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Homological S–Duality in 4d N = 2 QFTs

Matteo Caorsi and Sergio Cecotti

The S–duality group S(F) of a 4d N = 2 supersymmetric theory
F is identified with the group of triangle equivalences of its clus-
ter category C (F) modulo the subgroup acting trivially on the
physical quantities. S(F) is a discrete group commensurable to a
subgroup of the Siegel modular group Sp(2g,Z) (g being the di-
mension of the Coulomb branch). This identification reduces the
determination of the S-duality group of a given N = 2 theory to
a problem in homological algebra. In this paper we describe the
techniques which make the computation straightforward for a large
class of N = 2 QFTs. The group S(F) is naturally presented as a
generalized braid group.

The S-duality groups are often larger than expected. In some
models the enhancement of S-duality is quite spectacular. For in-
stance, a QFT with a huge S-duality group is the Lagrangian SCFT
with gauge group SO(8)× SO(5)3 × SO(3)6 and half-hypermulti-
plets in the bi- and tri-spinor representations.

We focus on four families of examples: the N = 2 SCFTs of the
form (G,G′), Dp(G), and E

(1,1)
r (G), as well as the asymptotically-

free theories (G, Ĥ) (which containN = 2 SQCD as a special case).

For the E
(1,1)
r (G) models we confirm the presence of the PSL(2,Z)

S-duality group predicted by Del Zotto, Vafa and Xie, but for most
models in this class S-duality gets enhanced to a larger group.
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1. Introduction

Dualities between quantum theories (with enough supersymmetry) are most
conveniently understood as exact equivalences between the linear triangle
categories which describe their BPS objects [1]. For instance, mirror sym-
metry is best described as the equivalence of the bounded derived category
of coherent sheaves on one manifold X and the bounded derived Fukaya cat-
egory of its mirror space X∨ (homological mirror symmetry [2]). S-duality
of a 4d N = 2 QFT, being an internal duality, is described by the auto-
equivalences of a single BPS category rather than by the comparison of two
a priori different categories as in mirror symmetry. The basic example is
the SL(2,Z) duality of N = 4 SYM: through its relation to T -duality [3], it
gets identified with the group of auto-equivalences of the derived category
of coherent sheaves over an elliptic curve, which has an explicit realization
in terms of Fourier-Mukai transforms [4].

For a general N = 2 QFT, it is natural to define the group S of (gener-
alized) S-dualities as the group Aut(C ) of triangle auto-equivalences of the
category C describing its BPS objects, modulo the physically trivial ones

(1) S = Aut(C )/(physically trivial).

The Kontsevich-Soibelman wall-crossing formula [5], and related physical
arguments [6–9], show that the appropriate triangle category C to describe
the BPS sector of a N = 2 QFT is the cluster category1 associated to the
mutation class of its BPS quivers [13]. The categorical viewpoint reduces the
problem of determining the dualities of a given 4d N = 2 theory to a well-
posed mathematical problem, which may be tackled with standard methods
of homological algebra.

1For nice introductions to cluster categories (and algebras) see refs.[10–12].
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In this paper we lay down a general framework for homological S-duality,
developing ideas and techniques which allow to determine the S-duality
group S very explicitly in a large class of rather complicated N = 2 mod-
els. The homological viewpoint leads to a presentation of S in the form
of a higher braid group. As expected, modulo commensurability, S is an
arithmetic subgroup of Sp(2g,R), where g is the dimension of the Coulomb
branch.

In this paper homological S-duality is worked out in detail for the large
class of 4d N = 2 models (superconformal or asymptotically-free) which,
under the 4d/2d correspondence of [9], are related to well-behaved 2d (2,2)
theories. However the idea of homological S-duality is more general, and
some of our examples actually do not belong to this class. The advantage of
having a nice 2d (2, 2) correspondent, is that the 4d BPS category C may
be constructed as the cluster category of the 2d brane category B which in
many cases is well understood [14–16].

The class of 4d N = 2 theories whose category C we can read from 2d
contains, for instance, N = 2 SQCD with simply-laced gauge groups and
matter in representations which are “nice” in the sense of [17], quiver gauge
theories, SCFTs engineered by polynomial singularities (such as the Arnold
ones [18]), etc. To keep the paper of finite length, we shall focus mainly on
four groups of N = 2 models:

a) The (G,G′) SCFTs [9] labelled by two simply-laced Dynkin graphs2

G,G′ ∈ ADE;

b) the (Ĥ,G) asymptotically-free theories [19, 20] labelled by a simply-
laced Dynkin graph G ∈ ADE and a mutation class of acyclic affine
quivers

(2) Ĥ = Â(p1, p2) (p1 ≥ p2 ≥ 1), or D̂r, (r ≥ 4), or Ê6, Ê7, Ê8.

In these theories, G is always a factor of the gauge group, and the
β-function of the corresponding gauge coupling is strictly negative;

c) the Dp(G) SCFTs [19, 20] labelled by G ∈ ADE and the period3 p ≥ 2.
The flavor group of Dp(G) contains G as a subgroup;

2In this paper we abuse notations, and use the same symbol G to denote the
Dynkin graph, the corresponding Lie algebra, and its (simply-connected) Lie group.

3It is convenient to extend the definition to p = 1 by declaring D1(G) to be the
empty SCFT for all G.
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model matter sector model matter sector

(Â(p1, p2), G) Dp1(G), Dp2(G) D
(1,1)
4 (G) D2(G), D2(G), D2(G), D2(G)

(D̂r, G) Dr−2(G), D2(G), D2(G) E
(1,1)
6 (G) D3(G), D3(G), D3(G)

(Êr, G) Dr−3(G), D3(G), D2(G) E
(1,1)
7 (G) D4(G), D4(G), D2(G)

E
(1,1)
8 (G) D6(G), D3(G), D2(G)

Table 1: Left: the QFT in item b); Right: the SCFT in item c). All
theories are written as G SYM coupled to a “matter” sector. The subscript
p of Dp(G) is called the period of the sub-constituent. By the set of periods
of a QFT of class b) or d) we mean the list {p1, p2, . . . , ps} of the periods of
its “matter” sub-systems.

d) the DZVX models [20, 21] labelled by one of the four affine stars (D̂4,
Ê6, Ê7, or Ê8) and a Lie algebra G ∈ ADE. Again G is a factor of the
gauge group, but now its gauge coupling is exactly marginal.

Many SQCD models and quiver gauge theories are recovered as special cases
of b), c), and d) [20, 21]. Our methods may be extended to other classes of
theories.

Models b) and d) have the physical interpretation of N = 2 SYM with
group G gauging the diagonal G-symmetry of a number of Dpi(G) SCFTs
(see Table 1). The interplay between the dualities of the sub-constituents
and of the full theory allows to perform many crossed checks between the
various models.

The homological approach to S-duality has been used in [22] to address
the question of the action of the S-duality group SL(2,Z) on the observables
of the four elliptic (a.k.a. tubular) complete N = 2 SCFT4

(3) D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 ,

building on [24] and the mathematical literature [25–28] on the relevant
categories (i.e. the cluster categories of the four tubular canonical algebras).
The family of SCFTs (3) has been generalized by DZVX in [21]5 : the DZVX

4The elliptic complete N = 2 SCFTs (3) are in one-to-one correspondence with
the affine Dynkin graphs which are also stars [23].

5For previous work see [19, 20].
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models are labelled by one of the four affine stars (3) together with a simply–
laced Lie algebra G,

(4) D
(1,1)
4 (G), E

(1,1)
6 (G), E

(1,1)
7 (G), E

(1,1)
8 (G), G ∈ ADE.

For G = A1 they reduce to the complete SCFTs (3). In [21] the SCFTs (4)
were geometrically engineered in F–theory: the geometry contains an elliptic
curve, and it was predicted that all these SCFTs have (at least) a SL(2,Z)
group of S–dualities which however should act on the physical observables
in a counter-intuitive way. The initial motivation of the present work was
to check the prediction of [21], understand the action of SL(2,Z) on the
observables, and discuss the possible enhancements of S-duality to a group
strictly bigger than SL(2,Z).

