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This is the second companion paper of [Part II]. We consider the
morphism from the variety of triples introduced in [Part II] to the
affine Grassmannian. The direct image of the dualizing complex is a
ring object in the equivariant derived category on the affine Grass-
mannian (equivariant derived Satake category). We show that var-
ious constructions in [Part II] work for an arbitrary commutative
ring object.

The second purpose of this paper is to study Coulomb branches
associated with star shaped quivers, which are expected to be
conjectural Higgs branches of 3d Sicilian theories in type A by
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1. Introduction

This is the second companion paper of [Part II], where we give a mathe-
matical definition of the Coulomb branch M¢ of a 3d SUSY gauge theory
associated with a complex reductive group G and its symplectic representa-
tion M of a form N @& NN*. Recall that M is defined as an affine algebraic
variety whose coordinate ring is the equivariant Borel Moore homology group
HGo (R) of a certain space R, called the variety of triples. The product is
given by the convolution. Here G is the C[[z]]-valued points of G.

By its definition, we have a projection 7: R — Grg, where Grg is the
affine Grassmannian for G. Therefore we have a natural object A in an
approproate Ind-completion D¢g(Grg) of the derived Go-equivariant con-
structible category on Grg defined by m.wgr[—2dim Np], where wg is the
dualizing complex on R. We can recover HE°(R) as HE (Grg, A). More-
over the construction of the convolution product gives us a homomorphism
m: AxA — A, where x is the convolution product on Dg(Grg). It is an
associative multiplication on A. Then we have an induced multiplication on
Hg, (Grg, A) from m, which is the same as the product on HEo(R) defined
in [Part II]. We also prove that it is a commutative object in Dg(Grg), and
hence the induced multiplication on Hg, (Grg,A) is commutative. It is the
second proof of the commutativity of the product on HF(R), which is more
conceptual than the first computational proof in [Part II].

In view of the original proposal in [Nak16], we expect that this construc-
tion can be generalized to the case when M is not necessarily of the form
N @ N*.

Anyhow if we have a commutative ring object A in Dg(Grg), we get
a commutative ring structure on H¢_(Grg,A), and hence the ‘Coulomb
branch’ as its spectrum.

Our reformulation of the definition of the Coulomb branch via (A, m)
reminds us a construction of the nilpotent cone and its Springer resolution
via a perverse sheaf Ar [ABGO04]. Here Apg is a perverse sheaf correspond-
ing to the regular representation C[GV] of the Langlands dual group G
under the geometric Satake correspondence, and hence is a commutative
ring object in Pervg, (Grg). Let us call it the reqular sheaf. It is given by
@D, (VA)Y ®c IC(Grg), where (V2,)Y is the dual of the irreducible represen-
tation of GV with the highest weight A and @2 is the closure of the G p-orbit
of z* in Grg. We prove that Ap is realised as a variant of the above A for a
quiver gauge theory in type A. (We consider the framed quiver gauge theory
of type An_1 with dimV = (N —-1,N —2,...,1), dimW = (N,0,...,0)
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and consider the pushforward to Grpgrn)- See §2(v)|for more detail.) This
constuction might be generalized to type BC' D, once we can generalize our
definition to the case when M is not necessarily of a form N @ N* (cotan-
gent type). However we do not expect Apr arises in a similar way for excep-
tional types. Hence we have more examples of commutative ring objects in
D¢ (Grg) than our construction.

Once we have a collection {A;} of commutative ring objects in D (Grg),
we can construct a new commutative ring object as i!A(&AZ-), where i :
Grg — [], Grg is the diagonal embedding. We call this the gluing construc-
tion. It is motivated by [CHMZI4a]. (See [Nakl16l 5(i)] for a quick review
and links to other physics literature.)

The second purpose of this paper is to study Coulomb branches as-
sociated with a star shaped quiver. It is regarded as an example of the
gluing construction of a ring objects from those for legs. It is expected that
Coulomb branches of star shaped quiver gauge theories are conjectural Higgs
branches of 3d Sicilian theories in type A [BTX10]. (See [Nakl16l 3(iii)] for
a review for a mathematician.) Expected properties of these Higgs branches
are listed in [MT12]. Recently Ginzburg-Kazhdan |[GK] construct holomor-
phic symplectic varieties satisfying (most of) these properties for any type.
The construction of Agr as A implies that Coulomb branches of star shaped
quiver gauge theories are isomorphic to Ginzburg-Kazhdan varieties in type
A via [Bapl5]. We check two among the remaining properties, which iden-
tify Ginzburg-Kazhdan varieties of type A1, A with C? ® C? ® C? and the
minimal nilpotent orbit of Eg respectively.

We do not expect Ginzburg-Kazhdan varieties for exceptional groups
are Coulomb branches of gauge theories. This is compatible with physicists’
expectation that 3d Sicilian theories are not lagrangian theories. Neverthe-
less 3d Sicilian theories are accepted as well-defined quantum field theories.
And there are many such examples. It is compatible with our observation
that

1) We have examples of ring objects on D¢ (Grg), which may not arise
from any pair (G, N).

2) We have manipulations on ring objects, such as the gluing construction
and hamiltonian reduction (see for the latter).

We thus hope that ring objects are useful to study non-lagrangian theories.

There is an Appendix[A] which discusses a result of independent interest.
We construct a complex reductive group hamiltonian action on the Coulomb
branch of a framed quiver gauge theory by integrating hamiltonian vector
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fields of functions introduced in [Quiver, Appendix B]. This extends a torus
action constructed in [Part II, §3(v)] by grading on HE°(R). The regular
sheaf Agr has the GV-action, which is identified with this group action for
the framed quiver gauge theory mentioned above.

The other parts of the paper are organized as follows. In we show
that mwr[—2dim Np| and its cousin for gauge theory with a flavor sym-
metry group are ring objects. We observe that ExtEG(Grc)(lng,A) is a
commutative ring for a commutative ring object A in Dg(Grg), where 1y,
is the skyscraper sheaf at the base point in Grg. Considering skyscraper
sheaves at other points, we construct line bundles over a partial resolution of
Spec Ext) Gy (Larg,A). We follow [ABGO4] for these constructions. The
gluing construction is explained in §2(viii)] In §3|we give a proof of commuta-
tivity of m. The idea is well-known: we use Beilinson-Drinfeld Grassmannian
to deform a situation where the product is manifestly symmetric. Then we
use nearby cycle functors and dual specialization homomorphisms. In §4] we
show that the regular sheaf AR arises as a pushforward in a framed quiver
gauge theory in type A. In §5| we study Coulomb branches associated with
star shaped quivers. Since §§4] [5| depend crucially on the construction in
Appendix [A] the authors recommend the reader to go to Appendix [A] before
visiting §§4]

In Appendix [B| written by Gus Lonergan, we give another proof of the
commutativity of the convolution product. This proof is more direct than the
proof in the main text. A key ingredient is a global version of the convolution
diagram for the variety of triples R.

Notation

We basically follow the notation in [Part II] and [Quiver]. The Weyl group
is denoted by W in order to distinugish a vector space W used for a quiver.
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2. Complexes on the affine Grassmannian

In this section we interpret the convolution product * in terms of a complex
on the affine Grassmannian. Qur goal is to construct a commutative ring
object in Dg(Grg), an appropriate Ind-completion of the Gp-equivariant
derived constructible category on Grg. Here the multiplication is given by
the product * appearing in geometric Satake correspondence [MV07].

The construction of this section, except is motivated by the work
of Arkhipov, Bezrukavnikov and Ginzburg [ABGO04], where the nilpotent
cone N of the Langlands dual group is constructed from the regular sheaf
A R On Grg.

The construction of is motivated by [CHMZI4al], as we have
mentioned already in Introduction.

2(i). Categorical generalities

Let X be a scheme of finite type over C. Then we denote by D(X) the ind-
completion of the bounded derived category of constructible sheaves on X;
same definition applies to the equivariant derived category D¢ (X ) where G
is a (pro)algebraic group acting on X. It is obvious that for a G-equivariant
morphism f: X — Y the derived direct images fi, f«: Dg(X) — Dg(Y) are
well-defined. The same thing is true for the inverse images f', f*: Dg(Y) —
Dg(X).

Assume that G has finitely many orbits on X. Then a morphism F — G
in D(X) is an isomorphism if and only if it is an isomorphism on all !-stalks
(the assumption that G acts with finitely many orbits is needed in order to
guarantee that there is an open dense subset of X on which both F and G
are locally constant).

Let now X be an ind-scheme which is a filtered inductive limit of schemes
of finite type over C with respect to closed embeddings. For simplicity we
shall assume that X is just the union of closed subschemes Xy C X7 C ---
where each X; is a scheme of finite type over C and each inclusion X; C X;11
is a closed embedding; we denote this embedding by o;. We shall call such
ind-schemes good. Assume that a (pro)algebraic group G acts on each X;
and this action commutes with ¢;’s. Then we shall say that X is a good
G-scheme.
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For a good G-ind-scheme X we define the category D¢ (X) whose objects
are systems (F;, ;)52 where

o F, € Dg (XZ)

® Kt 0%]:1‘4_1 — JF; is an isomorphism.

A morphism «a: (Fj, ki) = (F/, k}) is collection of morphisms F; — F/ for
each i which commute with the k;’s. It is easy to see that Dg(X) is a
triangulated category. Assume that G acts with finitely many orbits on each
X;; in this case we shall say that X is a very good G-ind-scheme. Then
again a morphism F — G in Dg(X) is an isomorphism if and only if it is
an isomorphism on all !-stalks.

Let X,Y be two good G-ind-schemes and let f: X — Y be a G-equi-
variant morphism. Then we can define the functor f.: Dg(X) — Dg(Y)
(but a priori not the functor f;). It is defined in the following way. Given an
object (Fi, ki) of Dg(X) we need to define an object (G;,7;) of Dg(Y). Let
Zj = f~4(Y;). This is again a good G-ind-scheme — it is the inductive limit
of Z;; = X; N f_l(Yj) Let F;; denote the !-restriction of F; to Z; ;. Let
also f;;: Z; ; — Y; denote the natural morphism. Since (}) is right adjoint
to (o3)1, the isomorphism k; gives rise to a map (o;)1F; = (07)«Fi = Fit1;
l-restricting this to Z; we get a morphism (0;)«F;; — Fit+1,; which gives
rise to a natural map (f; ;)«Fi; — (fit1,j)«Fit+1,j- Hence the inductive limit
of (fij)«Fi;’s (with respect to i) makes sense and we denote it by G;. The
construction of isomorphisms 7; between the !-restriction of G;11 and G; is
immediate from the usual base change.

In what follows we are going apply it for example to X being Grg
for some reductive group G. In this case we can talk about the equivari-
ant derived category D¢, (Grg) which as before we shall simply denote by
D¢(Grg) (a priori it depends on a choice of X;’s above; to simplify the dis-
cussion we are going to make this choice, although it is not difficult to see
that the resulting category is independent of that choice); it is clear that (for
any choice of X;’s) Grg is a very good Go-ind-scheme. The above general
discussion also shows that given two objects F,G € Dg(Grg) we can define
their convolution F x G € D¢ (Grg).

2(ii). Pushforward to the affine Grassmannian

Let N be a finite dimensional representation of a complex reductive group G.
Let R be the variety of triples as in [Part II], and wg its dualizing complex.
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Proposition 2.1. Let m: R — Grg be the projection and

AY rwr[-2dimNe] € Dg(Cre).

(1) There exists a natural multiplication homomorphism
m: AxA — A,

where the left hand side is the convolution product of A with itself given by
the diagram [Part II, (3.1)].

(2) Let 1gy, denote the skyscraper sheaf at the base point in Grg. Re-
call that it is the unit element in Dg(Grg), i.e., we have natural isomor-
phisms 1, x A =2 A = A% 1g,,. We have a homomorphism 1: 1gy, — A
such that

A2 Axlg, SLHAxA DA, A=21g, «A 2L AxA DA

are both id 4.
(3) Under the natural associativity isomorphism A x (A x A) = (A *A) x
A, we have

mo (mxid) = m o (id xm).
(4) The product on Hp (Grg, A) = HEo(R) induced by m is the same

as the convolution product *.
5) (1)~(4) remain true for the Go x C*-equivariant setting.
q g

The product in (4) is defined as follows: Let
T, Y € Héo (.A) = EXt*DQ(GrG)((CGrG7‘A>'

Then z xy € Ext}_ yq) (Carg * Carg, A+ A). We have a natural homomor-
phism Cg;., — Cgyp * Cgr from the adjunction homomorphism Cg,, —
mym*Cg,.. Therefore we combine it with m: Ax A — A, we get zxy €

EXt*DG (GTG) ((CGI"G 3 A) .
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Proof. Let us combine two diagrams [Part II, (3.1), (3.2)]:

RxR +2— plRxR) —Ls ¢(p (R xR)) —2

ixidnl Zl lg ll

(2.2) TxR # GKX'R L> G;c XG@R L> T

Tml idoy ml lﬁ lw

Grg x Grg — Gx x Grg E— Gr(;>~<GrG e Grc;,
p q m

where we have changed the notation for morphisms in the bottom row
putting ‘bar’. We also denote 7 o ¢ simply by 7 for brevity.
The restriction with support homomorphism [Part II, (3.7)] induces

AXA = (ﬂ' X ﬁ)*(wan)[—él dimN@]
— (71' X W)*];*(wp—l(RX'R) [—2 dim N(Q — 2dim GO])
= ]5>‘<(1C1G,C X7T)*Z';wp71(RXR)[—2 dll’Il N(Q — 2 dlm G(Q])

By adjunction, we get
PARA) = (idg, XT)«iwy-1(rxRr)[—2dim Nop — 2dim Go)).

Since ¢ is the quotient by G, the right hand side is

—~

idg,e XT)wihG Wop-1(RxR))[—2dim No — 2dim Go))

K —

q W*g*wq(p—l(an)) [—2dim Np].

12

Applying (¢*)~!, we get a homomorphism
(2.3) ARA = (") P (AR A) = Tuiaw,y(p-1(rxR))[—2 dim No].
We further apply m.:

Ax A = m, (ANA) = Tdw -1 (rxr)) [2 dim No].

The left hand side is nothing but the convolution product A A defined by

the diagram [Part I, (3.1)].
Since m is proper, we have a natural homomorphism

m*wq(p_l(nxn)) [2 dim No] — wR[Z dim No].

Thus we obtain the homomorphism in (1).
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Proofs of (2),(3) are already given in the proof of [Part II, Thm. 3.10].
Note that the associativity isomorphism is given by the Grg-version of
the big square diagram appearing in the proof of [Part II, Thm. 3.10]. See
[MVO07, Prop. 4.6].

Taking hypercohomology groups, one can check (4). We omit the detail.

O

Remarks 2.4. (1) By [BE08, Thm. 5], A € D¢, xcx(Grg) corresponds to
a certain differential graded Harish-Chandra bimodule of GV. We do not
know anything about it except the example just below.

(2) Let us denote by Ag the regular sheaf, i.e., the perverse sheaf corre-
sponding to the regular representation C[G"] of the Langlands dual group
G under the geometric Satake correspondence. It was denoted by R in
[ABGO4], but it conflicts with our notation for the space R. It is endowed
with a natural morphism m: Ar x Ar — Apg with properties listed in Propo-
sition The nilpotent cone N of GV and its Springer resolution N were
constructed from Apg in [ABGO04]. Since it is more natural to compare Ag
with A arising in the framework of a flavor symmetry group, more detail
will be given Finally, the dg-Harish-Chandra bimodule corresponding
to Ap is the ring U, ,Q x C[G"] of h-differential operators on G".

The construction in this and the subsequent subsections shows that it is
enough to have A with m: Ax A — A, i.e., a ring object in Dg(Grg) to de-
fine the Coulomb branch M. For example, Ag. Since Ag for an exceptional
group is unlikely to arise from any gauge theory (G,N), it is interesting to
find other recipes to construct such an (A, m). We give one example of such

a recipe in below.
2(iii). Commutativity

In this subsection we forget the loop rotation.
Let ©: Ax A — AxA be the commutativity constraint of the convolu-
tion product. Its construction, following [MV07, §5] and also [Gai01], will

be recalled in

Theorem 2.5. We have mo © 2 m as homomorphism Ax A — A.

It means that (A, m) is a commutative ring object in (Dg(Grg),*). We
give a proof in §3]

Our proof is indirect. We construct another multiplication m¥: A x A —
A using nearby cycle functors and dual specialization. We have m¥ o © =
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m?¥. Therefore (A, m¥) is commutative, but we cannot check m¥ is associa-
tive directly.

Next we show m¥ = m for N = 0. This implies that m¥ = m holds after
the fixed point localization for general N. We do not have torsion where m
and m¥ live, hence this is enough.

2(iv). A complex on the affine Grassmannian of the flavor
symmetry group

We suppose that N is a representation of a larger group G containing G as
a normal subgroup as in [Part 11, §3(viii), §3(ix)]. Let G = G/G. We are
going to construct a ring object in Dg,. (Grg,. ).

Let us denote Té’N, R(},N by T, R respectively for short as before.
Composing T — Grg or R — Grgs with the morphism Grz — Grg,, we
have

(2.6) 7: T or R = Grg,.

Let us denote the fiber over A € Grg, by R, where X is a coweight of Gp

regarded as a point in Grg,. (In [Part II, §3(ix)] it was denoted by Af.)
As in Proposition we consider a pushforward of the dualizing sheaf

wj;. Here we consider the dualizing sheaf of the larger space 7~2, and take the

pushforward A et Tuwsp[—2dim Ne] to Grg,.. We consider it as an object
in D#(Grg,.), an appropriate Ind-completion of the Go-equivariant derived
constructible category of Grg,. We also have Qzw5[—2dim Np| = Qjq«A,
which is a (Gr)p-equivariant object on Grg,. Here ‘id’ is the identity of
Grg, and the general pushforward functor Qiq., Qs+« changes the equivari-
ance group from Go to (Gr)o. See [BL94, §6].

In the same way as in Proposition [2.1] we have natural homomorphisms

(2.7) m:A*A—)A, m: Qid*ﬂ*Qid*ﬂ—)Qid*ﬂ,

that satisfy the unit and associativity properties. It also satisfies the com-
mutativity.

Let us give a small remark for the construction of the homomorphisms:
When we define the convolution product A xA, we use (¢*)~! for Grg,.
For this, we only need the (Gp)p-equivariant structure, therefore we can
replace the second factor A by Qiq«A. However in the definition of the first
homomorphism m, we need to go back to the space R, hence we need the
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G o-equivariant structure. The second homomorphism m is induced from the
first by applying Qiq+ and using the smooth base change.

Let 1gr,, be the skyscraper sheaf at the base point in Grg,. As in
[ABG04., §7.2] we have an algebra structure on Extp, (GrGF)(lGrGF"A): Let
T e 'E}'(tlD@(GrGF)(lGrGF JA),y € ExtjDé(GrGF)(lng , A). We consider z x y €
Eth;(GrcF)(lGrcF * Larg, s A x A). We compose 1: 1ar., = 1are, * 1cre,
and m: Ax A — A, we get m(zxy)l € EXtZD—Z(GrGF)(]'GrGF"A)'

Note that ext-groups in D¢, and Dg  are isomorphic:

Exth., (Gre,)(1are,, @iaxA) = Exth_ ) (Lare,,A),

where the right hand side is regarded as H¢, (pt)-module via Hg, (pt) —
HZ(pt). See [BL94, §13.5]. Thus the difference between A and Qiq+A is not
essential, we omit Q);q+ hereafter.

Since the fiber of 7: R — Grg, at the base point is our original R, we
have a natural isomorphism

(2.8) EXth_(Grg, ) (Lra,  A) = HE(R)

of H (pt)-modules.

The definition of the multiplication on Ext}, GrcF)(lGer"A) uses G
(or GF) equivariance, as we use the descent (¢*)~1]'On the other hand, the
multiplication on the right hand side given in [Part II, Prop. 3.22] descends
to HE°(R). In fact, we will see that a simple modification of the definition
gives a multiplication on the left hand side with the group changed from G

to G in )

Lemma 2.9. The isomorphism (2.8) respects the multiplication. The same
s true for Go x C*-equivariant groups.

Proof. Let us consider a modification of the commutative diagram ([2.2]):
(2.10)
TxR «+— GcxR —5 Gexg, R —— T

x| x| |7 7

GrGF X GI‘GF — (GF)IC X GI‘GF E— GI‘GF;(GI‘GF e GI‘GF,
p q m

"'We thank Roman Bezrukavnikov for a clarification of this point.
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where £: Gx — (Gr)x is a morphism induced from G — G, and all other
maps are given by replacing G, R, ... by G, R,... and composing Grz —
Grg,., etc. We omit the first row for brevity.

Let [1¢,] denote the base point in Grg,. We take the inverse images of
[IGF] X [1GF], (GF)O X [1GF], [le] * [IGF], [IGF] in the first row. They are
T xR, G,(g xR, é,(g X @, R. T respectively. Here G,(g = ¢ H(GR)o) is the
group introduced in [Part IIl, §3(viii)]. Thus we recover the diagram [Part II,
(3.23)]. Now the assertion is easy to check, and hence we omit the detail. [

2(v). An alternative construction of a regular sheaf

Consider a quiver gauge theory of type Ay_1 with dimV = (N —1,
N—2,...,1),dimW = (N,0,...,0) with G = GL(V) = [[;' GL(3), G =
(GL(V) x GL(W))/Z, where Z = C* is the diagonal central subgroup. We
have G = PGL(W) = PGL(N) and apply the above construction to define
A. It is a complex on Grpgry). We also know that the Coulomb branch
M of this quiver gauge theory is the nilpotent cone in sl(N). (We know
that M¢ is a transversal slice in the affine Grassmannian by [Quiver, §3]
for a quiver gauge theory of type ADE. And in this case the transver-
sal slice in the affine Grassmannian is the nilpotent cone by [Lus81]. See
also [MV03].) Recall Ag in Remark [2.4(2). We take G = PGL(N). Then
EXtE(GrPGL(N))(]'GTPGL(N)7‘AR) gives also the nilpotent cone [ABGO04, 7.3.1].
This is not a coincidence. We have

Theorem 2.11. Ap and A are isomorphic as ring objects in
DPGL(N)(GTPGL(N))'

The proof will be given in

2(vi). Line bundles via homology groups of fibers

We now return back to a general situation: we are given a commutative
ring object in D (Grg), i.e., we are given A € Dg(Grg) with 1: 1g,, — A,
m: A*x A — A satisfying the unit and associativity properties in Proposi-
tion 2) and the commutativity as in Theorem The object constructed
in as well as the object A or Qiq+A in is an example when we

regard Gr as G. In fact, the latter is our primary example.
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Let D(Grg) denote an appropriate Ind-completion of the constructible
derived category on Grg (without Gp-equivariance structure). Let For :
D¢ (Grg) — D(Grg) be the forgetful functor.

