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Local and global existence of solutions

to scalar equations on spatially flat

universe as a background

with non-minimal coupling

Fiki T. Akbar, Bobby E. Gunara∗,
Muhammad Iqbal, and Hadi Susanto

We prove the wellposedness of scalar wave equations on spatially
flat universe as a background with nonminimal coupling with the
scalar potential turned on by introducing the k-order linear energy
and the corresponding energy norm. In the local case, we show that
both the k-order linear energy and the energy norm are bounded for
finite time with initial data in Hk+1 ×Hk. Whereas in the global
case, we have to add three assumptions related to the nonminimal
coupling constant, the scale factor of spacetimes, and the form
of the scalar potential that has to be a polynomial with a small
positive parameter. Then, we show that the solution does globally
exist with a particular decay estimate that depends on the scale
factor of the spacetimes. Finally, we provide some physical models
that support our general setup.

1. Introduction

It is of interest to study the Klein-Gordon equation because it describes
the dynamics of the spinless particle in our universe at quantum level or it
can be viewed as the scalar wave equation at classical level in our universe.
Moreover, to get a more realistic picture we have to include the influence of
geometrical properties of the universe which may also determine by its mat-
ter distribution. It is extremely difficult, however, to solve the Klein-Gordon
equation on the family of four dimensional Friedmann-Robertson-Walker
spacetimes with general couplings even at the classical level. Therefore, we
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2 F. T. Akbar, et al.

have to specify both the spacetime and the coupling in order to get a solv-
able model. Several simple models in four dimensions have been studied, for
example, in [1–3].

In this paper we prove the local and global existence of solutions of
the Klein-Gordon equation in higher dimensional spatially flat Friedmann-
Robertson-Walker spacetimes with non-minimal coupling between the scalar
curvature and the scalar field, and the scalar potential turned on. This addi-
tional non-minimal coupling is the simplest generalization of the scalar field
theory on curved spacetimes [4, 5], which can be viewed, for example, as a
result of quantum corrections [6, 7].

The starting point of proving the local and global existence of solutions
is by introducing the k-order linear energy and the corresponding energy
norm. In the local case, we show that in order to admit a regular solution
both energy functionals must be bounded below a real constant C for finite
time T <∞ with initial data in Hk+1 ×Hk. As we take T →∞, namely
the global existence, we give three additional assumptions related to the
nonminimal coupling constant, the scale factor of spacetimes, and the form
of the scalar that has to be a polynomial with small positive parameter.
Using these assumptions, we prove that the supremum of the energy norm
is bounded and thus, we could have a decay estimate.

We organize the paper as follows. In Section 2 we briefly review spatially
flat spacetimes in higher dimension. We discuss some local properties of the
real scalar field on higher dimensional spatially flat spacetimes by introduc-
ing k-order linear energy and the corresponding energy norm in Section 3.
In Section 4 we provide a proof of the local existence and the uniqueness of
solutions together with a smoothness property. In Section 5 we prove that
the solutions could exist globally and they have a particular decay estimate.
Finally, we discuss some models, in which the global solution does exist in
Section 6.

2. Spatially flat spacetimes in higher dimension

In this section, we shortly review the higher dimensional conformally flat
spacetime which can be constructed by the D-dimensional spatially flat
Lorentzian manifold, MD, D ≥ 4 with standard coordinates, xµ = (x0 =
t, xi), µ = 0, 1, . . . , D − 1, i = 1, 2, . . . , D − 1, and is equipped by Lorentzian
metric with signature {−1, 1, . . . , 1}. We can write down the metric as

(2.1) ds2 = −dt2 + a2(t)

D−1∑
i=1

dx2i ,
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Local and global existence of solutions to scalar equations 3

with xi being the usual Cartesian coordinates for IRD−1. Defining a new
time coordinate τ by

(2.2)
dτ

dt
=

1

a(t)
,

we can write (2.1) as

(2.3) ds2 = a2(τ)

(
−dτ2 +

D−1∑
i=1

dx2i

)
.

Thus, our spacetime MD is conformal to flat Minkowski space MD+1 '
IR× IRD−1. In terms of components, we can write the metric of MD as

(2.4) gµν = a2(τ)ηµν ,

where ηµν = diag(−1, 1, . . . , 1) is the component of Minkowski metric. Fur-
thermore, it is of interest to write down the Ricci tensor and the scalar
curvature related to metric (2.4)

Rµν = Ḣ
(
ηµν − (D − 2)δ0µδ

0
ν

)
+H2(D − 2)

(
ηµν + δ0µδ

0
ν

)
,

R = (D − 1)a−2
(

2Ḣ + (D − 2)H2
)
,(2.5)

respectively, assuming that the scale factor a(τ) belongs to Cn-function with
n ≥ 2 for all τ > 0 where ȧ ≡ da/dτ and we have defined the Hubble param-
eter H ≡ ȧ/a.

The higher dimensional Friedmann equations describing an accelerated
universe for single component matter are given by [8]

(D − 2)(D − 1)

2a4
H2 = 8πρ,

−(D − 2)

a3
Ḣ − (D − 2)(D − 5)

2a4
H2 = 8πP,(2.6)

together with equation of state P = wρ. The general solutions of this equa-
tion have the form

(2.7) a(τ) =

{
(τ + τ0)

2

(D−1)(w+1)−2 , w 6= −(D − 3)/(D − 1)

eα(τ+τ0), w = −(D − 3)/(D − 1)
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Conditions w a(τ)

Matter Dominated w = 0 (τ + τ0)
2

D−3

Λ-Dominated w = −1 (τ + τ0)
−1

Radiation Dominated w = 1
D−1 (τ + τ0)

Table 1: Standard Models of Cosmology in higher dimension.

which will be useful for our analysis in the last part of this paper. Some ex-
amples, which may be considered as the higher dimensional standard model
of cosmology, are listed in Table 1 [8].