A simple example may illustrate why the action of the S-duality group
in these models looks rather puzzling. Consider the simplest sequence of

such theories, the D
(1,1)
4 (A2N−1) ones (N ∈ N). They are the quiver gauge

theories in Figure 1; in some corner of their parameter spaces they have a
weakly coupled Lagrangian formulation. For N = 1 the four bifundamentals
reduce to fundamental, and we recover SU(2) SQCD with Nf = 4 which is
known6 [29] to have a SL(2,Z) S-duality which acts on the SO(8) flavor
weights by Spin(8) triality; only the congruence subgroup Γ(2) ⊂ SL(2,Z)
commutes with the flavor. Going to higher N ’s, the SU(2) electric/magnetic
charges get replaced by the SU(2N) electric/magnetic charges of the central
node, while the role of the flavor charges are played by the four U(1) flavor
charges of the bifundamentals together with the electric/magnetic charges of
the peripheral SU(N) gauge groups. It is expected [21] that we still have a
SL(2,Z) group rotating the electric and magnetic charges of the central node
as before, but then SL(2,Z) has to act by Spin(8) on all other charges, which
means that gauge charges of the distinct peripheral gauge groups should mix
together. This conclusion is quite counter-intuitive from the weak-coupling
physics, but seems forced on us from geometric engineering. Of course, there
is no contradiction, since S-duality is quite a strong-coupling property, yet
the picture deserves a more detailed analysis which may be performed in
the homological approach after having developed all the necessary tools.

1.1. Notations/definitions/conventions

We systematically abuse notation, and use the same symbol G to denote a
Dynkin graph, the corresponding Lie algebra, and its Lie group. The same

6See also [22] for the corresponding homological analysis.
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_^]\XYZ[N

_^]\XYZ[N _^]\XYZ[2N _^]\XYZ[N

_^]\XYZ[N

Figure 1: The D(1,1)(A2N−1) models as quiver gauge theories. A circle with
a N (resp. 2N) stands for a SU(N) (resp. SU(2N)) N = 2 SYM sector
and an edge connecting two circles to a SU(2N)× SU(N) bifundamental
hypermultiplet.

symbol also denotes a generic quiver obtained by orienting the graph G,
except when we choose a reference orientation, in which case we write ~G for
the chosen orientation. If ψ is an arrow in a quiver Q, we write s(ψ) (resp.
t(ψ)) for its source (resp. target) node. h(G) and r(G) denote the Coxeter
number and (respectively) the rank of G.

Assumption 1. In this paper, all categories are assumed to be C-linear
with finite-dimensional Hom/Ext spaces and split idempotents (hence Krull-
Schimdt). In particular, all algebras and modules are finite-dimensional and
defined over C.

The identity functor is written Id. In all triangle categories, we write
[1] for the suspension functor and [m] for its m-fold iteration. We write vect
for the semi-simple category of finite-dimensional vector C-spaces and linear
maps.

Definition 1. For the benefit of the reader, we recall here some standard
definitions we shall use throughly:

a) If T is an object (or, more generally, a class of objects) in a category
X (satisfying our general assumptions) we write addT for its additive
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closure, i.e. the full subcategory of X formed by direct summands of
direct sums of copies of T .

b) If X is an Abelian (resp. a triangle) category, its Grothendieck group
K0(X ) is the free Abelian group over the isoclasses [X] of its objects X
modulo the relations [Z] = [X] + [Y ] whenever X → Z → Y is a short
exact sequence (resp. a distinguished triangle).

c) An Abelian category H is called hereditary iff Extk(X,Y ) = 0 for all
k ≥ 2 and all objects X, Y ∈ H.

d) A triangle category is n-periodic (n ∈ N) if, for all objects X, X[n] '
X.

e) A triangulated category T has Serre duality if there is an exact functor
S : T → T such that we have the bi-functorial isomorphism

(5) HomT (X,Y ) ' DHomT (Y, SX), ∀ X,Y ∈ T .

where D(−) ≡ Homvect(−,C) is the standard duality in the category
of C-spaces. When it exists, S is unique (up to natural isomorphism).

f) A triangulated category T with Serre functor S is said to be n-Calabi-
Yau (n ∈ N) iff S ' [n], that is,

(6) HomT (X,Y ) ' DHomT (Y,X[n]).

g) an object X ∈ X is a brick iff EndXX = C.

Organization of the paper. The rest of this paper is organized as fol-
lows. In Section 2 we discuss the relation between cluster categories and
S-duality groups. In Section 3 we describe the 4d/2d correspondence of [9]
in the categorical language, introduce the root category of the 2d model,
and relate the auto-equivalence group of the 2d root category to the auto-
equivalence group of the 4d cluster category. In Section 4 we discuss the auto-
equivalences of triangle categories, introducing the Thomas-Seidel twists, the
telescopic functors, and their braid relations. In Section 5 we study two in-
teresting classes of models whose S-duality groups have simple descriptions,
namely the (G,G′) SCFTs [9] and the (G, Ĥ) QFTs [19, 20]. In Section 6
we discuss the relation of the duality group of the fully interacting theory
with the ones for its decoupled constituents. In Section 7 we introduce a
more general framework which allows to study the homological S-duality of
the DZVX models. In Section 8 we give some additional details on special
models. Some side material is presented in the appendices.
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2. Cluster categories and S-duality groups

2.1. BPS objects vs. cluster categories

The BPS objects of a 4d N = 2 QFT F are encoded in its cluster-category
C (F). The cluster-categorical framework automatically incorporates the
Kontsevich-Soibelman wall-crossing formula [5], and hence is the right lan-
guage to formulate the BPS spectrum problem in an intrinsic and global
way over the full deformation space of the theory F , that is, independently
of the duality-frame and the particular BPS chamber. To fix the ideas, we
review how the connection

(7) C (F)←→ (the BPS sector of F)

works and, in particular, how we read the BPS spectrum along the Coulomb
branch from C (F), referring to the existing literature [9, 13, 30] for further
details.

In general terms, a cluster category is a gadget of the following form:

Definition 2. (see e.g. [31]) A triangle category7 C is called a cluster cate-
gory iff it is 2-Calabi-Yau, and admits a cluster-tilting object T , that is, an
object such that:

i) HomC (T , T [1]) = 0,

ii) ∀X ∈ C , Hom(X, T [1]) = 0 ⇒ X ∈ add T .

Fact 1 ([10, 31]). If C is a cluster category and T a cluster-tilting object,
we have an equivalence of categories

(8) JT : C /〈add T [1]〉 ∼−−→ modEndC (T ), X 7→ HomC (T , X).

where 〈add T [1]〉 denotes the ideal of morphisms which factor through objects
in add T [1].

7Recall that in this paper “category” always stands for “C-linear category with
finite-dimensional Hom spaces and split idempotents”.
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The module category modEndC (T ) comes with a skew-symmetric inte-
gral form [31]

〈X,Y 〉D = −〈Y,X〉D ∈ Z, X, Y ∈ modEndC (T ),(9)

〈X,Y 〉D ≡ dim Hom(X,Y )− dim Ext1(X,Y )(10)

− dim Hom(Y,X) + dim Ext1(Y,X)

which has the physical interpretation of the Dirac electro-magnetic pair-
ing between the BPS objects corresponding to the two objects X, Y [13].
The Dirac form 〈−,−〉D is well-defined on the Grothendieck group K0(mod
EndC (T )) [31]. Objects are mutually local if their Dirac pairing is zero.

To recover the BPS spectrum of F from C (F), one works through the
following steps.

Step 1. One chooses a tilting object T which is appropriate for the phys-
ical regime we are interested in, and consider the algebra BT ≡ EndC (F) T
(which we assume to be finite-dimensional, this being guaranteed in the
physical context). Let Si, i = 1, 2, . . . , r be the simple modules of BT . Con-
struct the 2-acyclic8 quiver QT whose nodes are in one-to-one correspon-
dence with the Si’s and connect nodes i and j by a signed9 number of
arrows from i to j equal to

(11) #(arrows from i to j) ≡ 〈Si, Sj〉D.

The algebra BT is then the path algebra CQT bounded by the ideal (∂WT )
generated by the cyclic derivatives of a certain non-degenerate superpoten-
tial10 WT [32]. We call this algebra the Jacobian algebra Jac(QT ,WT ) of
the quiver with superpotential (QT ,WT ). The Grothendieck group K0(mod
EndC (T )) ≡ Γ gets identified with the lattice generated by the isoclasses
of the Si’s, Γ ≡

⊕r
i=1 Z[Si]. The positive cone Γ+ ⊂ Γ of actual modules

is Γ+ =
⊕r

i=1 Z≥0[Si]. If X is a module, and [X] =
∑r

i=1 xi[Si], the non-
negative integer xi is called the dimension of X at the i-th node, and
x ≡ (x1, . . . , xr) its dimension vector. As we shall see momentarily, Γ is the

8A quiver is 2-acyclic iff there are no loops (arrows with starting and ending at
the same node) nor pairs of opposite arrows i� j.