Remark 2.12. In the setting of we could consider Dg(Grg, ), an
appropriate Ind-completion of the Gp-equivariant constructible derived cat-
egory on Grg,. Note that Gp acts trivially on Grg,. Let ReSGo,é@ be
the restriction functor D5 (Grg,) — Dg(Grg,.) restricting the group action
from Go to Go. Then we could consider A™ = Resg Go A € Dg(Grg,.).
This allows us to consider Extp, g, y(1arg, . A™), but the difference be-
tween this Ext group and Ext} D(Gre )(IGrG , For Qiq «A) is not essential as
we have remarked above. Therefore we do not keep two groups G, G, and
just consider the above situation for brevity of the notation.

Let AP % For A. Note that A" x A" is not defined as we do not have
(¢*)~! for non G-equivariant objects. However we still have For m: For(A %
A) — Afr = For A.

Viewing a coweight A of G as a point in Grg, we denote the embedding
by Ix: {)\} — GI“G

Recall m: Grg * Grg — Grg. For a coweight y, let Gr et “m~(x) and
denote the embeddmg Gr — Grg x Grg by j,. We have the base change
zxm* My j

Recall A *A = m.(q*) ' (AR A). Let us set AKA = (¢*) " 'p* (AR A).
As the forgetful functor commutes with m,, we have

For(A x A) = m, For(AXA).

We have

z For m

(2.13) m.j;, For(AXA) = i}m. For(ARA) = i} For(A*A) =—— i\ A",

Claim. The embedding {\} x {u} — Gr} 4+, induces a natural homomor-
phism

(2.14) H* (i) A™") @ H* (i}, A*T) — H*(j) ,, For(ANA)).
Proof. Let us regard A as an element in Gx and denote the embedding

{\} = Gk by iy. The morphism ¢(iy x in): {\} x {u} = GrgxGrg factors
through Gr?\Jm. Let us write the embedding ky ,: {\} x {u} — Gr?\Jm.
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We note k) u])\Jru (ix X iu)'q" = (ix x i,)'q*[2dim Go)]. Since the for-
getful functor commutes with pull back homomorphisms [BL94l, §3.4], we
get
(2.15) kg For(AXA)

= (ix x i,,)'p* (AT K AP [2 dim G|
= (iy X z#) Aafr Ay = (iy x zu)'(flfor X Afr).

Since k), is proper, we have a homomorphism k/\,u*k&,u = k:,\#!k!)\7u — id.
Now the assertion is clear.

Combining (2.13) with x = A + p and ([2.14)), we obtain a multiplication
(2.16) H*(i\A°") @ H* (i, A7) — H* (i), A°").

Remarks 2.17. (1) Note that the embedding iy is Tp-equivariant. There-
fore we can use the restriction functor Resr, g, from Go to Tp instead of
the forgetful functor For. Then the same construction gives a multiplication

(2.18) Hj, (i) Resty o A) @ Hf, (iL Resty, Go A) — Hi, (i) +uRest, 6o A).

(2) Suppose G = T'. Then Gry = | |y {A}, hence

HTO GI'T, @HTO ’l/\./q
A€Y

The multiplication explained after Proposition [2.1]is Y-graded, hence gives
HY, (ZXA) ® H* (zLA) — HF, (i/\_HL.A). It is clear that this multiplication is
same as (2.18)).

Suppose A = p = 0. We have a commutative diagram
(2.19)
% m(exe)l
EXtDG (Grc) (1GI'G 3 .A,) ® EXt*DG (Grc) (1GI'G' 3 .A,) _— EXt*DG (GI‘G) (1GTG 3 .A)

For l l For

H* (Z%Afor) ® H* (ibﬂfor) H* (ibﬂfor)

via the isomorphism Extp(cre)(Lare, A7) = H* (i A®T).
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In fact, the only place we need to check is the commutativity of

* * (q*)~'p * e
EXtDc(Grc) (1grg, A) ® EXtDc(Grc) (1gre, A) M) P EXtDG(GrG %Gre) ((C[lc]*[lc] , AKA)
Forl JVFor
H*(ih Ay @ H*(ijAfr) B H*(j} For(AXA)),
2.16

where the right vertical arrow is defined as the embedding of [1¢] x [1¢] into
GrgxGrg factors through Grg. This commutativity is clear from (2.15]).

In the setting of the previous subsection, the upper row of is the
same as the multiplication on HE°(R) by Lemma& hence the lower row
is also the same as * on HE°(R). In this sense the multiplication in (2.16))
is a generalization of .

Thus @ H*(#.A") is an algebra graded by the coweight lattice of G.
For A = 0, we have a subalgebra H*(i{,A™"), which is isomorphic to HF° (R)
in the setting of the previous subsection. One can also take a direct sum over
dominant coweights A of G.

For a fixed coweight \, we consider the direct sum of H*(i! ,A®") with
degrees n\ (n € Z>g). It is an algebra graded by Z>¢. The associated Proj

Proj @ H* (i}, AP

n>0

has a natural projective morphism to Spec(H* (i, A®")). We have a natu-
ral line bundle O(1) on Proj(€D,,~o H* (i}, A®")) such that H* (i, Ar) is
identified with the space of sections of O(n) = O(1)®". Under some cir-
cumstances we expect Proj(@D,,so H* (i}, A®")) is a (partial) resolution of
Spec(H* (ihAPr)). -

In the example in Remark Ap gives the Springer resolution of the
nilpotent cone N of GV, the Langlands dual group of G. See [ABG04, 8.5.2].

See [Nak16l §5.1] (and also [Part IT, Remark 3.26]) for a physical origin
of this construction.

Remark 2.20. In view of Remark [2.17](2), the construction in [Part II,
§3(ix)] and the above construction is the same for A in Here the
construction in [Part 1T, §3(ix)] is as follows: Let us suppose G <1 G as in
and further assume Gp = @/G is a torus. Let us write Tr = Gp.
The Coulomb branch MC(G’, N) for the larger group G has an action of
m(Tp)" = T}, and [Part 11, Prop. 3.18] says that M (G, N) is the Hamilto-
nian reduction of M(G, N) by T). Let us denote the moment map by Ty -
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The hamiltoian reduction more precisely means the affine algebro-geometric
quotient ,ui;(O) J Ty If we have a cocharacter A\p of Tk, we view it as a

character of T} and consider the GIT quotient ui& (0) )2, Tp.
2(vii). Wakimoto sheaves

The original definition of the multiplication in [ABG04] was given
by Wakimoto sheaves, and the above definition is taken from the proof of
[ABG0O4, Thm. 8.5.2]. Although it is unnecessary, let us review the construc-
tion for the sake of the reader.

Let I be the Iwahori subgroup of Gx and let Flg = Gx/I be the affine
flag variety. We have a smooth proper morphism w: Flg — Grg of ind-
schemes. Let W), be the Wakimoto sheaf on Flg for G corresponding to a
coweight \. See [ABG04, §8] for the definition (due to Mirkovié¢). By [ABG04,
§8.4], we have a ‘multiplication’

(221) Ex® E“ — E)\+#, E,= EXtBI(Grc)(lGrG7 Wi *.A),

where x is the convolution product on I-equivariant complexes on Flg and
Grg: Let z € Ey, y € E,. We consider the composite

WxxxA

Y2 larg 2 Wyx A=W, *1la, x A Wy x Wy x A x A

=Wryux AxA BUN Wigp * A.

Note that W, x x is well-defined as z is an [-equivariant homomorphism,
and hence W, M x descends for the morphism g.

We have an isomorphism E) = H7, (i\ Rest, o A) (see [ABGO4, (8.7.2)]),
and the above multiplication is the same as ([2.18)).

2(viii). Gluing construction

One of motivations of [CHMZ14al extending the monopole formula from the
Hilbert series of the coordinate ring of the Coulomb branch M to the char-
acter of the space of sections of a line bundle (see [Part II, Remark 3.26]) is
to write down the Hilbert series of a complicated Coulomb branch from sim-
pler ones. We use the machinery prepared in earlier subsections to introduce
the corresponding construction at the level of commutative ring objects in
D¢ (Gre).

The setting in [CHMZ14al is as follows. Suppose that we have a finite
collection {(G;,N;)} (i =1,2,...) of gauge theories sharing the common
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flavor symmetry group, i.e., N; is a representation of a larger group G,
containing G; as a normal subgroup with Gp = G; /G, independent of i.
Then we define G as the fiber product of G, over G r, and N = @ N;. The
monopole formula for the Hilbert series of the Coulomb branch of (G, N) is
given by extended monopole formula for (G;, N;). See also [Nak16l §5(i)] for
a review.

An example is a star shaped quiver gauge theory, which is the 3d mir-
ror of the Sicilian theory of type An_1, reviewed in [Nakl6, §3(iii)]. See
Figure [l We have three copies of type Ay_1 quiver gauge theory with
dimV = (N —-1,N —2,...,1),dimW = (N,0,...,0) as in §2(v)| We divide
the group GL(V) = [[ GL(V;) by the diagonal central subgroup Z and take it
as the gauge group. The common flavor symmetry group is Gp = PGL(N).

O-n

©-0
SO0e 00
O

O

Figure 1: A star shaped quiver gauge theory.

The variety Rg,N is the fiber product of Ré N, over Grg,.. Let us de-
note the natural projections Rg N — Grg, and Réi N, Grg, by 7 and
m; respectively. Then

TR, [2dimNo| = i (Briwr,, , [~2dim(Ni)o] ) .
where ia: Grg, — [[; Grg, is the diagonal embedding. Note that
ﬂ-i*wRépNi [—2 dim(Ni)(’)]

is the commutative ring object in D¢, (Grg,. ), considered in
Motivated by the above example, we consider the following setting.
(We use the convention in i.e., replace Gr by G.) Suppose that we
have a finite collection {A;} of commutative ring objects in Dg(Grg). Let
in: Grg — [[; Grg be the diagonal embedding. Then the following is clear:
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Proposition 2.22. Adgf'i!A (KA;) is a commutative ring object in Dg(Grg).

In particular, we can consider the affine scheme Spec H¢, (Grg, A).

In fact, we have Km: (XA;) x (XA;) = K(A; x A;) — KA; from m: A; *
A; = A;. Then we apply Z'A We claim that there is a natural homomorphism

(2.23) in (RA;) % i (RA;) — ip (R(A; * As))

hence its composition with i!A(&m) gives the desired multiplication homo-
morphism of i!A(&Ai). We prove the claim by comparing the convolution
diagrams [Part II, (3.1)] for Grg and [[,; Grg. Since p, ¢ are smooth, p*, ¢*
commute with Z'A The last part of the convolution diagram for G and [[, G
is

Grg X Grg L) Grg

Hi Grg>~<GrG = Grni G;(Grl_[i e T Grl—[i G = HZ GI"G,
where we denote the diagonal embedding of the left column by i’y to dis-
tinguish it from the right column. Let X(A;XA;) denote the complex on

Gryp, G;(GrHi ¢ obtained in the course of the convolution product for [, G.
We define the homomorphism as

| !

ik (R(ARA;)) = m. ®(Ai®fti) - ®m*(~Ai®Ai)

by the natural homomorphism [KS90, (2.6.24) or the dual of (2.6.22)].
See g5| for an application of the gluing construction.

3. Proof of commutativity

We denote Grg by Gr for brevity in this section. In this section we closely
follow [MVQT, §5], [Gai01] and [BeiDr, §5.3].

3(i). Commutativity constraint

Let us give a definition of the commutativity constraint ©.
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Let us choose a smooth curve X. We define Grx the moduli space of
triples (z, P, ) of a point « € X, a G-bundle P on X and its trivialization ¢
over X \ {z}. We also have a group scheme G x o, the global analog of Go.

More generally, we introduce an ind-scheme Grx- as the moduli space
of (z1,...,2n,P,¢) of n ordered points in X, a G-bundle P on X and its
trivialization ¢ over X \ ([ J{z;}. We also have Gx» o, which is the moduli
space of (z1,...,2n, P, ke, . .) where (z1,...,2,) € X", P the trivial G-
bundle on X, and Ky, .., is a trivialization of P on Xﬂcl,...,mn-

Then we define the convolution product of A, B € D¢, ,(Grx) as before,
using the global version of the diagram [Part I, (3.1)]:

(3'1) GI"X X er <L GI’X X GrX q—X> GI“X;(GI‘X % GI‘)@.

Here Gry x Gryx is the moduli space of (z1,x2,P1, 1, k, P2, p2), a pair of
points (z1,22) € X2, two G-bundles Py, Py and their trivializations ¢; over
X \ {x;} together with a trivialization s of P; on the formal neighborhood of
75. The twisted product Gry x Gr is the moduli space of (z1, x2, P1, 01, P, n)
as above, but n: P1]x\g, = P|x\s, instead of 2 and x. The morphism gx
is given by defining P as the gluing of P1|x\,, and P9 ., by g Lok over
(X \ 22) N X,, = X,, \ 22. (When X = D, the formal disk, P and Py are
isomorphic. Hence this construction was omitted before.) The definitions of
morphisms px, my are as before, and are omitted. (See [MV0T7, §5].) Note
that px is a Gx o-torsor by the action changing x. The second projection
gx is also a G x o-torsor by the action changing x and 2 simultaneously.

The diagram gives a G'x» p-equivariant object defined on Gryx: by
Ax *x Bx C mx.(q%) " 'pi (Ax B Bx) for Ax, Bx € Da, o (Grx).

We take X = A'. We have Grx = X x Gr thanks to a choice of a global
coordinate on A'. In particular, we have a projection 7: Gry — Gr. For an
object A € Dg(Gr), we can attach Ax € Dg, ,(Grx) by 7*A[l]. In fact, we
can do more generally if we use the Aut(O)-bundle over X parametrizing
all choices of local coordinates and consider Aut(Q)-equivariant objects as
in [BeiDrl [Gai01].

Let A denote the diagonal in X? and U denote the complement X2\ A.
The restrictions of Grxz to A and U are isomorphic to Gryx and (Grx X
Grx)|u respectively. In fact, the restriction to A is obvious. For a given
(z1,72,P, ) with 71 # 22, we define P; by gluing Pi|x\,, = (X \ 7)) x G
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and Pi|x\z, , = Plx\zs_, by ¢ on X \ {z1,22}. Hence we have the diagram

Grx — Grx: # (GI"X X GTX)‘U

@ ] |

A —— X2 — U.

We consider the nearby cycle functor

Varyet DiGyoxtx.o)s ((Grx x Grx)|u) = Dey o (Grx).

See [KS90, §8.6], where we change the source domain to objects defined on
(Grx x Gry)|y, and shift by —1, following the convention in [Gai01].

Then an argument in [Gai0ll, Prop. 6] shows there is a natural isomor-
phism

(3.3) Yar,, (Ax B Bx)|y) = (AxB)x.

We have the isomorphism (Ax X Bx)|y = (Bx K Ax)|v exchanging the fac-
tors. Therefore together with it gives us an isomorphism A x B = B x A.
This is the definition of the commutativity constraint © used in Theorem [2.5]
Let us briefly explain how is constructed. For a later purpose, we
give a slightly different explanation from |GaiO1].
By the definition of the nearby cycle functor, we have a natural homo-
morphism

(3.4) ps: Yar . (Ax xx Bx)|v) = H(Ax xx Bx)[1].

It is the dual of the specialization homomorphism. See [KS90, (8.6.7)]. We
restrict the diagram (3.1)) to the diagonal to see that

(3.5) (AxB)x = (Ax xx Bx)[1].
Therefore we need to check
Claim.

(3.6a) We have a natural isomorphism (Ax *x Bx)|y = (Ax X Bx)|v.
(3.6b) psin (3.4)) is an isomorphism.

Proof. Let us denote the restrictions of px, qx, mx to inverse images of U
by pu, qu, my respectively.
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Over U, we have a natural commutative diagram
(3.7)

(GrX X er)‘U GI“X X er|U GI‘X;(GI“)(‘U = er2|U

| % -

(GrX X GrX)‘U(;GX,O Xx (GI"X X er)|U‘> (GI"X X er)‘U: (GI"X X er)‘U

pu qu muy

where Grx x Grx — X in the bottom middle term is through the projec-
tion X x X — X to the second factor. Here the second vertical isomorphism
is given by regarding x as a trivialization of the trivial bundle over sz via
the trivialization ¢1: Py £, = X@ X G. The third vertical isomorphism is
given by considering n as a trivialization of P. The lower left arrow is given
by forgetting G x 0. The lower right arrow is given by the action of G'x o on
the second factor of Gry x Gry. Since we are considering equivariant ob-
jects, we have a canonical isomorphism (g};) ™ 'p};(Ax B Bx)|v) = (Ax K
Bx)|v. We now apply my. and observe that my.(¢5;) ™0} (Ax X Bx)|y) =
(Ax *x Bx)|v. Thus we have checked (a).

Let us turn to the assertion (b). The idea is to consider nearby cycle
functors for four spaces in (3.1).

Let us start with mx. Since nearby cycle functors commute with proper
morphisms, we have

Ver o (Mus(AxXBx)|0) = mastar, xare (AxXBx)|0),

where ma is the restriction of m to A.
Next consider px and gx. They are both smooth ([MV0T7, p.114]), and
hence commute with nearby cycle functors. Therefore

I

Yy xary (AXRBx)|0) = (dA) g, ., (00 (Ax K Bx)lv)

(g8) ' PAYGrx xGrx (Ax B Bx)|vr),

I

where pa, ga are restrictions of px, gx to A. Hence

Yar e (Ax *x Bx)|) = max(gh) ™ PAYGry xary (Ax B Bx)|v).

Now Grx x Grx = X x X x Gr x Gr, hence ¥gr, xary (Ax X Bx)|v)
is just (A X B)x. More precisely, the isomorphism is given by the dual spe-
cialization homomorphism

Ps: Yry xry (Ax B Bx)|y) = ! (Ax B Bx)[1] = (AR B)x,
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thanks to vanishing of the vanishing cycle functor ¢gry xGry (Ax X Bx).
Thus

G (A xx B)ly) 2T L (3) TR (AR B)x),

Notice that the restriction of to the diagonal is just the product of X
and the diagram [Part II, (3.1)]. Therefore the right hand side is (A * B)x.
Now one can check that dual specialization homomorphisms commute with
proper pushforward and smooth pull-backs so that they are compatible with
the commutation of nearby cycle functors. (See the argument in the proof
of Lemma below.) Therefore max(qi )™’ ps is equal to ps over Gry.
Thus (b) is checked. 0

3(ii). Factorization version of R

We define a global version of the variety of triples R in this subsection.

Let us assume that we are given a smooth connected curve X, an alge-
braic group G and a representation N of G and a finite set I. Consider a
functor Schemes/C — Sets which sends a scheme S to the following data: 1)
Amap f: S — X!. We shall think about f as a collection of maps f;: S — X
for i € I and we denote by I' the union of graphs of f; — this is a closed sub-
scheme of § x X.

2) A G-bundle P on S x X.

3) A trivilalization ¢ of P over S x X\TI'.

4) A section s of the associated bundle Pn over the formal neighbour-
hood of T" in S x X and a section s’ of the trivial N - bundle over the
same formal neighbourhood which are equal on the “formal punctured neigh-
bourhod” (this makes sense because of 3). These notions (formal neighbour-
hood, formal punctured neighbourhood) are explained in [KV04].

Now we claim that this functor is representable by an ind-scheme. More-
over, this ind-scheme has a natural closed embedding into Grx: )>(<I IN X7

where

a) Gry: is the factorization (a.k.a. Beilinson-Drinfeld) Grassmannian
over X/

b) Jn x: is the Kapranov-Vasserot factorization version of the N-jet
space over X',

Indeed it is enough to construct this closed embedding (as a closed sub-
functor of an ind-scheme is also an ind-scheme). But an S-point of Grxr ¢ gp
is precisely the data of 1), 2), 3) and an S-point of Jn x: is the data of 1),
2) and ¢ from 4). Since s is obviously uniquely determined by all the data
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and since the existence of s is a closed condition on the other data we get
the above closed embedding.

Let us denote the above ind-scheme by R x:. Then obviously from 1) we
get a morphism 7mxr : Rx: — X! and it is clear that the restriction of R xr
to the complement U of all the diagonals in X! is naturally isomorphic to
the similar restriction of (RM)!.

On the other hand, assume that we are given a surjective morphism
I — J of finite sets. Such a morphism defines a closed embedding X7 «— X/
(as a partial diagonal) and it follows that the restriction of Ry to X7 is
naturally isomorphic to R().

Similarly, we can define a factorization version of the bundle 7T over
Gr. By definition an S-point of Tx: is a quadruple (f,P,p,s) as above
(i.e. no s')E| We claim again that this functor is representable by an ind-
scheme. For this it is enough to show that the morphism 7Tx: — Grx: (which
corresponds to forgetting s) is representable. This can be done by a word-
by-word repetition of the proof of the fact that the factorization version of
the jet scheme is representable by a scheme (cf. again Section 3 of [KV04]).

In what follows we shall only need the above spaces when I = {1,2}.

3(iii). Definition of another multiplication

We consider the space R x2, its dualizing complex wg , and the pushforward
TWR ., Its restriction to U is isomorphic to (mwr, M mwr, )| under ;
in (3.2). We consider two dual specialization homomorphisms

ps

¢erz (W*waz ’U) L!ﬂ'*waz [1]

(3.8) ~T :

ps
Ver s (Tewry *x Tewry)|U) —2 = 1 (MW, *x Tewry)[1]

where ¢: Gry — Grx: is the inclusion, and the vertical arrow is given by
T+WR 2 |U§ (meX X w*wnx)\U% (W*wRX *X ﬂ'*wRX)’U. (See 3.6&.) The
lower homomorphism is an isomorphism thanks to . Note that m.wr,
is (mwwr)x[1]. Therefore the right bottom term is (m.wr * T.wr)x|[2] by
(3-5). Note also ¢'mwr ., [1] = mwr[1] = (Twwr)x[2]. Therefore we obtain

2Note that if we instead only choose s’ and do not choose s then the resulting
functor is represented by Gry: X Jn x:-
X1
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a homomorphism
(3.9) mY: AxA = A, A=mwr[-2dimNp],

by specializing the dotted arrow at a point in X.

The degree shift should be checked by going back to finite dimensional
approximation of R. We have shifts by dim N /2% Ng and dim N /2%Np
for two factors in g, , ((Tiwr, W mwr, )|v). Then we have a shift

dim Np /247N
for mowgr, .
Now our goal is to check two properties:
(i) m¥ = m,

(ii) m¥ is invariant under the exchange of factors of Ay x Ax. (More pre-
cisely, exchange after going back to (A X A)|y.)

The property (ii) is clear as the diagram is invariant under the
exchange of two factors of X2 = X x X.

We will check (i) for N = 0 in the next subsection. We have a difficulty
to check (i) directly for general N, so we will argue indirectly by reduction
to the case N = 0.