For a matter dominated universe, which is called higher dimensional
Einstein-de Sitter universe, the universe consists only of non-relativistic mat-
ter (dust) and has zero cosmological constant. The Ricci tensor related to
metric (2.4) is given by

(2.8) Rµν =
2(D − 1)

(D − 3)2τ2
(
ηµν + (D − 2)δ0µδ

0
ν

)
,

and the scalar curvature is given by

(2.9) R =
4(D − 1)

(D − 3)2τ2(D−1)/(D−3)
.

3. Real scalar field in spatially flat universe

In this section, we discuss some local properties of the real scalar field on the
higher dimensional spatially flat universe as a background with additional
non-minimal coupling where the coupling interaction of the scalar field φ
is proportional to the scalar curvature of the spacetime. We show that the
nonlinear terms and the k-order linear energy are bounded if the energy
norm is also bounded.

The action of our theory has the form

(3.1) S =

∫
dτdx

√
−g
(

1

2
∂µφ∂

µφ+
ξ

2
Rφ2 − V (φ)

)
,

where g and R are the determinant and the scalar curvature of the metric
(2.4), respectively. The non-minimal coupling is introduced in the second
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Local and global existence of solutions to scalar equations 5

term of the right hand side of (3.1) with positive constant ξ 1. The real
function V (φ) denotes the scalar potential which is assumed to be smooth
and satisfy the following conditions,

(1) V (0) = 0,

(2) ∂φV (0) = 0.(3.2)

The conditions in (3.2) are satisfied by several known scalar potentials such
as the φ4 theory and the sine-Gordon theory.

The equation of motions of scalar field in this case is given by

(3.3) ∇µ∇µφ− ξRφ+ ∂φV (φ) = 0,

where ∇µ is a covariant derivative with respect to the metric (2.3). Using
(2.3) and (2.5), we can write the equation of motion in form of nonlinear
waves equation

(3.4) ∂2τφ−∆φ = F (φ, ∂τφ),

where
(3.5)

F (φ, ∂τφ) ≡ −(D − 2)H∂τφ− ξ(D − 1)
(

2Ḣ + (D − 2)H2
)
φ+ a2∂φV (φ),

and ∆ is Laplacian in IRD−1. The energy-momentum tensor for system (3.1)
is given by

Tµν = ∇µφ∇νφ−
1

2
gµν∇λφ∇λφ− gµνV (φ)(3.6)

− ξGµνφ2 − ξ
(
gµν∇λ∇λφ2 −∇µ∇νφ2

)
,

where Gµν is Einstein tensor ofMD. Then, we could define an energy func-
tional E = a2D−2

∫
T00d

D−1x. However, such a functional covers only L2-
norm functions and it is difficult to obtain a decay estimate of the scalar
field from it in the global case (see Section 5) since it contains the non-
linear terms, namely the scalar potential and the nonminimal coupling. To

1Model with positive ξ is called canonical, while that with negative ξ is called
phantom.
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overcome the problem, we introduce the k-order linear energy

(3.7) Hk[φ] =
1

2

∑
|α|≤k

∫
IRD−1

[
(∂α∂τφ)2 + |∇∂αφ|2

]
dx,

with α being a multi index, which will be used in this paper. We also define
an energy norm as

(3.8) |φ(τ, ·)|k := ‖φ(τ, ·)‖Hk+1(IRD−1) + ‖∂τφ(τ, ·)‖Hk(IRD−1)

This form of energy can be used as a bound for the nonlinear term. In the
following lemmas, we prove the properties of the nonlinear term and the
linear energy.

Lemma 1. Let φ be a real function such that for all τ ∈ [τ0, τ0 + T ] and
k ∈ N0,

(3.9) |φ(τ, ·)|k ≤ C.

Then for all τ ∈ [τ0, τ0 + T ] and k > (D − 1)/2, we have

(3.10)

∑
|α|≤k

∫
IRD−1

[∂αF (φ, ∂τφ)]2dx

1/2

≤ C,

where C depends only on the initial data, T , k and the bound of the scalar
potential.

Proof. First, we consider the case of |α| > 0. The spatial derivative of Equa-
tion (3.5) gives

∂αF (φ, ∂τφ) = −(D − 2)H∂α∂τφ(3.11)

− ξ(D − 1)
(

2Ḣ + (D − 2)H2
)
∂αφ+ a2∂α∂φV.

Since τ ∈ [τ0, τ0 + T ], a(τ) is a regular Cn-function, and using the hypothesis
that the first and second terms are bounded, we thus have

(3.12)

∑
|α|≤k

∫
IRD−1

[∂αF (φ, ∂τφ)]2dx

1/2

≤ C
{

1 + ‖∂φV ‖Hk(IRD−1)

}
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Local and global existence of solutions to scalar equations 7

To estimate the derivative of the scalar potential, we write down ∂α∂φV
as

(3.13) ∂α∂φV =
(
∂βφ∂φV

)
∂γ1φ∂γ2φ · · · ∂γiφ,

where γ1 + γ2 + · · ·+ γi = α. Since the scalar potential is a smooth function,
then by Sobolev embedding theorem for k > (D − 1)/2, the hypothesis of
the lemma implies that ∂βφ∂φV is bounded. Thus,

(3.14) ‖∂φV ‖Hk(IRD−1) ≤ C‖φ‖Hk(IRD−1) ≤ C,

and we obtain Equation (3.10).
For |α| = 0, we have(∫

IRD−1

[F (φ, ∂τφ)]2dx

)1/2

(3.15)

≤ C
{
‖φ‖L2(IRD−1) + ‖∂τφ‖L2(IRD−1) + ‖∂φV ‖L2(IRD−1)

}
.

