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1. Introduction

The fermionic signature operator introduced in [11, 12] provides a setting of
spectral geometry in Lorentzian signature [7] and has been proven useful for
constructing quasi-free Dirac states in globally hyperbolic space-times [6, 8].
In all known examples, the resulting so-called fermionic projector state re-
spects the symmetries of space-time. The present paper is devoted to a
systematic study of the general relationship between space-time symmetries
and symmetries of the fermionic signature operator. We also study the sym-
metry properties of the resulting generalized fermionic projector states.
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MAT-ANA/1275/2014 and UID/MAT/04459/2013.

1907



✐

✐

“3-Finster” — 2019/7/2 — 0:12 — page 1908 — #2
✐

✐

✐

✐

✐

✐

1908 F. Finster and M. Reintjes

We describe space-time symmetries by a Lie group G which acts locally
as isomorphisms Φ of the spinor bundle SM (see Section 3.1). Considering
such local actions has the advantage that they can be obtained from Killing
symmetries in a straightforward manner (see Section 5.1). The only condi-
tion needed is that the Killing fields are complete (see Definition 5.2). We
construct a strongly continuous action of G represented by unitary operators
on the Hilbert space of Dirac solutions (Theorem 3.8). The corresponding
Lie symmetries are represented by essentially self-adjoint operators acting
on the smooth and spatially compact solutions (Theorem 3.9). Both the lo-
cal representation of the group and the representation of the Lie algebra on
the solution space commute with the fermionic signature operator (see The-
orems 3.6, 3.7 and 3.9), except for a minus sign which appears if the time
orientation is reversed. Moreover, the resulting generalized fermionic pro-
jector states are invariant under the symmetry transformations, again up to
signs (Theorem 4.1 and Corollary 4.3). As applications we consider Killing
symmetries and discrete symmetries (Section 5). The paper concludes with
a discussion of several examples (Section 6).

2. Preliminaries

2.1. Lorentzian spin geometry

Let (M, g) be a smooth, globally hyperbolic, time-oriented Lorentzian spin
manifold of dimension k ≥ 2. For the signature of the metric we use the con-
vention (+,−, . . . ,−). We denote the corresponding spinor bundle by SM.
Its fibers SpM are endowed with an inner product ≺.|.≻p of signature (n, n)
with n = 2[k/2]−1 (where [.] is the Gauß bracket; for details see [2, 16]), which
we refer to as the spin scalar product. Clifford multiplication is described
by a mapping γ which satisfies the anti-commutation relations,

γ : TpM → L(SpM) with γ(u) γ(v) + γ(v) γ(u) = 2 g(u, v) 11Sp(M).

We also write Clifford multiplication in components with the Dirac matri-
ces γj . The metric connections on the tangent bundle and the spinor bundle
are denoted by ∇. The sections of the spinor bundle are also referred to as
wave functions.

In order to include the situation when an external potential is present,
we introduce a multiplication operator B(p) ∈ L(SpM), which we assume to
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be smooth and symmetric with respect to the spin scalar product,

(2.1) B ∈ C∞(M,L(SM)) with ≺Bφ|ψ≻p = ≺φ|Bψ≻p ∀φ, ψ ∈ SpM.

2.2. The Dirac operator and inner products on wave functions

We denote the smooth sections of the spinor bundle by C∞(M, SM). Sim-
ilarly, C∞

0 (M, SM) are the smooth sections with compact support. On the
wave functions, one has the Lorentz invariant inner product

<.|.> : C∞(M, SM)× C∞

0 (M, SM) → C,

<ψ|φ> =

ˆ

M

≺ψ|φ≻p dµM.

The Dirac operator D is defined by

(2.2) D := iγj∇j +B : C∞(M, SM) → C∞(M, SM).

For a given real parameter m ∈ R (the “mass”), the Dirac equation reads

(D −m)ψm = 0.

For clarity, we always denote solutions of the Dirac equation by a sub-
script m. We mainly consider solutions in the class C∞

sc (M, SM) of smooth
sections with spatially compact support. On such solutions, one has the
scalar product

(2.3) (ψm|φm)m = 2π

ˆ

N

≺ψm | γ(ν)φm≻p dµN(p),

where N denotes any Cauchy surface and ν its future-directed normal (due
to current conservation, the scalar product is in fact independent of the
choice of N ; for details see [11, Section 2]). Forming the completion gives
the Hilbert space (Hm, (.|.)m). It will be convenient to use the short notation

H
∞

m := Hm ∩ C∞

sc (M, SM).

2.3. The fermionic signature operator in finite lifetime

We now recall the construction of the fermionic signature operator in [11],
which applies in particular to space-times of finite life-time. We here consider
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1910 F. Finster and M. Reintjes

a slightly more general setting which also applies to certain space-times
involving horizons like the Rindler space-time [9].

Definition 2.1. The manifold (M, g) is said to be weakly m-finite if for
every φm ∈ H∞

m , there is a constant c(φm) > 0 such that for all ψm ∈ H∞

m ,
the function ≺ψm|φm≻p is integrable on M and

(2.4) |<ψm|φm>| ≤ c ‖ψm‖m.

Under this assumption, the Fréchet-Riesz theorem gives rise to a unique
densely defined operator

Sm : H∞

m → Hm

with the property

<ψm|φm> = (ψm | Sm φm)m for all ψm ∈ Hm,

referred to as the fermionic signature operator. We remark that the no-
tion ofm-finiteness in [11] instead of (2.4) imposes the stronger assumption

(2.5) |<ψm|φm>| ≤ c ‖φm‖m ‖ψm‖m.

This inequality holds in every space-time of finite lifetime. It implies that
the fermionic signature operator is bounded and can thus be extended to all
of Hm.

2.4. The fermionic signature operator in infinite lifetime

In a space-time of infinite life time [12], one studies families of solutions.
More precisely, we consider the mass parameter in a bounded open inter-
val, m ∈ I := (mL,mR) with 0 6∈ I. By C∞

sc,0(M × I, SM) we denote the
smooth wave functions with spatially compact support which are also com-
pactly supported in I. We often denote the dependence on m by a sub-
script, ψm(p) := ψ(p,m). On families of solutions in C∞

sc,0(M × I, SM), for
any fixed m we can take the scalar product (2.3). We introduce a scalar
product on families of solutions by integrating over the mass parameter,

(ψ|φ) :=
ˆ

I
(ψm|φm)m dm
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(where dm is the Lebesgue measure). Forming the completion gives the
Hilbert space (H, (.|.)). We denote the norm on H by ‖.‖. Moreover, we set

H
∞ := H ∩ C∞

sc,0(M × I, SM).

We introduce T as the operator of multiplication by the mass parameter,

T : H → H, (Tψ)m = mψm.

Integrating over m gives the operation

p : H∞ → C∞

sc (M, SM), pψ =

ˆ

I
ψm dm.