3(iv). The case N =0

We first consider the case N = 0.
We consider the dual specialization homomorphism for we, sar,:

!
ps,: wGrX iGrX((wer X wGI‘X|U) - L}wGrX >~<er[1] = wXXGrf(Gr[l]

where t,: X x GrxGr = (Grx xGry)|a — Grx xGry is the embedding from
the definition of the nearby cycle functor. Here we have used wg, sq,, U =
(wary Bwery o) from (3.7).

The following two assertions identify with the pull-back of m under
, hence we obtain the property (i) for N = 0.

Lemma 3.10. (1) ps is equal to the composition of max ps, and the natural
morphism mA*m!A = mA;m!A — id.

(2) The homomorphism ps, coincides with the homomorphism werKwar
— Warxae constructed in , pull-backed by Grx xGrx — GrxGr. It is
an isomorphism.
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Proof. (1) Recall the definition of the nearby cycle functor and the dual
specialization morphism ([KS90, §8.6]). We have f: Gry> — X? = C? — C,
where the second map is (x1,22) — x1 — x2. We then consider p: C* = C,
the composition of the universal covering ¢ C* — C* and the inclusion C* —
C. We then pull back p by f to get p: Gry. — Grx2. Then

werz ((wer X wer)’U) = L*ﬁ*ﬁ*w(}rxz [_1] = L*Hom(f*p!(c@x y WGr 2 [_1])

and ps is defined from Cyy — piCg. [2].
Let us write the identification

(GI‘X;(GI‘)()’U = erz‘U = (GI‘X X GI‘_)()‘U
explicitly as my, the restriction of mx to U. The commutativity of

ps !
VGr e (MUAW (Gry xGry) ) — U MXWGry xGry 1]

l £

!
mA*wer X Gry (w(GrX >~<er)\U> . pS,> MAxLW Gy XCGryx [1]

IR

is clear as both vertical arrows are given by base change and adjunction. This
property has been already used in the construction of the commutativity
constraint above. Next the commutativity of
ps !
YGr o (mU*w(GrX;GrX)\U) —— UMXsWer, 2Gry 1]

¢er2 (mU!m!U—Hd)l% lmxgm’X%id

Par . (Wary Mwary)|v) — twar . [1]

is also clear from the definition. Therefore we get the assertion.
(2) The following diagram is commutative:

* . ~
queriGrX(w(GrXiGrXﬂU) qAL/wGrXXGrX

|

!
¢Gr;§6rx (qgkjw(GrXierﬂU) s ? L//Q;(wGrX >~<er[1]7

where ¢,: G xGrx — Grx x Grx is the inclusion given by Grx x Grx|a =
. R _* i
Gk x Gry, and ps,, is the dual specialization for Wi, = IXWary %Gryx
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In fact, the left vertical arrow is given by the composition of

q*Awer X Gryx (wGrX xGrx ‘U) = q*ALTHom(m}f*p!(CCX ) wGrX XQGrx [_1]>
= g Hom(my [*piCers war, xary [—1])
> 5 Hom(@iemy f*pCn s Gy xry - 1) = Y, (@Wary 5ars |0)

where we have used [KS90, Prop. 3.1.13] and ¢ = ¢%[2dim Go] for the
third isomorphism. Now we apply Cygy — pCg.[2].
In the same way, we have another commutative diagram

ps//
(p?]w(GrXXer)lU) — L;lpi;(werxer[l]

gl lg

!
pszrxXer(w(erxerﬂu) o s > DALIWGrx xGry [1];
A "

(8

GI‘X XGI"X

where ¢,: X X Gr x Gr = Gry X Gry is the embedding given by Gryx X
Grx|a = X x Gr x Gr. Now the assertion is proved. Note p} ps,, is an iso-
morphism, hence so is ps,. O

Remark 3.11. We have a difficulty to generalize the argument in §3(iv)|to
N # 0 since we lack an R-version of Grx xGry, as a well-defined ind-scheme.
This difficulty will be overcome in Appendix [B] written by Gus Lonergan.

3(v). Completion of the proof

Let zx2: Gryxz — Tx2 be the factorization version of the embedding z :
Gr — T discussed in [Part II, §5(iv)]. It factors as zx» =i o zZyx2, where
zx2 : Gryz = Rx2,and i: Rx2 — Tx: is the embedding. Since Tx2 — Gry:
is a vector bundle, we have

ZX2WT,, — War,, [2dim Np],

and also
WR s [-2dim Np] — in*werz

by the pull-back with support. We apply 7, to obtain

Zx2: TywR ,[—2dimNo| = war .-
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We now apply the nearby cycle functor g, , and the dual specialization
homomorphisms:

VGr s (Te(WR o, [~2dim No)) ) —2— muwg, [~2dim N + 1]

*
- |+

Yarys (War . [U) — Wary [1].
This is a commutative diagram by the argument in the proof of Lemma [3.10
Removing the unnecessary factor X, we get

"

AxA T2y 4
(312) z**z*:z;gl lz*

WQGr * WGr —w> WGr,
Mg

T

where we put the superscript 1 to emphasize that the multiplication is
defined via nearby cycle functors. Since the restriction of z%., to U is z* X z*,
the left vertical arrow is equal to z* x z*.

Let us view m, m¥ as elements of Ext*DG(Gr) (AxA,A). Tt is a module
over Hf(pt). We consider the restriction functor Resr, g, from the Go-
equivariant derived category to the Tp-equivariant one. Then we have

Ext*DG(Gr) (AxAA) — ExtET(Gr) (Rest,,Go (A *A),Resty, co (A)),

and the latter is a module over H}.(pt) = C[t].
We have

(1)’ m¥ and m are equal in Ext*DT(Gr) (Resty,Go (A x A), Rest, 6o (A)) @cpy
C(t). Hence m is commutative up to an element which vanishes in
EXt*DT(Gr) (ReSTaGo (‘A * A)? ReSTo,Go (‘A)) ®(C[t] (C(t)

This statement recovers , as Exth, ) (AxA,A) is the Weyl
group invariant part of Ext}, . )(Resr, go(AxA),Resr, 6o(A)), and
Exth, (are) (Resto 6o (A * A), Resty, 6 (A)) s a free Clt]-module: More gen-
erally, for F,§G € Da(Gr), Ext}, ) (Resto 6o (F), Resty,60(9)) is a free
C[t]-module. Indeed, by devissage it reduces to the case of irreducible per-
verse F, G where it is well known, see e.g. [Gin91].

Let us suppress Resr, g, hereafter.

Let us consider the commutative diagram . We have the corre-
sponding diagram for mg, the multiplication constructed in Proposition [2.1
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where the lower arrow is mgy, cf. [Part II, Lemma 5.11]. We compose z* to
get

Bxt, (A A A) D Bxt], oy (A * A war).

The commutativity of the diagram and mg, = mér ED imply that z*m%
and z*mp are equal in Ext*DG(Gr)(A*.A,wGr). Therefore it is enough to
check that

EXt*DT(GI‘) (.A *.A,-A) ®C[t] C(t) i) EXt*DT(GI”) (.A *.A, UJGI«) ®(C[t] (C(t)

is an isomorphism. The argument is almost the same as the one in the proof
of [Part IT, Lemma 5.13].
By the definition of z*, it factors through

Since T — Gr is a vector bundle of rank 2 dim N, we have m,w7[—2dim Np]
>~ wq,. Therefore it is enough to check that the morphism

Exth, qn (A * A, A) @cpy C(t) LN Ext}, qn (A * A, mwT) @cpg C(t)

given by the closed embedding i: R — 7 is an isomorphism. Let j: 7\ R —
T be the inclusion of the complement. We have the distinguished trian-
gle i1i'wr — w — j.j*w7. From the associated long exact sequence, it is
enough to show that Extp, (Ax A, T juj*wT) @cpy C(t) vanishes. But
Exth, (an (A * A, Tujuj wr) = Ext], gy (77" (A A),wng) is an equiv-
ariant cohomology group over 7 \ R which does not contain 7T-fixed points
by [Part II, Lemma 5.1]. Therefore it is torsion and vanishes once we take a
tensor product with C(t).

4. Proof of Theorem [2.11]

In this section we prove Theorem [2.11|F
During the proof, the C*-action on the Coulomb branch will play an
important role. The C*-action is given by the homological grading, shifted

3The second named author thanks Roman Bezrukavnikov for his numerous ex-
planations about the Andersen-Jantzen sheaves on Kleinian surfaces and nilpotent
cones.
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according to the convention in [Part II, Remark 2.8(2)]. Then the monopole
formula in [Part II, Prop. 2.7] is modified to

(4.1) PoY(R) =) P2V Pa(t; M),
A

As mentioned in [Part I, Remark 2.8(2)], this modification is harmless as
the difference dy — 2(p, \) — A(X) depends only on connected components
of R. Nevertheless we will see that this convention is a correct choice.

4(i). Characters of global sections of line bundles on Kleinian
surfaces

Recall that Sy is the hypersurface in A® given by the equation zy = w'V. It
is the categorical quotient A2 //(Z/NZ) where ¢ € Z/NZ takes (u,v) € A2
to (Cu,("'v). We consider the following action of C* x C* on A?: (z,t) -
(u,v) = (t~ 'z~ tu,t~zv). This action descends to Sy. The action of the
second C* t - (u,v) = (¢~ tu,t"1v) is a restriction of an SU(2)-action on A% =
R* rotating hyper-Kéhler structures. Hence it is natural in view of [Part II,
Remark 2.8].

We are interested in characters of certain C* x C*-equivariant sheaves
on Sy. The tautological characters of C* x C* will be denoted by = and
t. We denote by T Sy — Sy the minimal resolution of Sy. The action of
C* x C* lifts to Sy. We recall the well known facts about the C* x C*-fixed
points in Sy.

We will denote these points by po,...,pn-1, so that the exceptional
divisor F C Sy consists of projective lines Fy,..., Ey_1, and E, contains
Pr—1, Pr- The character of the tangent space 1), Sy is tN=2r=25=N 4 2r=Np N,
The Picard group Pic(gN) is canonically identified with the weight lattice
of SL(N). Namely, Sy C T*B is the preimage of a subregular (Slodowy)
slice in the Springer resolution T*B — N of the nilpotent cone for SL(N).
For an SL(NV)-weight A the corresponding line bundle £, on Sy is the re-
striction to Sy C T*B of the pullback to T*B of the line bundle O(\) on
the flag variety . The line bundle £, corresponding to the fundamental
weight w;, 1 <4< N — 1, admits a natural C* x C*-equivariant structure
such that the character of its fiber at p, is tV "iz?=N provided 0 <r <4 —1,
and t'z’ provided i < r < N — 1. This is defined so that I'(Sy, Ly,) is the
space of semi-invariants C[A%]X: where x;(¢) = ¢*. Under the above identi-
fication, O:?N(_ET) is nothing but £, where «; is the r-th simple root of
SL(N).
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We will write a dominant SL(V)-weight A as a partition Ay > Xy > -+ >
An defined up to simultaneous shift of all A;. In other words, A = ZZ]\L _11(/\i -
Ai+1)w;. Then £y admits a natural C* x C*-equivariant structure (as a ten-
sor product of fundamental line bundles) such that the character of its fiber
at pr, 0<r< N -—1,is #2050 Al 25 (i=Ae1) Tf X is not necessarily

dominant, we get the character 1o = A ) e =) o S (A=)

Lemma 4.2. For dominant X\, the character of F(SVN,[,A) equals

Z poi(Aimm) Y, Nmml(] 42 et 4.
meZ

Proof. We compute the above expression as

Zg\il Ai > Aol
% Z o Nmy— S, (—m) + Z :C*NmtAl*m*Z,N:z()\i*m)
o m:>\1 m:)\2

Anv—1
ot Z x—NmtEivl(Ai—m)>

m=—0Q

I‘Zf\]:l Ai (:U_N)‘lt Zi>1()‘i7)‘1) x_N>\1 t~ Zz>1()‘i7>‘1)

1—¢2 1— 2NN 1 — g NyN-2
D P P DI CYED W 2NN A A
1 — x~NgN-2 T 1 — g N¢+N

We combine (2r — 1)th and (2r)th terms (1 <r < N) to get

ngi()\7‘,—/\T)tzri<r()‘if)‘r)fzi>r()‘i*/\r) 1 1
1 — ¢2 1 — p—N¢N=-2r+2 | _ ,—N¢N-2r
A=A 120 A= An) =2 (A= Ar)
T (1= NN (] — g NNy

This is the contribution of p._; to the Lefschetz fixed point formula to
the Euler characteristic of £y. (The denominator is AflT;T,lgNa and the
numerator is (L£y)p, ,.) Since A is dominant, higher cohomology vanishes.
Hence this is the character of ['(Sy, £)). O

4(ii). Pushforwards of line bundles on Kleinian surfaces

For dominant A we denote by F) the torsion free sheaf Rm, Ly = m.L) on
Sn. We also set A = w|)| (moa ) Where wp := 0.
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Lemma 4.3. For dominant weight A let F be a C* x C* -equivariant torsion-
free sheaf on Sy such that the character of T'(Sy,F) coincides with the
character of I'(Sn, Fx). Then

(a) The restriction F|ss is a line bundle, isomorphic to Fy

N = Sn \ {0}.

(b) An isomorphism in (a) is defined uniquely up to multiplication by a
scalar, even if one forgets the C* x C*-equivariance.

(c) The composition of isomorphisms Flss ~ Fylss =~ Falss gives an
isomorphism ]:’5% = F\ sg, which extends to an isomorphism F = F.

sg.- Here

Proof. An automorphism of a line bundle on S3; is given by multiplication
by an invertible function on S3;. Any invertible function on S3; is constant.
Indeed, it lifts to A2\ {0} where all the invertible functions are constant.
Hence uniqueness in (b).

A torsion free sheaf F is locally free on the complement of Sy to finitely
many points. Due to the C* x C*-equivariance, F is locally free on SY.
Let us denote by j: S3 < Sy the open embedding. Then F < ji(Flsg ).
Since we know the character of I'(Sy, F), we conclude that F is generically
of rank one, i.e. F|sg is a line bundle. Now Pic(S};) = Z/NZ, and any line
bundle on S3; is isomorphic to Fy|se for i € {0,w1,...,wy_1}. Thus F —
Jx(Falss,) (if we disregard the C* x C*-equivariant structure). But any two
C* x C*-equivariant structures on the line bundle F|ss are isomorphic up
to twist by a character y of C* x C*. So we have a C* x C*-equivariant
embedding F ® x < j«(Falss ). We claim that i is congruent to A modulo
the root lattice, that is i = wjy| (moa N) = X. Indeed, we take a sufficiently
negative m in the formula of Lemma for the character of I'(Sy, F), so
that A; —m > 0 for any i. Then ) ,(\j —m) =—-Nm+ >, \;, and so |)|
(mod N) is determined from the character of I'(Sy, F).

However, F5 — js(Fylsz ) (see Lemma E below and restrict to a sub-
regular slice Sy C N). Thus we have F ® x < Fj < Fy, and we have to
check that the images of 7 ® x and F) inside F5 coincide, and x = 1. But
the character of (global sections of) F5 is multiplicity free, and the charac-
ters of Fy, ® x1, Fa, ® x2 coincide if and only if \; = A2, x1 = X2, so the
equality of characters of 7 and F) guarantees y = 1 and the coincidence of
the images of F and Fy in Fj. O
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4(iii). Line bundles on Kleinian surfaces via
homology groups of fibers

Recall the setup of and We consider the quiver gauge the-
ory of type A; with dimV =1, dimW = N with G = GL(V) =C*, G =
GL(V) x GL(W)/Z, Gr = PGL(W) = PGL(N), and varieties of triples R,
R for (G,N), (G,N) and the corresponding complex A on Grpgr(n)- See
We are interested in its costalks at the points A € Grpgr,v) where
A= (A1 > X2 >--->)Ay) is a dominant coweight of PGL(N). According
to , the costalk i!)\Afor forms a module over the algebra ibflfor. The alge-
bra i A" is nothing but the Coulomb branch H&°(R) ~ C[Sy] where N =
Hom(W, V) by [Part IT, §4(iv)]. The costalk i} .A" is nothing but HFe (R*)
where R* is the fiber of 7: R — Grg,. = Grpgr(v) over A € Grg,., see .

Lemma 4.4. The i\ A -module i\ A™" is torsion free.

Proof. Both iy A" and 4 A" are free H} (pt)-modules. So if i A™" had
torsion, then it would still have torsion after the base change to H7(pt) and
localization to the generic point of H7.(pt). However, this is impossible since
after this localization, z'!)\flfor becomes a free (rank 1) if A" -module by the
Localization Theorem. O

Recall that HE°(R) has an additional grading induced from 7o(Grg) =
7m1(G) = m (C*) = Z compatible with the convolution product (see [Part II,
§3(v)]). We also have an additional grading on HS°(R*) compatible with
the HEe (R)-module structure from mo(Grg) = 71(@G) in the same way. We
choose mo(Grg) — Z so that the connected component of R corresponding
to the m-th component of Grg goes to Zf\; 1(Ai —m). This is well-defined
as it is invariant under simultaneous shift of all A; and m.

Proposition 4.5. Under the identification ipA" = HEo(R) ~ C[Sn],
the i AP -module i\ A" = HGo(RY) is isomorphic to the C[Sy]-module
['(Sn, Fy). More precisely,

(a) The localization of i\ A™" to S, is a line bundle isomorphic to Fy|ss,-

(b) An isomorphism in (a) is defined uniquely up to multiplication by a
scalar.

(c) An isomorphism in (a) evtends to an isomorphism i\ A" —
F(SN, f,\)

Proof. By the monopole formula of [Part II, Prop. 2.7] with the convention
[Part T1, Remark 2.8(2)], the Hilbert series of the bigraded module H&° (R*)
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isY ez gD Qemm) B Neeml (] 42 gt L) By Lemma HEo (R
is a torsion-free H° (R)-module. Comparing its Hilbert series with the for-
mula of Lemma and applying the criterion of Lemma we obtain the
desired result. O

Let us write down the isomorphism more concretely when A is the n-th
fundamental coweight wp.

Recall w, y, z are identified with elements in HF°(R) as follows (see
[Part T, §4(iv)]):

e w is the generator of H (pt).
e y is the fundamental class of the fiber 771(1), where 7: R — Grg ~ Z.

e 7z is the fundamental class of the fiber 7—1(—1).

The space I‘(g N, Ly,) of sections of the line bundle corresponding to wy,
is identified with the space of semi-invariants C[A%]X» where x,(¢) = ¢". It
has a linear basis

n_m, k UN—n

u" 2" w", y"w” (m,k € Z>p),

where w = wv, z = u®, y = vV,

Let us consider a coweight (m,1,...,1, 0,...,0 ) (m € Z) of G, where
—— ——

n times N —n times
the first m is a coweight of G. Let r™ denote the fundamental class of

the corresponding fiber for the projection R — Grg. Note that the pairing
between the coweight above and weights of Hom(W, V) arem — 1,...,m — 1
(n times) and m, ..., m (N — n times). Thus we have n negative terms if
m = 0, N — n positive terms if m = 1, all negative or all positive otherwise.
Therefore

pmtl if m > 0, rm—l ifm <0,
yr’™ = ¢ w'r™tl ifm =0, 2™ = wN ™l ifm =1,
wNrm L if m < 0, wlNpm—1 if m>1,

by [Part 1T, §4]. (Note that we can replace G by GL(V) x T(W)/Z where
T(W) C GL(W) is a maximal torus of GL(W) as in [Part II, §3(ix)]. Hence
we can use computation in [Part II, §4].) Now we get an isomorphism
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i, ALr = C[A2] of C[M¢] = Cly, 2, w]/(yz = w™ )-modules by setting

k m {UN_”ym_lwk ifm >0,

unz Mk if m <0.

4(iv). Andersen-Jantzen sheaves on a nilpotent cone

We denote by N the nilpotent cone of sl. We denote by B the flag variety
of sly, and by T*B its cotangent bundle. We denote by w: T*B — N the
Springer resolution. We denote by j: Oreg < N the embedding of the regular
nilpotent orbit. For a dominant weight A = (A > -+ > A\y) we denote by
O()) the line bundle on T*B obtained by the pullback of the corresponding
line bundle on B. It is known that Jy := m.O(\) = Rm,.O(\) is a torsion-free
sheaf on N (an Andersen-Jantzen sheaf, see e.g. [BK05, Thm. 5.2.1]).

Lemma 4.6. For A € {0,w1,...,wy_1} we have J5 = j.(Txlo..,)-

Proof. We have to check that J5 is Cohen—M_acaulay. It follows from the

fact that its Grothendieck-Serre dual R, (O(—A\)) has no higher cohomology
by [BKO5, Thm. 5.2.1]. O

Recall that according to [Lus81], N is isomorphic to the transversal
slice Wév “tin the affine Grassmannian Grgrv)- Recall the factorization
morphism [T := mye; 0 sh“ s N = Wi“r — AN of [Quiver, Lemma 2.7]
(it is also called the Gelfand-Tsetlin integrable system).

Lemma 4.7. The morphism IT o m: T*B — AN“I is flat.

Proof. 1t suffices to prove that all the fibers of I] om have the same di-
mension N (N —1)/2. We recall the proof of |Quiver, Lemma 2.7]. There
the dimension estimate on the fibers of II followed from the semismall-
ness of the convolution morphism q. Under the identification N = Wév wr
the Springer resolution 7: T*B — N corresponds to the iterated convolu-
tion morphism m: Gr‘élL(N)Q o, QGr‘élL(N) — Grgp ) restricted to the slice
W(])V “1 Grgr(n)- Now the convolution morphism m is semismall, and more-
over, its composition with q is semismall as well, so the proof of [Quiver]

Lemma 2.7] goes through in the present situation as well. 0
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4(v). Andersen-Jantzen sheaves via homology groups of fibers

We change the setup of to that of According to (2.16)), the

costalk 74 A®" forms a module over the algebra i{A®". The algebra i A%
is nothing but the Coulomb branch HE(R) ~ C[N]. The costalk i} A" is
nothing but H¢° (R*) where 7: R — Grg, = Grpgr(n) and R} =771\,
see ([2.6)).

We have the LP* = PGL(N)-action on the Coulomb branch HE°(R)
by Proposition [A-3] and example [A.6] By example it coincides with the
standard action on N.

Theorem 4.8. Under the identification in AT = 0o (R) ~ C[N], the
i AP -module i\ AT = HGo (R) is isomorphic to the C[N]-module T(N, Jy).

Proof. The C[N]-module i!AAfor is torsion free generically of rank 1, see
Lemma By Proposition and example we have an action of
P = SL(N) on i\ A®". The i} A" -module i} A" is SL(N)-equivariant (un-
der the natural projection SL(N) — PGL(N)). Hence, the restriction of
the associated coherent sheaf (z’l)\Afor)loc to Oreg C N is a line bundle. Now
Pic(Qyeg) = Z/NZ, and any line bundle on Qg is isomorphic to J;|o,., for
g€ {0,wr,...,wn—_1}. Thus we obtain an embedding

BA® = TV, jx(Talo,.,)) = TV, Ta).

We claim that fi = w)\| (moa N) = A. Indeed, SL(N)-module i} A®" has the
same central character as V.