The first and second terms at the right hand side are bounded to a constant
by the hypothesis. Using the assumption that ∂φV (0) = 0, we obtain the
estimate

(3.16) ‖∂φV ‖L2(IRD−1) ≤ C‖φ‖L2(IRD−1) ≤ C,

where the constant C depends on the bound of the scalar potential. Hence,
the proof is complete. �

Lemma 2. Let φ be a real function such that for all τ ∈ [τ0, τ0 + T ] and
k ∈ N0,

(3.17) |φ(τ, ·)|k ≤ C.

Then for τ ∈ [τ0, τ0 + T ] and k > (D − 1)/2, we have

(3.18) H1/2
k [φ](τ) ≤ H1/2

k [φ](τ0) +
1

2
CT,

where the constant C depends only on the initial data, T , k and the bound
of the scalar potential.
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Proof. Let us consider,

dHk[φ]

dτ
=

1

2

∑
|α|≤k

∫
IRD−1

[
2(∂α∂τφ)(∂α∂2τφ) + 2(∇∂αφ) · (∇∂α∂τφ)

]
dx

=
∑
|α|≤k

∫
IRD−1

∂αF (φ, ∂τφ)∂α∂τφdx.(3.19)

Using Schwartz and Hölder inequalities, we obtain

dHk[φ]

dτ
≤

∑
|α|≤k

∫
IRD−1

[∂αF (φ, ∂τφ)]2dx

1/2

(3.20)

×

∑
|α|≤k

∫
IRD−1

(∂α∂τφ)2dx

1/2

.

The second factor can be estimated by a constant times H1/2
k [φ]. Since φ

satisfies the hypothesis of Lemma 1, then the first factor is bounded to a
constant. Thus, we obtain

(3.21)
dHk[φ]

dτ
≤ CH1/2

k [φ].

Since Hk[φ] is positive, we can divide the inequality by H1/2
k [φ] and integrate

to obtain

(3.22) H1/2
k [φ](τ) ≤ H1/2

k [φ](τ0) +
1

2
CT,

and the proof is finished. �

A classical solution of a scalar field on spatially flat spacetimes with non-
minimal coupling is a real smooth function φ satisfying Equation (3.4). Then,
a generalized solution is a real function φ ∈ C0

(
[τ0, τ0 + T ], Hk+1(IRD−1)

)
∩

C1
(
[τ0, τ0 + T ], Hk(IRD−1)

)
such that Equation (3.4) is satisfied in a distri-

butional sense. In the rest of this paper, we will prove the existence and
uniqueness of both generalized and classical solutions to Equation (3.4) to-
gether with the initial data

φ(τ0, x) = f(x),

∂τφ(τ0, x) = g(x),(3.23)
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Local and global existence of solutions to scalar equations 9

with f ∈ Hk+1(IRD−1) and g ∈ Hk(IRD−1) and having compact support.

4. Local existence, uniqueness, and smoothness

In this section, we prove the local existence and the uniqueness of the solu-
tion of the scalar field Equation (3.4).

4.1. Local existence and uniqueness

The scalar field equation in spatially flat universe is given by,

(4.1)


∂2τφ−∆φ = F (φ, ∂τφ)

φ(τ0, ·) = f ∈ Hk+1(IRD−1)

∂τφ(τ0, ·) = g ∈ Hk(IRD−1),

where the nonlinear term is given by Equation (3.5). Let us consider the
sequence {φl} such that

(4.2)


∂2τφ0 −∆φ0 = 0

φ0(τ0, ·) = f0

∂τφ0(τ0, ·) = g0,

and for l ≥ 0,

(4.3)


∂2τφl+1 −∆φl+1 = F (φl, ∂τφl)

φl(τ0, ·) = fl

∂τφl(τ0, ·) = gl.

Since the Schwartz space S(IRD−1) is dense in Hk(IRD−1), then we can
choose the sequences {fl} and {gl} such that fl, gl ∈ S(IRD−1) and fl → f
in Hk+1(IRD−1) and gl → g in Hk(IRD−1). Without loss of generality, we
can choose fl and gl such that,

‖fl‖Hk+1(IRD−1) ≤ 2‖f‖Hk+1(IRD−1)

‖gl‖Hk(IRD−1) ≤ 2‖g‖Hk(IRD−1).(4.4)

In the following lemma, we prove that Hk[φl] is bounded for all l.
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Lemma 3. Let {φl} be solutions of (4.2) and (4.3). Let Hk be the linear
energy defined in Equation (3.7). For k > (D − 1)/2, there exist constants
C and T such that,

(4.5) Hk[φl](τ) ≤ C,

for all l ≥ 0 and τ ∈ [τ0, τ0 + T ] . The constant C depends on the initial
data, k and the bound of the scalar potential.

Proof. We will prove the lemma by induction. Since φ0 is a solution of linear
wave equation, then Hk is conserved. Thus,

(4.6) Hk[φ0](τ0) = Hk[φ0](τ) ≤ C̃,

where the bound constant C̃ depends only on the initial data such that,

(4.7) Hk[φl](τ0) ≤ C̃.

Hence, Equation (4.5) is satisfied for l = 0.
Now, we assume Equation (4.5) to be true for l = n. Then, we obtain

∂

∂τ

∫
IRD−1

|φn|2dx = 2

∫
IRD−1

φn∂τφndx(4.8)

≤ 2‖φn‖L2(IRD−1)‖∂τφn‖L2(IRD−1)

≤ C‖φn‖L2(IRD−1)H
1/2
k [φn],

where we have used Hölder’s inequality and the definition of Hk in Equa-
tion (3.7). Integrating the inequality and using the induction hypothesis, we
obtain

(4.9) ‖φn(τ, ·)‖L2(IRD−1) ≤ C
(
‖f‖L2(IRD−1) + T

)
.

If we assume T ≤ 1, then ‖φn(τ, ·)‖L2(IRD−1) is bounded for τ ∈ [τ0, τ0 + T ],
which depends only on the initial data.

