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1. Introduction

In [Nak16] the third named author proposed an approach to define the
Coulomb branchMC of a 3d N = 4 SUSY gauge theory in a mathematically
rigorous way. The subsequent paper [Part II] by the present authors gives a
mathematically rigorous definition ofMC as an affine algebraic variety. The
purpose of this companion paper is to determineMC for a framed/unframed
quiver gauge theory of type ADE.

Let us first consider the unframed case. We are given a quiver Q =
(Q0, Q1) of type ADE and a Q0-graded vector space V =

⊕
Vi. Here Q0

(resp. Q1) is the set of vertices (resp. oriented arrows) of Q. We consider the
corresponding quiver gauge theory: the gauge group is GL(V ) =

∏
GL(Vi),

its representation is N =
⊕

h∈Q1
Hom(Vo(h), Vi(h)), where o(h) (resp. i(h))

is the outgoing (resp. incoming) vertex of an arrow h ∈ Q1. Our first main
result (Theorem 3.1) is MC

∼= Z̊α, where Z̊α is the moduli space of based
rational maps from P1 to the flag variety B = G/B of degree α, where the
group G is determined by the ADE type of Q, and α is given by the dimen-
sion vector dimV = (dimVi)i∈Q0

.
In physics literature, it is argued thatMC is the moduli space of mono-

poles on R3. See [HW97] for type A, [Ton99] in general. Here the gauge group
Gc = GADE,c is the maximal compact subgroup of G, hence is determined
by the type of the quiver as above. It is expected that two moduli spaces
are in fact isomorphic as complex manifolds. See Remark 1.1 below.

We also generalize this result to the case of an affine quiver (Theo-
rem 3.22). We show that MC is a partial compactification of the moduli
space of parabolic framed G-bundles over P1 × P1. In fact, we prove this
under an assumption that the latter space is normal, which is known only
for type A. This space is expected to be isomorphic to the Uhlenbeck par-
tial compactification of the moduli space of Gc-calorons (= Gc-instantons
on R3 × S1).

In order to show MC
∼= Z̊α, we use the criterion in [Part II, Theo-

rem 5.26]: Suppose that we have Π : M→ t(V )/W such thatM is a Cohen-
Macaulay affine variety and Π is flat. Here t(V ) is the Lie algebra of a max-
imal torus T (V ) of GL(V ), and W is the Weyl group of GL(V ). If we have a

birational isomorphism Ξ◦ : M ≈
99KMC over t(V )/W, which is biregular up

to codimension 2, it extends to the whole spaces. In order to apply this for
M = Z̊α, we shall check those required properties. To construct Ξ◦, let us
recall thatMC is birational to T ∗T (V )∨/W over the complement of union of
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hyperplanes (generalized root hyperplanes) in t(V )/W (see [Part II, Corol-
lary 5.21]). The same is true by the ‘factorization’ property of Z̊α. This
defines Ξ◦ up to codimension 1, hence it is enough to check that Ξ◦ extends
at a generic point in each hyperplane. This last check will be done again
by using the factorization. The factorization property is well-known in the
context of zastava space Zα, which is a natural partial compactification of
Z̊α. (See [BDF16] and references therein.)

Remark 1.1. Consider Z̊α the moduli space of based rational maps P1 →
G/B of degree α, and the moduli space of Gc-monopoles with monopole
charge α. It is known that there is a bijection between two moduli spaces
(given in [Hit83, Don84] for A1, [HM89, Hur89] for classical groups and
[Jar98] for general groups). It is quite likely that this is an isomorphism of
complex manifolds, but not clear to authors whether the proofs give this
stronger statement. For A1, one can check it by using [Nak93], as it is easy
to check that the bijection between the moduli space of solutions of Nahm’s
equation and the moduli space of based maps is an isomorphism.

For affine type A, a bijection is given by [Tak16] based on earlier works
[Nye01, NS00, CH08, CH10]. The same question above arises here also.

Let us turn to the framed case. We take an additional Q0-graded vec-
tor space W =

⊕
Wi and add

⊕
Hom(Wi, Vi) to N. The answer has been

known in the physics literature [HW97, dBHOO97, dBHO+97, CK98] (at
least for type A): MC is a moduli space of singular Gc-monopoles on R3.
Two coweights λ, µ : S1 → Gc attached at 0, ∞ of R3 are given by dimen-
sion vectors for framed and ordinary vertices respectively. We will not use
the moduli space of singular monopoles, hence we will not explain how λ
and µ arise in this paper. (See the summary in [BDG17, App. A].) But let
us emphasize that we need to take the Uhlenbeck partial compactification.1

This point will be important as explained below.
On the other hand, it was conjectured thatMC is a framed moduli space

of S1-equivariant instantons on R4 in [Nak16, §3.2] when µ is dominant.
There is a subtle difference between S1-equivariant instantons and singular
monopoles. (The third named author learned it after reading [BDG17]. See
[Nak15, §5(iii)].) The former makes sense only when µ is dominant, but is
expected to be isomorphic to the latter as complex manifolds.

1Uhlenbeck partial compactification is necessary, due to bubbling at 0. This
is naturally understood by considering singular monopoles as S1-equivariant in-
stantons on the Taub-NUT space. See Remark 1.2 below. This bubbling is called
monopole bubbling in physics literature. e.g.,[KW07, BDG17].
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In order to identify MC , we use the criterion as above. In particular,
we need a candidate M as an affine algebraic variety, or at least a complex
analytic space. For this purpose, the moduli space of singular monopoles has
a defect, as a complex structure on its Uhlenbeck partial compactification is
not constructed in the literature except of type A. (See Remark 1.2 below
for type A.)

By [BF10] the Uhlenbeck partial compactification of the framed moduli
space of S1-equivariant instantons on R4 is isomorphic to a slice Wλ

µ of a
G[[z]]-orbit in the affine Grassmannian GrG in the closure of another orbit.
This is a reasonable alternative, as it has a close connection to the zastava
space Zα, and lots of things are known in the literature.

The first half of this paper is devoted to the construction of a general-
ization of the slice Wλ

µ, which makes sense even when µ is not dominant.
We call it a generalized slice, and denote it by the same notation. There are
several requirements for the generalized slice. It must be possible for us to
check properties required in the criterion above. The most important one
is the factorization. Also we should have a dominant birational morphism
Z̊α

∗ →Wλ
µ, as a property of the Coulomb branch (see [Part II, Remark 5.14]

and Remark 3.11 below). These properties naturally led the authors to our
definition of generalized slices. The heart of the first half is Proposition 2.10
showing Wλ

µ is a certain affine blowup of the zastava space Zα
∗

up to codi-
mension 2.

We introduce Wλ
µ as a moduli space of G-bundles over P1 with triv-

ialization outside 0 and B-structure. This definition originally appeared
in [FM99]. We also observe that it has an embedding into G(z) so that its
image coincides with the space of scattering matrices of singular monopoles
appearing in [BDG17].2

We conjecture that Coulomb branches of framed affine quiver gauge the-
ories are Uhlenbeck partial compactifications of moduli spaces of instantons
on the Taub-NUT space invariant under a cyclic group action. This is not
precise yet as 1) we do not endow them with the structure of affine algebraic
varieties, and 2) we do not specify the cyclic group action. Also we should re-
cover the moduli spaces of singular monopoles by replacing the cyclic group
with S1. Therefore they must be isomorphic to the generalized slice Wλ

µ,
but we do not give a proof of this simple version of the conjecture.

Remark 1.2. Singular monopoles are S1-equivariant instantons on the
Taub-NUT space by [Kro85]. See also [BC11]. A moduli space of instantons

2This was explained to the authors by D. Gaiotto and J. Kamnitzer during the
preparation of the manuscript.
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on the Taub-NUT space is described as Cherkis bow variety [Che09, Che10],
though mathematically rigorous proof of the completeness is still lacking as
far as the authors know. Its S1-fixed locus is also Cherkis bow variety of a
different type. A bow variety is technically more tractable than the mod-
uli space of singular monopoles. In [NT17], Takayama and the third named
author will identify MC for a framed quiver gauge theory of type A with
Cherkis bow variety. This method is applicable for affine type A case, which
conjecturally corresponds to a moduli space of Z/kZ-equivariant instantons
on the Taub-NUT space.

The paper is organized as follows. In §2 we introduce a generalized slice
as explained above. In §3 we identify the Coulomb branch of a quiver gauge
theory of type ADE with generalized slices. We also treat the case of affine
type, but without framing. Then we identify the Coulomb branch of a framed
Jordan quiver gauge theory with a symmetric power of the surface xy = wl

(l ≥ 0). In §4 we study the folding of a quiver gauge theory. We show that the
character of the coordinate ring of the fixed point loci of the Coulomb branch
is given by the twisted monopole formula in [CFHM14]. In the appendices
§§A,B written jointly with Joel Kamnitzer, Ryosuke Kodera, Ben Webster,
and Alex Weekes, we study the embedding of the quantized Coulomb branch
into the ring of difference operators. We find various difference operators
known in the literature, such as Macdonald operators and those in represen-
tations of Yangian ([GKLO05, KWWY14]). In particular, we show that the
quantized Coulomb branch of a framed quiver gauge theory of type ADE
is isomorphic to the truncated shifted Yangian introduced in [KWWY14]
under the dominance condition in §B.

Notation

We basically follow the notation in [Part II]. However a group G is used for a
flag variety B = G/B, while the group for the gauge theory is almost always
a product of general linear groups and denoted by GL(V ). Exceptions are
Proposition 3.23 and §A.4, where the gauge theory for the adjoint represen-
tation of a reductive group is considered. We use W for a vector space for a
quiver, while the Weyl group of G is denoted by W.

Errata to [Part II]

1) Following references to \subsubsection in 3(vii) are broken, though
their hyperlinks in the pdf file correctly work.
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• p.1093, replace §3(vii)3(vii) by §3(vii)(d).
• p.1100, replace 3(vii) by (a).
• p.1102, replace 3(vii) by (c).
• p.1104, replace 3(vii) by (d) (twice).
• p.1106, replace §3(vii)3(vii) by §3(vii)(d) (twice).
• p.1107, replace §3(vii)3(vii) by §3(vii)(d).
• p.1116, replace §3(vii)3(vii) by §3(vii)(d).
• p.1117, replace §3(vii)3(vii) by §3(vii)(b).
• p.1119, replace §3(vii)3(vii) by §3(vii)(d).
• p.1136, replace §3(vii)3(vii),3(vii) by §3(vii)(a),(c).

2) In Proposition 6.2, the formula f [Rλ] ∗ g[Rµ] = aλ,µfg[Rλ+µ] is cor-
rect for grA, but not true for grA~. Replace g in the right hand side
by g(•+ ~λ). This shift appears when we exchange the order of g and
rλ in the proof.
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2. Zastava and slices

2(i). Zastava

Let G be an adjoint simple simply laced complex algebraic group. We fix
a Borel and a Cartan subgroup G ⊃ B ⊃ T . Let Λ be the coweight lattice,
and let Λ+ ⊂ Λ be the submonoid spanned by the simple coroots αi, i ∈ Q0.
Here the index set of simple coroots is identified with the set of vertices of
the Dynkin diagram, i.e. Q0. The involution α 7→ −w0α of Λ restricts to an
involution of Λ+ and induces an involution αi 7→ αi∗ of the set of the simple
coroots. We will sometimes write α∗ := −w0α for short. For α =

∑
i∈Q0

aiαi



i
i

“3-Nakajima” — 2019/9/25 — 18:07 — page 81 — #7 i
i

i
i

i
i

Quiver gauge theories and slices in the affine Grassmannian 81

let Zα ⊃ Z̊α be the corresponding zastava space (moduli space of based
quasimaps φ from P1 to the flag variety B = G/B such that φ has no defect
at ∞ ∈ P1 and φ(∞) = B− ∈ B, the opposite Borel subgroup to B sharing
the same Cartan torus T ) and its open moduli subspace of based maps.
Recall the factorization map πα : Zα → Aα and its section sα : Aα ↪→ Zα, see
e.g. [BDF16]: the restriction of πα to Z̊α ⊂ Zα takes a based map φ : P1 → B
to the pullback φ∗S of the Q0-colored Schubert divisor (the boundary of
the open B-orbit in B). Recall that Aα = A|α|/Sα where A|α| =

∏
i∈Q0

Aai ,
and Sα is the product of the symmetric groups

∏
i∈Q0

Sai . We define Zα :=

Zα ×Aα A|α|, Z̊α := Z̊α ×Aα A|α|. Clearly, Sα acts on both Zα and Z̊α, and
we have Zα = Zα/Sα, Z̊

α = Z̊α/Sα.
We denote by wi,r, i ∈ Q0, 1 ≤ r ≤ ai the natural coordinates on A|α|.

We define an open subset Å|α| ⊂ A|α| as the complement to all the diagonals
wi,r = wj,s, and also Åα := Å|α|/Sα ⊂ Aα. We also define a bigger open sub-

set Å|α| ⊂
•

A|α| ⊂ A|α| as the complement to all the pairwise intersections of
diagonals. We set

•

Aα :=
•

A|α|/Sα ⊂ Aα.
Recall that πα : Zα → Aα is flat (since Aα is smooth, Zα has ratio-

nal singularities and hence it is Cohen-Macaulay [BF17, Proposition 5.2],
and all the fibers of πα have the same dimension |α| [BFGM02, Proposi-
tions 2.6, 6.4, and the line right after 6.4]). Recall the regular functions
(wi,r, yi,r)i∈Q0, 1≤r≤ai on Zα, see [BDF16, 2.2]. Note that πα(wi,r, yi,r) =

(wi,r). We have π−1
α (Å|α|) ∼= Å|α| × A|α| with coordinates (yi,r) on the sec-

ond factor. Recall that the boundary ∂Zα = Zα \ Z̊α is the zero divisor of a
regular function Fα ∈ C[Zα] defined uniquely up to a multiplicative scalar;
in terms of (wi,r, yi,r) coordinates we have

Fα =
∏
i,r

yi,r

1≤s≤ai(h)∏
h:Q1tQ1

o(h)=i

(wi,r − wi(h),s)
−1/2,

(the inner product over all arrows h ∈ Q1 or in the opposite orientation Q1

connected to i), see [BDF16, Theorem 1.6.(2)]. It follows that π−1
α (Å|α|) ∩

Z̊α ∼= Å|α| ×G|α|m , and π−1
α (Åα) ∩ Z̊α ∼= (Å|α| ×G|α|m )/Sα (with respect to the

diagonal action).
In case α = β+γ, β =

∑
i∈Q0

biαi, γ =
∑

i∈Q0
ciαi, according to [BDF16,

Theorem 1.6.(3)], the factorization isomorphism

fβ,γ : Z̊α|(A|β|×A|γ|)disj
∼−→ (Z̊β × Z̊γ)|(A|β|×A|γ|)disj
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takes (wi,r, yi,r)
1≤r≤ai
i∈Q0

to

(2.1)

((
wi,r, yi,r

∏
bi+1≤s≤ai

(wi,r − wi,s)
)1≤r≤bi

i∈Q0

,

(
wi,r, yi,r

∏
1≤s≤bi

(wi,r − wi,s)
)bi+1≤r≤ai

i∈Q0

)
.

Here (A|β| × A|γ|)disj is the open subset of A|β| × A|γ| formed by all the con-
figurations where none of the first |β| points meets any of the last |γ| points.

Remark 2.2. For a future use we recall the examples of Z̊γ for |γ| = 2,
see [BDF16, 5.5, 5.6]. In case γ = αi + αj and i, j are not connected by
an edge of the Dynkin diagram of G, we have C[Z̊γ ] = C[wi, wj , y

±1
i , y±1

j ].

In case γ = αi + αj and i, j are connected by an edge, we have C[Z̊γ ] =
C[wi, wj , yi, yj , y

±1
ij ]/(yiyj − yij(wj − wi)). In case γ = 2αi, we have C[Z̊γ ] =

C[wi,1, wi,2, y
±1
i,1 , y

±1
i,2 , ξ]/(yi,1 − yi,2 − ξ(wi,1 − wi,2)).

2(ii). Generalized transversal slices

In this subsection λ is a dominant coweight of G, and µ ≤ λ is an ar-
bitrary coweight of G, not necessarily dominant, such that α := λ− µ =∑

i∈Q0
aiαi, ai ∈ N. We will define the analogues of slices Wλ

G,µ of [BF14,
Section 2] and prove that they are the Coulomb branches of the correspond-
ing quiver gauge theories.

Recall the convolution diagram GrλG
p←− GZ

−µ
λ

q−→ Zα
∗

of [FM99, 11.7].

Here GZ
−µ
λ is the moduli space of the following data:

(a) a G-bundle P on P1.
(b) A trivialization σ : Ptriv|P1\{0}

∼−→ P|P1\{0} having a pole of degree

≤ λ at 0 ∈ P1. This means that for an irreducible G-module V λ∨ and the
associated vector bundle Vλ∨P on P1 we have V λ∨ ⊗OP1(−〈λ, λ∨〉 · 0) ⊂ Vλ∨P ⊂
V λ∨ ⊗OP1(−〈w0λ, λ

∨〉 · 0).
(c) a generalized B-structure φ on P of degree w0µ having no defect at

∞ ∈ P1 and having fiber B− ⊂ G at ∞ ∈ P1 (with respect to the trivial-
ization σ of P at ∞ ∈ P1). This means in particular that for an irreducible
G-module V λ∨ and the associated vector bundle Vλ∨P on P1 we are given an
invertible subsheaf Lλ∨ ⊂ Vλ

∨

P of degree −〈w0µ, λ
∨〉.

Now p forgets φ, while q sends (P, σ, φ) to a collection of invertible
subsheaves Lλ∨(〈w0λ, λ

∨〉 · 0) ⊂ V λ∨ ⊗OP1 . This collection will be denoted
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by σ−1φ(w0λ · 0) for short. Clearly, deg σ−1φ(w0λ · 0) = α∗, i.e.

degLλ∨(〈w0λ, λ
∨〉 · 0) = 〈w0λ− w0µ, λ

∨〉 = −〈α∗, λ∨〉.

Note that the target of q in [FM99, 11.7] is erroneously claimed to be Zα

as opposed to Zα
∗
.

We have an open subvariety G̊Z
−µ
λ ⊂ GZ

−µ
λ formed by all the triples

(P, σ, φ) such that φ has no defects (i.e. is a genuine B-structure). We de-
fine the generalized slice Wλ

µ := G̊Z
−µ
λ . To avoid a misunderstanding about

possible nilpotents in the structure sheaf, let us rephrase the definition. Let
′BunG(P1) be the moduli stack of G-bundles on P1 with a B-structure at
∞ ∈ P1. Let ′Bun

w0µ
B (P1) be the moduli stack of degree w0µ generalized

B-bundles on P1 having no defect at ∞ ∈ P1. Let Bunw0µ
B (P1) be its open

substack formed by the genuine B-bundles. Finally, we equip GrλG with the
reduced scheme structure. Then GZ

−µ
λ := GrλG ×′BunG(P1)

′Bun
w0µ
B (P1), and

Wλ
µ = G̊Z

−µ
λ := GrλG ×′BunG(P1) Bunw0µ

B (P1). Note that Wλ
µ is reduced since

it is generically reduced and Cohen-Macaulay (see Lemma 2.16 below).
We denote by sλµ : Wλ

µ → Zα
∗

the restriction of q : GZ−µλ → Zα
∗

toWλ
µ =

G̊Z
−µ
λ ⊂ GZ

−µ
λ . Note that when µ is dominant, p : G̊Z−µλ → GrλG is a locally

closed embedding [BF14, Remark 2.9], and the image coincides with the
transversal slice Wλ

G,µ in the affine Grassmannian GrG [BF14, Section 2],
hence the name and notation. However, when µ is nondominant, the restric-
tion of p : G̊Z−µλ → GrλG is not a locally closed embedding.

2(iii). Determinant line bundles and Hecke correspondences

We recall that given a family f : X → S of smooth projective curves and
two line bundles L1 and L2 on X Deligne defines a line bundle 〈L1,L2〉 on
S [Del87, Section 7]. In terms of determinant bundles the definition is simply

〈L1,L2〉 = detRf∗(L1 ⊗ L2)⊗ detRf∗(OX )(2.3)

⊗ (detRf∗(L1)⊗ detRf∗(L2))−1.

Deligne shows that the resulting pairing Pic(X )× Pic(X )→ Pic(S) is sym-
metric (obvious) and bilinear (not obvious).

Let Y (resp. Y ∨) denote the coweight (resp. weight) lattice of T . Let (·, ·)
be an even pairing on Y . Let also X be a smooth projective curve and let
BunT denote the moduli stack of T -bundles on X. Then to the above data
one associates a line bundle LT on BunT in the following way. Let e1, . . . , en
be a basis of Y and let f1, . . . , fn be the dual basis (of the dual lattice). For
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every i = 1, . . . , n let Li denote the line bundle on BunT ×X associated to
the weight fi. Let also aij = (ei, ej) ∈ Z. Then we define

(2.4) LT =

(
n⊗
i=1

〈Li,Li〉⊗
aii
2

)
⊗

 ⊗
1≤i<j≤n

〈Li,Lj〉⊗aij
 .

It is easy to see that LT does not depend on the choice of the basis (here,
of course, we have to use the statement that Deligne’s pairing is bilinear).

We have natural maps p : BunB → BunT , q : BunB → BunG. Let (·, ·)
be a pairing as above. Let us in addition assume that it is W -invariant. Let
LT be the corresponding determinant bundle. Faltings [Fal03] shows that the
pullback p∗LT descends naturally to BunG, i.e. there exists a (canonically
defined) line bundle LG on BunG with an isomorphism p∗LT ' q∗LG. The
pullback of LG under the natural morphism GrG → BunG is the determinant
line bundle on the affine Grassmannian; it will be also denoted LG or even
simply L when no confusion is likely.

2(iv). Basic properties of generalized transversal slices

The convolution diagram GZ
−µ
λ is equipped with the tautological morphism

r to the stack BunB(P1) (see [BFGM02, Section 1] for notation). The bound-
ary

∂BunB(P1) := BunB(P1) \ BunB(P1)

is a Cartier divisor, and OGZ
−µ
λ

(r−1(∂BunB(P1))) = p∗L [BFG06, Proof
of Theorem 11.6] where L is the very ample determinant line bundle on
GrG.

Lemma 2.5. Wλ
µ is an affine variety.

Proof. The morphism (p,q) : GZ−µλ → GrλG × Zα
∗

is a closed embedding.

Since Zα
∗

is affine, we conclude that p : GZ−µλ → GrλG is affine. The comple-

ment GZ−µλ \ G̊Z
−µ
λ = r−1(∂BunB(P1)), but OGZ

−µ
λ

(r−1(∂BunB(P1))) = p∗L
is the very ample determinant line bundle on GZ

−µ
λ since p is affine. Hence

the complement GZ
−µ
λ \ r−1(∂BunB(P1)) =Wλ

µ is affine. �

The proof of the following lemma is contained in a more general proof
of Lemma 2.16 below:

Lemma 2.6. Wλ
µ is Cohen-Macaulay. �
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Lemma 2.7. The composition πα∗ ◦ sλµ : Wλ
µ → Aα∗ is flat.

Proof. Since Wλ
µ is Cohen-Macaulay, it suffices to prove that all the fibers

of πα∗ ◦ sλµ have the same dimension |α|. To this end, for β ≤ α, we consider
a locally closed subvariety Zα

∗

β∗ ⊂ Zα
∗

formed by all the based quasimaps

whose defect at 0 ∈ A1 has degree precisely β∗. Note that Zα
∗

β∗ is isomorphic

to an open subvariety in Zα
∗−β∗ . It is enough to prove that for ϕ ∈ Zα∗β∗ , we

have dim(sλµ)−1(ϕ) ≤ |β|. Now the desired dimension estimate follows from
the semismallness of q [FM99, Lemma 12.9.1]. �

2(v). A symmetric definition of generalized slices

We slightly modify our definition of the transversal slices.
Given arbitrary coweights µ−, µ+ such that µ− + µ+ = µ we consider the

moduli spaceWλ
µ−,µ+

of the following data: (a) G-bundles P−,P+ on P1; (b)

an isomorphism σ : P−|P1\{0}
∼−→ P+|P1\{0} having a pole of degree ≤ λ at

0 ∈ P1; (c) a trivialization of P− = P+ at ∞ ∈ P1; (d) a reduction φ− of P−
to a B−-bundle (a B−-structure on P−) such that the induced T -bundle has
degree −w0µ−, and the fiber of φ− at ∞ ∈ P1 is B ⊂ G; (e) a reduction φ+

of P+ to a B-bundle (a B-structure on P+) such that the induced T -bundle
has degree w0µ+, and the fiber of φ+ at ∞ ∈ P1 is B− ⊂ G.

Note that the trivial G-bundle on P1 has a unique B−-reduction of degree
0 with fiber B at ∞. Conversely, a G-bundle P− with a B−-structure of
degree 0 is necessarily trivial, and its trivialization at ∞ uniquely extends
to the whole of P1. Hence Wλ

0,µ =Wλ
µ.

For arbitraryWλ
µ−,µ+

, the G-bundles P−,P+ are identified via σ on P1 \
{0}, so they are both equipped with B and B−-structures transversal around
∞ ∈ P1, that is they are both equipped with a reduction to a T -bundle
around∞ ∈ P1. So P± = PT± ×T G for certain T -bundles PT± around∞ ∈ P1,
trivialized at∞ ∈ P1. The modified T -bundles ′PT± := PT±(w0µ− · ∞) are also
trivialized at ∞ ∈ P1 and canonically isomorphic to PT± off ∞ ∈ P1. We de-
fine ′P± as the result of gluing P± and ′PT± ×T G in the punctured neighbour-

hood of ∞ ∈ P1. Then the isomorphism σ : ′P−|P1\{0,∞}
∼−→ ′P+|P1\{0,∞}

extends to P1 \ {0}, and φ± also extend from P1 \ {∞} to a B-structure ′φ+

in ′P+ of degree w0µ (resp. a B−-structure ′φ− in ′P− of degree 0).
This defines an isomorphism Wλ

µ−,µ+
' Wλ

µ.
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2(vi). Multiplication of slices

Given λ1 ≥ µ2 and λ2 ≥ µ2 with λ1, λ2 dominant, we think of Wλ1
µ1

(resp.

Wλ2
µ2

) in the incarnation Wλ1

µ1,0
(resp. Wλ2

0,µ2
). Given (P1

±, σ1, φ
1
±) ∈ Wλ1

µ1,0

and (P2
±, σ2, φ

2
±)∈Wλ1

0,µ2
, we consider (P1

−,P
2
+, σ2 ◦ σ1, φ

1
−, φ

2
+)∈Wλ1+λ2

µ1,µ2
=

Wλ1+λ2

µ1+µ2
(note that P2

− is canonically trivialized as in §2(v), and P1
+ is canon-

ically trivialized for the same reason, so that P1
+ = P2

−). This defines a mul-

tiplication morphism Wλ1
µ1
×Wλ2

µ2
→Wλ1+λ2

µ1+µ2
.3

In particular, taking µ2 = λ2 so that Wλ2

λ2
is a point and Wλ1

µ1
×Wλ2

λ2
=

Wλ1
µ1

, we get a stabilization morphism Wλ1
µ1
→Wλ1+λ2

µ1+λ2
.