9That is, a negative number of arrows means arrows in the opposite direction.
10In this abstract sense, a superpotential WT is a complex linear combination

of closed oriented cycles in QT . In physical terms, this translates in the statement
that WT is a gauge-invariant, single-trace, 1d chiral operator.
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lattice of conserved charges11 of F , and we shall use the terms Grothendieck
class, dimension vector, and charge vector interchangeably.

Step 2. One needs to introduce a further datum which specifies the values
of the various parameters of the physical theory: couplings, masses, and the
specific vacuum in the Coulomb branch we are considering. These data are
encoded in the central charge of the N = 2 susy algebra, Z, which is a
linear combination of the IR internal charges with complex coefficients which
depend on the physical parameters. In the categoric language Z becomes the
stability function: a group homomorphism

(12) Z : Γ ≡ K0(mod Jac(QT ,WT ))→ C

such that the positive cone Γ+ ⊂ Γ is mapped in the upper half-plane [33].
Then we have a well-defined map argZ : Γ+ → [0, π). A Jacobian module
X ∈ mod Jac(QT ,WT ) is stable iff for all proper submodules Y one has

(13) argZ(Y ) < argZ(X).

We note that a stable object is necessarily a brick.

Remark 1. Let T =
⊕r

i=1 Ti with Ti indecomposable and pairwise non-
isomorphic. Since Γ⊗ C '

⊕r
i=1 C[Ti], to specify Z(−) it is enough to give

the r complex numbers Z([Ti]).

Step 3. The data (C (F), T , Z) define a 1d quantum system with 4 su-
percharges12 for each x ∈ Γ+ [13, 34], namely the 1d quiver gauge theory
over QT having gauge group

∏r
i=1 U(xi), with one bi-fundamental Higgs

chiral superfield φα in the representation (xi,xj)−1,1 of U(xi)× U(xj) per

arrow i
α−→ j of QT , and the gauge invariant superpotential WT . Z specifies

all other couplings, such as the FI terms of the Abelian gauge groups [34].
This 1d system is physically interpreted as the world-line description of a 4d
particle. A state of the particle is BPS in the 4d sense iff it preserves 4 su-
percharges; from the 1d perspective, a state preserving 4 supersymmetries
is a susy vacuum. Hence we have one 4d BPS ultra-short supermultiplet
with charges x per vacuum of the corresponding 1d system. To get the 1d

11More precisely: the conserved charges of an effective IR description of F which
is specified by the choice of T ). See discussion below.

12We may think of this class of 1d susy theories as obtained by dimensional
reduction of 4d N = 1 susy. We use the 4d language in describing the various
couplings.
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quantum vacua one proceeds through two steps: first determines the mani-
foldMx of the classical vacua, and then quantizes the 1d susy σ-model with
target spaceMx. Classical vacua are determined by solving the F -condition,
∂WT = 0, and the D-condition [13, 35]13

(14)
∑
t(α)=i

φαφ
∗
α −

∑
s(α)=i

φ∗αφα = θi · ei for all i ∈ QT ,

(with θi the FI term of the i–th U(1) gauge factor). A Higg field config-
uration (modulo gauge transformation) is then identified with an isoclass
of representations of the quiver QT which is actually a Jacobian module
by the F -condition. One shows that the D-condition is equivalent to the
requirement that the module is stable in the sense of (13).

Had we started with a different cluster-tilting object T ′ 6' T , we would
get a different 1d model. The two quantum models are however equivalent
under 1d Seiberg duality [36]. Therefore, a choice of T is just a choice of 1d
Seiberg duality-frame. This is the precise sense in which physics is indepen-
dent of the choice of T . At the level of quivers with superpotential, Seiberg
duality is mutation in the sense of DWZ [32].

Step 4. The stable objects of mod Jac(QT ,WT ) organize themselves into
continuous families {Oλ}λ∈Mx

(with Oλ 6' Oλ′ for λ 6= λ′), parametrized
by irreducible complex projective varieties Mx (so Mx are, in particular,
compact Kähler). An object O is said to be rigid iff its index variety Mx

reduces to a point. Step 3 associates to each (generically) stable family
{Oλ}λ∈Mx

a quantum system, namely the 1d supersymmetric σ-model with
target spaceMx, which is an irreducible component of the space of classical
susy vacua of the 1d quiver gauge theory. The supersymmetric vacua of this
1d σ-model then correspond to quantum states of a 4d BPS particle with
charges x. It is well-known [37] that, for a 1d σ-model, the vector space
of vacua is isomorphic to the Dolbeault cohomology H••(Mx) of Mx. On
H••(Mx) there is a natural action of the 1d R-symmetry

(15) U(1)R × SU(2)L

where the SU(2)L action is induced by the Lefshetz decomposition of har-
monic forms [38], while U(1)R acts as eiα(p−q) on (p, q) forms. Physically,
U(1)R is interpreted as the torus of the (unbroken) 4d R-symmetry group

13In eqn.(14) ei ∈ Jac(QT ,WT ) is the minimal idempotent associated to the i–th
node of QT .
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SU(2)R, while SU(2)L is the Lorentz little group of a massive particle. The
space H••(Mx) then decomposes into a set I(Mx) of irreducible represen-
tations of SU(2)R × SU(2)L labelled by their respective dimensions (r, s) ∈
N2. A celebrated conjecture [8, 39] states that only the representations (1, s)
actually appear. In conclusion, the stable family {Oλ}λ∈Mx

yields 4d BPS
states with charge x in the following representation of SU(2)R × SU(2)L

(16)
(

(2,1)⊕ (1,2)
)
⊗

⊕
(r,s)∈I(Mx)

(r, s).

To complete the BPS multiplet one needs to add to (16) the PCT conjugate
states which correspond to the shifted family {Oλ[1]}λ∈Mx

, which obviously
produce the same SU(2)R × SU(2)L content.

Remark 2. The square of PCT is the identity, and one would naively
expect that the category describing the BPS objects of a QFT should be 2-
periodic. In general this is not the case: the double shift [2] needs only to be
quasi-isomorphic to a functor M : C (F)→ C (F) called the quantum mon-
odromy [9]. The Kontsevich-Soibelman wall-crossing formula [5] is equivalent
to the requirement that M is well-defined (up to conjugacy) [9]. In a N = 2
theory with a weakly-coupled Lagrangian formulation, M acts as the identity
on the microscopic degrees of freedom, in agreement with the perturbative
analysis. If F is a SCFT with a weakly-coupled Lagrangian, M ' Id and the
category C (F) is 2-periodic as naively expected.

From eqn.(16) we see that the maximal spin produced by a family
{Oλ}λ∈Mx

is equal to

(17) max-spin =
1

2

(
1 + dimCMx

)
.

The BPS states arising from a rigid stable object X are said to form a
hypermultiplet, while a P1-family of stable objects {Wλ}λ∈P1 produces a
vector multiplet (maximal spin 1).

Interaction vertices between BPS particles correspond to exact sequences

of mod Jac(QT ,WT ) whose objects O(i)
λi
∈ mod Jac(QT ,WT ) (i = 1, 2, 3) are
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all generically stable

(18) 0→ O(1)
λ1
→ O(2)

λ2
→ O(3)

λ3
→ 0 ←→

O(1)
λ1

O(2)
λ2

/o/o/o •

���������

========

O(3)
λ3

From this identification it is obvious that the module category needs to be
“completed” to a triangle category in order to implement crossing symme-
try (rotation of the triangles). From (18) it is also clear that all conserved
quantities factorize through the Grothendieck group Γ ≡ mod Jac(QT ,WT ),
which is then the universal group of conserved (additive) charges. Its rank
r is equal to the total number of the electric, magnetic, and flavor charges
of the N = 2 QFT, that is,

(19)
r = 2 dimC (Coulomb branch) + rankF,

g ≡ dimC (Coulomb branch) =
1

2
rank 〈−,−〉D.

Here F is the flavor group (a compact Lie group). The sub-lattice of the
flavor charges, Γflavor ⊂ Γ is the radical of the Dirac form

(20) Γflavor =
{
x ∈ Γ

∣∣∣ 〈y,x〉D = 0 ∀y ∈ Γ
}
.