Using Sobolev embedding theorem for k > (D − 1)/2, we have bounds
on
∑D−1

j=1 ‖∂jφl(τ, ·)‖Cb(IRD−1) and ‖∂tφl(τ, ·)‖Cb(IRD−1). Furthermore, we also
have

(4.10) |φn(τ, ·)|k ≤ C,

where the constant only depends on initial data. Hence, φn satisfies the
hypothesis of Lemmas 1 and 2.
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Local and global existence of solutions to scalar equations 11

For l = n+ 1, we have

dHk[φn+1]

dτ
=
∑
|α|≤k

∫
IRD−1

∂αF (φn, ∂τφn)∂α∂τφn+1dx(4.11)

≤

∑
|α|≤k

∫
IRD−1

[∂αF (φn, ∂τφn)]2dx

1/2

×

∑
|α|≤k

∫
IRD−1

(∂α∂τφn+1)
2dx

1/2

≤ CH1/2
k [φn+1],

where we used Lemma 1 in the last inequality. Integrating the inequality,
we obtain

(4.12) H1/2
k [φn+1](τ) ≤ H1/2

k [φn+1](τ0) + CT.

Using Equation (4.6) and assuming T ≤ 1, then Hk[φn+1](τ) is bounded for
τ ∈ [τ0, τ0 + T ]. �

Let us define

(4.13) El,k = sup
τ∈[τ0,τ0+T ]

[
H1/2
k [φl − φl−1](τ) + ‖(φl − φl−1)(τ, ·)‖L2(IRD−1)

]
.

Next, we derive an estimate for the difference of consecutive sequence which
is important to prove the convergence of the sequence.

Lemma 4. Let {φl} be solutions of (4.2) and (4.3). Let Hk is the linear
energy defined in Equation (3.7). Then, for k > (D − 1)/2, we have the es-
timate

(4.14) H1/2
k [φl − φl−1](τ) ≤ H1/2

k [φl − φl−1](τ0) +
1

2
CEl,kT,

for all τ ∈ [τ0, τ0 + T ].
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Proof. First, we have the estimate

‖F (φl, ∂φτφl)− F (φl−1, ∂φτφl−1)‖Hk(IRD−1)(4.15)

≤ C
[
‖φl − φl−1‖Hk(IRD−1) + ‖∂τφl − ∂τφl−1‖Hk(IRD−1)

+‖∂φV (φl)− ∂φV (φl−1)‖Hk(IRD−1)

]
.

We can estimate the first and second terms as

‖φl − φl−1‖Hk(IRD−1) ≤ ‖φl − φl−1‖L2(IRD−1) +H1/2
k [φl − φl−1]

‖∂τφl − ∂τφl−1‖Hk(IRD−1) ≤ H
1/2
k [φl − φl−1].(4.16)

To estimate the third term, we write

(4.17) ∂φV (φl)− ∂φV (φl−1) =

∫ 1

0
∂2φV [σφl + (1− σ)φl−1]dσ (φl − φl−1) .

Using Lemma 3 and the fact that the scalar potential is a smooth function,
for k > (D − 1)/2 we obtain

‖∂φV (φl)− ∂φV (φl−1)‖Hk(IRD−1)(4.18)

≤ C‖φl − φl−1‖Hk(IRD−1)

≤ C
(
‖φl − φl−1‖L2(IRD−1) +H1/2

k [φl − φl−1]
)
,

where the constant C depends on the bound of the scalar potential. Hence,
we obtain the estimate

‖F (φl, ∂φτφl)− F (φl−1, ∂φτφl−1)‖Hk(IRD−1)(4.19)

≤ C
(
‖φl − φl−1‖L2(IRD−1) +H1/2

k [φl − φl−1]
)
≤ CEl,k.

Now, similar to the proof of Lemma 3, we have

d

dτ
Hk[φl − φl−1] ≤ C‖F (φl, ∂τφl)− F (φl−1, ∂τφl−1)‖Hk(IRD−1)‖∂τφl(4.20)

− ∂τφl−1‖Hk(IRD−1)

≤ CEl,kH
1/2
k [φl − φl−1].

Integrating the inequality, we obtain

(4.21) H1/2
k [φl − φl−1](τ) ≤ H1/2

k [φl − φl−1](τ0) +
1

2
CEl,kT,
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for all τ ∈ [τ0, τ0 + T ] and the proof is finished. �

Next, we prove the estimate of El,k.

Lemma 5. Let {φl} be solutions of (4.2) and (4.3). Let El,k be given by
Equation (4.13). For k > (D − 1)/2, there exist constants C0 > 1 and T
such that,

(4.22) El,k ≤
C0

2l
,

for all l.

Proof. The lemma is true for l = 1 by assuming that the constant C0 is big
enough. Let us consider

∂

∂τ

∫
IRD−1

|φl+1 − φl|2dx = 2

∫
IRD−1

|φl+1 − φl|∂τ |φl+1 − φl|dx

≤ 2‖φl+1 − φl‖L2(IRD−1)‖∂τ (φl+1 − φl)‖L2(IRD−1)

≤ 23/2‖φl+1 − φl‖L2(IRD−1)H
1/2
k [φl+1 − φl],(4.23)

Integrating this inequality and since k > (D − 1)/2, we obtain

‖φl+1 − φl‖L2(IRD−1)(τ) ≤ ‖φl+1 − φl‖L2(IRD−1)(τ0)(4.24)

+ 21/2
∣∣∣∣∫ τ

τ0

H1/2
k [φl+1 − φl](s)ds

∣∣∣∣ .
Assuming T < 1/2 and using Lemma 4, we have the estimate

(4.25) El+1,k ≤ ‖φl+1 − φl‖L2(IRD−1)(τ0) + 2H1/2
k [φl+1 − φl](τ0) + CEl,kT.

The first and second terms depend only on the initial data. However, we can
choose them as such that,

(4.26) ‖φl+1 − φl‖L2(IRD−1)(τ0) + 2H1/2
k [φl+1 − φl](τ0) ≤

1

2l+2
.

