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Monads for instantons and bows

SERGEY A. CHERKIS AND JACQUES HURTUBISE

Instantons on the Taub-NUT space are related to ‘bow solutions’
via a generalization of the ADHM-Nahm transform. Both are re-
lated to complex geometry, either via the twistor transform or via
the Kobayashi-Hitchin correspondence. We explore various aspects
of this complex geometry, exhibiting equivalences. For both the in-
stanton and the bow solution we produce two monads encoding
each of them respectively. Identifying these monads we establish
the one-to-one correspondence between the instanton and the bow
solution.
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The general paradigm in the understanding of any anti-self-dual (ASD) field
equation on a compact Kéhler manifold X is given by the Kobayashi-Hitchin
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correspondence, which goes, roughly, as follows:

Solutions to the
anti-self-duality
equations
on X

Holomorphic stable
vector bundles
on X

The anti-self-duality equations contain the conditions for integrability for a
complex structure; thus the rightward arrow above is simply a forgetful map.
The leftward arrow involves solving a variational problem, and the solubility
of this problem requires stability. This, being the rough picture, in particular
cases, there are often associated auxiliary structures, which modify both the
equations and the stability condition.

When the base manifold X is hyperkéahler, there is a third element, which
is the twistor space Z of the manifold X. This space is diffeomorphic to the
product X x P!; the P! parametrizes the various complex structures of the
hyperkéhler structure, and the projection X x P! — P! is holomorphic. The
correspondence expands to:

Sols to the Holomorphic Holom. stable
ASD vector bundles
. ~ 1 ~ vector bundles
equations on X x P on X
on X (plus conditions)

The righthand map is simply restriction to a fibre.

We are interested in the picture that holds for the Taub-NUT mani-
fold. This manifold is not compact; the boundary conditions will dictate the
compactification geometry that appears on the holomorphic side of the cor-
respondence. The purpose of this paper is to exhibit the trio of data above in
the case of the Taub-NUT manifold, and to link it to another trio of data, by
showing the equivalence between ASD instantons on the Taub-NUT mani-
fold and the ‘bow solutions’ of [10] (containing certain solutions to Nahm'’s
equations). A persistent theme throughout is the encoding of the structures
into various versions of a monad, an algebro-geometric structure that gives
the relevant bundles as a cohomology: one has a sequence of bundles

A B Lo

with 8 o a = 0; the relevant bundle is the quotient Ker(3)/Im(«)
In its holomorphic version, the instanton-bow equivalence has on the
instanton side a holomorphic bundle, though this time equipped with some
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extra data coming from the boundary behaviour. On the bow side, the holo-
morphic data is a solution to (part of) Nahm’s equations, along, again, with
some extra linear data; these are versions of the Nahm complexes intro-
duced by Donaldson for SU(2) monopoles [I5], and extended to other gauge
groups in [22], and then to the case of calorons in [7]. This expands the
correspondence

Solns to Holom. Holom. stable
the ASD vector bundles :
. < 1 ~ vector bundles
equation on X xP on X
on X (4 conditions)
Upt | Down 1 0
Bow Solns: Spectral Holomorphic
, data
Solns to Nahm’s Eqs &~ on TP &~ bow complex
+ Linear Data data on P!

(+ conditions)

In the various portions of this diagram, we shall encounter monads; these
will encode our objects as subquotients of simple objects, typically related
by matrices satisfying certain constraints. This point of view [Il, 2] 26|
27) is quite fruitful. The right hand side of the diagram is holomorphic,
and somewhat simpler. We will first explore this part of the picture, but
beforehand, give more precise definitions of the picture’s components.

We will throughout this paper, concentrate on the case of SU(2) and
U(2) instantons. The cases of unitary groups of higher rank has some sup-
plementary complications, which in essence are already present in the study
of SU(n) and U(n) monopoles, as in [23]. One can find a treatment in [31].
The moduli spaces of bows and instantons on the Taub-NUT space are
isometric to the Coulomb branches of the moduli spaces of vacua of quan-
tum field theories [29]. This leads to potential applications of our work in
quantum field theory [4l 29], gauge theory mirror symmetry [14, [16], brane
dynamics [32], and geometric Langlands correspondence [5], [33].

2. Objects of study
2.1. The Taub-NUT manifold

The Taub-NUT manifold X is a hyperkdhler manifold diffeomorphic to
R*. Its geometry is closely tied to that of the Hopf map R* 5 R3 (a circle
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bundle away from the origin): fixing a complex structure and linear complex
coordinates (&,1) on R* ~ C2, the Hopf map is given by

2 2
71 (€,0) > (L +ita, 1) = (&za [? - : 4 )

The fibres of this map are orbits under the action by complex scalars of
unit length: (&,9) — (A&, A1), |A| = 1. Away from the origin these fibres
are circles.

The Taub-NUT metric has these orbits tending asymptotically to circles
of a constant length: explicitly there are local coordinateﬂ (t1,t2,t3,0) €
R? x [0, 27) in which the action of S! by a linear shift in  is isometric, and
the metric is locally given by the Gibbons-Hawking ansatz:

- o (dO+ G- df)?
(1) ds®> =V (t)dt? ERIOR

with

1
Vit) =0+ —,
0=+ 5
where ¢ > 0 is a fixed parameter determining the asymptotic size of the
St and the local one-form @dt appearing in the metric is related to V by
OV =0
ot Cijk i, Wk-

Away from the origin, there is a complex version of this picture, when
one fixes one of the complex structures on Xy = R*: one can project Xg \ {0}
further to the unit sphere, and the orbits there are given by the action of
C*; it is simply the map C?\0 — P!L.

2.1.1. The twistor space. The Euclidean three-space has a minitwistor
space given by the total space @(2) of the bundle O(2) over Pl If ( is
the natural coordinate on P! and 776@ € TP, then 7 is the corresponding
fibre coordinate on O(2). The twistor correspondence between the points

! The local coordinate @ is identified with § 4+ 27 and is a local coordinate over
a cone in R? spanned by a connected contractible region in its unit sphere. Note,
that although 6 and & - di are local, the one-form df + & - dif is a global one-form
dual to the isometry generating vector field %.
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(t1,t2,t3) in R3 and real sections of O(2) called the twistor lines is given by
0= (t +it2) = 250 — (f1 — it2)¢*.

The variable ¢ parametrises the oriented directions in R?; it also parametrizes
the complex structures on the Taub-NUT manifold. These twistor lines are
invariant under the real structure involution (n,¢) — (—7/¢(2, —1/().

The space @(2) has over it a family of line bundles L, with expo-
nential transition function exp(—¢n/¢), so that one has coordinate patches
Vo = {¢ # oo} and V1 = {¢ # 0} on O(2), with respective coordinates (i, 7, ()
and (¢, n', (") related by

(:ulv 77/7 C/) = (eXp(—EU/C)Mv _n/<2a 1/<)

The twistor space Zy of the Taub-NUT manifold Xy is the sub-bundle of
conics & = n in the bundle L(1) @ L~(1) over O(2), with £,1) the tauto-
logical sections of Lf(1), L7¢(1), see [19]. One has projections:

(2) Zy — 0(2) — P,
(&, ¥)m, ) = (1,€) = ¢

Over 1 # 0, the fibre of the first map is a C*; over n = 0, the fibre is a chain
of two complex lines.

There is a fibrewise compactification Z{, of Zy over @(2) that can be
obtained in three ways:

1) From P(L‘(1) @ O) by blowing up the line £ = 0,7 = 0. One obtains
a bundle of P's over the complement of 7 = 0, and over = 0, there is a
bundle of chains of two P's intersecting at a point.

1’) From P(L~¢(1) @ ©) by blowing up the line ¢ = 0,7 = 0. One obtains
a bundle of P's over the complement of 7 = 0, and over n = 0, there is a
bundle of chains of two P's intersecting at a point.

2) As a family of quadrics &4 = nz? in P(LY(1) @ L=¢(1) & O) over 0(2).
These are isomorphic; for example, one can get from 1) to 1) by the

map

P(LY(1) & O) — P(L7(1) & O) = P(O(2) & L*(1)),
(1§, al,m, Q) = ([¥, al,m, ¢)) = ([na,&l,n,C))-
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We now have two spaces Z|, and Zy over O(2). The complement Z{\ Zy

is a union of two divisors I'g, defined by 1~ = 0, and I'y,, defined by ¢! =
0; each of these divisors maps isomorphically to @(2). The divisor defined
by n =0 is the union of two P'-bundles Ay, A¢ over the (-line, defined
respectively on Zy by ¢ = 0,& = 0. Note, that on Z|, Ay + ' is linearly
equivalent to I'g; likewise, A¢ + I'g is linearly equivalent to I'.
2.1.2. Fixing a complex structure. The twistor space Zy of the Taub-
NUT is diffeomorphic to X x P'. Let us now fix a complex structure, say
¢ =0, i.e. restrict our attention to Xo = {¢ =0} C Zy. This amounts to
fixing the vertical direction in R? corresponding to ¢ = 0.

Choosing such a direction gives the parallel family of lines

R, = {(t1,t2,t3) € R3|p = t; + ity },

and, over them in Xy = R* = TN — R3, for  # 0, the family of cylinders
(conics) C,, given in complex coordinates (¢,m) € C2 =R* by n = &). For
n = 0, the fibre is an intersecting pair of two complex lines.

On the partial compactification X, there are two divisors, which we
denote Cy and Cs, the proper transforms of the divisors £ = 0 and & = oo.
The fibre over 1 = 0 is two projective lines D¢ (which intersects Cp) and D,
(which intersects Ci). For n # 0, the curves C}, extend to projective lines
B,,.

This can be compactified to a surface X. The way we choose to do this
is to add on a chain of two projective lines F¢ U Fy, over the point 1 = oco.
Alternately, to obtain the same surface X, take the surface P! x P!, with
coordinates 7, ¢, and blow up two points (0,0) and (oo, c0).

We then have a hexagon of —1 curves:

e Dy:n =0, =0, { varying, self intersection —1;
e D¢z =0, =0, v varying, self intersection —1;
e Cy: n varying, £ = 0, ¥ = oo, self intersection —1;
e Fy: = oo, § varying, ¢ = oo, self intersection —1;
o [y m =00, ¢ varying, { = oo, self intersection —1;
o (C: n varying, & = oo, 1 = 0, self intersection —1.

These curves intersect each other in a cycle, in the order given, with multi-
plicities one. The complement of X in X is the union Cy U F¢ U Fyy U Cw.
The divisor ot nis Dy, + D¢ — Fy, — Fg; that of { is D¢ — Fy + Cy — Co; and
that of ¢ is Dy, — Fy, — Cp + Ceo.
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2.2. Instantons on the Taub-NUT

2.2.1. Charges and degrees. We consider SU(2) instantons on the Taub-
NUT. These are SU(2) bundles on Xy, equipped with an SU(2) connection
V, whose curvature has finite L? norm and satisfies the anti-self-duality
equation xF' = —F. We have one additional assumption that there is a ray
in the base R? of the fibration Xy — R? along which the holonomy of the
connection V around the circle fibre is asymptotically generic, i.e. with dis-
tinct eigenvalues at least € > 0 apart. As proved in [13, Thm.22], this implies
that the asymptotic holonomy around the circle fibre is the same in all di-
rections, up to conjugation, with its eigenvalues

N pJe o
)]

(3) exp (:|227riu(f)) . with p() = 27|

and some real constants A and p. Note, that according to this the quantity
A/ is defined up to an integer. However, the next order term p/(20|t]) is
a invariantly defined. Furthermore, m = p — 5\/6 is an integer, in essence
a first Chern class of the line bundle O(/) one gets on a two-sphere near
infinity by parametrizing the bundle over the fibers by sections in which the
f-component of the connection is ¢u. This depends on the p chosen, so that
A/¢,m are only defined up to integer shifts: (A/¢,m) — (A\/{+ N,m — N).
(Note, that for the Hopf fibration 7 : 5% — §? the lift 7*(O(m)) — S of
any line bundle O(m) on the two sphere is trivial. Another way of saying
this is that any trivialization of the line bundle over S along each fiber of
the Hopf fibration represents that bundle as a pullback 7*(O(m)). Chang-
ing these trivializations shifts the value of m by an integer.) We normalise
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by | A := ¢{p} and m := | 5]. Our genericity condition ensures that \/¢ is
neither an integer, nor a half integer. If A\/¢ < 1/2, we stop. If \/¢ > 1/2, we
shift further by A\/¢+— A/ — 1, and so —A/¢ — —\/{+ 1. There is now one
asymptotic eigenvalue of the connection between 0 and 1/2, and it is that
one that we call \//.

Using the trivialization corresponding to this choice, the asymptotic form
of the connection [I3, Thm. 22] is

Vo = 4 A %diag(—l 1)+ O(Jt]?)
d0 E—f-ﬁ 9 9

with A/¢ € (0, 3) and m € Z are now uniquely defined. The integer m will
be called the magnetic charge.

The process of going to this asymptotic trivialization is of interest in
itself. Its various ambiguities, their physics interpretation, and associated
topological invariants are discussed from the string theory point of view
n [32]. Let us begin by noting that our bundle over R* is trivial, since
R* is contractible. The eigenlines of the holonomy over the sphere near
infinity have distinct eigenvalues, tending to constants at infinity; choosing
one of them gives a map S® — P!(C), i.e. an element of m3(S?) =Z, as
well as determining an eigenbasis. Under the Hopf map S% = SU(2) — S? =
P(C), one has an isomorphism 73(5%) = 73(5?), and so this passage to
an eigenbasis (a diagonal basis) can be made effective, as a map from (a
neighbourhood of ) the three-sphere at infinity to SU(2) = S3. We thus have
a natural topological invariant ng, which we will call the instanton numober,
given by this element of 73(5%). We note that further transformations, in
an already diagonal basis, are essentially achieved by maps S® — S', and so
are homotopically trivial. Thus the instanton charge ng remains invariant
under these gauge transformations and is, therefore, well defined.

2.2.2. Abelian solutions and compactification. We note that, unlike
flat space, the Taub-NUT comes equipped with a family of U(1) instan-
tons which are not flat. One has a basic instanton with a globally defined

connection one-form
df + w

% )
for s € R. Again, choices of trivialization at infinity allow integer shifts in s,
so that one can enforce s € (—£/2,¢/2], while introducing a magnetic charge,

as = S

2 Here {a} = a — | a] signifies the difference between a and the floor of a, i.e. the
largest integer |a| not exceeding a.
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gives a family of connections of the form:

S (S_m>d@+w+mw
o 2t]) V '

(Note that as = asp.) Now let us consider the complex structure in the
hyperkéhler family of the Taub-NUT, given as the surface Xq = C?, with
coordinates (&, 1). As we saw, X was fibered by a family of curves L,, over
C given by &Y = n; for n # 0 this is a cylinder C*, and for 7 = 0 this is a
union of two lines £ = 0 and ¢ = 0. These compactify in X, by adding two
points to each fibre, corresponding respectively to limits & — 0, ¢ — 0.

A connection as ,, defines an integrable O-operator, and so one gets from
it a holomorphic bundle over X; we want to see how it extends to X|). Let
us consider what happens near £ = 0. One does this, following, e.g., Biquard
[3]. The leading asymptotic of this unitary connection on & # 0 has the
form (s/¢)df, where 6 = arg(§); one can pass to a holomorphic gauge by
a gauge transformation g = (£€)*/%¢, which we use as a clutching function
to extend the bundle to £ =0. At ¢ =0 (and so, generically, at £ = c0),
the clutching function, in a similar fashion is g = (£€)7%/2¢. The end result
is a line bundle over X{. The result is trivial over each B, for n large, as
the induced curvature is small; it is then trivial over each line B,,n # 0.
We then extend to X in the following fashion: we extend from Co, N X{ =
C to Cx = P! as a trivial bundle, and choose a trivialization; taking this
trivialization, we can glue in a trivial bundle given on a neighbourhood of
the fibres Fy, U F¢ at infinity, and so get our bundle on all of X. As in [13]
Sec. 5], and as we have degree 0 on C, Fy, F¢, this means that we have
degree —m along Cj. Line bundles on X, a rational surface, form a discrete
set, and are classified by their first Chern classes; if one is looking for a line
bundle with degree 0 on By,n # 0, Fy, F¢, and degree —m on Cp, the only
candidate is the line bundle O(—mD¢); it has degree —m on Dy, and degree
m on Deg.