The electro-magnetic lattice Γe.m. is defined as

(21) Γe.m. = Γ
/

Γflavor.

The Dirac pairing 〈−,−〉D induces a non-degenerate skew-symmetric, inte-
gral pairing in Γe.m. denoted by the same symbol.

Remark 3. We stress that the lattice Γ is the Grothendieck group
K0(mod Jac(QT ,WT )) which is not isomorphic (in general) to the cluster
category Grothendieck group K0(C ). See [40] for examples of K0(C ) groups.
The physical meaning of the relation between these Abelian groups is as fol-
lows: the cluster category C describes the UV microscopic theory in all its
physical regimes and phases. For a generic Coulomb regime, we may describe
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the theory in the IR as an effective Abelian gauge theory with conserved elec-
tric, magnetic, and flavor charges. Such an IR regime selects (non uniquely
in general) a pair (T , Z), leading to the category mod Jac(QT ,WT ). The
equivalence (8) should be though of as the “dictionary” between the UV
and IR viewpoints. From the UV viewpoint, however, the gauge group is
non-Abelian, and the electric-magnetic charges do not take value in a lat-
tice. We shall discuss this issue in more detail elsewhere [41]. For the present
purposes it suffices to remark that Γ is not an intrinsic property of the UV
category C .

2.2. Aut(C (F)) and the S-duality group S(F)

We write Aut(C (F)) for the group of the triangle auto-equivalences of the
cluster category C (F). Let µ ∈ Aut(C (F)). If T is a cluster-tilting object,
so is µT . If the family of objects {Oλ}λ∈Mx

⊂ C (F) had the property that
its Jacobian images {JT Oλ}λ∈Mx

are stable for the given central charge
Z(−), the family {µOλ}λ∈Mx

has Jacobian images {JµT (µOλ)}λ∈Mx
which

are stable for the pushed-forward central charge µ∗Z(−) defined by (cfr.
Remark 1)

(22) µ∗Z([µTi]) = Z([Ti]).

The new stable family has the same index variety Mx as the old one, and
hence the same 1d σ-model in Step 4 of the procedure in §. 2.1. Therefore,
the family {µOλ}λ∈Mx

produces the same SU(2)R × SUL(2) representation
content (16) as the original family. Since the pair (T , Z) encodes the physical
regime of the QFT F , we learn that the physics looks identical in the original
point in parameter space, (T , Z), and in the pushed-forward one, (µT , µ∗Z).

The statement that the (BPS) physical observables of a QFT F look
identical in two distinct regimes specified by (T , Z) and (µT , µ∗Z) (e.g. at
strong and weak coupling) is what we mean by a (generalized) S-duality.
We see that all µ ∈ Aut(C (F)) produce a duality in this broad sense.

However not all elements of µ ∈ Aut(C (F)) induce non-trivial dualities.

Definition 3. An element σ ∈ Aut(C (F)) is said to be physically trivial
if for all families of objects {Xλ}λ∈MX

, there exist maps fX : MX →MX

such that

(23) σXλ ' XfX(λ),
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that is, the only effect of σ is to re-parametrize the moduli varieties MX .
The re-parametrization has a trivial effect on the 1d σ-models on the particle
world-lines, and the physics remains unchanged. We write Aut(C (f))0 ⊂
Aut(C (f)) for the normal subgroup of physically trivial auto-equivalences.

Let us describe the trivial subgroup Aut(C (f))0 a bit more explicitly.
Let T =

⊕
i Ti a cluster-tilting object of C (F). An element µ ∈ Aut(C (f))0

fixes all Ti since they are rigid, and induces linear maps

(24) µij : HomC (F)(Ti, Tj)→ HomC (F)(Ti, Tj).

At the level of the endo-quiver of T , µij yields a family of linear redefinitions
of the arrows between nodes i and j which leave the endo-algebra invariant.
The action of µ on a generic representation X of the Jacobian quiver then
produces a representation µX with the same vector spaces at the nodes and
arrows redefined by the above linear maps µij .

Example 1. Let F be pure SU(2) SYM. The endo-quiver of the canonical
tilting object is the Kronecker quiver 1⇒ 2. Then Aut(C (f))0 = PSL(2,C).

Definition 4. The quotient group

(25) S(F) ≡ Aut(C (F))/Aut(C (F))0,

is the S-duality group of the QFT F .

On general physical grounds [42]14 the group of dualities of any 4dN = 2
theory should act on the electro-magnetic charges by an arithmetic sub-
group15

(26) GZ ⊂ Sp(2g,R).

The S-duality S(F) is slightly more general than plain electro-magnetic
duality, since it acts non-trivially on the flavor charges, as it happens in
SU(2) Nf = 4 SQCD, where the action is through Spin(8) triality [29].

14For a review of electro-magnetic dualities in Lagrangian field theory, see §.1.4
of the book [43].

15As before, g is the complex dimension of the Coulomb branch.
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S(F) needs only to be commensurable16 to a discrete group of the form GZ,

(27) S(F) ≈ GZ.

At this point property (27) is far from obvious. Indeed, the physical moti-
vation for eqn.(27) is the preservation of the Dirac pairing 〈−,−〉D under
duality; but the Dirac pairing is defined on Γ ≡ K0(modEndC (F)(T )) rather
than on C (F) itself. In Section 3.6 we shall show that property (27) holds
(in the appropriate sense) at least for all models mentioned in the Intro-
duction, those listed there under letters a), b), c), and d) as well as the
ones which may be reduced to these cases. The group GZ may be explicitly
realized as a concrete group of symplectic integral 2g × 2g matrices, and the
full S(F) group as an explicit group of r × r integral unimodular matrices
(r = 2g + rankF ).

To get the explicit realization of the S-duality group we introduce an
auxiliary triangle category R(F) (the root category of F), which has essen-
tially the same auto-equivalence group as the cluster category C (F), but
is more amenable for direct computation of this group. The root category
will be introduced via the 4d/2d correspondence [9] that we now review in
a language suited for our present purposes.

3. Categorical 4d/2d correspondence and branes

In [9] the relation between cluster algebras and BPS objects of a N = 2 QFT
was also explained in terms of a correspondence between the 2d (2,2) theories
F̃ with ĉ < 2 and certain 4d N = 2 models F . The cluster category C (F) of
a 4d theory F with a “nice” 2d correspondent F̃ is easier to visualize, and
the analysis of its S-duality becomes simpler.

We refer to [9] for the physical motivations behind the 4d/2d correspon-
dence.

The discussion in this section is adequate (at least) for all theories in
classes a), b), c) and d) listed in the Introduction, and, more generally, for
all models which have a “good” 4d/2d correspondence.

16We say that two discrete groups G1, G2 are commensurable if they have finite-
indices subgroup Ha ⊂ Ga (a = 1, 2) with H1, H2 isomorphic. Commensurability
equivalence will be written as ≈.
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3.1. The correspondence F̃ → F

In the categorical language, the relation F̃ → F may be (roughly) summa-
rized as follows. There is an Abelian category A (F̃), of global dimension
n ≤ 2 with tilting object (in the sense of [44]) T =

⊕r
i=1 Ti, whose bounded

derived category B(F̃) ≡ DbA (F̃) has Serre functor S, and is the brane cat-
egory [14–16] of the 2d (2,2) theory F̃ . The endo-quivers of T are interpreted
as the BPS quivers of the 2d theory F̃ , see [9].

Consider the orbit category

(28) B(F̃)/〈S−1[2]〉Z,

whose objects are the branes in B(F̃) and morphism spaces

(29) Homorb(X,Y ) =
⊕
k∈Z

HomB(F̃)(X,S
kY [−2k]).

The orbit category is 2-Calabi-Yau by construction, and has tilting objects
inherited from A (F̃ ), but it is not a cluster category (in general) because it is
not triangulated. However, there is a canonical “smallest” triangle category
which contains the orbit category, its triangular hull [12, 45]. We shall write
Hu4 for the operation of completing an orbit category to its triangular hull.
The embedding of the orbit category in its triangular hull

(30) B(F̃)/〈S−1[2]〉Z → Hu4

(
B(F̃)/〈S−1[2]〉Z

)
is fully faithful [12, 45]. The category in the rhs is now triangulated, 2-
Calabi-Yau, and has a tilting objet, so, according to Definition 2, it is a
cluster category. We say that F is the 4d correspondent of the 2d theory F̃
iff the cluster category constructed in this way out of DbA (F̃) is the cluster
category of F , that is, iff

(31) C (F) ' Hu4

(
DbA (F̃)/〈S−1[2]〉Z

)
.