Hence, by assuming CT < 1/4, Equation (4.25) and the induction hypothesis
give

(4.27) El+1,k ≤
1

2l+2
+

C0

2l+2
≤ C0

2l+1
.

Thus, Equation (4.22) is true for all l and the proof is finished. �
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Let us consider, for all |α| ≤ k + 1,

‖∇∂α(φl − φl−1)(τ, ·)‖L2(IRD−1) =

(∫
IRD−1

|∇∂α(φl − φl−1)(τ, ·)|2 dx
)1/2

≤ CHk[φl − φl−1]1/2(τ)

≤ CEl,k.(4.28)

In other words, φl − φl−1 ∈ Hk+1(IRD−1). However, using Lemma 5, we have

(4.29) sup
τ∈[τ0,τ0+T ]

‖φl − φl−1‖Hk+1(IRD−1) ≤
C0

2l
,

which show that {φl} is a Cauchy sequence on C
(
[τ0, τ0 + T ], Hk+1(IRD−1)

)
.

Using a similar method, we can show that {∂τφl} is also a Cauchy sequence
on C

(
[τ0, τ0 + T ], Hk(IRD−1)

)
. Thus, we have proven the existence of gen-

eralized solutions of Equation (3.4) such that

(4.30) φ ∈ C
(

[τ0, τ0 + T ], Hk+1(IRD−1)
)
∩ C1

(
[τ0, τ0 + T ], Hk(IRD−1)

)
.

Furthermore, using Lemma 5, we also get that {∂i∂jφl} and {∂i∂τφl}
are Cauchy sequences on C

(
[τ0, τ0 + T ], Hk−1(IRD−1)

)
. In fact, we have

‖∂2τ (φl+1 − φl)‖Hk−1(IRD−1)(4.31)

≤ ‖F (φl, ∂τφl)− F (φl−1, ∂τφl−1)‖Hk−1(IRD−1)

+ ‖∂i∂i(φl+1 − φl)‖Hk−1(IRD−1).

On the right hand side, the first term is bounded by El,k and the second
term is bounded by a constant since it is a Cauchy sequence on Hk−1(IRD−1).
Then using Lemma 5 , we have that {∂2τφl} is also a Cauchy sequence in
Hk−1(IRD−1). Thus, for k > (D − 1)/2, there exists a real function φ such
that,

(4.32) sup
τ∈[τ0,τ0+T ]

‖∂2τφ‖Hk−1(IRD−1) ≤ C.

The above inequality implies that ∂2τφ ∈ C
(
[τ0, τ0 + T ], Hk−1(IRD−1)

)
.
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Let us consider a fixed point (τ, x) ∈MD. We make a sequance (tl, xl)→
(τ, x), where τ0 ≤ τl, τ ≤ τ0 + T . Now, we have the estimate∣∣∂2τφ(τ, x)− ∂2τφ(τl, xl)

∣∣ ≤ ∣∣∂2τφ(τ, x)− ∂2τφ(τ, xl)
∣∣(4.33)

+
∣∣∂2τφ(τ, xl)− ∂2τφ(τl, xl)

∣∣ .
By Sobolev embedding theorem, for k > (D − 1)/2 we have ∂2τφ to be a con-
tinuous function in x, and thus, the first term on the right hand side vanishes
as l→∞. The second term can be estimated by a constant times ‖∂2τφ(τ, ·)−
∂2τφ(τl, ·)‖Hk−1(IRD−1). Since ∂2τφ ∈ C

(
[τ0, τ0 + T ], Hk−1(IRD−1)

)
, then the

second term also goes to zero as l→∞. Hence, we conclude that, ∂2τφ ∈
C
(
[τ0, τ0 + T ]× IRD−1), thus

(4.34) φ ∈ C2
(
[τ0, τ0 + T ]× IRD−1) .

To show the uniqueness, consider φ, φ′ as solutions of Equation (4.1)
with the same initial data. Similar to the proof of Lemma 4, we have the
estimate

d

dτ
Hk[φ′ − φ] ≤ C‖F (φ′, ∂τφ

′)− F (φ, ∂τφ)‖Hk(IRD−1)‖∂τφ′(4.35)

− ∂τφ‖Hk(IRD−1)

≤ CHk[φ′ − φ].

Using Gronwall lemma and the fact that φ, φ′ have the same initial data, then
for all τ ∈ [τ0, τ0 + T ], we conclude that φ′(τ) = φ(τ) and the uniqueness
follows.

Thus, we have proven,

Theorem 1. Let f ∈ Hk+1(IRD−1) and g ∈ Hk(IRD−1) be initial data with
compact support. Assume that the scalar potential is a smooth function sat-
isfying V (0) = 0 and ∂φV (0) = 0 and that k > (D − 1)/2. Then, there exist
T > 0 and a unique φ ∈ C2

(
[τ0, τ0 + T ]× IRD−1) being a local solution to

the Equation (3.4) such that

(4.36) φ ∈ C
(

[τ0, τ0 + T ], Hk+1(IRD−1)
)
∩ C1

(
[τ0, τ0 + T ], Hk(IRD−1)

)
.

4.2. Smoothness properties

The local solution, which we have discussed above, is

φ ∈ C2
(
[τ0, τ0 + T ], IRD−1)
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throughout their interval of existence. In general, however they are actually
smoother than this. In this section, we prove the smoothness properties of
the solution of equation (4.1).