Definition 2.2. The Dirac operator D has the weak mass oscillation
property in the interval I ⊂ R with domain H∞ if the following conditions
hold:

(a) For every ψ, φ ∈ H∞, the function ≺pφ|pψ≻ is integrable on M. More-
over, for any ψ ∈ H∞ there is a constant c(ψ) such that

|<pψ|pφ>| ≤ c ‖φ‖ ∀ φ ∈ H
∞.

(b) For all ψ, φ ∈ H∞,

<pTψ|pφ> = <pψ|pTφ>.

This definition specifies the minimal requirements needed for the con-
struction of the fermionic projector. More precisely, under these assump-
tions, the Fréchet-Riesz theorem gives rise to a densely defined symmetric
operator S acting on families of solutions defined by

(2.6) S : H∞ → H, (Sψ|φ) = <pψ|pφ> ∀ φ ∈ H.

This operator is shown to commute with T . After constructing the Friedrichs
extension of S2, the spectral theorem for commuting operators gives rise
to a joint spectral measure dEρ,m of the commuting operators S2 and T .
For the technical details of these constructions we refer to [12, Section 3].
This spectral measure makes it possible to define the fermionic signature
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operator dSm as an operator-valued measure by

(2.7)

ˆ

I
η(m) dSm :=

ˆ

σ(S2)×I
η(m) S dEρ,m

(for any test function η ∈ C0(I)). This formula also makes it possible to
introduce a functional calculus for Sm in a straightforward way by

ˆ

I
η(m) dW (Sm)

:=

ˆ

σ(S2)×I
η(m)

[

W
(√
ρ
) (

S+
√
ρ
)

+W
(

−√
ρ
)(

− S+
√
ρ
)

]dEρ,m

2
√
ρ
,

where W is a bounded Borel function.
In order to construct the fermionic signature operator Sm pointwise for

any m ∈ I, one needs a stronger assumption:

Definition 2.3. The Dirac operator D has the strong mass oscillation
property in the interval I = (mL,mR) with domain H∞ if there is a con-
stant c > 0 such that

|<pψ|pφ>| ≤ c

ˆ

I
‖φm‖m ‖ψm‖m dm for all ψ, φ ∈ H

∞.

The following theorem is proved in [12, Theorem 4.2, Proposition 4.3 and
Theorem 4.7]:

Theorem 2.4. Assume that the Dirac operator D has the strong mass os-
cillation property in the interval I = (mL,mR). Then there exists a family of
self-adjoint linear operators (Sm)m∈I with Sm ∈ L(Hm) which are uniformly
bounded,

sup
m∈I

‖Sm‖ <∞,

such that

(2.8) <pψ|pφ> =

ˆ

I
(ψm | Sm φm)m dm for all ψ, φ ∈ H

∞.

The operator Sm is uniquely determined for every m ∈ I by demanding that
for all ψ, φ ∈ H∞, the functions (ψm|Smφm)m are continuous in m. More-
over, the operator Sm is the same for all choices of I containing m.
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2.5. Quasi-free Dirac fields and generalized fermionic
projector states

We now explain the connection to quantum field theory as worked out in [8].
Assume that the fermionic signature operator is bounded (as is the case if
space-time is strongly m-finite or if the strong mass oscillation property
holds). Then the fermionic projector P is introduced as the operator (for
details see [11, Section 3] and [12, Section 4.2])

(2.9) P = −χ(−∞,0)(Sm) km : C∞

0 (M, SM) → Hm,

where km is the causal fundamental solution defined as the difference of the
advanced and retarded Green’s operators,

km :=
1

2πi

(

s∨m − s∧m
)

: C∞

0 (M, SM) → H
∞

m .

The fermionic projector P can be written as an integral operator involving a
uniquely determined distributional kernel P ∈ D′(M × M), i.e. (for details
see [11, Section 3.5])

(2.10) <φ|Pψ> = P
(

φ⊗ ψ
)

for all φ, ψ ∈ C∞

0 (M, SM).

A main application of our constructions is that the projection opera-
tor χ(−∞,0)(Sm) gives rise to a distinguished quasi-free ground state of the
second-quantized Dirac field with the property that the two-point distribu-
tion coincides with the kernel of the fermionic projector. Indeed, applying
Araki’s construction in [1] gives the following result (see [8, Theorem 1.4]):

Theorem 2.5. There is an algebra of smeared fields generated by Ψ(g),
Ψ∗(f) together with a pure quasi-free state ω with the following properties:

(a) The canonical anti-commutation relations hold:

{Ψ(g),Ψ∗(f)} = <g∗ | km f>, {Ψ(g),Ψ(g′)} = 0 = {Ψ∗(f),Ψ∗(f ′)}.

(b) The two-point distribution of the state is given by

ω
(

Ψ(g)Ψ∗(f)
)

= −
¨

M×M

g(p)P(p, q)f(q) dµM(q) dµM(y).

The state ω is referred to as the fermionic projector state (or FP state) [6].
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We finally note that, using the functional calculus, for any non-negative
bounded Borel function W we obtain in generalization of (2.9) the operator

(2.11) PW := −W (Sm) km : C∞

0 (M, SM) → Hm,

which can again be represented according to (2.10) as an integral operator
with a kernel PW ∈ D′(M × M). Again using Araki’s construction (this time
for the positive operator W (Sm)) gives a corresponding quasi-free state. In
this way, the fermionic signature operator gives rise to a whole class of dis-
tinguished quasi-free states, which we refer to as generalized fermionic pro-
jector states. As shown in [9, Section 11] in the example of two-dimensional
Rindler space-time, this makes it possible to obtain thermal states from the
fermionic signature operator.

3. Symmetries of the fermionic signature operator

3.1. Symmetries of space-time

Let G be a Lie group (possibly non-compact, of finite dimension d ≥ 0, where
the case d = 0 is a discrete group). In view of our applications, we want to
allow for the possibility that G acts only locally as a symmetry group. To this
end, let U ⊂ G be an open neighborhood of the neutral element e ∈ G (by
choosing U = G, one recovers standard group actions). To every group ele-
ment h ∈ U we want to associate an isomorphism of the spinor bundle SM.
Moreover, these isomorphisms should be compatible with the group oper-
ations, whenever the group multiplication stays in U . In order to have the
inverse element to our disposal, we assume that the implication

(3.1) g ∈ U =⇒ g−1 ∈ U

holds. This property can always be arranged by intersecting U with the
set {g−1 | g ∈ U}. This leads us to the following definition:

Definition 3.1. Let U ⊂ G be an open neighborhood of e with the prop-
erty (3.1). Moreover, let Φ be a smooth mapping

Φ ∈ C∞
(

SM × U , SM
)

with the following properties:
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(i) Φ is compatible with the local group operations, i.e.

(3.2) Φg ◦ Φh = Φgh for all g, h ∈ U with gh ∈ U ,

where Φg := Φ(., g). In view of (3.1), this implies that Φg is a diffeo-
morphism on SM and that Φe = idSM.

