental class of
the corresponding fiber for the projection R̃ → GrG̃. Note that the pairing
between the coweight above and weights of Hom(W,V ) are m− 1,. . . , m− 1
(n times) and m, . . . , m (N − n times). Thus we have n negative terms if
m = 0, N − n positive terms if m = 1, all negative or all positive otherwise.
Therefore

yrm =


rm+1 if m > 0,

wnrm+1 if m = 0,

wNrm+1 if m < 0,

zrm =


rm−1 if m ≤ 0,

wN−nrm−1 if m = 1,

wNrm−1 if m > 1,

by [Part II, §4]. (Note that we can replace G̃ by GL(V )× T (W )/Z where
T (W ) ⊂ GL(W ) is a maximal torus of GL(W ) as in [Part II, §3(ix)]. Hence
we can use computation in [Part II, §4].) Now we get an isomorphism
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i!ωn
Afor

∼=−→ C[A2]χn of C[MC ] = C[y, z, w]/(yz = wN )-modules by setting

wkrm =

{
vN−nym−1wk if m > 0,

unz−mwk if m ≤ 0.

4(iv). Andersen-Jantzen sheaves on a nilpotent cone

We denote by N the nilpotent cone of slN . We denote by B the flag variety
of slN , and by T ∗B its cotangent bundle. We denote by π : T ∗B → N the
Springer resolution. We denote by j : Oreg ↪→ N the embedding of the regular
nilpotent orbit. For a dominant weight λ = (λ1 ≥ · · · ≥ λN ) we denote by
O(λ) the line bundle on T ∗B obtained by the pullback of the corresponding
line bundle on B. It is known that Jλ := π∗O(λ) = Rπ∗O(λ) is a torsion-free
sheaf on N (an Andersen-Jantzen sheaf, see e.g. [BK05, Thm. 5.2.1]).

Lemma 4.6. For λ̄ ∈ {0, ω1, . . . , ωN−1} we have Jλ̄ = j∗(Jλ̄|Oreg
).

Proof. We have to check that Jλ̄ is Cohen-Macaulay. It follows from the
fact that its Grothendieck-Serre dual Rπ∗(O(−λ̄)) has no higher cohomology
by [BK05, Thm. 5.2.1]. �

Recall that according to [Lus81], N is isomorphic to the transversal
slice WNω1

0 in the affine Grassmannian GrGL(N). Recall the factorization

morphism Π := πNω∗1 ◦ s
Nω1
µ : N =WNω1

0 → ANω∗1 of [Quiver, Lemma 2.7]
(it is also called the Gelfand-Tsetlin integrable system).

Lemma 4.7. The morphism Π ◦ π : T ∗B → ANω∗1 is flat.

Proof. It suffices to prove that all the fibers of Π ◦ π have the same di-
mension N(N − 1)/2. We recall the proof of [Quiver, Lemma 2.7]. There
the dimension estimate on the fibers of Π followed from the semismall-
ness of the convolution morphism q. Under the identification N =WNω1

0 ,
the Springer resolution π : T ∗B → N corresponds to the iterated convolu-
tion morphism m : Grω1

GL(N)×̃ · · · ×̃Grω1

GL(N) → GrGL(N) restricted to the slice

WNω1

0 ⊂ GrGL(N). Now the convolution morphism m is semismall, and more-
over, its composition with q is semismall as well, so the proof of [Quiver,
Lemma 2.7] goes through in the present situation as well. �
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4(v). Andersen-Jantzen sheaves via homology groups of fibers

We change the setup of §4(iii) to that of §2(v). According to (2.16), the
costalk i!λA

for forms a module over the algebra i!0A
for. The algebra i!0A

for

is nothing but the Coulomb branch HGO
∗ (R) ' C[N ]. The costalk i!λA

for is
nothing but HGO

∗ (R̃λ) where π̃ : R̃ → GrGF = GrPGL(N) and R̃λ = π̃−1(λ),
see (2.6).

We have the Lbal = PGL(N)-action on the Coulomb branch HGO
∗ (R)

by Proposition A.3 and example A.6. By example A.5 it coincides with the
standard action on N .

Theorem 4.8. Under the identification i!0A
for = HGO

∗ (R) ' C[N ], the
i!0A

for-module i!λA
for =HGO

∗ (R̃λ) is isomorphic to the C[N ]-module Γ(N ,Jλ).

Proof. The C[N ]-module i!λA
for is torsion free generically of rank 1, see

Lemma 4.4. By Proposition A.3 and example A.6, we have an action of
L̃bal = SL(N) on i!λA

for. The i!0A
for-module i!λA

for is SL(N)-equivariant (un-
der the natural projection SL(N)→ PGL(N)). Hence, the restriction of
the associated coherent sheaf (i!λA

for)loc to Oreg ⊂ N is a line bundle. Now
Pic(Oreg) = Z/NZ, and any line bundle on Oreg is isomorphic to Jµ̄|Oreg

for
µ̄ ∈ {0, ω1, . . . , ωN−1}. Thus we obtain an embedding

i!λA
for ↪→ Γ(N , j∗(Jµ̄|Oreg

)) = Γ(N ,Jµ̄).

We claim that µ̄ = ω|λ| (mod N) = λ̄. Indeed, SL(N)-module i!λA
for has the

same central character as V λ̄.
Thus we obtain an embedding i!λA

for ↪→ Γ(N ,Jλ̄). Similarly, we have an
embedding Γ(N ,Jλ) ↪→ Γ(N ,Jλ̄). In other words, denoting i!λA

for|Oreg
the

restriction of (i!λA
for)loc to Oreg, we obtain an isomorphism of line bundles

i!λA
for|Oreg

' Jλ|Oreg
. Note that this isomorphism is defined uniquely up to

a scalar multiplication since the automorphism group of any line bundle on
Oreg is Γ(Oreg,O×) = C×. Indeed, an invertible function on Oreg extends to
a regular function on N due to normality of N . This extended function is
still invertible since otherwise its zero divisor would intersect Oreg. Its lift
to T ∗B is invertible and hence constant on each fiber of T ∗B → B. So it is
lifted from B and hence constant.

We will show that the above isomorphism extends to N . To this end
we use the factorization morphism Π : N → ANω∗1 = t(V )/W as in [Part II,
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Thm. 5.26] and [Part II, Remark 5.27], where t(V ) is a Cartan subalge-
bra of g = gl(V ), and W is the Weyl group of (gl(V ), t(V )). The condi-
tion Π∗Jλ = Π∗π∗O(λ)

∼−→ j∗Π∗π∗O(λ)|T ∗B• = j∗Π∗Jλ|N • of [Part II, Re-
mark 5.27] is satisfied since the complement of T ∗B• in T ∗B is of codimen-
sion 2 by Lemma 4.7. So it suffices to check the regularity of our ratio-
nal isomorphism after the base change t(V )→ t(V )/W and localizations at
general points of the root hyperplanes. Moreover, since we already know
that our isomorphism is regular at Oreg, it remains to check the regu-
larity at the localizations at general points of the coordinate hyperplanes
w1,r = 0, r = 1, . . . , N − 1, cf. the proof of [Quiver, Thm. 3.10]. By an ap-
plication of the Localization Theorem, just as in loc. cit., the comparison
reduces to Proposition 4.5. Namely, let t be a general point of the hyper-
plane w1,r = 0, and let x be a point of the subregular nilpotent orbit above
t. Then there is a slice SN ⊂ N through x such that the isomorphism of
Jλ|Oreg

and i!λA
for|Oreg

restricted to SN extends to the localization (SN )t
(by Proposition 4.5). Due to the SL(N)-equivariance, the pullback of the

above isomorphism to SL(N)× S◦N
act−→ Oreg extends to (SL(N)× SN )t. By

the faithfully flat descent, the above isomorphism extends to Nt, and hence
to the whole of N . �

4(vi). Modified homological grading

Let us write down the modified monopole formula (4.1) in our case explicitly.
(This appeared first in [CHMZ14a, (3.9)].) It is

(4.9) Pmod
t (i!λA

for) =
∑
~λ

t2∆(~λ)PGL(V )(t, ~λ)

(the sum over the dominant coweights ~λ = (λ1, . . . , λN−1) of GL(N − 1)×
· · · ×GL(1)), where

2∆(λ, λ1, · · · , λN−1) :=

N−1∑
j=1

∑
i,i′

|λj−1
i − λji′ | − 2

N−1∑
j=1

∑
i<i′

|λji − λ
j
i′ |,

and we set for convenience λ0 := λ. We also set n(λ) =
∑N

i=1(i− 1)λi. Then
dim GrλPGL(N) = 〈2ρ∨PGL(N), λ〉 = (N − 1)|λ| − 2n(λ).

Lemma 4.10. i!λA
for lives in (modified) degrees ≥ dim GrλPGL(N), and its

component of this degree has the same dimension as the irreducible SL(N)-
module V λ.
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Proof. We have to compute

t2n(λ)−(N−1)|λ|
∑
~λ

t2∆(~λ)PGL(V )(t, ~λ)|t=0 = t2n(λ)−(N−1)|λ|
∑
~λ

t2∆(~λ)|t=0.

One checks that this is the sum of 1’s over the set of (N − 1)-tuples ~λ which
interlace, i.e. λji ≥ λ

j+1
i ≥ λji+1, 0 ≤ j ≤ N − 2, 1 ≤ i ≤ N − j − 1 (recall

that λ0 = λ).4 In other words, this is the cardinality of the set of Gelfand-
Tsetlin patterns of shape λ, that is dimV λ. �

Remark 4.11. Characters of Γ(N ,Jλ) are given by Hall-Littlewood poly-
nomials by computation of Euler characteristic [Hes80, Bry89] and the van-
ishing theorem [Bro93]. Therefore (4.9) gives a combinatorial expression of
Hall-Littlewood polynomials. We asked several people (including mathover-
flow [Nak17]) whether it is known or not. But we could not find earlier ap-
pearance. In view of the argument in the special case t = 0 in Lemma 4.10,
there should be a purely combinatorial proof.

4(vii). Modified grading of Andersen-Jantzen modules

We have the dilatation action of C× on T ∗B and the natural C×-equivariant
structure on O(λ); hence a grading on Γ(T ∗B,O(λ)) = Γ(N ,Jλ) starting in
degree 0 with Γ(B,O(λ)) = (V λ)∨. We modify the grading by doubling all
the degrees and shifting it by (N − 1)|λ| − 2n(λ). From now on we consider
Γ(N ,Jλ) with this modified grading only.

Theorem 4.12. The isomorphism of C[N ]-modules i!λA
for ' Γ(N ,Jλ) of

Theorem 4.8 is a graded isomorphism.

Proof. For λ = 0 the claim is nothing but [Quiver, Remark 3.13]. Clearly,
Γ(N ,Jλ) is a graded SL(N) nC[N ]-module; i!λA

for is also a graded SL(N) n
C[N ]-module by construction of Appendix A (see example A.6). Both em-
beddings i!λA

for ↪→ Γ(N ,Jλ̄) and Γ(N ,Jλ) ↪→ Γ(N ,Jλ̄) are compatible with
the gradings up to a shift since the structure of a SL(N)-equivariant line
bundle on Jλ̄|Oreg

extends to a SL(N)× C×-equivariant structure uniquely
up to tensoring with a character of C×. The above shifts match because
both the grading of i!λA

for and the grading of Γ(N ,Jλ) start in the same
degree (N − 1)|λ| − 2n(λ). �

4We learned this observation in [Gor17].
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4(viii). The regular sheaf

By Lemma 4.10, the complex A belongs to pD≥0
PGL(N)(GrPGL(N)), and its 0th

perverse cohomology pH0(A) is isomorphic to⊕
λ

(V λ)∨ ⊗ IC(GrλPGL(N)) =: AR.

Theorem 4.13. The natural morphism σ : AR = pH0(A)→ A is an iso-
morphism of ring objects.

Proof. First we prove that σ is an isomorphism disregarding the ring struc-
ture. We have to check τ>0A = Cone(σ) = 0. Note that all the costalks of
IC(GrλPGL(N)) live in the degrees of the same parity as |λ|, see [Lus83].
We will call this phenomenon parity vanishing. The parity vanishing for
A also holds true (on a given connected component of GrPGL(N), all the

costalks of Afor live in the same parity as all the costalks of any IC sheaf
on this component, see (4.9)). This implies that pHodd(A) = 0, and hence
pHodd(τ>0A) = 0. Now the Hilbert series of i!λA

for and i!λAR coincide by The-
orem 4.12 and the comparison of [Bry89] and [Lus83]. Hence if σ were not an
isomorphism, its costalk σλ would have both kernel and cokernel for some
λ. Thus, Cone(σ) would have a costalk of wrong parity at λ. This would
contradict the parity vanishing for τ>0A = Cone(σ). We conclude that σ is
an isomorphism.

Now we compare the ring structures. Since both A and AR are perverse,
it suffices to check that the fiber functor H•(σ) induces an isomorphism of
the rings H•(GrPGL(N),AR) and H•(GrPGL(N),A

for). It is enough to check
the assertion for GL(N) instead of PGL(N), as GrGL(N) is the union of
copies of GrPGL(N). We have H•(GrGL(N),AR) ' C[GL(N)] by geometric

Satake equivalence. On the other hand, the cohomology H•(GrGL(N),A
for)

is the quotient of the equivariant cohomology H•GL(N)(GrGL(N),A) modulo

the augmentation ideal of H•GL(N)(pt). And

H•GL(N)(GrGL(N),A) = H
(GL(V )×GL(W ))O
∗ (RGL(V )×GL(W ),N)

where (GL(V )×GL(W ),N) is the quiver gauge theory obtained from
(GL(V ),N) by turning GL(W ) to a gauge group. By [Quiver, Thm. 3.1],

H
(GL(V )×GL(W ))O
∗ (RGL(V )×GL(W ),N) ' C[Z̊αPGL(N+1)]
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where α = Nα1 + (N − 1)α2 + · · ·+ αN . By [BP08, Thm. 1], Z̊αPGL(N+1) '
GL(W )×W , and its projection to SpecH•GL(N)(pt) is nothing but the pro-

jection of GL(W )×W to W . Hence the zero fiber of this projection is iso-
morphic to GL(W ) = GL(N). �

5. Mirrors of Sicilian theories

In the first half of this section, we study examples of Coulomb branchesMC

of star shaped quiver gauge theories as in Figure 1. As explained at the end
of Introduction, they are conjectural Higgs branches of Sicilian theories.

Let us briefly review [MT12] on expected properties of Higgs branches
of Sicilian theories. It is conjectured that there exists a functor from the
category of 2-bordisms to a category HS of holomorphic symplectic vari-
eties with Hamiltonian group actions. For the latter, objects are complex
algebraic semisimple groups. A homomorphism from G to G′ is a holomor-
phic symplectic variety X with a C×-action scaling the symplectic form
with weight 2 together with hamiltonian G×G′ action commuting with
the C×-action. For X ∈ Hom(G′, G), Y ∈ Hom(G,G′′), their composition
Y ◦X ∈ Hom(G′, G′′) is given by the symplectic reduction of Y ×X by the
diagonal G-action. The identity ∈ Hom(G,G) is the cotangent bundle T ∗G
with the left and right multiplication of G.

Let us fix a complex semisimple group G. Physicists associate a 3d Si-
cilian theory to G and a Riemann surface with boundary, and consider its
Higgs branch. It depends only on the topology of the Riemann surface, and
gives a functor as above. We associate S1 with G, and a cylinder with T ∗G.
Since T ∗G is the identity in HS, it is one of requirements.

Physical argument shows that the variety associated with a disk isG× S,
where S is the Kostant slice to the regular nilpotent orbit.

Let W ≡WG be the variety associated with S2 three disks removed.
This is a fundamental piece as other varieties are obtained by reductions of
products of its copies. It has an action of S3 oG3. It is expected that

• W = C2 ⊗ C2 ⊗ C2 if G = SL(2).

• W is the minimal nilpotent orbit of E6 if G = SL(3).

For other groups, W is unknown.
Recently Ginzburg and Kazhdan [GK] construct a functor, and check

most of properties, in particular show that the gluing of Riemann surfaces
corresponds to the hamiltonian reduction with respect to the diagonal ac-
tion. Via a result of [Bap15] their symplectic variety associated with S2
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minus b disks is defined as

W b def.
= SpecH∗GO(GrG, i

!
∆(�bk=1(AR)k)),

where (AR)k is a copy of the regular sheaf on GrG. Here the complex sym-
plectic group taken as the object of the target category is G∨, the Langlands
dual group. (E.g., b = 2 gives T ∗G∨.)

By Theorem 2.11 together with §2(viii) we immediately get the following:

Theorem 5.1. The symplectic variety W b of Ginzburg-Kazhdan for G∨ =
SL(N) is isomorphic to the Coulomb branch of the star shaped quiver gauge
theory in Figure 1 with b legs instead of 3.

More precisely, as we divide GL(V )×GL(W ) by C× in §2(v), we also
divide GL(V ) for the star shaped quiver gauge theory also by the diagonal
central subgroup Z ∼= C×. If we replace the central GL(N) by SL(N) instead
of taking the quotient by Z, we get W for G∨ = PGL(N).5

We could consider the Coulomb branch for more general quiver gauge
theory associated with a Riemann surface with boundary as in [Nak16, 3(iii)
Figure 5] (namely we have b legs, as well as g loops at the central vertex),
which is the Higgs branch of a 3d Sicilian theory, obtained by compactify-
ing 6d N = (2, 0) theory of type A by S1 × (punctured Riemann surface).
Ginzburg-Kazdhan construction is also generalized. See §5(x). We conjecture
that Theorem 5.1 is generalized.