Thus we obtain an embedding i, A" < I'(N, J;). Similarly, we have an
embedding I'(V, 7)) < D'(NV, J5). In other words, denoting i}, A®"|q,_ the
restriction of (i!)\.Afor)loc to Oyeg, We obtain an isomorphism of line bundles
i\A" g, ~ Tho,.,. Note that this isomorphism is defined uniquely up to
a scalar multiplication since the automorphism group of any line bundle on
Oreg 18 I'(Oreg, O*) = C*. Indeed, an invertible function on Qe extends to
a regular function on N due to normality of /. This extended function is
still invertible since otherwise its zero divisor would intersect Qreg. Its lift
to T*B is invertible and hence constant on each fiber of T*B — B. So it is
lifted from B and hence constant.

We will show that the above isomorphism extends to A. To this end
we use the factorization morphism I7: N" — AN“T = ¢(V)/W as in [Part 11,
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Thm. 5.26] and [Part I, Remark 5.27], where t(V) is a Cartan subalge-
bra of g=gl(V), and W is the Weyl group of (gl(V'),t(V)). The condi-
tion I1.J\ = I, m.O(X) = JILmt O(N)|pege = JuIl Ix|ne of [Part II, Re-
mark 5.27] is satisfied since the complement of T*B® in T%B is of codimen-
sion 2 by Lemma (4.7} So it suffices to check the regularity of our ratio-
nal isomorphism after the base change t(V) — t(V)/W and localizations at
general points of the root hyperplanes. Moreover, since we already know
that our isomorphism is regular at Qeg, it remains to check the regu-
larity at the localizations at general points of the coordinate hyperplanes
wi, =0, r=1,...,N — 1, cf. the proof of [Quiver, Thm. 3.10]. By an ap-
plication of the Localization Theorem, just as in loc. cit., the comparison
reduces to Proposition Namely, let ¢ be a general point of the hyper-
plane w;, = 0, and let z be a point of the subregular nilpotent orbit above
t. Then there is a slice Sy C N through z such that the isomorphism of
o, and i\APT|g restricted to Sy extends to the localization (Sn):
(by Proposition . Due to the SL(N)-equivariance, the pullback of the
above isomorphism to SL(N) x §% act, Oreg extends to (SL(INV) x Sn)¢. By
the faithfully flat descent, the above isomorphism extends to N}, and hence
to the whole of N. O

4(vi). Modified homological grading

Let us write down the modified monopole formula (4.1)) in our case explicitly.
(This appeared first in [CHMZ14a, (3.9)].) It is

—

(4.9) pred (i Afery = Ztm Parv)(t, )

(the sum over the dominant coweights X = (AL, ..., AV~1) of GL(N — 1) x
- x GL(1)), where

N-1
AN AL, - AN ZZW PN =2) Y N -

7=1 2 J=1 i<e’

and we set for convenience A\’ := \. We also set n(\) = Zf\il(z — 1)A;. Then
dim Grpgr vy = {2056y A = (N = DIA| = 20(N).

Lemma 4.10. i} A®" ljves in (modified) degrees > dim GrﬁGL(N), and its
component of this degree has the same dimension as the irreducible SL(N)-
module V.
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Proof. We have to compute

One checks that this is the sum of 1’s over the set of (N — 1)-tuples X which
interlace, i.e. )\‘7>/\]+1>)\] 41 0<SJ<N-2 1<i<N-—j—1 (recall
that \0 = E| In other Words this is the cardinality of the set of Gelfand-
Tsetlin patterns of shape ), that is dim V. O

Remark 4.11. Characters of T'(NV, Jy) are given by Hall-Littlewood poly-
nomials by computation of Euler characteristic [Hes80, Bry89] and the van-
ishing theorem [Bro93]. Therefore gives a combinatorial expression of
Hall-Littlewood polynomials. We asked several people (including mathover-
flow [Nak17]) whether it is known or not. But we could not find earlier ap-
pearance. In view of the argument in the special case t = 0 in Lemma
there should be a purely combinatorial proof.

4(vii). Modified grading of Andersen-Jantzen modules

We have the dilatation action of C* on 7B and the natural C*-equivariant
structure on O(\); hence a grading on I'(T*B, O(\)) = T'(NV, J)) starting in
degree 0 with T'(B,O(\)) = (V})V. We modify the grading by doubling all
the degrees and shifting it by (V — 1)|A| — 2n()). From now on we consider
['(N, Jy) with this modified grading only.

Theorem 4.12. The isomorphism of CIN]-modules i\ A" ~T'(N, 7)) of
Theorem [4.8 is a graded isomorphism.

Proof. For A =0 the claim is nothing but [Quiver, Remark 3.13]. Clearly,
(N, Jy) is a graded SL(N) x C[N]-module; i) A™" is also a graded SL(N) x
C[N]-module by construction of Appendix [A| (see example . Both em-
beddings i\ A" — T'(V, J5) and D'(NV, Jy) < T'(WN, J5) are compatible with
the gradings up to a shift since the structure of a SL(NV)-equivariant line
bundle on J5|o,., extends to a SL(IN) x C*-equivariant structure uniquely
up to tensoring with a character of C*. The above shifts match because
both the grading of i\ A" and the grading of I'(NV,J)) start in the same
degree (N — 1)|A| — 2n(A). O

“We learned this observation in [GorlT].
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4(viii). The regular sheaf

By Lemma 4.10} the complex A belongs to pD%gL(N) (GrpGL(N)), and its Oth

perverse cohomology PHY(A) is isomorphic to

@(VA)V ® IC(@I);GL(N)) =: AR.
y

Theorem 4.13. The natural morphism o: Ar = PH°(A) — A is an iso-
morphism of ring objects.

Proof. First we prove that ¢ is an isomorphism disregarding the ring struc-
ture. We have to check 7-9A = Cone(o) = 0. Note that all the costalks of
IC(@QGL(N)) live in the degrees of the same parity as |\|, see [Lus83]|.
We will call this phenomenon parity vanishing. The parity vanishing for
A also holds true (on a given connected component of Grpgr(n), all the
costalks of AP live in the same parity as all the costalks of any IC sheaf
on this component, see ) This implies that PH°44(A) = 0, and hence
PHO4d (1. 0A) = 0. Now the Hilbert series of i!/\flfor and i!/\A R coincide by The-
orem [4.12)and the comparison of [Bry89] and [Lus83]. Hence if o were not an
isomorphism, its costalk o) would have both kernel and cokernel for some
A. Thus, Cone(o) would have a costalk of wrong parity at A. This would
contradict the parity vanishing for 79A = Cone(c). We conclude that o is
an isomorphism.

Now we compare the ring structures. Since both A and Ag are perverse,
it suffices to check that the fiber functor H®(o) induces an isomorphism of
the rings H*(Grpgr(n), Ar) and H'(GrPGL(N),.Afor). It is enough to check
the assertion for GL(N) instead of PGL(N), as Grgp,y) is the union of
copies of Grpgrn). We have H®(Grgr vy, Ar) = C[GL(N)] by geometric
Satake equivalence. On the other hand, the cohomology H*(Grgr N),Afor)
is the quotient of the equivariant cohomology HE;L( N)(GTGL( N> #A) modulo
the augmentation ideal of Hey (pt). And

GL(V)XGL(W))O(

Hep vy (Grapvy, A) = H! RGL(V)xGL(W),N)

where (GL(V) x GL(W),N) is the quiver gauge theory obtained from
(GL(V),N) by turning GL(W) to a gauge group. By [Quiver, Thm. 3.1],

HiGL(V)XGL(W))O(RGL(V)XGL(W),N) ~ C[Zoch(N+1)]
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o

where & = Naj + (N — 1)ag + - - - + ay. By [BP08, Thm. 1], ZPGL(N+1)
GL(W) x W, and its projection to Spec H(‘;L(N) (pt) is nothing but the pro-
jection of GL(W) x W to W. Hence the zero fiber of this projection is iso-
morphic to GL(W) = GL(N). O

~

5. Mirrors of Sicilian theories

In the first half of this section, we study examples of Coulomb branches Mg
of star shaped quiver gauge theories as in Figure[Il As explained at the end
of Introduction, they are conjectural Higgs branches of Sicilian theories.

Let us briefly review [MT12] on expected properties of Higgs branches
of Sicilian theories. It is conjectured that there exists a functor from the
category of 2-bordisms to a category HS of holomorphic symplectic vari-
eties with Hamiltonian group actions. For the latter, objects are complex
algebraic semisimple groups. A homomorphism from G to G’ is a holomor-
phic symplectic variety X with a C*-action scaling the symplectic form
with weight 2 together with hamiltonian G x G’ action commuting with
the C*-action. For X € Hom(G’, @), Y € Hom(G,G"), their composition
Y o X € Hom(G’, G") is given by the symplectic reduction of Y x X by the
diagonal G-action. The identity € Hom(G, G) is the cotangent bundle 7*G
with the left and right multiplication of G.

Let us fix a complex semisimple group G. Physicists associate a 3d Si-
cilian theory to G and a Riemann surface with boundary, and consider its
Higgs branch. It depends only on the topology of the Riemann surface, and
gives a functor as above. We associate S! with G, and a cylinder with T*G.
Since T*G is the identity in HS, it is one of requirements.

Physical argument shows that the variety associated with a disk is G x .S,
where S is the Kostant slice to the regular nilpotent orbit.

Let W = W¢ be the variety associated with S? three disks removed.
This is a fundamental piece as other varieties are obtained by reductions of
products of its copies. It has an action of G3 x G3. It is expected that

e W=C?0C?®C?if G =SL(2).
e 1V is the minimal nilpotent orbit of Ej if G = SL(3).

For other groups, W is unknown.

Recently Ginzburg and Kazhdan [GK]| construct a functor, and check
most of properties, in particular show that the gluing of Riemann surfaces
corresponds to the hamiltonian reduction with respect to the diagonal ac-
tion. Via a result of [Bapl5] their symplectic variety associated with S
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minus b disks is defined as

b et Spec Hg, (Grg, i!A(@zzl(ﬂR)k)),

where (AR)x is a copy of the regular sheaf on Grg. Here the complex sym-
plectic group taken as the object of the target category is GV, the Langlands
dual group. (E.g., b = 2 gives T*G".)

By Theoremtogether with We immediately get the following;:

Theorem 5.1. The symplectic variety W° of Ginzburg-Kazhdan for GV =
SL(N) is isomorphic to the Coulomb branch of the star shaped quiver gauge
theory in Figure 1) with b legs instead of 3.

More precisely, as we divide GL(V') x GL(W) by C* in we also
divide GL(V') for the star shaped quiver gauge theory also by the diagonal
central subgroup Z = C*. If we replace the central GL(NN) by SL(V) instead
of taking the quotient by Z, we get W for GV = PGL(N)H

We could consider the Coulomb branch for more general quiver gauge
theory associated with a Riemann surface with boundary as in [Nak16| 3(iii)
Figure 5| (namely we have b legs, as well as g loops at the central vertex),
which is the Higgs branch of a 3d Sicilian theory, obtained by compactify-
ing 6d N = (2,0) theory of type A by S' x (punctured Riemann surface).
Ginzburg-Kazdhan construction is also generalized. See We conjecture
that Theorem [5.1] is generalized.

Conjecture 5.2. Let W9? et SpecHE“;o(Grg,Ab ®' BI) as in §5(x)| for
GY = SL(N). Tt is isomorphic to the Coulomb branch of the gauge theory
associated with the quiver [Nak16l, 3(iii) Figure 5].

By §2§viiii it is enough to show that the complex B = B9=! intro-
duced in §5(x)| is isomorphic to the object A = m,wx[—2dim Ne] associ-
ated with (G,N) = (PGL(N), pgl(N)). We conjecture that this is true for
general G and its adjoint representation N = g. Note that we prove that
Spec H,(Grg, B) = (TY x t)/W (using Losev’s result in , which
coincides with the Coulomb branch for the adjoint representation. (See
[Part 1T, §3(x)(b)].)

The remainder of this section is as follows. In the first five subsections,
we study examples of M, in particular check two cases SL(2), SL(3) above.
These are basically applications of [Quiver] and Appendix [A] and we will

5We thank Yuji Tachikawa for an explanation of this procedure.
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not use the sheaf A. In the subsequent five subsections, we show the gluing
property and also W?=2 = T*G". They were shown in [GK], but we give
proofs for completeness. They are direct consequences of [BF08]. In §
we explain similarities between the gluing property and hamiltonian
reduction.

Let us use the following notation as in [Quiver]. Let @ be a quiver with
sets I, ) of vertices and arrows respectively. We take an I-graded vector
space V = @V, with dimension vector o = (dim V;);er. We set GL(V) =
[IGL(V;), N = N* = @ Hom(V;, V;), where the sum is over the arrows i LN
j € Q. We also take the diagonal central subgroup Z = C* C GL(V) and

set PGL(V) = GL(V)/Z. We consider the complex R = Rpgr,v),~n and the

corresponding Coulomb branch Mg = Spec(HfGL(V)o(RPGL(V)7N)).

Remark 5.3. Consider the regular sheaf Ar on Grg. In type A, it arises
as the ring object associated with a quiver gauge theory by Theorem [2.11
Using Sp/SO quiver as in [Nak16, Appendix A.2], we can conjecture that Agr
for classical groups is constructed in a similar way, once we can generalize
our definition to the case when M is not necessarily of cotangent type. For
exceptional groups, we do not expect that Agr appears in this way, as ar-
gued in [Nak16| §3(i)]. Nevertheless it is expected that Ap arises from the 3d
N = 4 quantum field theory T'(G), which was introduced in Gaiotto-Witten
[GW09]. This theory is not a usual gauge theory nor a lagrangian theory
for an exceptional group, hence is difficult to understand from a mathemat-
ical point of view. But it has a G x GV-symmetry, and its Higgs/Coulomb
branches are nilpotent cones N' and AV of G and GV respectively. The Sicil-
ian theory Sgv(g,b) associated with b punctured genus g Riemann surface
C' considered above is constructed from T'(G) by ‘gauging’ quantum field
theories up to 3d mirror:

(5.4) S (g,b) 8 TG x Hyp(g @ 0°)! # Gaing

where we use the notation # for the gauging in [Tac|. (See also [Tacl§].)
This observation was given in [BTX10]. Note that we ignore the param-
eter 7 in [Tac, §2.6]. The deformation parameter, which corresponds to
the complex structure of C, is not relevant to Higgs branches as com-
plex symplectic varieties. Hence we can safely write Sgv(g,b) instead of
Sav(C), and understand that the Higgs branch of Sgv(g,b) is the Coulomb
branch of the right hand side. A similarity between and the def-
inition W9? = Spec Hy,_(Grg, A ®' BI) is clear. We identify T[G] with
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A, Hyp(g @ g*) with B, and #Gaiag with taking Hf_(Grg,e) after the !-
restriction to the diagonal subgroup. See for a further discussion. We
thank Davide Gaiotto and Yuji Tachikawa for this remark.

5(i). Cylinder

Consider the two legs star shaped quiver gauge theory instead of three
legs in Figure [1] It is a quiver gauge theory of type Aon_1 with dimV =
(1,2,...,N—=1,N,N —1,...,2,1). We first consider the Coulomb branch
for GL(V'). By [Quiver} §3(i)], Mc(GL(V), N) is the moduli space ZDSGL(QN)
of based maps from P! to a flag variety of type Asn_1 with degree o = dim V.
By [BP08, Thm. 7.2], it is isomorphic to 7% GL(N).

Note that o =2wpy. By [Quiver, Remark 3.12], we have an isomor-
phism Zof}GL(QN) — S, NG and the natural action of Stabpgr,an) (@) =
PGL(N, N) := GL(N) x GL(N)/C* on Z§,y), where C* is the diago-
nal central subgroup of GL(N) x GL(N). It coincides with the natural ac-
tion of GL(V) x GL(N) on T GL(N) through the quotient homomorphism
GL(N) x GL(N) - PGL(N, N). By example this action coincides with
the one given in Appendix [Al More precisely the PGL(N, N) action on W
coincides with the one given in Appendix and the embedding S, N W§ —
W4 is equivariant for both actions, as it is given by [Quiver, Remark 3.11]
as Coulomb branches.

By [Quiver, Remark 3.5] H™") (R vy n) — HE ™ (Rpar)n) is
nothing but the restriction to the level set F;1(1), where F, is the boundary
function (see [Quiver, §2(i)]). In this particular case, we have F,, = cdet for
¢ € C*: all the invertible regular function on Z° are of the form cFr ke,
c € C* [BDF16, Lemma 5.4]. Now by degree reasons, det = cF,. Therefore

GL(V

HI" ) (Rparayn)) = gl(N) x SL(N).

Moreover, the morphism

HEGL(V)O(RPGL(V),N)) — HEL(V)O(RPGL(V),N))

is nothing but the projection gl(/N) x SL(N) — Lie PGL(N) x SL(XV). Iden-
tifying Lie PGL(N) with s[(N)* via the Killing form, we get

M (PGL(V),N) 2 T* SL(N).

This is the symplectic variety associated with a cylinder as expected.
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Let us check how the action in Appendix [A] is affected by the replace-
ment GL(V) — PGL(V). The semisimple Lie algebra [ remains the same:
the variety Rpgrv),n is obtained from Rqrv)n by identifying isomor-
phic connected components. Therefore the construction of [Quiver, Ap-
pendix B] applies. On the other hand m (GL(V)) = @,¢, Z is replaced by
T (PGL(V)) = m(GL(V))/Z(3_;cq, dim V; a;). The root datum is RP
71 (PGL(V)), RP*Y c 7y (PGL(V))Y. Thus PGL(N, N) is replaced by its
subgroup PGL(N,N) def. [91,92] | det g1 = det go}. We have SL(N) x
SL(N) — PGL(N, N)" with kernel Z/NZ, the diagonal central subgroup.
The standard action on 7™ SL(N) coincides with the one given in Ap-
pendix [A]

On the other hand, if we replace the central GL(N) by SL(V), the cor-
responding Coulomb branch is the hamiltonian reduction of 7% GL(N) with
respect to the C*-action corresponding to 71 (GL(N)) = Z. (See [Part II,
Prop. 3.18].) In this case C*-action is the scalar multiplication on 7% GL(N)
(IQuiver, Remark 3.2]), hence the reduction is 7* PGL(N) as expected.

5(ii). Disk

The variety for the disk is calculated as for the cylinder. We consider a quiver
gauge theory of type A with dimV = (1,2,...,N). As we remarked in the
proof of Theorem {4.13| the Coulomb branch is ZogGL(N-‘rl) ~ GL(N) x CV,
where CV is identified with the Kostant slice for GL(N), and o = (N +
1)wn. By [Quiver, Remark 3.12], we have an isomorphism ZOSGL(NH) B

So N W4 and the natural action of Stabpgr,(nv41)(a) = GL(N) on Z°gGL(N+1)
coinciding with the natural action of GL(N) on GL(N) x C¥ (trivial on CV
and by left shifts on GL(N)). By example this action coincides with the
one given in Appendix [A]

The modification to cases SL(N), PGL(N) are similar to the above.

5(iii). S? with three punctures for SL(2)

We next consider the Higgs branch of the Sicilian theory of type SL(2)
associated with S? with three punctures. The mirror quiver gauge theory is
of type Dy.

We consider the D4 quiver with the central vertex 1 and other vertices
2,3,4. We orient the edges from the central vertex. We take V; = C2, V, =
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V3 = V4 = C. The diagonal central subgroup Z = C* C GL(V') acts triv-
ially on N = @?:2 Hom(V1,V;), so the action of GL(V) factors through
PGL(V) := GL(V)/Z. We will prove Mc(PGL(V),N) ~ A8,

According to [Quiver, Thm. 3.1], M (GL(V),N) ~ Z2, the moduli space
of degree a based maps from P! to the flag variety B of the simply connected
group G = Spin(8) of type Dy. Here oo = 21 + a2 + a3 + a4 is the highest
coroot. Note that a = wy is a fundamental coweight. We also consider the
transversal slice s : 7%70 — Z% (see |Quiver, §2(ii)]; note that —wy = Id
for our G). It is the moduli space of the data (Pyiy — P) where Py, is
the trivialized G-bundle on P!, and o is an isomorphism on P!\ {0} with a
trivial G-bundle P possessing a degree a pole at 0 € P!. We consider an open
subset U C W%,o formed by the data (P, — P) such that the transfor-
mation of the (unique) degree 0 complete flag in P with value B_ at co € P!
viewed as a generalized B-structure in Py, acquires no defect at 0 € P*. We
have sg: U 4y Z*. We also have another open subset U’ C W%,o formed by
the data (Peiy — P) such that the transformation of the (unique) degree
0 complete flag in Py, with value B_ at oo € P! viewed as a generalized
B-structure in P acquires no defect at 0 € P'. This open subset U’ is noth-
ing but the intersection of Wg‘,o with the semiinfinite orbit T_, C Grg.
Since the trivialization of P at oo € P! (arising from o) uniquely extends
to the trivialization of P over the whole of P!, we obtain an involution
L WaG,O = Wgy’o reversing the roles of P and Py, and replacing o by o~ 1.
We have ¢: U — U’. Thus we obtain an isomorphism s§ o ¢: U’ — Z°.

Since « is the highest coroot, W%,O is isomorphic to the minimal nilpo-
tent orbit closure Npyin = 0U Ompin C g, see [BeiDrl 4.5.12, page 182] or
[MOVO05, Lemma 2.10] for a published account. The projectivization of
Nmin is the partial flag variety B, = G/ Ps34: the quotient with respect to
a submaximal parabolic subgroup. Thus we have a C*-bundle p: Oy —
B.. The big Bruhat cell (the open B_-orbit) C' C B, is the free orbit of
the unipotent radical Uys, of P,3,. Via the exponential map, U3y ~ U5z,
the nilpotent radical of the Lie algebra of Py3,. For the Levi subgroup
Losgq C P2t°>4 we have [L234,L234] o~ SL(2)2 X SL(2)3 X SL(2)4, and Uygy as
a [La34, Laz4)-module is isomorphic to C3 ® Cg C2oCi® Cé ® CL. Note
that the center Z(SL(2)2 x SL(2)3 x SL(2)4) = (Z/2Z)? has a natural pro-
jection onto Z/2Z (the sum of coordinates). The kernel K of this projec-
tion, as a subgroup of Spin(8), coincides with the center Z(Spin(8)). The
action of SL(2)2 x SL(2)3 x SL(2)4 on us,, factors through the action of
L234 = (SL(2)2 X SL(2)3 X SL(2)4)/K
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Finally, we have U’ = p~!(C). Thus we obtain a projection (a C*-bundle)
po(s§ou)t: 7 — C. This action of C* is nothing but the composition
of the natural T-action (Cartan torus T'= BN B_) with the cocharacter

: C* — T. The boundary equation F,: Z* — C* has weight 1 with re-
spect to C* 2% T [BF14, Prop. 4.4]. Tt follows that (po (s§ot)™!, Fy):
7% ™y O x CX. The action of Lo34 on 7% = C x C* is via the above action
on C. Note that Lsgs is nothing but [LP¥ LPa] ¢ PSO(8) of Appendix
and the action of Logqs on Mc(GL(V),N) coincides with the action con-
structed in Appendix [A] by example

Now the surjection

C[2°] = C[Mc(GL(V),N)] = HE"° (Rap iy n) = HEM° (Rparw)n)

is nothing but the restriction to the level set F; (1) (see [Quiver, Re-
mark 3.5]), hence Spec HE’L(V)O(RPGL(V)’N) ~ (. Furthermore, the embed-
ding

CMe(PGL(V),N)] = HYMYV)9 (R )
— HGL(V)O(RPGL(V),N) = C[F;'(1)]

(03

is nothing but the embedding of the ring of functions invariant with respect
to the translations action of G, on 7% Here we view G, as a subgroup
of automorphisms of P! preserving oo € P'; its action on zZe preserves the
boundary equation F® and its level set F, 1(1). In terms of the identification
F (1) ~ C ~uyy, ~ C% @ C3 ® C} & C, the action of G, is nothing but the
action of the last summand C, and hence M¢c(PGL(V),N) = F;1(1)/G, ~
C30C3®C3.