(ii) Φ is compatible with the bundle projection π, meaning that the follow-
ing diagram commutes:

(3.3)

Φ : SM × U −→ SM

π




y
π




y

M × U −→ M

(iii) The mapping f : M × U → M defined by the lowest line of this com-
mutative diagram is a family of isometries, i.e.

(3.4) (fh)
∗g = g for all h ∈ U .

(iv) Φ is compatible with Clifford multiplication and preserves the spin
scalar product up to a sign, i.e.

γ
(

(fh)∗u
)

= Φh γ(u) Φ
−1
h and ≺Φhψ |Φhφ≻f(p) = ǫ(h)≺ψ|φ≻p,

valid for all h ∈ U , u ∈ TpM and ψ, φ ∈ SpM. Here ǫ(h) is defined by

ǫ(h) =

{

1
−1

}

if fh

{

preserves
reverses

}

the time orientation.

(v) Φ describes a symmetry of the external potential B, i.e.

B
(

fh(p)
)

= Φh B(p) Φ−1
h .

We refer to Φ as a local group of isomorphisms of the spinor bun-
dle SM.

For clarity, we here explain our notation: Suppose that fh maps the
space-time point p to q. Then the lower star is the usual derivative, i.e.

(fh)∗
∣

∣

p
= Dfh

∣

∣

p
: TpM → TqM.

The upper star denotes the pull-back defined by the identity

(

(fh)
∗g
)

p
(u, v) = gq

(

(fh)∗u, (fh)∗v
)

.
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We also note for clarity that, as a consequence of the commutativity of the
diagram (3.3), also f is compatible with the group operations, i.e.

(3.5) fg ◦ fh = fgh for all g, h ∈ U with gh ∈ U .

Again using (3.1), this implies that fg is a diffeomorphism on M and that
fe = idM.

3.2. Unitary symmetries on Hilbert spaces of Dirac solutions

Throughout this section, we fix a group element h ∈ U .

Lemma 3.2. The diffeomorphism fh maps Cauchy surfaces to Cauchy sur-
faces.

Proof. Recall that a Cauchy surface in a globally hyperbolic space-time is
defined to be a subset with the property that any non-extendible causal
curve intersects the set exactly once (see for example [3, p. 62]). Being an
isometry of M, the mapping fh clearly maps inextendible causal curves
to inextendible causal curves. Since fh is invertible, a curve γ intersects a
subset N ⊂ M if and only if fh(γ) intersects fh(N). This concludes the
proof. �

Lemma 3.3. Let ψm ∈ C∞(M, SM) be a solution of the Dirac equation.
Then the push-forward (Φh)∗ψ ∈ C∞(M, SM) defined by

(3.6)
(

(Φh)∗ψ
)(

fh(p)
)

:= Φh

(

ψ(p)
)

is again a solution of the Dirac equation.

Proof. It follows immediately from Definition 3.1 (iii)–(v) and (2.2) that the
Dirac operator is invariant under the symmetry transformations. Therefore,
solutions are mapped to solutions. �

Lemma 3.4. The push-forward (Φh)∗ maps the following solution spaces
to each other,

(Φh)∗ : H
∞

m → H
∞

m .

Moreover, this mapping is bijective and preserves the scalar product (.|.)m.

Proof. Let ψm ∈ H∞

m . In view of the unique solvability of the Cauchy prob-
lem, ψm is determined by its initial data ψm|N ∈ C∞

0 (N , SM) on a Cauchy
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surface N . By Lemma 3.2, the transformed set fh(N) is again a Cauchy
surface. Moreover, as the mapping (3.6) maps compact sets to compact
sets, the restriction of the transformed wave function (Φh)∗ψm to the trans-
formed Cauchy surface is again compact. Moreover, since (Φh)∗ψm is again
a solution of the Dirac equation (see Lemma 3.3), it follows from the unique
solvability of the Cauchy problem for initial data on the transformed Cauchy
surface that (Φh)∗ψm again has spatially compact support.

In order to show that the scalar product is preserved, we make use of
the fact that it can be computed on any Cauchy surface. Hence

(ψm|φm)m =

ˆ

N

≺ψm | γ(ν)φm≻p dµN(p)

(∗)
=

ˆ

fh(N)
≺(Φh)∗ψm | γ(ν) (Φh)∗φm≻q dµfh(N)(q)

=
(

(Φh)∗ψm

∣

∣(Φh)∗φm
)

m
,

where in (∗) we used that Φh preserves the Lorentzian metric and the spin
scalar product (see Definition 3.1 (iii) and (iv)). If fh reverses the time ori-
entation, then both the spin scalar product and the future-directed normal ν
change their signs, so that (∗) again holds. This completes the proof. �

In view of this result, we can uniquely extend the operator (Φh)∗ by con-
tinuity to a unitary mapping on Hm. For notational clarity, we denote this
operator by Uh

m,

(3.7) Uh
m := (Φh)∗ : Hm → Hm unitary.

The above construction can immediately be extended to families of so-
lutions, simply by carrying it out pointwise for each m ∈ I. This gives the
following result:

Lemma 3.5. The push-forward (Φh)∗ maps the following spaces of families
of solutions to each other,

(Φh)∗ : H
∞ → H

∞.

Moreover, this mapping is bijective and preserves the scalar product (.|.). It
uniquely extends by continuity to a unitary operator on families of solutions,

Uh := (Φh)∗ : H → H unitary.
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The operator Uh acts pointwise in m and commutes with T ,

(3.8)
(

Uhψ
)

m
= Uh

m ψm and TUh = UhT.

3.3. Symmetries of the fermionic signature operator

Theorem 3.6. Assume that (M, g) is weakly m-finite (see Definition 2.1).
Then, up to a sign, the fermionic signature operator is invariant under the
symmetry transformation, meaning that for every h ∈ U ,

(3.9) (Uh
m)∗ Sm Uh

m = ǫ(h) Sm.

Proof. For any ψm, φm ∈ Hm,

(ψm | Sm φm)m = <ψm|φm>
(∗)
= ǫ(h)<(Φh)∗ψm | (Φh)∗φm> = ǫ(h)

(

(Φh)∗ψm | Sm (Φh)∗φm
)

m

(3.7)
= ǫ(h)

(

Uh
mψm | Sm Uh

mφm
)

m
= ǫ(h)

(

ψm | (Uh
m)∗ Sm U

h
mφm

)

m
,

where in (∗) we used that Φh keeps the integration measure unchanged and
preserves the spin scalar product up to a sign. �

Theorem 3.7. Assume that (M, g) satisfies the weak mass oscillation prop-
erty (see Definition 2.2). Then, up to a sign, the operator S defined by (2.6)
is invariant under the symmetry transformation, i.e.

(3.10) (Uh)∗ S Uh = ǫ(h) S.