Conjecture 5.2. Let W g,b def.
= SpecH∗GO(GrG,A

b ⊗! Bg) as in §5(x) for
G∨ = SL(N). It is isomorphic to the Coulomb branch of the gauge theory
associated with the quiver [Nak16, 3(iii) Figure 5].

By §2(viii) it is enough to show that the complex B = Bg=1 intro-
duced in §5(x) is isomorphic to the object A = π∗ωR[−2 dim NO] associ-
ated with (G,N) = (PGL(N), pgl(N)). We conjecture that this is true for
general G and its adjoint representation N = g. Note that we prove that
SpecH∗GO(GrG,B) = (T∨ × t)/W (using Losev’s result in §5(xiii)), which
coincides with the Coulomb branch for the adjoint representation. (See
[Part II, §3(x)(b)].)

The remainder of this section is as follows. In the first five subsections,
we study examples ofMC , in particular check two cases SL(2), SL(3) above.
These are basically applications of [Quiver] and Appendix A, and we will

5We thank Yuji Tachikawa for an explanation of this procedure.
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not use the sheaf A. In the subsequent five subsections, we show the gluing
property and also W b=2 = T ∗G∨. They were shown in [GK], but we give
proofs for completeness. They are direct consequences of [BF08]. In §§5(xi),
5(xii) we explain similarities between the gluing property and hamiltonian
reduction.

Let us use the following notation as in [Quiver]. Let Q be a quiver with
sets I, Ω of vertices and arrows respectively. We take an I-graded vector
space V =

⊕
Vi with dimension vector α = (dimVi)i∈I . We set GL(V ) =∏

GL(Vi), N ≡ Nα =
⊕

Hom(Vi, Vj), where the sum is over the arrows i
h−→

j ∈ Ω. We also take the diagonal central subgroup Z = C× ⊂ GL(V ) and
set PGL(V ) = GL(V )/Z. We consider the complex R ≡ RPGL(V ),N and the

corresponding Coulomb branch MC = Spec(H
PGL(V )O
∗ (RPGL(V ),N)).

Remark 5.3. Consider the regular sheaf AR on GrG. In type A, it arises
as the ring object associated with a quiver gauge theory by Theorem 2.11.
Using Sp/SO quiver as in [Nak16, Appendix A.2], we can conjecture that AR

for classical groups is constructed in a similar way, once we can generalize
our definition to the case when M is not necessarily of cotangent type. For
exceptional groups, we do not expect that AR appears in this way, as ar-
gued in [Nak16, §3(i)]. Nevertheless it is expected that AR arises from the 3d
N = 4 quantum field theory T (G), which was introduced in Gaiotto-Witten
[GW09]. This theory is not a usual gauge theory nor a lagrangian theory
for an exceptional group, hence is difficult to understand from a mathemat-
ical point of view. But it has a G×G∨-symmetry, and its Higgs/Coulomb
branches are nilpotent cones N and N∨ of G and G∨ respectively. The Sicil-
ian theory SG∨(g, b) associated with b punctured genus g Riemann surface
C considered above is constructed from T (G) by ‘gauging’ quantum field
theories up to 3d mirror:

(5.4) SG∨(g, b)
3d mirror←→ T [G]b ×Hyp(g⊕ g∗)g ///Gdiag,

where we use the notation /// for the gauging in [Tac]. (See also [Tac18].)
This observation was given in [BTX10]. Note that we ignore the param-
eter τ in [Tac, §2.6]. The deformation parameter, which corresponds to
the complex structure of C, is not relevant to Higgs branches as com-
plex symplectic varieties. Hence we can safely write SG∨(g, b) instead of
SG∨(C), and understand that the Higgs branch of SG∨(g, b) is the Coulomb
branch of the right hand side. A similarity between (5.4) and the def-
inition W g,b = SpecH∗GO(GrG,A

b ⊗! Bg) is clear. We identify T [G] with
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A, Hyp(g⊕ g∗) with B, and ///Gdiag with taking H∗GO(GrG, •) after the !-
restriction to the diagonal subgroup. See §5(xi) for a further discussion. We
thank Davide Gaiotto and Yuji Tachikawa for this remark.

5(i). Cylinder

Consider the two legs star shaped quiver gauge theory instead of three
legs in Figure 1. It is a quiver gauge theory of type A2N−1 with dimV =
(1, 2, . . . , N − 1, N,N − 1, . . . , 2, 1). We first consider the Coulomb branch
for GL(V ). By [Quiver, §3(i)],MC(GL(V ),N) is the moduli space Z̊αPGL(2N)

of based maps from P1 to a flag variety of typeA2N−1 with degree α = dimV .
By [BP08, Thm. 7.2], it is isomorphic to T ∗GL(N).

Note that α = 2ωN . By [Quiver, Remark 3.12], we have an isomor-
phism Z̊αPGL(2N)

∼−→ Sα ∩Wα
0 and the natural action of StabPGL(2N)(α) =

PGL(N,N) := GL(N)×GL(N)/C× on Z̊αSL(2N), where C× is the diago-

nal central subgroup of GL(N)×GL(N). It coincides with the natural ac-
tion of GL(N)×GL(N) on T ∗GL(N) through the quotient homomorphism
GL(N)×GL(N)� PGL(N,N). By example A.5 this action coincides with
the one given in Appendix A. More precisely the PGL(N,N) action on Wα

0

coincides with the one given in Appendix A, and the embedding Sα ∩Wα
0 →

Wα
0 is equivariant for both actions, as it is given by [Quiver, Remark 3.11]

as Coulomb branches.
By [Quiver, Remark 3.5] H

GL(V )O
∗ (RGL(V ),N)� H

GL(V )O
∗ (RPGL(V ),N) is

nothing but the restriction to the level set F−1
α (1), where Fα is the boundary

function (see [Quiver, §2(i)]). In this particular case, we have Fα = cdet for
c ∈ C×: all the invertible regular function on Z̊α are of the form cF kα , k ∈ Z,
c ∈ C× [BDF16, Lemma 5.4]. Now by degree reasons, det = cFα. Therefore

H
GL(V )O
∗ (RPGL(V ),N)) ∼= gl(N)× SL(N).

Moreover, the morphism

H
PGL(V )O
∗ (RPGL(V ),N))→ H

GL(V )O
∗ (RPGL(V ),N))

is nothing but the projection gl(N)× SL(N)→ Lie PGL(N)× SL(N). Iden-
tifying Lie PGL(N) with sl(N)∗ via the Killing form, we get

MC(PGL(V ),N) ∼= T ∗ SL(N).

This is the symplectic variety associated with a cylinder as expected.
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Let us check how the action in Appendix A is affected by the replace-
ment GL(V )→ PGL(V ). The semisimple Lie algebra lbal

ss remains the same:
the variety RPGL(V ),N is obtained from RGL(V ),N by identifying isomor-
phic connected components. Therefore the construction of [Quiver, Ap-
pendix B] applies. On the other hand π1(GL(V )) ∼=

⊕
i∈Q0

Zαi is replaced by

π1(PGL(V )) ∼= π1(GL(V ))/Z(
∑

i∈Q0
dimVi αi). The root datum is Rbal ⊂

π1(PGL(V )), Rbal∨ ⊂ π1(PGL(V ))∨. Thus PGL(N,N) is replaced by its

subgroup PGL(N,N)′
def.
= {[g1, g2] | det g1 = det g2}. We have SL(N)×

SL(N)� PGL(N,N)′ with kernel Z/NZ, the diagonal central subgroup.
The standard action on T ∗ SL(N) coincides with the one given in Ap-
pendix A.

On the other hand, if we replace the central GL(N) by SL(N), the cor-
responding Coulomb branch is the hamiltonian reduction of T ∗GL(N) with
respect to the C×-action corresponding to π1(GL(N)) ∼= Z. (See [Part II,
Prop. 3.18].) In this case C×-action is the scalar multiplication on T ∗GL(N)
([Quiver, Remark 3.2]), hence the reduction is T ∗ PGL(N) as expected.

5(ii). Disk

The variety for the disk is calculated as for the cylinder. We consider a quiver
gauge theory of type A with dimV = (1, 2, . . . , N). As we remarked in the
proof of Theorem 4.13, the Coulomb branch is Z̊αPGL(N+1) ' GL(N)× CN ,

where CN is identified with the Kostant slice for GL(N), and α = (N +
1)ωN . By [Quiver, Remark 3.12], we have an isomorphism Z̊αPGL(N+1)

∼−→
Sα ∩Wα

0 and the natural action of StabPGL(N+1)(α) = GL(N) on Z̊αPGL(N+1)

coinciding with the natural action of GL(N) on GL(N)× CN (trivial on CN
and by left shifts on GL(N)). By example A.5 this action coincides with the
one given in Appendix A.

The modification to cases SL(N), PGL(N) are similar to the above.

5(iii). S2 with three punctures for SL(2)

We next consider the Higgs branch of the Sicilian theory of type SL(2)
associated with S2 with three punctures. The mirror quiver gauge theory is
of type D4.

We consider the D4 quiver with the central vertex 1 and other vertices
2, 3, 4. We orient the edges from the central vertex. We take V1 = C2, V2 =
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V3 = V4 = C. The diagonal central subgroup Z = C× ⊂ GL(V ) acts triv-
ially on N =

⊕4
i=2 Hom(V1, Vi), so the action of GL(V ) factors through

PGL(V ) := GL(V )/Z. We will prove MC(PGL(V ),N) ' A8.
According to [Quiver, Thm. 3.1],MC(GL(V ),N) ' Z̊α, the moduli space

of degree α based maps from P1 to the flag variety B of the simply connected
group G = Spin(8) of type D4. Here α = 2α1 + α2 + α3 + α4 is the highest
coroot. Note that α = ω1 is a fundamental coweight. We also consider the
transversal slice sα0 : Wα

G,0 → Zα (see [Quiver, §2(ii)]; note that −w0 = Id

for our G). It is the moduli space of the data (Ptriv
σ−→ P) where Ptriv is

the trivialized G-bundle on P1, and σ is an isomorphism on P1 \ {0} with a
trivial G-bundle P possessing a degree α pole at 0 ∈ P1. We consider an open
subset U ⊂ Wα

G,0 formed by the data (Ptriv
σ−→ P) such that the transfor-

mation of the (unique) degree 0 complete flag in P with value B− at∞ ∈ P1

viewed as a generalized B-structure in Ptriv acquires no defect at 0 ∈ P1. We
have sα0 : U

∼−→ Z̊α. We also have another open subset U ′ ⊂ Wα
G,0 formed by

the data (Ptriv
σ−→ P) such that the transformation of the (unique) degree

0 complete flag in Ptriv with value B− at ∞ ∈ P1 viewed as a generalized
B-structure in P acquires no defect at 0 ∈ P1. This open subset U ′ is noth-
ing but the intersection of Wα

G,0 with the semiinfinite orbit T−α ⊂ GrG.

Since the trivialization of P at ∞ ∈ P1 (arising from σ) uniquely extends
to the trivialization of P over the whole of P1, we obtain an involution
ι : Wα

G,0
∼−→Wα

G,0 reversing the roles of P and Ptriv and replacing σ by σ−1.

We have ι : U
∼−→ U ′. Thus we obtain an isomorphism sα0 ◦ ι : U ′

∼−→ Z̊α.
Since α is the highest coroot, Wα

G,0 is isomorphic to the minimal nilpo-
tent orbit closure Nmin = 0 tOmin ⊂ g, see [BeiDr, 4.5.12, page 182] or
[MOV05, Lemma 2.10] for a published account. The projectivization of
Nmin is the partial flag variety Bα = G/P234: the quotient with respect to
a submaximal parabolic subgroup. Thus we have a C×-bundle p : Omin →
Bα. The big Bruhat cell (the open B−-orbit) C ⊂ Bα is the free orbit of
the unipotent radical U−234 of P−234. Via the exponential map, U−234 ' u−234,
the nilpotent radical of the Lie algebra of P−234. For the Levi subgroup
L234 ⊂ P−234 we have [L234, L234] ' SL(2)2 × SL(2)3 × SL(2)4, and u−234 as
a [L234, L234]-module is isomorphic to C2

2 ⊗ C2
3 ⊗ C2

4 ⊕ C1
2 ⊗ C1

3 ⊗ C1
4. Note

that the center Z(SL(2)2 × SL(2)3 × SL(2)4) = (Z/2Z)3 has a natural pro-
jection onto Z/2Z (the sum of coordinates). The kernel K of this projec-
tion, as a subgroup of Spin(8), coincides with the center Z(Spin(8)). The
action of SL(2)2 × SL(2)3 × SL(2)4 on u−234 factors through the action of
L234 := (SL(2)2 × SL(2)3 × SL(2)4)/K.
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Finally, we have U ′ = p−1(C). Thus we obtain a projection (a C×-bundle)
p ◦ (sα0 ◦ ι)−1 : Z̊α → C. This action of C× is nothing but the composition
of the natural T -action (Cartan torus T = B ∩B−) with the cocharacter
α1 : C× → T . The boundary equation Fα : Z̊α → C× has weight 1 with re-
spect to C× α1−→ T [BF14, Prop. 4.4]. It follows that (p ◦ (sα0 ◦ ι)−1, Fα) :
Z̊α

∼−→ C × C×. The action of L234 on Z̊α = C × C× is via the above action
on C. Note that L234 is nothing but [Lbal, Lbal] ⊂ PSO(8) of Appendix A,
and the action of L234 on MC(GL(V ),N) coincides with the action con-
structed in Appendix A by example A.5.

Now the surjection

C[Z̊α] = C[MC(GL(V ),N)] = H
GL(V )O
∗ (RGL(V ),N)� H

GL(V )O
∗ (RPGL(V ),N)

is nothing but the restriction to the level set F−1
α (1) (see [Quiver, Re-

mark 3.5]), hence SpecH
GL(V )O
∗ (RPGL(V ),N) ' C. Furthermore, the embed-

ding

C[MC(PGL(V ),N)] = H
PGL(V )O
∗ (RPGL(V ),N)

↪→ H
GL(V )O
∗ (RPGL(V ),N) = C[F−1

α (1)]

is nothing but the embedding of the ring of functions invariant with respect
to the translations action of Ga on Z̊α. Here we view Ga as a subgroup
of automorphisms of P1 preserving ∞ ∈ P1; its action on Z̊α preserves the
boundary equation Fα and its level set F−1

α (1). In terms of the identification
F−1
α (1) ' C ' u−234 ' C2

2 ⊗ C2
3 ⊗ C2

4 ⊕ C, the action of Ga is nothing but the
action of the last summand C, and henceMC(PGL(V ),N) = F−1

α (1)/Ga '
C2

2 ⊗ C2
3 ⊗ C2

4.
The above action of L234 = [Lbal, Lbal] onMC(GL(V ),N) induces its ac-

tion onMC(PGL(V ),N). One can also see that L234 is the reductive group
corresponding to the root datumRbal ⊂ π1(PGL(V )),Rbal∨ ⊂ π1(PGL(V ))∨

via π1(GL(V ))� π1(PGL(V )) as in §5(i).

Remark 5.5. Let us give another argument, which the third named author
was taught by Amihay Hanany.

Let us consider functions E
(1)
1 , F

(1)
1 for the middle vertex 1 by Re-

mark A.7. Since 〈α, α1〉 = 1, we have the action of G2
a by integrating hamil-

tonian vector fields HE
(1)
1

, HF
(1)
1

. We combine it with the action of SL(2)2 ×
SL(2)3 × SL(2)4. Let us consider the Lie subalgebra of C[MC(PGL(V ),N)]

generated by E
(1)
i , F

(1)
i (i = 1, 2, 3, 4). Viewing (PGL(V ),N) as a framed

quiver gauge theory of type A3 with dimV = 1 2 1 , dimW = 0 1 0 , we see
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that µ = dimW − C dimV satisfies the condition 〈µ, α〉 ≥ −1 for any posi-
tive root α. Hence elements in the Lie subalgebra have either degree 1, 1/2,
or 0, and the degree 0 part consists of constant functions by [Quiver, Re-
mark B.20]. Since the Poisson bracket is of degree −1, {f, g} is a constant
if f , g are of degree 1/2.

Commutator relations in [Quiver, Appendix B] imply that E
(1)
1 (resp.

F
(1)
1 ) is a lowest (resp. highest) weight vector in the tensor product C2

2 ⊗
C2

3 ⊗ C2
4 of vector representations. Hence we have a factorization

MC(PGL(V ),N) ∼= A8 ×M′C

by Remark A.7. But M′C must be a point as MC(PGL(V ),N) is 8-

dimensional. (Both E
(1)
1 and F

(1)
1 live in the same representation, as

MC(PGL(V ),N) would have a factor A16 otherwise.)
The same argument shows that the Coulomb branch MC(PGL(V ),N)

for dimV = 1
1 2 ... N−1 N N−1 ... 2 1 is Hom(CNl ,CNr )⊕Hom(CNr ,CNl ), where

we have an SL(N)l × SL(N)r-action from the balanced vertices in the left
and right legs, and CNl , CNr are its vector representations. See [MT12, (4.6)].