We claim that the solution is C(m−1) ([τ0, τ0 + T ], IRD−1) for m ≥ 3. We
will prove the statement using the induction argument. For m = 3, the state-
ment is true. Now, assume that it is also true for m = n, Then, we have

(4.37) ∂rτ∂j1∂j2 · · · ∂ji−r−1
φ ∈ C

(
[τ0, τ0 + T ]× IRD−1) ,

where r = 0, 1, . . . , n− 1. For m = n+ 1, we need to prove that the limit of
sequence defined by equations (4.2) and (4.3) satisfies

(4.38) ∂j1∂j2 · · · ∂ji−p
∂pτφ ∈ C

(
[τ0, τ0 + T ]× IRD−1) ,

for p = 0, 1, . . . , n− 1.
Since n+ 1 > 3, using Lemma 5, we have

(4.39) En+1[φl − φl−1] ≤ C,

for some constant C. In other words, we have the estimate

‖∂j(φl − φl−1)(τ, ·)‖Hn+1(IRD−1)(4.40)

+ ‖∂τ (φl − φl−1)(τ, ·)‖Hn+1(IRD−1) ≤ C.

From the first term on the right hand side, we obtain

‖∂j1 · · · ∂jn−1
∂j(φl − φl−1)(τ, ·)‖H2(IRD−1)(4.41)

≤ C‖∂j(φl − φl−1)(τ, ·)‖Hn+1(IRD−1) ≤ C.

Using Sobolev embedding theorem, we conclude

(4.42) ∂j1 · · · ∂jnφ ∈ C
(
[τ0, τ0 + T ]× IRD−1) .

For the second term, using similar methods, we have

(4.43) ∂j1 · · · ∂jn−1
∂τφ ∈ C

(
[τ0, τ0 + T ]× IRD−1) .

Hence, we have shown that Equation (4.38) is satisfied for p = 0 and p = 1.
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From Equation (4.3), we have

, ∂pτ∂j1 · · · ∂ji−p
(φl − φl−1) = ∂p−2τ ∂j1 · · · ∂ji−p

F̂l + ∂p−2τ ∂j1(4.44)

· · · ∂ji−p
∂k∂

k(φl − φl−1)

with

(4.45) F̂l = F (φl, ∂τφl)− F (φl−1, ∂τφl−1).

The first term of Equation (4.44) can be written as

∂p−2τ ∂j1 · · · ∂ji−p
F̂l = −12ξ

τ2
∂p−2τ ∂j1 · · · ∂ji−p

(φl(4.46)

− φl−1)−
4

τ
∂p−1τ ∂j1 · · · ∂ji−p

(φl − φl−1)

− τ4∂p−2τ ∂j1 · · · ∂ji−p
[∂φV (φl)− ∂φV (φl−1)] .

From the induction hypothesis, the first and second terms are

C
(
[τ0, τ0 + T ]× IRD−1) .

To estimate the last term, define

(4.47) G(φl, φl−1) =

∫ 1

0
∂σ∂φV [σφl + (1− σ)φl−1]dσ,

and we have the estimate,

∂p−2τ ∂j1 · · · ∂ji−p

[
G(φl, φl−1)φ̂l−1

]
(4.48)

=
∑

c+d≤i−p

∑
s+t≤p−2

(∂sτ∂j1 · · · ∂jcG)(∂tτ∂jc+1
· · · ∂jc+d

(φl − φl−1)),

for c ≥ 1 and d ≥ 0. Since the scalar potential is a smooth function and Ec[φl]
is bounded for c ≤ n− p by Lemma 3, therefore we can bound (∂sτ∂j1 · · · ∂jcG)
by a constant. Because the last factor is C

(
[τ0, τ0 + T ]× IRD−1) by induc-

tion hypothesis, then ∂p−2τ ∂j1 · · · ∂ji−p
F̂l is also C

(
[τ0, τ0 + T ]× IRD−1), and

we conclude

∂pτ∂j1∂j2 · · · ∂ji−p
φ ∈ C

(
[τ0, τ0 + T ]× IRD−1) ,(4.49)

for p = 0, 1, . . . , n− 1.
Hence, we have proven
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Theorem 2. Let f ∈ Hk+1(IRD−1) and g ∈ Hk(IRD−1) be the initial data
with compact support. Assume that the scalar potential is a smooth function
satisfying V (0) = 0 and ∂φV (0) = 0 and that k > (D − 1)/2. Then, there
exist T > 0 and a unique φ ∈ C(k−1) ([τ0, τ0 + T ]× IRD−1), which is a local
solution to the Equation (3.4), such that

(4.50) φ ∈ C
(

[τ0, τ0 + T ], Hk+1(IRD−1)
)
∩ C1

(
[τ0, τ0 + T ], Hk(IRD−1)

)
.

5. Global existence

5.1. General setup

In Section 4, we proved the existence a unique local solution of Equa-
tion (3.4), i.e.

(5.1)


∂2τφ+ (D − 2)H∂τφ−∆φ

= −ξ(D − 1)
(

2Ḣ + (D − 2)H2
)
φ+ a2∂φV (φ)

φ(τ0, ·) = f ∈ Hk+1(IRD−1)

∂τφ(τ0, ·) = g ∈ Hk(IRD−1).

Here, we show that it is possible to have a set of global solutions of (3.4)
for T → +∞. To proceed, let us define a new field, ψ = a(D−2)/2φ where
a ≡ a(τ, τ0) such that Equation (3.4) can be written down as

(5.2)


∂2τψ −∆ψ = h(τ)ψ + aD∂ψV (ψ)

ψ(0, ·) = a(τ0)
(D−2)/2f

∂τψ(0, ·) = 1
2(D − 2)a(τ0)

(D−4)/2ȧ(τ0)f + a(τ0)
(D−2)/2g,

where

(5.3) h(τ) =

[
1

2
(D − 2)− 2ξ(D − 1)

] [
Ḣ +

D − 2

2
H2

]
.

Note that Equation (5.3) is Riccati’s form of the Hubble parameter H(τ). In
particular, H(τ) could be thought of as a solution of Riccati’s equation, see
for example, [9]. In the rest of the paper we simply take several assumptions
as follows.

Assumption 1. h(τ) ≤ 0 and ∂τh(τ) ≥ 0 for all τ ∈ IR+.
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This assumption follows that h(τ) tends to vanish as τ → +∞. For example,
the function h(τ) may have the form of either −me−nτ or −mτ−n with
m,n ∈ IR+. The latter function for n = 2 could be related to a cosmological
model where the scale factor a(τ) has a polynomial form. This occurs, for
example, in the standard cosmological models discussed in Section 2.