The above action of Lozs = [LP?, L] on Mc(GL(V), N) induces its ac-
tion on M¢(PGL(V),N). One can also see that Lags is the reductive group
corresponding to the root datum RP C 1 (PGL(V)), RPY C m (PGL(V))Y
via m (GL(V)) — w1 (PGL(V)) as in §5(0)

Remark 5.5. Let us give another argument, which the third named author
was taught by Amihay Hanany.

Let us consider functions EF), Fl(l) for the middle vertex 1 by Re-
mark - Since (a, a1) = 1, we have the action of G2 by integrating hamil-
tonian vector fields H B HF<1> We combine it with the action of SL(2)9 X
SL(2)s x SL(2)4. Let us consider the Lie subalgebra of C[M¢c(PGL(V),N)]
generated by E( ) F(l) (1 =1,2,3,4). Viewing (PGL(V),N) as a framed
quiver gauge theory of type A3 with dimV =121, dimW = 010, we see
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that g = dim W — C'dim V satisfies the condition (u,«) > —1 for any posi-
tive root .. Hence elements in the Lie subalgebra have either degree 1, 1/2,
or 0, and the degree 0 part consists of constant functions by [Quiver, Re-
mark B.20]. Since the Poisson bracket is of degree —1, {f, g} is a constant
if f, g are of degree 1/2.

Commutator relations in [Quiver, Appendix B] imply that E%l) (resp.
Fl(l)) is a lowest (resp. highest) weight vector in the tensor product C3 ®
C3 ® C? of vector representations. Hence we have a factorization

Mc(PGL(V),N) = A® x M{,

by Remark [A.7 But My must be a point as Mc(PGL(V),N) is 8-
dimensional. (Both E( ) and F M live in the same representation, as
Mc(PGL(V),N) Would have a factor A otherwise.)

The same argument shows that the Coulomb branch MC(PGL(V) N)
fordimV =, N1~ N1 21 isHom(CN,CN)® Hom(CY,CV), where
we have an SL( )l x SL(N )r action from the balanced vertices in the left
and right legs, and C¥, CY are its vector representations. See [MT12, (4.6)].

5(iv). S% with three punctures for SL(3)

We next consider type SL(3). The mirror quiver gauge theory is of type
affine Fg. We start with a simple observation. Let us denote by 0 (resp. 6)
a special vertex (resp. a vertex adjacent to 0) of the affine quiver of type
Ejg. This choice breaks &3 symmetry of the quiver. We have an isomorphism
[1iz0 GL(V;) = PGL(V) = GL(V))/Z. Therefore we can view (PGL(V) N)
as a framed qulver gauge theory of finite type Eg with dimV = | ,3%,,
dimW = ;4§ - Therefore its Coulomb branch is Wg¢, by [Quiver, Thm.
3.10], where G is the group Ejs of adjoint type. By [Bei]jr, 4.5.12, page 182]
(see [IMOV05, Lemma 2.10] for a published account), this is isomorphic to the
closure Npyin of the minimal nilpotent orbit Qy,;,. We have the action of G by
Proposition [A-3] which is identified with the standard one by example

The action of SL(3)? corresponding to two legs not containing the chosen
special vertex 0 is coming from the standard inclusion SL(3)? C Es. The
remaining SL(3) action for the leg containing 0 is given as follows.

First let us note that the Lie algebra [ of degree 1 elements in C[M] is
¢6, as we already know M¢c = Nyin.

Returning back to the original gauge group PGL(V) = GL(V)/Z, we
have degree 1 elements E(()l)7 Fél), HO(I) € [ corresponding to the special ver-
tex 0 by Lemma The variety of triples Rpqr(v) N is obtained from
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Rarv),n by identifying isomorphic connected components. Therefore the
constructlon of [Quiver, Appendix B] applies. The computation of Poisson
brackets {H E(l) } {H; ) F(1 } remains unchanged by the replacement
GL(V) — PGL(V) hence we conclude that E(g ), Fo(l) are root vectors cor-
responding to the highest weight of [ = ¢g. It also follows that E(g ), Fél)
together with B, Fy (1) generate an additional sl(3), and SL(3).

We have the Gs-action on M induced by permutation of three legs.
From the above consideration, it is clear that it corresponds to &3 of au-
tomorphisms of eg exchanging root subspaces corresponging to the highest
weight and two remaining special vertices. (See [Kac90, Thm. 8.6] for the
detail of the construction of automorphisms.)

5(v). Torus with one puncture for SL(3)

We consider the Higgs branch of the Sicilian theory of type SL(3) associated
with a torus with one puncture. According to Conjecture the mirror
quiver gauge theory is 1 — 2 — 3 O, where numbers are dimensions (and
we use them also for indices of vertices). Note that we have an edge loop
at the vertex 3. Let us denote the Coulomb branch of this quiver gauge
theory by M. The following result is informed to the third-named author
by Amihay Hanany. (It is based on an earlier observation in [GRI12) §2.1],
[CHMZ14b, (3.3.2)].)

Proposition 5.6. M is isomorphic to the subregular orbit closure @Subreg C
g2.

Proof. Let us first construct the action of Gs.

We consider operators Ei(l), Fi(l), Hi(l) (1=1,2,3) as in Lemma
The vertices 1, 2 are balanced, while 3 is not. But we still have deg E3 ,
F(l) =1 by [Quiver} (A.4)]. Let us consider the Lie subalgebra g of C[M]
generated by these operators. By Appendix E(I) F( ) H(l) (i=1,2)
define the Lie algebra sl(3), and the correspondlng hamﬂtonlan vector fields
are integrated to an SL(3)-action on M.

The proof of commutatlon relamons {E( ) Y = 0 {F(l) E },
(), By =0 = (1) 7D, a5y = gD, (), By = FD
in |[Quiver, Appendix B] remams to work even though 3 has an edge loop
Similarly to [KN18, Lemma 6.8] we calculate {E’é1 ,F(l)} 2(3w2 143wz 2—
= 2wy +

2wz 1 — 2ws3 2 — 2ws 3). SlnceH()—2w11—w21 wa 2 and H. %
2we 9 — w11 — w31 — w32 — w33, we conclude that {E?E1 , F 1} 4H, 1)+
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Hence g is simple of type G2 with Cartan subalgebra b spanned by

]j and H2 , and s[(3) is spanned by h and the long roots. Note that E?() )

and F?S ) generate the fundamental representations V' and V" of sl(3), and
g=sl3)aVae V.
More concretely,

F(l) =wu31 +uz2 +uz3, and

E(l) (w31 —wa1)(ws1 — w2,2)ugﬁ + (w32 —wa 1) (w32 — w2,2)u§é
+ (w33 — w21)(ws3 — wap)uzy, and

Eél) = (a1 — wi,1)(wa2 — wo1) ugy
+ (wo,2 — w1 1) (we g — wz,g)_lug’é, and

1 _
F{Y = (wy1 — ws1)(wa1 — ws2) (w1 — ws3)(waz — war) ‘ugy

+ (wa2 — ws ) (w2 — w3 ) (w22 — w3 3)(wo,1 — wa2) MUz,

while Fl( ) (wll—wgl)(wll—wgg)ul 1,and E( )—uli

Now consider an auxiliary quiver gauge theory of type D4 with 1-dimen-
sional framing at the middle vertex numbered by 2, and the outer vertices
numbered by (3,1),(3,2),(3,3). We take dim V3'; = dim V5’ = dim V5’5 =
1, dim V3’ = 2 (and dim W/ = 1). We know that MC(GL(V") N") = Niin
is the closure of the minimal orbit in sog. On the other hand, we consider a
quiver gauge theory of the affine type D4 with the extra vertex numbered
by 1, dim V; = 1, and all the other dimensions as before, but no framing.
We denote the corresponding graded vector space by V' = V" @& Vi, and the
corresponding representation of GL(V’) by N’. Then M (GL(V"),N") =
Me(PGL(V'),N’). We have an embedding

C[Mc(PGL(V'),N)]
5 C(w1,1, W21, W22, W3 1, W32, W33, U,1, U2, 1, U2,2, U3, 1, U2, Uz 3) 2
where the symmetric group Sy acts by permuting (w1, u21) and (w2 2,u2,2).
Also we have an embedding

Sa xS
CIM] = C(wi,1, w21, w22, W31, W32, W33, Ul 1,U21,U22, U3 1,U32,U33) >

where the symmetric group S3 acts by permuting (w3 1,u3,:1), (w32,u32),
and (w33, u3,3). By inspection of |Quiver} (A.3), (A.5), and Thm. B.18] we
check Fy" ='Fy", B =EY, B =B +FY) Ry, BN = EN +

§12) —|—’E§71§ where 'E,'F refer to the generators of sog in C[M ¢ (PGL(V'), N")],
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while E, I refer to the generators of go in the previous paragraph. Since the
projection M (PGL(V'),N’) = Nyin — s0s is an embedding, we conclude
that the projection M — go is generically an embedding. Hence the differ-
ential of the Gg-action on M is generically surjective, so M has an open
Go-orbit @ C M which is a nonramified cover of its image adjoint orbit
O C go.

Now the monopole formula for M gives degrees in N. Indeed, the con-
tribution of a dominant coweight \ = ()\171, )\271 > )\272, )\371 > )\372 > )\373)
of (GL(1) x GL(2) x GL(3))/Z equals A(X) = Ag2 — Aa1 + 5[Ao1 — Ara| +
%\)\272 — A1l + % Zns |A2,» — As,s| which is easily seen to be nonnegative and
integral. We conclude that M is conical, and hence its image O C go is con-
ical as well. It follows that @ is a nilpotent orbit. But go has a unique
10-dimensional nilpotent orbit: the subregular one. Hence O = Ogypyreg-

Now we have to identify the cover O — Q. It is known that the universal
cover of Qgypreg is an open piece of the minimal nilpotent orbit O, C sog,
see e.g. [BK94], and the Galois group of this cover is S3. Moreover, the
degree 1 functions on the universal cover constitute the Lie algebra sog. It
follows that if the cover @ — O corresponds to a subgroup m; C Ss, then
the degree 1 functions on @ constitute sog'. Since we know that the degree
1~funotions on M constitute go = 5053, we conclude that m = S3, so that
0= Osubreg- Finally, tEe normality property of the orbit closure @Subreg
guarantees that M — Ogsubreg- O

Note that a torus with one puncture is obtained from S? with three
punctures by gluing two punctures. We have computed the Higgs branch as-
sociated with the latter in The Higgs branch is the closure My (e6)
of the minimal nilpotent orbit of eg. Therefore the Higgs branch M for
a torus with one puncture is the Hamiltonian reduction Nyin(e6)// ASL(3)
with respect to the diagonal SL(3) in SL(3) x SL(3) corresponding to two
legs which are glued. Therefore we have an action of the centralizer of Agy,3)
in Eg, which is Gs. (See e.g., [Rub08, §3.2] and the references therein.) Com-
bining with Proposition we should have Muin(e6) // Asr3) = Osubreg (92),
the closure of the subregular nilpotent orbit of go. We do not have a proof
of this statement, though it might be known to an expert.

5(vi). Recollections on derived Satake equivalence

We consider a reductive group G with Langlands dual group ﬁv and its Lie
algebra g’. We have a commutative ring object A = @, IC(Gr?) ® (VA)* €
D¢ (Grg).
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Let e, h, f € g be a principal slo-triple such that f is lower triangu-
lar, and e is upper triangular. We consider the Kostant slice e 4 3(f) to
the regular nilpotent orbit. Let ¥ be the image of e + 3(f) under a GV-
invariant isomorphism g’ ~ (g”)*. let T be the image of e + b” (Borel sub-
algebra) under a GV-invariant isomorphism g’ ~ (g")*. We have canonical
isomorphisms ¥ = t/W = Y /U" (unipotent subgroup) by the compositions
e (¢) = (@) )GV =t/Wand ¥ — T - T/UY.

According to [BEOS, Thm. 5], there is an equivalence of monoidal tri-
angulated categories U: D" (Syml(g")) = Dg(Grg). Recall that Dg(Grg)
stands for the Ind-completion of the bounded derived equivariant constru-
ctible category on Grg. Accordingly, D¢ (Symﬂ (g)) stands for the Ind-

completion of the triangulated category Dgevrf(Sym“ (g")) formed by the G-

equivariant perfect dg-modules over Sym! (g"): the graded symmetric algebra
of g where any element of g“ is assigned degree 2 (with trivial differential).
The monoidal structure on Dg(Grg) is given by the convolution *, and
the monoidal structure on DG (Syml(g")) is My, My — M, ®gyml (gv) Ma-
The algebra C[¥] = Sym(g" )" acts on EXt*DGV(SymH(gv))(Mh M>), and this
action is compatible with the action of C[¥] = H/(pt) on

Extp, (are) (W (M1), U (Mp)).

Since D" (Symﬂ (g")) is the homotopy category of a dg-category, we have
RHom pyov (gymi gy : P (Syml(g")) x DY (Symll(g*)) — D(Vect).
The functor ! is uniquely characterized by the property that

THIC(GrY)) = Syml(g) @ V.
For F € Dg(Grg) we have [BFOS, Thm. 2J:
(5.7)  H,(Grg, F) = k(U 1(F)) i= H* (T (F) @gymi__ () CIZIT)

in the following sense. The eigenvalues of —h from the above slo-triple define
a grading of g, hence a grading of (g")* and a grading of Sym! (g"). Thus
¢’, (g)* and Sym! (¢") acquire a bigrading such that the total degree of
e is zero. We consider Sym[] (g") with the new grading given by the total
degree and denote it Symgew(gv). Now the projection Sym(g’) — C[X] is
compatible with the new grading, and induces a grading on C[X] denoted
C[x]!. Finally, we consider both Symﬂew(gv) and C[X]! as dg-algebras with
trivial differential (and zero components of odd degrees). Note that U1 (F)
is still a dg-module over Symgew(gv) due to its GV-equivariance.
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Let D stand for the duality
M +— RHomgy,,0 () (M, Sym!(g"))

in DG (Syml(g")). Let D stand for the Verdier duality in Dg(Grg). We de-
note by €gv the autoequivalence of D¢ (Syml(g*)) induced by the canon-
ical outer automorphism of GV interchanging conjugacy classes of g and
g~ ! (the Chevalley involution). We denote by Cg the autoequivalence of
D¢(Grg) induced by g+ g1, G((2)) = G((2)). Then Cgo ¥ = ¥ o €qv.
According to [BEOS, Lemma 14], we have W o €gv oD =Do WV and ¥ o D =
CaoDoW.

The following lemma is well known. (See [Gin95, §2.4]. Also the proof
of [BF08, Lemma 14] depends on it.) Let us give its proof for completeness.

Recall 1g;, denotes the skyscraper sheaf at the base point in Grg.

Lemma 5.8. CgoD is the rigidity for (Dg(Grg),*). That is, for any
F1,F2 € Dg(Grg) we have a canonical isomorphism

RHomDG(GrG)(lGrGafl * IQ) ;> RHomDG(GrG)(CG o ]D]:l, fQ)

Proof. For any group H, the convolution operation Fj x Fo = m,(F; X Fa)
on D(H) has rigidity F +— Cy o DF where Cy is induced by the automor-
phism A — A=, H — H. Namely,

RHom(1y, Fi x F) = iL(Fi x F2) = RHom(Cy, V' (Fy K Fy))
= RHom(Cy,CyF1 ®' Fo) = RHom(Cy o DFy, Fa),

where V: H < H x H is the antidiagonal embedding h ~ (R, h).

We apply this to the category of Gp-left-right equivariant sheaves on
H = Gg.

More formally, let us use the six operations for constructible derived
categories on Artin stacks. There is a reference [LO0S8] for Q;-coefficients. We
choose an isomorphism Q; = C and use it for complex coefficients. Our stack
is X := Go\Grg. It is the moduli stack of pairs Py, Py of G-bundles on the
formal disc D equipped with an isomorphism n: P1|p- — P2|p-. There is
an involution i: X — X induced by the inversion g — ¢! of Gx. In modular
terms, i(P1,P2,n) = (P2, P1,771). Recall that Grg is the moduli space of
G-bundles P on D equipped with an isomorphism o : Piiv|p- — P|p-. We
have a projection pry: Grg — X sending (P,0) to (Piiv, P, o). Similarly,
we define qrG as the moduli space of G-bundles P on D equipped with
an isomorphism 7: P|p- — Piv|p~. We have a projection pry: grG — X
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sending (P, 7) to (P, Py, 7). We have isomorphisms i: Grg — ¢rG and
i: G = Grg sending 0 to 7 = 0! and 7 to 0 = 7. Obviously, ipr; =
pryi and ipry, = pryi. There is a morphism m: grG xGrg — & induced by
the multiplication in Gi. In modular terms, m(Py, 7; P2, 0) = (P1, P2, 00 7).
The convolution on D(X) is defined as F; x Fa := m,(pr] Fi X prj F2). The
unit object 1 is Cg,\qro,- We claim that the rigidity is i* o D. Indeed,

RHomy (1, Fy * Fp) = iy(F1 * Fa)
= RHomg\Grg (Care, V' (pri* Fi K pry F2))
= RHomg\Gre, (Care, i pri Fi ®' prs F2)
= RHomg,\Gr, (i o D pry F1, prj F2)
= RHomy (i* o DFy, F),

where V: Grg — ¢rG xGrg is (i,id). O
5(vii). Regular sheaf and derived Satake equivalence

Under the equivalence W~ the ring object Ag € Dg(Grg) corresponds to
the GV-equivariant free Syml(g”)-module C[GV] ® Sym!(g") which will be
denoted C[T*GV]! for short. The GV-action comes from the left action of
GY on T*GY = GV x (§°)*, 91(g2,€) = (9192,€). And the action of Sym(g")
on C[T*GV] comes from the morphism s;: T*GY — (g')*, (g,&) + Ady¢
(the moment map of the left action). Recall that Ag is equipped with an
action of GV. Under the equivalence U1, this action goes to the action on
C[T*GV]! coming from the right action of GV on T*GY = GV x (g")*, g1 -
(92,€) = (9297 ', Ady, €). For this reason the action of GV on Ap will be
called the right action. The moment map of the right GV-action on T*GY
is s T°GY 5 (8)7, (9,€) > €.

Also note that RHomp,,(qr) (AR, AR) is a formal dg-algebra (since e.g.
C[T*GY]! is a free Syml(g")-module), so p, gives rise to a GV-equivariant
morphism of dg-algebras

(5.9) Syml (g) — RHomp,(Gry) (AR, AR)-

Altogether we have the action of GV x Sym! (g") on Ag that will be called
the right action.

Remark 5.10. For Fi, 73 € Dg(Grg) we distinguish Extp, | g, ) (F1, F2)
and RHomp, (Gr.)(F1,F2). They are isomorphic in D(Vect), the derived
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category of vector spaces, which is equivalent to Vect®, the category of
graded vector spaces. But when we consider additional structures, such as
a dg-algebra structure or a structure of a dg-module over GV x Syml (g"),
they are not isomorphic. We thus understand

Exth, (Gre) (1, F2) = H (RHomp (i) (F1, F2))-

Definition 5.11. The morphism (5.9)) Sym! (¢") = RHomp,, (Gry) (AR, AR)
induces, for any F € Dg(Grg), the composed morphism

Sym!(g") = RHomp,,(are) (AR, Ar) = RHomp,, (Gro) (AR @ F, Ag @ F)

of dg-algebras. Also, the morphism (5.9)) induces, for any F € Dg(Grg), the

composed morphism

Sym!(g") ® RHomp,, (Gre)(Care, Ar @' F)
— RHomp,, (Gro)(Ar, Ar) ® RHomp, (Gro)(Carg, Ar @' F)
— RHomDG(Grc)(CGrmAR ®! .7:)

of complexes of vector spaces. This morphism is GV-equivariant for the GV-
action on RHomp (Gre)(Cares AR ®' F) induced by the right GV-action on
Ag. Thus, the complex RHomp_ (Gr.)(Cares AR ®' F) acquires the struc-
ture of an object of DG (Syml(g")), and Exth,cre) (Care, AR ®' o) gets
upgraded to the functor

RHom p,(Gre)(Carg, Ar @' ®): Da(Grg) — DY (Syml(g")).
Similarly, the dg-modules

RHomp,, () (DAR, F),
RHomDG(Grg)(lGrc7 DAR * .7:)7
RHomp, (ary) (AR, F), ete.

all acquire the structures of objects of D (Syml(g)), and ExtD, Grg) (AR, ®)
gets upgraded to the functor

RHomp,,(are) (AR, ®): Da(Grg) — D (Syml (g").

Lemma 5.12. From Definition we obtain an action of (GV)?
Sym[](gv)@’b on RHomDG(Grc)(CGrG,A%b). The resulting dg-module over
(GV) x Syml(g)®b is formal.
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Proof. Using [BF0S8, Prop. 5] we reformulate the claim for Dg(Grg) replaced
by De, (Grgs,)- Then Ag is pointwise pure (meaning that all its costalks

are pure with respect to the Frobenius action). Hence A%lb is also pointwise

pure. Then the Cousin spectral sequence for the Schubert stratification of
®'by

Grg shows that Héofq (Grqu,AR ) is pure. Also, Ext*DG? (Grch)(AR,AR)

is pure. Now the argument of [BF08, §6.5] proves that the dg-algebra
RHomp, () (AR, Agr) is formal as well as its b-th tensor power, and the
dg-module RHomDG(GrG)((CGrG,A%b) over RHomDG(GrG)(AR,.AR)®b is for-
mal. g

The Kostant-Whittaker (hamiltonian) reduction of T*G" with respect
to the right action is T*GY/pv y = p ' (T)/UY. (We use / for a hamilto-
nian reduction in order to avoid a conflict with / for a GIT quotient.) At
the level of dg-modules, x" (C[T*GV]) := (C[u; (7)Y = Clu, L (D))l =
C[r*GV]l ®gyml._ (g+) C[2] U, tensor product with respect to the action of
the right copy of Symﬂew(gv)ﬁ (We have an isomorphism UY x ¥ — T
given by the action of UY on Y. Hence C[Y]Y~ =2 C[X]. Moreover, for any
UY-equivariant sheaf F on Y, we have FU~ = F |s. Similarly, for a UY-
equivariant dg-module M over C[Y]! we have MU~ = M Rcpryn C[E] 0.) This
is an object of DG (Syml(g")) (with respect to the residual left action of
GY) corresponding under the equivalence ¥~! to the dualizing complex
war. [BFOS, Prop. 4]. (In fact, [BF08, Prop. 4] is proved for the extra equiv-
ariance under the loop rotations.) Instead of wg,, = ¥ (k" (¥ 1AR)), we will
write wgr, = K" (AR) for short.