5(iv). S2 with three punctures for SL(3)

We next consider type SL(3). The mirror quiver gauge theory is of type
affine E6. We start with a simple observation. Let us denote by 0 (resp. 6)
a special vertex (resp. a vertex adjacent to 0) of the affine quiver of type
E6. This choice breaks S3 symmetry of the quiver. We have an isomorphism∏
i 6=0 GL(Vi) ∼= PGL(V ) = GL(V )/Z. Therefore we can view (PGL(V ),N)

as a framed quiver gauge theory of finite type E6 with dimV = 2
1 2 3 2 1 ,

dimW = 1
0 0 0 0 0 . Therefore its Coulomb branch is W$6

G,0 by [Quiver, Thm.
3.10], where G is the group E6 of adjoint type. By [BeiDr, 4.5.12, page 182]
(see [MOV05, Lemma 2.10] for a published account), this is isomorphic to the
closureNmin of the minimal nilpotent orbit Omin. We have the action of G by
Proposition A.3, which is identified with the standard one by example A.5.

The action of SL(3)2 corresponding to two legs not containing the chosen
special vertex 0 is coming from the standard inclusion SL(3)2 ⊂ E6. The
remaining SL(3) action for the leg containing 0 is given as follows.

First let us note that the Lie algebra l of degree 1 elements in C[MC ] is
e6, as we already know MC = Nmin.

Returning back to the original gauge group PGL(V ) = GL(V )/Z, we

have degree 1 elements E
(1)
0 , F

(1)
0 , H

(1)
0 ∈ l corresponding to the special ver-

tex 0 by Lemma A.2. The variety of triples RPGL(V ),N is obtained from
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RGL(V ),N by identifying isomorphic connected components. Therefore the
construction of [Quiver, Appendix B] applies. The computation of Poisson

brackets {H(1)
i , E

(1)
0 }, {H

(1)
i , F

(1)
0 } remains unchanged by the replacement

GL(V )→ PGL(V ), hence we conclude that E
(1)
0 , F

(1)
0 are root vectors cor-

responding to the highest weight of l = e6. It also follows that E
(1)
0 , F

(1)
0

together with E
(1)
6 , F

(1)
6 generate an additional sl(3), and SL(3).

We have the S3-action on MC induced by permutation of three legs.
From the above consideration, it is clear that it corresponds to S3 of au-
tomorphisms of e6 exchanging root subspaces corresponging to the highest
weight and two remaining special vertices. (See [Kac90, Thm. 8.6] for the
detail of the construction of automorphisms.)

5(v). Torus with one puncture for SL(3)

We consider the Higgs branch of the Sicilian theory of type SL(3) associated
with a torus with one puncture. According to Conjecture 5.2 the mirror
quiver gauge theory is 1→ 2→ 3 ý, where numbers are dimensions (and
we use them also for indices of vertices). Note that we have an edge loop
at the vertex 3. Let us denote the Coulomb branch of this quiver gauge
theory by M. The following result is informed to the third-named author
by Amihay Hanany. (It is based on an earlier observation in [GR12, §2.1],
[CHMZ14b, (3.3.2)].)

Proposition 5.6. M is isomorphic to the subregular orbit closure Osubreg ⊂
g2.

Proof. Let us first construct the action of G2.

We consider operators E
(1)
i , F

(1)
i , H

(1)
i (i = 1, 2, 3) as in Lemma A.2.

The vertices 1, 2 are balanced, while 3 is not. But we still have degE
(1)
3 ,

F
(1)
3 = 1 by [Quiver, (A.4)]. Let us consider the Lie subalgebra g of C[M]

generated by these operators. By Appendix A(ii) E
(1)
i , F

(1)
i , H

(1)
i (i = 1, 2)

define the Lie algebra sl(3), and the corresponding hamiltonian vector fields
are integrated to an SL(3)-action on M.

The proof of commutation relations {E(1)
i , F

(1)
3 } = 0 = {F (1)

i , E
(1)
3 },

{H(1)
1 , E

(1)
3 } = 0 = {H(1)

1 , F
(1)
3 }, {H

(1)
2 , E

(1)
3 } = −E(1)

3 , {H(1)
2 , F

(1)
3 } = F

(1)
3

in [Quiver, Appendix B] remains to work even though 3 has an edge loop.

Similarly to [KN18, Lemma 6.8] we calculate {E(1)
3 , F

(1)
3 }=2(3w2,1+3w2,2−

2w3,1 − 2w3,2 − 2w3,3). Since H
(1)
1 = 2w1,1 − w2,1 − w2,2 and H

(1)
2 = 2w2,1 +

2w2,2 − w1,1 − w3,1 − w3,2 − w3,3, we conclude that {E(1)
3 , F

(1)
3 } = 4H

(1)
2 +
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2H
(1)
1 . Hence g is simple of type G2 with Cartan subalgebra h spanned by

H
(1)
1 and H

(1)
2 , and sl(3) is spanned by h and the long roots. Note that E

(1)
3

and F
(1)
3 generate the fundamental representations V and V ∨ of sl(3), and

g = sl(3)⊕ V ⊕ V ∨.
More concretely,

F
(1)
3 = u3,1 + u3,2 + u3,3, and

E
(1)
3 = (w3,1 − w2,1)(w3,1 − w2,2)u−1

3,1 + (w3,2 − w2,1)(w3,2 − w2,2)u−1
3,2

+ (w3,3 − w2,1)(w3,3 − w2,2)u−1
3,3, and

E
(1)
2 = (w2,1 − w1,1)(w2,2 − w2,1)−1u−1

2,1

+ (w2,2 − w1,1)(w2,1 − w2,2)−1u−1
2,2, and

F
(1)
2 = (w2,1 − w3,1)(w2,1 − w3,2)(w2,1 − w3,3)(w2,2 − w2,1)−1u2,1

+ (w2,2 − w3,1)(w2,2 − w3,2)(w2,2 − w3,3)(w2,1 − w2,2)−1u2,2,

while F
(1)
1 = (w1,1 − w2,1)(w1,1 − w2,2)u1,1, and E

(1)
1 = u−1

1,1.
Now consider an auxiliary quiver gauge theory of type D4 with 1-dimen-

sional framing at the middle vertex numbered by 2, and the outer vertices
numbered by (3, 1), (3, 2), (3, 3). We take dimV ′′3,1 = dimV ′′3,2 = dimV ′′3,3 =
1, dimV ′′2 = 2 (and dimW ′′2 = 1). We know thatMC(GL(V ′′),N′′) = Nmin

is the closure of the minimal orbit in so8. On the other hand, we consider a
quiver gauge theory of the affine type D4 with the extra vertex numbered
by 1, dimV1 = 1, and all the other dimensions as before, but no framing.
We denote the corresponding graded vector space by V ′ = V ′′ ⊕ V1, and the
corresponding representation of GL(V ′) by N′. Then MC(GL(V ′′),N′′) =
MC(PGL(V ′),N′). We have an embedding

C[MC(PGL(V ′),N′)]

↪→ C(w1,1, w2,1, w2,2, w3,1, w3,2, w3,3, u1,1, u2,1, u2,2, u3,1, u3,2, u3,3)S2

where the symmetric group S2 acts by permuting (w2,1, u2,1) and (w2,2, u2,2).
Also we have an embedding

C[M] ↪→ C(w1,1, w2,1, w2,2, w3,1, w3,2, w3,3, u1,1, u2,1, u2,2, u3,1, u3,2, u3,3)S2×S3

where the symmetric group S3 acts by permuting (w3,1, u3,1), (w3,2, u3,2),
and (w3,3, u3,3). By inspection of [Quiver, (A.3), (A.5), and Thm. B.18] we

check F
(1)
2 = ′F

(1)
2 , E

(1)
2 = ′E

(1)
2 , F

(1)
3 = ′F

(1)
3,1 + ′F

(1)
3,2 + ′F

(1)
3,3 , E

(1)
3 = ′E

(1)
3,1 +

′E
(1)
3,2 +′E

(1)
3,3 where ′E, ′F refer to the generators of so8 in C[MC(PGL(V ′),N′)],
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while E,F refer to the generators of g2 in the previous paragraph. Since the
projection MC(PGL(V ′),N′) = Nmin → so8 is an embedding, we conclude
that the projection M→ g2 is generically an embedding. Hence the differ-
ential of the G2-action on M is generically surjective, so M has an open
G2-orbit Õ ⊂M which is a nonramified cover of its image adjoint orbit
O ⊂ g2.

Now the monopole formula for M gives degrees in N. Indeed, the con-
tribution of a dominant coweight λ = (λ1,1, λ2,1 ≥ λ2,2, λ3,1 ≥ λ3,2 ≥ λ3,3)
of (GL(1)×GL(2)×GL(3))/Z equals ∆(λ) = λ2,2 − λ2,1 + 1

2 |λ2,1 − λ1,1|+
1
2 |λ2,2 − λ1,1|+ 1

2

∑
r,s |λ2,r − λ3,s| which is easily seen to be nonnegative and

integral. We conclude thatM is conical, and hence its image O ⊂ g2 is con-
ical as well. It follows that O is a nilpotent orbit. But g2 has a unique
10-dimensional nilpotent orbit: the subregular one. Hence O = Osubreg.

Now we have to identify the cover Õ→ O. It is known that the universal
cover of Osubreg is an open piece of the minimal nilpotent orbit Omin ⊂ so8,
see e.g. [BK94], and the Galois group of this cover is S3. Moreover, the
degree 1 functions on the universal cover constitute the Lie algebra so8. It
follows that if the cover Õ→ O corresponds to a subgroup π1 ⊂ S3, then
the degree 1 functions on Õ constitute soπ1

8 . Since we know that the degree
1 functions on M constitute g2 = soS3

8 , we conclude that π1 = S3, so that

Õ ∼−→ Osubreg. Finally, the normality property of the orbit closure Osubreg

guarantees that M ∼−→ Osubreg. �

Note that a torus with one puncture is obtained from S2 with three
punctures by gluing two punctures. We have computed the Higgs branch as-
sociated with the latter in §5(iv). The Higgs branch is the closure Nmin(e6)
of the minimal nilpotent orbit of e6. Therefore the Higgs branch M for
a torus with one puncture is the Hamiltonian reduction Nmin(e6)///∆SL(3)

with respect to the diagonal SL(3) in SL(3)× SL(3) corresponding to two
legs which are glued. Therefore we have an action of the centralizer of ∆SL(3)

in E6, which is G2. (See e.g., [Rub08, §3.2] and the references therein.) Com-
bining with Proposition 5.6, we should have Nmin(e6)///∆SL(3)

∼= Osubreg(g2),
the closure of the subregular nilpotent orbit of g2. We do not have a proof
of this statement, though it might be known to an expert.

5(vi). Recollections on derived Satake equivalence

We consider a reductive group G with Langlands dual group G∨ and its Lie
algebra g∨. We have a commutative ring object AR =

⊕
λ IC(Grλ)⊗ (V λ)∗ ∈

DG(GrG).
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Let e, h, f ∈ g∨ be a principal sl2-triple such that f is lower triangu-
lar, and e is upper triangular. We consider the Kostant slice e+ z(f) to
the regular nilpotent orbit. Let Σ be the image of e+ z(f) under a G∨-
invariant isomorphism g∨ ' (g∨)∗. let Υ be the image of e+ b∨− (Borel sub-
algebra) under a G∨-invariant isomorphism g∨ ' (g∨)∗. We have canonical
isomorphisms Σ = t/W = Υ/U∨− (unipotent subgroup) by the compositions
Σ ↪→ (g∨)∗ � (g∨)∗//G∨ ∼= t/W and Σ ↪→ Υ� Υ/U∨−.

According to [BF08, Thm. 5], there is an equivalence of monoidal tri-
angulated categories Ψ: DG∨(Sym[](g∨))→ DG(GrG). Recall that DG(GrG)
stands for the Ind-completion of the bounded derived equivariant constru-
ctible category on GrG. Accordingly, DG∨(Sym[](g∨)) stands for the Ind-
completion of the triangulated category DG∨

perf(Sym[](g∨)) formed by the G∨-

equivariant perfect dg-modules over Sym[](g∨): the graded symmetric algebra
of g∨ where any element of g∨ is assigned degree 2 (with trivial differential).
The monoidal structure on DG(GrG) is given by the convolution ?, and
the monoidal structure on DG∨(Sym[](g∨)) is M1,M2 7→M1 ⊗Sym[](g∨) M2.

The algebra C[Σ] = Sym(g∨)G
∨

acts on Ext∗
DG∨ (Sym[](g∨))

(M1,M2), and this

action is compatible with the action of C[Σ] = H∗G(pt) on

Ext∗DG(GrG)(Ψ(M1),Ψ(M2)).

Since DG∨(Sym[](g∨)) is the homotopy category of a dg-category, we have
RHomDG∨ (Sym[](g∨)) : DG∨(Sym[](g∨))×DG∨(Sym[](g∨))→ D(Vect).

The functor Ψ−1 is uniquely characterized by the property that

Ψ−1(IC(Grλ)) = Sym[](g∨)⊗ V λ.

For F ∈ DG(GrG) we have [BF08, Thm. 2]:

(5.7) H∗GO(GrG,F) = κl(Ψ−1(F)) := H∗(Ψ−1(F)⊗Sym[]
new(g∨) C[Σ][])

in the following sense. The eigenvalues of −h from the above sl2-triple define
a grading of g∨, hence a grading of (g∨)∗ and a grading of Sym[](g∨). Thus
g∨, (g∨)∗ and Sym[](g∨) acquire a bigrading such that the total degree of
e is zero. We consider Sym[](g∨) with the new grading given by the total

degree and denote it Sym
[]
new(g∨). Now the projection Sym(g∨)→ C[Σ] is

compatible with the new grading, and induces a grading on C[Σ] denoted

C[Σ][]. Finally, we consider both Sym
[]
new(g∨) and C[Σ][] as dg-algebras with

trivial differential (and zero components of odd degrees). Note that Ψ−1(F)

is still a dg-module over Sym
[]
new(g∨) due to its G∨-equivariance.
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Let D stand for the duality

M 7→ RHomSym[](g∨)(M, Sym[](g∨))

in DG∨(Sym[](g∨)). Let D stand for the Verdier duality in DG(GrG). We de-
note by CG∨ the autoequivalence of DG∨(Sym[](g∨)) induced by the canon-
ical outer automorphism of G∨ interchanging conjugacy classes of g and
g−1 (the Chevalley involution). We denote by CG the autoequivalence of
DG(GrG) induced by g 7→ g−1, G((z))→ G((z)). Then CG ◦Ψ = Ψ ◦ CG∨ .
According to [BF08, Lemma 14], we have Ψ ◦ CG∨ ◦D = D ◦Ψ and Ψ ◦D =
CG ◦ D ◦Ψ.

The following lemma is well known. (See [Gin95, §2.4]. Also the proof
of [BF08, Lemma 14] depends on it.) Let us give its proof for completeness.
Recall 1GrG denotes the skyscraper sheaf at the base point in GrG.

Lemma 5.8. CG ◦ D is the rigidity for (DG(GrG), ?). That is, for any
F1,F2 ∈ DG(GrG) we have a canonical isomorphism

RHomDG(GrG)(1GrG ,F1 ? F2)
∼−→ RHomDG(GrG)(CG ◦ DF1,F2).

Proof. For any group H, the convolution operation F1 ? F2 = m∗(F1 � F2)
on D(H) has rigidity F 7→ CH ◦ DF where CH is induced by the automor-
phism h 7→ h−1, H→ H. Namely,

RHom(1H,F1 ? F2) = i!e(F1 ? F2) = RHom(CH,∇!(F1 � F2))

= RHom(CH, CHF1 ⊗! F2) = RHom(CH ◦ DF1,F2),

where ∇ : H ↪→ H× H is the antidiagonal embedding h 7→ (h−1, h).
We apply this to the category of GO-left-right equivariant sheaves on

H = GK.
More formally, let us use the six operations for constructible derived

categories on Artin stacks. There is a reference [LO08] for Ql-coefficients. We
choose an isomorphism Ql

∼= C and use it for complex coefficients. Our stack
is X := GO\GrG. It is the moduli stack of pairs P1,P2 of G-bundles on the
formal disc D equipped with an isomorphism η : P1|D∗

∼−→ P2|D∗ . There is
an involution i : X → X induced by the inversion g 7→ g−1 of GK. In modular
terms, i(P1,P2, η) = (P2,P1, η

−1). Recall that GrG is the moduli space of
G-bundles P on D equipped with an isomorphism σ : Ptriv|D∗

∼−→ P|D∗ . We
have a projection pr2 : GrG → X sending (P, σ) to (Ptriv,P, σ). Similarly,
we define GrG as the moduli space of G-bundles P on D equipped with
an isomorphism τ : P|D∗

∼−→ Ptriv|D∗ . We have a projection pr1 : GrG→ X
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sending (P, τ) to (P,Ptriv, τ). We have isomorphisms i : GrG
∼−→ GrG and

i : GrG
∼−→ GrG sending σ to τ = σ−1 and τ to σ = τ−1. Obviously, ipr1 =

pr2 i and ipr2 = pr1 i. There is a morphism m : GrG×GrG → X induced by
the multiplication in GK. In modular terms, m(P1, τ ;P2, σ) = (P1,P2, σ ◦ τ).
The convolution on D(X ) is defined as F1 ? F2 := m∗(pr∗1F1 � pr∗2F2). The
unit object 1 is CGO\Gr0

G
. We claim that the rigidity is i∗ ◦ D. Indeed,

RHomX (1,F1 ? F2) = i!0(F1 ? F2)

= RHomGO\GrG(CGrG ,∇!(pr1
∗F1 � pr∗2F2))

= RHomGO\GrG(CGrG , i
∗ pr∗1F1 ⊗! pr∗2F2)

= RHomGO\GrG(i∗ ◦ D pr∗1F1,pr∗2F2)

= RHomX (i∗ ◦ DF1,F2),

where ∇ : GrG → GrG×GrG is (i, id). �

5(vii). Regular sheaf and derived Satake equivalence

Under the equivalence Ψ−1, the ring object AR ∈ DG(GrG) corresponds to
the G∨-equivariant free Sym[](g∨)-module C[G∨]⊗ Sym[](g∨) which will be
denoted C[T ∗G∨][] for short. The G∨-action comes from the left action of
G∨ on T ∗G∨ = G∨ × (g∨)∗, g1(g2, ξ) = (g1g2, ξ). And the action of Sym[](g∨)
on C[T ∗G∨][] comes from the morphism µl : T

∗G∨ → (g∨)∗, (g, ξ) 7→ Adg ξ
(the moment map of the left action). Recall that AR is equipped with an
action of G∨. Under the equivalence Ψ−1, this action goes to the action on
C[T ∗G∨][] coming from the right action of G∨ on T ∗G∨ = G∨ × (g∨)∗, g1 ·
(g2, ξ) = (g2g

−1
1 ,Adg1

ξ). For this reason the action of G∨ on AR will be
called the right action. The moment map of the right G∨-action on T ∗G∨

is µr : T ∗G∨ → (g∨)∗, (g, ξ) 7→ ξ.
Also note that RHomDG(GrG)(AR,AR) is a formal dg-algebra (since e.g.