2.2.3. Compactifying the SU(2) instanton. For the SU(2) instanton,
we proceed as in the Abelian case, using the asymptotic trivializations in
which the components of the connection are diagonal up to order |£]!.
What is new here along Cj, C is that the AL eigenspaces give holomorphic
sections in the unitary trivialisations with very different growth rates as one
goes into £ = 0; the A_ eigenspace gives sections which decay, whereas the
A4 eigenspace gives sections which blow up. It is thus only the negative
eigenspace which gives a meaningful subspace, and so the structure one has
in the bundle over (Y is a flag rather than a pair of subbundles. Likewise,
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at infinity, one has a flag, this time corresponding to the \; eigenspace (of
decaying solutions) consisting of a subbundle over C,. Compactifying to
all of X, as for the line bundle, one has along C'» a trivial bundle, with a
trivial subline bundle, and along Cj, a bundle with a subbundle of degree
—m. Finally, we note that the bundle over L, for 7 large is trivial, since
a positive subbundle (destabilising subbundle) requires curvature, which is
tending to zero.

We thus obtain a bundle over X, of degree zero, trivial on the generic
lines B,), as well as on Cw, and with flags (subline bundles) of degree —m
and 0 along Cy and C respectively. It has a second Chern class k, which,
one can show to be the number of jumping lines (number of lines at which
the holomorphic structure jumps, i.e. is non trivial) in the ruling B,, counted
with multiplicity. This then tells us that £ must be positive.

It is interesting to consider the Abelian SU(2) solution

as,m 0
As,m=( 0 %ML)

given in the complex world after compactification as a sum O(mDy,) ®
O(—mDy) of two U(1) instantons of opposite magnetic charge. This has
second Chern class m?; on the other hand, we had already had an instanton
number ng for Ag,,, given as the degree of the gauge transformation on
the infinity of R* that makes the connection ‘Abelian near infinity’, as the
connection is already Abelian, ng(Asm) = 0.

2.3. The bow

|
SIS
SIS

Figure 1: The Taub-NUT bow.

Bows are generalizations of quivers [9] consisting of oriented intervals and
oriented edges, each edge beginning at the end of some interval and ending
at the beginning of some (possibly the same) interval. The bow relevant
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for the Taub-NUT space of Eq. consists of a single interval [—g, %]

parameterized by s and a single edge connecting its ends, with its head h at
s = —% and its tail ¢t at s = %, see Fig.

Any bow representation [10] corresponding to the SU(2) instanton, stud-
ied above, consists of

e two points at s = A_ := —X and at s = Ay := A > 0 on the bow inter-
val,

e Hermitian bundles Ny — [—¢/2, \_] U [A;,¢/2] and N1 — [A_, A\4] of
respective ranks k and k + m,

e chosen Hermitian injections i_ : No|x_ — Ni|x_ and iy : No|y, —
N1|)\+, for m > 0, or i_: N1|)\_ — N0|)\_ and i+ : N1’A+ — NO‘)\H for
m < 0;

o if m =0, one—dimensiona]lﬂ auxiliary Hermitian spaces W)_ and W, .

h,—/2 .\ A )2t

Figure 2: Bow representation for the SU(2) instanton on the Taub-NUT.

The bow representation has an affine space of bow data associated with
it; this space is a direct sum of

Nahm data: associated with the interval. It is an affine space of quadru-
plets (Vs, Th,Ts, T3) consisting of a connection V, and three endomor-
phisms 77,75, and T3 on the Hermitian bundles Ny and Ny,

Bifundamental data: associated with the edge, is a vector space of
pairs (Bt p, Bpt) of linear maps

Bin i Nol-172 = Nolij2,  Bnt : Noliyjz = Nol-1/2-

3In general, for higher rank instanton structure group, the dimension of Wy equals
to the multiplicity of the corresponding A eigenvalue of the holonomy at infinity.
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Fundamental data: associated with each A-point s = Ay is present only
if m = 0. It is a vector space of pairs (I, J+) of maps

I+ :W)\+—>N0’/\+:N1‘)\+, J+ :N0|)\+=N1’,\+—>W)\+,
I_ :W)P — N0|)_ = Nlb_, J_ :N0|)_ = N1|>_ — W)_.

The Nahm data satisfy certain analytic conditions as well as matching con-
ditions spelled out in [I1]. Among all bow data of a given representation of
particular importance are the bow solutions. These can be introduced via the
hyperkéahler reduction (by the action of the gauge group) as the data satis-
fying the moment map conditions. Equivalently, the data has a Dirac-type
operator associated to it and the solution is the data satisfying the condition
of reality of the square of the associated bow Dirac operator [0, [10]. Here,
we simply state these conditions. These will involveﬂ

1) the conditions in the interior of the intervals, given by the Nahm equa-
tions,

2) the matching conditions at the A-points, and
3) the conditions at the ends s = +¢/2 of the bow interval.

2.3.1. Nahm’s equations. Nahm’s equations are ordinary differential
equations, discovered by Nahm in his early work on monopoles [27]. They
relate three functions T;(s),i = 1,2,3, on the line with values in the Her-
mitian n X n matrices by i% = [Ty, T3], i% = [T3,T1], i% = [T, T3]. One
can put in a gauge freedom by replacing the derivative 7= with a u(n) co-

variant derivative V; the equations become
J.k

These are reductions to one dimension of the anti-self-duality equations on
R4,

One can rewrite these equations with a spectral parameter, which is in
fact the twistor parameter ¢ € P!. Setting

AN((,s) =T +iTp — 2T3¢ — (Ty — iT)¢%, MN((,s) = —T5 — (Th — iTR)¢,

4 These conditions can be obtained as a result of the direct ‘Down transform’
of [12], however, here we take an alternative approach and prove that the monad
arising from the bow solution corresponds to that of the instanton.
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one has a Lax pair for ¢ # oo. Alternatively, one can consider the Lax pair
AS = —AN /2 and M® := MY — AN /¢ for ¢ # 0, so that

1 1
AS(C,8) =Ty —iTy + 2TgE — (T +iTy) MS(¢,s) = T3 — (Ty + iTQ)E.

In either case, the Nahm equations are equivalent to the Lax equation

1
?7

[V+ M(,s),A(¢,s)] =0.

The moduli of solutions to Nahm'’s equations encode many different moduli
spaces of solutions to the anti-self-duality equations; see e.g. [24] for a review.
Of particular importance are the boundary conditions. The ones we will
want to study arise naturally from the bow and involve the fundamental
and bifundamental data. These solutions of the Nahm equations, together
with the matching fundamental and bifundamental linear maps comprise
the bow solutions of [9] [10].

2.3.2. Boundary conditions: fundamental and bifundamental data.
A bow solution is a decuplet (V,T1,T%, T3, By p, Bht, I—, J—, I, Jy) satisfy-
ing the following conditions.

Nahm conditions (associated to the subintervals)
e On the Hermitian bundle Ny of rank k over the intervals [—1/2,A_) U

(Ay,1/2], a solution A°(¢,s) = AN((, s) to the Nahm equations which
is smooth.

e On the Hermitian bundle N; of rank k + m over the interval (A_, A1),
a solution A'(¢,s) = AN (¢, s) to the Nahm equations is smooth.

e The connection matrices of V are smooth in the interior of both inter-
vals and have finite limits at the boundary points.

Fundamental conditions (associated to the \-points)

When m > 0:

e At both boundary points Ay, the solution AV ((,s) has a one-sided
limit from the ‘small’ (rank k) side, and is analytic near the boundary
on the ‘large’ (rank k + m) side, with at most a simple pole at the
boundary point.

e At both boundary points A+, an injection iy : Ny — N1, respecting
the unitary structures, decomposes N; at the boundary points into
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Im(i+) ® Im(i+)*. We call Im(i+) the ‘continuing’ components of the
solution. One asks that there be an extension of this decomposition to
a unitary trivialization on the interior of the intervals (in the vicinity
of the A-point) such that

_ [ai(s) bi(s)
Til(S) B (Czl(s) _2(;@)\) + d@l@)) ’

where A = A_ or A;. The top left blocks are k x k, the bottom right
block is m x m; al, b}, c},d} are analytic at s = A, and {p;}}_; form a
fixed m-dimensional irreducible representation of su(2). Furthermore,
the solutions on the two intervals match on the continuing components

by

a; (0) = T(0).

In the same way, the connection coefficients match:
1 0
ap(0) = T5(0).

e At both boundary points, some extra data, consisting of a unitary
trivialization vy of the highest weight space of the irreducible repre-
sentation as follows.

We normalise trivializations of Ny, N1 at the boundary points: we assume
that the injection of Ny into N1 maps the basis of Ny into the first k& basis
vectors of N1 and that under this, our bases match; the unitary complement
of Ny in Nj is then given by the last m vectors of the basis. On this, the
irreducible representation in the polar part of d;, plus the trivialization of
the highest weight space, means that there is a unique way to trivialize it,
so that one has the standard representation of SU(2). Once this is done,
one has a smaller group of gauge transformations which acts at s = Ay by
the identity on the last m vectors, and by U(k) on the first vectors, with
the group elements matching on Ny and N;. This smaller gauge group is the
group of gauge transformations of the bow representation.

When m=0:

e At both boundary points AL, a unitary isomorphism iy: Ng — Ny
identifies the two fibres. One asks that the solutions A°, A' have re-
spective limits at the A-point at s = 0, where again s is a local param-
eter with the point AL corresponding to s = 0.
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e The additional condition at both boundary points Ay is a decomposi-
tion

(5) ANCA) = A%¢ ) = (I = JLO (T + 110),
(6) AYG ) = AYG M) = (I = JLO (T4 + T1Q).

e The connection is continuous at the boundary under the identification.

Again, the fibers of the two vector bundles at each boundary point Ay are
identified by i+, so that the gauge transformations allowed are continuous
at the boundary points.

When m < 0:

One has the same boundary behaviour as for m > 0, but now at each
boundary point A4+ the roles of the two intervals are reversed, so that one
still has finiteness from the small side, which is now that where the rank
is k +m, and, from the large side, where the rank is k, poles with residues
forming an irreducible representation of su(2) of dimension —m, and con-
tinuing components of rank k& 4+ m which match with the small side.

Bifundamental conditions (associated to the edges)

The bifundamental data consist of complex linear maps between the
fibres of Ny at —1/2 and [/2:

(7) By p :Nol—1/2 — Nolij2,
(8) Bht :Nolij2 — Nol—i/2-

The notation ¢ (for the edge’s ‘tail’) refers to the point [/2, and h (for
the edge’s ‘head’) to the point —I/2. With this, the matrices A°((,1/2),
AY(¢, —1/2) are required to satisfy:

(9) A%(C,1/2) =(Byp + CBJ ) (Bt — CBJ ),
(10) AY(¢,~1/2) =(Bns — CB,) (Bun + CB},).

2.3.3. Bow complexes. There is a partial, holomorphic version of the
Nahm data, which following Donaldson [15], is referred to as a Nahm com-
plex, and in our case forms a bow complex. Essentially, one restricts to { = 0.
In our case, this consists of:

Nahm data
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e A complex bundle Ny of rank k over the intervals [—1/2, A\_] U [A\},1/2],

equipped over [—1/2,A\_) U (A4, /2], with a connection % + a%(s), and
a section 3%(s) of End(Np) which is covariant constant

i

4 lals), Bs)] = 0

e A complex bundle Nj of rank k-+m over the interval (A_, ),

equipped with a smooth complex connection a!(s) and a smooth co-
variant constant section 3'(s) of End(Ny) ;

Fundamental data

When m > 0:

e At the boundary points A, the connection a’(s), and a section 8°(s)

have finite limits, and from the “large” side, the connection a!(s), and
a section !(s) are analytic near the boundary points, with at most a
pole of order one at the boundary point.

At the boundary points Ay, injections i+: Ny — Ny and surjections
m4+: N1 — Ny, such that myie = Id, so that one can decompose N;
as Ker(m+) @ Im(i+). One asks that there be an extension of this de-
composition to a trivialization on the interior of the interval (in the
vicinity of each A-point) such that one can write the connection aq(s)
and the endomorphism (3 (s) in block form near the boundary points
as

a(s) = ( UI(S) s 2 W(s)>, Bi(s) = (SmPl(s) s 2 Q(3)>’

(11)

(12)

sz V(s) T(s) = R(s) S(s)

where s is a local parameter with the point Ay corresponding to s =
0. The top left blocks are k x k, the bottom right block is m x m;
U W,V,P, Q, R are analytic at s =0, and 7, S are meromorphic with
simple poles at s = 0, and residues

. (—(m—=1) 2—(m—1) (m—1)
T_lfdlag< 5 , 5 ,...,T>,
0O 0 0 0 0
1 0 0 0 O
Sy=I:=| 0 1 0 0 0

o
()
<
—_
o
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Furthermore,
U(0) = a®(0),  P(0) = 5°(0).

e At both boundary points, some extra data, consisting of a trivialization

(m

(choice of vectors v_,vy) of the _T_l) eigenspace of T_;.

When m = 0:

e At the boundary points A4, isomorphisms it: Ng — Ny, 74 = i;l
with the gluing condition that % — 74 8%+ has rank one at the bound-
ary point.

e At the boundary points A4, extra data consisting of decompositions
(I_,J_), (I, Jy) of the rank one boundary difference matrices 3° —
n_pBYi_, pY — 7, Bl into products of a column and a row vector:

(13) B i =1_-J_, B —m Bliy =14 J;
e The connection « is continuous at the boundary under the identifica-
tion.
When m < 0:

One has the same boundary behaviour as for m > 0, but now with at
each boundary point Ay, the roles of the ‘small’ and ‘large’ intervals inter-
changed in the above above.

Bifundamental data

The edge data consist of complex linear maps between the fibres of Ny
at —1/2,1/2:

(14) Byin : Nol—i/2 — Nolijas
(15) Bh,t : N0|l/2 — N0|—l/2-

There are decompositions
(16) 5(‘”2) = Bh,tBt,h, 5(1/2) = Bt,hBh,t-

All of this data is of course to be considered modulo complexified gauge
transformations; again, we can normalise the bases at the boundary points
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so that Ny injects into Ny as the first k vectors, that there is a well defined
complementary space, with a fixed trivialisation on it (exploiting the cyclic-
ity of the residue of 3); the gauge transformations at these boundary points
act by Gl(k,C) on the first k vectors, and trivially on the others.

2.4. The bow monad

The bow monad described below is directly related to the Up transform of
[11] via the bow Dirac operator. Each bow solution

(v7T17T27T37Bt,h7 Bh,t7[—7 J—a I+7 J+)7

gives rise to a family of Dirac-type operators

D] = <_§T ?) +5(s—A) (f) +5(s— Ay) (‘E)

_ b By _ Bl, —bwm
+<5(s h) <_bth B +d(s —t) B by ,

with Z :=T1 + i1y —t1 —its and D = dis — I(TO - to) + T3 — t3. This family
is parameterized by a point on the Taub-NUT with coordinates (t1 + ity =
.ty = (|0)? — |€12) /2, bns = €, by = ). We denote the pair Ny, N1 of bun-
dles with isometric injections by N. We also regard t1,ts, and t3 as (s-
independent) endomorphisms of Hermitian line bundle e over the bow (with
a fixed trivialization), with b, j, : e, = e; and by : e, — ej,. This Dirac-type
operator acts on the direct sum I'r: (S@ N @ e*) @ Wy @ Wy, ® Ny ®ef @
Ny ® e} of

e L? sections of the bundle S ® N ® e* that are continuous in the con-
tinuing components at the A-points.

e the auxiliary spaces W) _ and W), (these are present only if m = 0).

The main properties of the operators of this family is that DI D; is propor-
tional to the identity in the S factor and DIDt is strictly positive (away
from the codimension at least two isolated strata in the Taub-NUT space).
Thus, Ker D; = 0. The crux of the Up transform is that the instanton bundle
E — X emerges as the index bundle of this family, i.e. £ = Ker DI.
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This form of the bow Dirac operator is amenable to the Hodge decom-
position Df = (—553> . with
D
-7
—J
—bpt — By
—Bin b
Tim(N@e*) =T (N@e)? oW a (N, e & Ny Re}),

(18) 61 = (Z,D)+ (s — NI + [0(s — h)(=byp, Bu) — 6(s — t)(Byn, bpy)] -
F(N@e)2oWao(Ny,@e N @e)) = Tya(N®eb).