From this equivalence we deduce the relation between the 4d Jacobian quiver
and the 2d BPS quiver [9]. For A (F̃) hereditary these two quivers are just
equal, otherwise the Jacobian 4d quiver is the “completion” of the 2d one.
It was this graphical connection which suggested the 4d/2d correspondence
in the first place [9].

An important property of the triangular hull (31) is the following:



i
i

“1-Caorsi” — 2019/6/4 — 22:22 — page 1610 — #18 i
i

i
i

i
i

1610 M. Caorsi and S. Cecotti

Fact 2 ([46] Theorem 5.4). The objects X of the triangular hull which
do not belong to the orbit category appear in families of dimension at least
1 and are never rigid, Ext1(X,X) 6= 0.

Comparing with eqn.(17), we see that the “extra” BPS particles arising
from the triangle completion of an orbit category have higher spin and are
never hypermultiplets.

In order to understand the properties of the “good” brane categories
B(F̃), we introduce a definition.

Definition 5. 1) An object X in a triangle category T , with Serre functor
S, is said to be fractional Calabi-Yau if there are positive integers a, b such
that

(32) SbX = X[a].

2) A triangle category with Serre functor S is said to have fractional Calabi-
Yau dimension a

b if a, b are the smallest positive integers such that (32)
holds for all objects.

If we have a triangle category T with Serre functor S, we write CY(T )
for the additive closure in T of the class of its fractional Calabi-Yau objects.
T is fractionally Calabi-Yau iff T = CY(T ). If the brane category B(F̃)
has fractional Calabi-Yau dimension a

b we say that the 2d theory F̃ has a
conformal UV fixed point with Virasoro central charge ĉ = a

b . Otherwise we

say that F̃ is asymptotically-free (logarithmic violation of scaling [47]).

Remark 4. We note that we are not allowed to simplify the common fac-
tors of the integers a, b in the fractional Calabi-Yau dimension a

b . For in-

stance, the A2n−1 (2,2) minimal model has fractional CY dimension 2(n−1)
2n 6=

n−1
n . Indeed, the statement that the Calabi-Yau dimension is a

b corresponds

to the following two properties of the UV fixed point of the 2d QFT F̃
(33)

fractional CY dimension =
a

b
⇔

{
ĉ = a

b in Q
for chiral primaries h = k

b with k ∈ N.

For the 2d theory which have a 4d correspondent, the fractional Calabi-
Yau dimension of all CY objects is bounded by 2

(34)
a

b
< 2.
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Rougly speaking, Calabi-Yau objects in a brane category correspond to op-
erators which are protected with respect to mixing under RG flow. In all
“good” 2d theory, we have at least one such operator, namely the identity.

Thus we shall assume that our brane category B(F̃), has the following
property:

Assumption 2. The 2d brane triangle category B(F̃) ≡ DbA (F̃), in ad-
dition to tilting objects and Serre duality, has some CY object with a

b < 2.

Of course, this condition is satisfied by all models listed in the Intro-
duction. It is shown in [45] that, under this additional assumption, the

cluster category Hu4

(
B(F̃)/〈S−1[2]〉Z

)
is equal to the orbit category if and

only if A (F̃) is derived equivalent to a hereditary category; comparing with
[23], we see that this happen only when the 2d QFT F̃ is either minimal or
affine or elliptic (in particular, this requires a

b ≤ 1).

3.2. The root category R(F̃)

If X ∈ B(F̃) is a brane, its anti-brane is X[1]. Since we think of the anti-
brane of the anti-brane as the original brane, it seems more appropriate to
replace B(F̃) with the orbit category

(35) B(F̃)
/

[2Z],

in order to implement the equivalence [2] ∼ Id. However, again, the orbit
category is not triangulated in general, and we have to take its triangular
hull

(36) R(F̃) ' Hu4

(
DbA (F̃)/[2Z]

)
.

We call R(F̃) the root category since for A (F̃) the module category of a
Dynkin algebra we recover the Peng-Xiao root category [48] of the associated
Dynkin graph.

By construction, R(F̃) is triangulated, 2-periodic, and has tilting object
T . We write S for the image of the Serre functor in the root category.

3.3. The 2d and 4d quantum monodromies

In the categorical framework, the quantum monodromy is just the Serre
functor S. However, S describes different monodromies in 2d and 4d. For
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the 2d model, S acts on the root category R(F̃), while for the 4d one S
acts on the cluster category C (F). If the 2d theory flows in the UV to a
non-degenerate SCFT, that is, if B(F̃) has fractional Calabi-Yau dimension
a
b , both quantum monodromies have finite order.

For the 2d monodromy H of a UV SCFT, we have two possibilities:
either a is even or it is odd. For a even Sb ∼ [a] ∼ Id in R(F̃) and the order
is b. Otherwise the order of H is 2b. Then

(37) order H =
2b

gcd(a, 2)
.

The 4d monodromy M for a even satisfies

(38) Sb ∼ [a] ∼ Sa/2,

so that17

(39) order M ≡ m =
2b− a

gcd(a, 2)
> 0.

Now (S[−2])b = [a− 2b] so that we have the intersection of groups of
auto-equivalences

(40)
〈
S[−2]

〉Z⋂ [
2Z
]

=
[
2mZ

]
, where 0 < 2m =

{
2b− a a even

4b− 2a a odd.

We define the auxiliary category

(41) C R(F̃) = Hu4

(
DbA (F̃)/[2mZ]

)
,

which is fractional Calabi-Yau of dimension 〈a〉m/b, where 〈a〉m stands for
the smallest non-negative integer congruent to a mod 2m.

3.4. Comparing Aut(R(F̃)) and Aut(C (F))

For simplicity, we assume the 2d theory F̃ to have a non-degenerate UV fixed
point with ĉ = a

b < 2, so that B(F̃) ≡ DbA (F̃) is fractional Calabi-Yau of

dimension a
b . We consider the Abelian subgroup A ⊂ Aut(B(F̃)) generated

17We used that ĉ = a/b < 2.
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by T ≡ S[−2] and [1] i.e.

(42) A =
〈
T, [1]

∣∣∣ T b = [a− 2b]
〉

=
{
T k[`], ` ∈ Z, k = 0, 1, . . . , b− 1

}
.

Since A (F̃) is Hom-finite with finite global dimension, for all objects X,Y ∈
B(F̃)

(43)
∑
ρ∈A

dim HomB(F̃)(X, ρY ) <∞.

We define the four subgroups of A:

(44) A∅ = 1, Ac = TZ, Ar = [2Z], Acr = [2mZ] = Ac ∩ Ar.

From eqn.(40) one infers the following diagram of functors

(45)

B(F̃) ≡ B(F̃)/A∅
πr

ttjjjjjjjjjjjjjjjjj
πcr
��

πc

**TTTTTTTTTTTTTTTTT

B(F̃)/Ar

ιr
��

B(F̃)/Acr

ιcr
��

π1oo π2 // B(F̃)/Ac

ιc

��
R(F̃) jj

≈
ρ

44C R(F̃)
$1oo $2 // C (F)

where π? are canonical projections and ι? fully faithful embeddings in the re-
spective triangular hulls. The orbit categories B(F̃)/A? (with ? = ∅, c, r, cr)
have the same objects as B(F̃) and morphism spaces

(46) HomB(F̃)/A?
(A,B) =

⊕
ρ∈A?

HomB(F̃)(A, ρB).

The images of the tilting summands, {Ti}ri=1 of A (F̃), generate homologi-
cally the various linear categories appearing in the diagram (45). Then an
auto-equivalence of one of these categories is uniquely determined by its
action on the corresponding full subcategory image of add T .
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We write $? = ι? ◦ π? for ? = r, c, cr. $? send auto-equivalences into
auto-equivalences

Aut$r : Aut(B(F̃))→ Aut(R(F̃)),(47)

Aut$c : Aut(B(F̃))→ Aut(C (F)).(48)

Since all auto-equivalences commute with T and [1], A-orbits are sent into
A-orbits. An auto-equivalence permutes the A-orbits {Oξ}ξ∈Ξ between them-
selves and acts on each orbit by a functor of the form Skξ [`ξ] (the integers
kξ, `ξ depending on the orbit ξ).