C[T ∗G∨][] is a free Sym[](g∨)-module), so µr gives rise to a G∨-equivariant
morphism of dg-algebras

(5.9) Sym[](g∨)→ RHomDG(GrG)(AR,AR).

Altogether we have the action of G∨ n Sym[](g∨) on AR that will be called
the right action.

Remark 5.10. For F1,F2 ∈ DG(GrG) we distinguish Ext∗DG(GrG)(F1,F2)
and RHomDG(GrG)(F1,F2). They are isomorphic in D(Vect), the derived
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category of vector spaces, which is equivalent to Vectgr, the category of
graded vector spaces. But when we consider additional structures, such as
a dg-algebra structure or a structure of a dg-module over G∨ n Sym[](g∨),
they are not isomorphic. We thus understand

Ext∗DG(GrG)(F1,F2) = H∗(RHomDG(GrG)(F1,F2)).

Definition 5.11. The morphism (5.9) Sym[](g∨)→ RHomDG(GrG)(AR,AR)
induces, for any F ∈ DG(GrG), the composed morphism

Sym[](g∨)→ RHomDG(GrG)(AR,AR)→ RHomDG(GrG)(AR ⊗! F ,AR ⊗! F)

of dg-algebras. Also, the morphism (5.9) induces, for any F ∈ DG(GrG), the
composed morphism

Sym[](g∨)⊗ RHomDG(GrG)(CGrG ,AR ⊗! F)

→ RHomDG(GrG)(AR,AR)⊗ RHomDG(GrG)(CGrG ,AR ⊗! F)

→ RHomDG(GrG)(CGrG ,AR ⊗! F)

of complexes of vector spaces. This morphism is G∨-equivariant for the G∨-
action on RHomDG(GrG)(CGrG ,AR ⊗! F) induced by the right G∨-action on

AR. Thus, the complex RHomDG(GrG)(CGrG ,AR ⊗! F) acquires the struc-

ture of an object of DG∨(Sym[](g∨)), and Ext∗DG(GrG)(CGrG ,AR ⊗! •) gets
upgraded to the functor

RHomDG(GrG)(CGrG ,AR ⊗! •) : DG(GrG)→ DG∨(Sym[](g∨)).

Similarly, the dg-modules

RHomDG(GrG)(DAR,F),

RHomDG(GrG)(1GrG ,DAR ? F),

RHomDG(GrG)(AR,F), etc.

all acquire the structures of objects ofDG∨(Sym[](g∨)), and Ext∗DG(GrG)(AR, •)
gets upgraded to the functor

RHomDG(GrG)(AR, •) : DG(GrG)→ DG∨(Sym[](g∨)).

Lemma 5.12. From Definition 5.11 we obtain an action of (G∨)b n
Sym[](g∨)⊗b on RHomDG(GrG)(CGrG ,A

⊗!b
R ). The resulting dg-module over

(G∨)b n Sym[](g∨)⊗b is formal.
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Proof. Using [BF08, Prop. 5] we reformulate the claim for DG(GrG) replaced
by DGFq

(GrG,Fq). Then AR is pointwise pure (meaning that all its costalks

are pure with respect to the Frobenius action). Hence A⊗
!b

R is also pointwise
pure. Then the Cousin spectral sequence for the Schubert stratification of
GrG shows that H∗GO,Fq

(GrG,Fq ,A
⊗!b
R ) is pure. Also, Ext∗DGFq

(GrG,Fq )(AR,AR)

is pure. Now the argument of [BF08, §6.5] proves that the dg-algebra
RHomDG(GrG)(AR,AR) is formal as well as its b-th tensor power, and the

dg-module RHomDG(GrG)(CGrG ,A
⊗!b
R ) over RHomDG(GrG)(AR,AR)⊗b is for-

mal. �

The Kostant-Whittaker (hamiltonian) reduction of T ∗G∨ with respect
to the right action is T ∗G∨ U∨−,ψ

:= µ−1
r (Υ)/U∨−. (We use for a hamilto-

nian reduction in order to avoid a conflict with // for a GIT quotient.) At
the level of dg-modules, κr(C[T ∗G∨][]) := (C[µ−1

r (Υ)][])U
∨
− = C[µ−1

r (Σ)][] :=
C[T ∗G∨][] ⊗Sym[]

new(g∨) C[Σ][], tensor product with respect to the action of

the right copy of Sym
[]
new(g∨).6 (We have an isomorphism U∨− × Σ

∼−→ Υ
given by the action of U∨− on Υ. Hence C[Υ]U

∨
− ∼= C[Σ]. Moreover, for any

U∨−-equivariant sheaf F on Υ, we have FU∨− = F|Σ. Similarly, for a U∨−-
equivariant dg-module M over C[Υ][] we have MU∨− = M ⊗C[Υ][] C[Σ][].) This

is an object of DG∨(Sym[](g∨)) (with respect to the residual left action of
G∨) corresponding under the equivalence Ψ−1 to the dualizing complex
ωGrG [BF08, Prop. 4]. (In fact, [BF08, Prop. 4] is proved for the extra equiv-
ariance under the loop rotations.) Instead of ωGrG = Ψ(κr(Ψ−1AR)), we will
write ωGrG = κr(AR) for short.

Under the dualities D, D we have DC[T ∗G∨][] = C[T ∗G∨][], while DAR =
CGAR.

We define Φ := CG∨ ◦Ψ−1 : DG(GrG)→ DG∨(Sym[](g∨)). We have
Φ(AR) = C[T ∗G∨][].

Lemma 5.13. (a) Let us define a functor Ext∗DG(GrG)(AR, •) : DG(GrG)→
D(Vect) = Vectgr by

Ext∗DG(GrG)(AR,F) :=
⊕
λ

Ext∗DG(GrG)(IC(Grλ)⊗ (V λ)∗,F).

6Passing to cohomology, we obtain the usual hamiltonian reduction:

H∗(κr(C[T ∗G∨][])) = C[T ∗G∨]⊗Sym(g∨) C[Σ] =: κr(C[T ∗G∨]).

We use the same notation κr for the hamiltonian reduction of the usual modules
and of dg-modules. It is clear from the context which one is used in what follows.
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It is canonically isomorphic to Ext∗DG(GrG)(1GrG ,AR ? •) by the rigidity to-
gether with CGDAR = AR (see Lemma 5.8). Then both Ext∗DG(GrG)(AR, •)
and Ext∗DG(GrG)(1GrG ,AR ? •) are canonically isomorphic to the composition

Forg ◦Ψ−1, where Forg is the forgetful functor DG∨(Sym[](g∨))→ D(Vect) =
Vectgr.

Their upgrades RHomDG(GrG)(AR, •) and RHomDG(GrG)(1GrG ,AR ? •) :

DG(GrG)→ DG∨(Sym[](g∨)) (see Definition 5.11) are canonically isomor-
phic to Ψ−1.

(b) For F1,F2 ∈ DG(GrG), there are canonical isomorphisms

H∗GO(GrG,F1 ⊗! F2) = Ext∗DG(GrG)(CGrG ,F1 ⊗! F2)

∼= Ext∗DG(GrG)(DF1,F2)

∼= Ext∗DG(GrG)(1GrG , CGF1 ? F2)

in D(Vect) = Vectgr.
(c) Let us define a functor Ext∗DG(GrG)(DAR, •) : DG(GrG)→ D(Vect) =

Vectgr by

Ext∗DG(GrG)(DAR,F) :=
⊕
λ

Ext∗DG(GrG)(IC(Grλ)⊗ V λ,F).

It is canonically isomorphic to Ext∗DG(GrG)(1GrG , CGAR ? •) by the rigidity
together with CGAR = DAR (see Lemma 5.8). We have canonical isomor-
phisms

Forg ◦Φ(•) ∼−→ Ext∗DG(GrG)(1GrG , CGAR ? •)
∼−→

(b)
Ext∗DG(GrG)(DAR, •)

∼−→
(b)

Ext∗DG(GrG)(CGrG ,AR ⊗! •)

of functors DG(GrG)→ D(Vect) = Vectgr.
The upgraded functors (see Definition 5.11)

Φ
∼−→ RHomDG(GrG)(1GrG , CGAR ? •)
∼−→ RHomDG(GrG)(DAR, •)

∼−→ RHomDG(GrG)(CGrG ,AR ⊗! •)

are isomorphic as functors from DG(GrG) to DG∨(Sym[](g∨)).

Proof. (a) We consider C[T ∗G∨][] as a G∨ ×G∨-equivariant (Sym[](g∨),
Sym[](g∨)) bimodule by the left and right action. We have the canonical
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matrix coefficient morphisms

(5.14) M
∼=−−→
ϕM

RHomDG∨ (Sym[](g∨))(Sym[](g∨),C[T ∗G∨][] ⊗M),

where G∨ n (Sym[](g∨)) acts on C[T ∗G∨][] by the left action, and the right
hand side is regarded as an object in DG∨(Sym[](g∨)) by the residual right
action on C[T ∗G∨][]. Here ϕM is defined as follows: Given a G∨-module
M , we have ϕM : M ⊗M∗ → C[G∨] by ϕM (m⊗m∗)(g) := 〈gm,m∗〉. It is
a morphism of G∨ ×G∨-modules. By swapping M∗ to the target, ϕM can
be viewed as a morphism ϕM : M → HomG∨(C,C[G∨]⊗M). The morphism
ϕM is an isomorphism. One can think about it as the usual fiber functor
Forg on Rep(G∨) being represented by C[G∨]. Its inverse ϕ−1

M is given by

the evaluation C[G∨]→ C at g = 1. We consider this over Sym[](g∨) to get
(5.14). We now apply the derived Satake equivalence. We get

Ψ−1(F)
∼−→

ϕΨ−1(F)

RHomDG∨ (Sym[](g∨))(Sym[](g∨),C[T ∗G∨][] ⊗Ψ−1(F))

∼−→ RHomDG(GrG)(1GrG ,AR ⊗F).

The second isomorphism holds since the construction of Ψ−1 actually passes
through dg-categories (as opposed to being defined at the level of derived
categories), and is compatible with the action of the formal dg-algebra
Sym[](g∨). We have an isomorphism

RHomDG(GrG)(AR, •) ∼= RHomDG(GrG)(1GrG ,AR ? •)

by the rigidity plus AR = CG ◦ DAR.
(b) The first isomorphism is the rigidity for the monoidal category

(DG(GrG),⊗!), while the second is for (DG(GrG), ?). See Lemma 5.8.
(c) The first isomorphism is a consequence of (a) together with DAR =

CGAR. The second and third are nothing but (b). In order to see that the
second and third isomorphisms are upgraded to RHom, we observe that
quasi-isomorphisms

RHomDG(GrG)(1GrG , CGAR ? •)
∼−→ RHomDG(GrG)(DAR, •)
∼−→ RHomDG(GrG)(CGrG ,AR ⊗! •)

are compatible with the action of G∨ n Sym[](g∨). �

Let us suppose F ∈ DG(GrG) is a ring object, i.e. it is equipped
with a commutative multiplication homomorphism mF : F ? F → F . Then
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Ψ−1(F) ∈ DG∨(Sym[](g∨)) is also a ring object, i.e. it is equipped with
Ψ−1(mF ) : Ψ−1(F)⊗Sym[](g∨) Ψ−1(F)→ Ψ−1(F). The same is true for Φ.
On the other hand, RHomDG(GrG)(1GrG ,AR ? F) = RHomDG(GrG)(AR,F) in
Lemma 5.13(b) is equipped with a multiplication by mF and mAR

(equiva-
lently, a coproduct CGDmAR

: AR → AR ?AR). Similarly,

RHomDG(GrG)(1GrG , CGAR ? F) = RHomDG(GrG)(DAR,F)

in Lemma 5.13(c) is equipped with a multiplication by mF and CGmAR
:

CGAR ? CGAR → CGAR (equivalently, a coproduct DmAR
: DAR → DAR ?

DAR). Finally, a multiplication on RHomDG(GrG)(CGrG ,AR ⊗! F) is defined
as in Proposition 2.22.

Proposition 5.15. (a) Multiplications on Ψ−1(F), RHomDG(GrG)(AR,F)
and RHomDG(GrG)(1GrG ,AR ? F) are equal under the isomorphism in
Lemma 5.13(a).

(b) The same is true for

Φ(F), RHomDG(GrG)(1GrG , CGAR ? F),

RHomDG(GrG)(DAR,F), and

RHomDG(GrG)(CGrG ,AR ⊗! F),

under the isomorphisms of Lemma 5.13(c).

Proof. (a) The isomorphism

RHomDG(GrG)(AR,F) ∼= RHomDG(GrG)(1GrG ,AR ? F)

is given by the rigidity, and respects the multiplication by definition. There-
fore it is enough to check the compatibility under the isomorphism Ψ−1(F) ∼=
RHomDG(GrG)(1GrG ,AR ? F). This isomorphism is nothing but ϕM (where
M = Ψ−1(F)) in (5.14) under the derived Satake equivalence. Therefore it
is enough to check that ϕM respects the multiplication when M is an alge-
bra in the category DG∨(Sym[](g∨)). This is trivial as ϕ−1

M is given by the
evaluation ev1 : C[G∨]→ C at 1 ∈ G∨.

(b) Applying (a) to CGF , we see that the multiplications on Φ(F) and
RHomDG(GrG)(1GrG , CGAR ? F) = RHomDG(GrG)(DAR,F) are equal under
the isomorphisms of Lemma 5.13(c). It remains to compare them with the
multiplication on RHomDG(GrG)(CGrG ,AR ⊗! F) defined in Proposition 2.22
as the composition
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RHomDG(GrG)(CGrG ,AR ⊗! F)⊗ RHomDG(GrG)(CGrG ,AR ⊗! F)

→ RHomDG(GrG)

(
CGrG , (AR ⊗! F) ? (AR ⊗! F)

)
(2.23)−−−→ RHomDG(GrG)

(
CGrG , (AR ?AR)⊗! (F ? F)

)
m→ RHomDG(GrG)(CGrG ,AR ⊗! F).

Note that

RHomDG(GrG)(DAR,F) ∼= RHomDG(GrG)(CGrG ,RHom(DAR,F)).

Recall that the convolution product ? is defined as m∗(q
∗)−1p∗, see (2.2),

where we omit ¯ for brevity. Since p and q are smooth with fibers both
GO, we have (q∗)−1p∗ = (q!)−1p!. By [KS90, (2.6.24)] for m∗ and [KS90,
Prop. 3.1.13] for p!, q!, we have a natural homomorphism

(5.16) RHom(DAR,F) ?RHom(DAR,F)→ RHom(DAR ? DAR,F ? F).