Moreover, the operator-valued measure dSm in (2.7) is invariant up to a
sign,

(3.11) (Uh)∗ dSm Uh = ǫ(h) dSm.

If (M, g) satisfies the strong mass oscillation property (see Definition 2.3),
then the fermionic signature operators are all invariant up to a sign, i.e.

(3.12) (Uh
m)∗ Sm Uh

m = ǫ(h) Sm for all m ∈ I.
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Proof. For any ψ, φ ∈ H∞,

(ψ | Sφ) = <pψ|pφ>

= ǫ(h)<(Φh)∗ pψ|(Φh)∗ pφ>
(∗)
= ǫ(h)<p (Φh)∗ψ | p (Φh)∗φ>

= ǫ(h)
(

(Φh)∗ψ | S (Φh)∗φ
)

= ǫ(h)
(

Uhψ | SUhφ
)

= ǫ(h)
(

ψ | (Uh)∗ SUhφ
)

,

giving (3.10). Here the only major difference to the proof of Theorem 3.6
is that in (∗) we used that the transformation Φh is independent of m and
therefore trivially commutes with p. The relation (3.11) follows from the
definition (2.7) and the fact that Uh commutes with T .

If the strong mass oscillation property holds, (3.12) follows from the
computation

Smψm =
(

Sψ
)

m
= ǫ(h)

(

(Uh)∗ SUhψ
)

m
= ǫ(h) (Uh

m)∗ Sm U
h
mψm,

where we used that both Uh and S act on H pointwise for every m ∈ I
(see (3.8) and (2.8)). �

3.4. Strongly continuous unitary representations of the
symmetry group

Varying the group element h, we obtain a mapping

(3.13) Um : U → L(Hm), h 7→ Uh
m

(with Uh
m as defined in (3.7)).

Theorem 3.8. The mapping (3.13) is a local unitary representation of G
which is strongly continuous, i.e.

lim
h→g

∥

∥Uh
mψm − Ug

mψm

∥

∥

m
= 0 for all ψm ∈ Hm.

Proof. From the compatibility with the group operations (3.2) and (3.5) it is
straightforward to verify that Um is a local group representation. Moreover,
in view of (3.7) this representation is obviously unitary. Therefore, it remains
to show strong continuity. To this end, let h(τ) for τ ∈ (−δ, δ) and δ > 0 be
a smooth curve in U with h(0) = e. Using the group properties, it suffices

to show strong continuity of U
h(τ)
m at τ = 0.
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K0 N

suppψm

Kτ := suppψm ∩ Nτ

Nτq = f−1
h(τ)(p)

p
fτ

f−1
τ

Figure 1: Strong continuity for wave functions with spacelike compact sup-
port.

Our first step is to prove this strong continuity for smooth and spatially
compact solutions, i.e.

(3.14) lim
τ→0

∥

∥Uh(τ)
m ψm − ψm

∥

∥

m
= 0 for all ψm ∈ H

∞

m .

To this end, given ψm ∈ H∞

m and a Cauchy surface N , we set

Nτ = f−1
h(τ)N .

Moreover, we define the compact sets

Kτ = suppψm ∩ Nτ .

For a point p ∈ N we denote the corresponding point on Nτ by q = f−1
h(τ)p.

These notions are illustrated in Figure 1. According to (3.7) and (3.6),

(

Uh(τ)
m ψm − ψm

)

(p) =
(

(Φh(τ))∗ψm − ψm

)

(p)(3.15)

= Φh(τ)

(

ψm(q)
)

− ψm(p).

Integrating over the Cauchy surface N , we obtain for the norm correspond-
ing to the scalar product (2.3)

1

4π2
∥

∥Uh(τ)
m ψm − ψm

∥

∥

2

m
=

ˆ

N

∥

∥

∥
Φh(τ)

(

ψm

(

f−1
τ (p)

)

)

− ψm(p)
∥

∥

∥

2

p
dµN(p),

where the norm in the integrand denotes the pointwise norm on spinors

‖ψ‖p =
(

≺ψ | γ(ν)ψ≻p

)
1

2 .

Since all mappings as well as the wave function ψm are smooth, the inte-
grand obviously tends to zero pointwise as τ → 0. Moreover, the integrand
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is supported in the set

K0 ∪ fτ
(

Kτ

)

⊂ N ,

and it is bounded pointwise by

sup
p∈N, q∈Nτ

(

‖ψm(p)‖p + ‖ψm(q)‖q
)2
.

Using that all transformations are smooth and that the speed of propagation
is finite, the integrand is bounded and has compact support, both uniformly
for τ ∈ [−δ/2, δ/2]. Therefore, we may take the limit τ → 0 with the help of
Lebesgue’s dominated convergence theorem to obtain (3.14).

In order to extend the strong continuity to all of Hm, we use a standard
3ε-argument: Given ε > 0 and φm ∈ Hm, we choose ψm ∈ H∞

m with ‖ψm −
φm‖m < ε. Then

∥

∥Uh(τ)
m φm − φm

∥

∥

m
≤

∥

∥Uh(τ)
m

(

φm − ψm

)
∥

∥

m
+
∥

∥Uh(τ)
m ψm − ψm

∥

∥

m

+
∥

∥ψm − φm
∥

∥

m

< 2ε+
∥

∥Uh(τ)
m ψm − ψm

∥

∥

m
→ 2ε,

where we used that U
h(τ)
m is unitary and took the limit τ → 0 using (3.14).

Since ε is arbitrary, the result follows. �

3.5. Lie algebra representations and commutators

We denote the Lie algebra corresponding to G by g = TeG. Given an ele-
ment x ∈ g the exponential map gives a one-parameter subgroup of G, which
we denote by

(3.16) hx(τ) := expe(τx).

Theorem 3.9. The following statements hold:

(i) For any x ∈ g and ψm ∈ H∞

m , the derivative

(3.17) Xψm := −i d
dτ

(

Uhx(τ)
m ψm

)
∣

∣

∣

τ=0

exists in Hm and defines a linear operator

(3.18) X : H∞

m → H
∞

m .
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Considered as a densely defined operator on Hm with domain H∞

m , this
operator is essentially self-adjoint.

(ii) The mapping x 7→ X is a representation of the Lie algebra g on H∞

m .

(iii) The following weak commutation relations hold,

(3.19) (Xψm | Smφm)m = (Smψm |Xφm)m for all ψm, φm ∈ H
∞

m .

Moreover, if Sm has a self-adjoint extension, then the operators X
and Sm commute in the sense that their spectral measures commute
(see [18, p. 271]).

(iv) In the setting of the weak mass oscillation property, the spectral mea-
sure dEρ,m in (2.7) commutes with the spectral measure of the oper-
ator X (where X acts on H∞ pointwise in the mass, i.e. (Xψ)m :=
X ψm). Moreover, the following weak commutation relations hold,

(Xψ | Sφ) = (Sψ |Xφ) for all ψ, φ ∈ H
∞.