Assumption 2. The scalar potential has the form

(5.4) V (φ) = − ε

p+ 1
φp+1,

with ε is a small positive parameter and p ∈ IR+.

Assumption 3.
∫∞
0 a[D+2−(D−2)p]/2dτ = A(τ0) < +∞ for all τ0 ∈ IR+.

Thus, we can write the differential equation as

(5.5) ∂2τψ −∆ψ = h(τ)ψ + εP (τ, ψ),

where h(τ) is given by (5.3) and P (τ, ψ) = −a[D+2−(D−2)p]/2ψp.
Now, suppose we have the nonhomogenous linear equation

(5.6)


∂2τη −∆η = h(τ)η + P (τ, x)

η(0, ·) = a(τ0)
(D−2)/2f

∂τη(0, ·) = 1
2(D − 2)a(τ0)

(D−4)/2ȧ(τ0)f + a(τ0)
(D−2)/2g,

where h(τ) is given by (5.3) and τ0 > 0 is arbitary real number. First, we
prove the following lemma,

Lemma 6. Let η be a solution of linear Equation (5.6) with compact sup-
port. Let P (τ, x) be a C0

(
IR+, Hk(IRD−1)

)
function such that∫ ∞

0
‖P (s)‖Hk(IRD−1)ds <∞.

If Assumption 1 holds, then we have the following inequality,

sup
τ∈IR+

|η(τ)|k ≤ C
(
‖g‖Hk(IRD−1) + ‖f‖Hk+1(IRD−1) +

∫ ∞
0
‖P (s)‖Hk(IRD−1)ds

)
≤M,(5.7)

where M depends on the initial data, k, h and P .
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Proof. Taking spatial Fourier transform of Equation (5.6), we have

(5.8) ∂2τ η̃ + |λ|2η̃ = h(τ)η̃ + P̃ .

Multipying by ∂τ η̃, integrating over τ and using partial integration, we ob-
tain

|∂τ η̃(τ)|2 + |λ|2|η̃(τ)|2 = |g̃|2 + |λ|2|f̃ |2 + h(τ)|η̃(τ)|2 − h(0)|f̃ |2(5.9)

−
∫ τ

0
∂τh(s)|η̃(s)|2ds+ 2

∫ τ

0
P̃ (s)∂τ η̃(s)ds.

Since we have h(τ) ≤ 0 and ∂τh(τ) ≥ 0 for all τ ∈ IR+, then we have

|∂τ η̃(τ)|2 + |λ|2|η̃(τ)|2 ≤ |g̃|2 + |λ|2|f̃ |2 − h(0)|f̃ |2(5.10)

+ 2

∫ t

0
P̃ (s)∂τ η̃(s)ds.

Multiplying by (1 + λ2)k and integrating over λ-space, we obtain

Hk[η](τ) ≤ C

(
‖g‖2Hk(IRD−1) + ‖f‖2Hk+1(IRD−1)(5.11)

+ 2

∫ τ

0

∫
IRD−1

(1 + λ2)kP̃ (s)∂τ η̃(s)dλds

)
,

where C depends only on k and h. Using Hölder inequality,∫
IRD−1

(1 + λ2)kP̃ (s)|∂τ η̃(s)|2dλ ≤
[∫

IRD−1

(1 + λ2)k|P̃ (s)|2dλ
]1/2

(5.12)

×
[∫

IRD−1

(1 + λ2)k|∂τ η̃(s)|2dλ
]1/2

we have,

Hk[η](τ) ≤ C

(
‖g‖2Hk(IRD−1) + ‖f‖2Hk+1(IRD−1)(5.13)

+ sup
s∈[0,τ ]

‖∂τη(s)‖Hk(IRD−1)

∫ τ

0
‖P (s)‖Hk(IRD−1)ds

)
.
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Let us consider,

∂

∂τ

∫
IRD−1

|η|2dx = 2

∫
IRD−1

η∂τηdx(5.14)

≤ 2‖η‖L2(IRD−1)‖∂τη‖L2(IRD−1)

≤ C‖η‖L2(IRD−1)H
1/2
k [η].

Integrating the inequality, we obtain

‖η(τ)‖2L2(IRD−1) ≤ ‖η(0)‖2L2(IRD−1)(5.15)

+ C

∫ τ

0
‖η(s)‖L2(IRD−1)H

1/2
k [η](s)ds.

Adding up inequalities (5.13) and (5.15) and taking the supremum for τ ∈
IR+ will yield (5.7) and the proof is finished. �

Since ψ = a(D−2)/2φ, by Theorems 1 and 2, there exists a unique local
solution of Equation (5.2). Furthermore, by Lemma (6), for τ ∈ [0, T ] we
have the following inequality,
(5.16)

|ψ(τ)|k ≤ C
(
‖g‖Hk(IRD−1) + ‖f‖Hk+1(IRD−1) +

∫ τ

0
‖P (s, ψ(s))‖Hk(IRD−1)ds

)
.

We show that the result can be extended to T →∞, hence the solution
globally exists.