Hence we have the multiplication on RHomDG(GrG)(CGrG ,RHom(DAR,F))
by mF and DmAR

. Then the isomorphism

RHomDG(GrG)(DAR,F) ∼= RHomDG(GrG)(CGrG ,RHom(DAR,F))

is compatible with the multiplication.
Now our remaining task is to check that the isomorphism AR ⊗! F ∼=

RHom(DAR,F) (see [KS90, Prop. 3.4.6]) is compatible with the multipli-
cation. Since the following diagram commutes:

(AR ?AR)⊗! (F ? F)
mAR

⊗!mF−−−−−−−→ AR ⊗! F

o
y o

y
RHom(DAR ? DAR,F ? F)

mF◦DmAR−−−−−−−→ RHom(DAR,F),

the proof is reduced to the commutativity of
(5.17)

(AR ⊗! F) ? (AR ⊗! F)
(2.23)−−−−→ (AR ?AR)⊗! (F ? F)

o
y o

y
RHom(DAR,F) ?RHom(DAR,F) −−−−→

(5.16)
RHom(DAR ? DAR,F ? F).



i
i

“1-Nakajima” — 2019/11/8 — 18:46 — page 311 — #59 i
i

i
i

i
i

Ring objects from Coulomb branches 311

Recall that horizontal arrows in (5.17) are defined as composite of homomor-
phisms for p!, q!, m∗ under ? = m∗(q

!)−1p!. Thus the commutativity follows
from compatibilities of homomorphisms for p!, q!, m∗ under the isomorphism
[KS90, Prop. 3.4.6]. We leave the reader to check the detail. �

5(viii). Hamiltonian reduction

The right Kostant-Whittaker reduction of AR = Ψ(C[T ∗G∨][]) equipped with
G∨-action is a particular case of the following construction.

Let G be a commutative ring object of DG∨(Sym[](g∨)) equipped with an
action of an algebraic group H. Let h be the Lie algebra of H. Let Sym[](h)
be the symmetric algebra of h equipped with a nonnegative grading (not
necessarily the standard one, nor the doubled standard one) and viewed as
a dg-algebra with a trivial differential. Let

µ∗ : Sym[](h)→ RHomDG∨ (Sym[](g∨))(G,G)

be an H-equivariant homomorphism of dg-algebras such that the multiplica-
tion morphism m : G⊗Sym[](g∨) G→ G is H-equivariant and Sym[](h)-linear.

In all the examples below the following property holds: after applying the
forgetful functor and taking cohomology and their spectrum, SpecH∗(ForgG)
is equipped with an H-invariant symplectic form, and µ∗ is compatible with
a moment map µ : SpecH∗(ForgG)→ h∗.

Given an H-invariant subvariety X ⊂ h∗ such that the projection
Sym(h)� C[X] is compatible with the grading Sym[](h) and induces the
grading C[X][], we define G///(H,X) := (G⊗Sym[](h) C[X][])H . This is a com-

mutative ring object of DG∨(Sym[](g∨)). If X = {0} ⊂ h∗, we simply write
G///H for G///(H, {0}).

5(ix). Leg amputation

Following Proposition 2.22, we consider a commutative ring object Ab :=
i!∆(�bk=1(AR)k) (in particular, the ring object associated with S2 with three
punctures is A3 in our present notation). According to Appendix A, Ab

is equipped with an action of SL(N)b = (G∨)b. More generally, we con-
sider a commutative ring object Ab := i!∆(�bk=1(AR)k) on GrG equipped
with an action of (G∨)b for a reductive flavor group G. We set W b

G :=
SpecH∗GO(GrG,A

b). We conjecture that H∗GO(GrG,A
b) is finitely generated,

which we checked so far only in type A. We assume it hereafter. Then W b
G is
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an affine variety with Poisson structure equipped with a hamiltonian action
of (G∨)b. In particular, W 3

PGL(N) is W of the beginning of current §5.

Also, W 2
G = T ∗G∨ since C[W 2

G] = Forg ◦Φ(AR) = C[T ∗G∨], see Lemma
5.13(c).

According to Definition 5.11, we have the action of b copies of
Sym[](g∨) on Ab. We can consider its Kostant-Whittaker reduction κrb(A

b) =
Ab ⊗Sym[]

new(g∨) C[Σ][] with respect to the last copy ofG∨ in (G∨)b (cf. §5(viii)).

More precisely we apply Ψ to κrb(Ψ
−1Ab) = (Ψ−1Ab)⊗Sym[]

new(g∨) C[Σ][].

Lemma 5.18. κrb(A
b) = Ab−1.

Proof. We have

κrb(A
b) = κrb(i

!
∆(�bk=1(AR)k)) = κrb(i

!
∆(Ab−1 �AR))

= i!∆(Ab−1 � κr(AR)) = i!∆(Ab−1 � ωGrG)

= Ab−1.

Indeed, κrb(•) = • ⊗Sym[]
new(g∨) C[Σ][] (with respect to the action of the b-

th copy of Sym
[]
new(g∨)). In the third equality we use that for F = Ab−1 ∈

DG(GrG) and F ′ = AR ∈ DG(GrG) with a dg-algebra A = Sym[](g∨)
equipped with a homomorphism to RHomDG(GrG)(F ′,F ′), and a dg-module

M = C[Σ][] over A, we have (F ⊗! F ′)⊗AM = F ⊗! (F ′ ⊗AM) by associa-
tivity of tensor product. This equality is compatible with the commutative
ring structures by the construction in Proposition 2.22 (the reduction κrb(A

b)
carries the induced ring structure by the explanation in §5(viii) since the
multiplication m : AR ?AR → AR is Sym[](g∨)-linear for the right action of
Sym[](g∨) on AR = Ψ(C[T ∗G][]).) �

Corollary 5.19. κb(W
b
G) = W b−1

G .

Proof. We have to check that κb commutes with H∗GO(GrG, •). After ap-
plying the derived Satake equivalence we have to check that κrb commutes
with κl. Recall that κl(•) = H∗(• ⊗Sym[]

new(g∨) C[Σ][]) (with respect to the

action of the left copy of Sym
[]
new(g∨)), while κbr(•) = • ⊗Sym[]

new(g∨) C[Σ][]

(with respect to the action of the b-th right copy of Sym
[]
new(g∨)). We have
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Ψ−1(Ab) ∈ D(G∨)b+1

(Sym[]((g∨)⊕b+1) (one left structure and b right struc-
tures). We assign number 0 to the left structure. Then

C[W b−1
G ] = H∗

(
(Ψ−1(Ab)⊗

b Sym[]
new(g∨) C[Σ][])⊗

0 Sym[]
new(g∨) C[Σ][]

)
= H∗

(
(Ψ−1(Ab)⊗

0 Sym[]
new(g∨) C[Σ][])⊗

b Sym[]
new(g∨) C[Σ][]

)
= H∗

(
(Ψ−1(Ab)⊗

0 Sym[]
new(g∨) C[Σ][])

)
⊗
b Sym(g∨) C[Σ]

= κb(C[W b
G]).

The third equality (commutation of taking cohomology and tensor product

with a b Sym
[]
new(g∨)-module) is clear for free modules, and then for perfect

complexes by devissage, and then for Ind-perfect complexes since cohomol-
ogy commutes with direct images. �

5(x). General surfaces for arbitrary reductive groups and fusion

First we study the case of cylinder and give another explanation of the
identification W 2

G = T ∗G∨.
We consider the equivalence

Ψ�Ψ: DG∨×G∨(Sym[](g∨ ⊕ g∨))→ DG×G(GrG ×GrG).

Under this equivalence, the ring object AR �AR ∈ DG×G(GrG ×GrG) cor-
responds to the G∨ ×G∨-equivariant free Sym[](g∨ ⊕ g∨)-module C[G∨ ×
G∨]⊗ Sym[](g∨ ⊕ g∨) which will be denoted C[T ∗G∨ × T ∗G∨][] for short. It
is equipped with the right action of G∨ ×G∨ with the right moment map
(µr, µr). The hamiltonian reduction with respect to the diagonal right action(

T ∗G∨ × T ∗G∨
)
///∆G∨ := Spec

(
C[(µr, µr)

−1(∆(g∨)∗)]
∆G∨

)
= (µr, µr)

−1(∆(g∨)∗)//∆G∨

(the categorical quotient is the set-theoretical one, as it is with respect to
the free action of G∨) is nothing but T ∗G∨ equipped with the residual
left action of G∨ ×G∨ : (h1, h2)(g, ξ) = (h2gh

−1
1 ,Adh1

ξ), and the equivari-
ant morphism to (g∨)∗ ⊕ (g∨)∗ : (g, ξ) 7→ (ξ,Adg ξ). Note that the natural
projection C[T ∗G∨ × T ∗G∨]� C[(µr, µr)

−1(∆(g∨)∗)] is compatible with the
grading of C[T ∗G∨ × T ∗G∨], and so it induces a grading on the target, to be
denoted C[(µr, µr)

−1(∆(g∨)∗)]
[]. This in turn induces a grading on the ∆G∨-

invariant subalgebra, to be denoted C[T ∗G∨ × T ∗G∨///∆G∨ ][]. Viewing it as



i
i

“1-Nakajima” — 2019/11/8 — 18:46 — page 314 — #62 i
i

i
i

i
i

314 A. Braverman, M. Finkelberg, and H. Nakajima

a G∨ ×G∨-equivariant graded module over Sym[](g∨ ⊕ g∨) (with zero differ-
ential) and taking its free resolution, we obtain the same named object of
DG∨×G∨(Sym[](g∨ ⊕ g∨)). We will denote Ψ�Ψ

(
C[T ∗G∨ × T ∗G∨///∆G∨ ][]

)
by AR �AR///∆G∨ ∈ DG×G(GrG ×GrG) for short, cf. §5(viii).

Now Ψ−1(AR ?AR)=C[T ∗G∨][] ⊗Sym[](g∨) C[T ∗G∨][], and Ψ−1(IC(Gr0
G))

= Sym[](g∨). Hence, W 2
G = SpecH∗GO(GrG,A

2) = (T ∗G∨ × T ∗G∨)///∆G∨ =
T ∗G∨. The action G∨ ×G∨ on W 2

G is the natural action of G∨ ×G∨ on
T ∗G∨ : (h1, h2) · (g, ξ) = (h2gh

−1
1 ,Adh1

ξ); in particular, the diagonal action
of ∆G∨ is the adjoint action h(g, ξ) = (hgh−1,Adh ξ).

We denote A2///∆G∨ by B ∈ DG(GrG). We have

H∗GO(GrG,B) = H∗GO(GrG,A
2)///∆G∨ = C[(T ∗G∨)///∆G∨ ] = C[T∨ × t]W .

Here the last equality is a multiplicative analog of the isomorphism (g∨ ×
g∨)///∆G∨ = (t∨ × t∨)/W [Jos97] due to I. Losev. Its proof is given in §5(xiii)
below. More generally, we have

H∗GO(GrG, i
!
∆(Ab �B)) = C[W b+2

G ///∆b+1,b+2
G∨ ]

= C[(µb+1
r , µb+2

r )−1(∆b+1,b+2
(g∨)∗ )]∆

b+1,b+2

G∨

where ∆b+1,b+2
G∨ stands for the diagonal in the product of the last two copies

in (G∨)b+2.
We denote Bg := i!∆(�gk=1Bk) ∈ DG(GrG). Then SpecH∗GO(GrG,A

b ⊗!

Bg) is an object of HS associated with a surface of genus g with b punctures.
Now we turn to the study of fusion of surfaces.

Proposition 5.20. Let ∆b1,b2
G∨ denote the diagonal action of the b1-st and

b2-nd copy of G∨ on W b1
G ×W

b2
G . Then W b1+b2−2

G = (W b1
G ×W

b2
G )///∆b1,b2

G∨ .

Proof. We have

C[W b1+b2−2
G ] = H∗GO(GrG,A

b1−1 ⊗! Ab2−1)

= Ext∗DG(GrG)(1GrG , CGAb1−1 ?Ab2−1)

= Ext∗DG∨ (Sym[](g∨))

(
Sym[](g∨),CG∨Ψ−1(Ab1−1)⊗Sym[](g∨) Ψ−1(Ab2−1)

)
= Ext∗DG∨ (Sym[](g∨))

(
Sym[](g∨),Φ(Ab1−1)⊗Sym[](g∨) CG∨Φ(Ab2−1)

)
,

(the second equality is Lemma 5.13(b)).
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Now Ext∗
DG∨ (Sym[](g∨))

(
Sym[](g∨),Φ(Ab1−1)⊗Sym[](g∨) CG∨Φ(Ab2−1)

)
is

the hamiltonian reduction

(Φ(Ab1−1)� CG∨Φ(Ab2−1))///∆G∨

of Φ(Ab1−1)� CG∨Φ(Ab2−1) with respect to the diagonal (left) action of G∨.
According to Lemma 5.13(c) and Lemma 5.12,

Φ(Ab−1) = H∗GO(GrG,AR ⊗! Ab−1) = H∗GO(GrG,A
b) = C[W b

G],

and the left G∨ n Sym[](g∨)-module structure in the LHS coincides with the
right G∨ n Sym[](g∨)-module structure in the RHS (with respect to the last
copy of G∨ n Sym[](g∨)). This completes the proof. �

Remark 5.21. The same argument shows that

H∗GO(GrG,A1 ⊗! A2) ∼= H∗GO(GrG,AR ⊗! A1)

⊗ CG∨H
∗
GO(GrG,AR ⊗! A2)///∆G∨

for ring objects A1, A2 in DG(GrG).
The natural action of H∗GO(pt)⊗H∗GO(pt) = C[Σ][] ⊗ C[Σ][] on the RHS

factors through the multiplication homomorphism C[Σ][] ⊗ C[Σ][] → C[Σ][],
and the resulting action of H∗GO(pt) = C[Σ][] in the RHS coincides with its
natural action in the LHS.

Remark 5.22. The results of §5(vi)–§5(x) have their quantum counter-
parts if we consider an extra equivariance with respect to the loop rota-
tions. They are based on the equivalence of monoidal triangulated categories

DG∨(U
[]
~ (g∨))

∼−→ DGOoC×(GrG) [BF08, Thm. 5] (recall that DG(GrG) is a
shorthand for the GO-equivariant derived category DGO(GrG)). In particu-

lar, the regular sheaf AR ∈ DGOoC×(GrG) corresponds to U
[]
~ (g∨) nC[G∨].

For a loop rotation equivariant ring object A ∈ DGOoC×(GrG) one can con-
sider the loop rotation equivariant cohomology ring H∗GOoC×(GrG,A). Sim-
ilarly to Remark 5.21, we have

H∗GOoC×(GrG,A1 ⊗! A2) ∼= H∗GOoC×(GrG,AR ⊗! A1)

⊗ CG∨H
∗
GOoC×(GrG,AR ⊗! A2)///∆G∨

(quantum Hamiltonian reduction) for ring objects A1, A2 in DGOoC×(GrG).
In particular, we set C~[W b

G] := H∗GOoC×(GrG,A
b), a quantization of

C[W b
G]. Then C~[W b1+b2−2

G ] = (C~[W b1
G ]⊗ C~[W b2

G ])///∆G∨ .
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5(xi). Gluing construction vs hamiltonian reduction

Let us slightly change the point of view to our gluing construction §2(viii)
so that it formally looks similar to a hamiltonian reduction.

Let A be a commutative ring object on GrG. Let G′ be a subgroup of
G, which is also reductive. We have an inclusion i : GrG′ → GrG. Then

The !-pull back i!A is a ring object on GrG′ .

When A arises as π∗(ωR[−2 dim NO]) from a representation N, i!A is the
ring object associated with N viewed as a representation of G′.

Next suppose we have a homomorphism G→ G′′ to another reductive
group G′′. We consider the induced morphism p : GrG → GrG′′ , which is
equivariant under the induced group homomorphism GO → G′′O. Then

The pushfoward Qp∗A is a ring object on GrG′′ .

Here Qp∗ is the general pushforward as in §2(iv). The construction of §2(iv)
is an example of the pushforward, where G, G′′ here are G̃, GF there, and
A ∈ DG(GrG) here is the ring object on DG̃(GrG̃) associated with a repre-

sentation N of G̃ there. When G′′ is the trivial group, the pushforward is
nothing but taking the cohomology H∗GO(GrG,A). In physics terminology
this operation corresponds to the gauging with respect to the kernel of the
homomorphism G→ G′′.

Note that this construction is formally similar to a hamiltonian reduc-
tion: suppose that we have a hamiltonian G space X. We take a hamiltonian
reduction X///G′ with respect to a normal subgroup G′ / G. Then X///G′ is
a hamiltonian G′′ = G/G′ space. This is not just an analogy if we consider
gauging in quantum field theories: The Higgs branch of a gauge theory asso-
ciated with (G,N) is the hamiltonian reduction N⊕N∗///G. (See [Tac] for
a review for mathematicians.)

As an example of the similarity, let us consider (5.4) which we regard as a
quantum field theory upgrade of the definition W g,b = SpecH∗GO(GrG,A

b ⊗!

Bg). Let us consider the Coulomb branch of the left hand side, which should
be equal to the Higgs branch of the right hand side. Under the gauging ///,
the Higgs branch is replaced by the symplectic reduction as we have just
mentioned. Hence we get

MC(SG∨(C)) = N b
G × (g⊕ g∗)g///Gdiag,

where NG is the nilpotent cone of G, and g⊕ g∗ is symplectic by the natural
pairing. Thus the Coulomb branch MC(SG∨(g, b)) is the ‘additive version’
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of the G-character variety on the punctured Riemann surface C, where the
monodromy around punctures sit in the regular unipotent orbit. When G
is of type A, this is the Higgs branch of the quiver gauge theory associated
with the quiver [Nak16, 3(iii) Figure 5]. See the references therein to see
why it is an additive version of a G-character variety.