2(vii). Involution

For the same reason as in §2(v), P+ in Wλ
µ,0 is canonically trivialized, so

we obtain a morphism ′p : Wλ
µ,0 → Gr−w0λ

G , sending the data of (P±, σ, φ±)

to (P+ = Ptriv
σ−1

−→ P−). Also, recalling the “symmetric” definition of za-
stava [BDF16, 2.6], we obtain a morphism ′sλµ : Wλ

µ,0 → Zα
∗
. Namely, it

takes a collection (L+
λ∨ ⊂ V

λ∨
P+

= V λ∨ ⊗OP1) to a collection of invertible sub-

sheaves L+
λ∨(〈−λ, λ∨〉 · 0) ⊂ Vλ∨P− . This transformed generalized B-structure

will be denoted by σ−1φ+(−λ · 0) for short. Finally, we have an isomor-
phism ιλµ : Wλ

µ =Wλ
0,µ

∼−→Wλ
µ,0 obtained by an application of the Cartan

involution C of G (interchanging B and B−, and acting on T as t 7→ t−1): re-
placing (P−,P+, φ−, φ+) by (CP+,CP−,Cφ+,Cφ−), and σ by Cσ−1. Clearly,
πα∗ ◦ ′sλµ ◦ ιλµ = πα∗ ◦ sλµ : Wλ

µ → Aα∗ . Indeed, for (P±, σ, φ±) ∈ Wλ
0,µ =Wλ

µ,

the Q0-colored divisor πα∗ ◦ sλµ(P±, σ, φ±) on P1 measures the nontransver-

sality of φ− and σ−1φ+(−λ · 0), while πα∗ ◦ ′sλµ ◦ ιλµ(P±, σ, φ±) measures the
nontransversality of σφ−(−λ · 0) and φ+, and these two measures coincide
manifestly.

Under the identification Wλ
µ−,µ+

' Wλ
µ of §2(v), the isomorphism ιλµ be-

comes an involution4 ιλµ : Wλ
µ
∼−→Wλ

µ.

2(viii). Divisors in the convolution diagram

For a future use we describe certain divisors in the convolution diagram.
We define a divisor E̊i ⊂ Wλ

0,µ = G̊Z
−µ
λ as the subvariety formed by the data

(P, σ, φ) such that the transformed B-structure q(P, σ, φ) = σ−1φ(w0λ · 0)

3We learnt of this multiplication from J. Kamnitzer, D. Gaiotto and T. Dimofte.
4We thank J. Kamnitzer who has convinced us such an involution should exist.



i
i

“3-Nakajima” — 2019/9/25 — 18:07 — page 87 — #13 i
i

i
i

i
i

Quiver gauge theories and slices in the affine Grassmannian 87

in the trivial bundle Ptriv acquires the defect of color i at 0 ∈ P1 (the defect
may be possibly bigger than αi · 0). We define a divisor Ei ⊂ GZ

−µ
λ as the

closure of E̊i. Thus E :=
⋃
i∈Q0

Ei is the exceptional divisor of q : GZ−µλ →
Zα

∗
, and sλµ : G̊Z−µλ → Zα

∗
restricted to G̊Z

−µ
λ \ E̊ (where E̊ :=

⋃
i∈Q0

E̊i)

induces an isomorphism G̊Z
−µ
λ \ E̊

∼−→ Z̊α
∗
. Note that Ei can be empty if λ

is nonregular.
Similarly, we define a divisor E̊′i ⊂ Wλ

µ,0 as the subvariety formed by

the data (P±, σ, φ±) such that the transformed B-structure ′sλµ(P±, σ, φ±) =
σ−1φ+(−λ · 0) in P− acquires the defect of color i at 0 ∈ P1.

Lemma 2.8. The full preimage (sλµ)∗(π∗α∗(Aα
∗

i )) = E̊i ∪ (ιλµ)−1(E̊′i).

Proof. At a general point of (ιλµ)−1(E̊′i) ⊂ Wλ
µ the transformed B-structure

q(P, σ, φ) = σ−1φ(w0λ · 0) in the trivial bundle Ptriv has no defect but at
0 ∈ P1 is not transversal to B: it lies in position si with respect to B.
Indeed, if Aα∗i denotes the divisor formed by the configurations where at
least on point of color i meets 0 ∈ A1, then πα∗ ◦ ′sλµ(E̊′i) ⊂ Aα∗i , and hence

πα∗ ◦ sλµ(ιλµ)−1(E̊′i) ⊂ Aα∗i . Now the full preimage (πα∗ ◦ sλµ)∗(Aα∗i ) a priori

lies in the union of the exceptional divisor E̊ and the strict transform
(sλµ)−1

∗ (π∗α∗Aα
∗

i ) of the divisor π∗α∗Aα
∗

i . At a general point of the compo-

nent E̊j , j 6= i, the degree of the defect of sλµ(P, σ, φ) at 0 is exactly αj ,

hence the intersection of E̊j with the full preimage of Aα∗i is not a divi-
sor. Thus (πα∗ ◦ sλµ)∗(Aα∗i ) = E̊i ∪ (sλµ)−1

∗ (π∗α∗Aα
∗

i ), and the strict transform

(sλµ)−1
∗ (π∗α∗Aα

∗

i ) must coincide with (ιλµ)−1(E̊′i). We conclude that the full

preimage (sλµ)∗(π∗α∗(Aα
∗

i )) = E̊i ∪ (ιλµ)−1(E̊′i). �

2(ix). Factorization

For n ∈ N, let Sn stand for a hypersurface in A3 with coordinates x, y, w cut
out by an equation xy = wn (in particular, S0 ' Gm × A1). Let Π : Sn →
A1 stand for the projection onto the line with w coordinate. Given i ∈ Q0

such that ai ≥ 1 (recall that α =
∑

i∈Q0
aiαi) we identify Aαi∗ with A1,

and we set β := α− αi. We denote by Gβ∗
m ⊂ Aβ∗ the open subset formed

by all the colored configurations such that none of the points equals 0 ∈
A1. We denote by (Gβ∗

m × A1)disj ⊂ Gβ∗
m × A1 the open subset equal to the

intersection (Aβ∗ × A1)disj ∩Gβ∗
m × A1.
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Let sn : Sn → A1 × A1 ' Zαi∗ be the birational isomorphism sending
(x, y, w) to (y, w). Then sλµ gives rise to the birational isomorphism

(Gβ∗

m × A1)disj ×Aα∗ Wλ
µ → (Gβ∗

m × A1)disj ×Aα∗ Z
α∗ ,

and s〈λ,α∨i 〉 gives rise to the birational isomorphism

(Gβ∗

m × A1)disj ×Aα∗ (Z̊β
∗ × S〈λ,α∨i 〉)→ (Gβ∗

m × A1)disj ×Aα∗ (Z̊β
∗ × Zαi∗ ).

Composing the above birational isomorphisms with the factorization iso-
morphism for zastava

(Gβ∗

m × A1)disj ×Aα∗ Z
α∗ ∼−→ (Gβ∗

m × A1)disj ×Aβ∗×A1 (Zβ
∗ × Zαi∗ )

we obtain a birational isomorphism

ϕ : (Gβ∗

m × A1)disj ×Aα∗ Wλ
µ 99K (Gβ∗

m × A1)disj ×Aβ∗×A1 (Z̊β
∗ × S〈λ,α∨i 〉).

The aim of this section is the following

Proposition 2.9. The birational isomorphism ϕ extends to a regular iso-
morphism of the varieties over (Gβ∗

m × A1)disj:

(Gβ∗

m × A1)disj ×Aα∗ Wλ
µ
∼−→ (Gβ∗

m × A1)disj ×Aβ∗×A1 (Z̊β
∗ × S〈λ,α∨i 〉).

The proof will be given after a certain preparation.
Let

•

Zα
∗ ⊂ Zα∗ be an open subset formed by all the based quasimaps

φ satisfying the following two conditions: (i) the defect def φ is at most a
simple coroot; (ii) the multiplicity of the origin 0 ∈ P1 in the divisor πα∗(φ)
is at most a simple coroot.

Note the three properties: a) The codimension of the complement Zα
∗ \

•

Zα
∗

in Zα
∗

is 2; b)
•

Zα
∗

inherits the factorization property from Zα
∗
; c)

•

Zα
∗

is smooth. We consider the open subset
•

Wλ
µ := (sλµ)−1(

•

Zα
∗
) ⊂ Wλ

µ, and
•

GZ
−µ
λ := q−1(

•

Zα
∗
) ⊂ GZ

−µ
λ . We set

•

Ei = Ei ∩
•

GZ
−µ
λ . The codimension of the

complementWλ
µ \

•

Wλ
µ inWλ

µ is 2. The open embedding (Gβ∗
m × A1)disj ×Aα∗

•

Wλ
µ ↪→ (Gβ∗

m × A1)disj ×Aα∗ Wλ
µ is an isomorphism, so we have to prove that

ϕ extends to a regular isomorphism of the varieties over (Gβ∗
m × A1)disj:

(Gβ∗

m × A1)disj ×Aα∗
•

Wλ
µ
∼−→ (Gβ∗

m × A1)disj ×Aβ∗×A1 (Z̊β
∗ × S〈λ,α∨i 〉)

To this end we will identify
•

Wλ
µ with a certain affine blowup of

•

Zα
∗
. We

consider the smooth connected components ∂i
•

Zα
∗
, i ∈ Q0, of the boundary
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divisor
•

Zα
∗ \ Z̊α∗ . Recall the divisors Aα∗i ⊂ Aα∗ formed by all the colored

configurations such that at least one point of color i ∈ Q0 meets 0 ∈ A1. Let
fi ∈ C[Aα∗ ] be an equation of Aα∗i . Let Ii ⊂ O •

Zα∗
(resp. Ji ⊂ O •

Zα∗
) be the

ideal of functions vanishing at π−1
α∗ (Aα∗i ) (resp. at ∂i

•

Zα
∗
). We define an ideal

Ki := I〈λ,α
∨
i∗ 〉

i + Ji, and K :=
⋂
i∈Q0
Ki. We define BlK

•

Zα
∗

as the blowup

of
•

Zα
∗

at the ideal K, and Blaff
K

•

Zα
∗

as the complement in BlK
•

Zα
∗

to the
union of the strict transforms of the divisors ∂i

•

Zα
∗
, i ∈ Q0. A crucial step

towards Proposition 2.9 is the following

Proposition 2.10. The identity isomorphism over π−1
α∗ (Gα∗

m ) extends to a
regular isomorphism of the varieties over

•

Zα
∗
:

•

Wλ
µ
∼−→ Blaff

K
•

Zα
∗
.

The proof will be given after a few lemmas. Recall that r−1(∂BunB(P1))
is the strict transform

∑
i∈Q0

q−1
∗ (∂iZ

α∗) and OGZ
−µ
λ

(r−1(∂BunB(P1))) =
p∗L. The pullback of the zastava boundary divisor will be denoted by∑

i∈Q0
q∗(∂i

•

Zα
∗
).

Lemma 2.11. (1) divFα∗ =
∑

i∈Q0
∂i

•

Zα
∗
;

(2) div q∗Fα∗ =
∑

i∈Q0
q−1
∗ (∂i

•

Zα
∗
) +

∑
i∈Q0
〈λ, α∨i∗〉

•

Ei;

(3) p∗L = O •
GZ
−µ
λ

(
∑

i∈Q0
q∗(∂i

•

Zα
∗
)−

∑
i∈Q0
〈λ, α∨i∗〉

•

Ei)

' O •
GZ
−µ
λ

(−
∑

i∈Q0
〈λ, α∨i∗〉

•

Ei).

Proof. The first assertion is already known. Let us prove the second and
third assertions that are equivalent by the remark preceding the lemma.
Consider the moduli space X λµ of the following data:

1) Two G-bundles P+,P− on P1.
2) An isomorphism σ : P− → P+ away from 0 ∈ P1, which lies inGO\GrλG.
3) A B-structure φ+ on the bundle P+ of degree w0µ such that the

transformed B-structure σ−1φ+(w0λ · 0) on P− has no defects.
4) A trivialization of the B-bundle φ+ at ∞ ∈ P1.

Note that the open subspace of X λµ given by the condition of triviality of

P− is an open subspace of G̊Z
−µ
λ . We will later introduce a larger space

X̃ λµ that is a BO-torsor over the whole of G̊Z
−µ
λ . We have natural maps

π+, π− : X λµ → BunG(P1).
Let LG denote the determinant bundle on BunG(P1). Then the pull-

back π∗−LG acquires a natural trivialization coming from the B-structure on
P− (note that the associated T -bundle has degree µ and is trivialized at ∞;
hence it is canonically isomorphism to the T -bundle O(µ). In fact, the above
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trivialization is well-defined up to (one) multiplicative scalar; the scalar is
fixed if we trivialize the determinant of the T -bundle O(µ) on P1).

On the other hand, consider a bigger moduli space X̃ λµ of the data 1–
3 above together with a trivialization of P+ in the formal neighbourhood
of 0 compatible with the B-structure (this is a BO-torsor over X λµ ). Then
it acquires a natural map p+ to GrG; moreover, it follows easily from 2

and 3 that p+ actually lands in the open subvariety Gr
−w0(λ)
G ∩ S−w0(λ) (in-

tersection with a semiinfinite orbit). Indeed, the open subvariety Gr
−w0(λ)
G ∩

S−w0(λ) ⊂ Gr
−w0(λ)
G is the moduli space of data (P−

σ−→ P+) where P+ is
trivial on the formal disc, σ has a pole of degree ≤ λ at 0, and the transfor-
mation σ−1φ+(w0λ · 0) of the standard B-structure in P+ has no defect
at 0. In effect, the latter condition is satisfied for the torus fixed point
−w0λ ∈ GrG, and since the condition is N(O)-invariant, the intersection

Gr
−w0(λ)
G ∩ S−w0(λ) lies in the above moduli space. However, for the other

torus fixed points −w0λ 6= ν ∈ Gr
−w0(λ)
G the condition is not satisfied, and

hence the intersection of the above moduli space with Sν is empty.
Let us denote by f the projection X̃ λµ → X λµ ; let π̃− = π− ◦ f . Let us

also recall that we denote by L the determinant bundle on GrG. We have
a canonical isomorphism p∗+L = π̃∗−LG. This is so because p∗+L is naturally
isomorphic to the ratio of π̃∗−LG and π̃∗+LG and the latter is canonically
trivial, since P+ is equipped with a B-structure with a fixed reduction to
T ).5

Since the restriction of L to Gr
−w0(λ)
G ∩ S−w0(λ) acquires a canonical

trivialization, we get a trivialization of p∗+L. This trivialization is equal to
the pullback under f of the trivialization of π∗−LG discussed above (since
both come from the same reduction of P− to B).

Let us now consider a variant of this situation. Namely, we consider a
moduli space X λµ of the same data as above, except that in 3) we do not

require that the transformed B-structure has no defect. Then X λµ is an open

subset of X λµ.

Similarly, we have the corresponding space X̃ λµ. We will denote the ex-

tension of π̃− to X̃ λµ by π̃−. Similarly, we have p+ : X̃ λµ → GrG. The line

bundles p∗+L and π̃∗−LG are again canonically isomorphic, so we can regard
them as the same line bundle.

5Of course, the fiber of the determinant bundle at P− can be trivialized as well
(for the same reason), but we want to ignore this here, since a little later we are
going to work with a larger space where P− will only be endowed with a generalized
B-structure.
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The above trivialization of this bundle extends to a section (without
poles but with zeroes). We are interested in the divisor of this section.
Namely, let Ei denote the divisor in X λµ corresponding to the condition that
the transformed B-structure in P− acquires the defect of degree at least αi.
Then we claim that the corresponding section of π̃∗−LG vanishes to the or-
der 〈−w0(λ), α∨i〉 = 〈λ, α∨i∗〉 on Ei. This immediately follows from the above,

since a similar statement is true on Gr
−w0(λ)
G .

In effect, assume λ regular (the argument in the general case is sim-
ilar but requires introducing more notations). Then we have a canonical
projection pr : Gr−w0λ

G → B. The preimage under pr of the open B-orbit

in B is nothing but Gr
−w0(λ)
G ∩ S−w0(λ). The complement to the open B-

orbit in B is the union of Schubert divisors Di ⊂ B, i ∈ Q0, and we have
L|Gr

−w0λ

G

∼= OGr
−w0λ

G
(
∑

i∈Q0
〈w0λ, α

∨
i〉 pr∗Di) as can be seen by comparing the

T -weights in the fibers of both sides at the T -fixed points, see e.g. the proof
of [MV07, Proposition 3.1].

Finally it remains to note that when P− is trivialized, its determinant
is trivialized as well, and the above section of π̃∗−LG is a function which
coincides with q∗Fα∗ , by its construction in [BF14, Section 4]. �

Lemma 2.12. The divisor div q∗π∗α∗fi is the sum of Ei and the strict trans-
form q−1

∗ (π∗α∗Aα
∗

i ).

Proof. We must prove that the multiplicity of the exceptional divisor Ei in
div q∗π∗α∗fi equals 1, or equivalently, the multiplicity of E̊i in div(sλµ)∗π∗α∗fi
equals 1. But according to Lemma 2.8 div(sλµ)∗π∗α∗fi is a sum of multiples

of E̊i and (ιλµ)−1(E̊′i), and the multiplicities of the summands are equal. The

latter divisor coincides with the strict transform (sλµ)−1
∗ (π∗α∗Aα

∗

i ) and has
multiplicity one, hence the former also has multiplicity one. �

Proof of Proposition 2.10. It is sufficient to prove that the identity isomor-
phism over π−1

α∗ (Gα∗
m ) extends to a regular isomorphism

•

GZ
−µ
λ

∼−→ BlK
•

Zα
∗

of

the varieties over
•

Zα
∗
. Indeed, removing the strict transform q−1

∗ (∂
•

Zα
∗
) =

•

GZ
−µ
λ ∩ (GZ−µλ \ G̊Z

−µ
λ ) we then obtain the desired isomorphism

•

Wλ
µ
∼−→

Blaff
K

•

Zα
∗
. We first prove that q−1K · O •

GZ
−µ
λ

⊂ O •
GZ
−µ
λ

is an invertible sheaf of

ideals. More precisely, we will prove that q−1K · O •
GZ
−µ
λ

' p∗L where L is the

very ample determinant line bundle on GrG. It follows from Lemma 2.11 that
q−1(

⋂
i∈Q0
Ji) · O •

GZ
−µ
λ

may be viewed as the sheaf of sections of p∗L vanish-

ing at the strict transform
∑

i∈Q0
q−1
∗ (∂i

•

Zα
∗
). On the other hand, it follows

from Lemma 2.11(3) and Lemma 2.12 that q−1(
⋂
i∈Q0
I〈λ,α

∨
i∗ 〉

i ) · O •
GZ
−µ
λ

may
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be viewed as the sheaf of sections of p∗L(−
∑

i∈Q0
〈λ, α∨i∗〉q−1

∗ (π∗α∗Aα
∗

i )). The

strict transforms q−1
∗ (∂i

•

Zα
∗
) and q−1

∗ (π∗α∗Aα
∗

j ) do not intersect for any i, j

(including the case i = j). Indeed, for (P, σ, φ) ∈ q−1
∗ (∂i∗

•

Zα
∗
) the general-

ized B-structure φ has defect of order exactly αi∗ , and the saturated (non-

generalized) B-structure φ̃ is well defined, so that (P, σ, φ̃) ∈
•

GZ
−µ−αi
λ . For

(P, σ, φ) ∈ q−1
∗ (∂i∗

•

Zα
∗
) ∩ q−1

∗ (π∗α∗Aα
∗

j ) we have (P, σ, φ̃) ∈ q−1
∗ (π∗β∗A

β∗

j ), and
πα∗q(P, σ, φ) contains the origin with multiplicity more than a simple co-
root. So the above intersection must be empty. Hence, the sum of subsheaves
p∗L

(
−
∑

i∈Q0
〈λ, α∨i∗〉q−1

∗ (π∗α∗Aα
∗

i )
)

and p∗L
(
−
∑

i∈Q0
q−1
∗ (∂i

•

Zα
∗
)
)

in p∗L
is the whole of p∗L.

Now by the universal property of blowup we obtain a projective mor-
phism Υ:

•

GZ
−µ
λ → BlK

•

Zα
∗
. From the above, Υ is an isomorphism away from

the closed subvariety of codimension 2, namely the intersection of the ex-
ceptional divisor with the strict transform of the boundary ∂Zα

∗
and of the

divisor
∏
i∈Q0

fi = 0. Hence Υ induces an isomorphism of the Picard groups,
and the relative Picard group of Υ is trivial. Hence Υ is an isomorphism.
Proposition 2.10 is proved. �

Proof of Proposition 2.9. If 〈λ, α∨i〉=0, the desired isomorphism follows from
S0 ' Gm × A1 ' Z̊αi∗ , the usual factorization for Z̊α

∗
, and the observation

that the image of sλµ : (Gβ∗
m × A1)disj ×Aα∗ Wλ

µ → Zα
∗

lands into Z̊α
∗ ⊂ Zα∗ .

For arbitrary λ, we have the isomorphisms

(Gβ∗

m × A1)disj ×Aα∗
•

Wλ
µ(2.13)

∼−→ (Gβ∗

m × A1)disj ×Aα∗ Blaff
K

•

Zα
∗

∼−→ (Gβ∗

m × A1)disj ×Aβ∗×A1 Blaff
K (Z̊β

∗ × Zαi∗ )
∼−→ (Gβ∗

m × A1)disj ×Aβ∗×A1 (Z̊β
∗ × S〈λ,α∨i 〉)

Proposition 2.9 is proved. �

Remark 2.14. Proposition 2.9 along with its proof holds for an arbitrary
almost simple simply connected complex algebraic group G, not necessarily
simply laced.

2(x). BD slices

Recall the definition of Beilinson-Drinfeld slices Wλ
µ from [KWWY14, 2.4].

Here λ ≥ µ are dominant coweights ofG, and λ = (ωi1 , . . . , ωiN ) is a sequence

of fundamental coweights of G such that
∑N

s=1 ωis = λ. Namely, Wλ
µ is the

moduli space of the following data:
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(a) a collection of points (z1, . . . , zN ) ∈ AN ;
(b) a G-bundle P on P1 of isomorphism type µ;
(c) a trivialization (a section) σ of P on P1 \ {z1, . . . , zN} with a pole

of degree ≤
∑N

s=1 ωis · zs on the complement, such that the value of the
Harder-Narasimhan flag of P at ∞ ∈ P1 (where P is trivialized via σ) is
compatible with B− ⊂ G.

Note that the Harder-Narasimhan flag above can be uniquely refined to
a full flag of degree w0µ with value B− ⊂ G at ∞ ∈ P1, and this flag is the
unique flag of degree w0µ with the prescribed value at ∞. Hence the above
definition of Wλ

µ can be extended to the case when µ ≤ λ is not necessarily

dominant (but λ =
∑N

s=1 ωis is still dominant) as follows: Wλ
µ is the moduli

space of the following data:
(a) a collection of points (z1, . . . , zN ) ∈ AN ;
(b) a G-bundle P on P1;
(c) a trivialization (a section) σ of P on P1 \ {z1, . . . , zN} with a pole of

degree ≤
∑N

s=1 ωis · zs on the complement;
(d) a B-structure φ on P of degree w0µ having fiber B− ⊂ G at ∞ ∈ P1

(with respect to the trivialization σ).
If in this definition we allow B-structure in (d) to be generalized (but

with no defects at∞ ∈ P1), then we obtain a partial compactification GZ
−µ
λ ⊃

Wλ
µ. As in §2(ii), let us rephrase the definition to avoid a possible misunder-

standing about nilpotents in the structure sheaf. We equip Gr
λ
G,BD with the

reduced scheme structure. Then GZ
−µ
λ := Gr

λ
G,BD ×′BunG(P1)

′Bun
w0µ
B (P1),

and Wλ
µ := Gr

λ
G,BD ×′BunG(P1) Bunw0µ

B (P1).

As in Lemma 2.5 one can prove thatWλ
µ is an affine algebraic variety. For

α = λ− µ, we have the convolution diagram Gr
λ
G,BD

p←− GZ
−µ
λ

q−→ Zα
∗ ×

AN defined similarly to §2(ii). In particular, q sends (z1, . . . , zN ,P, σ, φ) to
a collection of invertible subsheaves Lλ∨(

∑
1≤s≤N 〈w0ωis , λ

∨〉 · zs) ⊂ V λ∨ ⊗
OP1 . The restriction of q toWλ

µ ⊂ GZ
−µ
λ is denoted by s

λ
µ : Wλ

µ → Zα
∗ × AN .

We also have a morphism r : GZ−µλ → BunB(P1) forgetting the data (a,c)
above.

Let fi,λ ∈ C[Aα∗ × AN ] be defined as

fi,λ(w, z) =
∏

1≤r≤ai
1≤s≤N : is=i∗

(wi,r − zs).

By an abuse of notation we will keep the name fi,λ for π∗α∗fi,λ ∈ C[Zα
∗ ×

AN ]. Let Zα
∗ •

×AN ⊂ Zα∗ × AN be an open subset formed by all the pairs
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(φ, z) of the based quasimaps and configurations satisfying the following
two conditions: (i) the defect of φ is at most a simple coroot; (ii) the
multiplicity of zi in the divisor πα∗(φ) is at most a simple coroot for any

i = 1, . . . , N . We define an open subvariety
•

Wλ
µ ⊂ Wλ

µ (resp.
•

GZ
−µ
λ ⊂ GZ

−µ
λ )

as (s
λ
µ)−1(Zα

∗ •

×AN ) (resp. q−1(Zα
∗ •

×AN ))

Let Iλi ⊂ OZα∗ •
×AN (resp. Ji ⊂ OZα∗ •

×AN ) be the ideal generated by fi,λ
(resp. the ideal of functions vanishing at ∂iZ

α∗ •

×AN ). We define the ide-

als Ki := Iλi + Ji and K :=
⋂
i∈Q0
Ki. Finally, we define BlK(Zα

∗ •

×AN ) as

the blowup of Zα
∗ •

×AN at the ideal K, and Blaff
K (Zα

∗ •

×AN ) as the comple-
ment in BlK(Zα

∗ •

×AN ) to the union of the strict transforms of the divisors
∂iZ

α∗ •

×AN , i ∈ Q0.
The proof of the following proposition is parallel to the one of Proposi-

tion 2.10.

Proposition 2.15. The identity isomorphism over
⋂
i∈Q0

f−1
i,λ (Gm) extends

to the isomorphisms
•

GZ
−µ
λ

∼−→ BlK(Zα
∗ •

×AN ) and
•

Wλ
µ
∼−→ Blaff

K (Zα
∗ •

×AN )

of the varieties over Zα
∗ •

×AN .

Lemma 2.16. Wλ
µ is Cohen-Macaulay.

Proof. The natural morphism Gr
λ
G,BD → AN is flat with fibers isomorphic

to the products of Schubert varieties in GrG, as a consequence of [FL06,
Theorem 1]. Since these Schubert varieties are Cohen-Macaulay, we deduce

from [Mat86, Corollary of Theorem 23.3] that Gr
λ
G,BD is Cohen-Macaulay

as well.
The morphisms

Gr
λ
G,BD

p→ ′BunG(P1)← Bunw0µ
B (P1)

are Tor-independent since the left morphism is a product locally in the
smooth topology. In effect, let ′BunG(P1)← HλG,BD → ′BunG(P1) be the
(Beilinson-Drinfeld-)Hecke correspondence. Then the right projection is a
product locally in the smooth topology. Let ′Buntriv

G (P1) ⊂ ′BunG(P1) be

the open substack of trivial G-bundles. Then its preimage in HλG,BD under

the left projection to ′BunG(P1) is G\Gr
λ
G,BD, and the restriction of the

right projection to the preimage is G\p.
Now the morphism ′BunG(P1)← Bunw0µ

B (P1) is locally complete inter-
section (lci) since both the target and the source are smooth. Hence its base

change Gr
λ
G,BD ←W

λ
µ is also lci (see [Ill71, Corollary 2.2.3(i)]). Hence the
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Cohen-Macaulay property of Gr
λ
G,BD implies the one of the fiber product

Gr
λ
G,BD ×′BunG(P1) Bunw0µ

B (P1) =Wλ
µ.6 �

2(xi). An embedding into G(z)

Given a collection (z1, . . . , zN ) ∈ AN we define Pz(z) :=
∏N
s=1(z − zs) ∈ C[z].