(17) 6o =

The fact that we began with a solution of a bow representation ensures
that DI D; is real (i.e. commutes with the action of quaternionic identities
on the S factor) and strictly positive. This, in turn, implies §;dp = 0 and
(5850 = %((5850 +616]) > 0. Thus, Ker D] can be identified with the middle
cohomology of the Dolbeault complex

(19) 0>A4% B2 0o

Moreover, since (5550 = 515{ = %(5850 + 5151) > 0, Kerdy = 0 = Cokdy, so this
complex is exact in its first and last terms. This is the infinite-dimensional
monad construction of the bundle E := KerDI — TNy

2.4.1. Twistorial bow monad. The above discussion relates the Dol-
beault complex to the Dirac operator of the Up transform. It is, however,
confined to a particular choice ( = 0 of a complex structure on the Taub-
NUT space. In order to make our discussion twistorial, we have to extend it
to the full twistor sphere. To achieve this consider the Hodge decomposition

o ()

now, with dp and ¢; depend on (. We consider the resulting (-dependent
Dolbeault complex:

(21) Coi0— A2 AV 2 42 50,
with A’=T(S@N®e*), A =T(SON@e)® (N ®e})® (N, ®eh) @

W, and A? =T"(S ® N ® e*). The latter space consists of distributions of
the form f(s) + > 5cp, 0(s — Aanx.
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Now, the differentials §y and §; are first order in (, while the spaces
A% AL and A? are (at this stage) still (-independent.

Our remaining goal is to find a finite-dimensional versions of the above
monads and and compare them with those directly associated with
the instanton.

3. Holomorphic geometry of calorons

Our complex space X is a blow-up of P! x P'. The space P! x P! in turn, is
a compactification of R? x S!, and instantons on this space, with boundary
conditions similar to those for the Taub-NUT, called calorons, are closely
related to instantons on the Taub-NUT. In both cases, we have, asymptot-
ically at least, circle bundles, though with one being a Hopf bundle and
the other a trivial bundle. We will see that on the holomorphic level, our
instantons on the Taub-NUT are in some sense and in a first approximation
obtained by identifying two calorons over an open set.

Likewise, from the Nahm’s equations point of view, the solutions asso-
ciated to the Taub-NUT are very similar to the caloron solutions; the main
distinction being that the caloron solutions do not have the bifundamental
data, but are simply solutions on the circle.

As a warm-up (and because we will be using the geometry of the caloron
bundles later on) we discuss these solutions to the ASD equations on the
direct product R x S with flat metric £dt? + df?/¢ (instead of a Taub-
NUT). This will allow us to recapitulate some relevant material, in particular
from [7,,18]. It will give us some insight into a relatively simpler case, allowing
a certain simplification of the more roundabout approach of [7], where the
problem is studied in detail. After this warmup, we will return to the Taub-
NUT case in the next section, highlighting the differences, and in particular,
for the bow side of the picture, incorporating the bifundamental data.

3.1. The bundle on twistor space

As for the Taub-NUT, in the present case of the caloron, we just discuss
the SU(2) case. For calorons, we have a twistor space T that is a C* bundle
over the total space Q(2) of the line bundle O(2) over P!. Concretely, if ¢
is the natural holomorphic parameter for the projective line, we can cover
O(2) by two open sets Uy = {¢ # oo} and U; = {¢ # 0}; one has then on Uy
coordinates (7,() and on Uy coordinates (1), (') related by

(.¢') = (=n/¢*,1/¢)
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on the overlap. If £ is a positive real constant (with V0 reciprocal of the radius
of the circle), the bundle 7 : T — O(2) is the complement of the zero section
of the line bundle L, with exponential transition function exp(—£n/¢), so
that one has coordinate patches Vj = {¢ # oo} and V; = {¢ # 0} on T, each
isometric to C* x C x C, with coordinates (&, 7,() and (¢',7, ') related by

(&7, ¢") = (exp(—n/¢)&, —n /%, 1/Q).

The complex structures on R? x S are parametrized by ¢ € P'. Now
consider an SU(2) instanton bundle on R? x S, equipped with a chosen
framing at infinity in, say, the positive #3-direction in R? x S', with instanton
charge k£ and monopole charge m. The instanton, since it has anti-self-dual
curvature, gives an integrable holomorphic structure for the fibre over each
¢ € P!, and globally, a holomorphic bundle £ on the twistor space; this
bundle is equipped with a real involution lifting a natural real involution on
T. Following, e.g., Biquard [2] 3], and as we shall see for the Taub-NUT,
the boundary conditions allow an extension of the holomorphic bundle £ to
a (fibrewise over Q(2), and so partial) compactification T = P(L‘ @ O) —
0(2) given by adding two natural divisors I'g = {{ =0}, oo = {{ = o0},
as in [7]. As we shall see below, the bundle £ over the compactification
then has a flag of subbundles 0 = &) C €Y C Y = & over I'\g and 0 = 2, C
EL C &% =& over I'w; here the index i in &; denotes the rank of & . This
compactification follows, in essence, from the work of Biquard [2]. Define
sheaves of meromorphic sections

(22)

g5t — &Po finite at I'g with values in 5’8,
pa £~ %0 finite at T'n, with values in &L, [~

We then look at the bundle F on O(2) obtained as the direct image of
the bundle &, projecting from the C* bundle T over O(2) as opposed to the
P'-bundle; F is of infinite rank. One can use the flags 58 along I'y, £ along

I to define for p € Z and ¢ = 0,1 subbundles F_ , Foo™ of F as

fgjq = {0 € F | o finite at Cj with value in Sg},
Fit = {0 € F| €& ®0 finite at Oy with value in £'_}.

We now have infinite flags

 CF G C P C T C T C Ty C T Cee

(23)
D FE o Lo FLO 5 FOL 5 FO0 5 pobL 5L
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We summarize some results from [7]: The direct images R'm,(£5%) can
be computed as the quotients F/ (]—"](,)7(1 + F!). The direct images

R'm (£ 5710) = F/(FQo + FotH0), Rimu(E, 1Y) = F/(Foy + FoPh)

are supported respectively over two spectral curves Sy, S1 in @(2). When &
is twisted by L, for s in an interval, these sheaves are the sources of the
flows for Nahm’s equations, by the well known correspondence of solutions
to Lax pair type equations with flows of line bundles on a curve [18], 20} 28];
these flows are the Nahm transform of the caloron. Generically, one has a
partition of the intersection Sy M S7 of the two curves into two divisors Stg
and Sp1, and an identification of our quotients:

FJ(F o+ For00) = LPFA (2 4 m) [~ S10]|s,
= L=V 9k +m)[—So1]|s,
FJF o+ For) = LP (2 +m)[=Soulls,
= LPYA (2k + m)[—S10]ls, ,

The quotients fit into a description of F by the exact sequence
(24)

FI(Fpag+FH0) ®
® FJ(Flo+ Fo700)
0 = F =  F/Fp+Fd) = ® — 0.
& F/(Fpa + 7<)
FIFY + F0) @

Generically, these become

LD 9k +m) @ Tg,, L@V (2% 4+ m)[—So1]|s,

D = [pttA- (2k + m)[—Slo]‘SD
0—F— LP2k+m)®ZTs, — ® — 0.
® LPEA (2 + m)[—Soi] s,

LP 2k +m) ®Ts, = LPPA(2k + m)[=Swolls,

Here Zs, ,,Zs, , are the ideal sheaves of Sp 1,51 0.



Monads for instantons and bows 189

There is a natural shift operator = on this sequence, given by multipli-
cation by the coordinate £ (more properly by the tautological section é of
LZ); it acts on F as an automorphism, and acts on the quotients by moving
them two steps down, changing p — 1 to p, and inducing isomorphisms, since
on the compactification é has a zero over the divisor I'y, and a pole over the
divisor I' .

These bundles will correspond to solutions of Nahm’s equations on a
circle; in this picture, a shift in p corresponds to a flow around the circle for
Nahm'’s equations. Equivalently, the Nahm flow around the full circle shifts
the relevant line bundles on the spectral curve by Lf; that this closes into a
flow on the circle requires a multiplication by the tautological section f of
L=t

We note that we can rebuild £ from F and the shift operator =; along
the surfaces & = ¢, ¢ # 0, 00, for example, one has

Ele=e = F/(E — D) F.

3.2. Restricting to a fibre ( = 0 of the twistor space: from
bundles to monads, m > 0 case

3.2.1. A chain of equivalent objects. Let us now restrict to the sur-
face ¢ = 0 in twistor space. The general Hitchin-Kobayashi, or Narasimhan-
Seshadri, correspondence should tell us that the moduli of solutions on the
full twistor space will correspond to moduli of holomorphic objects on this
fibre. We had a shift operator =, acting on F by automorphisms. There is
also a ‘half shift’, moving the sequence down by one step, which corresponds
to a Hecke transform of the bundle £ both at ¢ =0 and & = co. It inter-
changes the magnetic charge by m — —m, and so we need only consider
m > 0. We consider first the case m > 0, as the data for m >0 and m =0
are somewhat different. Our purpose in this section is to exhibit a chain of
equivalences:

Theorem 3.1. [7,[8, [30] One has sets of equivalent data:

1) Framed holomorphic bundles E on P' x P!, as above;
2) Sheaves P,;{,szl on P!;
3) A 7-tuple of matrices A,B,C,Dy, A", B",C" (modulo the action of

Gl(k,C)), satisfying algebraic relations and nondegeneracy con-
ditions ,,, and ;
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4) A monad V13>V2£>V3 of standard vector bundles on P' x P!, whose
cohomology Ker(8) /Im(«) is the bundle E.

The precise definitions of the items on this list are given below.

3.2.2. Holomorphic data I: bundles E on P! x P!. We begin with
the first item on the list, the bundle corresponding to a caloron; this is a
holomorphic bundle over C x C*. The restriction on the twistor space to
¢ = 0 corresponds to fixing a complex structure R3 x S1 = C x C* > (n =
t1 +ita, & = exp(ts +i6)). As we have seen, the twistor space has a par-
tial compactification to a P!-bundle over Q(2), giving on ¢ =0, a prod-
uct P! x C; the limits £ = 0,& = oo in the P! correspond, respectively, to
the limits t3 — —o00, +-00 in R3. One is compactifying a cylinder by adding
two points; in the neighbourhood of one of these points, say as t3 — —oo,
one again copies the approach of e.g., Biquard [2], finding solutions to the
Cauchy-Riemann equations which are asymptotic to a constant at t3 = —oo,
i.e. at £ =0. This extends E to a bundle at the punctures. The asymp-
totics of the instanton tell us in addition that there is a sub line bundle EY
along the added divisor Cy corresponding to the negative eigenbundle of the
asymptotic connection component matrix Ay. In the same way, at the other
end of the cylinders, one extends along the divisor C,, obtaining a bundle
with a subline bundle E! corresponding to the positive eigenvalue of the
component Ag.

Our bundles also came with an asymptotic framing at t3 — oo, giving
a trivialization of the bundle E along C., (the divisor cut out on P! x P!
by & = o0). This is compatible with the subbundle, so one can suppose that
the subbundle E., corresponds to the first vector of the framing.

Following [7], we compactify further to P! x P! by going ton = t; + it =
oo. This is done in a way which respects the framing along C,, extending
the trivialization to Cxx U {n = co}. The flag along C, extends, in such a
way that the degree of E is zero; on the other hand EY has degree —m.
This is where an asymmetry between the divisors Cp, C is introduced. Let
D, F' denote the divisors n = 0, n = oco.

In terms of our spaces (and their coordinates)

P! xPY (n,6)  Tl—o; 0,6) = T; (0,€,C)
(25) I L v

We have, on the twistor side, our first set of holomorphic data [7]. This
consists of:
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e A holomorphic bundle E on P* x P!, with ¢;(E) = 0,c2(E) = k;
e Sub-bundles EY = O(—m) — E along Cp, and E!, = O — E along
Coo-

e A trivialisation of E along C, U F, such that along Cy., the subbundle
EL is the span of the first subspace of the trivialisation, and at Co N F,
the subbundle EY is the second vector of the trivialization.

3.2.3. Holomorphic data II: sheaves on P!. For the second item, let
us now look at the restriction of the infinite flags, and their quotients. Set

(26) Pt = Rm (BB = FJ(EDy + FM).
B0 = Rim (B, 1) = F/(F), + F),

QB = R (BL5) = By + P,
o= RIm (B, 1) = FJ (B + ).

The diagram above restricts over P! to:

0 — o — prg’l — Q;g“@ — 0,
(27) 0 - O(-m) — pr(ﬁ”l — ;’1”1 — 0,
0 — (@) — prf”o — ;;17,1 — 0,
0 —- Om — B = QN, — o

The @s are torsion sheaves, supported away from n = oco; the sheaves P
are then of rank one, though they may have torsmn at the support of the @s.
Note, that the shift homomorphism = maps Qp 1 Lo Q P isomorphically;

likewise, it maps P, —fl ZI’J to P,/ J isomorphically. In addltlon since E itself

is locally free, there is a property of irreducibility of the sheaves in .

Irreducibility Condition ([7, page following lemma 9])

1. There are no skyscraper subsheaves C, of the P, QQ mapped to them-
selves by the maps above, and

2. there are no subsheaves of P, Q) mapped to themselves by the maps
above, with common skyscraper quotients C,.

In short, the diagram does not have a ‘triangular structure’, with ei-
ther subobjects or quotient objects that are resolution diagrams of torsion
sheaves. The reason is that the existence of these would yield sheaves F
which are not locally free, but are torsion free; the triangular structure
arises from the sequence £ — E** — E**/E.
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Summarizing from [7], one thus has our second set of holomorphic data:

e Sheaves Pp_’ég’l, ijf’o, Q;gﬂ’o, ;11)’1 on P!, fitting into sequences (D
with Q;gﬂ’o, Q;’l”l torsion, of length k, k + m, respectively, and sup-
ported away from infinity. The P, satisfy appropriate irreducibility

conditions, given above.

e A shift isomorphism = inducing isomorphisms between the Pp_fl_, & ’1,

_p_170 _p70 _p_171 _p71 _pvo _p+170 _pal 3
Por1a s Qpiio @piry and B o™, Py, Qp™ 7, @y, commuting
with the natural maps.

sializat: -p,1 —p,0 —
e A trivialization of P, ;" and of P, 7" along n = oc.

e A genericity condition: the maps
I=—1
reo —€Er_g
7"+’1 —7",’1

are surjective for all &’.

0,0 0,1 0,0 0,1
(28) By @ By 10 ® Qo1

To see how to get the equivalence between I and II, one has a sequence

0sF— e PMeoP? 5 @t a? 0
p7 p’ p7 p7
PEZL PEZ

defining F'; sections of F' are then sequences

(- Sp—1,0, Sp—1,1, Sp,0, Sp,1, - - -)

of the sum of the P 7 1 Py ¥ which match when one maps them to the
sum of the @, 8“’0 ©Q, Pl under . The subspaces F£ are then obtained
as terminating sequences (i.e., zero after a certain point as one increases p);
the subspaces FIQ ; are then obtained as initiating sequences (i.e., zero after
a certain point as one decreases p).

One can obtain E along the line £ = ¢, ¢' # 0,00 as
Ele—e: = F/(E— €DF.

Along £ = oo, E is the quotient L0 / Fél;o, with subline bundle F%! / F&O;
along £ = 0, F is the quotient FRO / F0070, with subline bundle F& 1/ F&O. Over
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P! x P!, one can obtain El¢_¢ from
it €€ i
iyq  —iig

where the i+ g and i4 ; are the natural inclusions. Taking direct images, the
sequence for F' ‘folds up’ into :

reo 27

T‘+,1 —T,,l

In particular, this diagram gives us the genericity property.
Globally, all these fit together as follows: one has a variety V defined as

0,0 . 0,1 0,0 . 0,1
(29)  0— Eyy & Ey) Evy © Eyy — Ele=gr — 0,

0,0 . 10,1 0,0 . 0,1
(30) 0= Ele=g — Py & By Q10 ® Qo)1-

V={(n¢¢)eP xP' xP¢ =¢'},

denoting by E, E;fl, etc. the lifts of F, E,?l, etc. to P! x P! x P! via the
projection onto the first two factors, we have

(31)
ryo =€t
T4+,1 —r-1

and taking direct images to P! x P! (the last two factors of P! x P! x P1),
we obtain

0— Eoy @ Eyy EPS([P" x P! x {oo}]) ® Egy — Ely — 0,

(32) 0— E— 1" Py &1 Pyt — 7 QY(Coo) & T Q01
where 7(n,¢’) = n. From [T, Theorem 7], we have:
Proposition 3.2. Holomorphic data I and II are equivalent.