5(xii). Gluing in the Higgs branch side

Let us pursue the analogy between the gluing construction and hamiltonian
reduction further. Let us consider a ring object associated with SG(g, b) in
the Coulomb branch side instead of the Higgs branch side. It is the Higgs
branch ring object associated with the right hand side of (5.4) after exchang-
ing G and G∨. Hence it is

ASG(g,b) = �bk=1(AR)k ��
g
l=1 Sym(g∨ ⊕ (g∨)∗)l///∆G∨ ,

where Sym(g∨ ⊕ (g∨)∗) is considered as a ring object on the affine Grassman-
nian Gr{e} for the trivial group {e} with the diagonal G∨-action. Therefore
ASG(g,b) is a ring object in DGb(GrGb). Since Proposition 5.20 is a conse-
quence of an upgraded equality in quantum field theories (due to Gaiotto
[Gai12]), we have the corresponding property also for ASG(g,b). It is nothing
but the following:

Proposition 5.23.

p∗i
!
∆b1,b2 (ASG(g1,b1) �ASG(g2,b2)) = ASG(g1+g2,b1+b2−2),

where (a) i∆b1,b2 : Grb1+b2−1
G → Grb1G ×Grb2G is the product of the evident map

Grb1+b2−2
G

∼=−→ Grb1−1
G ×Grb2−1

G and the diagonal embedding GrG → (GrG)2

of the last factor to the product of the b1st and the b2nd factors, and (b)
p : (GrG)b1+b2−1 → (GrG)b1+b2−2 is the projection given by forgetting the last
factor.

Proof. Let us identify g∨ and (g∨)∗ by a non-degenerate invariant form. Let
us consider

(T ∗G∨)b × (g∨ × g∨)g///∆r
G∨

= T ∗G∨ × · · · × T ∗G∨︸ ︷︷ ︸
b times

× (g∨ × g∨)× · · · × (g∨ × g∨)︸ ︷︷ ︸
g times

///∆r
G∨ ,
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where ∆r
G∨ is the diagonal subgroup acting on T ∗G∨ × · · · × T ∗G∨ by the

right action, and on (g∨ × g∨)× · · · × (g∨ × g∨) by the adjoint action. The
dg-version of its coordinate ring is Ψ−1ASG(g,b). It is isomorphic to (T ∗G∨)b−1

× (g∨ × g∨)g by

[g1, ξ1, . . . , gb, ξb, η1, ζ1, . . . , ηg, ζg]

7→ (g′1, ξ
′
1, . . . , g

′
b−1, ξ

′
b−1, η

′
1, ζ
′
1, . . . , η

′
g, ζ
′
g)

g′k = gkg
−1
b , ξ′k = Adgb ξk (k = 1, . . . , b− 1),

η′l = Adgb ηl, ζ ′l = Adgb ζl (l = 1, . . . , g).

The left (G∨)b-action on (T ∗G∨)b × (g× g)g///∆r
G∨ is identified with the left

G∨-action (and the trivial action on (g∨ × g∨)g) for the first (b− 1) factors,
but the last factor acts by

(T ∗G∨)b−1 3 (g′1, ξ
′
1, . . . , g

′
b−1, ξ

′
b−1)

7→ (g′1h
−1
b ,Adhb ξ

′
1, . . . , g

′
b−1h

−1
b ,Adhb ξ

′
b−1,Adhb η

′
l,Adhb ζ

′
l)

for hb ∈ G. The corresponding moment map is also the standard one for the
first (b− 1)-factors, and the last one is

−ξ′1 − · · · − ξ′b−1 −
g∑
l=1

[η′l, ζ
′
l ].

This is nothing but the restriction to the diagonal subgroup of the product
of the right action and the adjoint action.

Now by Lemma 5.13(b) and Lemma 5.12, p∗i
!
∆(ASG(g1,b1) �ASg(g2,b2))

goes to

Ext∗DG∨ (Sym(g∨))(Sym[](g∨),CG∨Ψ−1ASG(g1,b1) ⊗Sym[](g∨) Ψ−1ASG(g2,b2)),

under the derived Satake equivalence. Here g∨ is the Lie algebra of the
diagonal subgroup in the product of last factors of (G∨)b1 and (G∨)b2 . It is
equal to

C[(T ∗G∨)b1+b2−2 × (g∨ × g∨)g1+g2///∆r
G∨ ][]

by the above computation. This is nothing but Ψ−1ASG(g1+g2,b1+b2−2). �



i
i

“1-Nakajima” — 2019/11/8 — 18:46 — page 319 — #67 i
i

i
i

i
i

Ring objects from Coulomb branches 319

5(xiii). Hamiltonian reduction of T ∗G with respect to the
adjoint action

Let G be a connected reductive group over C and let g be its Lie alge-
bra. Consider the adjoint action of G on itself and the induced Hamilto-
nian action of the cotangent bundle T ∗G. Using a non-degenerate invariant
form we identify g with g∗, this gives rise to an identification T ∗G ∼= G× g
(with the diagonal action of G). The moment map µ : T ∗G→ g becomes
(g, x) 7→ Adg x− x. It follows that µ−1(0) = {(g, x)|Adg x = x}. Consider
the Hamiltonian reduction µ−1(0)//G with the reduced scheme structure.

Now consider T ∗T = T × t. We have a natural morphism of varieties
ψ : (T × t)/W → µ−1(0)//G induced from T × t ↪→ G× g.

Proposition 5.24 (I. Losev). The morphism ψ : (T × t)/W → µ−1(0)//G
is an isomorphism of varieties.

We can consider the analogous situation for the Lie algebras: we have
the moment map µ : g2 → g, (x, y) 7→ [x, y]. In this situation, a direct analog

of Proposition 5.24 is known thanks to [Jos97]: we have t2/W
∼−→ µ−1(0)//G.

In particular, the variety µ−1(0)//G is normal.

Proof. The proof is in several steps.
Step 1. Let us show that ψ is a bijection. The variety µ−1(0)//G param-

eterizes the closed G-orbits in µ−1(0) = {(g, x)|Adg x = x}. It follows easily
from the Hilbert-Mumford theorem that the orbit G(g, x) is closed if and
only if both g, x are semisimple. Also any G-orbit of semisimple commut-
ing elements (g, x) intersects T × t in a single W -orbit. The claim in the
beginning of the step follows.

Step 2. We claim that it is enough to show that µ−1(0)//G is a normal
algebraic variety. Indeed, any bijective morphism to a normal variety is an
isomorphism. The normality of µ−1(0)//G will follow if we check that the
formal neighborhood of every point in µ−1(0)//G is normal. In order to do
that we will describe the formal neighborhood using a version of a slice
theorem for Hamiltonian actions on affine symplectic varieties, see, e.g.,
[Los06] (in that paper complex analytic neighborhoods were considered, but
the result carries over to the formal neighborhood in a straightforward way).

Step 3. Let us recall the slice theorem. Let Y be a smooth affine sym-
plectic variety equipped with a Hamiltonian action (with moment map µ)
of a reductive group G and let y ∈ Y be a point with closed G-orbit. Let us
write H for the stabilizer of y in G. The normal space TyY /TyGy can be
decomposed as h⊥ ⊕ V , where V is a symplectic vector space with H acting
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on V by linear symplectomorphisms. Then the formal neighborhood of Gy
in Y is G-equivariantly isomorphic to the formal neighborhood of the zero
section in G×H (h⊥ ⊕ V ). An isomorphism can be chosen to be compatible
with symplectic forms and moment maps. In particular, the moment map
µ′ : G×H (h⊥ ⊕ V )→ g is the unique G-equivariant map that on the fiber
h⊥ ⊕ V over 1H is given by µ(z, v) = z + µH(v), where µH : V → h is the
standard moment map for a linear symplectic action. In particular, we see
that the formal neighborhood of Gy in µ−1(0)//G is isomorphic to the formal
neighborhood of 0 in µ−1

H (0)//H.
Step 4. Consider Y = G× g and y = (g, 0) for a semisimple element

g ∈ G. We can identify TyGy with {Adg x− x|x ∈ g} so TyY /TyGy = h⊕ g
and H = ZG(g). We conclude that V ∼= h⊕ h with diagonal action of H.
By [Jos97], we see that µ−1

H (0)//H is normal. So the formal neighborhood of
G(g, 0) in µ−1(0)//G is normal, equivalently, G(g, 0) is a normal point.

Step 5. To finish the proof note that C× acts on µ−1(0)//G, the action
is induced from the dilation action on g. This action contracts µ−1(0)//G
to G//G. Since the points in the latter are normal, µ−1(0)//G is a normal
algebraic variety. �

Appendix A. Group action on the Coulomb branch

In this section we give a proof of the expected property [Nak16, §4(iii)(d)],
using an idea of Namikawa [Nam18]. See also [CHLZ17].7

A(i). The degree 1 subspace

Let us consider the C×-action on the Coulomb branch MC given by ∆(λ)
as in [Part II, Remark 2.8(2)]. Recall that the C×-action is shifted from one
given by the homological degree by a hamiltonian action. In particular, the
Poisson bracket { , } is of degree −1 as in [Part II, §3(vi)].

Consider the subspace l of degree 1 elements in C[MC ]. It forms a Lie
subalgebra under the Poisson bracket { , }. Then C[MC ] can be considered
as a representation of this Lie algebra l by the Poisson bracket: {f, •} (f ∈ l).
If we restrict it to the regular locus ofMC , it is nothing but the hamiltonian
vector field Hf associated with f ∈ l by the symplectic form. The action
preserves the Poisson bracket and the degree. In more geometric term, Hf

preserves the symplectic form and commutes with the C×-action.

7The third named author thanks Amihay Hanany for his explanation of the idea
to use the Lie algebra of degree 1 subspace.
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Remark A.1. Namikawa [Nam18] shows thatMC is the closure of a nilpo-
tent orbit if C[MC ] is generated by l, under the assumption that MC has
symplectic singularities. In this case l is the Lie algebra of AutC

×
(MC , ω),

the group of C×-equivariant symplectic automorphisms of MC . We con-
jecture that this statement is true for general MC . Namikawa’s argument
works in much more general cases without the assumption that the coordi-
nate ring is generated by l.8 But we are not sure as we do not knowMC has
symplectic singularities, and the C×-action is not conical in general. These
seem essential in Namikawa’s argument.

A(ii). Balanced vertices in quiver gauge theories

Let us take a quiver Q = (Q0, Q1) and two Q0-graded vector spaces V =⊕
Vi, W =

⊕
Wi. We consider the associated quiver gauge theory

(GL(V ),N) as in [Nak16, §2(iv)] and [Quiver, §3], i.e.,

GL(V ) =
∏
i∈Q0

GL(Vi), N =
⊕
h∈Q1

Hom(Vo(h), Vi(h))⊕
⊕
i∈Q0

Hom(Wi, Vi).

In order to treat a group action on a line bundle in [Part II, §3(ix)] and
§2(vi), we also consider a larger symmetry group G̃ = GL(V )×GL(W )/C×
with G̃/GL(V ) = PGL(W ) =

∏
i∈Q0

GL(Wi)/C×, where both C× are diag-
onal scalar subgroups.

Recall C[MC ] has a grading parametrized by π1(GL(V )) ([Part II,
§3(v)]). In our situation, we have π1(GL(V )) =

⊕
π1(GL(Vi)) ∼= ZQ0 . For

the larger symmetry group, we have π1(G̃) ∼= ZQ0 ⊕ Z{i∈Q0|Wi 6=0}/Z, where
Z is embedded into ZQ0 ⊕ Z{i∈Q0|Wi 6=0} by 1 7→ (dimVi, dimWi). We have
the corresponding action of π1(GL(V ))∧ ∼= (C×)Q0 on MC and π1(G̃)∧ ∼=
(C×)#Q0+#{i|Wi 6=0}−1 (modulo finite groups) on a line bundle in [Part II,
§3(ix)], §2(vi). Here ( )∧ is the Pontryagin dual. We will not be inter-
ested in the action of finite groups, hence we replace π1(G̃) by its free part
π1(G̃)fr hereafter. We have the corresponding space H2

GL(V )(pt) (or H2
G̃

(pt)

for π1(G̃)∧), which consists of degree 1 elements.
A vertex i is balanced if there is no edge loop at i, and the correspond-

ing coweight µ satisfies 〈µ, αi〉 = 0, i.e., 2 dimVi = dimWi +
∑

j aij dimVj ,
where aij is the number of edges (either in Q1 or its opposite) between i
and j. We consider the subquiver Qbal of Q consisting of balanced vertices
and edges among them. By a well-known result (e.g. [Kac90, Thm. 4.3]),

8The third named author thanks Yoshinori Namikawa for explanation.
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Qbal is a union of finite ADE quivers, unless Qbal is a union of connected
components of Q of affine type with W = 0 on them. We suppose it is not
the latter case.

We consider elements E
(1)
i , F

(1)
i , H

(1)
i from the shifted Yangian consid-

ered in [Quiver, Appendix B]. Looking at relations therein, we see that their

Poisson brackets satisfy the relations of sl2, as H
(p)
i = 0 (p < 0), H

(0)
i = 1

as 〈µ, αi〉 = 0. Moreover if both i and j are balanced, E
(1)
i , F

(1)
i , H

(1)
i , E

(1)
j ,

F
(1)
j , H

(1)
j satisfy the relations of sl3 or sl2⊕ sl2 according to whether i

and j are connected in the quiver or not. We then have the corresponding

semisimple Lie algebra lbal
ss generated by E

(1)
i , F

(1)
i , H

(1)
i (i ∈ Qbal

0 ).

From the definition of Hi(z) in [Quiver, Appendix B], H
(1)
i is the co-

efficient of z−1 in Zi(z)
∏
jWj(z)

aij/Wi(z)
2, where Zi(z) =

∏
k:ik=i(z − zk),

Wi(z) =
∏
r(z − wi,r). (Note that we set ~ = 0.) Here zk, wi,r are equiv-

ariant variables for
∏

GL(Wi) and GL(Vi) respectively. Therefore H
(1)
i is

−
∑

k:ik=i zk −
∑

j,s aijwj,s + 2
∑

r wi,r. This is nothing but −c1(Wi)−∑
j aijc1(Vj) + 2c1(Vi) if we regard Vi, Wi as representations of GL(Vi),

GL(Wi) respectively. Now we apply [Part II, Lemma 3.20]. The Poisson

bracket {H(1)
i , •} is given by γWi +

∑
j aijγj − 2γi on the component with

grading γ = (γj , γ
W
j ) ∈ ZQ0 ⊕ ZQ0/Z. In particular, the action of H

(1)
i is

lifted to π1(GL(V ))∧ ∼= (C×)Q0 for MC , and to π1(G̃)∧fr for line bundles.

Lemma A.2. E
(1)
i , F

(1)
i , H

(1)
i (i ∈ Qbal

0 ) are of degree 1.

Therefore the Lie algebra l in the previous subsection at least contains
the semisimple Lie algebra lbal

ss above.

Note that H
(1)
i is in H2

GL(V )(pt) or H2
G̃

(pt) when we consider the larger

group G̃. Let lbal (resp. l̃bal) be the Lie subalgebra of l generated by lbal
ss and

H2
GL(V )(pt) (resp. H2

G̃
(pt)).

Proof. We have already checked the assertion for H
(1)
i .

Looking at the definition of the homomorphism in [Quiver, Thm. B.18],

we see that E
(1)
i , F

(1)
i are fundamental classes [R±$i,1 ] up to sign. By the

formula for ∆(±$i,1) in [Quiver, (A.4)], their degree is 1 as i is a balanced
vertex. �

Recall {H(1)
i , •} defines an element of π1(G̃)∨fr by γ 7→ γWi +

∑
j aijγj −

2γi. More generally Hα corresponding to a root α of lbal
ss defines an element

of π1(G̃)∨fr. Thus we regard naturally coroots ∈ Rbal∨ of lbal
ss as elements in
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π1(G̃)∨fr. If we disregard the flavor symmetry, we consider the restriction to
γWj = 0, hence we still have Rbal∨ ⊂ π1(G)∨.

On the other hand, π1(
∏
i∈Qbal

0
GL(Vi)) ∼= ZQbal

0 is naturally identified

with the root lattice of the Lie algebra lbal
ss by sending the i-th coordinate

vector to the i-th simple root αi. Thus we consider roots ∈ Rbal as elements
of π1(

∏
i∈Qbal

0
GL(Vi)) ⊂ π1(GL(V )) ⊂ π1(G̃)fr.

We regard Rbal ⊂ π1(GL(V )), Rbal∨ ⊂ π1(GL(V ))∨ as a root datum,
and consider the corresponding reductive group Lbal. For line bundles, we
consider Rbal ⊂ π1(G̃)fr, R

bal∨ ⊂ π1(G̃)∨fr. We denote the corresponding re-
ductive group by L̃bal.

Proposition A.3. The actions of {E(1)
i , •}, {F (1)

i , •} are locally nilpotent.
Hence the action of lbal (resp. l̃bal) is lifted to Lbal (resp. L̃bal).

Proof. When the C×-action on MC is conical, this is clear as subspaces of

C[MC ] with given degree are finite dimensional, and E
(1)
i , F

(1)
i preserve

them. In order to deal with general cases, we modify the argument.
Consider a closed subvariety R≤λ as in [Part II, §2(i)]. Since GL(V ) =∏

j∈Q0
GL(Vj), we can modify it by imposing the constraint at j 6= i, but not

on i. Let us denote the resulted closed subvariety by R�λ. It is still true that

H
GL(V )O
∗ (R) is the limit of H

GL(V )O
∗ (R�λ). Operators {E(1)

i , •}, {F (1)
i , •} are

well-defined on H
GL(V )O
∗ (R�λ), as we do not impose the constraint at i.