Under the dualities D, D we have DC[T*GV]l = C[T*GV]ll, while DAg =
CcAR.

We define @ := Cgvo U~ !: Dg(Grg) — D (Syml(g")). We have
d(Ag) = C[T*GV]l.

Lemma 5.13. (a) Let us define a functor Ext}, (AR, ®): Dg(Grg) —
D(Vect) = Vect®" by

Ext (are) (AR, F) i= @ ExtBG(GrG)(IC(@’\) ® (VM*, F).
A

6Passing to cohomology, we obtain the usual hamiltonian reduction:
H*(k"(C[T*GY]N) = C[T*GY] ®sym(gv) C[E] = & (C[T*GY]).

We use the same notation x” for the hamiltonian reduction of the usual modules
and of dg-modules. It is clear from the context which one is used in what follows.
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gether with CeDAR = Agr (see Lemma . Then both EXt*DG(GrG)(‘AR7 o)
and Extj)g(GrG)(lng,.AR * @) are canonically isomorphic to the composition
Forg oW1, where Forg is the forgetful functor D (Syml(g")) — D(Vect) =
Vect®'.

Their upgrades RHomp_ (qr,)(Ar,®) and RHomp_ (o) (1are, AR * @)
Dq(Grg) — D (Syml(g")) (see Definition are canonically isomor-
phic to U1,

(b) For Fi,F2 € Dg(Grg), there are canonical isomorphisms

It is canonically isomorphic to ExtBG(Gr (1Gre, AR * ®) by the rigidity to-
!l

H, (G16, Fi @' Fo) = Bxth, (qro) (Corg: F1 €' F2)
= Exti (aro) (DF1, F2)
= EXt*DG(GI‘@)(]'GrG’CGfl *.FQ)
in D(Vect) = Vect®".

(c) Let us define a functor Ext}, g, ) (DAR, ®): Da(Grg) — D(Vect) =
Vects" by

Ext} ro) (DAR, F) = ED Bxth, (r) IC(GPY) @ VA, F).
A

It is canonically isomorphic to Ext’f)g(Gr (1Gre,CaAR x @) by the rigidity
together with CaAr = DAR (see Lemma . We have canonical isomor-
phisms

FOI'g O(I)<.) ;> EXt*DG (Gre) (]—Grc 3 CG‘AR * .)

(—;)> EXt*DG (Grg) (ID).;LPE7 .)

(—Z)> EXtBG(GrG)(CGrc7‘AR ®! .)

of functors Dg(Grg) — D(Vect) = Vect®" .
The upgraded functors (see Definition

® = RHomp,, (Gro)(1are, CaAR * @)
= RHomp,, (Gry)(DAR, @) = RHomp,, Gry)(Care, Ar ®' °)

are isomorphic as functors from Dg(Grg) to DG (Syml(g")).

Proof. (a) We consider C[T*GY]! as a G x GY-equivariant (Syml(g"),
Symﬂ (g")) bimodule by the left and right action. We have the canonical
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matrix coefficient morphisms

(5.14) M — RHom e

PMm

Sym!
where GV x (Syml(g")) acts on C[T*GV][ by the left action, and the right
hand side is regarded as an object in D" (Sym” (g)) by the residual right
action on C[T*GY]l. Here @), is defined as follows: Given a GY-module
M, we have @)1 M @ M* — C[G] by @y (m @ m*)(g) := (gm,m*). Tt is
a morphism of GV x GV-modules. By swapping M* to the target, ¢,, can
be viewed as a morphism ¢y : M — Homgv (C, C[GY] ® M). The morphism
@p is an isomorphism. One can think about it as the usual fiber functor
Forg on Rep(GY) being represented by C[GV]. Its inverse cp]T/[l is given by
the evaluation C[GY] — C at g = 1. We consider this over Sym! (g") to get
. We now apply the derived Satake equivalence. We get

UH(F) 5 RHompev gymi gy (Syml ("), CIT*GY)0 @ w1(F))

Po—1(F)
= RHomp, (Gro)(1Gres Ar @ F).

The second isomorphism holds since the construction of ¥~! actually passes
through dg-categories (as opposed to being defined at the level of derived
categories), and is compatible with the action of the formal dg-algebra
Syml(g”). We have an isomorphism

RHomp, (Gry) (AR, ®) = RHomp, (Gro)(1Gre; AR x @)

by the rigidity plus Ar = Cq o DAR.

(b) The first isomorphism is the rigidity for the monoidal category
(Da(Grg), ®'), while the second is for (Dg(Grg), ). See Lemma

(c) The first isomorphism is a consequence of (a) together with DAg =
CcARr. The second and third are nothing but (b). In order to see that the
second and third isomorphisms are upgraded to RHom, we observe that
quasi-isomorphisms

RHomDG(GrG)(lGrcacGﬂR * 0) ;> RHomDG(GrG)(DﬂR, 0)
— RHomp,, (Gro) (Care, AR @' @)

are compatible with the action of G¥ x Syml(g). O

Let us suppose F € Dg(Grg) is a ring object, i.e. it is equipped
with a commutative multiplication homomorphism mx: F*x F — F. Then
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U—1(F) e DC (Sym“ (g")) is also a ring object, i.e. it is equipped with
U= (mz): UH(F) ®gyml (") U—Y(F) - U~1(F). The same is true for ®.
On the other hand, RHomp,, (Gr)(1Gre s Ar * F) = RHomp,, (ar) (AR, F) in
Lemma [5.13|(b) is equipped with a multiplication by mz and myu,, (equiva-
lently, a coproduct CaDmg,,: Ar — Agr x Agr). Similarly,

RHomDG(GrG)(lGrc’CGAR *]:) = RHomDG(GrG)(DﬂR, .7:)

in Lemma [5.13c) is equipped with a multiplication by mz and Comu,, :
CcAr*CoAr — CaAr (equivalently, a coproduct Dmy,: DAr — DAR %
DAR). Finally, a multiplication on RHomp,, o) (Cares Ar ®' F) is defined
as in Proposition [2.22]

Proposition 5.15. (a) Multiplications on ¥~'(F), RHomp, Gre) (AR, F)
and RHomp, (Gro)(1cre, Ar* F) are equal under the isomorphism in

Lemmal[5.15(a).

(b) The same is true for

O(F), RHomDG(Grg)(lGrgyCG-AR*f),
RHomp,, ) (DAR, F), and
RHomDG(Grc)(CGrgaAR ®' f),

under the isomorphisms of Lemma[5.13(c).
Proof. (a) The isomorphism
RHomDG(Grc)('ARa ]:) = RHoch(Grc)(lGrc,AR * ]:)

is given by the rigidity, and respects the multiplication by definition. There-
fore it is enough to check the compatibility under the isomorphism W1 (F) &
RHomp,,(Gry)(1are, Ar * F). This isomorphism is nothing but ¢y (where
M = U~Y(F)) in (5.14) under the derived Satake equivalence. Therefore it
is enough to check that ¢y respects the multiplication when M is an alge-
bra in the category DS (Syml(g*)). This is trivial as ¢,; is given by the
evaluation evy: C[GV] - C at 1 € GV.

(b) Applying (a) to CqF, we see that the multiplications on ®(F) and
RHomp, (Gro)(1Gre; CaAr * F) = RHomp, ) (DAR, F) are equal under
the isomorphisms of Lemma [5.13|(c). It remains to compare them with the
multiplication on RHomp,, (Gr)(Cars, AR ®' F) defined in Proposition M
as the composition
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RHomDG(GrG)(CGrca-AR ' F)® RHong(Grg)((CGrG,.AR ' F)
— RHOmp, (Gr,) (Caro, (Ar &' F) x (Ag @' F))

RHomp,,(Gre) <CGrG7 (AR *AR) ® (]:*]:))
% RHomp,, (Gre) (Care, Ar @' F).
Note that
RHomp,, Grg) (DAR, F) = RHomp, (Gre) (Carg, RHom(DAR, F)).

Recall that the convolution product * is defined as m.(¢*)~1p*, see ,
where we omit ~ for brevity. Since p and ¢ are smooth with fibers both
Go, we have (¢*)"'p* = (¢')~'p". By [KS90, (2.6.24)] for m, and [KS90,
Prop. 3.1.13] for P, ¢, we have a natural homomorphism

(5.16) RHom(DAR,F)* RHom(DAR, F) — RHom(DAgR * DAR, F x F).

Hence we have the multiplication on RHomp,, () (Care, RHom(DAR, F))
by mzr and Dmy,,. Then the isomorphism

RHOH]DG (Grg) (D‘ARJ f) = RHomDG(GI‘c;) (CGTG ) RHOTTL(DAR, f))

is compatible with the multiplication.

Now our remaining task is to check that the isomorphism Ap ®' F =
RHom(DAR, F) (see [KS90, Prop. 3.4.6]) is compatible with the multipli-
cation. Since the following diagram commutes:

1
ma,® msz

(Ap *ARg) @' (Fx F) Ap &' F

| |
RHom(DAg + DAR, F x F) —2248 patom(DAR, F),

the proof is reduced to the commutativity of

(5.17)

(Ap @ F) % (A &' F) (A *AR) @ (F F)

| |
RHom(DAg, F) « RHom(DAg, F) —— RHom(DAg +DAg, F * F).
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Recall that horizontal arrows in @ are defined as composite of homomor-
phisms for p', ¢', m, under « = m,(¢')~'p'. Thus the commutativity follows
from compatibilities of homomorphisms for p', ¢', m, under the isomorphism
[KS90l Prop. 3.4.6]. We leave the reader to check the detail. O

5(viii). Hamiltonian reduction

The right Kostant-Whittaker reduction of Ap = W(C[T*GV]!) equipped with
GV-action is a particular case of the following construction.

Let G be a commutative ring object of D& (Sym“ (g")) equipped with an
action of an algebraic group H. Let h be the Lie algebra of H. Let Sym“(f))
be the symmetric algebra of h equipped with a nonnegative grading (not
necessarily the standard one, nor the doubled standard one) and viewed as
a dg-algebra with a trivial differential. Let

p*: Symll(h) — RHom pov (gymi (g1 (95 G)

be an H-equivariant homomorphism of dg-algebras such that the multiplica-
tion morphism m: § ®gy,0(4) 9 — § is H-equivariant and Symﬂ(b)—linear.

In all the examples below the following property holds: after applying the
forgetful functor and taking cohomology and their spectrum, Spec H*(Forg 9)
is equipped with an H-invariant symplectic form, and p* is compatible with
a moment map u: Spec H*(ForgG) — b*.

Given an H-invariant subvariety X C h* such that the projection
Sym(h) — C[X] is compatible with the grading Sym[](h) and induces the
grading C[X]!, we define §J/(H, X) := (S ®gymi () C[X] 1Y This is a com-
mutative ring object of D& (Syml(g")). If X = {0} C b*, we simply write

§)/H for §)JJ(H,{0}).
5(ix). Leg amputation

Following Proposition we consider a commutative ring object A® :=
i\ (8 _, (AR)k) (in particular, the ring object associated with S? with three
punctures is A? in our present notation). According to Appendix Ab
is equipped with an action of SL(N)® = (GY)?. More generally, we con-
sider a commutative ring object A’ := ih(&zzl(‘AR)k) on Grg equipped
with an action of (GVY)? for a reductive flavor group G. We set Wg =
Spec Hf,  (Grg, AY). We conjecture that HE (Grg, AY) is finitely generated,
which we checked so far only in type A. We assume it hereafter. Then Wg is
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an affine variety with Poisson structure equipped with a hamiltonian action
of (GV)®. In particular, WEGL( ) is W of the beginning of current 31
Also, W& = T*GY since C[Wg] = Forgo®(Ap) = C[T*G"], see Lemma
5.13{(c).
According to Definition [5.11] we have the action of b copies of
Syml (g") on A’. We can consider its Kostant-Whittaker reduction }(A?) =
5 (viii)|)

AY @gomi gy CIZ U with respect to the last copy of G¥ in (GY)? (cf. §
More precisely we apply ¥ to (U LAY) = (I~1AY) ®gymi,_(g) C[E]V.

Lemma 5.18. &} (A%) = A*L.
Proof. We have
kh(A®) = Kp(ia oy (AR)k)) = K] (ia (A" R AR))

= in(AT R KT (AR)) = iN(A T Rwar,)
= A

Indeed, rj(e) = o ®gin1 (o) C[Z] ' (with respect to the action of the b-

th copy of Symﬂew(gv)). In the third equality we use that for F = A"l ¢
Dg(Grg) and F'=Ap € Dg(Grg) with a dg-algebra A = Syml(g)
equipped with a homomorphism to RHom DG(GrG)(]:/ ,F'), and a dg-module
M = C[x]l over A, we have (F ® F') @4 M = F @ (F ©4 M) by associa-
tivity of tensor product. This equality is compatible with the commutative
ring structures by the construction in Proposition (the reduction r} (A®)
carries the induced ring structure by the explanation in since the
multiplication m: Ar x Ap — Ap is Sym! (g”)-linear for the right action of
Syml(g") on Ap = w(C[T*G]!).) O

Corollary 5.19. ry(W2) =W

Proof. We have to check that k;, commutes with Héo(Grg,o). After ap-
plying the derived Satake equivalence we have to check that x; commutes

with «!. Recall that k'(e) = H*(e Ogymll_(g¥) C[x]!) (with respect to the
action of the left copy of Symgew(gv)), while k% (e) = ® gyml (gv) c!

(with respect to the action of the b-th right copy of Symﬂew(gv)). We have
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LAY € DED" (Syml ((g)P0*1) (one left structure and b right struc-
tures). We assign number 0 to the left structure. Then

C[Wg’_l] <(\II 1(Ab) ®b Symgew(gv) (C[E][]) ®0 Symgew(g\/) (C[E] H)
= 1" (¥ (A") ©, symi,. (¢ CIZID) ©, sym () CIEI)
= H* ((\I' LAY ) ®, symll._ () (C[Z][])> ®, sym(g’) C[Z]
= rp(C[W)).

The third equality (commutation of taking cohomology and tensor product
with a 4 SymgleW (g”)-module) is clear for free modules, and then for perfect
complexes by devissage, and then for Ind-perfect complexes since cohomol-

ogy commutes with direct images. O

5(x). General surfaces for arbitrary reductive groups and fusion

First we study the case of cylinder and give another explanation of the
identification W2 = T*G".
We consider the equivalence

URE: DX (Syml(g @ ¢)) = Daxa(Gra x Gra).

Under this equivalence, the ring object Ar K AR € Dgxa(Grg x Grg) cor-
responds to the GY x GV-equivariant free Syml(g’ @ g*)-module C[GY x
GV] @ Syml(g" @ g*) which will be denoted C[T*GY x T*GV]! for short. It
is equipped with the right action of GV x GV with the right moment map
(try ). The hamiltonian reduction with respect to the diagonal right action

(T*GY x T*GY) J) Agv == Spec (Cl(r, i) "' (Agvy-)]2¢Y)
= (Nra Mv")il(A(gV)*)//AGV

(the categorical quotient is the set-theoretical one, as it is with respect to
the free action of GY) is nothing but T*G"Y equipped with the residual
left action of GV x GV (h1,h2)(g,&) = (haghy ', Ady, €), and the equivari-
ant morphism to (g")* @ (g")*: (9,&) — ({,Adg&). Note that the natural
projection C[T*GY x T*GY] — Cl(pr, ftr) "' (A(gvy-)] is compatible with the
grading of C[T*G"Y x T*G"], and so it induces a grading on the target, to be
denoted C[(ur, ur)*l(A(gv)*)]“. This in turn induces a grading on the Agv-
invariant subalgebra, to be denoted C[T*GY x T*GY [ Agv]l. Viewing it as
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a GY x GV-equivariant graded module over Syml(g’ & g') (with zero differ-
ential) and taking its free resolution, we obtain the same named object of
DG (Symll(g @ ¢7)). We will denote ¥ R W (C[T*GY x T*G" ) Agv]l)
by Ar X Ag/J/Acv € Daxa(Grg x Grg) for short, cf.

Now U (AR Ag) =C[T*GY ! &g 0y CIT*GVIU, and W~ (IC(GrYy))
= Symll(g"). Hence, W = Spec H,_(Grg, A?) = (T*GY x T*GV) [/ Agv =
T*GY. The action GY x G¥ on W§ is the natural action of G¥ x GV on
T*GV: (h1,hg) - (g,€) = (haghy', Ady, €); in particular, the diagonal action
of Agv is the adjoint action h(g,¢) = (hgh™!, Ady, €).

We denote A% JJAgv by B € Dg(Grg). We have

H (Grg, B) = HE,_ (Grg, A?) JJAgv = C[(T*GY) J| Agv] = C[TY x §".

Here the last equality is a multiplicative analog of the isomorphism (gV x
") Agv = (£ x t¥)/W [Jos97] due to I. Losev. Its proof is given in §5(xiii)|
below. More generally, we have

HE, (Gra,in (AP R B)) = C[WEH2 AL

_ b Lb 2 b+v1.b+2
= Cl(py ™ )~ (A Pe

where Algvl’bw
in (GV)IH_Q.

We denote BY := i\ (X]_ By) € Di(Grg). Then Spec HE (Grg, A @'
BI) is an object of HS associated with a surface of genus g with b punctures.
Now we turn to the study of fusion of surfaces.

stands for the diagonal in the product of the last two copies

Proposition 5.20. Let Alg@bz denote the diagonal action of the bi-st and
ba-nd copy of GV on Wg} X Wg?. Then Wgﬁbrz = (Wg} X Wg?)///AISQbQ.

Proof. We have

CWe 2] = HE, (Grg, A" 1 @ A%
- EXt*DG(GrG)(]'GTmCG‘Ablil *‘AbQil)
= Bxthov symi(g)) (Symﬂ (), Cav (A" Osyml (gv) ‘P_l(ﬂbrl))
= EXt*DGV(Sym“(gV)) (Symﬂ (g), (I)(Abl_l) Dgymll (g¥) Cqu)(ﬂlh_l)) :

(the second equality is Lemma [5.13(b)).
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Now EXt*DGV (Sym“(gv)) (Sym[] (gV)7 @(‘Alh—l) ®Sym[](gv) eGV‘b(.Abz—l)) is

the hamiltonian reduction
(AP R EE®(A”=) JJAgy

of ®(A 1) K ¢qv®(AP~1) with respect to the diagonal (left) action of GV.
According to Lemma [5.13(c) and Lemma

®(A*!) = HE, (Grg, Ap ® A*!) = HE, (Grg, A”) = C[WE],

and the left GV x Syml(g’)-module structure in the LHS coincides with the
right G x Syml(g")-module structure in the RHS (with respect to the last
copy of G¥ x Symll(g*)). This completes the proof. O

Remark 5.21. The same argument shows that

H¢, (Grg, Ay ®' Ag) Hg, (Grg, Ar ®' A1)
® Cav HE,, (Gra, Ar @ As) [/ Ay

for ring objects A1, Az in Dg(Grg).

The natural action of Hf,_(pt) ® HE  (pt) = C[X] I'® C[x]! on the RHS
factors through the multiplication homomorphism C[]! @ C[2]l — C[x]l,
and the resulting action of H¢,_(pt) = C[¥] I'in the RHS coincides with its
natural action in the LHS.

Remark 5.22. The results of have their quantum counter-
parts if we consider an extra equivariance with respect to the loop rota-
tions. They are based on the equivalence of monoidal triangulated categories
D (U (g)) = De, wex (Grg) [BFOR, Thm. 5] (recall that Dg(Grg) is a
shorthand for the Gp-equivariant derived category DGO(Grg%). In particu-
lar, the regular sheaf Ar € D¢, «cx (Grg) corresponds to U,g (g7) x C[GY].
For a loop rotation equivariant ring object A € D¢, xcx (Grg) one can con-

sider the loop rotation equivariant cohomology ring H¢,_, cx (Grg, A). Sim-
ilarly to Remark we have

H(oncx (Grg, Ay ®' Ag) = HEOX](CX (Grg, Ar ®" Air)
® CovHE ox (Gra, A @' As) ] Agv
(quantum Hamiltonian reduction) for ring objects Ay, A2 in Dg, wex (Grg).

In particular, we set C,[Wg] := HE e (Grg, A%), a quantization of
C[WE]. Then Cy[WaT0272) = (CHWE] @ CRWE]) J) Acw -
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5(xi). Gluing construction vs hamiltonian reduction

Let us slightly change the point of view to our gluing construction
so that it formally looks similar to a hamiltonian reduction.

Let A be a commutative ring object on Grg. Let G’ be a subgroup of
(G, which is also reductive. We have an inclusion i: Grg: — Grg. Then

The !-pull back i'A is a ring object on Grgy.

When A arises as m,(wr[—2dim Np]) from a representation N, i'A is the
ring object associated with N viewed as a representation of G'.

Next suppose we have a homomorphism G — G” to another reductive
group G”. We consider the induced morphism p: Grg — Grgr, which is
equivariant under the induced group homomorphism Go — G¢,. Then

The pushfoward @,«.A is a ring object on Grg-.

Here @+« is the general pushforward as in The construction of
is an example of the pushforward, where G, G here are G, G there, and
A € D¢ (Grg) here is the ring object on D (Grg) associated with a repre-
sentation N of G there. When G” is the trivial group, the pushforward is
nothing but taking the cohomology H¢, (Grg,A). In physics terminology
this operation corresponds to the gauging with respect to the kernel of the
homomorphism G — G”.

Note that this construction is formally similar to a hamiltonian reduc-
tion: suppose that we have a hamiltonian G space X. We take a hamiltonian
reduction X /G’ with respect to a normal subgroup G’ <G. Then X /G’ is
a hamiltonian G” = G/G’ space. This is not just an analogy if we consider
gauging in quantum field theories: The Higgs branch of a gauge theory asso-
ciated with (G,N) is the hamiltonian reduction N & N*//G. (See [Tac| for
a review for mathematicians.)