3.2.4. Holomorphic data III: matrices, up to the action of Gl(k).
To go on to our third set of holomorphic data, we use a natural resolution
of the diagonal A in P! x P!:

(33) 0—0(-1,-1) 5 O — Op — 0.
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Lifting our sheaves P, Q) to the diagonal and pushing down, we have resolu-
tions:
(34)

\
\

/

O( 1)k W, Ok+1 PTPJ

p,0
\ \ T4,1
1)k+m Z1 Okt+m Q*I%l
D1
Y_
r—o1
- 70 —_
0( k+m Ok+m+1 pr =
\ X T—,0
k_ %o k -p,0
O(-1) 0 @pii0
X0 Yio
T+,0

W,

k+1 —p—1,
O P,

=

Again, on this diagram, there is a shift isomorphism =, which moves the
diagram two steps up. The entries of the maps W, X, Y, Z are matrices, that
can be normalized (see [7]):

A A C
e () e (4 8)

O(-1)*
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Here A, B,C, Dy, A’, B',C" are matrices of size k x k,k x k,k x 2,2 x
k,m x k,1 x k,m x 2 respectively. Subscripts denote columns or rows, where
appropriate. We let III denote the downward k& x k shift matrix, with ones
just below the diagonal; e_ = (1,0,...,0), and ey = (0,0,...,0,1). Setting
Dy = e A, the commutativity of the diagram expresses the monad
conditions for the original bundle E:

[A,B]+CD =0,
(36) (e )TB'A+mA — AB—-C'D =0,
—eyA'+ (1 0)D=0.

There are, in addition, following non-degeneracy conditions; these are the
same as for the monads for E, Ky, Koo, Ko of Charbonneau-Hurtubise [7,
Theorem 5]:

A-¢
(37) B —n | injective for all £,n € C,
D
(38) (n—B A-¢ C) surjective for all £, € C,
(39) (Y41, Z1) surjective for all n € C,

8= ((3) () #(&) - (@)

is an isomorphism,

where

() M=-220 = Sy )

The first two conditions are linked to the irreducibility of complex of P, Q)
and so, to the eventual local freeness of the sheaf E. The third is linked
to the surjectivity of the map P, 1 b, DL (The other surjectivities are
automatic). The invertibility of the final matrix N is linked to the fact that
the map Pp_’g ’l(m -1)— Q,, ’1”1 should induce an isomorphism on sections.
See [7, Lemma 7].

The various normalizations involved in the process use the framing con-
dition present in the previous sets of data, and reduce the freedom of choice
to an action of GI(k).
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Proposition 3.3. [7, Theorem 5]. Holomorphic data II and III are equiv-
alent.

3.2.5. Holomorphic data IV: monads over P! x P!. Of course this
implies that data I and I1I are equivalent; one can see this directly from how
the P and Q resolutions give a monad for FE, that is a complex A % B L\Ys,
with F identified as Ker(b)/Im(a). Recall that the sections of E along £ = ¢
should be given as sections
—k+1,0 _—k+1,0 —k1 —k0
( P10 Pr—11 »Pro »Pra 7)

of F' that under a shift k — 1 — k are scaled by c. This can be represented as
sections p4,p— of P = P& ’01, P_= Pg ’10 lying in the kernel of the restriction

map r to Qo = Qé:g, Q1= ng given by:
r(pr,p—) = (ryolpy) —cr—op-), ry1(py) —7—1(p-))

Varying ¢ and replacing ¢ by ¢ amounts to lifting to P! x PL. Let us write
our resolutions of both P’s and ()’s and the maps between them induced by
the 74+ 0,7+ 1 schematically as
O(-1)® (Up, ®Up.) % 0@ (Vp, ®Vp) — P, @®P.
X 1Y Ir
O(-1)® (U, ®Uq,) > 08 Ve, ®Va) — Q®@Q

A section in the kernel of r (that is, a section of the bundle E) gets rep-
resented by a section vp of O ® (Vp, ® Vp_) which is mapped by Y not
necessarily to zero, but to an element Z(ug) in the image of Z; i.e. Y (vp) —
Z(ug) = 0. These must then be considered modulo trivial (vp,ug), which
are of the form (W (up), X (up)). In short, and more properly putting in the
twists of equation , sections of E are represented by a monad on P x P!

(42)

W, 0

0 WwW_ VP+(070)

Xi0 X o ® Yio Yoo —Zy 0
Up (-1,0) \x,, x_,) Vp(00) \y,, v, o -z) V(1)

) & )
UP7<_LO) UQO(_]‘71) VQ1(O)0)
)

UQl (_17 O)
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Here, if V' is a vector space, V(i,7) denotes V ® O(i,j); the matrices are
those of . Expanding, as in ,

n—B 0 0
—Dy 0 0
W, 0 0 n— B 0
0 w_ | 0 (e.)TB" n—11
X+7() X_ 0 N 0 0 —€4 ’
Xy1 Xog £ 1 0
A 1 0
A 0 1
Yio Yoo —Zy 0
(YH Yoi 0 —Z1>
¢ 0 10 0 -n+B 0 0
= A CQ 1 0 —01 0 -n + B —C16+

A cy 01 —Cf 0 (e)TB' 1 —n—Cley

The matrices satisfy the monad relations and the genericity constraints
,,,. Essentially by row-reducing and column-reducing, one
can show that this monad is equivalent to the smaller monad, which is more
or less the standard one for bundles on P! x P! which are trivial on the lines
{oo} x P! and P! x {oo} :

E—A
D
k 0(0,1)" .

In a similar way, one can recreate a subsheaf Fy of sections of E with
values in the first subspace of the flag along Cj, and similarly a subsheaf
FE of sections of F with values in the first subspace of the flag along Cu;
this gives our flags along Cp, C,. One can also recreate the trivialization,
and get our holomorphic data I.

(n—B A-¢ C)

O(-1,0) O(—1,1)* @ Ok+2

3.3. Nahm complex over the circle, and monads

The final set of holomorphic data that can be derived from the bundle F is
a Nahm complex: following [7], the Nahm complexes that we consider over

the circle, viewed as the real line with s, s+ [ identified, are defined as in
Subsection with the difference that there is no bifundamental data.
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Instead, the fibres at s and at s + ¢ are identified. Thus, the Nahm complex
solution is defined on the circle.

The Nahm complex admits an action of a group of gauge transformations
g which are smooth away from the jump points A_ and A, and satisfy the
appropriate compatibility conditions at the boundary points; using these,
one can put the Nahm complex locally, into a normal form:

Lemma 3.4. [22, Prop 1.15]

e Away from the A-points, one can gauge the connection and endomor-
phism to a = 0,8 = B constant. This extends to the boundary points,
if one is on Ny and, in the cases m = 0,1, on Ny also.

o At the A-point (translated to s = 0), over N1, form > 1, one can gauge
transform the connection and endomorphism to the block form

(43) 1/0 0
o] = —
175 \0 diag(=lm 2=Gmen D))y )

(44) ,81:<mlB sz Cheg )
S

7 (e )TB" —s '+ Cle,

Here B is k X k, B is1xk, C1 is k X 1 ; all these are constant ma-
trices. Also Cf is m x 1, with (C}); = s™~4(C});, and (C}); constants.

Let us denote the union of our two vector bundles Ny and N1 and their
glueings at the boundary as one rather unusual bundle N over the circle,
whose rank happens to change across A4, so that there is a ‘large’ interval
[A_,\;+], and a ‘small’ interval [A\;, A\_ +[]. The Nahm construction, in its
holomorphic geometric version, gives an infinite dimensional monad

D1:<d5+a6—_(77573+i6) )

(45) H;y (V) @2 Da=(n-B, dita—(ts+i0)) ~

H_y (V).

LA(V)

The function spaces much be chosen with a bit of care, so that both the
derivative operator and multiplication by a function that has a pole at the
A-points are well defined. The space H; is thus a subspace of the standard
Sobolev space Hy, for example. The Nahm complex through this infinite
dimensional monad encodes a bundle E over C x C, which is invariant under
0 — 6 + 27 /¢, and so descends to the quotient C x C* by this action.

Proposition 3.5. [§/ 1) Holomorphic data I-IV and V are equivalent.
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2) Under this equivalence, the bundles E and E that their respective
monads encode are isomorphic.

Proof. The first part is covered in Charbonneau-Hurtubise [8, Section 5].
The sheaves P, () contain all the information for the Nahm complex:

e The bundles Ny, N; are simply H(P!,Qq), H*(P', Q1), with the nat-
ural trivial connection;

e In this trivialization, the matrices §; are simply the matrices Z; above.

e The glueing of Ny, N; is effected at A+ by the maps
HO(PvaO) — HO(]Pﬂ?Pi) - HO(Pla Ql)

We note, that the normal form becomes oy = 0, and 81 = Z1, if one acts
by the singular gauge transformation

. —(m—1) 2—(m—1) (m—1)
diag (1,...,1,z7 =z ,z =2 ...,z : .

In this gauge 81 = Z; equals to the matrix defined in . This of course
takes us out of the framework of the our monad of L? function spaces. The
poles here appear to be essentially put in by hand; the complex geometrical
reason for having them only appears when one goes to the full twistor space,
and is linked to the geometry of sections of L! on the spectral curves, as t
tends to zero. This is discussed in Hurtubise and Murray [23].

There remains the global monodromy of the connection «. For m > 1,
the normal forms at both ends of the ‘large’ interval (on which the bundle
has rank k 4+ m) are conjugates by the matrix N defined above in equation
); thus the parallel transport for the connection on the large interval will
be N. The matrix N conjugates

o —B Cl€+
(46) 2= ((e)TB’ —III + C{e+>

to

0 (o e )

6_)TD2 —1IIT —+ éi€+

On the small interval one simply takes the identity map as the parallel
transport.
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The case m = 1 is treated similarly. Conversely, given a Nahm complex,

one can extract the matrices from the normal forms at the singular points,
and the monodromy of the connection.
_ We exhibit how the two sets of data define isomorphic bundles E and
E. This is done in [§], but we now revisit it from a monad point of view.
As we saw, the bundle E' was given as the cohomology of a monad .
We want to show that the bundles £ and F are equivalent by exhibiting
some morphisms of respective monads. To do this, we first reduce the infinite
dimensional monad that encodes the bundle E to a finite dimensional one,
quite similar to that arises from the algebraic geometry. We begin by
considering the situation at t3 + i = 0.

We first note that in our complex, the elements (x', x?) in the kernel of
D, can be modified by a coboundary so that x! is compactly supported in
the intervals, at a distance 2¢ from the boundary. This amounts to solving
x! = (ds + a)u near the boundary, which one can do [15], as we argue mo-
mentarily, in spite of the pole of a, and then applying D; to —u times an
appropriate bump function.

Consider the spaces:

e V. of solutions to (ds 4+ a)v, = 0 on the interval (A_ — £, A_) which
satisfy the boundary conditions at Ay;

e V_ of solutions to (ds + a)v_ = 0 on the interval (A, — ¢, A,) which
satisfy the boundary conditions at A_;

e Subspaces Uy of V4, such that not only vy, but also S(v4), satisfy the
boundary conditions at AL; as 8 has a pole at the boundary, this gives
a space that is one dimension smaller.

e Uy = Vp of values ug = u(A_ —€) at a fixed point A_ — € (outside of
the support of x!) of solutions on (A4 — £, A_) to the equation

(48) (ds + a)u(s) = x*,

with u(Ay — 4 ¢€) = 0; Uy, of course, is just the fibre of N at A_ — ¢;

e Uy =V of values u; = u(Ay — €) of solutions on (A_, Ay) to the equa-
tion (ds + a)u(s) = x*', with u(A_ +¢€) = 0.

This assembles into a finite dimensional monad to which our infinite
dimensional monad reduces; it is basically the same as , and indeed
yields the same bundle. To see this, let us begin over t3 4 6 = 0. Consider a
solution (x!, x?) to Da(x}, x?) = 0 satisfying the boundary conditions, with
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x! = 0 near the boundary points. Write this as (xg, xg) on (A+ — [, A~) and
as (x1,x3) on (A_, A;). The section x3 can be written as vy + (8o — n)u on
(A4 — I, A_) with u solving ([48); for it to extend past A_, one needs

evy0(v4) + (Bo — mug = —ev— o(v-)

for some v_ € ‘7_; here the ev denote evaluation, and By is the evaluation
of B at the reference point in the interval. In a similar vein, writing x? as
v—(s) + (B1 — n)u(s); again, for it to extend past A4, one has

ev—1(v-) + (B1 — nur = —evy1(vy),

where of course we are extending our solutions periodically. The effect of D;
on this is to modify the v_, vy by solutions of the form (8 — n)u_, (6 — n)uy
defined on the same intervals as v_,v;. D; also modifies the (ug,u;) by
adding to it (—evy o(u4) —ev—o(u—), —ev— 1(u—) — evy 1(uy)).

Let us now return to demonstrating that one can solve (ds + a)u = x
with ! in L?, for a u in the desired Sobolev space H! i.e. with a u and its
derivative that are indeed square integrable at the A-point. This is a three
step argument employing the frame of [15] adapted to the Nahm residue:
1. The form of the pole of o implies that there is a unique solution
wo of (ds+ a)w =0 of order s“3 at the A-point. The leading pole
of 8 in turn implies that w; := Bwg, we = FZwo, N B Ly are
solutions of (ds + a)w = 0 of respective orders smT_s, sﬁ'go Y s~ at the
A-point. 2. Thus, the union of the set {v; := s~ e wj};-n:_ol and by any
frame in continuing components, form a completely regular frame at the
A-point. 3. If X(l), xi,...,xt | are the components of x! in this frame, then

1

the components of u are given ’bylu;v =" ot R x;(t)dtifm—1—
2j<0and uj=s = ["t7"2 xj(t)dtif m —1—2j > 0. Therefore, if
x! is L? at the A-point, then u is indeed in H'.

Moving this picture to an arbitrary t3 + ¢ modifies our spaces in a simple
fashion, in a way that only depends on & = e3*%: the solutions v for general
¢ are just the solutions for £ = 0 multiplied by &£. This changes nothing in
our formulae except the monodromy, inserting a factor of £ in one of our
evaluation maps. Thus, we have a finite dimensional monad, equivalent to

the infinite-dimensional Nahm monad:
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B—=n 0 =

~ —fevyg —ev_pg| < [(Levyo ev_pg [o—n 0 ~
—evy1 —ev_ evy1  ev_ 0 B1—n

Now we can put in some trivializations and see what these maps become.
The maps ev4 o : V4 — Up are onto, and so can be put in a standard form
(1,0). Likewise, the map ev_ : V. — U is an injection, and can be put in
a standard form (1,0)7. On the other hand, the remaining map ev; ; then
has to contain the information of the monodromy of the connection. We are
then getting a monad that is quite close to that of .

Unfortunately, the spaces Vi both have dimension k + Int(m/2), where
Int denotes the integer part, while the spaces Vi have dimensions k + 1, k +
m + 1. The link can be understood as follows. Recall that V4 were the spaces
of sections of Py; these fit into exact sequences

0 — — - 0,
(49) 0 — — o — 0

P = Qo
O(m) P. = Q

These engender a whole sequence of extensions

(50) 0 — O(v) - P, — Qo — 0,

0 - Om+v) — P, — Qo — 0,
as sheaves of sections of Py with poles of order v allowed at infinity for v > 0
or zeroes of order —v forced at infinity for » < 0. We note that the P, , are
all isomorphic, away from infinity, and in a fairly natural way. Their spaces
of sections V., are nested: V. , C V4,11, with the difference being just one
extra pole allowed at infinity. The same naturally holds for the P_,,V_ .
In this vein, 17+ should be identified with V. 1y4(m/2)—1, and V_ should be
identified with V_ _py(m/2)—1- In short, while E is defined on P' xC as a
bundle by

(51) 0= F—>71"P, ®dn"P_ = 1"Qo(Cx) ® 7" Q1,



Monads for instantons and bows 203

the bundle F should be thought of as being defined by the (isomorphic over
P! x C) sequence

(52) 0= E = TPy ngm/2)-1 D T P- _tni(my2)—1 = T Qo(Cs) @ T Q1.

The difference between the two would only emerge on a compactification,
where of course many choices are possible. B

On the level of monads, the isomorphism of £ and E is mediated by the
maps

Vi = Vimm2-1 < Vimtm/2)-1 = ‘ém
(53) Ve = vV — Vo nt(my2)-1 Zyﬂ
Ur = Uimim/2)-1 < Uptim/2)-1 = Uj,
uv-. — U- <~ U _mt(my2)-1 =U-,

with the maps on Uy, Uy, Vp, V1 simply being the identity. Once one does
this, and adjusts for choices of sign, and remembers the normal forms for
the Nahm complex, the monads coincide. Il

3.4. The case m=0

This case is somewhat simpler: the first set of data is essentially the same:
3.4.1. Holomorphic data I: bundles E on P! x P'. This consists of:

e A holomorphic bundle E on P' x P!, with ¢;(E) = 0,c2(E) = k;
e Sub-bundles E? = 0O — E along Cp, and El. = O — E along Cx;

e A trivialisation of E along CpU {n = oo}, such that along Cj, the
subbundle EY is the span of the first vector of the trivialisation, and
at the intersection of {n = oo} with Cs, the subbundle E., is the span
of the second vector.