Let H
GL(V )O
∗ (R�λ)[d] denote the subspace of H

GL(V )O
∗ (R�λ) of degree

d elements. It is enough to show that it is finite dimensional, as {E(1)
i , •},

{F (1)
i , •} preserve this subspace.

Suppose that an element in H
GL(V )O
∗ (R�λ)[d] is contained in

H
GL(V )O
∗ (R≤µ)[d]. If we decompose µ as (µj) according to j ∈ Q0, the com-

ponent µj with j 6= i is less than or equal to the component λj of λ by the
definition of �.

In order to bound the remaining component µi, Let us look at the for-
mula of ∆(µ):

∆(µ) = −
∑
α∈∆+

|〈α, µ〉|+ 1

2

∑
χ

|〈χ, µ〉|dim N(χ).

We have ∆(µ) ≤ d by our assumption. Let us look at terms involving µi:

(A.4) −
∑
a<b

|µia − µib|+
1

2

∑
j

aij
∑
a,b

|µia − µ
j
b|+ dimWi

∑
a

|µia|

 ,
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where we write µj = (µj1, µ
j
2, . . . ). This is bounded by a constant from above,

as we have bounds on µja (j 6= i). Since µjb is bounded, the middle term can
be replaced by

∑
j aij dimVj

∑
a |µia|. Now by the assumption 2 dimVi =

dimWi +
∑
aij dimVj , the first term can be absorbed in the middle and

last term, so that we still have a bound on
∑

a |µia|. Thus µ is bounded by

a constant depending on λ and d. Hence H
GL(V )O
∗ (R�λ)[d] is finite dimen-

sional.
This argument works also for the case of L̃bal. �

Note that the comoment map of the Lbal-action on MC is the natural
homomorphism

C[lbal∗] = Sym(lbal)→ C[MC ]

by the definition of the action.

Example A.5 (cf. [Quiver, Remark 3.12]). Consider a framed quiver
gauge theory of type ADE. Let us define two coweights

λ =
∑
i∈Q0

dimWiωi, µ = λ−
∑
i∈Q0

dimViαi.

Then the Coulomb branch is the generalized sliceWλ∗
µ∗ for the adjoint group

G of type Q, where λ∗ = −w0(λ), µ∗ = −w0(µ) ([Quiver, Thm. 3.10]). Then
the group Lbal, acting on MC is StabG(µ∗), as π1(GL(V )) is the weight
lattice of G. The action is the standard one, at least when µ is dominant.
The following argument is explained to the authors by Joel Kamnitzer:

First consider the case µ = 0. Then Wλ∗
0 is the intersection of Gr

λ
G and

GrG,0 = G1[[t−1]], whereG1[[t−1]] is the first congruence subgroup ofG[[t−1]]
as in [KWWY14]. Then the assertion follows from a computation of Poisson
brackets on C[G1[[t−1]]] in [KWWY14, Prop. 2.13]. For a general domi-
nant µ, we replace GrG,0 by GrG,µ∗ the orbit of G1[[t−1]] through µ∗. But
C[GrG,µ∗ ] is a Poisson subalgebra of C[GrG,0] preserved by the action of
StabG(µ∗) (see [KWWY14, a paragraph before Lemma 2.19]). Hence the
assertion follows from the µ = 0 case.

Example A.6. Let us consider the quiver gauge theory in §2(v). All ver-
tices are balanced in this case. We have

π1(G̃) ∼= Z⊕ · · · ⊕ Z︸ ︷︷ ︸
N times

/(N,N − 1, . . . , 2, 1)Z ∼= ZN−1,
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where the isomorphism is given by [λ1, . . . , λN ] 7→ (λ1 −NλN , . . . , λN−1 −
2λN ). We have an exact sequence

0→ π1(G) ∼= ZN−1 → π1(G̃) ∼= ZN−1 → π1(PGL(N)) ∼= Z/NZ→ 0,

where the first inclusion is given by λ1 = 0, and the last projection is
[λ1, . . . , λN ] 7→ λ1 mod N . It is clear that π1(G) is the weight lattice of
PGL(N), while π1(G̃) is that of SL(N). Therefore Lbal = PGL(N), but
L̃bal = SL(N).

Remark A.7. Let us consider the case 〈µ, αi〉 = −1 instead of 0. Then

H
(p)
i = 0 (p ≤ 0), H

(1)
i = 1. Thus we have {E(1)

i , F
(1)
i } = 1. (Note also

∆(±$i,1) = 1/2 by [Quiver, (A.4)].) Looking at the argument in the proof of
Proposition A.3, we see that we only need a bound dimVi − 1 ≤ dimWi +∑
aij dimVj to derive a bound on

∑
a |µia| from (A.4). In particular, the

proof of Proposition A.3 works in the case 〈µ, αi〉 = −1, hence {E(1)
i , •},

{F (1)
i , •} are locally nilpotent, and the corresponding hamiltonian vector

fields HE
(1)
i

, HF
(1)
i

are integrable. Moreover [HE
(1)
i
, HF

(1)
i

] = 0 as {E(1)
i , F

(1)
i }

= 1. Therefore we have an action of G2
a. Let Φ = (F

(1)
i ,−E(1)

i ) : MC → A2.
Then Φ is G2

a-equivariant, and the action map G2
a × Φ−1(0) ∼=MC is an

isomorphism. See also [Nam18, Thm.(i)].
Suppose further that j is balanced, i.e., 〈µ, αj〉 = 0. Commutation rela-

tions in [Quiver, Appendix B] imply that

{F (1)
j , E

(1)
i } = 0, {H(1)

j , E
(1)
i } = −(αi · αj)E(1)

i

and {E(1)
j , F

(1)
i } = 0, {H(1)

j , F
(1)
i } = (αi · αj)F (1)

i .

Thus E
(1)
i (resp. F

(1)
i ) is a lowest (resp. highest) weight vector of an sl(2)j =

〈E(1)
j , F

(1)
j , H

(1)
j 〉 module with the highest (resp. lowest) weight ∓(αi · αj).

Appendix B. A global convolution diagram for the variety
of triples

Gus Lonergan

The aim of this appendix is to give another proof of the commutativity of
the Coulomb branch by constructing a global convolution diagram for R.
This is a direct generalization of the traditional proof of the case N = 0,
which uses the Beilinson-Drinfeld global convolution diagram for GrG.
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B(i). Preliminaries on arc-spaces and loop-spaces

(a). In this section, we recall certain standard constructions and facts of
[BeiDr, Chapters 4–5].

(b). Let X be a smooth complex curve and let S be a finite set. Given a
commutative ring R and an R-point x of XS , we denote the coordinates of
x by xs (s ∈ S), and write ∆S(x) for the formal neighborhood of the union
of the graphs of xs (s ∈ S). For notational simplicity, we frequently remove
commas and braces from S, and also drop the part (x), when it is clear
which point we refer to. So for example the expression:

∆{1,2}(x)

becomes:

∆12.

(c). Now fix an affine algebraic group A over C. Consider the following
functor from commutative rings to groups over XS :

AS(R) := {(x, f)|x ∈ XS(R), f : ∆S → A}.

Then AS is represented by the limit of a projective system of smooth affine
group schemes over XS :

AS = lim
←−

(· · · → (AS)2 → (AS)1)

such that each transition morphism is a smooth homomorphism. In particu-
lar, AS is a formally smooth affine group scheme (of countably infinite type)
over XS , but this is not so important for us. Recall that in the definition
of the Coulomb branch as a convolution algebra formal homological shifts
such as

[2 dimA(O)]

appear (for A = G,N). Similarly, in the global situation formal homological
shifts such as

[2 dimAS ]

will appear9. For example, in the case where the underlying space is AS , for
each d we have ω(AS)d

∼= C(AS)d [2 dim(AS)d]. These complexes are compat-
ible in the natural way under !-pullbacks along the transition morphisms.

9Only for S of cardinality 1 or 2; but it clarifies the picture and simplifies the
exposition to work more generally at this point.
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We thus consider ωAS as the formal homological shift

ωAS
∼= CAS [2 dimAS ],

where both sides are to be understood by evaluating on smooth quotients
of AS and ‘piecing together’ using !-pullbacks. Likewise we have a formal
expression

ωAS [−2 dimAS ] ∼= CAS
where both sides are to be understood by evaluating on the smooth quotients
(AS)d of AS and ‘piecing together’ using ∗-pullbacks.

(d). Let θ : S′ → S be a morphism of finite sets. It induces a mapXS → XS′ .
Given an R-point x of XS , this map determines an R-point x′ of XS′ , and
an embedding ∆S′(x

′)→ ∆S(x). Hence by restriction along this embedding
we obtain a map

pθ : AS → AS′ .

This induces a homomorphism

qθ : AS → AS′ ×XS′ XS

over the baseXS . If θ is surjective, then qθ is an isomorphism. If θ is injective,
then qθ seems strange at first sight. For instance if θ′ is a section of θ then
qθ is an isomorphism over the resulting copy of XS′ ⊂ XS , whereas over a
typical point of XS , qθ takes the form of a projection map

A(O)S → A(O)S
′
.

However, this is misleading: qθ is pro-smooth when θ is injective. What we
mean by this is that the projective systems of smooth affine group schemes
over XS with smooth transition morphisms

((AS)d)d∈N

underlying AS may be taken, simultaneously for all S, to be compatible with
all qθ, i.e. so that qθ is the limit of a morphism

(qθd : (AS)d → (AS′)d ×XS′ XS)d∈N

of projective systems, where each map qθd is a smooth homomorphism over
XS . Thus, it makes sense to write (and is true that):

(qθ)∗ωAS′×XS′ (XS)[−2 dimAS′ − 2(|S| − |S′|)] = ωAS [−2 dimAS ],
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et cetera, where the formula should be understood as a statement about
complexes on smooth quotients over XS , compatible under ∗-pullbacks.

(e). Example. Consider the case S = {1}. Then A1 is a Zariski-locally
trivial A(O)-bundle over X. Then, the formal homological shift [2 dimA(O)]
also makes sense in this context, and we have [2 dimA(O)] = [2 dimA1 − 2].

(f). Example. Consider for instance the caseA = C and S = {1, 2}. Then
A12 should be thought of as a deformation of the first following projective
system into the second:

(C[[t]]/t2d)d  (C[[t]]/td × C[[t]]/td)d

while A1 should be thought of as a trivial deformation:

(C[[t]]/td)d  (C[[t]]/td)d

and we have the morphism of deformations of projective systems:

(C[[t]]/t2d)d  (C[[t]]/td × C[[t]]/td)d
↓ ↓

(C[[t]]/td)d  (C[[t]]/td)d

where the first downward arrow is the quotient map, and the second down-
ward arrow is the projection map (to the first factor), both of which halve
dimension in the dth approximation. It just happens that the limit of the first
downward arrow is an isomorphism, while the limit of the second downward
arrow is a non-trivial projection.

(g). From now on, we assume θ is an injection, and identify S′ with its
image under θ. Now, in addition to the formal neighborhood ∆S we have
the punctured formal neighborhood

∆S′

S (x) := ∆S(x)− ∪s∈S′xs

where in this formula we conflate the point xs with its graph. The general no-
tational paradigm10 here is that subscripts determine discs and superscripts
determine punctures. Consider the functor

AS
′

S (R) := {(x, f)|x ∈ XS(R), f : ∆S′

S (x)→ A}.

Then AS
′

S is represented by an ind-scheme, formally smooth over XS . It is
a group in ind-schemes (over XS), but not an inductive limit of groups.

10Warning: this doesn’t apply to X!
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Nonetheless, it is an ind-locally nice, reasonable ind-scheme in the sense of
[Dri06], meaning that it is a direct limit of closed embeddings with finitely
generated ideals:

(AS
′

S )1 → (AS
′

S )2 → · · ·

of schemes over XS , each of which is locally nice, meaning that Zariski-
locally11 it is the product of a finite-type scheme with an affine space (of
countable dimension). We shall call such an ind-scheme reasonably nice. The
subgroup AS may be taken as the first subscheme (AS

′

S )1 in this inductive
structure. The left- and right-regular actions of the subgroup AS preserve
the inductive structure, meaning that each (AS

′

S )c has an action on both
sides by AS over XS , even though it is not itself a group. Moreover the
quotient (AS

′

S )c/AS is of finite-type over XS , and flat, although generally
quite singular. The result is that the quotient

AS
′

S /AS

has the structure of ind-finite-type flat ind-scheme over XS .

Lemma B.1. 1) AS
′

S /AS is ind-projective if and only if A is reductive.

2) AS
′

S /AS is reduced if and only if A has non no-trivial characters.

Remark B.2. ASS is the Beilinson-Drinfeld grassmannian (on |S| points).

(h). For any chain of inclusions S′′
θ′−→ S′

θ−→ S we have natural maps

pθ : AS
′′

S → AS
′′

S′ ,

qθ : AS
′′

S → AS
′′

S′ ×XS′ XS ,

defined as in §(d). Then qθ : AS
′′

S → AS
′′

S′ ×XS′ XS has as a subgroup qθ : AS →
AS′ ×XS′ XS , and the resulting map

AS
′′

S /AS → (AS
′′

S′ /AS′)×XS′ XS

is an isomorphism.

(i). Warning. Observe that AS
′′

S is an ind-AS-torsor over the ind-scheme
(AS

′′

S′ /AS′)×XS′ XS , and the homomorphism qθ : AS
′′

S → AS
′′

S′ ×XS′ XS is
surjective. It is tempting therefore to try to view AS

′′

S as being in some

11In [Dri06] this is relaxed to ‘Nisnevich-locally’.



i
i

“1-Nakajima” — 2019/11/8 — 18:46 — page 330 — #78 i
i

i
i

i
i

330 A. Braverman, M. Finkelberg, and H. Nakajima

sense a torsor over AS
′′

S′ ×XS′ XS for some group ker qθ. However, the kernel
of the projective system

((AS)d → (AS′)d ×XS′ XS)d∈N

of §(d) is not Mittag-Leffler. We are not sure how to overcome this issue, so
do not attempt to take this point of view.

B(ii). Global convolution diagram for R

(a). For a finite set S, we put

T S′S (R) = {(x, E , f, ṽ)}/∼

where x ∈ XS(R), E is a principal G-bundle on ∆S , f is a trivialization of
E on ∆S′

S , and ṽ is an N-section of E , taken up to equivalence. This is the
same as the balanced product

T S′S = GS
′

S

×XS

GS
NS .

Thus, T S′S is represented by a reasonably nice ind-scheme with an ind-pro-
smooth map to the Beilinson-Drinfeld grassmannian GS

′

S /GS . In particular
it is formally smooth. Multiplication gives us a map

T S′S → NS′

S

and we define RS′S to be the fiber product

RS′S := T S′S ×NS′
S

NS .

Over any closed XS-subscheme of GS
′

S /GS , the embedding RS′S → T S
′

S has
finite codimension. Therefore RS′S is also a reasonably nice ind-scheme, map-
ping to GS

′

S /GS , and of ind-finite codimension in T S′S . Note that RS′S is not
formally smooth, and in particular the map RS′S → GS

′

S /GS is no longer
ind-pro-smooth. As a functor we have

RS′S (R) = {(x, E , f, v)}/∼



i
i

“1-Nakajima” — 2019/11/8 — 18:46 — page 331 — #79 i
i

i
i

i
i

Ring objects from Coulomb branches 331

where x, E , f are as in T S′S , and v is an N-section of E such that f(v) ex-
tends12 to ∆S . We define the shifted dualizing complex on T S′S , RS′S as for
T , R. Namely:

1) On each closed subscheme (T S′S )c of (T S′S )c, pro-smooth over (GS
′

S /GS)c

we set

ω(T S′S )c [−2 dim NS + 2|S|]

to be the pullback of the dualizing complex of (GS
′

S /GS)c, i.e. the
collection of its pullbacks to each formally smooth quotient (T S′S )cd of
(T S′S )cd smooth over (GS

′

S /GS)c, compatible under ∗-pullback;

2) Since T S′S is a reasonably nice ind-scheme, we can apply the !-pullback
to such a collection of complexes on (T S′S )c, and obtain one on (T S′S )c−1.
In this way, the collections ω(T S′S )c [−2 dim NS + 2|S|] are compati-
ble under !-pullbacks. The resulting compatible collection is called
ωT S′S [−2 dim NS + 2|S|].

3) Using the ind-finite codimensionality of the embedding i : RS′S → T S
′

S ,
we form a !-compatible collection of ∗-compatible collections of com-
plexes

ωRS′S [−2 dim NS + 2|S|] := i!ωT S′S [−2 dim NS + 2|S|].

(b). We will apply the abbreviations of §B(i)(b) to our spaces R, T etc. so
that for instance

R{2}{1,2}
becomes

R2
12.

We will also write XS as Πs∈SXs, e.g. X{1,2} = X1 ×X2. The obvious start-
ing point for the global convolution diagram is R1

1 ×R2
2, a Zariski-locally

trivial R-bundle over X1 ×X2. Consider the following space:

R1+2(R) = {((x1, x2), E1, E2, f1, f2, v1, v2)}/∼

where x1, x2 are R-points of X, each Ei a principal G-bundle on ∆12, fi is
a trivialization of Ei on ∆i

12, and vi is an N-section of Ei such that fi(vi)

12It is a priori defined only on ∆S′

S . The extension is necessarily unique.
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extends to ∆12. It is constructed as

R1+2 = R1
12 ×X1×X2

R2
12,

a reasonably nice ind-scheme over X1 ×X2. It is of ind-finite codimension
in the formally smooth reasonably nice ind-scheme

T1+2 = T 1
12 ×X1×X2

T 2
12 = {((x1, x2), E1, E2, f1, f2, ṽ1, ṽ2)}/∼ .