As an example of the similarity, let us consider which we regard as a
quantum field theory upgrade of the definition W9 = Spec H, Go (Gra, Ab @'
BY). Let us consider the Coulomb branch of the left hand side, which should
be equal to the Higgs branch of the right hand side. Under the gauging #,
the Higgs branch is replaced by the symplectic reduction as we have just
mentioned. Hence we get

MC(SGV (C>) - Ng X (g @ g*)g///Gdiaga

where N is the nilpotent cone of G, and g & g* is symplectic by the natural
pairing. Thus the Coulomb branch M¢(Sav(g,b)) is the ‘additive version’
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of the G-character variety on the punctured Riemann surface C, where the
monodromy around punctures sit in the regular unipotent orbit. When G
is of type A, this is the Higgs branch of the quiver gauge theory associated
with the quiver [Nakl6, 3(iii) Figure 5]. See the references therein to see
why it is an additive version of a G-character variety.

5(xii). Gluing in the Higgs branch side

Let us pursue the analogy between the gluing construction and hamiltonian
reduction further. Let us consider a ring object associated with Sg(g,b) in
the Coulomb branch side instead of the Higgs branch side. It is the Higgs
branch ring object associated with the right hand side of after exchang-
ing G and GV. Hence it is

Aso(on) = Bhei (Ar)r BRI, Sym(g¥ & (g¥)" )uff Acv,

where Sym(g" @ (g¥)*) is considered as a ring object on the affine Grassman-
nian Gryy for the trivial group {e} with the diagonal G'-action. Therefore
Asg(g,p) 18 @ ring object in Dgsv(Grge). Since Proposition is a conse-
quence of an upgraded equality in quantum field theories (due to Gaiotto
[Gail2]), we have the corresponding property also for Ag (g4 It is nothing
but the following:

Proposition 5.23.

|
Pl b0z (ASG(ghbl) X ASG(92,52)) = ASG(91+92751+b2*2)7

where (&) iab bs (§r1"lg+l’2_1 — Grlg X Glflé2 1s the product of the evident map
Grlé}errQ = Grlrgf1 X GrrbGr1 and the diagonal embedding Grg — (Grg)?
of the last factor to the product of the byst and the band factors, and (b)
p: (Grg) 02— — (Grg)h+b2=2 is the projection given by forgetting the last
factor.

Proof. Let us identify gV and (g¥)* by a non-degenerate invariant form. Let
us consider

(T*GY)" x (g" x V) J A
=T"GY x - xT'GY x (g x g") x -~ x (g7 x g") [/ Apv,

. Vv
b times g times
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where A7, is the diagonal subgroup acting on T*GY x --- x T*G" by the
right action, and on (g¥ x g¥) x --- x (g x g) by the adjoint action. The
dg-version of its coordinate ring is \Ilfl.ASG(g’b). It is isomorphic to (T*GY)b~1
x (g¥ x g")? by

(91,81, 96, &b 11, C1s - - -, Mg G

= (91560 -+ Gpm15 §b1 M1 Kl -5 Tl Cg)
gh=0k9 s &=Adg &G (k=1,...,b—1),
m=Adg,m, (=Ad,¢ (I=1,...,9).

The left (GV)’-action on (T*GY)® x (g x g)9 /AL, is identified with the left
GY-action (and the trivial action on (gV x gV)9) for the first (b — 1) factors,
but the last factor acts by

(T*G¥)" ™" 3 (91, €0, Gh1, 1)
= (gllhb_lv Adhb 51? v 791,;71hb_17 Adhb 5{)717 Adhb 77;7 Adhb Cl/)

for hy € G. The corresponding moment map is also the standard one for the
first (b — 1)-factors, and the last one is

g
R A /N ]

=1

This is nothing but the restriction to the diagonal subgroup of the product
of the right action and the adjoint action.

Now by Lemma [5.13(b) and Lemma Pain (Asg(gr60) B AS, (g2.b2))

goes to
EXt*DGV(Sym(gv))(Sym[] (g\/)7 6Gv\1171"45G(gl,bl) ®Sym“(gv) \IjilASc(gz,bz))’
under the derived Satake equivalence. Here gV is the Lie algebra of the

diagonal subgroup in the product of last factors of (GV)b and (GV)2. Tt is
equal to

CUT G 772 (g x )2 ) A7)

by the above computation. This is nothing but \IlflAsG(gﬁgz’leer_z). O
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5(xiii). Hamiltonian reduction of T*G with respect to the
adjoint action

Let G be a connected reductive group over C and let g be its Lie alge-
bra. Consider the adjoint action of G on itself and the induced Hamilto-
nian action of the cotangent bundle T*G. Using a non-degenerate invariant
form we identify g with g*, this gives rise to an identification T*G' = G X g
(with the diagonal action of G). The moment map p: T*G — g becomes
(g,2) = Adgz — z. Tt follows that p~1(0) = {(g,7)| Ad,x = z}. Consider
the Hamiltonian reduction y~1(0) /G with the reduced scheme structure.

Now consider T*T =T x t. We have a natural morphism of varieties
Y: (T x t)/W — pu~1(0) /G induced from T x t — G x g.

Proposition 5.24 (I. Losev). The morphism ¢: (T x t)/W — u=1(0) )G
s an isomorphism of varieties.

We can consider the analogous situation for the Lie algebras: we have
the moment map p: g2 — g, (z,y) — [z, y]. In this situation, a direct analog
of Proposition is known thanks to [Jos97]: we have 2/W — 1=1(0)/G.
In particular, the variety p=!(0)/G is normal. B

Proof. The proof is in several steps.

Step 1. Let us show that 1 is a bijection. The variety p~1(0)/G param-
eterizes the closed G-orbits in p=1(0) = {(g,x)| Ady x = z}. It follows easily
from the Hilbert-Mumford theorem that the orbit G(g,z) is closed if and
only if both g,x are semisimple. Also any G-orbit of semisimple commut-
ing elements (g, x) intersects T' x t in a single W-orbit. The claim in the
beginning of the step follows.

Step 2. We claim that it is enough to show that x~1(0)/G is a normal
algebraic variety. Indeed, any bijective morphism to a normal variety is an
isomorphism. The normality of x~1(0)/G will follow if we check that the
formal neighborhood of every point in x~!(0)/G is normal. In order to do
that we will describe the formal neighborhood using a version of a slice
theorem for Hamiltonian actions on affine symplectic varieties, see, e.g.,
[Los06] (in that paper complex analytic neighborhoods were considered, but
the result carries over to the formal neighborhood in a straightforward way).

Step 3. Let us recall the slice theorem. Let Y be a smooth affine sym-
plectic variety equipped with a Hamiltonian action (with moment map pu)
of a reductive group G and let y € Y be a point with closed G-orbit. Let us
write H for the stabilizer of y in G. The normal space T,Y /T,Gy can be
decomposed as h @ V, where V is a symplectic vector space with H acting
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on V by linear symplectomorphisms. Then the formal neighborhood of Gy
in Y is G-equivariantly isomorphic to the formal neighborhood of the zero
section in G x# (b~ @ V). An isomorphism can be chosen to be compatible
with symplectic forms and moment maps. In particular, the moment map
i G < (ht @ V) — g is the unique G-equivariant map that on the fiber
bt @V over 1H is given by u(z,v) = 2z + pg(v), where pg: V — b is the
standard moment map for a linear symplectic action. In particular, we see
that the formal neighborhood of Gy in ~1(0) /G is isomorphic to the formal
neighborhood of 0 in x;'(0)/H.

Step 4. Consider Y =G x g and y = (g,0) for a semisimple element
g € G. We can identify T),Gy with {Adgz —z|z € g} so T,Y /T, Gy =h S g
and H = Zg(g). We conclude that V = h @ h with diagonal action of H.
By [Jos97], we see that u7;'(0)/H is normal. So the formal neighborhood of
G(g,0) in p=1(0) /G is normal, equivalently, G(g,0) is a normal point.

Step 5. To finish the proof note that C* acts on x~'(0)/G, the action
is induced from the dilation action on g. This action contracts p~1(0)/G
to GJ/G. Since the points in the latter are normal, p=1(0)/G is a normal
algebraic variety. O

Appendix A. Group action on the Coulomb branch

In this section we give a proof of the expected property [Nak16, §4(iii)(d)],
using an idea of Namikawa [Nam18]. See also [CHLZI7] [

A(i). The degree 1 subspace

Let us consider the C*-action on the Coulomb branch M¢ given by A(\)
as in [Part II, Remark 2.8(2)]. Recall that the C*-action is shifted from one
given by the homological degree by a hamiltonian action. In particular, the
Poisson bracket { , } is of degree —1 as in [Part I, §3(vi)].

Consider the subspace [ of degree 1 elements in C[M¢]. It forms a Lie
subalgebra under the Poisson bracket { , }. Then C[M¢] can be considered
as a representation of this Lie algebra [ by the Poisson bracket: {f, e} (f € [).
If we restrict it to the regular locus of M, it is nothing but the hamiltonian
vector field Hy associated with f € [ by the symplectic form. The action
preserves the Poisson bracket and the degree. In more geometric term, Hy
preserves the symplectic form and commutes with the C*-action.

"The third named author thanks Amihay Hanany for his explanation of the idea
to use the Lie algebra of degree 1 subspace.
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Remark A.1. Namikawa [Nam18] shows that M is the closure of a nilpo-
tent orbit if C[M(] is generated by [, under the assumption that M¢ has
symplectic singularities. In this case [ is the Lie algebra of Aut®" (M¢,w),
the group of C*-equivariant symplectic automorphisms of M¢c. We con-
jecture that this statement is true for general M. Namikawa’s argument
works in much more general cases without the assumption that the coordi-
nate ring is generated by [E| But we are not sure as we do not know M has
symplectic singularities, and the C*-action is not conical in general. These
seem essential in Namikawa’s argument.

A (ii). Balanced vertices in quiver gauge theories

Let us take a quiver @ = (Qo, Q1) and two Qp-graded vector spaces V =
PV, W=W, We consider the associated quiver gauge theory
(GL(V),N) as in [Nakl16l §2(iv)] and [Quiver} §3], i.e.,

GL(V)= [[ GL(Vi), N = P Hom(Vy), Vin) & @ Hom(W;, V3).
i€Qo heQ i€Qo

In order to treat a group action on a line bundle in [Part II, §3(ix)] and
we also consider a larger symmetry group G = GL(V) x GL(W)/C*
with G/GL(V) = PGL(W) = [[;¢q, GL(W;)/C*, where both C* are diag-
onal scalar subgroups.

Recall C[M¢] has a grading parametrized by m;(GL(V)) ([PartII,
§3(v)]). In our situation, we have 71 (GL(V)) = @ 71 (GL(V;)) = Z%. For
the larger symmetry group, we have w1 (G) = ZQ0 @ Z1€QIW:i#0} /7, where
Z is embedded into Z@0 @ Z1€QW:i#0} by 1 (dim V;, dim W;). We have
the corresponding action of 7 (GL(V))" 2 (C*)? on Mg and m(G)" =
(CX)#Qut#{iIW:i#0}—1 (modulo finite groups) on a line bundle in [Part I,
§3(ix)], Here ( )" is the Pontryagin dual. We will not be inter-
ested in the action of finite groups, hence we replace 71 (G) by its free part
71(Q@)g hereafter. We have the corresponding space H éL(V) (pt) (or Hé(pt)

for 71 (G)"), which consists of degree 1 elements.

A vertex i is balanced if there is no edge loop at i, and the correspond-
ing coweight u satisfies (i, ;) =0, i.e., 2dim V; = dim W, + Zj a;j dim Vj,
where a;; is the number of edges (either in )1 or its opposite) between 4
and j. We consider the subquiver Q2! of @ consisting of balanced vertices
and edges among them. By a well-known result (e.g. [Kac90, Thm. 4.3]),

8The third named author thanks Yoshinori Namikawa for explanation.
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Q" is a union of finite ADFE quivers, unless Q" is a union of connected
components of () of affine type with W = 0 on them. We suppose it is not
the latter case.

We consider elements Ei(l), Fi(l), H l-(l) from the shifted Yangian consid-
ered in |Quiver, Appendix B|. Looking at relations therein, we see that their
Poisson brackets satisfy the relations of sly, as Hi(p) =0 (p<0), Hl.(o) =1

as (i, ;) = 0. Moreover if both i and j are balanced, EZ-(l), F(l)7 Hgl), E(l),

i % 7
Fj(l)7 Hj(l) satisfy the relations of sl3 or slo @ sl according to whether i
and j are connected in the quiver or not. We then have the corresponding
semisimple Lie algebra [°! generated by E-(l)7 Fi(l), H i(l) (i € anl).

From the definition of H;(z) in [Quiver, Appendix B], H )

;  is the co-
efficient of 27! in Z;(2) [1; W;(2)% /W;(2)?, where Z;(z) = [Tei,—i(z = 2k)s
Wi(z) =11,(# — wir). (Note that we set h =0.) Here 2, w;, are equiv-
ariant variables for [[ GL(W;) and GL(V;) respectively. Therefore Hi(l) is
— Zk:ik:i 2k — ZLS ajjwjs+2Y w;,. This is nothing but —ci(W;) —
> aije1(Vy) 4+ 2c1(V;i) if we regard V;, W; as representations of GL(V;),
GL(W;) respectively. Now we apply [Part IT, Lemma 3.20]. The Poisson
bracket {Hi(l), e} is given by %W +> ; @ijj — 27 on the component with
grading v = (’yj,’ij) € Z% @ 7% /7. In particular, the action of Hi(l) is
lifted to 7 (GL(V))" 2 (C*)? for M, and to 1 (G)p for line bundles.

Lemma A.2. Ei(l), Fi(l), g (i € Q8™ are of degree 1.

)

Therefore the Lie algebra [ in the previous subsection at least contains

o . . 1
the semisimple Lie algebra [?* above.

Note that Hi(l) is in HéL(V) (pt) or Hé(pt) when we consider the larger

bal

group G. Let [ba! (resp. ~[bal) be the Lie subalgebra of [ generated by [ and

HE; ((pt) (resp. HZ(pt)).

Proof. We have already checked the assertion for Hi(l).

Looking at the definition of the homomorphism in [Quiver, Thm. B.18],
we see that Ei(l), Fz-(l) are fundamental classes [R4,,] up to sign. By the
formula for A(+w; 1) in [Quiver, (A.4)], their degree is 1 as ¢ is a balanced
vertex. O

Recall {Hi(l), o} defines an element of 71 (G)Y. by v — 7}V + > @i —
27;. More generally H, corresponding to a root o of (bal defines an element

of m1(G)Y.. Thus we regard naturally coroots € RPY of [P as elements in
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71 (G){.. If we disregard the flavor symmetry, we consider the restriction to
’y]W = 0, hence we still have RP*Y C 71(G)V.

On the other hand, m1([J;cqpa GL(V;)) = 79" is naturally identified
with the root lattice of the Lie algebra [??! by sending the i-th coordinate
vector to the i-th simple root a;. Thus we consider roots € R as elements
of Wl(Hingal GL(VZ)) C 7T1(GL(V)) Ccm (G)fr.

We regard R C 7 (GL(V)), R™ C m(GL(V))Y as a root datum,
and consider the corresponding reductive group LP. For line bundles, we
consider R" C m1(G)g, RPY C m1(G)y.. We denote the corresponding re-

ductive group by LP2l,

Proposition A.3. The actions of {Ei(l), o}, {Fi(l), o} are locally nilpotent.
Hence the action of I’ (resp. ) is lifted to LP* (resp. L"),

Proof. When the C*-action on M is conical, this is clear as subspaces of
C[M¢| with given degree are finite dimensional, and Ei(l), Fi(l) preserve
them. In order to deal with general cases, we modify the argument.

Consider a closed subvariety R<) as in [Part II, §2(i)]. Since GL(V) =
Hjer GL(V}), we can modify it by imposing the constraint at j # ¢, but not
on 7. Let us denote the resulted closed subvariety by R<y. It is still true that
H*GL(V)O(R) is the limit of HSL(V)O(Rj,\). Operators {Ei(l), o} {Fi(l), o} are
well-defined on H L(V)O(Rj ), as we do not impose the constraint at i.

Let HSL(V)O(RjA)[d] denote the subspace of HSL(V)O(RjA) of degree
d elements. It is enough to show that it is finite dimensional, as {Ei(l), o}
{Fz-(l)7 e} preserve this subspace.

Suppose that an element in He Lo (R<x)[d] is contained in
H*GL(V)O(RSM)[d]. If we decompose p as (p?) according to j € Qo, the com-
ponent i/ with j # i is less than or equal to the component A of A by the
definition of <.

In order to bound the remaining component p?, Let us look at the for-
mula of A(u):

A = 3 Honm)l+ 5 3 1 m] dim N(y).

aeAT X

We have A(u) < d by our assumption. Let us look at terms involving p':

A 1 . , ) ‘
(Ad) =D o — w5 [ Do D ke — |+ dim Wi Y g ]
a,b a

a<b J
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where we write p/ = (Mj1 ) Mé, ... ). This is bounded by a constant from above,
as we have bounds on i, (j # 4). Since ui is bounded, the middle term can
be replaced by > a;; dimV; 3~ [1,]. Now by the assumption 2dimV; =
dim W; + " a;;dim Vj}, the first term can be absorbed in the middle and
last term, so that we still have a bound on Y |u?|. Thus p is bounded by

a constant depending on A and d. Hence HS™ V)O(Rj A)[d] is finite dimen-
sional. )
This argument works also for the case of LP2l. O

Note that the comoment map of the LP*-action on M is the natural
homomorphism

C[IP*] = Sym(*2') — C[M ]

by the definition of the action.

Example A.5 (cf. [Quiver, Remark 3.12]). Consider a framed quiver
gauge theory of type ADE. Let us define two coweights

A= Z dimWiw;, p=XA-— Z dim V;q;.
1€Q0 1€Q0

Then the Coulomb branch is the generalized slice Wﬁ: for the adjoint group
G of type @, where \* = —wg(\), u* = —wo(p) ([Quiver, Thm. 3.10]). Then
the group LP¥, acting on M is Stabg(u*), as m1(GL(V)) is the weight
lattice of GG. The action is the standard one, at least when u is dominant.
The following argument is explained to the authors by Joel Kamnitzer:

First consider the case y = 0. Then W) is the intersection of @g and
Grg,o = Gi1[[t™1]], where G1[[t!]] is the first congruence subgroup of G[[t 1]
as in [KWWY14]. Then the assertion follows from a computation of Poisson
brackets on C[G1[[t™!]]] in [KWWYT14, Prop. 2.13]. For a general domi-
nant u, we replace Grg,o by Grg,,- the orbit of Gi[[t7!]] through p*. But
C[Grg,u+] is a Poisson subalgebra of C[Grg,g] preserved by the action of
Stabg(1*) (see [KWWY14, a paragraph before Lemma 2.19]). Hence the
assertion follows from the p = 0 case.

Example A.6. Let us consider the quiver gauge theory in All ver-
tices are balanced in this case. We have

m(G)=2Z@ - -®Z/(N,N—1,...,2,1)Z= 7N,

N times
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where the isomorphism is given by [A1,...,An] = (A1 — NAn, ..., An—1 —
2An). We have an exact sequence

0—m(G)=ZV ! - m(G)=2ZV ! - 7 (PGL(N)) 2 Z/NZ — 0,

where the first inclusion is given by A; =0, and the last projection is
[A1,..., An] = Ap mod N. It is clear that m;(G) is the weight lattice of
PGL(N), while 71(G) is that of SL(N). Therefore L’ = PGL(N), but
[P = SL(N).

Remark A.7. Let us consider the case (u, ;) = —1 instead of 0. Then
HZ-(p) =0 (p<o0), Hi(l) = 1. Thus we have {Ei(l),Fi(l)} = 1. (Note also
A(£w; 1) = 1/2 by [Quiver) (A.4)].) Looking at the argument in the proof of
Proposition [A-3] we see that we only need a bound dimV; — 1 < dim W; +
> a;;dimV; to derive a bound on Y, |uk| from (A.4). In particular, the
proof of Proposition m works in the case (u,q;) = —1, hence {Ei(l),o},
{Fz-(l), e} are locally nilpotent, and the corresponding hamiltonian vector

fields Hpo, Hpo) are integrable. Moreover [HElgl),HF_(l)] =0as {Ei(l), Fi(l)}

= 1. Therefore we have an action of G2. Let & = (Fi(l), —EZ-(l)): Mo — A2
Then @ is G2-equivariant, and the action map G2 x ¢~1(0) &< M is an
isomorphism. See also [Nam18, Thm.(i)].
Suppose further that j is balanced, i.e., (i1, @;) = 0. Commutation rela-
tions in |Quiver, Appendix B| imply that
(FV,ENy =0, (HV EM} = (- y)E

and {E\Y, FVY =0, {H" FYY = (0;-0))FY.

Thus EZ-(l) (resp. F»(l)) is a lowest (resp. highest) weight vector of an s((2); =

(E](l), Fj(l), H](-l)> module with the highest (resp. lowest) weight F(o; - ;).
Appendix B. A global convolution diagram for the variety
of triples

GUS LONERGAN

The aim of this appendix is to give another proof of the commutativity of
the Coulomb branch by constructing a global convolution diagram for R.
This is a direct generalization of the traditional proof of the case N = 0,
which uses the Beilinson-Drinfeld global convolution diagram for Grg.
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B(i). Preliminaries on arc-spaces and loop-spaces

(a). In this section, we recall certain standard constructions and facts of
[BeiD1l, Chapters 4-5].

(b). Let X be a smooth complex curve and let S be a finite set. Given a
commutative ring R and an R-point = of X°, we denote the coordinates of
x by x5 (s € S), and write Ag(z) for the formal neighborhood of the union
of the graphs of z; (s € S). For notational simplicity, we frequently remove
commas and braces from S, and also drop the part (x), when it is clear
which point we refer to. So for example the expression:

A{1,2}(95)

becomes:
AIQ .

(c). Now fix an affine algebraic group A over C. Consider the following
functor from commutative rings to groups over X*:

As(R) := {(z, )|z € X%(R), f: Ag — A}.

Then Ag is represented by the limit of a projective system of smooth affine
group schemes over X°:

Ag =lim(- - = (Ag)2 = (As))

such that each transition morphism is a smooth homomorphism. In particu-
lar, Ag is a formally smooth affine group scheme (of countably infinite type)
over X°, but this is not so important for us. Recall that in the definition
of the Coulomb branch as a convolution algebra formal homological shifts
such as

[2dim A(O)]
appear (for A = G, N). Similarly, in the global situation formal homological
shifts such as
[2dim Ag]
will appealﬂ For example, in the case where the underlying space is Ag, for

each d we have w4y, = C(4,),[2dim(Ag)g]. These complexes are compat-
ible in the natural way under !-pullbacks along the transition morphisms.

90nly for S of cardinality 1 or 2; but it clarifies the picture and simplifies the
exposition to work more generally at this point.
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We thus consider w 4, as the formal homological shift
wa, = Cxh [2dim Ag]l,

where both sides are to be understood by evaluating on smooth quotients
of Ag and ‘piecing together’ using !-pullbacks. Likewise we have a formal
expression

was[—2dim Ag] = Cuq
where both sides are to be understood by evaluating on the smooth quotients
(Ag)q of Ag and ‘piecing together’ using *-pullbacks.