We claim that ker Aut($1) = Z/mZ. Indeed, let T = ⊕iTi be the tilting
object of A (F̃). One has

(49) dim HomC R(Ti, Tj [k]) = cij δ
(2m)
k,0

where δ
(p)
i,j is the mod p Kronecker delta:

(50) δ
(p)
i,j =

{
1 i− j = 0 mod p

0 otherwise.

If µ ∈ ker Aut($1), µTi = Ti[2ki], for certain integers ki. Then

cij δ
(2m)
k,0 = dim HomC R(µTi, µTj [k])(51)

= dim HomC R(Ti, Tj [k + 2kj − 2ki]) = cij δ
(2m)
k,2ki−2kj

,

hence ki = kj ≡ κ (mod. m) for all i,j (since the category is connected) and
µ = [2κ]. The same argument applied to Aut($2) shows that ker Aut($2) is
finite18. Hence

Fact 3. If the 2d theory F̃ flows in the UV to a non-degenerate (2,2) SCFT,
the groups Aut(C R(F̃)), im Aut($1), and im Aut($2), are commensurable.
Then so are im Aut($c) and im Aut($r).

18In many models ker Aut($2) is as small as (S[−2])k where k ∈
Z/(2b/ gcd(a, 2))Z.
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It remains to determine the images of Aut($r), Aut($c). We shall see
in §.4.4 that the maps Aut($1), Aut($2) are onto at least for the subgroups

(52) Tel(R(F̃)) ⊆ Aut(R(F̃)), Tel(C (F)) ⊆ Aut(C (F))

which are generated by (generalized) Thomas-Seidel twists, telescopic func-
tors19, “obvious” auto-equivalences of A (F̃), and T , [1]. The continuous
deformation subgroups Tel(R(F̃))0, Tel(C (F))0 are also set in correspon-
dence by ρ. It is reasonable to expect that “generically” the sub-groups (52)
coincide with the full auto-equivalence groups; if this is the case, the dashed
arrow in (45) is an equivalence modulo commensurability and

(53) S(F) ≈ Tel(R(F̃))
/

Tel(R(F̃))0.

Pragmatically, we shall study the rhs of this equation rather than S(F)
itself. In doing this, we may sometimes detect only a proper subgroup of
the actual S-duality group, but a very interesting one. The rhs of eqn.(53)
is easily written as an explicit group of integral r × r matrices (r = 2g + f ,
where g is the dimension of the Coulomb branch and f = rankF ).

Remark 5. In the above argument we have supposed, for simplicity, that
the 2d theory is UV superconformal (≡ the corresponding brane category
is fractional Calabi-Yau). The conclusion may be extended to the asympto-
tically-free case, as the explicit description of the duality groups will show
(see §.4.4.2).

3.5. The S-duality group as a concrete matrix group

The (pragmatic) identification of the S-duality group (up to commensura-
bility) with the group of auto-equivalences of the root category, modulo the
ones acting trivially on the Grothendieck group, eqn. (53), allows to identify
it with a concrete group of integral matrices, as we now explain.

In the set-up and with the Assumptions of the previous subsections,
we have

(54) K0(B(F̃)) ≡ K0(A (f̃)) '
r⊕
i=1

Z[Ti] ≡ Γ.

19See Section 4.
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Since [X[1]] = −[X], the map

(55) [−] : B(F̃)→ Γ, X 7→ [X],

factorizes through the orbit category

(56) B(F̃)→ B(F̃)
/

[2Z]→ K0(B(F̃)
/

[2Z]) ≡ Γ.

On K0(B(F̃)) there is an (integral) Euler bilinear form

(57) χ([X], [Y ]) =
∑
k∈Z

(−1)k dim Hom(X,Y [k]),

which induces a bilinear form on the root category R(F̃). Given X, Y ∈
R(F̃), we write their Grothendieck classes as

(58) [X] =
∑
i

xi[Ti], [Y ] =
∑
i

yi[Ti],

and the Euler pairing in the matrix form

(59) χ([X], [Y ]) = xi χ([T ]i, [T ]j) yj ≡ xiEij yj .

The Euler matrix E is unimodular. From eqn.(5) we see that

(60) χ(X,SY ) = χ(Y,X).

We introduce the 2d quantum monodromy matrix20 H [47] as the image
of the functor S into the Grothendieck group

(61) [STi] = [Tj ]Hji

Then

(62) Eij = χ(Ti, Tj) = χ(Tj , STi) = χ(Tj , Tk)Hki = EjkHki

and

(63) H = E−1Et.

20Minus the 2d quantum monodromy is called the Coxeter matrix Φ; however it
seems more natural to work with H.
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H is an isometry of the Euler form E

(64) HtEH = E,

and hence leaves invariant its symmetric and anti-symmetric parts

(65) C = E +Et, ω = E −Et.

The statement of the 4d/2d correspondence [9] implies (whenever a
“good” 2d correspondent exists) that the Dirac pairing is given by the skew-
symmetric bilinear form

(66) E −Et ≡ E(1−H).

The flavor lattice Γflavor is the radical of the Dirac form E −Et. From (66)
Γflavor is the invariant sublattice of H

(67) Γflavor ≡
{
x ∈ Γ

∣∣∣Hx = x
}
, f = rank Γflavor.

One shows that the restriction of the symmetric integral form C on the
flavor lattice Γflavor is positive-definite.

3.5.1. The matrix form of the duality group. We have a group ho-
momorphism

(68) bf : Aut(R(F̃))→ GL(r,Z), σ 7−→ σ,

where σ is the integral r × r matrix

(69) [σTi] = [Tj ]σji.

Since all auto-equivalences commute with S,

(70)
[
H,σ

]
= 0.

By the argument around eqn.(24), the kernel of the map bf is precisely
Aut(R(F̃))0. Then its image Aut(R(F̃)) ≡ bf(Aut(R(F̃)) ⊂ GL(r,Z) is
related by the correspondence ρ in (45) with the S-duality group S(F) of
the corresponding 4d theory. We conclude that
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Fact 4. We have the correspondence

(71) S(F) oo // Aut(R(F̃)) ⊂ C(H) ⊂ GL(r,Z),

where C(H) is the centralizer of H in GL(r,Z). Thus the S-duality is
(roughly) the concrete matrix group Aut(R(F̃)).

In §.4.5. we describe effective methods to determine the group
Aut(R(F̃)) very explicitly.

Remark 6. It is tempting to interpret the matrices σ as giving the ac-
tion of S-duality on the charges v ∈ Γ. However this is not correct in gen-
eral: the lattice Γ is the Grothendieck group of R(F̃) not of C (F). Since
Γ ' K0(mod Jac(QT ,WT )) the identification of Γ with the IR charge lattice
depends on T , i.e. on the region in parameter space. However it is still true
that the group generated by the matrices σ is commensurable with a group
of S-dualities.

3.5.2. Review of the 2d quantum monodromy. The matrix H rep-
resenting 2d quantum monodromy on the Grothendieck group of the brane
category B(F̃) of a “good” 2d theory F̃ , which has a 4d correspondent
should satisfy a number of properties [9, 24].

As before, we assume that the 2d brane category B(F̃) has some frac-
tional CY object, and write ĉ for the maximum of their fractional CY di-
mensions (seen as elements of Q). Physical regularity requires 0 ≤ ĉ < 2.

Fact 5 ([24, 47]). One has:

• H has spectral radius 1 (hence all its eigenvalues are roots of unity).
Then its characteristic polynomial factorizes into cyclotomic polyno-
mials

(72) det
[
H − z

]
= (z − 1)f

∏
d∈D

Φd(z)
wd ,

where f is the rank of the flavor group F of the 4d theory, D is a finite
subset of N≥2, and Φd(z) is the d-th cyclotomic polynomial. wd are
positive integers satisfying

∑
d∈D φ(d)wd = 2g, g being the dimension

of the 4d Coulomb branch;

• the Jordan blocks of H are at most of size 2, and there is no non-trivial
block for the eigenvalue λ = 1. In other words, the minimal polynomial
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of H has the form
(73)

min-polH(z) = (z − 1)a
∏
d∈D

Φd(z)
md , a =

{
0 f = 0

1 f ≥ 1,
and

{
md ∈ {1, 2}
md ≤ wd;

• if ĉ < 1, H is semisimple. If ĉ ≥ 1, there cannot be Jordan blocks as-
sociated to eigenvalues of the form21

(74) λ = e2πih with 0 ≤ h < 1− ĉ/2.

Indeed, the symmetric matrix E +Et is positive definite when re-
stricted to the correspondent eigenspaces.