There is a map

α : R1+2 → R1
1 ×R2

2

given by restricting Ei, fi, vi to ∆i ⊂ ∆12. Over the diagonal X0 ⊂ X1 ×X2,
this map α is an isomorphism. But on the complement U of the diagonal,
we have a canonical isomorphism

R1+2|U = (R1
1 ×R2

2)|U ×U (N1 ×N2)|U

and α is just the projection. Nonetheless, α is ind-pro-smooth. Indeed, it is
the product over X1 ×X2 of maps

R1
12 → R1

1 ×X2,

R2
12 → R2

2 ×X1;

so it suffices to see that the former is ind-pro-smooth. But note that we can
write

T 1
1 ×X2 = G1

1

×X1

G1
N1 ×X2 = G1

12

×X1×X2

G12
N1

where G12 acts on N1 via the homomorphism G12 → G1. Then, the natural
map

T 1
12 → T 1

1 ×X2

is that associated to the pro-smooth map N12 → N1, so is ind-pro-smooth.
The fact that the diagram

R1
12 → R1

1 ×X2

↓ ↓
T 1

12 → T 1
1 ×X2

is Cartesian gives the result. We have:

α∗ωR1
1×R2

2
[−2 dim N1 ×N2] ∼= ωR1+2

[−2 dim N12 ×X1×X2
N12].(B.3)
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Note that R1
1 ×R2

2, T 1
1 × T 2

2 are acted on factor-wise by G1 ×G2, which
receives the factor-wise map from G12 ×X1×X2

G12. This latter group also
acts in the natural way on R1+2, T1+2, and the diagram

R1+2 → R1
1 ×R2

2

↓ ↓
T1+2 → T 1

1 × T 2
2

is G12 ×X1×X2
G12-equivariant. This action preserves the inductive structure

of the diagram, and also the locally nice structure of each closed piece, which
allows us to view the appropriately shifted dualizing complex on each space
as G12 ×X1×X2

G12-equivariant. We may thus define the shifted equivariant
Borel-Moore homologies:

HG1×G2

∗−2 dimN1×N2
(R1

1 ×R2
2),

H
G12×X1×X2

G12

∗−2 dimN1×N2
(R1

1 ×R2
2),

H
G12×X1×X2

G12

∗−2 dimN12×X1×X2
N12

(R1+2),

as the colimits of the equivariant cohomologies of the appropriately shifted
dualizing complexes on the various finite-dimensional approximations. We
have maps

HG1×G2

∗−2 dimN1×N2
(R1

1 ×R2
2)→ H

G12×X1×X2
G12

∗−2 dimN1×N2
(R1

1 ×R2
2)

→ H
G12×X1×X2

G12

∗−2 dimN12×X1×X2
N12

(R1+2).

The first map is the restriction of the equivariant structure, while the second
is induced by α∗, using (B.3). This is the first step of our global convolution
story.

(c). Let’s define the remaining parts of the global convolution diagram. We
set

R̃1+2 = {((x1, x2), E1, E2, f1, f2, v1, v2, g1)}/∼

where x1, x2, E1, E2, f1, f2, v1, v2 are as in R1+2, and g1 is a trivialization of
E1 (on ∆12) required to satisfy:

g1v1 = f2v2.
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Note that v1 is determined by the rest of the data as v1 = g−1
1 f2v2. That is,

R̃1+2 is related to

T̃1+2 := {((x1, x2), E1, E2, f1, f2, v2, g1)}/∼= G1
12 ×X1×X2

R2
12

by the Cartesian square

R̃1+2 → T̃1+2

↓ ↓
R1

12 → T 1
12

where the rightmost downward arrow is the composition

T̃1+2 = G1
12 ×X1×X2

R2
12 −→ G1

12 ×X1×X2
N12 → G1

12

×X1×X2

G12
N12 = T 1

12.

We have factor-wise actions of G12 ×X1×X2
G12 on R̃1+2, T̃1+2, such that

the Cartesian diagram

R̃1+2
β−→ R1+2

↓ ↓
T̃1+2

b−→ T 1
12 ×X1×X2

R2
12

(B.4)

is equivariant. In terms of points, the left-hand G12 acts by changing the
trivialization f1, while the right-hand factor acts by changing simultaneously
the trivializations g1, f2; β is the map which simply forgets g1. The right-
hand G12 acts freely, and the quotient space is

R1+2 = {((x1, x2), E1, E2, f1, g
−1
1 f2, v1, v2)}/∼

where x1, x2, E1, E2, f1, v1 are as inR1+2, while g−1
1 f2 is an isomorphism from

E2 to E1 over ∆2
12, and v2 is an N-section of E2 such that g−1

1 f2v2 extends
to ∆12 and is equal to v1 there (again v1 is determined by the rest of the
data). We write

γ : R̃1+2 → R1+2

for the projection. It is ind-pro-smooth. Finally, we have a natural map

δ : R1+2 → R12
12 = {((x1, x2), E , f, v)}/∼

((x1, x2), E1, E2, f1, g
−1
1 f2, v1, v2) 7→ ((x1, x2), E2, f1g

−1
1 f2, v2).

Note that δ factors as δ = δ′δ′′ where δ′′ : R1+2 → • is an ind-closed em-
bedding of finite codimension and δ′ : • → R12

12 is defined by the Cartesian
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square

• δ′−→ R12
12

↓ ↓
G1

12
×X1×X2
G12

G2
12/G12

d−→ G12
12/G12

where the bottom row is simply the top row for N = 0, and the vertical maps
forget v1, v2, v. It is well-known that d is ind-projective; this fact shows up
already in [MV07] and essentially follows from Lemma B.1. It follows that δ
is also ind-projective, meaning that in each piece of the inductive structure,
δ is Zariski-locally of the form

Y × A f×id−−−→ Z × A

for f : Y → Z a projective map between schemes of finite type, and A some
affine space of countable dimension. In fact, δ is an isomorphism over U ,
while over the diagonal its fibers are products of closed subvarieties of affine
Grassmannians. Furthermore, δ is G12-equivariant.

(d). The global convolution diagram is

R1
1 ×R2

2
α←− R1+2

β←− R̃1+2
γ−→ R1+2

δ−→ R12
12.

As we have explained, α, β areG12 ×X1×X2
G12-equivariant, γ is the quotient

map by the free action of the right-hand G12, and δ is equivariant for the
remaining copy of G12. We have already explained how α defines a map

α∗ : HG1×G2

∗−2 dimN1×N2
(R1

1 ×R2
2)→ H

G12×X1×X2
G12

∗−2 dimN12×X1×X2
N12

(R1+2).

Everything else works out essentially as in the main paper, as we now indi-
cate. First, recall the G12 ×X1×X2

G12-equivariant Cartesian diagram (B.4):

R̃1+2
β−→ R1+2

↓ ↓
T̃1+2

b−→ T 1
12 ×X1×X2

R2
12

and recall that T̃1+2 is nothing other than G1
12 ×X1×X2

R2
12. Thus we may

write

b = pr1 b×X1×X2
pr2 b

pr1 b = ψφ

pr2 b = pr2
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where we have factored pr1 b as

G1
12 ×X1×X2

R2
12

φ−→ G1
12 ×X1×X2

N12
ψ−→ T 1

12.

It follows that

b∗ωT 1
12×X1×X2R2

12
[−2 dim N12 ×X1×X2

N12] ∼= ωT̃1+2
[−2 dim N12 ×X1×X2

G12]

and hence by base change we have have a map

β∗ωR1+2
[−2 dim N12 ×X1×X2

N12]→ ωR̃1+2
[−2 dim N12 ×X1×X2

G12].(B.5)

This map is equivariant, and it therefore determines a ‘pullback with sup-
port’ map:

β∗ : H
G12×X1×X2G12

∗−2 dimN12×X1×X2
N12

(R1+2)→ H
G12×X1×X2G12

∗−2 dimN12×X1×X2G12
(R̃1+2).

Since it is a G12-torsor, γ induces an isomorphism

γ∗ : HG12

∗−2 dimN12
(R1+2)

∼−→ H
G12×X1×X2

G12

∗−2 dimN12×X1×X2
G12

(R̃1+2).

Finally since it is ind-proper and equivariant, δ induces a map

δ∗ : HG12

∗−2 dimN12
(R1+2)→ HG12

∗−2 dimN12
(R12

12).

(e). Recall that (dual) specialization maps commute with pullbacks along
smooth maps and pushforwards along proper maps, and are compatible
with equivariance with respect to smooth group schemes. Therefore, since
every space in sight is a reasonably nice ind-scheme and the groups GS are
pro-smooth over XS , we have (dual) specialization maps to the diagonal
X0 ⊂ X1 ×X2:

s1 : HG1×G2

∗−2 dimN1×N2
(R1

1 ×R2
2)→ H

G0×X0G0

∗−2 dimN0×X0N0
(R0

0 ×X0
R0

0)

s2 : H
G12×X1×X2

G12

∗−2 dimN1×N2
(R1

1 ×R2
2)→ H

G0×X0
G0

∗−2 dimN0×X0
N0

(R0
0 ×X0

R0
0)

s3 : H
G12×X1×X2G12

∗−2 dimN12×X1×X2N12
(R1+2)→ H

G0×X0G0

∗−2 dimN0×X0N0
(R0

0 ×X0
R0

0)

s4 : H
G12×X1×X2

G12

∗−2 dimN12×X1×X2
G12

(R̃1+2)→ H
G0×X0

G0

∗−2 dimN0×X0
G0

(R̃0)

s5 : HG12

∗−2 dimN12
(R1+2)→ HG0

∗−2 dimN0
(R0)

s6 : HG12

∗−2 dimN12
(R12

12)→ HG0

∗−2 dimN0
(R0

0).

Here R̃0, R0 are respectively locally trivial p−1(R×R), q(p−1(R×R))-
bundles over X0 in the notations of diagram (3.2). In fact, the restriction
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of the convolution diagram to X0 induces the following maps between the
targets of the specialization maps:

H
G0×X0

G0

∗−2 dimN0×X0
N0

(R0
0 ×X0

R0
0)

id−→ H
G0×X0G0

∗−2 dimN0×X0
N0

(R0
0 ×X0

R0
0)

id−→ H
G0×X0

G0

∗−2 dimN0×X0
N0

(R0
0 ×X0

R0
0)

β∗0−→ H
G0×X0G0

∗−2 dimN0×X0G0
(R̃0)

(γ∗0 )−1

−−−−→ H
G0×X0

G0

∗−2 dimN0×X0G0
(R̃0)

(δ0)∗−−−→ HG0

∗−2 dimN0
(R0

0)

I claim that the maps α∗, β∗, (γ∗)−1, δ∗ are intertwined with id, β∗0 , (γ∗0)−1,
(δ0)∗ by the (dual) specialization maps. For α∗, (γ∗)−1 it is a consequence
of ind-pro-smoothness of α, γ (and also pro-smoothness of G12). For δ∗ it is
a consequence of ind-properness. For β∗, it is because the map

(β0)∗ωR0
0×X0

R0
0
[−2 dim N0 ×X0

N0]→ ωR̃0
[−2 dim N0 ×X0

G0]

defined using the Cartesian square:

R̃0
β0−→ R0

0

↓ ↓
T̃ 0

0
b0−→ T 0

0 ×X0
R0

0

obtained by restricting diagram (B.4) to X0, factors as:

(β0)∗ωR0
0×X0

R0
0
[−2 dim N0 ×X0

N0]

∼= (β0)∗i!1ωR1+2
[−2 dim N12 ×X1×X2

N12 + 2]
can−−→ i!2β

∗ωR1+2
[−2 dim N12 ×X1×X2

N12 + 2]

i!2[2](B.5)−−−−−−→ i!ωR̃1+2
[−2 dim N12 ×X1×X2

G12 + 2]

∼= ωR̃0
[−2 dim N0 ×X0

G0].

Here can is the canonical map arising from the base change isomorphism,
(B.5) denotes the map of (B.5), and i1, i2 denote the appropriate inclusions
of the diagonal subspaces. The consequence is the following formula:

s6δ∗(γ
∗)−1β∗α∗ = (δ0)∗(γ

∗
0)−1β∗0s1 : HG1×G2

∗−2 dimN1×N2
(R1

1 ×R2
2)

→ HG0

∗−2 dimN0
(R0

0).
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(f). Now each (dual) specialization map sn factors as s′nj
∗
n where j∗n is the

restriction map to the equivariant Borel-Moore homology of the part lying
over U , and s′n is some other map. Furthermore, the restriction of the con-
volution diagram to U induces the following maps between the targets of
the restriction maps:

H
(G1×G2)|U
∗−2 dim(N1×N2)|U ((R1

1 ×R2
2)|U )

−→ H
(G1×G2)|U×U (G1×G2)|U
∗−2 dim(N1×N2)|U ((R1

1 ×R2
2)|U )

−→ H
(G1×G2)|U×U (G1×G2)|U
∗−2 dim(N1×N2)|U×U (N1×N2)|U ((R1

1 ×N2)|U ×U (N1 ×R2
2)|U )

−→ H
((G1×X1

G1)×(G2×X2
G2))|U

∗−2 dim((N1×X1
G1)×(G2×X2

N2))|U ((R̃1 × (G2 ×X2
R2

2))|U )

−→ H
(G1×G2)|U
∗−2 dim(N1×N2)|U ((R1

1 ×R2
2)|U )

−→ H
(G1×G2)|U
∗−2 dim(N1×N2)|U ((R1

1 ×R2
2)|U )

Let us explain what each map does:

1) The first map views any (G1 ×G2)|U -equivariant class as also equiv-
ariant for the trivial actions of the left-hand copy of G2, and the right-
hand copy of G1, in (G1 ×G2)|U ×U (G1 ×G2)|U .

2) The second map pulls this back along the (N2 ×N1)|U -bundle map
(i.e. multiplies fiberwise by the equivariant fundamental class of
N(O)×N(O)).

3) The third map starts by rewriting (R1
1 ×N2)|U ×U (N1 ×R2

2)|U as
((R1

1 ×X1
N1)× (N2 ×X2

R2
2))|U , and rewriting the action of (G1 ×

G2)|U ×U (G1 ×G2)|U as one of ((G1 ×X1
G1)× (G2 ×X2

G2))|U . By
definition, R̃1 is the locally trivial p−1(R×R)-bundle on X1 given as

R̃1 = N1 ×N1
1

(G1
1 ×X1

N1).

The G1 ×X1
G1-equivariant map from here to R1

1 ×X1
N1 is given as

the product (over X1) of the quotient by the right-hand copy of G1

with the projection to the right-hand copy of N1. The ‘pullback with
support’ map

H
G1×X1G1

∗−2 dimN1×X1N1
(R1

1 ×X1
N1)→ H

G1×X1G1

∗−2 dimN1×X1G1
(R̃1)
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corresponds to the composition of usual ‘pullback with support’ (spread
out over X1) with multiplication by H∗G1

(X1) under the identification

H
G1×X1G1

∗−2 dimN1×X1N1
(R1

1 ×X1
N1) = HG1

∗−2 dimN1
(R1

1)⊗H∗(X1) H
∗
G1

(X1).

Meanwhile, the ‘pullback with support’ (actually, here no support is
required) map

H
G2×X2G2

∗−2 dimN2×X2N2
(N2 ×X2

R2
2)→ H

G2×X2G2

∗−2 dimG2×X2N2
(G2 ×X2

R2
2)

is isomorphic simply to the multiplication map

H∗G2
(X2)⊗H∗(X2) H

G2

∗−2 dimN2
(R2

2)→ HG2

∗−2 dimN2
(R2

2).

4) The fourth map is the isomorphism, and the fifth is the identity.

The result is that the composition of all these maps is the identity. On the
other hand, since the restriction maps j∗n intertwine these maps with the
corresponding maps on the X1 ×X2 level, we have the following:

(δ0)∗(γ
∗
0)−1β∗0s1 = s6δ∗(γ

∗)−1β∗α∗

= s′6j
∗
6δ∗(γ

∗)−1β∗α∗

= s′6j
∗
1 .

(g). Finally, note that this last map s′6j
∗
1 is symmetric with respect to the

automorphism τ of HG1×G2

∗−2 dimN1×N2
(R1

1 ×R2
2) induced by the degree 2 au-

tomorphisms of G1 ×G2, R1
1 ×R2

2 which switch the factors (and also ex-
change 1 with 2). Therefore, (δ0)∗(γ

∗
0)−1β∗0s1 has the same property. But,

taking X = C, we identify the domain

HG1×G2

∗−2 dimN1×N2
(R1

1 ×R2
2) = H

G(O)
∗−2 dimN(O)(R)⊗HG(O)

∗−2 dimN(O)(R)

and the target

HG0

∗−2 dimN0
(R0

0) = H
G(O)
∗−2 dimN(O)(R).

The map (δ0)∗(γ
∗
0)−1β∗0s1 is the usual convolution (s1 is an isomorphism)

while τ is the standard twist. Therefore, the Coulomb branch is commutative
as claimed.
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