Similarly, the passage to the second set of data is identical, as follows.

3.4.2. Holomorphic data II: sheaves on P!.

-l p— —p+1 —p1 o
e Sheaves vag’ ,pr’o, Q P10, prl” on P!, fitting into sequences

p,0
—p, 1 T+ —p+1,0
0O —» O — Pp’0 — Qp,o — 0,
— T —
(54) 0o - 0 — Ppé"’l iy pf’l — 0,
—p,O r-a —Pal
0O — O — Pp,1 = Qp,1 — 0,
_p70 r—0 _p70
0 - O — PFj Qpiio — 0,
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with @ p+107 ;If’l torsion, both of length k, satisfying the same

1rredu01b1hty conditions as in the m > 0 case.

e A shift isomorphism = inducing isomorphisms between the pr 1

p,0 p+1,0 p,1 p—1,1 p—1,0
Pp ’ Q ’ Q and Pp+1 0 Pp+1 1 7Qp+l 0 Qp+1 1 , respec-
tively.

e A trivialization of P, § 1 and of Py 0 along n = oo

Again, one can take resolutions, and obtain a diagram ; the matrices are
given by the following;:

3.4.3. Holomorphic data III: matrices, up to the action of Gl(k).
X+71 = (A) 5 Y+71 = (A CQ) )
— B
W= (77_1720) - A=h-h),
X*,l = (1) ; Yf,l = (1 *Cl) ;
X_o=(1), Y_o=(1 0),
— B
wo= () o= (- B),
Xip=(1), Yip=(1 0).

Note, that A is invertible; this corresponds to the fact that the bundle £
is trivial along Cj. The matrices are determined up to a common action of
Gl(k,C). The commutativity of the diagram gives the constraint, equivalent
to the monad condition:

[A, Bo] + CD = 0.

Also, one has that the matrices By, By giving the sheaves g, Q1 differ by a
matrix of rank one:

By = BQ — ClDl.

One has genericity conditions; in addition to asking that A be invertible,
one stipulates:
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A—=¢
(56) B — 7 | injective for all £,1 € C,
D
(57) (n—B, A—¢&, C) surjective for all {,n € C.

Again this is linked to the irreducibility of the P, @s, and eventually to the
local freeness of the bundle E.

3.4.4. Holomorphic data IV: Monads. As in the case of m > 0, a
monad is built out of the resolutions for P, @), and with matrices above. The
formulae are the same as for m > 0.

3.4.5. Holomorphic data V: a Nahm complex over the circle. For
m = 0, the constraints are simpler: the Nahm complexes over the circle that
we consider are defined by

e A bundle Ny of rank k over the interval [A_, A\y], equipped with a
smooth connection d,,, and a covariant constant smooth section 3y of
End(Vh).

e A bundle Nj of rank k over the interval [Ay, 27 + A_], equipped with
a smooth connection d,, and a covariant constant smooth section (1
of End(Ny).

e At the boundary points A4, isomorphisms iy: Ng — Ny, 71 = i;l
with the gluing condition that 8y — w1817+ has rank one at the bound-
ary.

e At both boundary points, extra data consisting of decompositions of
the rank one boundary difference matrices Sy — m_B1i—, 8o — 7+ 10+
into products of pairs of a column and a row vector (I_,J_) and

(I+7J+):
(58) Bo—m_pri-=1_-J_, fo—mpPriy =14 Jy.

The procedure for passing from our other holomorphic data to the Nahm
complex is similar to the case of m > 0, but again simpler: the sections of
QQ; are associated to covariant constant sections of V;; the sections of Py are
associated to the covariant constant sections near the boundary points A1,
with the sections of Py (—1) mediating the isomorphisms between Ny and
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N7 at these points:
HY(P', Qo) ~ HY (P!, PL(—1)) ~ H* (P!, Q).

The maps H°(P!, Py) — H°(P!, Q;) on the one hand, have one-dimensional
kernels V;; on the other hand H°(PP!, P(—1)) sits naturally inside H°(P!, Py.)
as sections vanishing at infinity. We then have a decompositions

HO(P17Pi) = HO(]P)laPi(_]')) D V;

and so projections w4 ; : HO(P!, Py) — HO(P!, Py(—1)), with kernels V;, and
with 741 =74 on HO(P', PL(—1)), so that T4+1 — T+, is of rank one.
Multiplication m,, by the coordinate 7 defines a map

HO(P!, PL(—1)) — HO(P, Py),

and one has that the covariant constant sections ; of the Nahm complex
are defined by 3; = 7+ ; o m,,. This is the source of the rank one jumps from
Bo to Bi.

One does not need to worry about the poles of covariant constant sec-
tions, since the Nahm data is regular.

In terms of matrices, the matrices B; then get translated into the co-
variant constant endomorphisms (5;. The rank one jumps of 8 at the AL are
then given by the matrices C;, D;. For the connection on the circle, the sole
invariant is the global holonomy, and this is given by the matrix A.

4. Holomorphic data for the Taub-NUT

As noted above, the geometry of the Taub-NUT manifold R* is more closely
tied to the Hopf map R* — R3 (a circle bundle away from the origin) than
to the trivial circle bundle over R3. Let us recall the geometry of the Taub-
NUT manifold Xy = R* = C? under the ¢ = 0 complex structure. First, the
Hopf map to R? is given by

2 2
(&) 1 (b1 +ita, ) = <€¢7 Liidd )

The fibres of this map away from the origin are orbits under the action
by complex scalars of unit length. In particular, fixing the direction in R3
corresponding to ¢ = 0, one has the parallel family of lines L,, = {(t1,t2,t3) €
R3|n = t; +ita}, and, over them in R*, the family of conics (cylinders for
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n # 0) given in complex coordinates (£,71) € C2 = R* by n = &i. In other
words, the restriction X = R* of the twistor space Z to ¢ = 0 is a family
of conics £ = n. This was compactified above, first into a surface X, by
adding two points to each conic, so that one has a family of compact conics
over C, and then to a closed surface X by adding a conic (two lines) over
n = oo. We refer to Subsection [2.1.2]

4.1. Restricting to a fibre: from bundles to monads, the case
m >0

As for the caloron, our aim will be to exhibit a chain of equivalences:

Theorem 4.1. One has equivalent set of data:

1) Holomorphic bundle E on X;

2) A collection of sheaves PIZﬁ’QZ,Jl on PL;

3) A tuple of matrices A,B,C, Dy, A", B',C", B, 1, B ,;
)

4) A monad V13>V2£>V3 of standard vector bundles on X, whose coho-
mology Ker(5)/Im(a) is the bundle E.

Again, the precise description follows.

4.1.1. Holomorphic data I: bundle E on X. Over the Taub-NUT, a
solution to anti-self-duality equations on a bundle F gives us an integrable
complex structure on E over Xy; as for the caloron, the asymptotic behaviour
of the connection and its curvature give us an extension of this structure for
E over X{. In addition, along the divisors Cp, Co one has a holomorphic
subbundle corresponding to the (negative) eigenbundle of the asymptotic
monodromy of the operator % + Ay.

We extend from X to X. Again, this is where an asymmetry is intro-
duced between Cy and C, following the example used in other cases, such
as monopoles or calorons; one takes a trivialization at t3 = —oo (the points
corresponding to the points 1 # oo in Cy ) in which the eigenvectors of the
monodromy form a basis, and extend this to 1 = co in the divisor Cw. As
the bundle is trivial on 771 (U’) for U’ = U — {n = oo} for some neighbour-
hood U of n = 00 in C,, one then has a natural extension of the bundle as
a trivial bundle on 771(U) using the trivialization on U. This gives a bun-
dle that is trivial on Cy, and a subline bundle EL that is a trivial subline
bundle.
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The result is then a bundle on X, and the subbundle E? along Cj be-
comes an O(—m); we can adjust our trivializations so that the subbundle
O(—m) corresponds to the second vector of our induced trivialization at
Co N F, ¢

More specifically, the data consists of

e A rank 2 holomorphic vector bundle F on X, with ¢y = 0,co = k,

e A subbundle EY = O(—m) < E along Cp, and another subbundle
El = O < E along C,

e A trivialization on Ci U F¢ U Fyy, with the subline bundle E! corre-
sponding to the first vector; the flag E? corresponds to the second
vector in the trivialization at Co N Fr.

As for calorons, one can define the sheaves EL%, which one can push
down by 7 to P'. Pushing down E from X — Cy — Cs to P!, one gets a sheaf
F of infinite rank. It is again filtered as above, by subsheaves F) , F&?, and
one has the quotients Pl;g’l, Pp_’lp’o, Q_pH’O “P1 i the same way, fitting

p,0 »%p,1
into sequences as before:

0 — o - p KN Qi = o,
(50) 0 = O(-m) — P};é”l 3 ;ff’l — 0,
0 — @) - PP 5 S )
0 —- Om) — B 3% @My — o

Again, the Q,, gH’O are supported over k points, counted with multiplic-
ity, and the @, 5’1”1 over k + m points, also counted with multiplicity; the
calculation is an application of the Grothendieck-Riemann-Roch theorem.
The big difference is the shift operator =, which does not define an isomor-
phism as it did for calorons. Indeed, let £, be our standard holomorphic
coordinates on X. The function £ over X has a pole along Co U F, and a
zero along Co U Dg; likewise ¢ has a pole along Co U F);, and a zero along
Cs U Dy,. Multiplication by £ and by v induce respective morphisms

= 1,

(60) 2 EBRY, BN (—De + Fe),
_17

(61) U ERY, =B 15, (=Dy + Fy).

Thus, the multiplication operators induce twists by divisors located above
n = & = 0, 00; they no longer induce shift isomorphisms p — p + 1 on the
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P,Q.
(62) Q0o
(—Dg)Q;ngl,O (=Dy) Q;ﬁfo
\ LV
Q—P+1,0

Here I denotes the map given by the natural inclusions. The sheaves

(—Dg)Qngrl,O’ (—Dw)Q*}r’iOO
p7 p )

are the direct images

Rz (EPLY (— D¢+ Fy)), R'm (Efn—i-ln( Dy + Fy)),

m—1,n

respectively. For the Qs, the maps =1, ¥~! are isomorphisms, as the bundle
F is trivial over n = 0o, and the Qs are supported away from infinity. One
then has maps:

Buy=10Z:Q,70 > Q5™ Biy=I00:Q, 5" = Q"

The compositions toZo0i0o W, 0 ¥ oioZ are multiplication by 7.
Now consider the diagram of maps

P!l « PlxX —» X

(63) 1 ¢ 1.
P!« P'xP' — P!

One has the sheaves P and @, on the left hand side; pull them back to the
central terms, and denote them by the same symbols. One can build over
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P! x X a diagram

(64)

0,1 n—n' 0,1
0,1(—F) - Q0,1-

Remark 4.2. These diagrams will recur, and so some explanation of the
notation is in order. We will think of them as defining monads. Each bundle
of the monad is a direct sum of the bundles in a given column of .
Accordingly, each arrow represents an entry in the matrix representing a
map from the sum of each column to the sum of the next; all other entries
are zero. The last line is a repeat of the first, and should be identified with
it; this was done to avoid too many crossing arrows. The unmarked arrows
are the map ¢ induced by inclusion on the level of the E,chl The coordinate
n' is the coordinate on the P! factor, and 1 on X factor. Note that the
composition of the maps from the left-hand column to the middle column
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with the map from the middle column to the right column is zero. We will
eventually see that the cohomology of this diagram at the middle column is
the bundle F.

Proposition 4.3. For the sheaves of , the map between the left hand
side and the middle is an injection of sheaves, and the restriction of the map
between the middle column and the right hand column to P&lo ® Q?:g(—Coo) ®

(1):8(—00) & P&’Ol is a surjection for all ¢, &, n,n" with &) = 1.

Proof. For the first statement, we have that the horizontal maps are them-
selves injections, so the result follows. For the second, if we have 1 # 7/, the
result follows immediately. More generally, we note that the map is R'm, of
a map of sheaves over X x X (distinguishing the first X, and the objects
on it, by a prime)

By ® By (—Coo — Fy — F) @ Egg(—Co — Fe — F)) & Eyyy

10,1 0,0 1,0
— By @ By @ Ey)

with
1 0 0 -1
p=1-1 & ¢ 0
0o ¢ ¢ 1

The quotient of the second term by the image of u has discrete support
on the fibres of X x X - P! x X , and so Rlm, of the quotient is zero.
This then tells us that the induced map on R, of the two terms above is
surjective. O

4.1.2. Holomorphic data II: sheaves on Pl. We then have:

1 1 1 .
e Sheaves Pg ’O,P(g] ’10 , 0’8, (1)’8, 8’1 on P! fitting into sequences 1)
. 1 ) ) 1 ) . B ) .
with Qo’g, (1)’8, Qg’l torsion, of length k,k,k + m, respectively, and

supported away from infinity, with Qé:g, %8 having the same support,

and indeed being isomorphic away from n = 0.

e Shift maps
5 0,0 10 B .l 0,0
Bht: Qo = Qolos  Brn: Qoo = Qs

such that the compositions B\h’t o Enh, B\t’h ) Eh,t are multiplication
by n.
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e A trivialization of P&’Ol, P&O at n = oo.

e An irreducibility condition, which is the same as given in Section 3.2.3,
page [[91]

e A genericity condition on maps between the sheaves of , ensuring
that the left hand side maps injectively to the middle, and that the
restriction of the map between the middle column and the right hand
column to P&O ® Q?zg(—Coo) @ Qé:g(—Co) @ Pé)”ol is surjective to the
right hand side, for all ¢, &, n,n" with & = n.

The modification of the shift maps indicates that obtaining a monad
from the exact sequence for E along a line is not as straightforward as in
(30). Indeed, while there are monads for bundles on these blown up surfaces
(see Buchdahl [6]), they are not adapted to our purposes. Rather, we note
that there are two families of lines L§ : {¢ = a} and LZ’ : {1 = b}, each of
them filling out a dense subset of the surface, and we will obtain a monad
from each family, then ‘fuse’ the two monads together. This will amount to
considering the two blowdown projections

P! x P! &2 x 2 plx Pl

with
pe(, &) = 0,€)  wy(n, &) = (n,7),

considering monads for the pushdown E¢ = (u¢)«E and Ey = (1)« F, and
glueing the two.

One has the resolutions, in which the maps are plus or minus the natural
maps, unless otherwise indicated.

(65)

0——
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and

(66)

0——

b

(67) Ve ={(&,p) e P' x X|¢(p) = ¢},
(68) Vy ={(',p) € P! x X|yp(p) = ¢'}.

Denoting by E , E,Zjl the lifts of F, E;fl to P! x X, we have a sequence
(69)
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and
(70)

00— Eg(—Fy — [/ = oc]) EY Ely, 0.

~0,1 ~1,0
Eg Eq

For the first resolution , we take a direct image via 7¢(n, €, ¢') =
(n,&') onto P! x P!, The line Lz, projects isomorphically to P!, for £ # 0,00
and so one is essentially getting F, for £’ # 0, as well as for ¢ = 0,7 # 0 and
for ¢ = 0o0,m # oo. In fact since the projection from V¢ to P! x P! is the
blowdown of D¢ and F¢, we are getting the pushdown WE(E) from X to
P! x P! by 7¢(p) = (n,€); remembering that the bundle is trivial over Fio,
we obtain (substituting £ for ¢, and with the abuse of notation that Pi]f3l, Pi]fj’.l
denote both the sheaves on P! and their lifts to P! x P! or X):

(71)
1 0 -1
-1 € 0
(0 —Bn. 1)

We note that the support of lef(E), if it is non-empty, is at £ = 0, and so

QleQlieQy) — R'TS(E).

0 = 78 (E) = POraQl(—Cu)aPl:

Proposition 4.4. The map

0,0 0,0 0,1 0,1 0,0 1,0
Py @ Q1o(—Co) ® Py Qo1 ® Q1o D Qo)

arising from a bundle E is surjective away from & = 0.

In turn, taking the second resolution , we get sheaves and maps:
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1 0 -1
—1-B.n 0
0 ¢ 1

Again, the support of Rlﬂf(E), if it is non-empty, is at ¢ = 0, and so

(72)  0=a¥(B)»PY@Qy s (—Co)® P, Qi8R i8Ry R Y (E).