3.6. S(F) and the Siegel modular group Sp(2g,Z)

On general physical grounds [42, 43], the group of dualities of any 4d N = 2
theory should act on the electro-magnetic charges by an arithmetic subgroup
GZ ⊂ Sp(2g,R) where g is the complex dimension of the Coulomb branch.
Our S-duality group is slightly more general than plain electro-magnetic
duality, since it acts non-trivially on the flavor charges, as it happens in
SU(2) Nf = 4 SQCD, where the action on the flavor is through Spin(8)
triality [29]. Let us describe how the group GZ arises in the homological
approach.

By construction, the Dirac form ω (cfr. eqn.(65)) induces a non-
degenerate (integral) symplectic form Ω on the rank 2g lattice of electro-
magnetic charges

(75) Γe.m. ≡ Γ
/

Γflavor.

Γflavor spans the (+1)-eigenspace of H (cfr. eqn.(67)). Since H centralizes
Aut(R) in GL(r,Z), all auto-equivalences of R(F̃) preserve the flavor sub-
lattice Γflavor and the electromagnetic one Γe.m., and we have an embedding

(76) Aut(R) ⊂ GL(2g,Z)×GL(f,Z).

21This mysterious statement becomes obvious when stated in physical terms. The
h’s in the range (74) correspond to 2d relevant chiral primary operators, which are
irrelevant in the UV, and hence do not produce logarithmic violation of scaling (≡
non-trivial Jordan blocks).
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Moreover, any element of Aut(R) leaves invariant both the positive sym-
metric form C and the symplectic form Ω (cfr. eqn.(65)). Hence

(77) Aut(R) ⊂ Sp(2g,Z)Ω ×O(f,Z)C ,

where the groups in the rhs are the arithmetic groups preserving the non-
degenerate forms Ω and C. They are lattices in Sp(2g,R) and O(f,R), re-
spectively.

Since C is positive-definite, the real group O(f,R)C is compact, and then
its arithmetic sub-group O(f,Z)Ω is finite. Hence, modulo commensurability,
we may forget the second factor in the rhs of (77). Up to Z-equivalence Ω
may always be written in normal form [49]
(78)

Ω =

(
0 D

−D 0

)
, D = diag(d1, . . . , dg) ∈ Ng, with di | di+1.

When all di’s are equal, Sp(2g,Z)Ω reduces to the Siegel modular group
Sp(2g,Z). The physical meaning of the invariants di will be discussed else-
where [41].

Fact 6 (see e.g. [50]). The arithmetic group Sp(2g,Z)Ω is commensurable
to the Siegel modular group Sp(2g,Z).

Thus, modulo finite groups, the S-duality group S(F) may be seen as a
subgroup of the Siegel modular group Sp(2g,Z) (although in a rather subtle
way, see Remark 6).

3.7. The flavor Weyl group

Γflavor is the lattice of flavor charges which remain unbroken for generic
values of the masses. The masses just softly break the UV flavor group F ,
which is non-Abelian in general, to its maximal torus U(1)f ; Γflavor is then
the group of characters of the maximal torus of F . Suppose that (modulo
isogeny)

(79) F = U(1)h × F1 × F2 × · · · × Ft, F` a simple Lie group.

Then

(80) Zh ⊕ Γroot
1 ⊕ · · · ⊕ Γroot

t ⊆ Γflavor ⊆ Zh ⊕ Γweight
1 ⊕ · · · ⊕ Γweight

t



i
i

“1-Caorsi” — 2019/6/4 — 22:22 — page 1621 — #29 i
i

i
i

i
i

Homological S–Duality in 4d N = 2 QFTs 1621

where Γroot
` (resp. Γweight

` ) is the root (resp. weight) lattice of the simple Lie
group F`. On physical grounds, the Weyl group

(81) Weyl(F1)×Weyl(F2)× · · · ×Weyl(F`)

should be part of the S-duality group Aut(R(F̃)). Since the action of this
group on Γflavor leaves the positive-definite quadratic form C invariant, we
get

(82) C 'Mh ⊕ a1C1 ⊕ a2C2 ⊕ · · · ⊕ atCt,

where C` is the Cartan matrix of F`, a` is a positive integer, and Mh

a positive-definite, symmetric, integral h× h matrix. Given the category
R(F̃), we know C and hence can infer the non-Abelian enhancement of the
flavor group in the UV, U(1)f → F . The image of Aut(R(F̃)) in the finite
group O(f,Z)C , eqn.(77), is then a subgroup of
(83)

O(h,Z)Mh
×
(

Weyl(F1) n Aut(F1)
)
× · · · ×

(
Weyl(F`) n Aut(F`)

)
×S,

where Aut(Fk) is the automorphism group of the Fk Dynkin graphs, S
permutes isogenous factors in F .

3.8. Tables of 4d/2d correspondences

In this last part of the section, we list the 2d correspondent theories to
the 4d N = 2 models we focus on in this paper. Up to some exception

(as D
(1,1)
4 (G)), the 4d models F listed in the Introduction are related

to 2d (2,2) Landau-Ginzburg (LG) models with four chiral superfields and
superpotential W (x, y, u, v) as in the following table:

(84)

model W (x, y, u, v)

(G,G′) WG(x, y) +WG′(u, v)

(G, Â(p, q)) WÂ(p,q)(x, y) +WG(u, v)

(G, D̂r) WD̂r
(x, y) +WG(u, v)

(G, Êr) WÊr
+WG(u, v)

E
(1,1)
6 (An−1) x3 + y3 + u3 + vn

E
(1,1)
7 (G) x4 + y4 +WG(u, v)

E
(1,1)
8 (G) x6 + y3 +WG(u, v)
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The Du Val polynomials WG(u, v) and the affine functions WĤ(x, y) are
listed in Table 2.

G WG(x, y) ĉ(G)

An−1 xn + y2 (n− 2)/n
Dn xn−1 + xy2 (n− 2)/(n− 1)
E6 x4 + y3 5/6
E7 x3 + xy3 8/9
E8 x5 + y3 14/15

Table 2: ADE minimal singularities.

Ĥ WĤ(u, v)

Â(p, q) epu + e−qu + v2

D̂r ur−2 + y2 + x2y2

Êr ur−3 + y3 + x2y2

Table 3: Affine W ’s.

From the 2d perspective, the following identifications of 4dN = 2 SCFTs
are obvious

(85)

E
(1,1)
6 (A1) = (D4, A2), E

(1,1)
6 (A2) = (D4, D4), E

(1,1)
6 (A3) = (D4, E6),

E
(1,1)
6 (A4) = (D4, E8) E

(1,1)
7 (A1) = (A3, A3), E

(1,1)
7 (A2) = (A3, E6),

E
(1,1)
7 (D4) = (E6, E6), E

(1,1)
8 (A1) = (A5, A2), E

(1,1)
8 (A2) = (A5, D4),

E
(1,1)
8 (A3) = (A5, E6), E

(1,1)
8 (A4) = (A5, E8).

In particular, for the models

(86) E
(1,1)
7 (An−1) and E

(1,1)
8 (An−1)

one is lead to the derived category of branes in the Landau-Ginzburg models
associated to the triangle singularities

(87) x4 + y4 + zn, and respectively x6 + y3 + zn.

Orlov [15] shows that these branes categories are equivalent to the Frobenius
stable categories

(88) vectX(p1, p2, p3)

where (p1, p2, p3) are the exponents in the superpotential (87), that is,
(4, 4, n) and, respectively, (6, 3, n). The category vectX(p1, p2, p3) [51] is de-
fined as the quotient of the category of bundles (coherent sheaves of positive
rank) over the weighted projective line X(p1, p2, p3) [52] by the ideal of line
bundles.
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The authors of [51] construct an explicit tilting object

T ∈ vectX(p1, p2, p3)

such that

(89) End(T ) ' CAp1−1 × CAp2−1 × CAp3−1.

Then [51]

(90) vectX(p1, p2, p3) ' Db(mod(CAp1−1 × CAp2−1 × CAp3−1)).

Note that the models (Ap1−1, Ap2,−1) correspond to the case vectX(p1, p2, 2).
This explicit realization of the 4d/2d correspondence for a subclass of the

theories of interest allows to double check many results, by comparing the
two sides of the correspondence. This is particularly helpful for the models
(86) which do not belong to the well-understood cases (G,G′) and (G, Ĥ).
The models (86) (and their generalizations) will be studied in Section 7.