We also define a closed subvariety Wλ,z
µ ⊂ Wλ

µ as the fiber of the latter

over z = (z1, . . . , zN ). We construct a locally closed embedding Ψ: Wλ,z
µ ↪→

G[z, P−1] into an ind-affine scheme as follows. Similarly to §2(v), we have a

symmetric definition of BD slices and an isomorphism ζ : Wλ,z
µ =Wλ,z

0,µ
∼−→

Wλ,z
µ,0. We denote ζ(P±, σ, φ±) by (P′±, σ

′, φ′±). Note that P− and P′+ are
trivialized, and P′+ is obtained from P+ by an application of a certain
Hecke transformation at ∞ ∈ P1. In particular, we obtain an isomorphism
P+|A1

∼−→ P′+|A1 = Ptriv|A1 . Composing it with σ : Ptriv|A1\z = P−|A1\z
∼−→

P+|A1\z we obtain an isomorphism Ptriv|A1\z
∼−→ Ptriv|A1\z i.e. an element of

G[z, P−1
z ].

Note that if N = 0, then Pz = 1, and Wλ,z
µ = Z̊α where α = w0µ. Thus

we obtain an embedding Ψ: Z̊α ↪→ G[z], which should be the same as the
one in [Jar98, 4.2].

Here is an equivalent construction of the above embedding due to J. Kam-
nitzer. Given (P±, σ, φ±) ∈ Wλ,z

µ−,µ+ , we choose a trivialization of the B-
bundle φ+|A1 (resp. of the B−-bundle φ−|A1); two choices of such a triv-
ialization differ by the action of an element of B[z] (resp. B−[z]). This
trivialization gives rise to a trivialization of the G-bundle P+|A1 (resp. of
P−|A1), so that σ becomes an element of G(z) well-defined up to the left
multiplication by an element of B[z] and the right multiplication by an
element of B−[z], i.e. a well defined element of B[z]\G(z)/B−[z]. Clearly,
this element of G(z) lies in the closure of the double coset G[z]zλ,zG[z]
where zλ,z :=

∏N
s=1(z − zs)ωis . Thus we have constructed an embedding

Ψ′ : Wλ,z
µ−,µ+ → B[z]\G[z]zλ,zG[z]/B−[z]. If we compose with an embedding

G(z) ↪→ G((z−1)), then the image of Ψ′ lies in

B[z]\B1[[z−1]]zµB−,1[[z−1]]/B−[z]

where B1[[z−1]] ⊂ B[[z−1]] (resp. B−,1[[z−1]] ⊂ B−[[z−1]]) stands for the ker-
nel of evaluation at ∞ ∈ P1. However, the projection

B1[[z−1]]zµB−,1[[z−1]]→ B[z]\B1[[z−1]]zµB−,1[[z−1]]/B−[z]

6The last part of the proof is due to M. Temkin.
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is clearly one-to-one. Summing up, we obtain an embedding

Ψ: Wλ,z
µ−,µ+

→ B1[[z−1]]zµB−,1[[z−1]]
⋂
G[z]zλ,zG[z].

We claim that Ψ is an isomorphism. To see it, we construct the inverse map
toWλ,z

0,µ: given g(z) ∈ B1[[z−1]]zµB−,1[[z−1]]
⋂
G[z]zλ,zG[z], we use it to glue

P+ together with a rational isomorphism σ : Ptriv = P− → P+, and define
φ+ as the image of the standard B-structure in Ptriv under σ.

Note that the same space of scattering matrices appears in [BDG17,
6.4.1].

2(xii). An example

Let G = GL(2) = GL(V ) where V = Ce1 ⊕ Ce2. Let N,m ∈ N; λ be an N -
tuple of fundamental coweights (1, 0), and µ = (N −m,m), so that w0µ =
(m,N −m). Let O := OP1 . We fix a collection (z1, . . . , zN ) ∈ AN and define

Pz(z) :=
∏N
s=1(z − zs) ∈ C[z]. Then Wλ,z

µ is the moduli space of flags (O ⊗
V ⊃ V ⊃ L), where

(a) V is a 2-dimensional locally free subsheaf in O ⊗ V coinciding with
O ⊗ V around∞ ∈ P1 and such that on A1 ⊂ P1 the global sections of detV
coincide with PzC[z]e1 ∧ e2 as a C[z]-submodule of Γ(A1,det(OA1 ⊗ V )) =
C[z]e1 ∧ e2.

(b) L is a line subbundle in V of degree −m, assuming the value Ce1 at
∞ ∈ P1. In particular, degV/L = m−N .

On the other hand, let us introduce a closed subvarietyMλ,z
µ in Mat2[z]

formed by all the matrices M =

(
A B
C D

)
such that A is a monic polynomial

of degree m, while the degrees of B and C are strictly less than m, and
detM = Pz(z).

Finally, let inv : Mat∗2(z)→ Mat∗2(z) denote the inversion operation on
matrices with nonzero determinant.

Proposition 2.17 (J. Kamnitzer). The composition Φ := inv ◦Ψ estab-

lishes an isomorphism Wλ,z
µ

∼−→Mλ,z
µ .

Proof. First note that a morphism between two line bundles on P1 trivialized
at ∞ ∈ P1, viewed as a polynomial in z, has a leading term 1 if and only if
the morphism preserves the trivializations at ∞.

Let us denote Φ(O ⊗ V ⊃ V ⊃ L) by M =

(
A B
C D

)
∈ Mat2[z]. By con-

struction detM is proportional to Pz(z). If we view detM as a rational
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morphism from detV to O compatible with trivializations at ∞, we deduce
that the leading coefficient of detM = 1, i.e. detM = Pz(z).

Furthermore, the pole of the first column of M at ∞ ∈ P1 has order
exactly m; more precisely, the leading term of A is azm, a ∈ C×, while C
has a smaller degree. If we view A as a morphism L → O compatible with
trivializations at ∞, we obtain a = 1.

Let us consider the involution ι
λ,z
µ : Wλ,z

µ
∼−→Wλ,z

µ defined as in §2(vii).

Then by construction, Φ ◦ ιλ,zµ equals the composition of transposition and
Φ. Hence we obtain that degB < m as well, so that the image of Φ lies in
Mλ,z

µ .

Now let us describe the inverse morphism f : Mλ,z
µ

∼−→Wλ,z
µ . Given M ∈

Mλ,z
µ we view it as a transition matrix in a punctured neighbourhood of∞ ∈

P1 to glue a vector bundle V which embeds, by construction, as a locally free
subsheaf into O ⊗ V . The morphism MOA1e1 ↪→ OA1 ⊗ V naturally extends
to ∞ ∈ P1 with a pole of degree m, hence it extends to an embedding of
O(−m · ∞) into V ⊂ O ⊗ V . The image of this embedding is the desired line
subbundle L ⊂ V.

Finally, one can check that Φ and f are inverse to each other. �

Note that this argument is just a special case of the one in §2(xi). Indeed,
zµ = diag(zN−m, zm), and

B1[[z−1]]zµB−,1[[z−1]] =

{(
a11 a12

a21 a22

)∣∣∣∣ deg(a22) = m > deg(a21),deg(a12)

}
.

Furthermore, zλ,z = diag(P (z)−1, 1), so that inv
(
G[z]zλ,zG[z]

)
consists of

matrices with entries in C[z] and determinant P (z) up to a scalar multiple.

2(xiii). Scattering matrix

The isomorphism between moduli spaces of Gc-monopoles and rational maps
is given by the scattering matrix [Hur85, Jar98]. Although we do not use
this fact, let us briefly review it following [AH88], as it seems closely related
to a version of definition of the zastava due to Drinfeld (see [BFG06, 2.12]).

Let (A,Φ) be a monopole on a Gc-bundle P over R3. Let us assume
Gc = SU(2) for brevity. Let k be the monopole charge. Therefore the Higgs
field has the asymptotic behaviour

Φ =
√
−1 diag(1,−1)−

√
−1

2r
diag(k,−k) +O(r−2).
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We fix an isomorphism R3 = R× C and consider rays (t, z) (t→ ±∞).
We solve (∇A −

√
−1Φ)s = 0 along rays for the associated rank 2 vector

bundle P ×SU(2) C2. We have two sections s0, s1 along t→∞ and s′0, s′1
along t→ −∞. Here s0 and s′0 are exponentially decaying while s1 and s′1
are exponentially growing. The scattering matrix is defined as the transition
between (s0, s1) and (s′0, s

′
1). We consider the framed moduli space, i.e., we

choose an eigenvector for Φ at +∞ with eigenvalue
√
−1. Then s0 is uniquely

determined, while s1 is well-defined up to the addition of a multiple of s0.
On the other hand, s′0 is well-defined up to a multiple of scalar as we do
not take the framing at −∞. Therefore the scattering matrix is naturally a
map from C to the quotient stack B\G/U where G = SL(2), B (resp. U)
is the group of upper triangular (resp. uni-triangular) matrices in G. This
is nothing but a description of the zastava due to Drinfeld, as explained in
[BFG06, §2.12]. Moreover these maps make sense for a Riemann surface X,
not only C. As we have learned from Gaiotto, we expect that the scattering
matrix for a monopole on R×X is a map from X to B\G/U .

We write s′0(z) = g(z)s0(z) + f(z)s1(z). Then f and g have no common
zeroes and they are well-defined up to

1) multiplying both by an invertible function on X,

2) adding a multiple of f to g.

For X = C, we can uniquely bring it to a pair (f, g) such that

(a) g is a monic polynomial of some degree k,

(b) f is a polynomial of degree < k.

Thus we have a based map z 7→ g(z)/f(z).
See [BDG17, App. A] for the consideration for singular monopoles.

3. Quiver gauge theories

We choose an orientation of the Dynkin graph of G, and denote the set of
oriented arrows by Q1.

3(i). W = 0 cases

We set Vi = Cai , and GL(V ) :=
∏
i∈Q0

GL(Vi). The group GL(V ) acts natu-
rally on N = Nα :=

⊕
h∈Q1

Hom(Vo(h), Vi(h)). This representation gives rise
to the variety of triples R → Gr = GrGL(V ). The equivariant Borel-Moore
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homology H
GL(V )O
∗ (R) equipped the convolution product forms a commuta-

tive algebra, and its spectrum is the Coulomb branchMC =MC(GL(V ),N).
We choose a maximal torus T (V ) ⊂ GL(V ) and its identification with∏
i∈Q0

Gai
m. The basic characters of T (V ) are denoted wi,r, i ∈ Q0, 1 ≤

r ≤ ai; their differentials are wi,r ∈ t∨(V ). The generalized roots are wi,r −
wi,s, r 6= s, and wi,r − wj,s for i 6= j vertices connected in the Dynkin dia-
gram.

We consider the algebra homomorphism

ι∗ : H
T (V )O
∗ (RT (V ),NT (V )

)→ H
GL(V )O
∗ (R)⊗H∗GL(V )(pt) H

∗
T (V )(pt)

of [Part II, Lemma 5.17]. According to loc. cit., ι∗ becomes an isomorphism
over t◦(V ) (note that t◦(V )/Sα = Åα). We denote by

yi,r ∈ HT (V )O
∗ (RT (V ),NT (V )

)

the fundamental class of the fiber of RT (V ),NT (V )
over the point of GrT (V )

equal to the cocharacter w∗i,r of T (V ): an element of the dual basis to

{wi,r}i∈Q0, 1≤r≤ai . Finally, we denote ui,r ∈ HT (V )O
∗ (GrT (V )) the fundamen-

tal class of the point w∗i,r. According to [Part II, Proposition 5.19],

H
T (V )O
∗ (GrT (V )) ∼= C[t(V )× T∨(V )] = C[wi,r, u

±1
i,r : i ∈ Q0, 1 ≤ r ≤ ai].

We define an isomorphism

Ξ: C[Z̊α]⊗C[Aα] C[Åα]
∼−→ C[t(V )× T∨(V )]⊗C[Aα] C[Åα]

identical on wi,r and sending yi,r to ui,r ·
∏
h∈Q1:o(h)=i

∏
1≤s≤ai(h)

(wi(h),s −
wi,r). In notations of [Part II, Theorem 5.26] this defines a generic isomor-

phism Ξ◦ : C[Z̊α]⊗C[Aα] C[Åα]
∼−→ H

GL(V )O
∗ (R)⊗C[Aα] C[Åα]. According to

[Part II, §4(vi)], the homomorphism

z∗ : H
T (V )O
∗ (RT (V ),NT (V )

)→ H
T (V )O
∗ (GrT (V ))

takes yi,r to ui,r ·
∏
h∈Q1:o(h)=i

∏
1≤s≤ai(h)

(wi(h),s − wi,r). Thus in notations

of [Part II, Theorem 5.26], Ξ◦ takes yi,r to ι∗yi,r.

Theorem 3.1. The isomorphism

Ξ◦ : C[Z̊α]⊗C[Aα] C[Åα]
∼−→ H

GL(V )O
∗ (R)⊗C[Aα] C[Åα]

extends to a biregular isomorphism C[Z̊α] ' HGL(V )O
∗ (R).
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Proof. Recall the coordinates wi,r, i ∈ Q0, 1 ≤ r ≤ ai (the characters) on

T (V ) whose differentials are wi,r ∈ t∨(V ). Let t ∈
•

A|α| \ Å|α| ⊂ t(V ). Ac-
cording to [Part II, Theorem 5.26] and [Part II, Remark 5.27], it suffices to

identify the localizations C[Z̊α]t and
(
H
T (V )O
∗ (R)

)
t

as C[A|α|]t = C[t(V )]t-

modules. Our t lies on a diagonal divisor. We will consider two possibilities.
First we can have (wi,r − wj,s)(t) = 0 for i 6= j. Then the fixed point set

RtN is isomorphic to the product GrT1
×RT2,N′ . Here T2 is a 2-dimensional

torus with coordinates wi,r,wj,s, and T1 is an (|α| − 2)-dimensional torus
with coordinates {wk,p : (i, r) 6= (k, p) 6= (j, s)}, so that T (V ) = T1 × T2. Fur-
thermore, N′ is the following representation of T2: if i, j are not connected by
an edge of the Dynkin diagram, then N′ = 0; and if there is an arrow h from
i to j in our orientation Ω, then N′ is a character w−1

i,r wj,s with differential
wj,s − wi,r. In case i, j are not connected we conclude that in notations of
[Part II, Theorem 5.26(2)], G′ = T (V ), and(

H
G′O
∗ (RG′,N′)

)
t

=
(
H
T (V )O
∗ (GrT (V ))

)
t

= (C[t(V )× T∨(V )])t = (C[A|α| ×G|α|m ])t.

We define Ξt : (C[Z̊α]⊗C[Aα] C[A|α|])t →
(
H
G′O
∗ (RG′,N′)

)
t

identical on wk,p

and sending yk,p to uk,p ·
∏
h∈Q1:o(h)=k

∏
1≤q≤ai(h)

(wi(h),q − wk,p). Note that

at the moment Ξt is defined only as a rational morphism. The condition of
[Part II, Theorem 5.26(2)] is trivially satisfied. Also, Ξt is a regular isomor-
phism due to the factorization property of zastava (2.1) and e.g. [BDF16,
5.5], and the fact that the factors (wi(h),q − wk,p) in the formula for Ξt are
all invertible at t.

In case h ∈ Q1 with o(h) = i, i(h) = j, in notations of [Part II, Theo-
rem 5.26(2)], G′ = T (V ), and(

H
G′O
∗ (RG′,N′)

)
t

=
(
H
T (V )O
∗ (GrT1

×RT2,N′)
)
t

= (C[t1 × T∨1 ]⊗A)t

where A is generated by wi,r, wj,s and the fundamental classes y′i,r, y
′
j,s, y

′
irjs,

y′−1
irjs of the fibers of RT2,N′ over the points w∗i,r, w

∗
j,s, w

∗
i,r + w∗j,s,−w∗i,r −

w∗j,s ∈ GrT2
respectively. According to [Part II, Theorem 4.1], the relations

in A are as follows: y′irjs · y
′−1
irjs = 1; y′i,r · y′j,s = y′irjs · (wj,s − wi,r).

According to [Part II, §4(vi)], the homomorphism

z′∗ : H
T (V )O
∗ (GrT1

×RT2,N′)→ H
T (V )O
∗ (GrT (V ))
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takes y′i,r to (wj,s − wi,r)ui,r, while z′∗y′j,s = uj,s, z′∗y′irjs = ui,ruj,s, z′∗y′−1
irjs =

u−1
i,r u

−1
j,s . We define Ξt : (C[Z̊α]⊗C[Aα] C[A|α|])t →

(
H
G′O
∗ (RG′,N′)

)
t

identical

on wk,p and sending yk,p to uk,p ·
∏
h∈Q1:o(h)=k

∏
1≤q≤ai(h)

(wi(h),q − wk,p). In

particular, yi,r goes to y′i,r · (wj,s − wi,r)−1
∏
h∈Q1:o(h)=i

∏
1≤q≤ai(h)

(wi(h),q −
wi,r). Note that at the moment Ξt is defined only as a rational morphism.
The condition of [Part II, Theorem 5.26(2)] is trivially satisfied. Also, Ξt

is a regular isomorphism due to the factorization property of zastava and
e.g. [BDF16, 5.6], and the fact that the factors (wi(h),q − wk,p) in the formula
for Ξt (note that the factor (wj,s − wi,r) is excluded) are all invertible at t. In
particular, Ξt sends yirjs of Remark 2.2 to y′irjs up to a product of invertible
factors (wi(h),q − wk,p).

The second possibility is (wi,r − wi,s)(t) = 0. Then the fixed point set
Rt is isomorphic to the product GrT1

×GrGL(V ′′). Here V ′′ ⊂ Vi is a 2-
dimensional subspace whose T (V )-weights are wi,r,wi,s, and T1 is an (|α| −
2)-dimensional torus with coordinates {wk,p : (i, r) 6= (k, p) 6= (i, s)}, and T2

is a 2-dimensional torus with coordinates wi,r,wi,s. Hence in notations of
[Part II, Theorem 5.26(2)], G′ = T1 ×GL(V ′′),N′ = 0, and

H
G′O
∗ (RG′,N′)⊗H∗

G′ (pt) C[t(V )] = H
T1,O
∗ (GrT1

)⊗HT2,O
∗ (GrGL(V ′′))

= C[t1 × T∨1 ]⊗B

where B is the following algebra. It has generators ι′∗ui,r, ι
′
∗ui,s, wi,r, wi,s, η

and relation ι′∗ui,r − ι′∗ui,s = (wi,r − wi,s)η, subject to the condition that
ι′∗ui,r, ι

′
∗ui,s are invertible. In effect, the isomorphism B

∼−→ HT2
∗ (GrGL(V ′′))

takes η to the fundamental cycle [P1
1] ∈ HT2

2 (GrGL(V ′′)) where P1
1 is the

1-dimensional GL(V ′′)-orbit containing w∗i,r and w∗i,s (use the argument
in [BFM05, 3.10]).

We define Ξt : (C[Z̊α]⊗C[Aα] C[A|α|])t →
(
H
T (V )O
∗ (RG′,N′)

)
t
identical on

wk,p and sending yk,p to ι′∗uk,p ·
∏
h∈Q1:o(h)=k

∏
1≤q≤ai(h)

(wi(h),q − wk,p). Note

that at the moment Ξt is defined only as a rational morphism. The condi-
tion of [Part II, Theorem 5.26(2)] is trivially satisfied. Also, Ξt is a regular
isomorphism due to the factorization property of zastava and e.g. [BDF16,
5.5], and the fact that the factors (wl,q − wk,p) in the formula for Ξt are all
invertible at t.

The theorem is proved. �

Remark 3.2. H
GL(V )O
∗ (R) is naturally graded by π1 GL(V ) = ZQ0 . Under

the isomorphism of Theorem 3.1 this grading becomes the grading of C[Z̊α]



i
i

“3-Nakajima” — 2019/9/25 — 18:07 — page 102 — #28 i
i

i
i

i
i

102 A. Braverman, M. Finkelberg, and H. Nakajima

by the root lattice of the Cartan torus T ⊂ G : ZQ0 = Z〈α∨i〉i∈Q0
correspond-

ing to the natural action of T on Z̊α. Indeed, the weight of wi,r is 0, while
the weight of yi,r is α∨i .

Remark 3.3. The LHS of Theorem 3.1 is naturally graded by half the
homological degree degh, while the RHS is naturally graded by the action of
loop rotations, degr. These gradings are different. Let x be a homogeneous
homology class supported at the connected component ν = (ni) ∈ ZQ0 =
π0GrGL(V ). Then one can check that degr(x) = degh(x)− νt ·

√
det N + 1

2ν
t ·

C · α. Here C is the Cartan matrix of G, and we view
√

det N as a (rational)
character of GL(V ), i.e. an element of 1

2Z
Q0 . Note that degh(x)− νt ·

√
det N

coincides with the monopole formula exponent ∆(x) of [Part II, (2.10)], see
[Part II, Remark 2.8(2)].

3(ii). Positive part of an affine Grassmannian

Given a vector space U we define7 Gr+
GL(U) ⊂ GrGL(U) as the moduli space

of vector bundles U on the formal disc D equipped with trivialization σ :
U|D∗

∼−→ U ⊗OD∗ on the punctured disc such that σ extends through the
puncture as an embedding σ : U ↪→ U ⊗OD.

Now since GL(V ) =
∏
i∈Q0

GL(Vi) (notations of §3(i)), GrGL(V ) =∏
i∈Q0

GrGL(Vi), and we define Gr+
GL(V ) =

∏
i∈Q0

Gr+
GL(Vi)

. We define R+ as

the preimage of Gr+
GL(V )⊂GrGL(V ) under R→GrGL(V ). Then H

GL(V )O
∗ (R+)

forms a convolution subalgebra of H
GL(V )O
∗ (R). Note that R+

0 (the preimage
in R of the base point in GrGL(V )) is a connected component of R+, and
the union of the remaining connected components supports an “augmen-

tation” ideal of H
GL(V )O
∗ (R+). Hence we have an algebra homomorphism

H
GL(V )O
∗ (R+)→ H

GL(V )O
∗ (R+

0 ) = H∗GL(V )(pt). The proof of Theorem 3.1

repeated essentially word for word gives a proof (using the fact that Zα

is normal) of the following

Corollary 3.4. The pushforward with respect to the closed embedding R+ ↪→
R induces an injective algebra homomorphism H

GL(V )O
∗ (R+) ↪→H

GL(V )O
∗ (R).

The isomorphism C[Z̊α]
∼−→ H

GL(V )O
∗ (R) of Theorem 3.1 takes C[Zα] ⊂

C[Z̊α] onto H
GL(V )O
∗ (R+) ⊂ HGL(V )O

∗ (R), and so induces an isomorphism

7The second named author thanks Joel Kamnitzer for correcting his mistake.



i
i

“3-Nakajima” — 2019/9/25 — 18:07 — page 103 — #29 i
i

i
i

i
i

Quiver gauge theories and slices in the affine Grassmannian 103

C[Zα]
∼−→ H

GL(V )O
∗ (R+). The above homomorphism

C[Zα] = H
GL(V )O
∗ (R+)→ H∗GL(V )(pt) = C[Aα]

corresponds to the section sα : Aα ↪→ Zα of §2(i). �

Remark 3.5. The center of GL(V ) is canonically identified with GQ0
m , and

we have the diagonal embedding ∆: Gm ↪→ GQ0
m ↪→ GL(V ). We can view

∆ as a cocharacter of GL(V ), and hence a point of Gr+
GL(V ) ⊂ GrGL(V ).

Note that this point is a GL(V )O-orbit. We denote the fundamental class of

its preimage in R+ by F∆ ∈ HGL(V )O
∗ (R+). Then under the isomorphism

H
GL(V )O
∗ (R+) ' C[Zα] the class F∆ goes to the boundary equation Fα

of [BF14, Section 4]. Indeed, F∆ viewed as an element in H
GL(V )O
∗ (R) =

C[Z̊α] is clearly invertible, but all the invertible regular functions on Z̊α

are of the form cF kα , k ∈ Z, c ∈ C× [BDF16, Lemma 5.4]. Now for degree
reasons, F∆ must coincide with cFα.

Remark 3.6. We consider the following isomorphism i : GrGL(V )
∼−→

GrGL(V ∗): it takes (P, σ) to (P∨, tσ−1) where P is a GL(V )-bundle on the
formal disc, σ is a morphism from the trivial GL(V )-bundle on the punc-
tured disc, P∨ is the dual GL(V ∗)-bundle, and tσ is the transposed mor-
phism from P∨ to the (dual) trivial bundle on the punctured disc. Let Q1 be
the opposite orientation of our quiver, and let N be the corresponding rep-
resentation of GL(V ∗) (note that Hom(Vi, Vj) = Hom(V ∗j , V

∗
i )). Then i lifts

to the same named isomorphism RGL(V ),N
∼−→ RGL(V ∗),N. Together with an

isomorphism GL(V )
∼−→ GL(V ∗), g 7→ tg−1, it gives rise to a convolution al-

gebra isomorphism i∗ : H
GL(V )O
∗ (RGL(V ),N)

∼−→ H
GL(V ∗)O
∗ (RGL(V ∗),N). The

composition

C[Z̊α] ' HGL(V )O
∗ (RGL(V ),N)

i∗−→ H
GL(V ∗)O
∗ (RGL(V ∗),N) ' C[Z̊α]

is an involution of the algebra C[Z̊α]. This involution arises from the Car-
tan involution ι of Z̊α [BDF16, Section 4] composed with the involution
κ−1 of Z̊α induced by an automorphism z 7→ −z : P1 ∼−→ P1 and finally
composed with the action a(h) of a certain element of the Cartan torus
h = β(−1) ∈ T .8 Here β is a cocharacter of T equal to

∑
i∈Q0

biωi where
bi = ai −

∑
h∈Q1:o(h)=i ai(h).

8The second named author thanks Joel Kamnitzer for correcting his mistake.
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In effect,

ι(wi,r, yi,r) =

wi,r, y−1
i,r

1≤s≤ai(h)∏
h∈Q1tQ1

o(h)=i

(wi,r − wi(h),s)


[BDF16, Proposition 4.2] (product over unoriented edges of the Dynkin di-
agram connected to i),

κ−1(wi,r, yi,r) = (−wi,r, (−1)aiyi,r),

and

a(β(−1))(wi,r, yi,r) = (wi,r, (−1)ai−
∑
h∈Q1:o(h)=i ai(h)yi,r).

One checks explicitly that Ξ◦ intertwines a(β(−1)) ◦ κ−1 ◦ ι and i∗. The
desired claim follows.