Proposition 4.5. The map

1 0 -1
1 —By, 0
0 ¢ 1
0,0 1,0 0,1 0,1 . 0,0
Poa @ Qpo(—Co) @ Py Qu1 ® Q1) ® Qu'o 0’

arising from a bundle E, is surjective away from 1 = 0.

Now, let us take resolutions of the P, @, as for the caloron. Lifting back
to X, this gives the following commutative diagram, where D = D¢ + Dy,
F = F¢ + Fy, and where one remembers that the (Js are supported away
from F':

(73)
Fyftm 2 gkim Qb
X,_ /
(’)( F)k+m Ok+m+1 PO’O
0,1
F)’“ Qo
ZlO
O(—F = O~ ) 2 0(~Cux — Fe) b (-C)
B+ \ \EH
1,0
Qo,o
O(~F)k Ok+1 Py
Fyim 2 okt Qo
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As explained in the caloron case, we get a monad from this diagram by
summing each of the three columns on the left, and changing signs on the
diagonals between the first and second column, so that the diagram is anti-
commutative instead of commutative. Let us make these sign changes from
now on. The cohomology of the monad is (7¢ )*WE(E) = E,

Again, taking resolutions gives a diagram, and hence an analogous monad
for By = (7%)*n¥ (E)

(74)

Fyktm 2oL okt Qo

_X_ / /

O( F)k—f—m Ok+m+1 P(?,’lo

~X_, \ \
(—F)* QY0

—DBi.n /

p B

O(=F — Cy — Fy)F X O( 00—F¢)k‘ 0.0(—Co)
—yl

Q0’0

\/
ANV
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This, over n # 0, is isomorphic to the monad

(75)
Zoa . ,
O(_F)k-i—m Ok+ ng
Ww_
O(_F)k—i-m Ok+m+1 P(?:lo

-X_ Y_o \
k Zl,O k 0,0
O(-F) (@] Q1

—Bin
Z B Et,h
O(—F — Cy — Fy)F 2L 0(—¢y — F¢)k Qy'o(—Co)

g
A
)

k+m Zo1 0L Oktm Qovl

The isomorphism is achieved by maps which, on the central (second) col-
umn, map sections (ur,us,us, ug, us, ug) to (u1,usz,us, us, us + & ug, ug).
The two monads and in turn are the same apart from a cen-
tral piece. One then has a map between the two which is the identity on
these identical pieces, and on the central piece, corresponding to the sheaves
Q?:g, Qé:g, a morphism

k ZO,U

O(—F —Cy — Fy) O(—Co — Fy)*

E7 1B s EilBt,h
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Note, that the Q?:g, Qé:g have the same support: the projections of the lines
n=constant which are jumping lines. On the level of the Qs, By, is the
map induced on sections by multiplication by &; in turn By is induced
by multiplication by v, and By, By are induced by 7. One has that Zyg =
1N — Bo, Z1,0 =1 — By; since n = 9§, we have the condition

By = BpiBin B1= BipBhy,

ensuring the necessary commutation in the diagrams above.

This monad morphism realizes on 7 # 0 the isomorphisms E; = E = Ey;
indeed Eg is isomorphic to E away from D¢, and Ey;, is isomorphic to E away
from D,,. We would like to ‘fuse’ the two monads, to give us £. What works
is:

(76)
Zo1

k+ 0,1
o Qo1

)
)
)
)

0
0

0
0
1

Py
.
QY
Qo
e
Py
.
Q0

1
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The left hand side is the direct image under P! x X — X of the dia-
gram of sheaves . Using the resolution of the diagonal in P' x P! by

O(—1,-1) - O — O|a, one has that the terms on the right hand side (ex-
cept for the fourth term, @) are indeed the sheaves Qgﬁ, ng, (1):8, [1):8, P&’Ol;

for the remaining sheaf (), mapping to Q(l)’g, (1)’8, we define it as the quotient

(77) Qro(~Co) —= @p(~Cux)

|
=
&
\ =

O(=F — Coo )k —E 2 O(=Cy — Fy)

The diagram (or monad) (76) contains the monads and as
sub-monads; for , one maps the central columns of to those of
by

(u1, ug, uz, ug, us, ug) = (u1, ug, us, uq, 0, us, ug),

and on the first column by

(v1,v2,v3) — (v1,&v2, By 12, v3)

and similarly for (74)).

Now let us start from holomorphic data II. One can take the locally
free resolutions of P, @) as above, and build sequences . One has a
proposition that can be proven for the resolutions and the monads

Proposition 4.6. For the diagram-monad , arising from holomorphic
data II, one has
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o The maps X_1,X_0,Y_1,Y_o, X1 oYy o are surjective.
e The maps X 1,Yy 1 are injective.

o The maps between the second and third terms in the monad is surjective
at every point.

e The map between the first and second term in the monads is injective
at every point.

Proof. For the first two items, one uses the long exact sequence of ,
and of their twists by O(—1). For the third item, we have by our genericity
property that the map between the second and third column is surjective
on the level of sheaves, i.e. in ; we want it to be surjective on the level
of global sections over P'. We note that the map on the level of sheaves
can be written schematically as P ® Q(—F') — @ — 0; this fits into an exact
sequence 0 - P(—F) - P & Q(—F) — @ — 0. On the other hand, from the
properties , one finds that H'(P!, P(—1)) = 0, guaranteeing surjectivity.
For the fourth, one simply notes that one has an injection of sheaves, giving
an injection on the level of sections. O

Now we consider the sheaf defined by the monad. We note that the
surjectivity and injectivity given above show that it is a bundle; furthermore,
the fact that it is E¢ over £ # 0 and Ey over ¢ # 0 guarantees that the
bundle is isomorphic to F, i.e the bundle we started out with. In short:

Proposition 4.7. Holomorphic data I and II are equivalent.

One can work out as for the caloron (35)) and (55)) the maps in the cor-
responding resolutions. One obtains essentially the same expressions, except
that the map Z; o associated to Q(l)’g and the map Zp o associated to Qé’g

are no longer the same. Rather, one has

Zoo = (n—DBo), Zio=(n—B1),

with
By = BB, Bi= BipBpg.

This follows from the fact that one has the relation on coordinates n = £.
We notice that if the matrices By, By are invertible, the & x &k matrices
By, B; are conjugate.

More precisely, one can normalize to matrices:
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4.1.3. Holomorphic data III: matrices, up to the action of Gl(k).

A A C
@) (9
_(n—Bo _(n— B Creq
Wy = ( —Dy ) D01 = ((G)TB/ (n — 1) + Ci€+> ’

1 0 1 0 —-C
X—J:( )7 Y—J:( )’

X_o=(1 0), Y_o=( 0 0),
77_Bl 0

Xi0=(1), Yio=(1 0).

Here A, B;,C,D, A, B’ C" are matrices of size k x k,k x k,k x 2,2 x
k,m x k,1 x k,m x 2 respectively. For C,C’, D, the subscripts denote
columns or rows, where appropriate.

As noted, one has the constraints

(80) By = By B, Bi= B pBpy.

In addition, there are constraints given by the commutativity of the diagram
(76)): setting as above Dy = e A, one has

(81) ABy — B1A+CD =0,
(82) (e )'B'A+ 1A’ — A'By — C'D =0,
(83) —e;A'+ (1 0)D=0.

Again, there are genericity conditions. These arise from two sources: first,
the monad must have surjective maps from the second column to the
third column, and injective maps from the first column to the second. The
other is that using the matrices to define sheaves P, () from the formulae in
the resolutions above, one should get sequences .

4.1.4. Holomorphic data IV: monads. This data has already been
given. It is essentially the diagram , without the Ps and @s, with an im-
plicit sum along every column, and with its top and bottom lines identified.



222 S. A. Cherkis and J. Hurtubise

(84) F k+m Oker

e /

Ok+m+1

O(_F)k+m

O(~F — 00) —-0(-C

O(—F — Coo)k —o (C’O—E/, |
\Ok
7X+() /
O(_F)k Ok—H
O k+m Ok+m_

4.2. Bow complexes and monads

Our aim in this section is to show

Theorem 4.8. Holomorphic data I-1V above are equivalent to a bow com-
plezx.

As we saw from the point of view of the bow solution, our instantons
are encoded by a bow complex, as in Section [2.3.3] with, as for calorons,
the holomorphic bundle being encoded by an infinite dimensional monad.
As before, solutions on an interval [c, ¢ + ¢] containing A4, satisfying appro-
priate continuity constraints at Ay, which are the same as for the caloron.
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The difference is that instead of being periodic, the solutions at ¢, c + £ are
identified by adding four auxiliary spaces U s Ut, Vh, V{g of dimension k to the
complex:

(85)
o LA(V)
s Fa—(ts+ito), ~
D= aﬁ n ' ® B+77 ds+a—(ts+itg) 0 0 H_ 4
Yeve+B, 1eVe e L2(V) Dy= 0 eve é —Bu.s ®
Hl(V) &evet et By, neve @ ev, —Byn ¥ . ‘7h .
Uy, D
@ Vi
Ut

Recalling that
B(c) = Bnto Bip, B(c+{)= Bipo By,

one finds that this is indeed a monad.

Our aim is to reduce this to a finite dimensional monad, as we did
for calorons. Let (x1,Xx2,un,u:) denote a cocycle; again, as for the caloron,
modifying it by a coboundary, we can suppose that yi is supported away
from Ay, A_, and ¢, c+ /.

Consider the spaces:

e V. of solutions to (ds + a)v, =0 on the interval (A_ — £, A_) which
satisfy the boundary conditions at A;;

e V_ of solutions to (ds + a)v_ =0 on the interval (A, — ¢, ;) which
satisfy the boundary conditions at \_;

e Subspaces (NJi of 17i, such that not only vy satisfy the boundary con-
ditions at Ay but also B(vy); as § has a pole at the boundary, this
gives a space that is one dimension smaller.

o (707, of values up = u(c) at a fixed point ¢ of solutions on (A4 — £, A_)
to the equation

(86) (ds + a)u(s) = X,

with u(A_) = 0; (70, of course, is just the fibre of N at ¢;

e U, of values u; = u(A4 — €) of solutions on (A_, A;) to the equation
(ds + a)u(s) = x!, with u(A_ +¢€) = 0.
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o ﬁ0,+ of values ug = u(c + ¢) at a fixed point ¢ + ¢ of solutions on (A —
¢, \_) to the equation

(87) (ds + a)u(s) = X",

with u(Ay) = 0; (70, of course, is just the fibre of N at c;

o Vo+="Uox,

o Vi =U,.

e Spaces ﬁh, Wh, ﬁt, Wt of dimension k.

Our reduction of the monad goes by the procedure used for the caloron;
we solve (ds + a)u(s) = x! on the intervals, with initial condition x! = 0 on
one end of the interval, and set x2 = vy + (8 — n)u on the intervals; this
gives a monad that is very close to that for the caloron, but for one thing;:

the cyclicity condition for the caloron gets replaced by the glueing condition
coming from our infinite dimensional monad:

eve(v-) + eve((B — n)u) + Eup, — Bpi(ug) =0

in Vo —, with uy, € Uy, us € U, and in Vp 4,

eVete(V4) + €vepe((B — n)u) + Eup, — Bpi(ug) = 0.

These can be modified by coboundaries. Writing an element s of the left
hand side of the infinite dimensional monad as u+x + r, with u4 € U4 and
r =0 at Ay, and setting wy, wt to be ev(s), eveye(s), the coboundary map
changes v+ by (8 —n)(u+), and change up,— by an arbitrary wy, € W}, and
ug,+ by an arbitrary w; € Wt; but then, however, uy, u; get modified by

up, up, Y Bpt\ (wn
()= )+ (e %) ()

Once one does this, inserting appropriate twists by line bundles, so that the
maps remain finite at infinity, one obtains an anti-commutative diagram



Monads for instantons and bows 225

(88) ﬁl(F)ﬂl/—n>Vl
0 (-F) — Vi

K evy

~ ZU,l ~
Ui(—F)

Again, this is not quite the same monad as that produced by the alge-
braic geometry; there is the same issue as for the caloron: the dimensions
of U4, V4 do not coincide. However, once one adjusts by the maps of ,
one can define a monad morphism between the two which yields the same
bundle as its cohomology. We would like to remark that this modification,
essentially replacing the sheaves P by twists of P along 1 = oo, corresponds
essentially to different choices of compactification of the bundle E along the
divisor F'.

The link between monads and bundles can be viewed in the same way
as for bundles as in the caloron case, as expounded in Section 3.2.5. On
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the other hand, there is a more sophisticated way of linking the two, in-
volving a spectral sequence, which we will briefly sketch. Let us rearrange
the monad as the following commutative diagram with all horizontal and
slanted sequences exact

(89)
0 \
E
—| I
By w

—b;% N, @ e}
Bth Nt ® 6*
- h
6*1
\ [6" (~ben, Bus)
—8'(Binbne )]

L (N@e')—~H (N®e) —>Q—>0

0

The identification of E' = Ker (P — @) with the middle cohomology of
the complex is via the standard diagram chasing:

(90) @,

X ———— 0 | - >0
T ) I -0
v_
\
(5\112 = DX N
WQ}TD\pl:Z\II2| > 0.

Given v € F its image u in P has some preimage ¥ under the ‘horizontal
map, that is part of that horizontal exact sequence. In turn, D¥; has a
preimage Wo. This ensures that the pair (¥1, ¥s) is a middle cocycle of
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the monad. At the same time, ¥ is only defined modulo some §¥; that
is annihilated by the horizontal map and, therefore, has to be an image of
some ¥, due to exactness. Then, changing Wy by Dy produces the correct
preimage of the new D(¥; 4+ §¥;). Since the lowest horizontal sequence is
exact, this change in ¥4 is unique and is equal to Dy. Therefore, the cocylce
(‘~I~/1, Uy) is defined up to a coboundary of the monad. Thus we have a map
from E to the middle cohomology of the monad. It is injective due to the
above argument. It is surjective thanks to the exactness of the sequence
0—-F—P—=>0Q—0.

Diagram is an unfolding of the monad , both consisting of
infinite-dimensional spaces. It allows us to focus individually on each subin-
terval and reinterpret its cohomology in terms of a finite-dimensional monad.

One way of viewing it is via the spectral sequence.

4.2.1. The spectral sequence. Let us view (the upside-down of) dia-
gram as a part of anticommutindﬂ double complex Ej* :

0 0 0

? 2= g 0
Dy b

7
H! L% 0 :
] ) Z
with D= (D1,1,B,b),Z= | J |,and L3, = L>OW O N, @ ¢f & Ny ®

B,b

e;. As argued above, the hypercohomology H®(T*(E)) is HY(T*(E)) =
KerDf =: E and H)(T*(E)) = 0 = H*(T*(E)), since, as we established by
positivity, H(T*(E)) ® H?>(T*(E)) = KerD = 0.

We adjust the sign of one of the arrows to change commutativity of (89)) to
anticommutativity.
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The horizontal leaves of the spectral sequence are

(91) SEPT T T
KeI‘L2Z Q = COkH—1Z
| |
Keryi Z P = CokLg}VZ ,
(92) SESS =5 B3
¥okNok 3
Ker o Kerg

Since Ker2Z = 0 due to the non-degeneracy condition (no continuous eigen-
sections of both (17 + iT%)y and (77 +iT%) 1, r). Also, since hypercohomol-
ogy is concentrated in degree one, Ker « = 0 = Cok f3.

We conclude that £ = Ker Df = HY(T*(E)) = Ker3 : P — Q, as argued
earlier via diagram chasing.

The vertical leaves of the spectral sequence are

(93) AES® =5 EP* 10 = CokpzDy — Coky: D

0 = Kerg1 Dp —— Kerpz D.

Generic holonomy around the bow (or a circle) implies that Dy f = F equa-
tion can be solved for any F. It also implies that Dyf = 0 has no global
continuous solutions. Therefore, we have another identification of

E=XKerp2 D=Ker(D1,I,B,b): L& W& N, ®e; @ Ny®ej — H !,

which in turn can be identified with the linear space of dimension equal to
the number of A-points.
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It also follows from the hypercohomology vanishing that CokD = 0.

4.3. The case m =0

As in Section [4.2], one has a chain of equivalences:

Theorem 4.9. One has equivalent sets of data:

)
2)
3)
"

5)

Holomorphic bundles E on X;
Sheaves P,z:f, szl on P';
A tuple of matrices;

A monad V13>V2£>V3 of standard vector bundles on X, whose coho-
mology Ker(5)/Im(a) is the bundle E.

A bow complex for m =0 (see Section 2) .

Let us be a bit more specific about our data: it is fortunately very similar
to the m > 0 case.