Finally, if S has a self-adjoint extension, then the operators X and S

commute in the sense that their spectral measures commute.

For clarity, we note that the assumption in (iii) that Sm must have a self-
adjoint extension is obviously satisfied if Sm is a bounded operator. This
is the case if either space-time is m-finite (see (2.5)) or if the strong mass
oscillation property holds (see Definition 2.3). If space-time is only weakly
m-finite (see Definition 2.1), the resulting fermionic signature operator Sm

is only symmetric. In this case, in order to obtain strong commutation rela-
tions, one must first construct a self-adjoint extension of Sm (as is done in
Rindler space-time in [9, Section 8]). Similarly, if only the weak mass oscil-
lation property holds, the operator S defined by (2.6) is only symmetric.

Before entering the proof, we remark that, knowing from Theorem 3.8
that Uhx(τ) is a strongly continuous one-parameter group, Stone’s theorem
(see for example [18, Theorem VIII.8]) implies that there is a self-adjoint
generator, i.e.

Uhx(τ) = eiτX with X : D(Hm) ⊂ Hm → Hm self-adjoint.

However, this abstract result does give explicit information on the domain.
In particular, Stone’s theorem does not yield that the domain contains the
subset H∞

m ⊂ D(Hm), nor that this subspace is mapped to itself. For this
reason, we here prefer to use Chernoff’s method [5].
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Lemma 3.10. For any x ∈ g, the derivative (3.17) exists and is in H∞

m .

Proof. We fix x ∈ g and denote the one-parameter subgroup (3.16) for sim-
plicity by h(τ). Given ψm ∈ H∞

m , we know from (3.15) that on a Cauchy
surface N ,

(

Uh(τ)
m ψm − ψm

)

(p) = Φh(τ)

(

ψm

(

f−1
τ (p)

)

)

− ψm(p).

Since all transformations as well as the wave function ψm is smooth, for
any p ∈ N the τ -derivative exists,

(3.20)
d

dτ

(

Uh(τ)
m ψm

)

(p) =
d

dτ
Φh(τ)

(

ψm

(

f−1
τ (p)

)

)

.

Moreover, these derivatives are bounded uniformly in τ ∈ [−δ/2, δ/2], lo-
cally uniformly in p ∈ N . Exactly as in the proof of Theorem 3.8, one
sees that the support of the function in (3.20) is compact, again uniformly
in τ ∈ [−δ/2, δ/2]. Therefore, we may apply Lebesgue’s dominated conver-
gence theorem to the difference quotient to conclude that the τ -derivative
exists in Hm. Differentiating the Dirac equation

(D −m)
(

Uh(τ)
m ψm

)

= 0

with respect to τ , we know furthermore that the derivative is again a so-
lution. Since the resulting derivative (3.20) is obviously smooth and has
compact support on N , this solution is in H∞

m . This concludes the proof. �

Lemma 3.11. For any x ∈ g, the operator X in (3.18) is essentially self-
adjoint on Hm.

Proof. From Lemma 3.4 we know that Uh(τ) maps H∞

m to itself. Moreover,
using the group property,

Uh(s)
m Uh(τ)

m ψm = Uh(s+τ)
m ψm = Uh(τ)

m Uh(s)
m ψm,

and differentiating the left and right with respect to τ at τ = 0 gives

Uh(s)
m X ψm = X Uh(s)

m ψm,

showing that the operators U
h(s)
m and X commute on H∞

m . Now we can apply
the result by Chernoff [5, Lemma 2.1] to conclude the proof. �
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Proof of Theorem 3.9. The previous two lemmas prove part (i) of Theo-
rem 3.9. In order to prove (ii), given x, y ∈ g, the group properties imply
that for every ψm ∈ H∞

m and all τ ∈ R with sufficiently small |τ |,
(

Uhx(τ)
m

)

−1 (
Uhy(τ)
m

)

−1
Uhx(τ)
m Uhy(τ)

m ψm = Uhx(τ)−1 hy(τ)−1 hx(τ) hy(τ)
m ψm.

In view of (3.17) we may differentiate twice with respect to τ at τ = 0. On
the left side, this gives the commutator of operators −2[X,Y ]. On the right
side, on the other hand, we may use the Lie algebra relation

hx(τ)
−1 hy(τ)

−1 hx(τ) hy(τ) = h[x,y](τ
2) + O

(

τ3
)

(which can be verified for example by using the Baker-Campbell-Hausdorff
formula) to obtain 2iZ, where Z is the operator corresponding to the com-
mutator z = [x, y] ∈ g. We thus obtain the relation Z = i[X,Y ], proving (ii).

For the proof of the weak commutation relations in (iii), we use that the
operator Sm with domain H∞

m is symmetric and that the operators Um are
unitary and commute with Sm. This gives

(

Uhx(τ)
m ψm

∣

∣ Smφm
)

m
=

(

Smψm

∣

∣

(

Uhx(τ)
m

)

−1
φm

)

m

According to (3.17) we may differentiate with respect to τ at τ = 0, giv-
ing (3.19).

Now assume that Sm has a self-adjoint extension (which we again denote
by Sm). According to (3.12), we know that for all t ∈ R,

(Uhx(t)
m )∗ Sm Uhx(t)

m = Sm.

Using the spectral calculus, this equation also holds if Sm is replaced by
powers of Sm or by W (Sm), where W is any bounded Borel function. In
particular, it follows that for all s, t ∈ R,

eisSm Uhx(t)
m = Uhx(t)

m eisSm .

Noting that U
hx(t)
m = eitX̄ , we can apply [18, Theorem VIII.13 (c)] to con-

clude that X̄ and Sm commute. This concludes the proof of (iii).
For the proof of (iv), we make use of the fact that the group G as well as

its Lie algebra act pointwise in m. Hence their representations on H com-
mute with T . Therefore, one can adapt the proof of (iii) in a straightforward
way by inserting integrals over m to obtain the result. �
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4. Symmetries of generalized fermionic projector states

We now make precise in which sense the generalized fermionic projector
state preserves symmetries:

Theorem 4.1. For any non-negative bounded Borel function W , the oper-
ator PW defined in (2.11) has the symmetry property

(4.1) (Uh
m)∗ PW

(

(Φh)∗ψ
)

= ǫ(h) PW h(ψ) for all ψ ∈ C∞

0 (M, SM),

where W h is defined by

W h(λ) =W
(

ǫ(h) λ
)

.

Likewise, the kernel PW ∈ D′(M × M) defined by (2.10) has the symmetry
property

(4.2) <(Φh)∗φ |PW (Φh)∗ψ> = <φ |PWhψ> for all φ, ψ ∈ C∞

0 (M, SM).