Remark 3.7. The GL(V )O-orbits in Gr+
GL(V ) are numbered by Q0-

multipartitions (λ(i))i∈Q0
, λ(i) = (λ

(i)
1 ≥ λ

(i)
2 ≥ · · · ), such that the number

of parts l(λ(i)) ≤ ai. Given a positive roots combination α∨ =
∑

i∈Q0
miα

∨
i ,

we define a closed GL(V )O-invariant subvariety Gr
+,α∨

GL(V ) ⊂ Gr+
GL(V ) as the

union of orbits Gr
(λ(i))
GL(V ) such that λ

(i)
1 ≤ mi ∀i ∈ Q0. We define R+

≤α∨ ⊂ R+

as the preimage of Gr
+,α∨

GL(V ) ⊂ Gr+
GL(V ) under R+ → Gr+

GL(V ). This filtration

is the intersection of a certain coarsening of the one of [Part II, §2(ii)] and
[Part II, §6] with R+ ⊂ R. We consider an increasing multifiltration

H
GL(V )O
∗ (R+) =

⋃
α∨

H
GL(V )O
∗ (R+

≤α∨),

and its Rees algebra ReesF•H
GL(V )O
∗ (R+). This is a multigraded algebra,

and we take its multiprojective spectrum ProjReesF•H
GL(V )O
∗ (R+). It con-

tains SpecH
GL(V )O
∗ (R+) ' Zα as an open dense subvariety. The relative

compactification ProjReesF•H
GL(V )O
∗ (R+)→ Aα of SpecH

GL(V )O
∗ (R+) '

Zα → Aα is nothing but the “two-sided” compactified zastava Zα → Aα
[Gai08, 7.2] where e.g. in the “symmetric” definition of [BDF16, 2.6] we
allow both B and B−-structures to be generalized (cf. [Mir14, 1.4]). Note
that the Cartan involution ι of Z̊α (Remark 3.6) extends to the same named
involution of Zα.
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In effect, it suffices to check that the multifiltration F•H
GL(V )O
∗ (R+) of

H
GL(V )O
∗ (R+) ' C[Zα] coincides with the multifiltration of C[Zα] by the

order of the pole at the components of the boundary Zα \ Zα. Due to Re-

mark 3.6, it suffices to check that the multifiltration of C[Z̊α] ' HGL(V )O
∗ (R)

by the order of the pole at the components of the boundary ∂Zα coin-

cides with the following multifiltration F•H
GL(V )O
∗ (R). The GL(V )O-orbits

in GrGL(V ) are numbered by generalizedQ0-multipartitions (λ(i))i∈Q0
, λ(i) =

(λ
(i)
1 ≥ λ

(i)
2 ≥ · · · ≥ λ

(i)
ai ), λ

(i)
r ∈ Z. Given a positive roots combination α∨ =∑

i∈Q0
miα

∨
i , we define a closed GL(V )O-invariant ind-subvariety Gr+

GL(V ) ⊂
Gr≥−α

∨

GL(V ) ⊂ GrGL(V ) as the union of orbits Gr
(λ(i))
GL(V ) such that λ

(i)
ai ≥ −mi ∀i ∈

Q0. In particular, Gr≥−0
GL(V ) = Gr+

GL(V ). We define R≥−α∨ ⊂ R as the preim-

age of Gr≥−α
∨

GL(V ) ⊂ GrGL(V ) under R → GrGL(V ). The desired increasing mul-

tifiltration is Fα∨H
GL(V )O
∗ (R) = H

GL(V )O
∗ (R≥−α∨). It coincides with the mul-

tifiltration by the order of the pole at ∂Zα by Remark 3.5.

Remark 3.8. We consider the Rees algebra ReesF•H
GL(V )O
∗ (R) of the mul-

tifiltration F• of Remark 3.7. This is an algebra over C[T ad] where T ad ⊃ Tad

is a partial closure of the adjoint Cartan torus Tad determined by the cone
of positive combinations of simple roots in the weight lattice of T . It seems
likely that the spectrum of the Rees algebra Z̃α → T ad is nothing but the
local model of the Drinfeld-Lafforgue-Vinberg degeneration of [Sch16, 6.1].

In view of these Remarks, it is interesting to consider the Rees algebra
of the filtration in [Part II, §6] in general. We do not know what it is in
general.

Remarks 3.9. (1) According to [Part II, Remark 3.9(3)], we can consider
the convolution algebra KGL(V )O(R). Then, similarly to Theorem 3.1, one
can construct an isomorphism C[†Z̊α] ' KGL(V )O(R) where †Z̊α ⊂ Z̊α stands
for the trigonometric open zastava of [FKR18], that is the preimage of Gα

m ⊂
Aα under the factorization projection Z̊α → Aα. Note that the embedding
†Z̊α ⊂ Z̊α is not compatible with the symplectic structure by the argument
in §3(iv).

(2) Here is what we have learned from Gaiotto:
Let us consider the K-theoretic Coulomb branch MK

C = SpecKGO(R).
ThenMK

C is supposed to be isomorphic to the Coulomb branch of the corre-
sponding 4-dimensional gauge theory with a generic complex structure. (Re-
call that the latter is a hyper-Kähler manifold, which shares many common
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properties with Hitchin’s moduli spaces of solutions of the self-duality equa-
tion over a Riemann surface. Among the S2-family of complex structures,
two are special and others are isomorphic.) For an unframed quiver gauge
theory, the latter is known to be the moduli space of GADE,c-monopoles on
R2 × S1 [NP12]. Moreover the isomorphism is given by the scattering ma-
trix: we identify R2 × S1 with R× C× and consider scattering at t→ ±∞
in the first factor. Then for Gc = SU(2) as in §2(xiii), we transform f , g
uniquely to polynomials (instead of Laurent polynomials) such that

(a) g is a monic polynomial of degree k,

(b) f is a polynomial of degree < k.

(c) g(0) 6= 0.

Thus we recover the trigonometric open zastava.
We do not have further evidences of this conjecture. For example, we

cannot see the remaining two special complex structures. We also remark
that our definition of K-theoretic Coulomb branches makes sense for any
(G,N), while 4-dimensional Coulomb branches are usually considered only
when N is ‘smaller’ than G (conformal or asymptotically free in physics
terminology).

3(iii). General cases

Recall the setup of §3(i). We write down a dominant coweight λ of G as a
linear combination of fundamental coweights λ =

∑
i∈Q0

liωi. Given another

coweight µ ≤ λ such that λ− µ = α =
∑

i∈Q0
aiαi, we setWi = Cli , and con-

sider the natural action of GL(V ) on N = Nλ
µ :=

⊕
h∈Q1

Hom(Vo(h), Vi(h))⊕⊕
i∈Q0

Hom(Wi, Vi). The corresponding variety of triples will be denotedRλµ.

Our goal is to describe the convolution algebra H
GL(V )O
∗ (Rλµ). To this end

we introduce λ∗ := −w0λ, µ
∗ := −w0µ. Note that λ∗ is dominant, and (λ∗ −

µ∗)∗ = α. We consider an open subset G̊|α|m ⊂ Å|α| defined as the complement

in G|α|m to all the diagonals wi,r = wj,s, and also G̊α
m := G̊|α|m /Sα ⊂ Aα (nota-

tions of §2(i)). The generalized roots are wi,r − wj,s for i 6= j connected in the
Dynkin diagram; wi,r − wi,s, and finally wi,r. The isomorphism of [Part II,

(5.18) and Proposition 5.19] identifies H
GL(V )O
∗ (Rλµ)|G̊αm and H

GL(V )O
∗ (R)|G̊αm

(with (C[G|α|m ×G|α|m ])Sα |G̊αm). Furthermore, H
GL(V )O
∗ (R) is identified with

C[Zα] by Theorem 3.1, and C[Zα]|G̊αm is identified with C[Wλ∗
µ∗ ]|G̊αm via sλ

∗

µ∗ .
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The composition of the above identifications gives us a generic isomorphism

Ξ◦ : C[Wλ∗

µ∗ ]|G̊αm
∼−→ H

GL(V )O
∗ (Rλµ)|G̊αm .

Equivalently, as in §3(i), we denote by ȳi,r ∈ HT (V )O
∗ (Rλµ,T (V ),NT (V )

) the fun-

damental class of the fiber of Rλµ,T (V ),NT (V )
over the point w∗i,r ∈ GrT (V ). We

have the algebra homomorphism

ι∗ : H
T (V )O
∗ (Rλµ,T (V ),NT (V )

)→ H
GL(V )O
∗ (Rλµ)⊗H∗GL(V )(pt) H

∗
T (V )(pt),

and Ξ◦ sends yi,r to ι∗ȳi,r (and is identical on wi,r).

Theorem 3.10. The isomorphism Ξ◦ : C[Wλ∗
µ∗ ]|G̊αm

∼−→ H
GL(V )O
∗ (Rλµ)|G̊αm

extends to a biregular isomorphism C[Wλ∗
µ∗ ]

∼−→ H
GL(V )O
∗ (Rλµ).

Proof. We repeat the argument in the proof of Theorem 3.1, and use its
notations. We introduce Wλ∗

µ∗ :=Wλ∗
µ∗ ×Aα A|α|. We consider a general t ∈

•

A|α| \ G̊|α|m ⊂ t(V ). According to [Part II, Theorem 5.26] and [Part II, Re-

mark 5.27], we must identify the localizations
(
C[Wλ∗

µ∗ ]
)
t
and

(
H
T (V )O
∗ (Rλµ)

)
t

as C[A|α|]t = C[t(V )]t-modules. There are two possibilities: either t lies on a
diagonal divisor, or t is a general point of a coordinate hyperplane wi,r(t) =
0. The former case having been dealt with in the proof of Theorem 3.1, it is
enough to treat the latter case.

Then the fixed point set (Rλµ)t is isomorphic to the product GrT1
×

RT2,N′ . Here T2 is a 1-dimensional torus with coordinate wi,r, and T1 is an
(|α| − 1)-dimensional torus with coordinates {wj,s : (j, s) 6= (i, r)}, so that
T (V ) = T1 × T2. Furthermore, N′ is an li-dimensional representation of T2

equal to the direct sum of li copies of the character wi,r with differential
wi,r. In notations of [Part II, Theorem 5.26(2)], G′ = T (V ), and(

H
G′O
∗ (RG′,N′)

)
t

=
(
H
T (V )O
∗ (GrT1

×RT2,N′)
)
t

= (C[t1 × T∨1 ]⊗ C)t

where C is generated by wi,r and the fundamental classes xi,r, ȳ
′
i,r of the

fibers of RT2,N′ over the points −w∗i,r, w∗i,r ∈ GrT2
respectively. According to

[Part II, Theorem 4.1], the relations in C are as follows: xi,rȳ
′
i,r = wlii,r.

According to [Part II, §4(vi)], the homomorphism z′∗ : H
T (V )O
∗ (GrT1

×
RT2,N′)→ H

T (V )O
∗ (GrT (V )) takes ȳ′i,r to ui,r, while z′∗xi,r = wlii,ru

−1
i,r . We de-

fine Ξt :
(
C[Wλ

µ]
)
t∗
→
(
H
G′O
∗ (RG′,N′)

)
t

identical on wk,p and sending yk,p
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to uk,p ·
∏
h∈Q1:o(h)=k

∏
1≤q≤ai(h)

(wi(h),q − wk,p). In particular, xi,r = y−1
i,r w

li
i,r

goes to xi,r
∏
h∈Q1:o(h)=i

∏
1≤q≤ai(h)

(wi(h),q − wi,r). Note that at the moment

Ξt is defined only as a rational morphism. The condition of [Part II, Theo-
rem 5.26(2)] is trivially satisfied. Also, Ξt is a regular isomorphism due to the
factorization property ofWλ

µ and the fact that the factors (wi(h),q − wk,p) in
the formula for Ξt are all invertible at t. The theorem is proved. �

Remark 3.11. It follows from Proposition 2.10 that the restriction of
sλ
∗

µ∗ : Wλ∗
µ∗ → Zα to Z̊α ⊂ Zα is an isomorphism (sλ

∗

µ∗)
−1(Z̊α)

∼−→ Z̊α, and

thus we have a canonical localization embedding C[Wλ∗
µ∗ ] ↪→ C[Z̊α]. Under

the isomorphisms of Theorem 3.10 and Theorem 3.1 this embedding is noth-
ing but the one of [Part II, Remark 5.14] corresponding to

Nhor ↪→ Nhor ⊕Nvert.

Here Nhor :=
⊕

h∈Q1
Hom(Vo(h), Vi(h)) (resp. Nvert :=

⊕
i∈Q0

Hom(Wi, Vi))

is a direct summand of Nλ
µ =

⊕
h∈Q1

Hom(Vo(h), Vi(h))⊕
⊕

i∈Q0
Hom(Wi, Vi).

In the same way, we have C[Wλ∗+ν∗

µ∗+ν∗ ]→ C[Wλ∗
µ∗ ] by adding Cni to Wi for

ν =
∑
νiωi. The corresponding birational morphism Wλ∗

µ∗ →Wλ∗+ν∗

µ∗+ν∗ was
constructed in §2(vi).

Remark 3.12. H
GL(V )O
∗ (Rλµ) is naturally graded by π1 GL(V ) = ZQ0 . Un-

der the isomorphism of Theorem 3.10 this grading becomes the grading of
C[Wλ∗

µ∗ ] by the root lattice of the Cartan torus T ⊂ G : ZQ0 = Z〈α∨i〉i∈Q0

corresponding to the natural action of T on Wλ∗
µ∗ .

This abelian group action extends to an action of StabG(µ∗), the stabi-
lizer of µ∗ in G. This is the expected property [Nak16, §4(iv)(d)].

Similarly, if α happens to be a dominant coweight α = λ, the action of
the Cartan torus T on Z̊α of Remark 3.2 extends to the action of StabG(λ).
Indeed, the morphism sλ

∗

0 : Wλ∗
0 → Zα restricts to an isomorphism of the

open subvarieties Wλ∗
0 \

⋃
i E̊i

∼−→ Z̊α (see §2(viii)). The isomorphism ιλ
∗

0

restricts to Wλ∗
0 \

⋃
i E̊i

∼−→ Sλ ∩Wλ
0 (the open intersection with a semiin-

finite orbit). The composition of the above isomorphisms gives an identifi-
cation Z̊α

∼−→ Sλ ∩Wλ
0 , and the latter intersection is naturally acted upon

by StabG(λ).
These actions will be realized directly in terms of Coulomb branches in

[Affine, App. A].

Remark 3.13. The LHS of Theorem 3.10 is naturally graded by half the
homological degree degh, while the RHS is naturally graded by the action of
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loop rotations, degr. These gradings are different. Let x be a homogeneous
homology class supported at the connected component ν = (ni) ∈ ZQ0 =
π0GrGL(V ). Then one can check that degr(x) = degh(x)− νt ·

√
det Nhor +

1
2ν

t ·C · α = ∆(x) + νt ·
√

det Nvert + 1
2ν

t ·C · α (cf. Remark 3.3).

Remark 3.14. Let Q be a folding of the Dynkin diagram of G with
the corresponding nonsymmetric Cartan matrix CQ, and the correspond-
ing nonsimply laced group GQ. Let λQ ≥ µQ be dominant coweights of GQ,

and WλQ
GQ,µQ

the corresponding slice. Then the Hilbert series of C[WλQ
GQ,µQ

]
graded by the loop rotations equals∑

θ

t2∆(θ)+νt·detNvert+νt·CQ·αQPGL(VQ)(t; θ).

Here θ runs through the set of dominant coweights of GL(VQ), and ν stands
for the connected component of GrGL(VQ) containing θ, and ∆(θ) is defined
in [CFHM14, (3.2)–(3.4)] (see also §4 below). A proof follows from the real-

ization of WλQ
GQ,µQ

as the folding of an appropriate Wλ
µ and Remark 3.13.

Remark 3.15. Similarly to §3(ii), we define Rλ+
µ as the preimage of

Gr+
GL(V ) ⊂ GrGL(V ) underRλµ → GrGL(V ). ThenH

GL(V )O
∗ (Rλ+

µ ) forms a con-

volution subalgebra of H
GL(V )O
∗ (Rλµ). On the other hand, the pullback un-

der sλ
∗

µ∗ : Wλ∗
µ∗ → Zα realizes C[Zα] as a subalgebra of C[Wλ∗

µ∗ ]. The proof
of Theorem 3.10 repeated essentially word for word shows (cf. Corollary 3.4)

that the isomorphism C[Wλ∗
µ∗ ]

∼−→ H
GL(V )O
∗ (Rλµ) takes C[Zα] ⊂ C[Wλ∗

µ∗ ] onto

H
GL(V )O
∗ (Rλ+

µ ) ⊂ HGL(V )O
∗ (Rλµ), and in particular induces an isomorphism

C[Zα]
∼−→ H

GL(V )O
∗ (Rλ+

µ ).

Remark 3.16. Let us consider the opposite orientation Q1 of our quiver
and the representation Nλ

µ =
⊕

h∈Q1
Hom(V ∗i , V

∗
j )⊕

⊕
i∈Q0

Hom(V ∗i ,W
∗
i )

of GL(V ∗). Similarly to Theorem 3.10, we have an isomorphism C[Wλ∗
µ∗ ]

∼−→
H

GL(V ∗)O
∗ (RGL(V ∗),Nλ

µ
). Similarly to Remark 3.6, we have a convolution al-

gebra isomorphism

iλµ∗ : H
GL(V )O
∗ (RGL(V ),Nλ

µ
)
∼−→ H

GL(V ∗)O
∗ (RGL(V ∗),Nλ

µ
).

The composition

C[Wλ∗

µ∗ ] ' H
GL(V )O
∗ (RGL(V ),Nλ

µ
)

iλµ∗−→ H
GL(V ∗)O
∗ (RGL(V ∗),Nλ

µ
) ' C[Wλ∗

µ∗ ]
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is an involution of the algebra C[Wλ∗
µ∗ ]. Similarly to Remark 3.6, this invo-

lution arises from the involution ιλ
∗

µ∗ of C[Wλ∗
µ∗ ] (see §2(vii)) composed with

the involution κ−1 ofWλ∗
µ∗ induced by an automorphism z 7→ −z : P1 ∼−→ P1

and finally composed with the action a(h) of a certain element of the Car-
tan torus h = β(−1) ∈ T . Here β is a cocharacter of T equal to

∑
i∈Q0

biωi
where bi = ai −

∑
h∈Q1:o(h)=i ai(h).

Remark 3.17. According to [Part II, Remark 3.9(3)], we can consider the
convolution algebra KGL(V )O(Rλµ). Then, similarly to Theorem 3.10, one can

construct an isomorphism C[†Wλ∗
µ∗ ] ' KGL(V )O(Rλµ) where †Wλ∗

µ∗ stands for
the moduli space of the triples (P, σ, φ) where P is a G-bundle on P1; σ is
a trivialization of P off 1 ∈ P1 having a pole of degree ≤ λ∗ at 1 ∈ P1, and
φ is a B-structure on P of degree −µ having the fiber B− at ∞ ∈ P1 and
transversal to B at 0 ∈ P1 (a trigonometric slice), cf. [FKR18, 1.5].

3(iv). Poisson structures

The convolution algebra H
GL(V )O
∗ (R) (resp. H

GL(V )O
∗ (Rλµ)) carries a

Poisson structure {, }C because of the deformation H
GL(V )OoC×
∗ (R) (resp.

H
GL(V )OoC×
∗ (Rλµ)). The algebra C[Z̊α] carries (a nondegenerate, i.e. sym-

plectic) Poisson structure {, }Z defined in [FKMM99]. In case µ is dominant,
the algebra C[Wλ∗

µ∗ ] carries a Poisson structure {, }W defined in [KWWY14].

Proposition 3.18. (1) The isomorphism of Theorem 3.1 takes {, }Z to
−{, }C .

(2) The isomorphism of Theorem 3.10 takes {, }W to −{, }C .

Proof. (1) It is enough to check the claim generically, over Åα. We consider
the new coordinates ui,r := yi,r ·

∏
j←i

∏
1≤s≤aj (wj,s − wi,r)

−1 on Z̊α (note
that the new coordinates depend on the choice of orientation). It is easy to
check that the only nonvanishing Poisson brackets on Z̊α are {wi,r, uj,s} =
δi,jδr,suj,s (see [FKMM99, Proposition 2]). Hence the generic isomorphism
Ξ: C[Z̊α]⊗C[Aα] C[Åα]

∼−→ C[t(V )× T∨(V )]⊗C[Aα] C[Åα] of §3(i) takes the

Poisson structure on Z̊α to the negative of the standard Poisson structure on
t(V )× T∨(V ). According to [Part II, Corollary 5.21], z∗ι−1

∗ takes the latter

structure to the one on H
GL(V )O
∗ (R).

(2) Again it suffices to check the claim generically where it follows
from part (1). In effect, sλ

∗

µ∗ generically is a symplectomorphism according
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to [FKR18, Theorem 4.9], while the identification of H
GL(V )O
∗ (Rλµ)|G̊αm and

H
GL(V )O
∗ (R)|G̊αm is symplectic by [Part II, Lemma 5.11]. �

Remark 3.19. Let Wλ∗
µ∗ denote the open subvariety of Wλ∗

µ∗ consisting of
triples (P, σ, φ) such that σ has a pole exactly of order λ∗. It is the preimage
of the orbit Grλ

∗

G under p. We have the decomposition

Wλ∗

µ∗ =
⊔

µ≤ν≤λ
ν : dominant

Wν∗

µ∗ .

In [Nak15, §5(iii)] the third named author showed that this is the decompo-
sition into symplectic leaves. However the argument is based on the descrip-
tion ofWλ∗

µ∗ as the moduli space of singular monopoles, which is not justified
yet. In particular, we do not know how to show that Wν∗

µ∗ is smooth in our
current definition. In fact, this is the only problem: (1) We know that the
Poisson structure on the Coulomb branch is symplectic on its smooth locus
by [Part II, Proposition 6.15]. (2) The embedding Wν∗

µ∗ →Wλ∗
µ∗ is Poisson,

as it is so when µ is dominant by [KWWY14, Th. 2.5] and the birational
isomorphisms Wλ∗

µ∗ →Wλ∗+ς∗

µ∗+ς∗ , Wν∗
µ∗ →Wν∗+ς∗

µ∗+ς∗ in Remark 3.11 is Poisson
by [Part II, Lemma 5.11].

It was also shown that a transversal slice to Wν∗
µ∗ in Wλ∗

µ∗ is isomorphic

to Wλ∗
ν∗ in [Nak15, §5(iii)]. We do not know how to justify this either.

These two assertions are true if ν is dominant, as Wλ∗
µ∗ is a transversal

slice to Grµ
∗

G in Gr
λ∗

G in this case.
We also know these under the following condition: Let µ ≤ w0λ be an-

tidominant. Then the projection p : Wλ∗
µ∗ → Grλ

∗

G is smooth and its image

intersects nontrivially all the GO-orbits Grν
∗

G ⊂ Grλ
∗

G . Indeed, the smooth-
ness of p for antidominant µ follows by the base change from the smooth-
ness of Bun−µB (P1)→ ′BunG(P1) (see §2(ii)). To check the latter smooth-
ness at a point (P, φ) ∈ Bun−µB (P1) we have to prove the surjectivity at
the level of tangent spaces, and this follows from the long exact sequence
of cohomology and the vanishing of H1(P1, (g/b)φ(−1)). The latter van-
ishing holds since the vector bundle (g/b)φ is filtered with the associated
graded

⊕
α∨∈R∨+ OP1(−〈µ, α∨〉): a direct sum of ample line bundles. To see

that p(Wλ∗
µ∗) ∩Grν

∗

G 6= ∅ for µ ≤ w0λ, ν ≤ λ, recall that

′BunG(P1) =
⊔

χ : dominant

′BunG(P1)χ
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is stratified according to the isomorphism types of G-bundles. The image of
Grλ

∗

G in ′BunG(P1) lies in the open substack

′BunG(P1)≤λ∗ :=
⊔
χ≤λ∗

′BunG(P1)χ.

Finally, the image of Bun−µB (P1)→ ′BunG(P1) contains the open substack
′BunG(P1)≤λ∗ if µ ≤ w0λ.

Hence Wν∗
µ∗ is smooth and its transversal slice is isomorphic to Wλ∗

ν∗ .
This assumption is not artificial. The above stratification is dual to

one for the corresponding Higgs branches (quiver varieties M0(V,W )). It
is known that M0(V,W ) stabilizes for sufficiently large V , more precisely
if µ ≤ λ, where λ is the minimal dominant weight ≤ λ. (See e.g., [Nak98,
Rem. 3.28].) This condition is weaker than µ ≤ w0λ and antidominant, but
we at least see that singularities of both Higgs and Coulomb branches do
not change if µ is sufficiently antidominant.

3(v). Deformations

Recall the setup of [Part II, §3(viii)]. We choose a Cartan torus T (W ) =∏
i∈Q0

T (Wi) ⊂
∏
i∈Q0

GL(Wi) = GL(W ) (notations of §3(iii)). We consider
the extended group 1→ GL(V )→ GL(V )× T (W )→ T (W )→ 1 acting on
Nλ
µ, so that T (W ) is the flavor symmetry group. We choose a basis z1, . . . , zN

of the character lattice of T (W ) (compatible with the product decomposition
T (W ) =

∏
i∈Q0

T (Wi)), and view it as a basis of t∗(W ), i.e. the coordinate

functions on t(W ) = AN . According to [Part II, §3(viii)],

H
GL(V )O×T (W )O
∗ (Rλµ)

is a deformation of H
GL(V )O
∗ (Rλµ) over the base Spec(H∗T (W )(pt)) = t(W ) =

AN .
We denote the intersection of the open subsets Åα × AN ⊂ Aα × AN

and
⋂
i∈Q0

f−1
i,λ∗(Gm) ⊂ Aα × AN by Åα,N . We define a generic isomorphism

Ξ◦ : C[Wλ∗

µ∗ ]|Åα,N
∼−→ H

GL(V )O×T (W )O
∗ (Rλµ)|Åα,N as in §3(iii): identical on zs

and wi,r, and sending yi,r to ι∗ȳi,r. Here we view the fundamental class
of the fiber of Rλµ,T (V ),NT (V )

over the point w∗i,r ∈ GrT (V ) as an element

ȳi,r ∈ HT (V )O×T (W )O
∗ (Rλµ,T (V ),NT (V )

).
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Theorem 3.20. The isomorphism

Ξ◦ : C[Wλ∗

µ∗ ]|Åα,N
∼−→ H

GL(V )O×T (W )O
∗ (Rλµ)|Åα,N

extends to a biregular isomorphism C[Wλ∗

µ∗ ]
∼−→ H

GL(V )O×T (W )O
∗ (Rλµ).

Proof. Same as the proof of Theorem 3.10. �

Remark 3.21. The Poisson structure of H
GL(V )O×T (W )O
∗ (Rλµ) transferred

to Wλ∗

µ∗ via Ξ◦ is still given by the formulas of Proposition 3.18. But we
do not know its modular definition, and we cannot see a priori that these
generic formulas extend regularly to the whole of Wλ∗

µ∗ .

3(vi). Affine case

We change the setup of §3(i). The Dynkin graph of G is replaced by its
affinization, so that Ω is an orientation of this affinization; N is a repre-
sentation space of Ω in the new sense, and so on. We change the setup of
§2(i) accordingly: now Zα stands for the zastava space of the affine group
Gaff , denoted by UαG;B in [BFG06, 9.2], and Z̊α ⊂ Zα stands for its open sub-

scheme denoted by ŮαG,B in [BFG06, 11.8]: it is formed by all the points of Zα

with defects allowed only in the open subset A1
horizontal × (A1

vertical \ {0}) ⊂
A1

horizontal × A1
vertical = A2.

Similarly to Theorem 3.1 and Corollary 3.4, we have the following con-
ditional

Theorem 3.22. Assume Z̊α is normal. The isomorphism

Ξ◦ : C[Z̊α]|Åαhorizontal
∼−→ H

GL(V )O
∗ (R)|Åα

defined as in §3(i) extends to a biregular isomorphism C[Z̊α] ' HGL(V )O
∗ (R)

and to C[Zα] ' HGL(V )O
∗ (R+).