The bundle is exactly as stated for the m > 0 case, setting m = 0.
The sheaves P,z? , szl on P! are exactly as stated for the m > 0 case.

There is a resolution diagram for the P, Q) exactly as in . The ma-
trices are those giving the maps in the resolutions, as for m > 0. Their
normalisations (choosing bases) will differ; again, there are constraints
on the matrices imposed by (anti-)commutation of the diagram, and
genericity conditions.

The monad, is obtained from the resolution exactly as above.

The bow complex is obtained from the sheaves P, () as for m > 0. The
difference for m = 0 is at the jump points A1, where there are the rank
one jumps. This already occurs with the caloron, and the mechanism
which accomplishes it is the same. See Section 3.

4.4. The case m < 0

Again, one has a chain of equivalences:

Theorem 4.10. One has equivalent sets of data:

1)

Holomorphic bundles E on X;
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2) Sheaves P11, Q7 on P!;

3) A tuple of matrices;

4) A monad Vlgﬂ/gﬂﬂ/g of standard vector bundles on X, whose coho-

mology Ker(3)/Im(«) is the bundle E.

5) A bow complex for m < 0 (see Section 2).

Again, let us be more specific. Much of the data is the same as for the

m > 0 case.

e The bundle is exactly as stated for the m > 0 case, setting m < 0. We

note one difference with the m > 0 case, in that the line Cj is automat-
ically a jumping line for the holomorphic structure, that is a line where
the holomorphic structure is non-trivial. These lines can be counted,
with multiplicity, and the multiplicity here, of the line Cp = {¢ = oo}
is bounded below by —m. One has a ruling by lines 1) = constant, and
the number of jumping lines in the ruling counted with multiplicity
equals the second Chern class. As () is already contributing at least
—m to the count of jumping lines, one has cy > —m.

The sheaves P,i’ll, szl on P! are exactly as stated for the m > 0 case.

There is a resolution diagram for the P, ) exactly as in . The ma-
trices are those giving the maps in the resolutions, as for m > 0. Their
normalisations (choosing bases) will differ; again, there are constraints
on the matrices imposed by (anti-)commutation of the diagram, and
genericity conditions.

The monad, is obtained from the resolution exactly as above.

The bow complex is obtained from the sheaves P,Q as for m > 0.
Note that the rank of the bundles on the intervals is reversed, but the
procedure for building them is the same.

5. On the twistor space

What we have said so far concerns what is happening on a single fibre of
the twistor fibration Zy — P!, i.e. in one complex structure on the Taub-
NUT. We would like to see how our various correspondences generalize, when
considered over the full twistor space.
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5.1. Extending the bundle to a partial compactification, and
infinite flags over O(2)

Recall from Section [2.2] our definitions of the twistor space. We had a dia-
gram, with horizontal maps the natural inclusion,

Xo Zo

R

C——=0(2)=TP!

|

pt ——— P,

whose fibre from the top row to the middle one is generically a C*, with
exceptional fibres over the zero-section in O(2) being a chain of two copies
of C; these fibres in R* — R3 are the preimages of a family of parallel lines
in R3. There is a fibrewise compactification

X\ —Z,

L

C——0(2)

|

pt —— P!,

whose fibre from the top row to the middle one is generically a P!, with
exceptional fibres a chain of 2 copies of P

In going to the (partial) compactification Z| from Zy, one is adding two
copies of Q(2): one, I'g over ¢)~! = 0 (so that T'g N X/, is the restriction to X|)
of the divisor Cp in X of the previous section), and another, I's., at 1 = 0,
with again I'e, N X = Cso N X{, . The compactification has a real structure
o extending the one on Zy, and lifting the standard ones on O(2) and P!:

(&,,1m,¢) = (—/C,E/C, -1/, —=1/0),

and interchanging I'y, I, as well as Ay, Ag.

We gave ourselves a full compactification X in the previous section, but
this approach does not work well on the full twistor space, as our objects
are resolutely non-algebraic on the full twistor space. Still, the extensions to
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X, go over well here: recall that our instanton gave us a rank 2 holomorphic
vector bundle E on the twistor space X{), with distinguished sub-line bundles
along CypN X, = C, and also along Co, N X = C. We now have a similar
picture for Zy: a rank 2 holomorphic bundle &, (in general, we will try to
use the same letters, but in script, to denote extensions of our sheaves from
Xo, X, to the full twistor space Zy, Z))) with distinguished sub-line bundles
Lo, Lo along Ty, I's; one has, as in Hitchin [20], Garland-Murray [17],
Charbonneau-Hurtubise [8], that

Lo=LM(—m), Lo =L (—m)

where L is the standard line bundle over Q(2) of Section and the twist
(—m) refers as usual to twisting by the standard line bundles O(—m) lifted
from P! so that along I'g, £ is an extension

0 — LM (—m) = &E|r, — L (m) — 0,
and along I',
0— LM (—m) = E|p. — L (m) — 0.

Furthermore, the bundle £ comes equipped with a quaternionic structure,
lifting the real structures o on Zy and @(2): an antiholomorphic bundle map
7, whose square is minus the identity:

T . ¢

L,

Z() *g> Z[).

Recall that the (partially compactified) twistor space Z|, is a bundle of
quadrics in the bundle P(Lf @ L~ @ O) over Q(2); the tautological sections
&, give identifications

(94) L' ~0Mg+ A —Tw), L'~0Tw+ Ay —To).

Here A¢, Ay are the two components of n = 0.

Our subline bundles Ly, Lo, can be thought of as defining flags 0 = & C
E) =Ly &Y =EoverTgand 0=EY C EL = Lo CEL = € over I'; here
the index 4 in & denotes the rank. Define sheaves of meromorphic sections
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of £, which are holomorphic sections away from I'g, I's:

(95)

gmn _ &Ps finite at 'y with values in 58,
Pq & ™s finite at ' with values in £ [~

We can then consider, as for the caloron, the infinite rank direct image
F of € under projection from the generically C*-bundle Z; (not Z)) to O(2).
F is thus of infinite rank. One can use the flags Eg along I'g, £ along I'o

to define for p € Z and ¢ = 0, 1 subbundles ng,f&?’" of F as

fqu = {s € F | &s finite at I'g with value in 53},
Fm={s e F|& s finite at I's, with value in £ }.

We now have, as before, infinite flags

 CFY g CF  C T C T  CFyCFL e

(96)
oD FRO o FLL o FLO 5 FOL o F00 5 bl o

For quotients, one finds line bundles

(97) }—S,l/f;?,o = LPHM(—m)a f£+1,o/]'—;9,1 = [P (m),
O8)  FRFRO = L (mm), FRIOJFRN = L ().

As for the caloron, the direct images Rlm.(£p4") can be computed as
the quotients F/(FJ, + Feo"). The direct images
- def ~—
]:/(]:]970 + ]:oop—i-l,O) ;fgp’g+1,07

_ def ~—p,
F/ R+ FI =R

(99) R'm,(£,§)
(100) R'm. (&, 1)

are supported respectively over two spectral curves Sp, S1 in O(2), and are,
generically, line bundles over these curves. The quotients

(101) Rz (&,3") = F/(Foo + FH P p,
(102) Rz (6,7°) = FJ(F2, + F20) L p v

on the other hand, are supported over the full space and have rank one.
A calculation with the Grothendieck-Riemann-Roch theorem tells us that
So, the curve of jumping lines in the fibration Zj — O(2), lies in the linear
system of O(2k) over O(2), while S; lies in the linear system O(2k + 2m)
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(see Charbonneau-Hurtubise [7]). When & is twisted by L*, for s varying
in an interval, these sheaves Qp p+1,0 pg’o are the sources of the flows for
Nahm’s equations, by the well known correspondence of solutions to Lax
pair type equations with flows of line bundles on a curve.

More generally, as for the caloron, one can reconstruct F by

1,0 '
P @
@ Q b0
(103) 0 - F = PP 5 o = 0
® Dl
P @
p,1

5.2. Generic structure of the bundles

One can understand some of the geometry of the flags by choosing a lo-
cal trivialization of F in which the flag .7-"0 is the standard flag for the
loop group LGI(2); the other flag Foo™ then defines a map into the flag
manifold, and the spectral curves are pullbacks of the two codimension one
varieties of the Birkhoff stratification, and the flag F5'" is the pull-back of
the tautological flag. The two codimension one Birkhoff strata intersect in
two codimension two strata, and accordingly, if one imposes the genericity
condition:

(104)

The curves Sy and S; only meet these codimension one and two strata;

(in other words the image in the flag manifold of @(2) is in general position).
then one can write (see [17, 25])

So N S1 = 50,1 U S,

where Sp1, S1,0 are pullbacks of the codimension two strata, with Sp i
characterized by dim}"/(}'g + FoPt0 =1, and S10 by dim]—'/(fgo +
Fr ’1) = 2. The two sets are interchanged by the real structure. From the
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maps
FoalFpo = LM (=m) = F/(Fpo + ) = Pog
FITIO P = D (m) = F(Fo + F") = P ¢
Foevol For = LA (m) = FJ(Fpy + FP0) = P, 1Y
FolFs o = PP (—m) = F)(Fpy+ Fo %) = P, 17,

one can obtain, as Garland and Murray do for the caloron case [17), Section 6],
that, with our genericity assumption,

(105) Pobt = P 2k +m) © Ts,
(106) P10 = LP 2k +m) ® T,

where Zg, ,,Zs, , are the ideal sheaves of Sp 1, 51,0. In a similar vein, looking
at the maps

fz?,l/f{] — LP€+)\ ( m) N ]-“/(]-"0 _’_F;)erl,O) — Q—p-i-l,D’

Fo bt poptt0 - 1,1 €+/\+( m) — FJ(FO, + Fpth0) = Q. p+10
Forr0/Fpr = L (m) = F)(Fpy + FP) = pﬁ”’l,
Jroop-i-l 0/foop, Lpﬂ-i—)\ (m) N J-,_—/(]_—o +fo;p7 ) Qpl :

one obtains, again as in [17], the sheaves concentrated over the spectral
curves

(107) Q b0 = LPA - (2k + m)|

0

—S10]

)

[
= L=V (9 + m)|g,[~S0.1],
(108) Q! = LPM (2K +m)|s, [~ So,1]

)

= LP(2k +m)|s, [—S1,0]-
In particular, this gives isomorphisms over the spectral curves:
Proposition 5.1. One has over Sy
LM [=810] = L™ [=So],

and over Sy

L/\Jr [—51,0] = L)‘* [—5071].

These isomorphisms are useful in understanding the Nahm flows.
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5.3. Reconstructing £

So far a lot of this is basically reproducing results for the caloron; what
is new here is a twist in the geometry induced by the fact that the fibers
of Z, — O(2) over n = 0 are chains of two P!s, while elsewhere they are a
single P'; alternately, by the fact that the function 7 factors as 1), and so
there are two components A¢, Ay to n = 0. The section & of L'(1) gives an
isomorphism

€1 E70 — Egpl—Ad ® LY(1).

Composing it with the inclusion 5&7’8[—A§] ® LY(1) — 5&’8 ® L*(1), and then
taking R17r*, one obtains

(109) Bus: Q10 — Qpp ® LA(1).
Likewise, multiplication by ¥ induces
(110) Bin: Qpp — Qo ® L74(1).

The failure of gh,t to be an isomorphism is governed by vanishing of the
inclusion over A¢. Note that the fibres of Zj — O(2) over n = 0 intersect A¢
in a line IP’%, and Ay in a IP’%Z); on IP’%, the tensoring by O(—Ag¢) is tensoring
by an O(1), and on Pllﬂ, by an O(—1).

The sheaves Q?:g, Qé:g measure when there are jumping lines (lines over
which the bundle is non-trivial) in the structure of € over O(2). Over n = 0,
Q(l)zg picks out the jumping lines in A, and Q(l)zg picks out those in A¢. The
two cases are interchanged by the real structure. Thus, the intersection of
the spectral curve with n = 0 gets partitioned into two divisors of degree k
on the curve: one, Sp¢, where the jumping line lies in A¢, and the other,
So,40, where the jumping line lies in A,,. The map B\h,t is not an isomorphism
over Sp., and similarly, the map gt,h is not an isomorphism over Sp¢; in
fact, instead there are isomorphisms

(111) Bri: Q09 — Qg ® LY(1)[~So 4,
(112) Bin: Qg — QF0 @ L™ (1)[~Sol.

We note that the compositions By, ¢ o By p,, By o By, s are sections of

O(2)[—So.e — So,y]
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corresponding to multiplication by £i = 1, vanish over n = 0 on the curve,
and have as well a double pole over ( = oo, that is

SoN{n=0}=SpyUSog,

as it should, with Sp 4, So¢ interchanged by the real structure.

As noted for the restriction of the bundle to X, the fact that the shifts
between .7-“197“ ]-"]9 . 1; and between Fo” 1 P71 induced by multiplication
by £, v are no longer isomorphisms makes the reconstruction process for
the bundle £ is a bit trickier. One has, essentially, a parametrized version of

what was done over Xj:

(113)
1 9 —1
-1 (&Bw) 0
0 (Buwnt) 1

0 &P eQaPy oy & QYo @ Qg

where we kept the notation Pﬁ’zj;n, Q;njn to denote the lifts of anj n Qfﬁj,n to
Z{ from O(2), and Q is defined as the quotient, over Z

(114) Q0 (—Tg)(—2) —= Q2)(~T'o) @ L(~1)

QM0 (—Too) (=2) = QLS(~Tp) @ LH(~1)

This way of reconstructing £ has advantages for describing solutions to
the Dirac equation and the Laplace equation for the underlying instanton
A, shifted by the U(1) instanton —sa corresponding to the line bundle L°.
On the twistor space, this shift amounts to considering the bundle & ® L™%.
Let R denote one of the sheaves ng, Q?:g, Qé:g on the right hand side of
(113). An element of H°(Zy, R(—j) ® L™°) maps, by the coboundary map,
to an element of H(Zy,&(—7) ® L*%); by the twistor transform,

e for j = 1, these correspond to solutions of the Dirac equation for the
connection A — sal, and

e for j = 2, these correspond to solutions of the Laplace equation in the
same background.
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With this, following the proof in Hurtubise and Murray [23, Prop 1.17],
(which in turn follows Hitchin [20]) we have

Theorem 5.2. For solutions to the Laplace equation

o For se (A\_,\y) if m >0, and s € [A_, ;] if m =0, elements of
HO(S, Qgﬁ ® L™5(—=2)) correspond to solutions to the Laplace equa-

tion on X decaying at infinity, in the background of the connection
A — sal;

e For s € (A, \_ +{], elements of H°(So, Q(l]:g ® L™5%(—=2)) correspond
to solutions to the Laplace equation on X decaying at infinity, in the
same background.

e Forsc (\y —€,)\_), elements of H°(Sy, Q(l):g ® L™5%(—=2)) correspond
to solutions to the Laplace equation on X decaying at infinity, in the
same background.

In consequence, since decaying solutions to the Laplace equation must
vanish,

(115) HO(S1, Q1 ® L™%(=2)) =0 for s € (A, A4),

and s = A_, A4 if m =0,
(116) H (Sp, QY0 @ L™%(=2)) = 0 for s € [\, A + 4],
(117) H°(So, Qo ® L™*(=2)) = 0 for s € [\y — £, \_].

In turn, for the Dirac equation,

o For s€ (A, A +0) if m>0, and s € [Ap,A\_ +{] if m =0, the el-
ements of H°(S, Q(l)zg ® L™%(—1)) correspond to L? solutions to the
Dirac equation on X, in the background of the connection A — sal;

e For s € [A\y,\_ + /], elements of H°(S, Q(l)zg ® L™%(—1)) correspond
to L? solutions to the Dirac equation on X, in the same background;

e For s € [\y —{,\_], the elements of H°(Sy, Qé:o ® L™*(-1)) corre-
spond to L? solutions to the Dirac equation on X, in the same back-
ground.

From the sequence O(—2) — O(—1) — O(—1)|¢, where f is a fiber of
O(2) over P!, tensored by the bundles above, the vanishing theorem for the
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Laplace equation implies in turn that

(118) HO(S1, 001 ® L™%(=1)) = CF™™ for s € (A, A4),

and s = A_, Ay ,ifm =0,
(119) H(Sp, Q7% © L™5(~1)) = C* for s € (Ay, A +0),
(120) H°(So, Qo ® L™*(—1)) = C* for s € (Ay — £, A_).

This concords with the index calculation for Dirac operators of [13]. For
s in the interior of the intervals, the solutions have exponential decay, with
the exponent of the bound given by minus the distance between s and the
closest ends of the interval to which s belongs given in the theorem.