Before giving the proof of this theorem, we emphasize a special case relevant
for the applications:

Corollary 4.2. Assume that f preserves the time orientation. Then PW is
invariant under the symmetries in the sense that for all φ, ψ ∈ C∞

0 (M, SM),

(Uh
m)∗ PW

(

(Φh)∗ψ
)

= PW (ψ)(4.3)

<(Φh)∗φ |PW (Φh)∗ψ> = <φ |PWψ>.(4.4)

Proof of Theorem 4.1. We first derive the symmetries of the causal Green’s
operators s∨m and s∧m (for basic definitions see for example [11, Section 2]).
Since Φh preserves the Dirac equation, from the defining equation of the
Green’s operator we have for any ψ ∈ C∞

0 (M, SM),

Φ−1
h ψ = Φ−1

h (D −m) sm ψ = (D −m) Φ−1
h sm ψ

= (D −m)
(

Φ−1
h smΦh

)

Φ−1
h ψ.

Using that Φh preserves the Lorentzian structure up to the time orientation,
we obtain

Φ−1
h s∧mΦh =

{

s∧m if fh preserves the time orientation

s∨m if fh reverses the time orientation.
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Being defined as the difference of the causal Green’s operators (see again [11,
Section 2]), the causal fundamental solution km transforms according to

Φ−1
h kmΦh = ǫ(h) km.

Since km maps to solutions, we can also write this identity as

(4.5) (Uh
m)∗ km

(

(Φh)∗ψ
)

= ǫ(h) km(ψ).

Next, applying the spectral calculus to the symmetry statement in (3.9)
and (3.12), we obtain

W
(

(Uh
m)∗ Sm Uh

m

)

= (Uh
m)∗ W

(

ǫ(h) Sm

)

Uh
m = (Uh

m)∗ W h
(

Sm

)

Uh
m.

Multiplying by (4.5) gives (4.1).
In order to prove (4.2), we use the identity <φ|ψm> = (kmφ |ψm)m,

valid for all ψm ∈ Hm and φ ∈ C∞

0 (M, SM) (see [11, Proposition 3.1]). We
thus obtain

<φ|PWhψ> = (kmφ |PWhψ)m
(4.1)
= ǫ(h) (kmφ | (Uh

m)∗ PW (Φh)∗ψ)m = ǫ(h)
(

Uh
m kmφ

∣

∣PW (Φh)∗ψ
)

m

(4.5)
=

(

km (Φh)∗φ
∣

∣PW (Φh)∗ψ
)

m
= <(Φh)∗φ |PW (Φh)∗ψ>,

giving the result. �

We finally state an infinitesimal version of the above theorem. To this
end, for any x ∈ g we consider the curve hx(τ) in (3.16) and introduce the
Lie-type derivative

Lx : C∞

0 (M, SM) → C∞

0 (M, SM),
(

Lxψ
)

(p) :=
d

dτ

(

(

Φhx(τ)

)

∗
ψ
)

(p)
∣

∣

∣

τ=0

(3.6)
=

d

dτ
Φhx(τ)

(

ψ
(

f−1
hx(τ)

(p)
)

)
∣

∣

∣

τ=0
.

Corollary 4.3. For any x ∈ g, the generalized fermionic projector state
has the infinitesimal symmetries

(

iXφm
∣

∣PW ψ
)

m
+
(

φm
∣

∣PW Lx ψ
)

m
= 0

<Lxη |PW ψ>+<η |PW Lx ψ> = 0,

valid for all η, ψ ∈ C∞

0 (M, SM) and φm ∈ H∞

m .
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Proof. Follows immediately by evaluating the identities of Corollary 4.2 for
h = hx(τ) and differentiating with respect to τ at τ = 0. Before differenti-
ating (4.3), one must take the inner product with ψm, making it possible to
apply (3.17). �

5. Applications

We now consider two typical applications: infinitesimal symmetries as de-
scribed by Killing fields and discrete symmetries.

5.1. Killing symmetries

In many applications, the symmetries of space-time are expressed in terms
of Killing fields. Since the commutator of two Killing fields is again Killing,
we may assume without loss of generality that the Killing fields form a Lie
algebra g of dimension d,

g ⊂ C∞(M, TM) with dim g = d ≥ 1.

In general, a Killing field does not give rise to a corresponding symmetry
of the fermionic signature operator, as we now illustrate.

Example 5.1. (The Minkowski drum) Let M ⊂ R1,1 be a globally hy-
perbolic subset of two-dimensional Minkowski space as considered in [7,
Section 1.1]. Then the restriction of the Killing fields of Minkowski space
(the three generators of the Poincaré group in two dimensions) are clearly
Killing fields in M. However, these Killing fields do not correspond to global
symmetries of M. Accordingly, the fermionic signature operator does not
reflect the Killing symmetries. This can be seen explicitly in the following
counter example:

For the triangular domain

M =
{

(t, x) ∈ R1,1
∣

∣ 0 < t < π − |x|
}

,

the fermionic signature operator is computed explicitly in [7, Example 3.6].
Choosing the representation of the Dirac matrices

γ0 =

(

0 1
1 0

)

, γ1 =

(

0 1
−1 0

)

,
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the fermionic signature operator in the massless case m = 0 maps the plane
wave solutions

ψn
L(t, x) =

(

1
0

)

ein(x+t), ψn
R(t, x) =

(

0
1

)

ein(x−t)

with n ≥ 1 to each other. However, these plane waves are eigenfunctions of
the Hamiltonian

H = −iγ0γ1∂x = i

(

1 0
0 −1

)

∂x

with two different eigenvalues. Therefore,H and S0 do not commute. SinceH
is the generator of time translations on H0, we conclude that the Killing
field ∂t does not correspond to a symmetry of S0.

This example also explains why we need global symmetries as described
by local group actions on M. This leads us to impose an additional condition
on the Killing fields:

Definition 5.2. The Killing field K is complete if there is an ε > 0
such that for every p ∈ M the integral curve γ of K with γ(0) = p exists
on (−ε, ε).

By patching the solutions, this definition immediately implies that the
integral curve exists on all of R. We remark that in the special case when the
Killing field K describes the time translation symmetry of a static space-
time, the completeness of K follows from geodesic completeness (see [19,
Theorem 2.1 (i)]). We also remark that the Killing field is complete if it can
be written as K = ∂

∂t with a global time function t ∈ R.
Under the above assumption, the Killing symmetry can indeed be lifted

to a local symmetry of the spinor bundle:

Proposition 5.3. Assume that g consists of complete Killing fields. Then
there is a Lie group G with TeG = g as well as a local group of isomorphism Φ
of SM having all properties (i)–(v) in Definition 3.1. Moreover, the corre-
sponding space-time symmetry f in (3.4) is generated by the Killing fields
in the sense that

(5.1) K(p) =
d

dτ
fexpe(τK)(p)

∣

∣

τ=0
for all K ∈ g.