Proof. We essentially repeat the proof of Theorem 3.1. The only problem
arises with the application of [Part II, Theorem 5.26] whose assumptions
can be verified only conditionally. Namely, we do not know if Zα, Z̊α are
Cohen-Macaulay. We do know that all the fibers of horizontal factorization
πα : Zα → Aαhorizontal are of the same dimension |α| ([BFG06, Corollary 15.4
of Conjecture 15.3 proved in 15.6]). Note that for the condition π∗OM

∼−→
j∗π∗OM• i.e. OM

∼−→ j∗OM• of [Part II, Theorem 5.26] it suffices to use the
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S2-property i.e. the normality of Zα, Z̊α (see [Part II, Remark 5.27]). The
normality of Zα (and in fact the Cohen-Macaulay property and even the
Gorenstein property) is proved in type A in [BF14, Corollary 3.6].

Note that if we redefine Z̊α as the affinization of the space of degree α
based maps from P1 to the Kashiwara flag scheme of Gaff , then the normality
(and hence the first part of the theorem) would follow unconditionally.

Note also that in the affine case one more possibility for Z̊γ , |γ| = 2,
arises; namely, Gaff = SL(2)aff , γ = αi + αj . Then according to [FR14, Ex-
ample 2.8.3], C[Z̊γ ] = C[wi, wj , yi, yj , y

±1
ij ]/(yiyj − yij(wi − wj)2).

If [BFG06, Conjecture 15.3] holds for a symmetric Kac-Moody Lie alge-

bra g, then the above argument shows that the spectrum of H
GL(V )O
∗ (R) is

isomorphic to the affinization of Z̊α. �

3(vii). Jordan quiver

We start with a general result. For a reductive group G and its adjoint
representation N = g we consider the variety of triples R → GrG. Its equiv-
ariant Borel-Moore homology HGO

∗ (R) equipped with the convolution prod-
uct forms a commutative algebra, and its spectrum is the Coulomb branch
MC(G, g).

Proposition 3.23. The birational isomorphism

(t◦ × T∨)/W 'MC(G, g)|Φ−1(t◦/W)

of [Part II, Corollary 5.21] extends to a biregular isomorphism

(t× T∨)/W ∼−→MC(G, g).

Here we denote the Weyl group by W in order to avoid a conflict with
the vector space W .

This is nothing but [Part II, Proposition 6.14]. We give another proof.

Proof. It is but a slight variation of the proof of [BFM05, Theorem 7.3]. We
have to replace the equivariant K-theory in [BFM05, Theorem 7.3] by the
equivariant Borel-Moore homology. More precisely, in notations of [BFM05,
Theorem 7.3], replacing the torus H by our Cartan torus T , we have to
prove the following analogue of [BFM05, Lemma 7.6]: In HT

n (M) we have
an equality ı∗∗(H

T
n+2 dimM ′(L′)) =

⊕
µ iµ∗(H

T
n (µ)) where ı stands for the

closed embedding M ↪→ T ∗M , while  stands for the closed embedding L′ ↪→
T ∗M Recall that the proof of [BFM05, Lemma 7.6] used a homomorphism
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SS : KT (DM )→ KT (T ∗M) from the Grothendieck group of weakly T -
equivariant holonomic D-modules on M . By definition, SS = ∗ ◦ gr where
gr stands for the associated graded with respect to a good filtration. In-
stead, we will use a homomorphism SS′ : KT (DM )→ HT

2 dimM ′(T
∗M) as-

sociating to a weakly T -equivariant D-module F the pushforward ∗ of the
fundamental class CC(F) ∈ HT

2 dimM ′(L′) of its characteristic cycle. Note
that CC = symb ◦ gr where symb stands for the (2 dimM ′)-th (top) graded
component of the Chern character (in the homological grading). With this
replacement, the proof of [BFM05, Lemma 7.6] carries over to our homologi-
cal situation. E.g. an equality i∗νSS

′(jµ!OMµ
) = 0 ∈ HT

0 (T ∗νM
′) follows from

the similar one in K-theory of the above cited proof and the fact that i∗ν
commutes with the Chern character (defined with respect to the smooth am-
bient variety T ∗M ′) and shifts the homological grading by 2 dimM ′, while
∗ commutes with the top part of the Chern character.

Also, the proof of [BFM05, Lemma 7.8] carries over to our homological
situation essentially word for word. The proposition is proved. �

Now let V be an n-dimensional vector space. We consider the adjoint
action of G = GL(V ) on End(V ) = g. We choose a base in V ; it gives rise to
a Cartan torus T (V ) along with an identification T∨(V ) ' Gn

m, t(V ) ' An.
From Proposition 3.23 we obtain an isomorphism

Symn S0
∼−→MC(GL(V ),End(V ))

where S0 = Gm × A1 (see §2(ix)). This is the Coulomb branch of the pure
quiver gauge theory for the Jordan quiver. Now we consider the Coulomb
branch of the Jordan quiver gauge theory with framing W = Cl. Recall that
Sl is the hypersurface in A3 given by the equation xy = wl.

Proposition 3.24. The birational isomorphism

(t◦(V )× T∨(V ))/Sn 'MC(GL(V ),End(V )⊕ V ⊗ Cl)|Φ−1(t◦(V )/Sn)

of [Part II, Corollary 5.21] extends to a biregular isomorphism Symn Sl
∼−→

MC(GL(V ),End(V )⊕ V ⊗ Cl). The projectionMC → t(V )/Sn = SymnA1

is the n-th symmetric power of the projection Sl → A1 : (x, y, w) 7→ w.

Proof. Similar to the one of Theorem 3.10. More precisely, the proof is re-
duced to a consideration at the generic points of the generalized root hyper-
planes. If a generalized root is a root wi − wj of GL(V ), then we are reduced
to the G = GL(2) case of Proposition 3.23. If a generalized root is wi, we
are in the abelian case. �
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3(viii). Towards geometric Satake correspondence for
Kac-Moody Lie algebras

In this subsection we formulate conjectural geometric Satake correspondence
for Kac-Moody Lie algebras using Coulomb branches.9 See [Fin18] for more
thorough historical accounts.

Let us assume that a quiver Q = (Q0, Q1) has no edge loops, but is
not necessarily of finite nor affine type. We have the associated symmetric
Kac-Moody Lie algebra gKM.

Taking Q0-graded vector spaces V =
⊕

i Vi, W =
⊕

iWi, we define N
as above. Taking simple roots αi and fundamental weights ωi (i ∈ Q0), we
assign two weights λ =

∑
i∈Q0

dimWiωi, µ = λ−
∑

i∈Q0
dimViαi. Let M =

N⊕N∗, and µ : M→ Lie GL(VQ) be the moment map with respect to the
natural GL(VQ)-action on M. Let M(λ, µ), M0(λ, µ) be quiver varieties
defined by the third-named author [Nak94, Nak98]:

M0(λ, µ) = µ−1(0)//GL(VQ), M(λ, µ) = µ−1(0)//χ GL(VQ),

where χ : GL(VQ)→ C× is the character given by χ(g) =
∏
i∈Q0

det gi, and
//χ is the geometric invariant theory quotient with respect to the polarization
χ. By its construction M0(λ, µ) is an affine variety, and we have a projective
morphism π : M(λ, µ)→M0(λ, µ). It is known that M(λ, µ) is nonsingular
and π is semi-small. Let L(λ, µ) be the inverse image of 0 under π. It is
known to be a half-dimensional subvariety in M(λ, µ).

Then the main result in [Nak94, Nak98] says that⊕
µ

Htop(L(λ, µ))

has a structure of an integrable highest weight representation V (λ) of gKM

with highest weight λ. Moreover the summand Htop(L(λ, µ)) corresponds to
the weight space of V (λ)µ with weight µ. Here ‘top’ denotes the top degree
homology group, i.e. of degree 2 dimL(λ, µ). Since π is semi-small, we can
identify Htop(L(λ, µ)) with the isotypical component of IC({0}) in the direct
image π∗(CM(λ,µ)[dimM(λ, µ)]).

9When the quiver is of affine type A, the conjecture was given in [NT17, §7.8] in
terms of bow varieties. This subsection is written afterwards, but the origin of the
conjecture in [NT17] is what we explain here.
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Let us turn to the corresponding Coulomb branch

MC(λ, µ) =MC(GL(V ),N).

By [Nak16, Remark 4.5] and references therein, we identify χ : GL(VQ)→
C× with the cocharacter χ = π1(χ)∧ : C× = π1(C×)∧ → π1(GL(VQ))∧, where
( )∧ denotes the Pontryagin dual. Recall that π1(GL(VQ))∧, which is a torus
of dimension #Q0, acts naturally on MC(λ, µ) as in Remarks 3.2, 3.12. In
physics terminology a Kähler parameter for Higgs branch is an equivariant
parameter for Coulomb branch.

Let us define the corresponding attracting set

Aχ(λ, µ)
def.
=
{
x ∈MC(λ, µ)

∣∣∣ ∃ lim
t→0

χ(t)x
}
,

which is a closed subvariety in MC(λ, µ), possibly empty in general.
These MC(λ, µ), Aχ(λ, µ) are related to representation theory in many

situations:
(a) Recall thatMC(λ, µ) is the (usual) transversal sliceWλ

µ in the affine
Grassmannian GrG if Q is of type ADE and µ is dominant. (We ignore
the diagram automorphism ∗.) Then Aχ(λ, µ) was studied in [MV07]. It is
nonempty if and only if the corresponding weight space V (λ)µ is nonzero,
it is of pure dimension 2|λ− µ|, and Htop(Aχ(λ, µ)) is naturally isomorphic
to V (λ)µ. It can be also considered as a stalk of the hyperbolic restriction
[Bra03] of the intersection cohomology complex IC(Wλ

µ) ofWλ
µ with respect

to χ. Moreover the stalk of IC(Wλ
µ) at µ is the associated graded grV (λ)µ

with respect to the Brylinski-Kostant filtration up to shift [Lus83, Gin95].
(b) Suppose that Q is of affine type. ThenMC(λ, µ) is conjecturally the

Uhlenbeck partial compactification of a moduli space of instantons on the
Taub-NUT space invariant under a cyclic group action, which is proved in
affine type A [NT17]. When µ is dominant, it is conjecturally isomorphic
to the Uhlenbeck partial compactification of a moduli space of instantons
on R4 invariant under a cyclic group action, which is again proved in affine
type A [NT17]. In [BF10, BF12, BF13] the first and second-named authors
conjectured that statements as in (a) hold for affine Kac-Moody Lie alge-
bras,10 where the definition of the affine Brylinski-Kostant filtration was
later corrected in [Slo12].

(c) WhenMC(λ, µ) is isomorphic to a quiver variety (for different quiver,
and V , W ), the attracting set Aχ(λ, µ) is the tensor product variety in

10Strictly speaking, only instantons for simply-connected groups are considered.
Correspondingly representations descend to the adjoint group.
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[Nak01]. In particular, the number of its irreducible components is given
by the tensor product multiplicities. In this way, some of conjectures in
[BF10, BF12, BF13] can be proved for affine type A by being combined
with I. Frenkel’s level-rank duality.

(d) Hyperbolic restrictions of the intersection cohomology complex IC
of the Uhlenbeck partial compactification of a moduli space of instantons
on R4 was studied in [BFN16]. This Uhlenbeck space is conjecturally iso-
morphic to MC(ω0, ω0 − nδ) (n ∈ Z≥0) for an affine quiver, where ω0 is
the fundamental weight corresponding to the special vertex 0, and δ is the
primitive positive imaginary root. It follows that the direct sum (over n) of
hyperbolic restriction of IC is isomorphic to Sym(

⊕
d>0 z

−d ⊗ h), where h is
the Cartan subalgebra of the underlying finite dimensional Lie algebra. (See
also [Nak17, §7.5].)

In above examples, we assume that µ is dominant. (It is so in all known
examples in (c).) For the original geometric Satake correspondence, we do
understand all weight spaces V (λ)µ not necessarily dominant. In (b) there is
a candidate for a space which we should consider when µ is not necessarily
dominant in [BF13], which was later found out to be close to the quiver
description of bow varieties in [NT17], but the conjecture there was not
checked even for affine type A.

Since Coulomb branches are defined for any quiver without assumption
µ dominant, not necessarily of finite or affine types, we propose the following
conjecture, which makes the situation much simpler:

Conjecture 3.25. (1) Aχ(λ, µ) is empty if and only if V (λ)µ = 0. Moreover
MC(λ, µ)χ(C×) is a single point if it is nonempty.

(2) The intersection of Aχ(λ, µ) with symplectic leaves of MC(λ, µ)
are lagrangian. Hence the hyperbolic restriction functor Φ for χ [Bra03] is
hyperbolic semi-small in the sense of [BFN16, 3.5.1]. In particular,
Φ(IC(MC(λ, µ))) remains perverse, and is isomorphic to Htop(Aχ(λ, µ)).

(3) The direct sum⊕
µ

Φ(IC(MC(λ, µ))) =
⊕
µ

Htop(Aχ(λ, µ))

has a structure of a gKM-module, isomorphic to V (λ) so that each summand
is isomorphic to V (λ)µ.

We naively expect that the usual stalk IC(MC(λ, µ)) at the fixed point
is ‘naturally’ isomorphic to the associated graded of V (λ)µ with respect to a
certain filtration which has a representation theoretic origin. But we do not



i
i

“3-Nakajima” — 2019/9/25 — 18:07 — page 119 — #45 i
i

i
i

i
i

Quiver gauge theories and slices in the affine Grassmannian 119

know what we mean ‘natural’ nor how we define the filtration in general.
Also we could take another generic cocharacter χ of π1(GL(VQ))∧, but we
do not know how to relate it to a representation theoretic object.

This conjecture is checked (except (2)) for finite type [Kry18].
As another evidence, we consider the following example, which is not

necessarily finite or affine. Let us suppose dimVi = 1 for any i ∈ Q0. The
Higgs branch M0(λ, µ) is a quiver variety, but it is also an example of a
Goto-Bielawski-Dancer toric hyper-Kähler manifold. The Coulomb branch
MC(λ, µ) is also. By a recent work of Braden-Mautner [BM19],11 we have a
Ringel duality between perverse sheaves onMC(λ, µ) and those of M0(λ, µ).
In particular, Φ(IC(MC(λ, µ))) is isomorphic to Htop(L(λ, µ)), hence is iso-
morphic to the weight space V (λ)µ.

In fact, [BM19] and the above conjecture both come from a ‘meta con-
jecture’ saying the category of perverse sheaves on a Higgs branch (e.g.
M0(λ, µ) and one on the corresponding Coulomb branch (e.g. MC(λ, µ))
should be dual in an appropriate way. We do not know how strata of
MC(λ, µ) look like in general, and the category is probably not highest
weight as studied briefly in [Nak15]. Nevertheless it is expected that the
pushforward from M(λ, µ) and the hyperbolic restriction for χ are
exchanged under the duality. It should be also related to the symplectic
duality [BLPW16].

Remarks 3.26. (1) Let us take just V =
⊕

i Vi and consider the corre-
sponding Coulomb branch

MC(α) =MC(GL(V ),N)

with α =
∑

i∈Q0
dimViαi. It is expected that MC(α) has no fixed point

with respect to χ(C×), hence the above construction does not work. Instead

we consider M+
C(α)

def.
= H

GL(V )O
∗ (R+) as in §3(ii). This is supposed to be a

Kac-Moody generalization of the zastava space. The same construction with
W gives the same space M+

C(α), hence we have a morphism MC(λ, µ)→
M+

C(α) as in Remark 3.15. It is expected thatM+
C(α) is a limit ofMC(λ, µ)

when λ, µ→∞ keeping λ− µ = α.
We define the attracting set A+

χ (α) as the set of points contracted

to sα(0) by the action of χ, where sα : Aα ↪→M+
C(α) is the section as

in Corollary 3.4. Note that the action of χ contracts the whole ofM+
C(α) to

11The authors of [BM19] call Goto-Bielawski-Dancer toric hyper-Kähler mani-
folds as hypertoric manifolds.
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sα(Aα) =M+
C(α)χ(C×), cf. Remark 3.2, so that for any φ ∈M+

C(α), there ex-
ists lim

t→0
χ(t). The integrable system$+

α : M+
C(α)→ Aα is χ(C×)-equivariant,

so A+
χ (α) coincides with the fiber ($+

α )−1(0) over 0 ∈ Aα. Furthermore, since

we expectMC(λ, µ)χ(C×) to consist of one point if nonempty, this point must
be fixed with respect to another action of C× corresponding to the cohomo-
logical grading of the Coulomb branch. Thus the image of the fixed point un-
der the morphism MC(λ, µ)→M+

C(α) must be sα(0) ∈ sα(Aα) ⊂M+
C(α).

It follows that the image of Aχ(λ, µ) lies in A+
χ (α).

Then we expect that the corresponding statements in Conjecture 3.25
are true. In particular, the direct sum⊕

α

Φ(IC(M+
C(α)) =

⊕
α

Htop(A+
χ (α))

is isomorphic to U(n−) where n− is the negative half of gKM. Moreover the
pull-back homomorphismHtop(A+

χ (α))→ Htop(Aχ(λ, µ)) corresponds to the
quotient map U(n−)→ V (λ). When Q is of finite type, these statements
will be proved in a forthcoming paper by J. Kamnitzer, P. Baumann and
A. Knutson.

(2) Let Irr(Aχ(λ, µ)), Irr(A+
χ (α)) be the set of irreducible components of

Aχ(λ, µ), A+
χ (α) respectively. Then we conjecture that⊔

µ

Irr(Aχ(λ, µ)),
⊔
α

Irr(A+
χ (α))

have structures of Kashiwara crystal, isomorphic to crystals B(∞), B(λ)
of Uq(n−), Vq(λ) of the quantized enveloping algebra Uq(gKM) respectively.
Moreover the inclusion Irr(Aχ(λ, µ)) ⊂ Irr(A+

χ (α)) corresponds to the em-
bedding B(λ) ⊂ B(∞). When Q is of finite type, these statements follow
from the comparison of the crystal structures defined in [BFG06, Section 13]
and in [BG01, Kry18], cf. [BG08, Proposition 4.3].

Furthermore, we expect that the zero level $−1
α (0) of the integrable

system $α : MC(α)→ Aα is a dense open subset of A+
χ (α), so we have a

canonical bijection Irr(A+
χ (α)) = Irr($−1

α (0)). Now the Cartan involution
of MC(α) described in 3.6 induces an involution of Irr($−1

α (0)) and we
conjecture that the latter involution corresponds to Kashiwara’s involution
∗ : B(∞)→ B(∞) [Kas95, 8.3]. If Q is of finite type, this conjecture follows
from the definition of crystal structure in [BFG06, Section 13.5], cf. [BDF16,
Remark 1.7].

(3) It is conjectured that there is a natural bijection between symplectic
leaves ofMC(λ, µ) and M0(λ, µ) [Nak15]. When Q is of finite type, closures
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of strata are of the formsMC(ν, µ) and M0(λ, ν) respectively, where ν runs
through dominant weights between µ and λ. This is known for quiver vari-
eties [Nak94, Prop. 6.7], while it is only conjectural for Coulomb branches.
See Remark 3.19. In this case the bijection is given byMC(ν, µ)↔M0(λ, ν).
In particular,MC(λ, µ) corresponds to M0(λ, λ), which is a point. For more
general Q, the description of the strata ofM0(λ, µ) are given in [Nak94, §6],
by being combined with [CB01]. For an affine type Q, extra strata come from
symmetric products of simple singularities, which can be checked easily. We
do not have any description of strata of MC(λ, µ) if Q is neither finite nor
affine.

This bijection should be upgraded to a bijection between pairs of strata
and simple local systems on them, but it becomes even more speculative.
Assuming this bijection, we conjecture the following: Suppose (SC , φC) and
(SH , φH) are strata of MC(λ, µ) and M0(λ, µ) and simple local system on
them respectively, corresponding under the conjectural bijection. Then the
isotypical component of IC(SH , φH) in π∗(CM(λ,µ)[dimM(λ, µ)]) is isomor-
phic to Φ(IC(SC , φC)). The above conjecture studies the case (SC , φC) =
(MC(λ, µ), triv), (SH , φH) = (M0(λ, λ), triv), where triv denotes the trivial
local system.

Next we consider a structure giving tensor products of integrable mod-
ules. For quiver varieties it is a tensor product variety Z(λ1;λ2) corre-
sponding to a decomposition W = W 1 ⊕W 2 with λa =

∑
i dimW a

i ωi (a =
1, 2). It is defined as an attracting set in

⊔
µM(λ, µ) with respect to the

cocharacter ρ : C× → GL(W ) given by ρ(t) = idW 1 ⊕t idW 2 . We introduce a
smaller subvariety Z̃(λ1;λ2) requiring the limit limt→0 lies in the lagrangian⊔
µ1,µ2 L(λ1, µ1)× L(λ2, µ2). Then [Nak01] says

Htop(Z̃(λ1;λ2))

is isomorphic to the tensor product V (λ1)⊗ V (λ2) under the convolution
product. (See [MO19] for a better conceptual construction.) For tensor prod-
ucts V (λ1)⊗ · · · ⊗ V (λN ), we just take W = W 1 ⊕ · · · ⊕WN and repeat the
same construction.

Let us turn to the Coulomb branch side. We take a maximal torus T (W )

of GL(W ) and regard N as a representation of G̃
def.
= GL(V )× T (W ). This

gives a deformation ofMC(λ, µ) parametrized by Lie(T (W )) as HG̃O
∗ (RG,N)

as in §3(v). We restrict it to the direction of dρ, that is HGO×ρ(C×)(RG,N),
and denote it by MC(λ, µ). Thus we have a morphism MC(λ, µ)→ C. We
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also consider the variety of triplesRG̃,N for the larger group G̃ and the corre-

sponding Coulomb branchMC(G̃,N) = HG̃O
∗ (RG̃,N). By [Part II, Proposi-

tion 3.18] the originalMC(λ, µ) is the Hamiltonian reduction ofMC(G̃,N)
by π1(C×)∧. Note that π1(T (W ))∧ is the dual torus T (W )∨ of the origi-
nal torus T (W ). Therefore the cocharacter ρ : C× → T (W ) can be regarded
as a character T (W )∨ → C×. Therefore we can consider the corresponding
geometric invariant theory quotient

M̃C(λ, µ)
def.
= µ−1(0)//ρT (W )∨,

as in [Part II, Proposition 3.25], where µ denotes the moment map

MC(G̃,N)→ LieT (W ) = SpecH∗T (W )(pt)

for the T (W )∨ action. It is equipped with a projective morphism πC :

M̃C(λ, µ)→MC(λ, µ). If we replace the equation µ = 0 by µ ∈ Cdρ, we

have a family version M̃C(λ, µ) equipped with a projective morphism

M̃C(λ, µ)→MC(λ, µ). We conjecture that this is a small birational

morphism and M̃C(λ, µ) is a topologically trivial family, as for quiver va-

rieties. Therefore ψ(IC(MC(λ, µ))) = πC,∗(IC(M̃C(λ, µ))), where ψ is the
nearby cycle functor for MC(λ, µ)→ C [KS90, §8.6]. Moreover it contains
IC(MC(λ, µ)) with multiplicity one.

Conjecture 3.27. (1) M̃C(λ, µ)χ(C×) is a disjoint union of finitely many

copies of C such that the restriction of the morphism M̃C(λ, µ)χ(C×) → C
to each summand is the identity map. AndMC(λ, µ)χ(C×) is obtained from

M̃C(λ, µ)χ(C×) by identifying the origin of each summand.
(2) A summand in (1) corresponds, in bijection, to a decomposition

µ = µ1 + µ2 with V (λ1)µ1 , V (λ2)µ2 6= 0. The hyperbolic restriction of

IC(M̃C(λ, µ)) is the direct sum
⊕

Φ(IC(MC(λ1, µ1))⊗ Φ(IC(MC(λ2, µ2)),
where each summand is considered as a trivial local system on C. Hence

ψ ◦ Φ(IC(MC(λ, µ))) = ΦπC,∗(IC(M̃C(λ, µ)))

∼=
⊕

µ=µ1+µ2

V (λ1)µ1 ⊗ V (λ2)µ2 .

In the first equality we use the commutativity of the nearby cycle and hy-
perbolic restriction functors (see e.g., [Nak17, Prop. 5.4.1]).
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(3) The sum of homomorphisms

Φ(IC(MC(λ, µ)))→ Φ(πC,∗(IC(M̃C(λ, µ))))

over µ is the homomorphism V (λ)→ V (λ1)⊗ V (λ2) of gKM-modules, send-
ing vλ to vλ1 ⊗ vλ2 , where vλ is the highest weight vector corresponding to
the fundamental class of the point MC(λ, λ).

4. Non-simply-laced case

In order to describe instanton moduli spaces for non-simply-laced groups as
Coulomb branches, Cremonesi, Ferlito, Hanany and Mekareeya have intro-
duced a modification of the monopole formula [CFHM14]. See also [Mek15]
for more examples.

Let us consider the case of G2 k-instantons on the Taub-NUT space for
brevity. (See [CFHM14, §4].) We suppose that we already know that a quiver

gauge theory associated with a symmetric affine Dynkin diagram (D
(1)
4 in

this case) has the Coulomb branch isomorphic to an instanton moduli space
of the corresponding group. This is a special case of the conjecture mentioned
in the introduction. Moreover, it is also conjectured that moduli spaces of
instantons on R4 and on the Taub-NUT spaces are isomorphic as affine
algebraic varieties. We do not have a proof of this assertion either for R4 of
the Taub-NUT space, but the following argument works more generally.

As for simply-laced cases, the mirror of an instanton moduli space is,
roughly, a quiver gauge theory associated with the corresponding affine

Dynkin diagram of type G
(1)
2 with dimension vectors v = kδ, w = Λ0. See

Figure 1 left, where we put the numbering 0, 1, 2 on vertices.

k 2k k

1

0 1 2

k 2k

k

k

k

1

0 1

21

23

σ22

Figure 1: MC : G2, D4 k-instantons on R4 and folding.

Let G = GL(k)×GL(2k)×GL(k), product of general linear groups for
circled vertices as usual. We take a triple (λ0, λ1, λ2) of coweights of GL(k),
GL(2k), GL(k). Let us denote a triple by λ, considered as a coweight of
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G. Let Y be the coweight lattice of G, and W the Weyl group of G. The
monopole formula in [Part II, (2.9)] says the Hilbert series of the Coulomb
branch is ∑

λ∈Y/W

t2∆(λ)PG(t;λ).

The definition of PG(t;λ) = PGL(k)(t;λ
0)PGL(2k)(t;λ

1)PGL(k)(t;λ
2) is the

same as usual. The term ∆(λ) has two parts (see [Part II, (2.10)]. The first
part is the pairing between λ and positive roots of G. This needs no modifi-
cation. The second part, in this example, comes from bi-fundamental repre-
sentations on edges. For a usual edge, the contribution is given by the pairing
between its weight with coweights of groups at two ends. Concretely we write
λi = (λi1, . . . , λ

i
k) (i = 0, 2), λ1 = (λ1

1, . . . , λ
1
2k), the edge between vertices 0

and 1 gives the contribution |λ0
a − λ1

b | for a = 1, . . . , k, b = 1, . . . , 2k. On the
squared vertex, one should put the coweight 0, hence there is also |λ0

a| for
a = 1, . . . , k.

A modification of the rule is required only for the edge between 1 and 2.
The rule introduced in [CFHM14] is |3λ1

b − λ2
c | for b = 1, . . . , 2k, c = 1, . . . , k.