5.4. Constructing the Nahm flows

The bow solutions corresponding to the instanton can be constructed fol-
lowing more or less exactly the scheme for monopoles given in [23, Section
2]. In brief, with our genericity assumptions:

e One defines a rank k bundle Ny _ over [Ay — ¢, A\_] by
0 1,0 —s
No,—(s) = H™(S0, Qoo ® L™*(=1));
a rank k bundle Ny 4 over [Ay, A\_ + /] by
0 0,0 —s
No,+(s) = H (S0, Qg @ L™*(=1));
and a rank k£ 4+ m bundle N; over (A_, A;) by
0 0,1 —s
Ni(s) = H"(S1,Qp; @ L™3(=1)).

One can take limits, and extend to a bundle over [A_, A\;]

e At the boundary point A_ the sheaves Q(l):8®L_S(—1)), Qgﬁ ® L™5(-1)

are identified with the restrictions to Sy, S; of the sheaves L*—% ® M,
where M is some algebraic sheaf on O(2). At \_ = s, their sections
become the restrictions of global sections of Pg:? ® L™ = M, and
so can ‘pass’ from one spectral curve to the other. This provides the
glueing of No _ to V.

e The same thing happens at the boundary point A, : this time the sheaf
7’8;& ® L~ is the intermediary.
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This gives us our generalized bundle N. We can now define an O(2)-
valued endomorphism A((, s) = Ay(s) + A;(s)¢ + Ay (s)( as the action
on sections induced by multiplication by 7 on the Os.

A connection of the form Vg = ds + Ay(s) + A;(s)¢/2 et ds + A, (s,Q)
can be defined on the bundle N, and using this to trivialise the bundle
N, and so turn the endomorphism A((, s) into a matrix A((, s), one
then has that the Nahm equations dsA((,s) = [A4(s,(), A(s, ()] are
satisfied.

Finally, using the real structures on the @) induced from those on FE,
one has a real structure on N, with respect to which our solutions to
the Nahm’s equations are skew-Hermitian.

The flows are the same as those obtained directly from the instanton
via the Down transform [12], a generalization of the ADHM-Nahm
transform.

All of this follows a well established pattern: for the flows, it appears in

Hitchin [20]; for the glueing of intervals, in Hurtubise and Murray [23]; and
for the equivalence with the Nahm transform, in a form closest to what we
have here, in Charbonneau and Hurtubise [§]. There remains the bifunda-
mental part of the bow data, which closes up the flow on our intervals to
flows on the bow, with bifundamental maps along the edges of the bow. In-
deed, for a € (A4, A\_ + ¥), the sheaf maps and of multiplication
by &, give, respectively, maps on sections

(121) By : Not(a) = H(Sp, Q) © L™(~1))

— H(Sp, Qg © L),

(122) Bhe: No—(a—0) = H"(Sp, Qg ® L™*H(-1))

— H"(So, Q09 ® L™).

Using our vanishing theorem, one can identify

HO(So, Qo ® L") = H(Sp, Qpp ® L™ (~1)) & H’(S,, O(1))
= No—(a—¥4)® (Ca& (C)
H(Sp, Q1 @ L™) = H"(Sp, Q1'g @ L™(—1)) ® H%(S,, O(1))
= No+(a) ® (C& (C),
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and so one can write and as

(123) Bp(C;a) = Bro(a) + Bpa(a)( : Noy(a) = No,—(a —£),

for the multiplication by . Likewise, multiplication by 1 induces

(124) Bin(C.a— L) = Bypola =€) + Bpi(a —£)C: No—(a —£) = No4(a).
The fact that £ = 7 translates into the relations

(125) Bh,t(<7 a)Bt,h(Cv a — 6) = A(Cv a — 6) : NO,*(a - [) — NO (CL - E)a

,—

(126) Bin(Cya—0)Bpi(¢,a) = A(C,a) : No+(a) = No+(a).
Summarising;:

Theorem 5.3. Through the sequence , and the construction given in
this section, a bundle € on the twistor space Z|, corresponding to a Taub-
NUT instanton defines a bow solution as in Subsection [2.3.9 above.

This solution coincides with the one obtained through the Down trans-
form, a generalization of the ADHM-Nahm transform, from instanton to
bow solution.

With our genericity assumption the instanton (or the bow solution
to the following Nahm’s equations) are equivalent to spectral data on O(2):

e Spectral curves Sy, S1 in Q(2), of degree 2k, 2k + 2m respectively, both
real.

A partition of the intersection So NSt into two divisors So.1,S1,0 in-
terchanged by the real structure.

Over Sy, an isomorphism L [—Sio] = L= [=Sy1], and over Sy

LM [—51’0] = [* [—S()’l].

Sheaves Q(l]:g, Qé:g on Sy, with

— Holomorphic Euler characteristic k;

— Isomorphisms and Q(l):g = Qﬁ,;g ® Le(l)[—Soﬂz,] and
Qup = Q1o ® L™ (1)[=Su,e] over So;

— A vanishing theorem [5.3;

— A quaternionic structure Q%g — Qé:g, Qé;g — Q(l):(o): lifting the real
structure on O(2).

A sheaf ng on S1, with

— Holomorphic Euler characteristic k + m;
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— A wvanishing theorem [5.5;
— A quaternionic structure on ng, lifting the real structure on O(2).

5.5. Twistors and monads

The bundles E on twistor space corresponding to an instanton can be ob-
tained by a version of the monad construction; however, the non-algebraic
nature of the line bundles L* entering into the construction of £ makes a
global construction difficult, but one can build two monads, one over { # oo,
and one over ¢ # 0 which are quasi-isomorphic on the overlap, in that there
is a monad morphism between the two inducing an isomorphism on the
cohomology.

We had for our instanton bundle &, a sequence of sheaves determin-
ing £. With our genericity assumptions we have seen above, the constituent
sheaves are:

(127) Poo = LM (2k +m) ® Ts, ,,

(128) 7383 = LM 2k +m) ® s, ,,

(129) Qulo = L (2k + m)|s,[~S10] = L™ (2k + m)|s,[—So.],
(130) Qu1 = LM (2k +m)|s, [~ So,1] = L~ (2k + m)| s, [~ S1.0],
(131) @Yy =LA (2k +m)|s,[~S10] = L (2k + m) s, [~ So1],

as well as the sheaf Q defined using them via . We would like to get
some resolutions of these sheaves, in a fairly compatible way, achieving over
the twistor space what we had over ( = 0. One issue is that the line bundle
L* has no sections, not even meromorphic ones, over O(2). We therefore
tensor our sheaves by a suitable power of L, to make the resulting bundle
algebraic.

We begin with

Qoo<_7300 - Qop

tensoring this by L=, we get
O(2k + m)]so[—SLo] — 0(2]{ + m) & IS1,0 — 0(2]{7 + m)|51 [—5170].

This extends to a ruled surface compactification O(2) = P(O(2) ® O) of
O(2):

O(2k + TTL)|50 [—51’0] —O0R2k+mk+m—-1)® ISl,o
— O(2k 4+ m)|s, [—S1,0],



Monads for instantons and bows 243

where the notation (m,n) refers to tensoring by the line bundles O(mC; +
nCs), with C¢ a fiber of the projection to 7 : O(2) — P!, and Ci, the divisor
at infinity one is adding to compactify. We note that C'», does not intersect

the spectral curves. On the fiber product O(2) xp: O(2), one has a resolution
of the diagonal

05 0(-2,-1)RO(-2-1) 7 0 = 0| — 0.

Tensoring this with the lift of our sheaves W from one factor, then pushing
down to the other will give a resolution of the form

0— 7" WV (-2) - "', W - W — 0.

For the first sheaf, from the Vanishing Theorem HO(Sy, O(2k +
m — 2)[—S10]) =0, one obtains . (O(2k +m — 2)|s,[—S1,0]) = O(—1)%*,
7. (O(2k +m)|s,[~S10]) = O(1)®*, and our resolution becomes, when re-
stricted to the complement of Cu,

Up— = O(~1) 2Ty, — 0(1)%F — O(2k + m)[s,[~S10] = 0.

The matrix A%(¢, A_) is up to conjugation the matrix involved in our solution
to the Nahm equations.

For the third, one has the result in Murray-Hurtubise, [23, Prop. 2.21],
that the space of sections of O(2k + m)|s,[—S1,0] splits as a sum of the
sections on Sy, plus a family of sections vanishing on all of Sy, and therefore
sections of O(m). The pushdown of the first yields O(1)®*, as before; the
second one gives O(m)® O(m —2) @ --- @ O(—m + 2). The resolution is
then

_ &k AY(Q)—nl
U=0-1)"a0m-2)a0m-4)&---&0(—-m) ————
Vi=0)a0m)a0(m—-2)@ - ®&O0(—m+2)

— O(Qk‘ + m)|51 [—SLQ] — 0.

Here A'(¢) — I is given by:

(A L) =l C1(Qe
Al(m)ﬂ—( —eTA(¢) (m—nﬂ)+51(4)e+>’

with III,e_, ey as before.
For the middle sheaf, one can again decompose as sections on the spectral
curve Sy, and sections vanishing on Sy, giving similar pushdowns as for the
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third term, and the resolution

U- =0-D*a0(m—-2)o0(m—4)®---O(-m + Q)M

V=0 e 0m)eO0(m—-2)® - & O(—m + 2)
— 02k +m)®Is, , — 0.

Here AY(¢,A_) —nl is AY(¢,A_) — I with the last column removed. We
then have, shifting back by L*-, the diagram:

(132)
A°(C A _)—nl
Up,— © L €A Vo,- ® L~ Q00
y Yoo /
AL(¢A) 0,1
U- ® L ® LA~ Poo
X \
A I
Uy © LM eA)=n Vi@ L —— QF]

The matrices X_ o, Y_ o are projections onto the first k coordinates; X_ 1 is
inclusion into the first k£ +m — 1 coordinates; Y_ ; is the identity. Likewise,
one has

(133)
AY(C L)L
AY(¢ M) —nl
U+®L’\+ (C +) n V+®LA+ ,Pgb

w N \

U0+®L>‘+ A%(CA4)—n

The definitions of A%(¢,Ay), AY(CAy) —nl, AY(C Ay) — L, Xy1, Yio,
Xio0, Yio are the exact analogs of the matrices A((,A-), AY(¢, A=) —
nl AN A =L X1, Y1, X0, Y .

There remains the sheaf O, defined in . Unlike the others, it is not
a lift from O(2), but must be defined on Zj. Its support, on the other hand,
is on the lift of the spectral curve Sy, and it is defined in terms of the sheaves
Qé:g, Q?:g. However, since the fibers under 7 : ©(2) — P! of the support of

these sheaves are discrete, local sections of Qf’; can always be represented
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by local sections of 7*m, Q?’;, giving a resolution:

(134) Up,— ® LM (—Too) = Vo ® LM+ (~Tg)(~1)

, \\\\\\
/

Uo. ® LM+ (~To) s Vo p ® LM (~Too) (—1)

5.5.1. Monads on open sets. We now must sew these pieces together to
get a monad for bundles. We note that the pieces already assembled involve
the bundles LM, L*~. These bundles L*, over 0(2), have no meromorphic
sections for y # 0, and similarly there is no meromorphic map from LM to
L*-. On the other hand, over the spectral curves, things are more flexible.
In any case, let us cover @(2) by two standard open sets D,, Dg corre-
sponding to ¢ # 0o, # 0 respectively. Let Z,, Zg be their inverse images
in the twistor space. One has trivialisations of L* over D,, Dg, related by
exp(un/¢) on the overlap.

We look at the maps 738:3 — Qgﬁ — 7387’? where now we don’t twist by

Q.

a power of L; let us write the resolution of Qg’i as

~  ANC0)—ml  ~
(135) oy 0T ofe

Here we suppose for simplicity that 0 € (A_, A\;), and so the vanishing the-
orem applies there. This yields, in the same way as for Qé:g above, that
Uy = O(—=1)k+m Y = O(1)k+™, Using the trivializations of L, LA, we
can compactify fiberwise over { # oo, 0, lift up and push down on the re-
striction of the fiber product O(2) xp O(2) to ¢ # 00,0 to get a diagram
over D,:

A
(136) U@L ATy ®LL PY
0,1
QO,I?
ol T
A
U, oL ATy o POY

with a similar picture over Dg.
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The resolutions of QO o are in some sense a bit simpler, essentially be-
cause the matrices AY((, s) are regular on the whole interval [A; — ¢, \_],
and the relevant vanishing theorem applies for all s in this interval; this
means that one can resolve QO 0 in terms of a sum of L? for any s in the
interval; furthermore, the relevant matrlces A%(¢, s) evolve by (¢-dependent)

conjugation: A%((, s) = hassA%(C,s)h, a.s,s- One can then use this to write
the map from Q to Qgﬁ as
(137) Us,— @ LM (~Too) = Vo @ DM H(=To) (—1)

Uy @ LM+ H(— FO) a8 Vot @ LM

Up,—

MP(CA-
G Vo e L —— Qb

with extra terms ha,)\_,)w_,g, hg})\_,)w_,g.
One can then use this to glue our pieces of the monad, to get a monad
over Zy:

(138) ® A= AGA )T AN~ ®L>‘*
/ /
U@L —T — >y @ LM
u0+ ®L>\+ O(CA+)— U ®

I

Up— ® LM (~Tog) 5> Vo _ @ LM+ +(— ro>< 1)

Uy, @ LM+T(— To) %> Vo+ ® LA (—

*h A At

U- L —— >V QL
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One has a similar monad over Zg.

5.5.2. Glueing the two monads. This procedure gives monads for the
bundle £ over two open sets Z,, Z3 of the twistor space. The question then
arises of how to glue them over the intersection. This turns out to be fairly
simple: one has resolutions over the open sets which basically only differ by
the trivialization one has given to the line bundles L’. One then just has a
map from the monads over Z, to the monad over Z3 of the form exp(¢n/()
on each factor L.

We note that while the bundles L* which are involved in the defini-
tion of the monad are globally defined, there are no global morphisms, not
even meromorphic, between L* and LY for p # v; on the other hand, on
the intersection of our open sets, there are morphisms, and these allow an
identification of the cohomology bundle. In short, one has a choice: either a
global monad, but infinite dimensional, given by Nahm’s equations and the
Nahm construction, or a pair of finite rank monads, each can only be given
locally over the twistor sphere, but then can be glued together, however,
non-algebraically.

6. Conclusion

The equivalence of the monad directly producing the instanton with the
monad encoded by the bow solution establishes the one-to-one correspon-
dence between instantons and bow solutions.

In fact, the structure of the monad itself is intimately related to the bow,
with its various parts associated with bow elements. The vertical direction
in diagram corresponds to the bow interval, parameterized by s. Each
A-point of the bow representation corresponds to a horizontal sequence in
the monad, the ones resolving a sheaf P, such as the second line in ;
each subinterval of the bow corresponds to a horizontal sequence resolving
a sheaf @Q; finally, the ‘bifundamental’ data correspond also to a piece of the
diagram, given for example by lines four and five of . This picture holds
both for the fixed complex structure (e.g. the restriction to ( = 0) or the
full twistor space description.

Indeed, we have a decomposition of the monad diagram into ‘modules’,
not in the mathematical sense, but in the sense of parts or pieces, for example
(132)), (133]), and ((114)), each saying how solutions to Nahm’s equations patch
together at the end of intervals, either at AL or at the edges.

Other unitary groups: To streamline our exposition we chose to focus our
discussion on SU(2) instantons on a single-centered Taub-NUT space. Our
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discussion applies directly to U(NV) instantons, so long as the instanton has
generic holonomy at infinity, and indeed the constructions use our pieces of
diagram of type repeatedly, as well as one piece of type . In a
sense, this is a hybrid of the results above and those already found in [23].

Multi- Taub-NUT space: Even more generally, one can apply the result to
U(N) instantons on multi-Taub-NUT TNy. The relevant compact space X in
this case is the blow-up of P! x P! at k + 1 points. The resulting monad again
consists of the blocks we already discussed in detail. Namely, it contains k
blocks each of type , and N of type . Just as the monads above,
the resulting monad is periodic, i.e. it has its top line identified with its
bottom line.

Our approach is quite general, allowing one to further explore instantons
on other base spaces, such as, for example, D; ALF space or ALG spaces.
The former should lead to a monad organized according to a D-type bow,
while the latter should lead to an entirely new object, which might deserve to
be called a “sling”. If bows give a useful generalization of quivers [29], slings
generalize quivers further and should also lead to important application in
quantum gauge theory and in geometric representation theory. Another di-
rection for our approach is exploring instantons with more general structure
group, which is significant for the geometric Langlands correspondence for
complex surfaces [33].
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