For clarity, we remind the reader that the Lie algebra g consists of vector
fields on M (see (5.3)), so that both sides of (5.1) give a vector in TpM.
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Proof of Proposition 5.3. Let G be a Lie group with TeG = g (for exam-
ple, one can choose the unique simply-connected Lie group with this prop-
erty; see [15, Theorem 3.15] or the “converse of Lie’s third theorem” in [14,
p. 108]). Since the exponential map is locally invertible, there is a neighbor-
hood V of 0 ∈ g such that the restriction

expe : V → expe(V ) =: U ⊂ G

is a diffeomorphism, and U is an open neighborhood of e. We denote its
inverse by log : U → V .

Evaluating the integral curves of the Killing fields at τ = 1, we obtain a
smooth mapping

E : M × g → M,

which can be thought of as a realization of the exponential map on M.
Decomposing this mapping by the logarithm gives the desired local group
action on space-time

(5.2) f : M × U → M, f(p, h) := E
(

p, log h).

From the unique local characterization of Lie groups from their Lie algebras
(following from the convergence of the Baker-Campbell-Hausdorff formula,
see [20, Theorems 2.15.4 and 2.16.6]; see also the “converse of Lie’s second
theorem” in [14, p. 107]), this mapping is indeed compatible with the local
group operations (3.5) if the neighborhood U is chosen sufficiently small.
Moreover, (5.1) follows immediately from (5.2).

In order to construct the local group action on the spinor bundle, we de-
fine Φhψ(p) as the spinor obtained from ψ(p) by parallel transport with re-
spect to the spin connection along the integral curve of the Killing field log h
through the point p, evaluated at fh(p). The compatibility with the group
operation is verified as follows: Let ψ, φ ∈ SpM be two spinors. Then the
corresponding Dirac current is in the complexified tangent space,

≺ψ|γjφ≻p ∂j
∣

∣

p
=: v ∈ TC

p M,

and since the spin connection is the lift of the Levi-Civita connection, it
follows that

≺ΦgΦhψ|γj ΦgΦhφ≻fgh(p) = ≺Φghψ|γj Φghφ≻fgh(p) =
(

(fgh)∗v
)j
.

Moreover, knowing that the spinorial parallel transport is unitary with
respect to the spin scalar product and that the last equation holds for
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all ψ, φ ∈ SpM, we conclude that

Φ−1
h Φ−1

g γj ΦgΦh = Φ−1
gh γ

j Φgh

or, equivalently, that the following operators commute,

[

A, γj
]

= 0 with A := ΦghΦ
−1
h Φ−1

g .

As a consequence, A commutes with all elements of the Clifford algebra.
Since spinor representations are irreducible (see [16]), it follows by Schur’s
lemma that A is plus or minus the identity. We conclude that

(5.3) ΦgΦh

∣

∣

SpM
= ±Φgh

∣

∣

SpM
.

A continuity argument shows that, choosing the neighborhood U sufficiently
small, only the plus sign appears. This concludes the proof. �

We finally remark that by [20, Theorem 2.16.13], it is even possible to
define the action f on M on the whole group G, if G is chosen to be simply
connected. However, in view of the sign ambiguity (5.3), it is unclear to us
how to construct the lift to SM globally. This is the reason why we restrict
attention to local group actions.

5.2. Discrete symmetries

As another typical application assume that U = G is a discrete group act-
ing as a group of isometries f : M × G → M on space-time. In order to
get into the setting of Section 3, the group of isometries on M must be
lifted to a group of isomorphisms of the spinor bundle SM. More precisely,
we need to construct a mapping Φ which has all the properties in Defini-
tion 3.1. This is a non-trivial task which involves a detailed knowledge of
the group action f and the spin structure of SM. Therefore, in order not to
distract from the main topic of this paper, we shall not enter this construc-
tion, but instead assume that Φ is given (however, in the simple example of
Minkowski space and the group of parity and time reversal transformations,
the detailed construction is carried out in Section 6.1 below). Then all the
results of Sections 3.2, 3.3 and 4 apply. In particular, one obtains a unitary
representation on Hm (see (3.7) and Lemma 3.5). Moreover, the fermionic
signature operator is invariant up to signs (see Theorems 3.6 and 3.7), and
the generalized fermionic projector state has the symmetry properties stated
in Theorem 4.1.
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6. Examples

We now illustrate our constructions and results in a few examples in which
the fermionic signature operator has been studied previously.

6.1. Minkowski space

Let M = R1,3 be Minkowski space. We work with the Dirac equation in the
Dirac representation, i.e. SM = M × C4 and

γ0 =

(

11 0
0 −11

)

, γα =

(

0 σα

−σα 0

)

,

where σα are the three Pauli matrices. The Dirac equation reads

(

iγj∂j −m
)

ψ(x) = 0.

The symmetries of Minkowski space are described by the Poincaré group
P, being the semi-direct product of translations with the Lorentz group,

P = R1,3 ⋊O(1, 3).

The Lorentz group, in turn, is the semi-direct product of the proper, or-
thochronous Lorentz group and a discrete group,

O(1, 3) = SO+(1, 3)⋊ {1, P, T, PT},

where P is the parity transformation and T denotes time reflections, i.e.

fP (x) = (t,−~x) and fT
(

x) = (−t, ~x),

where x has the components (t, ~x).
We begin with the Killing symmetries. The Lie algebra of the Poincaré

group gives rise to ten Killing fields (4 translations, 3 rotations and 3 boosts).
The rotations and boosts are lifted infinitesimally by the well-known trans-
formations (see for example [4, Chapter 2])

(Φhψ)(Λx) = Sψ(x)

with

(6.1) dS = − i

4
dΛjk σ

jk S
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(where Λ ∈ SO+(1, 3) and σjk = i[γj , γk]/2 are the bilinear covariants). In-
tegrating this equation globally gives rise to the usual representation of the
spin group on the spinor bundle. With our concept of working with local
group actions, one can avoid topological issues and work with the proper,
orthochronous Lorentz group instead of the spin group. Thus we choose

U ( G := R1,3 ⋊ SO+(1, 3).

Restricting the group actions to a small subset of the identity (necessarily
with all rotation angles smaller than 2π), and taking Φ as the lift obtained by
integrating (6.1), we obtain a local group of isomorphism of the spinor bun-
dle (see Definition 3.1). Thus all results of Sections 3 and 4 apply: The uni-
tary mappings Uh

m describe spatial translations and time evolutions of Dirac
solutions as well as rotations and boosts. All these mappings are strongly
continuous according to Theorem 3.8. Furthermore, Theorem 3.9 shows that
the corresponding generators X (being the momentum and angular momen-
tum operators, the Hamiltonian and infinitesimal boost operators) are all
essentially self-adjoint. Both the local representation of the group and the
representation of the Lie algebra on Hm commute with the fermionic signa-
ture operator (see Theorems 3.7 and 3.9). Moreover, the resulting generalized
fermionic projector states are Lorentz invariant as specified in Corollaries 4.2
and 4.3.

We next consider the discrete group by choosing

U = G = {1, P, T, PT}.