Thus

2∆(λ) = −2
∑
a6=a′
|λ0
a − λ0

a′ | − 2
∑
b 6=b′
|λ1
b − λ1

b′ | − 2
∑
c6=c′
|λ2
c − λ2

c′ |

+

k∑
a=1

|λ0
a|+

k∑
a=1

2k∑
b=1

|λ0
a − λ1

b |+
2k∑
b=1

k∑
c=1

|3λ1
b − λ2

c |.

Now let us explain how to modify our definition of the Coulomb branch
to recover this twisted monopole formula.

We consider the unfolding of our affine Dynkin diagram as in [Lus93,

14.1.5(f)].12 It is aD
(1)
4 affine Dynkin graph with circled vertices 0, 1, 21, 22, 23

(and 0 is connected to a squared vertex). See Figure 1 right. The correspond-
ing vector spaces are of dimensions k, 2k, k, k, k (and 1). We orient all the
edges from the vertex 1 (and from the squared vertex). We consider an au-
tomorphism σ rotating cyclically the vertices 21, 22, 23. We set N = V0 ⊕
Hom(V1, V0)⊕Hom(V1, V21

)⊕Hom(V1, V22
)⊕Hom(V1, V23

) (a representa-
tion of Ĝ := GL(V0)×GL(V1)×GL(V21

)×GL(V22
)×GL(V23

)). Then σ
acts naturally on Ĝ and on N, hence on MC(Ĝ,N). We consider the fixed

12It should be noted that the non simply-laced Lie algebra obtained by the folding
in [Lus93] is the Langlands dual of what we get.
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point set MC(Ĝ,N)σ. We have a surjection

ϕ : HĜO(RĜ,N)� C[MC(Ĝ,N)σ].

Thus the grading of HĜO(RĜ,N) whose Hilbert series is given by the mono-

pole formula induces a grading of C[MC(Ĝ,N)σ].
The above formulation and the following proposition work for any quiver

gauge theory with diagram automorphisms. In particular, they work for
quiver gauge theories studied in §3, where their Coulomb branches are mod-
uli spaces of bundles of an ADE group over P1 with additional structures.
The fixed point subscheme MC(Ĝ,N)σ is identified with a moduli space of
bundles of a non simply-laced group.

Proposition 4.1. The Hilbert series of the induced grading on

C[MC(Ĝ,N)σ]

is given by the twisted monopole formula.

Proof. Recall the multifiltration on C[MC(Ĝ,N)] introduced in [Part II,
§6(i)]. Let us denote the spectrum of the associated graded algebra by
MC(Ĝ,N). The filtration is σ-invariant, so we have the induced automor-
phism σ of MC(Ĝ,N). Moreover, the associated graded of the ideal
Iσ ⊂ C[MC(Ĝ,N)] of functions vanishing on MC(Ĝ,N)σ is the ideal
Iσ ⊂ grC[MC(Ĝ,N)] of functions vanishing on MC(Ĝ,N)σ. Hence it suf-
fices to prove that the Hilbert series of the induced monopole grading on
C[MC(Ĝ,N)σ] is given by the twisted monopole formula.

We fix a σ-invariant Cartan torus T̂ ⊂ Ĝ corresponding to a σ-invariant
decomposition of Vi into a direct sum of lines. We have t̂σ = t (the Lie algebra
of the Cartan torus T = T̂ σ ⊂ Ĝσ = G). Let us specify a vector subspace

E of grHĜO(RĜ,N) such that the restriction ϕ|E is an isomorphism onto

C[MC(Ĝ,N)σ]. Recall from [Part II, §6(i)] that

grHĜO(RĜ,N) =
⊕
λ̂∈Ŷ +

C[̂t]Wλ̂ [Rλ̂].

Here Ŷ + ⊂ Ŷ is the cone of dominant coweights of T̂, Ŷ + ∼−→ Ŷ/Ŵ . We
define Ŷ ′ ⊂ Ŷ + as the set of collections (λ̂0, λ̂1, λ̂21 , λ̂22 , λ̂23) such that λ̂21

c ≥
λ̂22
c ≥ λ̂23

c ≥ λ̂21
c − 1 for any c = 1, . . . , k. There is a bijection ψ : Ŷ ′

∼−→ Y +
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(the dominant weights of T ):

(λ̂0, λ̂1, λ̂21 , λ̂22 , λ̂23) 7→ (λ0, λ1, λ2) := (λ̂0, λ̂1, λ̂21 + λ̂22 + λ̂23).

Note that for λ̂ ∈ Ŷ ′ we have ∆(λ̂) = ∆(ψλ̂) (the RHS ∆ is the twisted
one). Finally note that Wψλ̂ = Wλ0 ×Wλ1 ×Wλ2 , and Wλ0 = Wλ̂0 , Wλ1 =

Wλ̂1 , Wλ2 = Wλ̂21
∩Wλ̂22

∩Wλ̂23
. The diagonal embedding t2 ↪→ t̂21 ⊕ t̂22 ⊕

t̂23 induces a surjection C[̂t21 ]Wλ̂21 ⊗ C[̂t22 ]Wλ̂22 ⊗ C[̂t23 ]Wλ̂23 � C[t2]Wλ2 . We
choose a homogeneous section ε of this surjection, and denote by Eλ2 ⊂
C[̂t21 ]Wλ̂21 ⊗ C[̂t22 ]Wλ̂22 ⊗ C[̂t23 ]Wλ̂23 the image of ε. Now we define E :=⊕

λ̂∈Ŷ ′ C[t]Wψλ̂ [Rλ̂] where C[t]Wψλ̂ = C[t0]Wλ0 ⊗ C[t1]Wλ1 ⊗ Eλ2 is embedded
into

C[̂t]Wλ̂ = C[̂t0]Wλ̂0 ⊗ C[̂t1]Wλ̂1 ⊗ C[̂t21 ]Wλ̂21 ⊗ C[̂t22 ]Wλ̂22 ⊗ C[̂t23 ]Wλ̂23 .

The character of E is given by the twisted monopole formula.
It remains to check that ϕ : E

∼−→ C[MC(Ĝ,N)σ]. First we consider

the similar problem for N = 0. Namely, let Ĩσ ⊂ grHĜO(GrĜ) be the ideal

generated by the expressions f − σ∗f , and let Ẽ ⊂ grHĜO(GrĜ) be defined

the same way as E. We will prove grHĜO(GrĜ) = Ẽ ⊕ Ĩσ. To check the

surjectivity of Ẽ → grHĜO(GrĜ)/Ĩσ we will find for any λ̂ ∈ Ŷ + a coweight

µ̂ ∈ Ŷ ′ such that [Grλ̂
Ĝ

]− [Grµ̂
Ĝ

] ∈ Ĩσ. In effect, if the maximum of |λ̂21

1 −
λ̂22

1 |, |λ̂
22

1 − λ̂
23

1 |, |λ̂
23

1 − λ̂
21

1 | is bigger than 1, and is equal to say λ̂22

1 − λ̂
21

1 ,
then we have[

Gr
(λ̂0,λ̂1,λ̂21 ,λ̂22 ,λ̂23 )

Ĝ

]
−
[
Gr

(λ̂0,λ̂1,λ̂21+(1,...,1),λ̂22−(1,...,1),λ̂23 )

Ĝ

]
=
[
Gr

(λ̂0,λ̂1,λ̂21+(1,...,1),λ̂22 ,λ̂23 )

Ĝ

]
·
([

Gr
(0,0,−(1,...,1),0,0)

Ĝ

]
−
[
Gr

(0,0,0,−(1,...,1),0)

Ĝ

])
∈ Ĩσ.

Proceeding like this we can replace the initial [Grλ̂
Ĝ

] with the one that is

equal to it modulo Ĩσ but has the absolute value of differences λ̂2i
1 − λ̂

2j
1 at

most 1. Now if say λ̂22

1 − λ̂
23

1 = −1 we repeat the above replacement once
more to swap λ̂22

1 and λ̂23

1 and make sure λ̂22

1 − λ̂
23

1 = 1. This way we re-

place the initial [Grλ̂
Ĝ

] with the one that is equal to it modulo Ĩσ, and has

λ̂21

1 ≥ λ̂
22

1 ≥ λ̂
23

1 ≥ λ̂
21

1 − 1. To take care of the second coordinate λ̂2i
2 , in-

stead of −(1, . . . , 1) above we use −(0, 1, . . . , 1) (that does not change the
first coordinate λ̂2i

1 ) in the above replacement procedure. Proceeding like
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this we arrive at the desired coweight µ̂ ∈ Ŷ ′ such that [Grλ̂
Ĝ

]− [Grµ̂
Ĝ

] ∈ Ĩσ.

The surjectivity of Ẽ → grHĜO(GrĜ)/Ĩσ is proved.

Since grHĜO(GrĜ) =
⊗

i grHGL(Vi)O(GrGL(Vi)) (the product over i =
0, 1, 21, 22, 23), and σ rotates cyclically the last three factors, we see that

grHĜO(GrĜ)/Ĩσ ' grHGL(V0)O(GrGL(V0))

⊗ grHGL(V1)O(GrGL(V1))⊗ grHGL(V2)O(GrGL(V2)),

and the graded dimension of the RHS coincides with the one of Ẽ. Here the
grading is by the cone of dominant coweights of G times Z (the homolog-
ical grading). Hence the surjectivity established in the previous paragraph

implies the isomorphism Ẽ
∼−→ grHĜO(GrĜ)/Ĩσ.

We return to the proof of isomorphism ϕ : E
∼−→ C[MC(Ĝ,N)σ]. Con-

sider the following commutative diagram:

grHĜO(RĜ,N) −−−−→ grHĜO(RĜ,N)/Iσyz∗
yz∗

grHĜO(GrĜ) −−−−→ grHĜO(GrĜ)/Ĩσ

Here z∗ is the restriction to the zero section (see [Part II, §5(iv)]). Thus
z∗ is injective, z∗E ⊂ Ẽ, and Iσ = (z∗)−1Ĩσ, and the right vertical arrow is

injective as well. Hence the injectivity Ẽ ↪→ grHĜO(RĜ,N)/Iσ.
To prove the surjectivity, recall the setup of [Part II, §6(ix)]. We use

the flavor symmetry group C×, and instead of E ⊂ grHĜO(RĜ,N) ⊃ Iσ we

consider the similarly defined subspace and ideal E′ ⊂ grHC××ĜO(RĜ,N) ⊃
I
′
σ. It suffices to prove the surjectivity

C(t)⊗C[t] E
′ � C(t)⊗C[t] grHC××ĜO(RĜ,N)/I

′
σ

because the t-deformation of grHĜO(RĜ,N) is trivial due to [Part II, Re-
mark 3.24(2)]. This generic surjectivity follows from [Part II, Prop. 6.17]
and the surjectivity at t =∞ which was already established earlier during
the proof. �

Remark 4.2. The proof of Proposition 4.1 works for all the twisted cases
whose unfolding has no cycles (because we use [Part II, Remark 3.24(2)].

This excludes the C
(1)
n case whose unfolding is the cyclic quiver A

(1)
2n−1. In
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this case the fixed point set of the automorphism σ of A
(1)
2n−1 consists of two

points, and we choose a σ-invariant orientation from the first one to the
second one. Then the dilatation action of C× on N factors through Ĝ again,
and the proof of Proposition 4.1 goes through as well.13

Appendices

Alexander Braverman, Michael Finkelberg, Joel Kamnitzer,
Ryosuke Kodera, Hiraku Nakajima,
Ben Webster, and Alex Weekes

In the first appendix we write certain elements of quantized Coulomb
branches A~ as explicit difference operators. These elements are homology
classes lived on closed GO-orbits, i.e., orbits GrλG for minuscule coweights λ,
and their slight generalization corresponding to quasi-minuscule and small
fundamental coweights. The first class is called minuscule monopole opera-
tors in physics literature (see [Part II, Remark 6.7]).

Examples of explicit difference operators include Macdonald operators
[Mac95, Chap. VI, §3] and ones in representations of Yangian in the work
of Gerasimov-Kharchev-Lebedev-Oblezin [GKLO05] and its generalization
[KWWY14].

We hope that these elements, together with H∗G(pt), generate quantized
Coulomb branches A~ in many situations, possibly after inverting ~ (and
variables for flavor symmetry groups). If this would happen, it identifies A~
as a subalgebra in the ring of difference operators, generated by explicit
elements. It gives a purely algebraic characterization of A~. We will show
that this happens for quiver gauge theories of Jordan and ADE types. In
particular, we will show that the quantized Coulomb branches for quiver
gauge theories of type ADE are isomorphic to truncated shifted Yangian
under the dominance condition in the second appendix. (See Corollary B.28.)

Appendix A. Minuscule monopole operators as difference
operators

A.1. Embedding to the ring of difference operators

Let us return back to general notation conventions in [Part II]. Let (G,N)
be a pair of a complex reductive group and its representation. Let T be

13We are grateful to L. Rybnikov for this observation.
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a maximal torus of G and NT the restriction of N to T as usual. Let W
denote the Weyl group. Let us consider the quantized Coulomb branches for
(G,N), (T,NT ) and (T, 0). If we simply write A~, it means the quantized
Coulomb branch for (G,N). We indicate a group and its representation for
other two. We will add flavor symmetry groups in examples below, but we
omit them for brevity now.

Recall we have an embedding A~ ↪→ A~(T, 0)[~−1, (root +m~)−1]m∈Z in
[Part II, Remark 5.23]. We thus have an algebra embedding

z∗(ι∗)
−1 : A~ ↪→ Ã~

def.
= A~(T, 0)[~−1, (root +m~)−1]m∈Z

= C[~]〈wr, u±1
r , ~−1, (α+m~)−1〉 (α: root, m ∈ Z).

We consider Ã~ as the localized ring of ~-difference operators on t: u±1
r is

the operator

(u±1
r f)(. . . , ws, . . . ) = f(. . . , ws ± ~δr,s, . . . ).

Remark A.1. We could also consider A~(T, 0) as the ring of differential
operators on T∨: u±1

r is a coordinate of T∨, and ws is −~us∂/∂us. But it is
natural for us to consider difference operators on t, as we invert roots.

In general, we do not know how to characterize the image of A~ in Ã~
explicitly. Nevertheless, the image of a homology class associated with a
closed GO-orbit GrλG can be explicitly written down. (See [Part II, Proposi-
tion 6.6] for (ι∗)

−1 and [Part II, §4(vi)] for z∗.) Note that GrλG is closed if
and only if λ is minuscule. (Since GrλG ⊃ Grµ if and only if λ ≥ µ, and the
minuscule coweights are minimal in this order.)

Proposition A.2. Let λ be a minuscule dominant coweight and Wλ its
stabilizer in W . Let f ∈ C[t]Wλ. Let Rλ = π−1(GrλG), where π : R → GrG is
the projection. Then

z∗(ι∗)
−1f [Rλ] =

∑
λ′=wλ∈Wλ

wf × e
(
zλ
′
NO/z

λ′NO ∩NO
)

e(Tλ′GrλG)
uλ′ ,

where Tλ′GrλG is the tangent space of GrλG at the point zλ
′

and uλ′ is the shift
operator corresponding to λ′, i.e., (uλ′f)(•) = f(•+ ~λ′) for f ∈ C[t].

A.2. Quiver gauge theories

Let us return back to the notational convention in this paper.
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Let (GL(V ),N) be a quiver gauge theory, which is not necessarily of
either finite ADE or affine type. Let T (V ) be a maximal torus of GL(V ),
and NT (V ) is the restriction of N to T (V ). We add the flavor symmetry group

T (W ) as in §3(v). Thus we mean A~ = H
(GL(V )×T (W ))OoC×
∗ (RGL(V ),N), and

A~(T (V ),NT (V )), A~(T (V ), 0) are similar.
When there are several loops in the underlying graph (e.g., the Jordan

quiver or an affine quiver of type A), we should also add additional flavor
symmetries rescaling entries in N in loops. But we omit them for brevity
except in §A.3.

Recall w∗i,r is the cocharacter of GL(V ) =
∏

GL(Vi), which is equal to 0
except at the vertex i, and is (0, . . . , 0, 1, 0, . . . , 0) at i. Here 1 is at the rth
entry (r = 1, . . . , ai = dimVi). We take corresponding coordinates wi,r, ui,r
(i ∈ I, 1 ≤ r ≤ ai) of LieT (V ) and T (V )∨. The roots are wi,r − wi,s (r 6= s).
Furthermore, A~(T (V ), 0) is a C[~, z1, . . . , zN ]-algebra generated by wi,r,
u±1
i,r (i ∈ I, 1 ≤ r ≤ ai) with relations [u±1

j,s , wi,r] = ±δi,jδr,s~u±1
i,r . We thus

have an algebra embedding

A~ ↪→ Ã~
def.
= C[~, z1, . . . , zN ]〈wi,r, u±1

i,r , ~
−1, (wi,r − wi,s +m~)−1(r 6= s, m ∈ Z)〉.

We consider Ã~ as the localized ring of ~-difference operators on LieT (V )
as above, and z1, . . . , zN are parameters.

Let $i,n be the nth fundamental coweight of the factor GL(Vi), i.e.,
(1, . . . , 1, 0, . . . , 0) = w∗i,1 + · · ·+ w∗i,n, where 1 appears n times (1 ≤ n ≤ ai).
Then Gr

$i,n
GL(V ) is closed and isomorphic to the Grassmannian Gr(Vi, n) of n-

dimensional quotients of Vi. In fact, Gr
$i,n
GL(V ) is identified with the moduli

space of O-modules L such that

zO ⊗ Vi ⊂ L ⊂ O ⊗ Vi, dimCO ⊗ Vi/L = n,

henceO ⊗ Vi/L is the corresponding quotient space ofO ⊗ Vi/zO ⊗ Vi ∼= Vi.
Let Qi be the vector bundle over Gr

$i,n
GL(V ) whose fiber at L is O ⊗ Vi/L.

It is the universal rank n quotient bundle of Gr(Vi, n)× Vi. Its pull-back
to R$i,n is denoted also by Qi for brevity. Let cp(Qi) denote its pth Chern
class. More generally we can consider a class f(Qi) for a symmetric function
f in n variables so that cp(Qi) corresponds to the pth elementary symmetric
polynomial.

The T (V ) fixed points in Gr
$i,n
GL(V ) are in bijection to subsets I ⊂

{1, . . . , ai} with #I = n. The bijection is given by assigning a cocharacter
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λI
def.
=
∑

r∈I w
∗
i,r of GL(Vi) to I. The fixed point formula implies

(ι∗)
−1f(Qi) ∩ [R$i,n ] =

∑
I⊂{1,...,ai}

#I=n

f(wi,I)
∏

r∈I,s/∈I

rλI

wi,r − wi,s
,

where f(wi,I) means that we substitute (wi,r)r∈I to the symmetric function
f , and rλI denote the fundamental class of the fiber ofRT (V ),NT (V )

→ GrT (V )

at λI . In view of Proposition A.2, the T (V )-fixed point set is the Weyl group
orbit W$i,n, and

∏
(wi,r − wi,s) is the equivariant Euler class e(TλIGr

$i,n
GL(V ))

of the tangent space of Gr
$i,n
GL(V ) at the fixed point λI .

Furthermore

e
(
zλINO/z

λINO ∩NO

)
=

∏
h∈Q1:o(h)=i

r∈I

ai(h)∏
s=1

i(h) 6= i or s /∈ I

(−wi,r + wi(h),s − ~/2)

followed by the replacement rλI by
∏
r∈I ui,r. Here ‘i(h) 6= i or s /∈ I’ means

that the product excludes s ∈ I if h is an edge loop. We thus get

(A.3) z∗(ι∗)
−1f(Qi) ∩ [R$i,n ]

=
∑

I⊂{1,...,ai}
#I=n

f(wi,I)

∏
h∈Q1:o(h)=i

r∈I

ai(h)∏
s=1

i(h) 6= i or s /∈ I

(−wi,r + wi(h),s − ~/2)

∏
r∈I,s/∈I

(wi,r − wi,s)

∏
r∈I

ui,r.

Instead of f(Qi), we can also consider the class f(Si), a polynomial in
Chern classes of the universal subbundle Si over Gr

$i,n
GL(V ). Then variables

(wi,r)r∈I in f(wi,I) are replaced by (wi,s)s/∈I . We will consider symmetric
functions in the full variables wi,r (r = 1, . . . , ai) later, so the difference
between Qi and Si are not essential: the algebra generated by (A.3) and one
by f(Si) are the same if we add symmetric functions in the full wi,r.
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Let us recall the ∆-degree, defined in [Part II, (2.10)]. Its value for $i,n

is

∆($i,n) = (#{i→ i ∈ Q1} − 1)n(dimVi − n)(A.4)

+
n

2

∑
h∈Q1tQ1

o(h)=i
i(h)6=i

dimVi(h) +
n

2
dimWi,

where #{i→ i ∈ Q1} is the number of edge loops at i. For a finite quiver
gauge theory of type ADE and n = 1, this is equal to 1 + 1

2〈µ, α
∨
i〉. For

Jordan quiver and n = 1, we have 1
2 dimWi.

Similarly we consider $∗i,n = −w0$i,n, where the corresponding orbit

Gr
$∗i,n
GL(V ) is also isomorphic to the Grassmannian Gr(n, Vi) of n-planes in Vi.

In fact, Gr
$∗i,n
GL(V ) is the moduli space of O-modules L such that O ⊗ Vi ⊂

L ⊂ z−1O ⊗ Vi with dimC L/O ⊗ Vi = n. Let Si be the rank n vector bundle

over Gr
$∗i,n
GL(V ) whose fiber over L is L/O ⊗ Vi. Its pull-back to R$∗i,n is also

denoted by Si. Then

z∗(ι∗)
−1f(Si) ∩ [R$∗i,n ](A.5)

=
∑

I⊂{1,...,ai}
#I=n

f(wi,I − ~)
∏
r∈I
k:ik=i

(wi,r − zk − ~/2)

×

∏
h∈Q1:i(h)=i

r∈I

ao(h)∏
s=1

o(h) 6= i or s /∈ I

(wi,r − wo(h),s − ~/2)

∏
r∈I,s/∈I

(−wi,r + wi,s)

∏
r∈I

u−1
i,r ,

where f(wi,I − ~) means that we substitute (wi,r − ~)r∈I to f . The extra
factor wi,r − zk − ~/2 came from Hom(Wi, Vi).

Thus elements in the right hand sides of (A.3, A.5) are in the image of
z∗(ι∗)

−1 : A~ ↪→ Ã~.

Remark A.6. We assume that (GL(V ),N) is a quiver gauge theory of

ADE type, so that the Coulomb branch is isomorphic to a BD sliceWλ∗

µ∗ , λ−
µ = α. Recall the function χλi,+ of [BDF16, Theorem 1.6(5), Theorem 6.4]. It

is a function on Z̊α × AN measuring Ext1 of certain line bundles on P1 com-
ing from the flags in Z̊α. More conceptually, it is the crucial part (the 4-th



i
i

“3-Nakajima” — 2019/9/25 — 18:07 — page 133 — #59 i
i

i
i

i
i

Quiver gauge theories and slices in the affine Grassmannian 133

summand of [BDF16, (1.5)]) of the Gaiotto-Witten superpotential, or else the
i-th summand of the Whittaker function (see e.g. [BDF16, 6.3]). Composing

χλi,+ with the projection Wλ∗

µ∗ → Zα × AN we can view χλi,+ as a rational

function on Wλ∗

µ∗ . Now a direct comparison of formulas (A.5) and [BDF16,
(1.3)] shows that up to sign, χλi,+ coincides with z∗(ι∗)

−1[R$∗i,1 ]|~=0; in par-

ticular, it is a regular function on Wλ∗

µ∗ .
Recall that the logarithmic part logFα of the Gaiotto-Witten superpo-

tential (the 3-rd summand of [BDF16, (1.5)]) is also expressed in terms of
Coulomb branch, see Remark 3.5.

A.3. Jordan quiver

Consider the case of Jordan quiver. We omit the index i as we only have
one vertex. For example, let dimV = a, dimW = l. Hence GL(V ) = GL(a).
As we mentioned before, we add the dilatation on N as the flavor symmetry
C×. Let us denote the corresponding equivariant variable by t. By Proposi-
tion 3.24, the Coulomb branch A = C[MC ] with ~ = t = zk = 0 is Syma Sl
where Sl is the hypersurface xy = wl in A3.

Note that the equivariant variable t will be added each factor in the
numerator of (A.3, A.5). Since it always appears with −~/2, let us absorb
−~/2 to t. Also we replace zk by zk + ~ + t so that wr − zk + t becomes
wr − ~− zk.

Then (A.3, A.5) become

En[f ]
def.
=

∑
I⊂{1,...,a}

#I=n

f(wI)
∏

r∈I,s/∈I

wr − ws − t

wr − ws

∏
r∈I

ur,

Fn[f ]
def.
=

∑
I⊂{1,...,a}

#I=n

f(wI − ~)
∏

r∈I,s/∈I

wr − ws + t

wr − ws

∏
r∈I

(
l∏

k=1

(wr − ~− zk) · u−1
r

)
,

(A.7)

where f(wI), f(wI − ~) are f ((wr)r∈I), f ((wr − ~)r∈I) respectively. We also
multiply (−1)n(a−n) to omit the sign.

If f ≡ 1, En[1] is a rational version of the nth Macdonald operator, once
ur is understood as the ~-difference operator:

f(w1, . . . , wa) 7→ f(w1, . . . , wr + ~, . . . , wa).
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A little more precisely, the Macdonald operator is

∑
I⊂{1,...,a}

#I=n

∏
r∈I,s/∈I

txr − xs
xr − xs

∏
r∈I

Tr,

for (Trf)(x1, . . . , xa) = f(x1, . . . , qxr, . . . , xa). (See e.g., [Mac95, Chap. VI,
§3].) We recover En[1] if we set xr = exp(βwr), q = exp(β~), t = exp(−βt)
and take the limit β → 0.

Remark A.8. Let us consider the operator En for the K-theoretic version
of the quantized Coulomb branch. The computation is the same, we just
replace Euler classes by K-theoretic ones, e.g., wr − ws by 1− xsx−1

r = 1−
exp(−(wr − ws)) under the identification xr = expwr. Then (−wr + ws +
t)/(wr − ws) is replaced by

1− xrx−1
s exp(−t)

1− xsx−1
r

= − exp(−t)
xr
xs

xr − xs exp t

xr − xs
.

If we compare this with the Macdonald operator, we see the extra factor
xr/xs. It can be regarded as the canonical bundle of Gr$nGL(a), and absorbed
into the symmetric function f for our purpose. However if we want to check
the commutativity [Em, En] = 0, it is true for the homology case, and need
to put the extra factor for the K-theory.

By the way, we do not see a priori geometric reason why we have
[Em, En] = 0.

Theorem A.9. Operators En[f ], Fn[f ] (1 ≤ n ≤ a, f : a symmetric func-
tion in n variables) in (A.7) together with symmetric functions in ws gen-
erate the quantized Coulomb branch A~ over C[~, t, z1, . . . , zl].

This result identifies A~ as a subalgebra in Ã~, generated by explicit
elements, as we have remarked after Proposition A.2. It is purely an algebraic
problem to identify this subalgebra with the spherical part of cyclotomic
rational Cherednik algebra. We will return back to this problem in [KN18,
BEF16]

Let us use the vector notation ~w for (w1, . . . , wa). Therefore symmetric
functions f in the full wr are denoted by f(~w). On the other hand, symmetric
functions in less variables as still denoted like in (A.7).
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Proof. At t = ~ = zk = 0, En[f ], Fn[f ] are specialized to

(A.10)
∑

I⊂{1,...,a}
#I=n

f(wI)
∏
r∈I

ur,
∑

I⊂{1,...,a}
#I=n

f(wI)
∏
r∈I

wlru
−1
r .