Similar with proving the local existence, we construct a sequence {ψl(τ)}
such that,

(5.17)


∂2τψ0 −∆ψ0 = h(τ)ψ0 + εP (τ, 0)

∂2τψl+1 −∆ψl+1 = h(τ)ψl+1 + εP (τ, ψl)

ψl(0, ·) = a(D−2)/2f

∂τψl(0, ·) = 1
2(D − 2)a(τ0)

(D−4)/2ȧ(τ0)f + a(D−2)/2g,

We show by induction that there exists a positive constant ε0 such that for
0 < ε < ε0, we have

sup
τ∈IR+

|ψl(τ)|k ≤M(5.18)

sup
τ∈IR+

|ψl+1(τ)− ψl(τ)|k ≤ κ sup
τ∈IR+

|ψl(τ)− ψl−1(τ)|k,(5.19)
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for some positive constant κ ∈ (0, 1). For l = 0, the inequalities are true due
to Lemma 6. Assume that these are true for l = n, thus similar to the proof
of Lemma 1, we have

‖P (τ, ψn(τ))‖Hk(IRD−1) ≤ Ca[D+2−(D−2)p]/2‖ψn(τ)‖Hk+1(IRD−1)(5.20)

≤ Ca[D+2−(D−2)p]/2|ψn(τ)|k
≤ CMa[D+2−(D−2)p]/2

Then, from (5.7) we obtain

sup
τ∈IR+

|ψn+1(τ)|k ≤ C0

(
‖gn+1‖Hk(IRD−1) + ‖fn+1‖Hk+1(IRD−1)(5.21)

+ ε

∫ ∞
0
‖P (s, ψn(s))‖Hk(IRD−1)ds

)

= C0

(
L+ εCM

∫ ∞
0

a[D+2−(D−2)p]/2ds

)
≤ C0 (L+ εCMA(τ0)) .

Defining ε0 = (M − C0L)/C0CMA(τ0), it implies

(5.22) sup
τ∈IR+

|ψn+1(τ)|k ≤M,

and, hence the inequality (5.18) holds for all nonnegative integers.
Similar to the proof of Lemma 4, we have

‖P (τ, ψl(τ))− P (τ, ψl−1(τ))‖Hk(IRD−1)(5.23)

≤ Ca[D+2−(D−2)p]/2|ψl(τ)− ψl−1(τ)|k,

which follows that

sup
τ∈IR+

|ψl+1(τ)− ψl(τ)|k ≤ C0ε

∫ ∞
0
‖P (s, ψl(s))− P (s, ψl−1(s))‖Hk(IRD−1)ds

≤ C0Cε

∫ ∞
0

a[D+2−(D−2)p]/2|ψl(τ)− ψl−1(τ)|kds

≤ C0CεA(τ0) sup
τ∈IR+

|ψl(τ)− ψl−1(τ)|k.(5.24)

This inequality proves that {ψl} converges to ψ ∈ C
(
IR+, Hk+1(IRD−1)

)
.

Furthermore, similar to the proof of local existence, we conclude that there
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exists a unique global solution of Equation (5.5) such that

ψ ∈ C2
(

IR+, Hk+1(IRD−1)
)

and sup
τ∈IR+

|ψ(τ)| ≤M.

Hence, we have proven,

Theorem 3. Let f ∈ Hk+1(IRD−1) and g ∈ Hk(IRD−1) be the initial data
with compact support for k > (D − 1)/2. Suppose that Assumptions 1–3.
hold. For any positive constant M that depends on the initial data, k and
τ0, there exists a positive number ε0 that also depends on the initial data, k
and τ0, such that for any 0 < ε < ε0, Equation (3.4) admits unique classical
global solutions

(5.25) φ ∈ C
(

[τ0,∞], Hk+1(IRD−1)
)
∩ C1

(
[τ0,∞], Hk(IRD−1)

)
,

satisfying the following decay estimate
(5.26)

‖φ(τ)‖Hk+1(IRD−1) +
1

2
(D − 2)

∥∥∥∥ ȧaφ(τ) + ∂τφ(τ)

∥∥∥∥
Hk(IRD−1)

≤Ma−(D−2)/2,

where a ≡ a(τ, τ0).

6. Some models

In this section, we consider some specific models related to the scale factor
a(τ). These models may have a global regular solution in the sense of our
setup in the preceding section.

6.1. Power form

First, let us take the scale factor a(τ) to be of the form

(6.1) a(τ) = (τ + τ0)
α,

where α is a real constant. In particular, for a single component universe
the constant α is given by

(6.2) α =
2

(D − 1)(w + 1)− 2
,
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where w 6= −(D − 3)/(D − 1) is related to the equation of state discussed
in Section 2. Thus we have,

(6.3) h(τ) =
α

(τ + τ0)2

[
1

2
(D − 2)− 2ξ(D − 1)

] [
−1 +

α(D − 2)

2

]
In Table 2 we list four cases single component of higher dimensional cosmo-
logical models where Assumptions 1 and 3 are fulfilled.

Case I α < 0 w < −D−3
D−1 ξ > D−2

4(D−1) p < 1
D−2

(
D + 2− 2

|α|

)
Case II 0 < α < 2

D−2 w > 1
D−1 ξ < D−2

4(D−1) p > 1
D−2

(
D + 2 + 2

α

)
Case III α > 2

D−2 −D−3
D−1 < w < 1

D−1 ξ > D−2
4(D−1) p > 1

D−2
(
D + 2 + 2

α

)
Case IV α = 2

D−2 w = 1
D−1 ξ ∈ IR p > 2D

D−2

Table 2: Four cases in a single component higher dimensional universe.

Moreover, it is of interest to consider, for examples, the standard cos-
mology in four dimensions as listed in Table 3.

Matter Dominated w = 0 α = 2 ξ > 1
6 p > 7

2

Λ-Dominated w = −1 α = −1 ξ > 1
6 p < 2

Radiation Dominated w = 1
3 α = 1 ξ ∈ IR p > 4

Table 3: Three cases in a single component four dimensional universe.

6.2. Exponential form

Finally, we take a case where the scale factor a(τ) has the form

(6.4) a(τ) = eα(τ+τ0),

with α ∈ IR+. This exponential form is related to the single component uni-
verse for w = −(D − 3)/(D − 1). Then we have

(6.5) h(τ) =
α2(D − 2)

2

[
1

2
(D − 2)− 2ξ(D − 1)

]
.
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In order to satisfy Assumptions 1 and 3, we should have w = −D−3
D−1 , ξ >

D−2
4(D−1) , and p > D+2

D−2 .
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