Setting1

(

ΦPψ
)(

fP (x)
)

= γ0 ψ(x) and
(

ΦTψ
)(

fT (x)
)

= γ5γ0 ψ(x)

(where γ5 = iγ0γ1γ2γ3), the relations

≺ΦPψ |ΦPψ≻fP (x) = ≺ψ|ψ≻x

≺ΦPψ | γ0ΦPψ≻fP (x) = ≺ψ | γ0 ψ≻x

≺ΦPψ | γαΦPψ≻fP (x) = ≺ψ |
(

− γα
)

ψ≻x

1We remark that our lift of T does not agree with the T -transformation in the
physics literature (see [4, Section 5.4] or [17, Section 3.6]), where an anti-linear
transformation is used. Using the common notions in physics, our transformation
corresponds to CT , where C is charge conjugation.
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≺ΦTψ |ΦTψ≻fT (x) = −≺ψ|ψ≻x

≺ΦTψ | γ0ΦTψ≻fT (x) = −≺ψ |
(

− γ0
)

ψ≻x

≺ΦTψ | γαΦTψ≻fT (x) = −≺ψ | γα ψ≻x

(where α = 1, 2, 3 denotes the spatial index) show that the transformation in-
deed leaves Clifford multiplication invariant. Moreover, the T -transformation
flips the sign of the spin scalar product, in agreement with Definition 3.1 (iv).
Therefore, Φ is indeed a group of isomorphisms of the spinor bundle (see
Definition 3.1). Consequently, the results of Sections 3 and 4 apply and show
that the fermionic signature operator is invariant under the group transfor-
mation, except that the T -transformation gives rise to a sign, i.e.

(6.2) (UT
m)∗ Sm U

T
m = −Sm.

These symmetry properties carry over to the generalized fermionic projector
states (see Theorem 4.1).

Taken together, these symmetry properties imply that all the positive-
frequency solutions (and similarly all the negative-frequency solutions) form
an eigenspace of Sm. Moreover, the T -transformation (6.2) shows that the
corresponding eigenvalues have the same absolute value but opposite signs.
Hence these symmetry considerations determine the fermionic signature op-
erator (as computed in [12, Theorem 5.1] to have eigenvalues ±1) up to
a real prefactor. The symmetry considerations also show that the general-
ized fermionic projector states do not give more than the usual frequency
splitting.

6.2. Static and ultrastatic space-times

In static space-times, the symmetry under time translations is described by
a timelike Killing field K = ∂t. Integrating this Killing symmetry gives the
group action f of G = R on M. The lift Φ to SM is obtained simply by par-
allel transport of spinors along the Killing field. Thus all results of Sections 3
and 4 again apply. The resulting strongly continuous family of operators Uh

are the time evolution operators, and its essentially self-adjoint generator X
is the Dirac Hamiltonian. Moreover, we conclude that the spectral measures
of X and Sm commute.

In static space-times one also has the symmetry T under time rever-
sals. Similar as explained in Minkowski space, this again gives rise to the
symmetry (6.2).
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For ultrastatic space-times it was shown in [12, Theorem 5.1] that the
fermionic signature operator has eigenvalues ±1, and that the corresponding
eigenspaces coincide with the subspaces of positive and negative frequency,
respectively. This is consistent with the above results obtained from the
symmetry considerations, but of course the symmetry considerations give
much less information.

6.3. Rindler space-time

In [9] the fermionic signature operator is computed in two- and four-
dimensional Rindler space-time. We now discuss to which extent these re-
sults can be obtained from symmetry considerations.

In two-dimensional Rindler space-time, there is a timelike Killing field K
describing Lorentz boosts. Therefore, space-time is static with respect to so-
called Rindler time τ (defined by the relation ∂τ = K; for details see [9,
Section 10]), and the symmetry considerations of the previous section im-
ply that Sm commutes with the Hamiltonian in Rindler time and is anti-
symmetric under reversals of Rindler time (6.2). In [9, Theorem 10.1] it is
shown that Sm is indeed a multiple of the Hamiltonian. This is compatible
with the symmetry considerations but clearly is a much stronger result.

In four-dimensional Rindler space-time, the two additional spatial coor-
dinates y and z give rise to an additional symmetry group R2 ⋊O(2). Thus
the total symmetry group is

(6.3) G = R1 ×
(

R2 ⋊O(2)
)

.

The additional symmetry means that, after separating the y- and z-
dependence by plane waves with momenta ky and kz, the fermionic signature
operator must depend only on k2y + k2z . This is compatible with the result
in [9, Theorem 13.2], but again the explicit computation of the fermionic
signature operator gives more detailed information.

6.4. Closed Friedmann-Robertson-Walker space-times

In [11, Section 5] and [12, Section 6] the fermionic signature operator is
computed in spatially symmetric space-times. The symmetry results in the
present paper show that the fermionic signature operator is diagonal on
the spatial modes (i.e. the eigenspinors of the spatial Dirac operator; for
details see [10]). Thus our results give a more abstract explanation for the
separation procedure used in the the above-cited papers.
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6.5. A plane electromagnetic wave

In [13] the fermionic signature operator is computed in Minkowski space in
the presence of an electromagnetic potential of the form of a plane wave, i.e.

A = A(t+ x).

As shown in [9, Theorem 5.5], the fermionic signature operator has eigen-
values ±1, and the corresponding eigenspaces are the solutions of positive
and negative momentum u in the separation ansatz in null direction

ψm(t, x, y, z) = e−iu(t−x) χm(t+ x, y, z).

This result can again be partly understood from symmetry considera-
tions: The symmetries are again described by (6.3), where the group R1 now
describes translations in the null direction (1,−1, 0, 0), and the group R2 ⋊

O(2) again acts on the spatial coordinates y and z. The momentum u is
precisely the spectral parameter of the generator X of the translations in
null directions.
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[9] F. Finster, S. Murro, and C. Röken, The fermionic signature operator
and quantum states in Rindler space-time, J. Math. Anal. Appl. 454
(2017), no. 1, 385–411.

[10] F. Finster and M. Reintjes, The Dirac equation and the normalization of
its solutions in a closed Friedmann-Robertson-Walker universe, Class.
Quantum Grav. 26 (2009), no. 10, 105021.

[11] F. Finster and M. Reintjes, A non-perturbative construction of the
fermionic projector on globally hyperbolic manifolds I – Space-times of
finite lifetime, Adv. Theor. Math. Phys. 19 (2015), no. 4, 761–803.

[12] F. Finster and M. Reintjes, A non-perturbative construction of the
fermionic projector on globally hyperbolic manifolds II – Space-times of
infinite lifetime, Adv. Theor. Math. Phys. 20 (2016), no. 5, 1007–1048.

[13] F. Finster and M. Reintjes, The fermionic signature operator and
Hadamard states in the presence of a plane electromagnetic wave, Ann.
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