It is enough to show that these elements together with symmetric functions
in ~w generate A at t = zk = 0 by graded Nakayama lemma.

If a = 1, i.e., dimV = 1, we have MC = Sl = {xy = wl} ⊂ A3, where
w = w1, x = u1, y = wl1u

−1
1 in the current notation. (See [Part II, Theo-

rem 4.1].) The above elements with f = 1 are x = u1, y = wl1u
−1
1 respectively.

Therefore they together with w generate A = C[MC ].
Let us write xr = ur, yr = wlru

−1
r . Then we have a surjective homomor-

phism

C[MC ] = Syma Sl � C[~x, ~w]Sa ⊗ C[~y, ~w]Sa ,

where ~x = (x1, . . . , xa) and ~y, ~w are similar. It is a classical result that the
left and right elements in (A.10) and symmetric polynomials in ~w generate
C[~x, ~w]Sa and C[~y, ~w]Sa respectively. (See [Wey97, §2.2].) �

A.4. Adjoint

We consider the case N = g, the adjoint representation of a reductive group
G. When G = GL(a), it corresponds to the case studied in the previous
subsection with W = 0.

We add the flavor symmetry C×, the dilatation on N, and denote the
corresponding equivariant variable by t.

A.4.1. Minuscule coweights. The minuscule monopole operator in
Proposition A.2 for the adjoint is given by

Proposition A.11.

∑
wλ∈Wλ

wf ×
∏

α∨∈∆∨

〈α∨,wλ〉=1

−α∨ − ~/2 + t

α∨
uwλ.

This is a rational version of the Macdonald operator for a minuscule
coweight for f ≡ 1. (See e.g., [Kir97].)
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Proof. Let λ′ = wλ ∈Wλ. As above (ι∗)
−1 is given by the equivariant Euler

class e(Tλ′GrλG) of the tangent space at λ′. It is given by

e(Tλ′GrλG) =
∏

α∨∈∆∨

〈α∨,λ′〉=1

α∨.

In fact, Tλ′GrλG =
⊕

α∨∈∆∨
⊕max(0,〈α∨,λ′〉)−1

n=0 g∨αz
n as is mentioned in the proof

of [Part II, Lemma 2.5]. Since λ is minuscule, 〈α∨, λ′〉 = 0,±1. Therefore only
roots with 〈α∨, λ′〉 = 1 contribute.

Next consider z∗. It is the multiplication of the equivariant Euler class of
zλ
′
NO/z

λ′NO ∩NO by [Part II, §4(vi)] as before. We consider the decompo-
sition N = g =

⊕
α∨∈∆ g∨α ⊕ t, and conclude that roots α∨ with 〈α∨, λ′〉 = −1

contribute. It gives the numerator −α∨ − ~/2 + t in the formula. �

A.4.2. Quasi-minuscule coweights. We consider a generalization of
Proposition A.2 to the case when λ is a quasi-minuscule coweight, i.e.,
λ = α0 where α∨0 is the highest root. Then 〈α∨, λ〉 ≤ 2 for any positive root
α∨ ∈ ∆∨+, and the equality holds if and only if α∨ = α∨0. Therefore

e(TλGrλG) = (α∨0 + ~)
∏

α∨∈∆∨

〈α∨,λ〉>0

α∨,

e(zλNO/z
λNO ∩NO) =

(
−α∨0 −

3~
2

+ t

) ∏
α∨∈∆∨

〈α∨,λ〉>0

(
−α∨ − ~

2
+ t

)
.

(A.12)

In fact, GrλG is a line bundle L over G/Pλ. The factor α∨0 + ~ corresponds to
the tangent direction to the fiber. The space zλNO/z

λNO ∩NO is the fiber
of the quotient T /R at zλ ∈ GrG. For N = g, the quotient is the cotangent
bundle of GrλG. Therefore the second formula in (A.12) is obtained from the
first one by changing the sign, and then adding −~/2 + t for each factor,
which corresponds to the action on fibers.

The closure Gr
λ
G = GrλG tGr0

G has a singularity at 1 = Gr0
G (isomorphic

to the singularity of the closure of the minimal nilpotent orbit in g at 0),
but it has a resolution P(O ⊕ L) the projective bundle associated with L.
(See [NP01, Lemma 7.3].) Also the vector bundle T /R over GrλG extends
to P(O ⊕ L) as it is the cotangent bundle. More precisely, let us denote
by p : P(O ⊕ L)→ GrλG the above resolution. Then the vector subbundle
Rλ ⊂ Tλ over GrλG extends to a vector subbundle in p∗T over the whole of
P(O ⊕ L), to be denoted R̃≤λ, such that p∗T /R̃≤λ is the cotangent bundle



i
i

“3-Nakajima” — 2019/9/25 — 18:07 — page 137 — #63 i
i

i
i

i
i

Quiver gauge theories and slices in the affine Grassmannian 137

T ∗P(O ⊕ L). We have a proper projection p : R̃≤λ → T with the image lying

in R≤λ. By base change we can compute z∗(ι∗)
−1 of a class p∗(f [R̃≤λ]) over

R̃≤λ, where f ∈ C[t]Wλ viewed as a class in H∗StabG(λ)(pt) ∼= H∗G(G/Pλ) pull-

backed to R̃≤λ.

The torus fixed points in R̃≤λ come in pairs, 0 and ∞ in P1 for each
T -fixed point in G/Pλ, i.e., a point in the orbit Wλ. Let us denote them
by 0λ′ , ∞λ′ for λ′ ∈Wλ. The points 0λ′ are in GrλG, hence the Euler classes
are given by the formula (A.12), after applying w with λ′ = wλ. At ∞λ′ ,
the Euler class of the tangent space e(T∞λ′P(O ⊕ L)) is almost the same as
e(Tλ′GrλG), but the factor α0 + ~ corresponding to the fiber of the projective
bundle changes the sign. The second Euler class e((T /R)∞λ′ ) is obtained
from e(T∞λ′P(O ⊕ L)) by the same process as before. We thus get

Theorem A.13. Let λ = α0, the quasi-minuscule coroot. Then

z∗(ι∗)
−1p∗(f [R̃≤λ])

=
∑

wλ∈Wλ
wf ×

(
−wα∨0 − 3~/2 + t

wα∨0 + ~
∏
α∨∈∆

〈α∨,wλ〉>0

−α∨ − ~/2 + t

α∨
uwλ

+
wα∨0 + ~/2 + t

−wα∨0 − ~
∏
α∨∈∆

〈α∨,wλ〉>0

−α∨ − ~/2 + t

α∨

)
.

When f = 1, this is a rational version of the Macdonald operator for
a quasi-minuscule weight [Mac01] up to constant in C[t]Wλ . The constant
vanishes if we use the form in [vDE11].

Remark A.14. For general N, we are not certain whether we have a res-
olution R̃≤λ of R≤λ for which we can calculate z∗(ι∗)

−1. Nevertheless it is

clearly possible for N = 0: we have a resolution P(O ⊕ L) of Gr
λ
G. In this

case, we get a formula as in Theorem A.13, where the numerator is replaced
by 1. Its proof is contained in one in Theorem A.13.

A.4.3. Small fundamental. Recall that apart from type A, the quasi-
minuscule coweight is fundamental. More generally, we consider a small fun-
damental coweight ω, i.e. 〈α∨, ω〉 ≤ 2 for any α∨ ∈ ∆∨ (see e.g. [vDE11]).14

14Some authors use another definition of small coweights: ω is small if in the
corresponding irreducible representation V ω of G∨ the zero weight has a nonzero
multiplicity, but the weight 2α has zero multiplicity for any α ∈ ∆.
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According to [vDE11, Table 1], any dominant coweight µ ≤ ω is also small
fundamental, and all such coweights are totally ordered: ω(0) < ω(1) < · · · <
ω(n) = ω, and ω(0) is either minuscule or zero. Moreover, there is a chain
of connected subdiagrams of the Dynkin diagram of G : D(1) ⊃ D(2) ⊃ · · · ⊃
D(n) with the corresponding Levi subgroups G ⊃ L(1) ⊃ · · · ⊃ L(n) ⊃ T such

that ω(i) − ω(i−1) is the quasiminuscule coweight α
(i)
0 of L(i). Note that α

(n)
0

is a fundamental coweight of L(n), and we define D(n+1) as the comple-
ment in D(n) of the corresponding vertex; L(n+1) ⊂ L(n) is the correspond-
ing Levi subgroup. According to [MOV05, Lemma 3.1.1], there is a natural

isomorphism of slices Wω(i)

G,ω(i−1) ' Wα
(i)
0

L(i),0
. Hence the above resolution G̃rα0

G

admits the following generalization: a resolution G̃rωG → GrωG constructed as

an iterated blowup. We first take the blowup Bl(1) := Bl
Grω

(0)

G

GrωG at the

closed GO-orbit Grω
(0)

G . The strict transform of Grω
(1)

G ⊂ GrωG is a resolution

G̃rω
(1)

G ⊂ Bl(1). The preimage of Grω
(0)

G ⊂ GrωG fibers over Grω
(0)

G with fibers

isomorphic to the partial flag variety L(1)/P
(1)

α
(1)
0

of the Levi group L(1). We

define Bl(2) := Bl
G̃rω

(1)

G

Bl(1). The strict transform of Grω
(2)

G ⊂ GrωG is a reso-

lution G̃rω
(2)

G ⊂ Bl(2). The preimage of G̃rω
(1)

G ⊂ Bl(1) fibers over G̃rω
(1)

G with

fibers isomorphic to the partial flag variety L(2)/P
(2)

α
(2)
0

. We continue like this

till we arrive at G̃rωG := Bl(n) := Bl
G̃rω

(n−1)

G

Bl(n−1) p→ GrωG. The preimage of

G̃rω
(n−1)

G ⊂ Bl(n−1) fibers over G̃rω
(n−1)

G with fibers isomorphic to the partial

flag variety L(n)/P
(n)

α
(n)
0

. The vector subbundle Rω ⊂ Tω over GrωG extends to

a vector subbundle in p∗T over the whole of G̃rωG, to be denoted R̃≤ω, such

that p∗T /R̃≤ω = T ∗G̃rωG. We have a proper projection p : R̃≤ω → T with
the image lying in R≤ω.

Since GrωG =
⊔

0≤i≤n Grω
(i)

G , the T -fixed points set (GrωG)T decomposes

into a disjoint union
⊔

0≤i≤n(Grω
(i)

G )T =
⊔

0≤i≤nWω(i). From the above de-
scription of the resolutions we get

(R̃≤ω)T = (G̃rωG)T =
⊔

0≤i≤n
Wω(i) ×W(i+1)/W(i+2)

× · · · ×W(n−1)/W(n) ×W(n)/W(n+1).

We rewrite the RHS in the following form: (R̃≤ω)T = (G̃rωG)T =
⊔

0≤i≤n{(ν ∈
Wω(i), η(i+1) ∈ wiW(i+1)ω(i+1), . . . , η(n) ∈ wn−1W(n)ω(n))} where wi is an
element of W such that ν = wiω

(i), wi+1 is an element of W such that
η(i+1) = wi+1ω

(i+1), and so on, and finally wn−1 is an element of W such
that η(n−1) = wn−1ω

(n−1).
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The Euler class of the tangent space e(T(ν,η(i+1),...,η(n))G̃rωG) equals

∏
α∨∈∆∨

〈ν,α∨〉=2

(α∨ + ~) ·
∏

α∨∈∆∨

〈ν,α∨〉>0

α∨ ·
∏

i+1≤j≤n

(wj−1(α
(j)
0 )∨ + ~

) ∏
α∨∈wj−1∆∨(j)
〈η(j),α∨〉>0

α∨

 .

Here the second product arises from the tangent bundle to the partial flag
variety (Grω

(i)

G )C
×

(fixed points set of the loop rotations); the first product
arises from the normal bundle N

(Grω
(i)

G )C×/Grω
(i)

G

; the last product arises from

the tangent bundle to the fiber of blowup, and its prefactor arises from
the normal bundle to the fiber of blowup. The Euler class of the cotangent
bundle fiber at (ν, η(i+1), . . . , η(n)) ∈ G̃rωG is obtained from the above one by
changing the sign of each factor and then adding −~ + t to each factor. The
result is∏

α∨∈∆∨

〈ν,α∨〉=2

(
t− α∨ − 3~

2

)
×

∏
α∨∈∆∨

〈ν,α∨〉>0

(
t− α∨ − ~

2

)

×
∏

i+1≤j≤n


(
t− wj−1(α

(j)
0 )∨ − 3~

2

) ∏
α∨∈wj−1∆∨(j)
〈η(j),α∨〉>0

(
t− α∨ − ~

2

) .

We thus get (cf. [vDE11, Section 3])

Theorem A.15. Let ω be a small fundamental coweight. Then

z∗(ι∗)
−1p∗[R̃≤ω]

=
∑

0≤i≤n

∑
(ν,η(i+1),...,η(n))

∏
α∨∈∆∨

〈ν,α∨〉=2

t− α∨ − 3~/2

α∨ + ~
×

∏
α∨∈∆∨

〈ν,α∨〉>0

t− α∨ − ~/2

α∨

×
∏

i+1≤j≤n

 t− wj−1(α
(j)
0 )∨ − 3~/2

wj−1(α
(j)
0 )∨ + ~

∏
α∨∈wj−1∆∨(j)
〈η(j),α∨〉>0

t− α∨ − ~/2

α∨

 uν .

Remark A.16. Note that the fundamental class [R̃≤ω] does not have a
coefficient f ∈ C[t]Wω as opposed to Theorem A.13, because there is no pro-
jection [R̃≤ω]→ G/Pω for arbitrary small fundamental ω, so we do not have
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a way to produce natural homology classes on R̃≤ω except its fundamental
class.

Question A.17. We know that C[MC ] ∼= C[t× T∨]W as a Poisson algebra.
We do not know elements in Proposition A.11, Theorems A.13, A.15 with
C[t]W generate C[t× T∨]W as a Poisson algebra at ~ = t = 0, or they gener-
ate A~ if we invert ~. Recall (see [Part II, §3(x)(b)]) that it is conjectured
that A~ is isomorphic to the spherical part of the graded Cherednik algebra.
We do not know the corresponding statement for the spherical part either.
These are true for type A, as we will show in a separate publication.

Appendix B. Shifted Yangians and quantization of
generalized slices

In this section, we study quiver gauge theory coming from the Dynkin di-
agram of a simple algebraic group G. As usual we fix an orientation of
the Dynkin diagram and we fix a dominant coweight λ and a coweight µ
such that λ− µ =

∑
aiαi with ai ∈ N. We also fix a sequence of funda-

mental coweights λ = (ωi1 , . . . , ωiN ) such that
∑N

s=1 ωis = λ. We will relate
the quantized Coulomb branch to a generalization of the truncated shifted
Yangians from [KWWY14].

B.1. Shifted Yangians

In this section, we will work with filtered algebras. We begin by recalling
some basic facts about filtered algebras and the Rees construction.

Let A be a C-algebra and let F •A = · · · ⊆ F−1A ⊆ F 0A ⊆ F 1A ⊆ · · ·
be a separated and exhaustive filtration, meaning that ∩kF kA = 0 and
∪kF kA = A. We assume that this filtration is compatible with the algebra
structure in the sense that F kA · F lA ⊂ F k+lA and 1 ∈ F 0A.

In this case, we define the Rees algebra of A to be the graded C[~]–algebra
ReesFA := ⊕k~kF kA, viewed as a subalgebra of A[~, ~−1]. We also define the
associated graded of A to be the graded algebra grF A :=

⊕
F kA/F k−1A.

Note that we have a canonical isomorphism of graded algebras

ReesFA/~ReesFA ∼= grF A.

We say that the filtered algebra A is almost commutative if grF A is
commutative. In this case, for any a ∈ F kA, b ∈ F lA, we have ab− ba ∈
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F k+l−1A. Thus in ReesF , we can define a Poisson bracket by {a, b} := 1
~(ab−

ba).

Definition B.1. We define the “Cartan doubled Yangian” Y∞ to be the

C-algebra with generators E
(q)
i , F

(q)
i , H

(p)
i for q > 0 and p ∈ Z and i ∈ Q0

and relations

[H
(p)
i , H

(p′)
j ] = 0,

[E
(p)
i , F

(q)
j ] = δijH

(p+q−1)
i ,

[H
(p+1)
i , E

(q)
j ]− [H

(p)
i , E

(q+1)
j ] =

αi · αj
2

(H
(p)
i E

(q)
j + E

(q)
j H

(p)
i ),

[H
(p+1)
i , F

(q)
j ]− [H

(p)
i , F

(q+1)
j ] = −αi · αj

2
(H

(p)
i F

(q)
j + F

(q)
j H

(p)
i ),

[E
(p+1)
i , E

(q)
j ]− [E

(p)
i , E

(q+1)
j ] =

αi · αj
2

(E
(p)
i E

(q)
j + E

(q)
j E

(p)
i ),

[F
(p+1)
i , F

(q)
j ]− [F

(p)
i , F

(q+1)
j ] = −αi · αj

2
(F

(p)
i F

(q)
j + F

(p)
j F

(q)
i ),

i 6= j,N = 1− αi · αj ⇒ sym[E
(p1)
i , [E

(p2)
i , · · · [E(pN )

i , E
(q)
j ] · · · ]] = 0,

i 6= j,N = 1− αi · αj ⇒ sym[F
(p1)
i , [F

(p2)
i , · · · [F (pN )

i , F
(q)
j ] · · · ]] = 0,

where sym denotes the symmetrization over the indices p1, . . . , pN .

Definition B.2. The shifted Yangian Yµ is the quotient of Y∞ by the re-

lations H
(p)
i = 0 for p < −〈µ, α∨i 〉 and H

(−〈µ,α∨i 〉)
i = 1.

Remark B.3. When µ = 0, then it is easy to see that Y = Y0 coincides
with the Yangian, as defined in [KWWY14, Section 3.4]. On the other hand,
suppose that µ is dominant. Then the map Yµ → Y defined by

H
(s)
i 7→ H

(s+〈µ,α∨i 〉)
i , E

(s)
i 7→ E

(s)
i , F

(s)
i 7→ F

(s+〈µ,α∨i 〉)
i

gives an isomorphism between Yµ and the subalgebra of Y which is also
denoted Yµ in [KWWY14].

To be a bit more precise, in [KWWY14], we worked with the corre-
sponding graded C[~]-algebras. In fact, we made a mistake concerning these
presentations of these algebras; [KWWY14, Theorem 3.5] is incorrect. We

claimed to give a presentation of (U~g[z])′, using generators E
(p)
α , H

(p)
i , F

(p)
α ,

but we are definitely missing relations involving the E
(p)
α , F

(q)
β for α, β not

simple roots. At this time, we do not know an explicit description of all
the relations. In this paper, we will work with Rees algebras to avoid this
problem.
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Denote the generators of the shifted Yangian Yµ by E
(r)
i , H

(r)
i , F

(r)
i , and

form their respective generating series

Ei(z) =
∑
r>0

E
(r)
i z−r, Hi(z) = z〈µ,α

∨
i 〉 +

∑
r>−〈µ,α∨i 〉

H
(r)
i z−r,

Fi(z) =
∑
r>0

F
(r)
i z−r.

The relations for Yµ can be written as identities of formal series. First,

given a series X(z) =
∑

r∈ZX
(r)
i z−r, we write X(z) =

∑
r>0X

(r)
i z−r for the

principal part.
Then for all i, j ∈ Q0 we have relations

[Hi(z), Hj(y)] = 0,(B.4)

(z − y − a)Hi(z)Ej(y) = (z − y + a)Ej(y)Hi(z)(B.5)

− 2aEj(z − a)Hi(z),

(z − y − a)Ei(z)Ej(y) = (z − y + a)Ej(y)Ei(z) + [E
(1)
i , Ej(y)](B.6)

− [Ei(z), E
(1)
j ],

(z − y + a)Hi(z)Fj(y) = (z − y − a)Fj(y)Hi(z) + 2aFj(z + a)Hi(z),(B.7)

(z − y + a)Fi(z)Fj(y) = (z − y − a)Fj(y)Fi(z) + [F
(1)
i , Fj(y)](B.8)

− [Fi(z), F
(1)
j ],

(z − y)[Ei(z), Fj(y)] = δi,j

(
Hi(y)−Hi(z)

)
,(B.9)

where we denote a = 1
2αi · αj . We also have the Serre relations. First when

aij = 0. we have

[Ei(z), Ej(y)] = 0(B.10)

[Fi(z), Fj(y)] = 0(B.11)

and for aij = −1 we have

[Ei(z1), [Ei(z2), Ej(y)]] + [Ei(z2), [Ei(z1), Ej(y)]] = 0,(B.12)

[Fi(z1), [Fi(z2), Fj(y)]] + [Fi(z2), [Fi(z1), Fj(y)]] = 0.(B.13)

Let µ1, µ2 be two coweights such that µ1 + µ2 = µ. In [FKP+18], we de-
fined filtrations Fµ1,µ2

Yµ of Yµ. In this filtration, the degrees of the generators
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are given

degE
(r)
i = 〈µ1, α

∨
i 〉+ r, degF

(r)
i = 〈µ2, α

∨
i 〉+ r, degH

(r)
i = 〈µ, α∨i 〉+ r

However, we note that these degrees do not determine the filtration because
we also specify the degrees of certain PBW variables, see [FKP+18, section
5.4] for more details.

In [FKP+18], we proved that Yµ is almost commutative with this filtra-
tion. We also proved that for any pair µ1, µ2 as above, the Rees algebras
ReesFµ1,µ2Yµ are canonically isomorphic (as C[~]-algebras).

For the purposes of this paper, we will choose µ1, µ2 as follows

〈µ1, α
∨
i 〉 = 〈λ, α∨i 〉 − ai +

∑
h:i(h)=i

ao(h), 〈µ2, α
∨
i 〉 = −ai +

∑
h:o(h)=i

ai(h)

where the sums are taken over all arrows h to i or from i respectively. We
write Yµ := ReesFµ1,µ2Yµ for this Rees algebra (with the induced grading).

B.2. A representation using difference operators

We will work with the larger algebra Yµ[z1, . . . , zN ] = Yµ ⊗ C[z1, . . . , zN ].
We extend the filtration Fµ1,µ2

to Yµ[z1, . . . , zN ] by placing all generators in
degree 1.

Denote

Zi(z) =
∏
k:ik=i

(z − zk − 1
2),

and define new “Cartan” elements A
(p)
i for p > 0 by

(B.14) Hi(z) = Zi(z)

∏
h∈Q1tQ1

o(h)=i

(z − 1
2)ai(h)

zai(z − 1)ai

∏
h∈Q1tQ1

o(h)=i

Ai(h)(z − 1
2)

Ai(z)Ai(z − 1)
.

Consider also the C-algebra Ã def.
= C[z1, . . . , zN ]〈wi,r, u±1

i,r , (wi,r − wi,s +

m)−1(r 6= s, m ∈ Z)〉, with relations [u±i,r, wj,s] = ±δi,jδr,su±i,r. Denote

Wi(z) =

ai∏
r=1

(z − wi,r) and Wi,r(z) =

ai∏
s=1
s6=r

(z − wi,s).
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We define a filtration on Ã by setting the degree of each wi,r to be 1 and
the degree of u±i,r to be 0. The filtration degree of each (wi,r − wi,s +m)−1

is also set to be −1.
Note that Ã is almost commutative and we have ReesÃ = Ã~, the alge-

bra defined in A.1.
The following result generalizes [KWWY14, Theorem 4.5] which was

a generalization of a construction of Gerasimov-Kharchev-Lebedev-Oblezin
[GKLO05].

Theorem B.15. There is a homomorphism of filtered C-algebras

Φλ
µ : Yµ[z1, . . . , zN ] −→ Ã,

defined by

Ai(z) 7→ z−aiWi(z),

Ei(z) 7→ −
ai∑
r=1

Zi(wi,r)
∏
h∈Q1:i(h)=iWo(h)(wi,r − 1

2)

(z − wi,r)Wi,r(wi,r)
u−1
i,r ,

Fi(z) 7→
ai∑
r=1

∏
h∈Q1:o(h)=iWi(h)(wi,r + 1

2)

(z − wi,r − 1)Wi,r(wi,r)
ui,r.

Proof. The argument is basically the same as in [KWWY14, Theorem 4.5].
The proof in [KWWY14] should be considered incomplete, since we didn’t
have a complete presentation.

We verify the relations (B.4)–(B.13) which involve Ei(z), those involving
Fi(z) being similar (they can also be deduced from the Ei(z) cases by using
certain involutions of Yµ and Ã).

Note that by (B.14), under Φλ
µ we have

Hi(z) 7→
Zi(z)

∏
h∈Q1tQ1

o(h)=i

Wi(h)(z − 1
2)

Wi(z)Wi(z − 1)
,

and these images clearly satisfy equation (B.4).

B.3. Relation (B.5) between Hi(z) and Ej(y)

B.3.1. The case aij = 0. Equation (B.5) simply says that Hi(z) and
Ej(y) commute. It is clear that this holds true for their images under Φλ

µ.
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B.3.2. The case aij = −1. Here, equation (B.5) reads

(z − y + 1
2)Hi(z)Ej(y) = (z − y − 1

2)Ej(y)Hi(z) + Ej(z + 1
2)Hi(z).

This is an sl3 relation, and we can assume that Q0 = {i, j}. We may also
assume that Q1 consists of a single arrow j → i.

Then, the image of the left-hand side under Φλ
µ is

−(z − y + 1
2) ·

Zi(z)Wj(z − 1
2)

Wi(z)Wi(z − 1)
·
aj∑
r=1

Zj(wj,r)

(y − wj,r)Wj,r(wj,r)
u−1
j,r

= −
aj∑
r=1

(z − y + 1
2)(z − wj,r − 1

2)

y − wj,r
Zi(z)Wj,r(z − 1

2)

Wi(z)Wi(z − 1)

Zj(wj,r)

Wj,r(wj,r)
u−1
j,r .

On the other hand, the image of the right-hand side under Φλ
µ is

−
aj∑
r=1

(
z − y − 1

2

y − wj,r
+

1

z − wj,r + 1
2

)
Zj(wj,r)

Wj,r(wj,r)
u−1
j,r ·

Zi(z)Wj(z − 1
2)

Wi(z)Wi(z − 1)
.

Commuting the Φλ
µ(Hi(z)) factor to the left, this is equal to

−
aj∑
r=1

(
z − y − 1

2

y − wj,r
+

1

z − wj,r + 1
2

)

× (z − wj,r + 1
2)
Zi(z)Wj,r(z − 1

2)

Wi(z)Wi(z − 1)

Zj(wj,r)

Wj,r(wj,r)
u−1
j,r .

So, the relation (B.5) follows in this case from an equality of rational func-
tions:

(z − y + 1
2)(z − wj,r − 1

2)

y − wj,r
=

(
z − y − 1

2

y − wj,r
+

1

z − wj,r + 1
2

)
(z − wj,r + 1

2).

B.3.3. The case i = j. Here, equation (B.5) says that

(z − y − 1)Hi(z)Ei(y) = (z − y + 1)Ei(y)Hi(z)− 2Ei(z − 1)Hi(z).