(d). Let #: " — S be a morphism of finite sets. It induces a map X — X9
Given an R-point x of X®, this map determines an R-point 2’ of X', and
an embedding Ag (2') — Ag(x). Hence by restriction along this embedding
we obtain a map

p9: AS — ASI.
This induces a homomorphism
q92 AS — AS’ X xs! XS
over the base X°. If 6 is surjective, then ¢’ is an isomorphism. If 4 is injective,

then ¢? seems strange at first sight. For instance if @’ is a section of 6 then

¢? is an isomorphism over the resulting copy of X C X, whereas over a

typical point of X°, ¢? takes the form of a projection map
A(0)° = A(0)Y.

However, this is misleading: ¢? is pro-smooth when 6 is injective. What we
mean by this is that the projective systems of smooth affine group schemes
over X° with smooth transition morphisms

((As)d)den

underlying Ag may be taken, simultaneously for all S, to be compatible with
all ¢, i.e. so that ¢? is the limit of a morphism

(qg: (A5>d — (AS/>d X x5! Xs>d€N

of projective systems, where each map qg is a smooth homomorphism over
X9 Thus, it makes sense to write (and is true that):

(qg)*wAS,XXs,(XS)[—ZdimAg/ —2(|S| = |S'))] = was[—2dim Ag],
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et cetera, where the formula should be understood as a statement about
complexes on smooth quotients over X*°, compatible under x-pullbacks.
(e). Example. Consider the case S = {1}. Then A; is a Zariski-locally
trivial A(O)-bundle over X. Then, the formal homological shift [2 dim A(O)]
also makes sense in this context, and we have [2dim A(O)] = [2dim 4; — 2].
(f). Example. Consider for instance the case A = C and S = {1, 2}. Then
Aj9 should be thought of as a deformation of the first following projective
system into the second:

(ClE/eDa ~ (/e x C[[t]] /t7)a

while A7 should be thought of as a trivial deformation:

(ClEN/tNa ~  (C[E/t)a
and we have the morphism of deformations of projective systems:

(C[[t]]i/tw)d ~  (C[#)/¢ >1C[[t]]/td)d
(Cl[H/tDa ~ (CI[t]]/t")a

where the first downward arrow is the quotient map, and the second down-
ward arrow is the projection map (to the first factor), both of which halve
dimension in the d** approximation. It just happens that the limit of the first
downward arrow is an isomorphism, while the limit of the second downward
arrow is a non-trivial projection.

(g). From now on, we assume 6 is an injection, and identify S’ with its
image under 6. Now, in addition to the formal neighborhood Ag we have
the punctured formal neighborhood

A2 (z) == Ag(z) — Usesi s

where in this formula we conflate the point x5 with its graph. The general no-
tational paradigmlg here is that subscripts determine discs and superscripts
determine punctures. Consider the functor

A§ (R) = {(z,))|lz € X*(R), f: AF (x) — A}.

Then Ag’ is represented by an ind-scheme, formally smooth over X°. It is
a group in ind-schemes (over X9), but not an inductive limit of groups.

10Warning: this doesn’t apply to X!
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Nonetheless, it is an ind-locally nice, reasonable ind-scheme in the sense of
[Dri06], meaning that it is a direct limit of closed embeddings with finitely
generated ideals:

(A3)! = (A§)? — -

of schemes over X*°, each of which is locally nice, meaning that Zariski-
locallyE it is the product of a finite-type scheme with an affine space (of
countable dimension). We shall call such an ind-scheme reasonably nice. The
subgroup Ag may be taken as the first subscheme (Ag/)1 in this inductive
structure. The left- and right-regular actions of the subgroup Ag preserve
the inductive structure, meaning that each (A:g/)c has an action on both
sides by Ag over X¥, even though it is not itself a group. Moreover the
quotient (Ag/)C/AS is of finite-type over X°, and flat, although generally
quite singular. The result is that the quotient

A3 /As
has the structure of ind-finite-type flat ind-scheme over X¥5.

Lemma B.1. 1) Agl/AS is ind-projective if and only if A is reductive.

2) Agl/AS is reduced if and only if A has non no-trivial characters.

Remark B.2. A% is the Beilinson-Drinfeld grassmannian (on |S| points).

(h). For any chain of inclusions S” Y, 5" % S we have natural maps

0' SII S//
p AS — AS/ 5
@AY = A x e X5

defined as in §(d). Then ¢ Ag” — Ag:/ X ys X has as a subgroup ¢/ : Ag —
Ag X xsr X5 and the resulting map

A3 JAs — (A% [Ag) x xsr X5
is an isomorphism.
(i). Warning. Observe that Ag” is an ind- Ag-torsor over the ind-scheme

(Ag://AS,) X ysr X°, and the homomorphism ¢?: Ag” — Ag:' X s X° s
surjective. It is tempting therefore to try to view Ag” as being in some

1Tn [Dri06] this is relaxed to ‘Nisnevich-locally’.
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sense a torsor over Ag:/ X xs X S for some group ker ¢’. However, the kernel
of the projective system

((As)a — (As)a X xs' XS)deN

of is not Mittag-Leffler. We are not sure how to overcome this issue, so
do not attempt to take this point of view.

B(ii). Global convolution diagram for R

(a). For a finite set S, we put

T8 (R) = {(2, &, f,0)}/~

where 2 € X¥(R), £ is a principal G-bundle on Ag, f is a trivialization of
£ on Agl, and ¥ is an N-section of £, taken up to equivalence. This is the
same as the balanced product

’ S’ XXS
7?9 - GS Gs NS.
Thus, ’7'55/ is represented by a reasonably nice ind-scheme with an ind-pro-

smooth map to the Beilinson-Drinfeld grassmannian Gg/ Gg. In particular
it is formally smooth. Multiplication gives us a map

75' 7 ﬁ Ng/
and we define Rgl to be the fiber product
S . T8
RS —7?51 XNgl NS‘
Over any closed X*-subscheme of Ggl /Gg, the embedding R‘Sq, — 7}3/ has
finite codimension. Therefore Rgl is also a reasonably nice ind-scheme, map-
ping to Ggl /Gg, and of ind-finite codimension in ’TSS/. Note that Rg/ is not

formally smooth, and in particular the map Rg/ — Ggl /Gs is no longer
ind-pro-smooth. As a functor we have

RgI(R) = {('7}787 f:v)}/N
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where z,&, f are as in T&', and v is an N-section of £ such that f(v) ex-
tendﬁ to Ag. We define the shifted dualizing complex on 75, Rg/ as for
T, R. Namely:

1) On each closed subscheme (75" )¢ of (T&")¢, pro-smooth over (G2 /Gg)°
we set

to be the pullback of the dualizing complex of (G2 /Gg)¢, i.e. the
collection of its pullbacks to each formally smooth quotient (75 ) of
(T2")¢ smooth over (G /Gs)¢, compatible under *-pullback;

2) Since 7'35/ is a reasonably nice ind-scheme, we can apply the !-pullback
to such a collection of complexes on (7;5 ")¢, and obtain one on (’7'55 et
In this way, the collections w(rs).[-2dimNg +2|S5]|] are compati-
ble under !-pullbacks. The resulting compatible collection is called
Wrs [-2dim Ng + 2|5]].

3) Using the ind-finite codimensionality of the embedding i: Rgl — 7;5,,
we form a !-compatible collection of *-compatible collections of com-
plexes

wrs [~2dim Ng +2|5]) := i'wye [~2dim Ng + 2/S]).

(b). We will apply the abbreviations of §B(i)(b)| to our spaces R, T etc. so
that for instance

becomes

We will also write X° as e X, e.g. x{12} = X1 x X9. The obvious start-
ing point for the global convolution diagram is R} x R3, a Zariski-locally
trivial R-bundle over X; x Xs. Consider the following space:

Rit2(R) = {((z1,22), &1, &2, f1, fo,v1,v2) }/~

where x1, 22 are R-points of X, each &; a principal G-bundle on A1, f; is
a trivialization of & on Aj,, and v; is an N-section of &; such that f;(v;)

. . . ’ . . . .
121t is a priori defined only on Ag . The extension is necessarily unique.
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extends to Alg. It is constructed as
R = Rl X, x X 7?,2
1+2 12 X X1 x X 12

a reasonably nice ind-scheme over X; x Xs. It is of ind-finite codimension
in the formally smooth reasonably nice ind-scheme

T2 = Tis X x,xx, Tz = {((z1,22), &1, Ea, f1, f2, 1, T2) }/~ .

There is a map
Q R1+2 — ’R& X R%
given by restricting &;, f;, v; to A; C Aqs. Over the diagonal Xy C X7 x X,

this map « is an isomorphism. But on the complement U of the diagonal,
we have a canonical isomorphism

Ris2lu = (R x R3)|v xu (N1 x Na)|yy

and « is just the projection. Nonetheless, « is ind-pro-smooth. Indeed, it is
the product over X7 x X5 of maps

Ri, = R x X,
Ry — R3 x Xy;

so it suffices to see that the former is ind-pro-smooth. But note that we can
write

X X
1 17X 1 XX;xX
’Tl X X2 = GlTllNl X X2 = G12017122N1

where G2 acts on N7 via the homomorphism G125 — G7. Then, the natural
map

7112—)711XX2

is that associated to the pro-smooth map Ni2 — N1, so is ind-pro-smooth.
The fact that the diagram

\ \:
7112 — 711 X X9

is Cartesian gives the result. We have:

(B3) a*wm XR2 [—2 dim N1 X NQ] = WRy o [—2 dim N12 XX xXo ng].
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Note that R} x R3, 7! x T3 are acted on factor-wise by G x Gg, which
receives the factor-wise map from G X x,xx, G12. This latter group also
acts in the natural way on Ri49, T1+2, and the diagram

R1+2 — 'R%X'R%

1 {
Tive — T xTF

is G2 X x, xx, G12-equivariant. This action preserves the inductive structure
of the diagram, and also the locally nice structure of each closed piece, which
allows us to view the appropriately shifted dualizing complex on each space
as G2 X x, xx, Giz-equivariant. We may thus define the shifted equivariant
Borel-Moore homologies:

G1><G2 1 2
H. dim N, xN, (Rq x R3),
G12><x1 ><X2G12 1 2
H*—2dimN1><N2(R1 x R3),

G12Xxy xx5G12
H*72 dim ng ><Xl ><X2N12 (R1+2)7

as the colimits of the equivariant cohomologies of the appropriately shifted
dualizing complexes on the various finite-dimensional approximations. We
have maps

G1xGs 1 2 Gi2X x; x x5, G12 1 2
H S g N xN, (R1 X R2) = H.Z i N, <, (R1 X R3)

G12Xx;xx,G12
— H*72 dim N12 XXl ><X2N12 (R1+2) :

The first map is the restriction of the equivariant structure, while the second
is induced by o, using (B.3)). This is the first step of our global convolution
story.

(c). Let’s define the remaining parts of the global convolution diagram. We
set

Riva = {((1,22), €1, E2, f1, f2, 01,02, 91)}/~

where x1, x2, &1, &9, f1, fo,v1,v2 are as in Rqy9, and g; is a trivialization of
&1 (on Ajqg) required to satisfy:

g1v1 = favo.
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liote that v is determined by the rest of the data as vy = gflfgvg. That is,
Ri+2 is related to

Tiva = {((x1,72), &1, E2, 1, fa, v2, 1)} /= Ghy XX, xx, R3s

by the Cartesian square
Rive — Ti2

\ \
Riz — T
where the rightmost downward arrow is the composition

~ X
1 2 1 1 XXixX 1
Ti+2 = Gia Xx,xx, Ria = G1a Xx,xx, N12 = G- Gllg “Ni» = Tp,.

We have factor-wise actions of G2 X x,xx, G12 on ﬁ1+2, 7'1+2, such that
the Cartesian diagram

5 B
Riy2 — Riyo

(B4) | I

7 b 1 2
Tivz = Tip Xx,xx, Ria

is equivariant. In terms of points, the left-hand G119 acts by changing the
trivialization f;, while the right-hand factor acts by changing simultaneously
the trivializations g1, fo; 8 is the map which simply forgets g;. The right-
hand G192 acts freely, and the quotient space is

ﬁl-i-Q - {((.171,.%2),51,52, fl)gl_lfzu Ulu”?)}/'\’

where x1, 9, 1, &, f1,v1 are as in Rq49, while gl_lfg is an isomorphism from
&y to £ over A%Q, and v is an N-section of & such that g, 1 fovo extends
to A2 and is equal to v; there (again v; is determined by the rest of the
data). We write

v: Rito — Riya
for the projection. It is ind-pro-smooth. Finally, we have a natural map

6:ﬁ1+2 - Rg: ((xhx?)?gvlf?U)}/N
(w1, 22),E1,E2, 1,97 Hfayvi,v0) = ((21,22), &2, fr97 ' f2, v2).

Note that § factors as § = 6’6" where 6"”: Ri49 — @ is an ind-closed em-
bedding of finite codimension and §’: @ — R13 is defined by the Cartesian
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square

. % R

\: A

G952 Gh /G 5 GG

where the bottom row is simply the top row for N = 0, and the vertical maps
forget v, v9,v. It is well-known that d is ind-projective; this fact shows up
already in [MV07] and essentially follows from Lemma [B.1] It follows that &
is also ind-projective, meaning that in each piece of the inductive structure,
¢ is Zariski-locally of the form

Yfo—X—id—>Z><A

for f: Y — Z a projective map between schemes of finite type, and A some
affine space of countable dimension. In fact, ¢ is an isomorphism over U,
while over the diagonal its fibers are products of closed subvarieties of affine
Grassmannians. Furthermore, § is G12-equivariant.

(d). The global convolution diagram is
R% X Rg (i R1+2 (ﬁ ﬁ1+2 l) ﬁprz i) ’R&g

As we have explained, «, § are G2 X x, x x, G12-equivariant, - is the quotient
map by the free action of the right-hand G129, and ¢ is equivariant for the
remaining copy of G12. We have already explained how « defines a map

* . 17G1XGo 1 2 GiaXx;xx,G12
o HZ i Ny, (R X R2) = H ) i Ny, o, Nuo (R142)-

Everything else works out essentially as in the main paper, as we now indi-
cate. First, recall the G12 X x, x x, G12-equivariant Cartesian diagram (B.4]):

ﬁ1+2 LN Rit2
{ {

7 b 1 2
Tive — T Xx,xx, Ris

and recall that 7~'1+2 is nothing other than G%Q X X, x X R%Q. Thus we may
write

b=7pr;bXxXx,xx, prab
prib=1o
prob = pry
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where we have factored pr; b as
1 2 P A1 Y41
Gia Xx,xxz Rig = Gig Xx;xx, N1z = Tia.
It follows that
*
bwr,

[—2 dim N12 XX x X5 N12] = w7-1+2[—2 dim ng X X1 xXs Glg]

2
XXl ><X2R12

and hence by base change we have have a map
(B5) B*wRHz [—2 dim N12 XX1><X2 NIQ] — w7€1+2 [—2 dim N12 XX1><X2 G12].

This map is equivariant, and it therefore determines a ‘pullback with sup-
port’ map:

B* . HGIQX-XI x x5 G12 N, (R1+2) - HG12><?Q x x5 G12 o (ﬁ1+2)'

*—2dim N2 X x; x x4 *—2dim N2 X x; x x5

Since it is a G1o-torsor, v induces an isomorphism

* G2 o) Gz Xxq ><x2G12
fy ° H*—Qdileg (R1+2) —> H* 2d1mN12><X1><x2G12 (R1+2)

Finally since it is ind-proper and equivariant, § induces a map
G G 12
Ox: H* 1%dlmN (R1+2) - H*—1§ dim Ny, (R12)'

(e). Recall that (dual) specialization maps commute with pullbacks along
smooth maps and pushforwards along proper maps, and are compatible
with equivariance with respect to smooth group schemes. Therefore, since
every space in sight is a reasonably nice ind-scheme and the groups Gg are
pro-smooth over X°, we have (dual) specialization maps to the diagonal
Xo C X7 x Xo:

G1><G2 1 2 GOxXoGU 0

1 H S g xn, (R X R H, ) dit Nox , No( xx, Ro)

. GraX x;xx,G12 GOXXOGO 0

520 H 5 4im Ny XN, (Ri x R3 H.- 2 dim No % x, N 0( 0 XX, Ryp)

. Gi2X x1x x5, G2 GOXXDGO 0
83: H* 2d1mN12><X1><X2N12(R1+2 * 2dim Ny x x, N 0( X Xo RO)

GiaXx;xx,G12
sq4: H 1r2 (R1+2

*— 2d1mN12><x1><x2G12 * 2dim Ny x x,Go (RO)

Go

H* 2dim Ny (RO)
Go

H* 2dim Ny (Rg) :

12 g»l
S5 H* 2d1mN12(R1+2
. G2 12
s6: H.75 gy, (R12

5) =
) =
) =
) = 7Goxx0Go
) =
) =

Here Ry, Ro are respectively locally trivial p YR xR), ¢qlp ' (R x R))-
bundles over Xy in the notations of diagram (3.2). In fact, the restriction
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of the convolution diagram to Xy induces the following maps between the
targets of the specialization maps:

Hf—();cﬁfnGl%UxXONo (R xx, Rp) et H&;é(i?nGl\DIUXXONO (R X x, Rp)
= Hf—ogcﬁgnGl\oroxono (R§ xx, Ro)
By BN R 6o (Ro)
G0 e o (Ro)
(o). H*GOQdun Ny (RO)

I claim that the maps o*, 8*, (v*)71, . are intertwined with id, 8;, (7¢) 7,
(80)+ by the (dual) specialization maps. For a*, (y*)~! it is a consequence
of ind-pro-smoothness of a,~ (and also pro-smoothness of G12). For , it is
a consequence of ind-properness. For 8%, it is because the map

(ﬂo)*wRSXXORo[ 2dim NO X X, No] — w [ 2 dim NO X X, Go]
defined using the Cartesian square:

Ro 2 RO
\ d
79 2 T xx, RS

obtained by restricting diagram (B.4)) to Xy, factors as:

(Bo) " wrgx x,ry[—2dim No x x, No
= (,6’0)*2'!1(»731”[—2 dim N2 X x, xx, Ni2 + 2]
can

X 5B wR, .| —2dim Nig X x,xx, N1z + 2]

@ 7 w,R [—2 dim Ny X X1 x X2 Gz + 2]

—w [ QdImNO X X, GO]
Here can is the canonical map arising from the base change isomorphism,

(B.5)) denotes the map of (B.5)), and 41,42 denote the appropriate inclusions
of the diagonal subspaces. The consequence is the following formula:

s60+(7") 718" = (80)+(19) T Bhs1: HESEE N, e, (RE X RY)
- H*G—O2dimN0 (Ro)-
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/

(f). Now each (dual) specialization map s,, factors as s} j; where j* is the
restriction map to the equivariant Borel-Moore homology of the part lying
over U, and s/, is some other map. Furthermore, the restriction of the con-
volution diagram to U induces the following maps between the targets of
the restriction maps:

Gl G2 U
H»E—2>c<lim()1|\11 X N2)|u (R1 x R3)|v)

G1xG2)|uxu(G1XG2)|u
_>H£—2>éim()1‘\11><><1\(12)\: W (RE % RY)y)

G1 G2 Gl GZ
- Hi—zzim()l‘\lﬁqu\(l?)\:xu)(g[\]hxNz)\U((R% X N2)|U XU (Nl X R%”U)

((G1XX1G1)><(G2XX2G2))|U 2] 2
- H*fzdim((NlXXlGl)X(GQXXzNz))‘U((Rl X (G2 X Ra))lv)

Gl G2 U
- H»E—2>c<11m()1‘\I1><N2)\U((R% x R3)|v)

Gl G2 U
- H»E—QTiim()l‘\leNg)\U((R% x R3)|v)

Let us explain what each map does:

1)

2)

The first map views any (G X G2)|y-equivariant class as also equiv-
ariant for the trivial actions of the left-hand copy of G2, and the right-
hand copy of G1, in (G1 X G2)|y xu (G1 x G2)|u.

The second map pulls this back along the (N2 x Nj)|y-bundle map
(i.e. multiplies fiberwise by the equivariant fundamental class of
N(0O) x N(0)).

The third map starts by rewriting (R} x No)|y x (N1 x R3)|y as
(R xx, N7) x (Ng xx, R3))|v, and rewriting the action of (Gp x
GQ)‘U XU (gl X GQ)‘U as one of ((Gl XX, Gl) X (G2 X X, Gg))‘U By
definition, Ry is the locally trivial p~!(R x R)-bundle on X given as

73,1 = N1 XN} (G% XX, Nl).

The G1 X x, Gi-equivariant map from here to R% x x, N1 is given as
the product (over X;) of the quotient by the right-hand copy of Gy
with the projection to the right-hand copy of N;. The ‘pullback with
support’ map

Gi1xx,G1 1 Gixx,G1 ~
H, ) dim Ny xx, Ny (R1 xx, N1) = H, ) dim Ny xx, G (R1)



Ring objects from Coulomb branches 339

corresponds to the composition of usual ‘pullback with support’ (spread
out over X7) with multiplication by Hg (X1) under the identification

Gl>< 1G1 Gl
H*—Z(;le X x, Ny (,R’% XX, Nl) = H*—Qdile (R%) ®H*(X1) HEI (Xl)

Meanwhile, the ‘pullback with support’ (actually, here no support is
required) map

HG2 X Xo GQ

2 GaX x,Ga
*—2dim N X x, N (N xx, R3) = H

2
*—2dim G2 X x, N2 (G2 xx, R3)

is isomorphic simply to the multiplication map
G 2 G 2
Héz (XQ) Q- (X2) H*—22 dim N, (RQ) - H*—22 dim N, (RQ)

4) The fourth map is the isomorphism, and the fifth is the identity.

The result is that the composition of all these maps is the identity. On the
other hand, since the restriction maps j, intertwine these maps with the
corresponding maps on the X; x X5 level, we have the following:

(60)+(18) " Bys1 = 56, (v7) 157"
— spiade(y) B

S S
= S¢J1-

g). Finally, note that this last map s;j; is symmetric with respect to the
6J1

automorphism 7 of Hfj;ganlxN (R} x R3) induced by the degree 2 au-

tomorphisms of Gy x Ga, Ri x R% which switch the factors (and also ex-
change 1 with 2). Therefore, (Jo)«(7g) 18551 has the same property. But,

taking X = C, we identify the domain

G1xG, 1 2\ _ 7G(O) G(0)
H S i, (R X R2) = H. o) (R) @ HL s in(o) (R)
and the target
Go 0y _ r7G(O)
H*72 dim N, (RO) - H*72 dim N(O) (R)

The map (Jo)«(73) "1 B85s1 is the usual convolution (s; is an isomorphism)
while 7 is the standard twist. Therefore, the Coulomb branch is commutative
as claimed.
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