In this case we may assume that g = sl2, and so we will temporarily drop
the index i from our notation.
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The image of the left-hand side under Φλ
µ is then

− (z − y − 1) · Z(z)

W (z)W (z − 1)
·

a∑
r=1

Z(wr)

(y − wr)Wr(wr)
u−1
r

= −
a∑
r=1

(z − y − 1)

(y − wr)(z − wr)(z − wr − 1)

Z(z)

Wr(z)Wr(z − 1)

Z(wr)

Wr(wr)
u−1
r ,

while the image of the right-hand side under Φλ
µ is

−
a∑
r=1

(
z − y + 1

y − wr
+

−2

z − w − 1

)
Z(wr)

Wr(wr)
u−1
r ·

Z(z)

W (z)W (z − 1)

= −
a∑
r=1

(
z − y + 1

y − wr
+

−2

z − w − 1

)
× 1

(z − wr + 1)(z − wr)
Z(z)

Wr(z)Wr(z − 1)

Z(wr)

Wr(wr)
u−1
r .

So, the relation follows from the equality

z − y − 1

(y − wr)(z − wr)(z − wr − 1)

=

(
z − y + 1

y − wr
+

−2

z − w − 1

)
1

(z − wr + 1)(z − wr)
.

B.4. Relation (B.6) between Ei(z) and Ej(y)

We will verify that for all i, j we have

(z − y − a)Ei(z)Ej(y) + Ei(z)E
(1)
j − E

(1)
i Ej(y)(B.16)

= (z − y + a)Ej(y)Ei(z) + E
(1)
j Ei(z)− Ej(y)E

(1)
i ,

where a = 1
2aij .

B.4.1. The case aij = 0. We need to check that

[Φλ
µ(Ei(z)),Φ

λ
µ(Ej(y))] = 0,

which is clear.
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B.4.2. The case aij = −1. In this case we can assume that Q0 = {i, j},
and by the symmetry of (B.16) we may also assume that Q1 consists of a
single arrow i→ j. After collecting terms, the image of the left-hand side of
(B.16) is

ai∑
r=1

aj∑
s=1

(
z − y + 1

2

(z − wi,r)(y − wj,s)
+

1

z − wi,r
− 1

y − wj,s

)

× Zi(wi,r)

Wi,r(wi,r)
u−1
i,r

Zj(wj,s)Wi(wj,s − 1
2)

Wj,s(wj,s)
u−1
j,s

=
∑
r,s

(wi,r − wj,s + 1
2)(wj,s − wi,r + 1

2)

(z − wi,r)(y − wj,s)

×
Zi(wi,r)Zj(wj,s)Wi,r(wj,s − 1

2)

Wi,r(wi,r)Wj,s(wj,s)
u−1
i,r u

−1
j,s .

The image of the right-hand side of (B.16) reduces to the same expression,
so the relation holds.

B.4.3. The case i = j. Here we may assume that g = sl2, and we will
drop the index i from our notation for this calculation. In this case, the
left-hand side of (B.16) is

a∑
r=1

a∑
s=1

(
(z − y − 1)

Z(wr)

(z − wr)Wr(wr)
u−1
r

Z(ws)

(y − ws)Ws(ws)
u−1
s

+
Z(wr)

(z − wr)Wr(wr)
u−1
r

Z(ws)

Ws(ws)
u−1
s −

Z(wr)

Wr(wr)
u−1
r

Z(ws)

(y − ws)Ws(ws)
u−1
s

)
.

Collecting terms, we express this as two sums:∑
r

(
z − y − 1

(z − wr)(y − wr + 1)
+

1

z − wr
− 1

y − wr + 1

)
Z(wr)Z(wr − 1)

Wr(wr)Wr(wr − 1)
u−2
r

+
∑
r 6=s

(
z − y − 1

(z − wr)(y − ws)
+

1

z − wr
− 1

y − ws

)
× Z(wr)Z(ws)

Wr(wr)(ws − wr + 1)Wrs(ws)
u−1
r u−1

s .

The term in brackets in the first sum is zero, while the second sum is

−
∑
r 6=s

1

(z − wr)(y − ws)
Z(wr)Z(ws)

Wr(wr)Wrs(ws)
u−1
r u−1

s ,
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where Wrs(z) =
∑

t6=r,s(z − wt). We get the same expression for the right-
hand side of (B.16), so this relation holds.

B.5. Relation (B.9) between Ei(z) and Fj(y)

B.5.1. The case i 6= j. Here, we must check that

[Φλ
µ(Ei(z)),Φ

λ
µ(Fj(y))] = 0.

We may assume that Q0 = {i, j}. The only interesting case is when aij = −1
and j → i. Then [Φλ

µ(Ei(z)),Φ
λ
µ(Fj(y))] is equal to

−
ai∑
r=1

aj∑
s=1

[
Zi(wi,r)Wj(wi,r − 1

2)

(z − wi,r)Wi,r(wi,r)
u−1
i,r ,

Wi(wj,s + 1
2)

(y − wj,s − 1)Wj,s(wj,s)
uj,s

]

=−
ai∑
r=1

aj∑
s=1

Zi(wi,r)

(z − wi,r)Wi,r(wi,r)

1

(y − wj,s − 1)Wj,s(wj,s)

×
[
Wj(wi,r − 1

2)u−1
i,r ,Wi(wj,s + 1

2)uj,s

]
.

This is indeed zero, as the commutator in each summand is zero.

B.5.2. The case i = j. The proof in this case is almost identical to that
of [KWWY14, Theorem 4.5]. Recall that (z − y)[Φλ

µ(Ei(z)),Φ
λ
µ(Fi(y))] is

equal to

(z − y)

− ai∑
r=1

Zi(wi,r)
∏

h∈Q1

i(h)=i

Wo(h)(wi,r − 1
2)

(z − wi,r)Wi,r(wi,r)
u−1
i,r ,

ai∑
s=1

∏
h∈Q1

o(h)=i

Zi(h)(wi,s + 1
2)

(y − wi,s − 1)Wi,s(wi,s)
ui,s

 .
All terms where r 6= s vanish, and what remains can be rewritten as

ai∑
r=1

(
(Li,r(y)−Ri,r(y))− (Li,r(z)−Ri,r(z))

)
,
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where

Li,r(y) =

Zi(wi,r + 1)
∏
h∈Q1tQ1

o(h)=i

Wi(h)(wi,r + 1
2)

(y − wi,r − 1)Wi,r(wi,r + 1)Wi,r(wi,r)
,

Ri,r(y) =

Zi(wi,r)
∏
h∈Q1tQ1

o(h)=i

Wi(h)(wi,r − 1
2)

(y − wi,r)Wi,r(wi,r)Wi,r(wi,r − 1)
.

Therefore, it remains to verify that

ai∑
r=1

(Li,r(y)−Ri,r(y)) = Hi,+(y).

As in [KWWY14], this is done by comparing coefficients at all y−k for k > 0
between the left-hand side and Hi(y), using partial fractions to compute the
case of Hi(y).

B.6. The Serre relations

When aij = 0, the relation is immediate, so we concentrate on the aij = −1
case and in particular, the version with Es, see (B.12) above. The proof of
this relation is sketched out in [GKLO05]. Following their notation, let us
denote

χi,r = −
Zi(wi,r)

∏
h∈Q1:i(h)=iWo(h)(wi,r − 1

2)

Wi,r(wi,r)
u−1
i,r ,

so that Φλ
µ(Ei(y)) =

∑ai
r=1

1
y−wi,rχi,r.

These elements satisfy the relations [χi,r, wi,s] = −δr,sχi,r and

(wi,r − wi,s − 1)χi,rχi,s = (wi,r − wi,s + 1)χi,sχi,r, for r 6= s,

(wi,r − wj,t + 1
2)χi,rχj,t = (wi,r − wj,t − 1

2)χj,tχi,r.

Using the above relations, we find that

[Φλ
µ(Ei(y1)), [Φλ

µ(Ei(y2)),Φλ
µ(Ej(z))]]

=

[
ai∑
r=1

1

y1 − wi,r
χi,r,

ai∑
s=1

aj∑
t=1

1

(y2 − wi,s)(z − wj,t)
−1

wi,s − wj,t − 1
2

χi,sχj,t

]
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=
∑
r

∑
t

(
1

(y1 − wi,r)(y2 − wi,r + 1)
− 1

(y1 − wi,r + 1)(y2 − wi,r)

)
× 1

z − wj,t
−1

wi,r − wj,t − 3
2

χ2
i,rχj,t

+
∑
r 6=s

∑
t

1

(y1 − wi,r)(y2 − wi,s)(z − wj,t)
−1

(wi,s − wj,t − 1
2)

× wi,r + wi,s − 2wj,t

(wi,r − wj,t − 1
2)(wi,r − wi,s + 1)

χi,rχi,sχj,t.

The first sum is clearly skew-symmetric in y1, y2. The second sum is as well,
which one can see by applying the above relation between χi,r and χi,s. This
proves the Serre relation along with the theorem.

B.7. The filtration

We are left to verify the claim that the filtrations match. To do this, it suffices

to check that each PBW variable E
(p)
β , H

(q)
i , F

(p)
β (see [FKP+18, Remark 3.4]

for their definition) is sent to the correct filtered degree. When β is a simple
root, this is immediate.

Now suppose that β is not a simple root. Then E
(p)
β is defined by commu-

tators. Since Ã is almost commutative, this immediately implies that E
(p)
β

is mapped into the correct filtered piece. �

Applying the Rees functor to Theorem B.15, we deduce the following
result.

Corollary B.17. There exists a unique graded C[~, z1, . . . , zN ]-algebra ho-
momorphism Yµ[z1, . . . , zN ]→ Ã~, such that

Ai(z) 7→ z−aiWi(z),

Ei(z) 7→ −
ai∑
r=1

Zi(wi,r)
∏

h∈Q1:i(h)=i

Wo(h)(wi,r − 1
2~)

(z − wi,r)Wi,r(wi,r)
u−1
i,r ,

Fi(z) 7→
ai∑
r=1

∏
h∈Q1:o(h)=i

Wi(h)(wi,r + 1
2~)

(z − wi,r − ~)Wi,r(wi,r)
ui,r.

In the above corollary, we are using a slight abuse of notation. For a

generator x (such as E
(p)
i or wi,r) of the algebra Yµ or Ã which lives in
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filtered degree k (but not in filtered degree k − 1) we write x for the element
~kx ∈ ReesYµ or ReesÃ.

B.8. Relation to quantization of Coulomb branch

Recall the setup of A.2: we have A~ = H
(GL(V )×T (W ))OoC×
∗ (RGL(V ),N) ↪→

Ã~, the quantized Coulomb branch associated to the pair (GL(V ),N) with
flavor symmetry. This inclusion takes the homological grading on A~ (not
the ∆-grading) to the above grading on Ã~.

Theorem B.18. There exists a unique graded C[~, z1, . . . , zN ]-algebra ho-
momorphism

Φ
λ
µ : Yµ[z1, . . . , zN ]→ A~,

such that

A
(p)
i 7→ (−1)pep({wi,r}),

F
(p)
i 7→ (−1)

∑
o(h)=i ai(h)(c1(Qi) + ~)p−1 ∩ [R$i,1 ],

E
(p)
i 7→ (−1)ai(c1(Si) + ~)p−1 ∩ [R$∗i,1 ].

Remark B.19. This homomorphism is analogous to (and was inspired
by) the action of the Yangian of gln on the cohomology of Laumon spaces,
constructed by Feigin-Finkelberg-Negut-Rybnikov [FFNR11].

Remark B.20. In the above Theorem, we use the (µ1, µ2)-grading on
Yµ[z1, . . . , zN ] (where µ1, µ2 are defined above) and the homological grading
on A~. On the other hand, if we want to use the ∆-grading on A~ (as defined
in [Part II, Remark 2.8(2)]), then we should use the (µ/2, µ/2)-grading on
Yµ[z1, . . . , zN ].

Recall that the (µ/2, µ/2)-grading is defined so that PBW variables E
(p)
β ,

F
(p)
β , H

(q)
i have degree

degE
(p)
β =

1

2
〈µ, β〉+ p, degF

(p)
β =

1

2
〈µ, β〉+ p, degH

(q)
i = 〈µ, αi〉+ q,

where β is a positive root. See [FKP+18, section 5.4]. Therefore Yµ[z1, . . . ,
zN ] is Z≥0-graded and the degree 0 part consists only of scalars (with respect
to the (µ/2, µ/2)-grading) if and only if 〈µ, β〉 ≥ −1 for any positive root
β. Note that A is called good or ugly when its ∆-grading satisfies the same
property. See [Nak16, Remark 4.2]. One of the authors show that 〈µ, β〉 ≥ −1
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if A is good or ugly. See [Nak15, Proof of Prop. 5.9]. The converse is also

true if Φ
λ
µ is surjective.

Proof. We have the graded C[~, z1, . . . , zN ]-algebra homomorphisms Φλ
µ :

Yµ[z1, . . . , zN ]→ A~ and z∗(ι∗)
−1 : A~ → Ã~, the second of which is injec-

tive. So we just need to verify that the image Φλ
µ is contained in the image

of z∗(ι∗)
−1.

It follows immediately from equations (A.3) and (A.5) that

z∗(ι∗)
−1(Φ

λ
µ(X

(s)
i )) = Φλ

µ(X
(s)
i )

for X = A,E, F . Now, the elements A
(s)
i , E

(1)
i , F

(1)
i generate Yµ ⊗ C[z1, . . . ,

zN ] as a C[~, z1, . . . , zN ] Poisson algebra (where the Poisson bracket is
{a, b} = 1

~(ab− ba)). Since A~ is almost commutative, A~ is closed under
the Poisson bracket and so the image of Φλ

µ is contained in z∗(ι∗)
−1(A~). �

The image of Φ
λ
µ is called the truncated shifted Yangian and is denoted

Yλ
µ.

Remark B.21. It is easy to see that the elements A
(p)
i for p > ai are sent

to 0 under Φ
λ
µ. We conjecture that these elements generate the kernel of Φ

λ
µ

and thus we get a presentation of Y λ
µ (the ~ = 1 specialization of Yλ

µ).

B.9. Specialization to the dominant case

Now, let us assume that µ is dominant.

B.9.1. The scheme Gµ. Consider the scheme Wµ defined as the locus
G1[[z−1]]zµ ⊂ G((z−1))/G[z]. It is the moduli space of pairs (P, σ) where P is
aG-bundle on P1 of isomorphism type µ and σ is a trivialization in the formal
neighbourhood of ∞, such that P has isomorphism type µ and such that
the Harder-Narasimhan flag of P at ∞ is compatible with B− ⊂ G (under

σ). For any λ, we have a morphism Wλ
µ →Wµ and a closed embedding

Wλ
µ ↪→Wµ × AN .

For any λ and any point z ∈ AN , let Wλ,z
µ be the fibre of Wλ

µ → AN
over the point z. The open locus Wλ,z

µ embeds into Wµ as the intersection

Wµ ∩G[z]zλ,z ⊂ G((z−1))/G[z], where zλ,z =
∏N
s=1(z − zs)ωis .

In [KWWY14], we constructed a Poisson structure on Wµ. Now

[KWWY14, Theorem 2.5] generalizes immediately to show that Wλ,z
µ is a
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symplectic leaf of Wµ. (In the case when G = SLn, this is closely related
to [Sha16, Theorem 2.2]).

Now, consider the subgroup of G1[[z−1]] defined as

Gµ = {g ∈ G1[[z−1]] | z−µgzµ ∈ G1[[z−1]]}.

The natural map g 7→ gzµ provides an isomorphism Gµ ∼=Wµ.
The following result is [KWWY14, Theorem 3.12].

Theorem B.22. There is an isomorphism of Poisson algebras

Ψ: Yµ/~Yµ → C[Gµ∗ ]

given by

Hi(z) 7→ z〈µ,αi〉
∏

h∈Q1tQ1

o(h)=i

∆w0ω∨i(h),w0ω∨i(h)
(z)∆w0ω∨i ,w0ω∨i (z)−2,

Fi(z) 7→ ∆w0siω∨i ,w0ω∨i (z)∆w0ω∨i ,w0ω∨i (z)−1,

Ei(z) 7→ z〈µ,αi〉∆w0ω∨i ,w0siω∨i (z)∆w0ω∨i ,w0ω∨i (z)−1.

Here ∆w0ω∨i ,w0ω∨i , etc. are generalized minors (see [KWWY14, Section 2]
for more explanation) and we define ∆w0ω∨i ,w0ω∨i (z) ∈ C[Gµ∗ ]((z

−1)) by

∆w0ω∨i ,w0ω∨i (z)(g) = ∆w0ω∨i ,w0ω∨i (g).

B.9.2. Involutions. Let G→ G, g 7→ gt denote the transpose involution
(it is an antiautomorphism which corresponds to the Lie algebra antiau-
tomorphism given Ei 7→ Fi, Fi 7→ Ei, Hi 7→ Hi). Also, let κ−1 : G1[[z−1]]→
G1[[z−1]] be the involution given by z 7→ −z.

If g ∈ Gµ∗, then z−µ
∗
gzµ

∗ ∈ G1[[z−1]] and so (z−µ
∗
gzµ

∗
)t = zµ

∗
gtz−µ

∗ ∈
Gµ∗ .

We define an involution i : Gµ∗ → Gµ∗ by i(g) = z−µ
∗κ−1(gt)zµ

∗
. We can

extend i to Gµ∗ × AN by acting by multiplication by −1 on the second factor.

Following Remark 3.16, we consider an involution i : Wλ∗

µ∗ →W
λ∗

µ∗ as the
composition of ιλµ and κ−1 and the action of β(−1), where β is the coweight
defined by

β =
∑
i

ai − ∑
h∈Q1:o(h)=i

ai(h)

ωi.

Let us write f : Wλ∗

µ∗ →Wµ∗ × AN ∼= Gµ∗ × AN for the natural compo-
sition. The following result is immediate.
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Lemma B.23. Up to β(−1), the involutions are compatible with f. More
precisely,

f ◦ a(β(−1)) ◦ i = i ◦ f.

We also can define an involution on i : Yµ → Yµ by

E
(p)
i 7→ (−1)pF

(p)
i , H

(p)
i 7→ (−1)p+〈µ,αi〉H

(p)
i , F

(p)
i 7→ (−1)p+〈µ,αi〉E

(p)
i .

Above we defined the map Ψ: Yµ/~Yµ → C[Gµ∗ ]. A simple computation
shows the following result.

Lemma B.24. The involutions are compatible with Ψ. More precisely,

Ψ ◦ i = i ◦Ψ.

Finally, we also have the involution i
λ
µ∗ : A0 → A0 (where A0 = A~/~A~)

defined as in Remark 3.16, which comes from the isomorphism of varieties
i
λ
µ : RGL(V ),Nλ

µ

∼−→ RGL(V ∗),Nλ
µ
. Note that the Nλ

µ on the right hand side is
computed with respect to the opposite orientation.

In Theorem B.18, we defined a homomorphism Φ: Yµ[z1, . . . , zN ]→ A~
and thus a homomorphism Yµ[z1, . . . , zN ]/~Yµ[z1, . . . , zN ]→ A0. We ex-
tend the involution i from Yµ to Yµ[z1, . . . , zN ] by setting i(zk) = −zk for
all k.

Lemma B.25. Up to β(−1), the involutions are compatible with Φ. More
precisely,

Φ ◦ i = a(β(−1)) ◦ iλµ∗ ◦ Φ

as maps Yµ[z1, . . . , zN ]/~Yµ[z1, . . . , zN ]→ A0.

Proof. Note that we have i
λ
µ∗([R$i,1 ]) = [R$∗i,1 ] and i

λ
µ∗([R$∗i,1 ]) = [R$i,1 ].

Also i
λ
µ∗(c1(Si)) = −c1(Qi) since under the isomorphism i

λ
µ : RGL(V ),Nλ

µ

∼−→
RGL(V ∗),Nλ

µ
from Remark 3.16, we have that i

λ
µ∗(Si) = Q∗i . Finally, we have

that i
λ
µ∗(wi,r) = −wi,r.

Hence examining the formulas for Φ given in Theorem B.18, the result
follows. �

Remark B.26. The involution i
λ
µ∗ : A0 → A0 extends to an involution

i
λ
µ∗ : A~ → A~. However, it is easy to see that the map Φ: Yµ[z1, . . . , zN ]→
A~ is not compatible with this involution (not even up to sign). It is possible
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to modify the involution of Yµ to make it compatible up to sign, but it will be
given by a bit more complicated formulae (for example Ei(z) 7→ −Fi(−z +
~)). However, we will not need compatibility at the non-commutative level
in this paper.

B.9.3. Commutativity. We have a surjection

f ◦Ψ: Yµ[z1, . . . , zN ]/~Yµ[z1, . . . , zN ]
∼−→ C[Gµ∗ × AN ]→ C[Wλ∗

µ∗ ].

Recall that in the previous section, we constructed a map

Φ: Yµ[z1, . . . , zN ]→ A~.

On the other hand, in Theorem 3.20, we have constructed an isomorphism
Ξ: C[Wλ∗

µ∗ ]
∼−→ A~/~A~.

Lemma B.27. The composition Ξ−1 ◦ Φ equals f ◦Ψ as morphisms

Yµ[z1, . . . , zN ]/~Yµ[z1, . . . , zN ]→ C[Wλ∗

µ∗ ].

Proof. Since all the morphisms involved are Poisson C[z1, . . . , zN ]-algebra

morphisms, it suffices to check the statement on the generators E
(s)
i , A

(s)
i , F

(s)
i

of Yµ.

Recall that from §2(x) we have the morphism s
λ∗

µ∗ : Wλ∗

µ∗ → Zα × AN ,

where α = λ− µ. Given a point ([gzµ
∗
], (z1, . . . , zN )) ∈ Wλ∗

µ∗ , the correspond-

ing principal G-bundle P has associated vector bundle Vλ∨P = gzµ
∗
(V λ∨ ⊗

OP1) and invertible subsheaf Lλ∨ = gzµ
∗
(V λ∨

w0λ∨
⊗OP1). Thus the image of

([gzµ
∗
], (z1, . . . , zN )) under s

λ∗

µ∗ gives the collection of invertible subsheaves

gzµ
∗
(V λ∨

w0λ∨ ⊗OP1)

(
N∑
s=1

〈w0ωi∗s , λ
∨〉 · zs

)
⊂ V λ∨ ⊗OP1 .

Now, we specialize to λ∨ = ω∨i . Then the invertible subsheaf is generated
over OP1 by(

N∏
s=1

(z − zs)−〈w0ωi∗s ,ω
∨
i 〉

)
gzµ

∗
(vw0ωi) = Qi(z)vw0ω∨i + Pi(z)vw0siω∨i + · · ·
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where

Qi(z) = ∆w0ω∨i ,w0ω∨i

(
N∏
s=1

(z − zs)−〈w0ωi∗s ,ω
∨
i 〉gzµ

∗

)

= z−〈µ,ω
∨
i 〉

N∏
s=1

(z − zs)〈ωis ,ω
∨
i 〉∆w0ω∨i ,w0ω∨i (g),

and

Pi(z) = ∆w0siω∨i ,w0ω∨i

(
N∏
s=1

(z − zs)−〈w0ωi∗s ,ω
∨
i 〉gzµ

∗

)

= z−〈µ,ω
∨
i 〉

N∏
s=1

(z − zs)〈ωis ,ω
∨
i 〉∆w0siω∨i ,w0ω∨i (g).

By definition (see [BDF16, 2.2]), Qi(z), Pi(z) are related to the coordinates
(wi,r, yi,r) by Qi(wi,r) = 0, Pi(wi,r) = yi,r.

Now using the definition of Ψ(Hi(z)) given in Theorem B.22 and the
definition of Ai(z) given in (B.14), we deduce that

Ψ(Ai(z)) = z−ai
N∏
s=1

(z − zs)〈ωis ,ω
∨
i 〉z−〈µ,ω

∨
i 〉∆w0ω∨i ,w0ω∨i (z),

and so Ψ(Ai(z)) = z−aiQi(z) which agrees with Φ.
Next, we consider Fi(z). First, we have that

Ψ(Fi(z)) = ∆w0siω∨i ,w0ω∨i (z)∆w0ω∨i ,w0ω∨i (z)−1 =
Pi(z)

Qi(z)

by the above analysis.
We also have that

Φλ
µ(Fi(z)) =

ai∑
r=1

∏
h∈Q1:o(h)=i

aj∏
s=1

(wi,r − wi(h),s)

(z − wi,r)
∏
s 6=r

(wi,r − wi,s)
ui,r.
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On the other hand, we have

Ξ−1

 ∏
h∈Q1:o(h)=i

aj∏
s=1

(−wi,r + wi(h),s)ui,r

 = yi,r

(see §3(i), §3(iii)) and thus

Ξ−1(Φ(Fi(z)) =

ai∑
r=1

yi,r

(z − wi,r)
∏
s 6=r

(wi,r − wi,s)
=
Pi(z)

Qi(z)
,

where the last equality is obtained by Lagrange interpolation.

Thus, the statement holds for F
(p)
i .

Finally, we wish to show that Ξ−1 ◦ Φ(E
(p)
i ) = f ◦Ψ(E

(p)
i ). It suffices to

prove that this equation holds after applying i.
Applying Remark 3.16 and Lemma B.25, we deduce that

i(Ξ−1 ◦ Φ(E
(p)
i )) = (−1)biΞ−1 ◦ Φ(i(E

(p)
i )),

where bi = ai −
∑

i→j aj . However i(E
(p)
i ) = (−1)pF

(p)
i and above we proved

that Ξ−1 ◦ Φ(F
(p)
i ) = f ◦Ψ(F

(p)
i ). Thus we conclude that

i(Ξ−1 ◦ Φ(E
(p)
i )) = (−1)bif ◦Ψ(i(E

(p)
i )).

Now, applying Lemmas B.23 and B.24, we deduce that

f ◦Ψ(i(E
(p)
i )) = (−1)bii(f ◦Ψ(E

(p)
i )).

Thus, we conclude that

i(Ξ−1 ◦ Φ(E
(p)
i )) = i(f ◦Ψ(E

(p)
i )),

and hence Ξ−1 ◦ Φ(E
(p)
i ) = f ◦Ψ(E

(p)
i ) as desired. �

Corollary B.28. We have an equality Yλ
µ = A~ and in particular, we have

an isomorphism Yλ
µ/~Yλ

µ
∼= C[Wλ∗

µ∗ ].

Proof. The above theorem shows that the inclusion Yλ
µ ↪→ A~ gives as iso-

morphism Yλ
µ/~Yλ

µ
∼= A~/hA~.

Thus each element of A~ admits a lift modulo ~ to Yλ
µ. Since Yλ

µ,A~
are graded and the grading is bounded below, this proves the equality. �
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Remark B.29. The isomorphism Yλ
µ/~Yλ

µ
∼= C[Wλ∗

µ∗ ] was conjectured in
[KWWY14]. More precisely, in [KWWY14], we proved that the map Ψ
descended to a surjection Yλ

µ/(~, z1, . . . , zN )→ C[Wλ∗
µ∗ ] which was an iso-

morphism modulo nilpotents. The above Corollary shows that this map is
an isomorphism. For other points z ∈ AN , this also proves that the corre-
sponding quotient in Yλ

µ is isomorphic to the corresponding fibre of Wλ∗

µ∗ .
In [KWWY14], we made a mistake on this point (we stated that this would
always quantize the central fibre).

Remark B.30. If we take µ∗ not dominant, then some of the results of
this section continue to hold. In this case, we defined a version of Wµ∗

and we directly constructed the isomorphism Y/~Y ∼= C[Wµ∗ ] in [FKP+18,
Theorem 5.15] . However, we do not know how to see that Wµ∗ has an
intrinsic Poisson structure, nor have we proven the surjectivity of Yµ → A~
in this situation.
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