4. Auto-equivalences of triangle categories

We review some general aspects of auto-equivalences in triangle categories.

4.1. Thomas-Seidel twists in a triangle category

A particular class of auto-equivalences of a triangulated category C is given
by the Thomas-Seidel twists associated to spherical objects [53, 54]; they
have the advantage of having a very explicit form. In many cases the spher-
ical twists generate the full group of auto-equivalences22 Aut(C ), and hence
we may expect them to produce a ‘substantial’ part of the S-duality group.

We recall some basic definition.

22In facts, all autoequivalences of a triangulated category are given by spherical
twists provided one generalizes from twists around spherical objects to twists around
spherical functors [55].
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Definition 6. An object A of a triangulated category T with Serre functor
S is called spherical iff there exists a n ∈ N such that:

SA = A[n] (A is CY of dimension n)(91)

Hom(A,A[k]) =

{
C for k = 0, n

0 otherwise.
(A has the homology of a n-sphere)

(92)

As in [54], we write Hom•(A,X) for the complex
⊕

k Hom(A[k], X)[k] of
C-spaces with the zero differential, and say that our triangulated category
T is Hom•-finite iff dim Hom•(A,B) <∞ for all objects A,B.

Definition 7. Let A be a spherical object in the triangulated category T
with Serre functor S and Hom•-finite. The Thomas-Seidel twist TA : T → T
[53], is the auto-equivalence X 7→ TA(X) defined by the exact triangle

(93) Hom•(A,X)⊗A→ X → TA(X)→,

where the first arrow is the canonical evaluation.

Let σ ∈ Aut(C ) be an auto-equivalence; we have the adjoint action

(94) σTAσ
−1 = Tσ(A).

In particular,

(95) TA[1] = TA, STAS
−1 = TSA = TA[n] = TA,

that is, TA depends only on the A-orbit of A.

4.1.1. Braid group actions. The set of all Thomas-Seidel twists of all
spherical objects generate a group of auto-equivalence which often is a braid
group.

Definition 8. An (Am)-configuration, m ≥ 1, in the triangulated category
C is a collection of m spherical objects A1, ..., Am such that

(96) dim Hom•T (Ai, Aj) =

{
1, |i− j| = 1,
0, |i− j| ≥ 2.
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Fact 7 ([53]). The twist TA along any spherical object A is an exact autoe-
quivalence of C . Moreover, if A1, ..., Am is an (Am)-configuration, the twists
TAi satisfy the Bm+1 braid relations up to graded natural isomorphism:

(97)
TAiTAi+1

TAi
∼= TAi+1

TAiTAi+1
for i = 1, ...,m− 1,

TAiTAj
∼= TAjTAi for |i− j| ≥ 2.

4.1.2. p-periodic categories. If the category T is p-periodic, [p] ' Id,
it cannot be Hom•-finite, and the triangle (93) makes no sense. It is natural
to restrict the direct sum to one orbit, i.e. to replace (93) with

(98)

p−1⊕
k=0

Hom(A[k], X)⊗A[k]→ X → TA(X)→ .

We then define “spherical” an object A ∈ T iff it is n–CY and

(99) dim Hom(A,A[k]) = δ
(p)
k,0 + δ

(p)
k,n,

where δ
(p)
i,j is the mod p Kronecker delta (see eqn.(50)). This definition is

a bit tricky when n | p, and for the moment we exclude this special case.
Likewise, we say that a sequence of m ≥ 1 spherical objects in the present
sense form an (Am)–configuration iff

(100)

p−1∑
k=0

dim Hom(Ai, Aj [k]) =

{
1, |i− j| = 1,
0, |i− j| ≥ 2.

With these modifications on the definitions (and some mild assumptions) the
functors TAi yield auto-equivalences which satisfy the braid relations (97).

4.2. Telescopic functors

We need a generalization of the twist inspired by the telescopic functors
[26, 27] which played the central role in the discussion of S-duality for the
tubular SCFTs [22].

Let us consider the first condition for a spherical objects, the CY one
(91). All auto-equivalence commute with S (since S is unique), and (91)
enforces that property, cfr. eqn.(95).23 Write S = T [n]. If A is not n-CY, the

23The second condition (92) guarantees that TA induces an isometry of the Euler
form.
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orbit {T kA}k∈Z does not reduce to the single object A. However, if the orbit
is periodic, T k+pA ' T kA, we can still enforce commutativity with T (hence
with S) by “averaging” over the T -orbit. In order to achieve periodicity we
are free to twist T by any number of shifts. Let us make the “averaging”
procedure more precise.

R a triangular category with Serre duality functor S = T [n]. R is allowed
to be `-periodic (` =∞ means non periodic).

Definition 9. A ∈ R has a spherical T -orbit of period p ∈ N iff p is the
smallest positive integer such that

T pA ' A(101)

dim Hom(A, T kA[j]) = δ
(p)
k,0 δ

(`)
j,0 + δ

(p)
k,1 δ

(`)
j,n,(102)

where δ
(p)
i,j is the mod p Kronecker delta (50).

A spherical object is just a spherical T -orbit of period p = 1.

To a spherical T -orbit of period p, {T kA}p−1
k=0 we associate a pair of

quasi-inverse auto-equivalences, LA and RA, called the telescopic functors.
If ` =∞ they are defined by the following cones [26, 27]

p−1⊕
i=0

Hom•(T iA,X)⊗ T iA→ X → LA(X)→(103)

RA(X)→ X →
p−1⊕
i=0

DHom•(X,T iA)⊗ T iA→(104)

LARA ' RALA ' Id.(105)

For p = 1, LA coincides with the Thomas-Seidel twist TA.
More generally, for ` <∞, we replace

(106) Hom•(T iA,X)⊗ T iA ≡
⊕
k∈Z

Hom•(T iA[k], X)⊗ T iA[k]

with

(107)

`−1⊕
k=0

Hom•(T iA[k], X)⊗ T iA[k].
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Uniform notation. It is convenient to rewrite all functors introduced
above in a more transparent notation. Let F ' Z2 be the free Abelian group
generated by T ≡ S[−n] and [1] and FA ⊂ F the isotropy subgroup of the
object A. Then we may write the defining triangle in an uniform way

(108)
⊕

ρ∈F/FA

Hom(ρA,X)⊗ ρA→ X → LA(X)→,

while for an object A with a spherical orbit

(109)
∑

ρ∈F/FA

dim Hom(ρA,A) = 2.

The proof that LA is an auto-equivalence for general p is a generalization
of the one for p = 1. Note that LA depends only on the F-orbit of the object
A, not on the object itself.

Clearly LA sends spherical orbits into spherical orbits. Then the tele-
scopic functors associated to two spherical T -orbits, {T kA}, {T kB}, satisfy
the adjoint action formula

(110) LALBRA ' LLA(B).

Definition 10. Let {T kAi}pi−1
k=0 be a collection of spherical T -orbits of pe-

riod pi (i = 1, . . . ,m). We say that they form a (Am)-configuration iff

(111)
∑

ρ∈F/FAi

dim Hom(ρAi, Aj) =

{
1, |i− j| = 1,

0, |i− j| ≥ 2.

Note that the definition implies that all orbits in the (Am)-configuration
have the same period, pi = p. Fact 2 generalizes to p > 1.

Fact 8. The telescopic functors LAi associated to a (Am)-configuration of
spherical orbits satisfy the Bm+1 relations

(112)
LAiLAi+1

LAi
∼= LAi+1

LAiLAi+1
for i = 1, ...,m− 1,

LAiLAj
∼= LAjLAi for |i− j| ≥ 2.

Given a triangle category as above, R, we write Tel(R) ⊂ Aut(R) for
the subgroup generated by the telescopic functors (including twists) and
the “obvious” auto-equivalences (S, shifts, etc.). Tel(R) is expected to be
an interesting part of the auto-equivalence group and it is often the full
Aut(R).
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4.3. Half-hypermultiplets and spherical half-orbits

4.3.1. Physical motivation. As we shall illustrate in Section 5, in a
LagrangianN = 2 QFT a quark which is a full24 hypermultiplet corresponds
to an object with a spherical orbit and hence to a telescopic auto-equivalence,
that is, a duality of the Lagrangian QFT.

In a QFT with a weakly coupled Lagrangian description, the duality
associated to a full quark may be understood semiclassically. The simplest
instance is SU(2) coupled to Nf full quarks studied by Seiberg and Witten
[29]. We recall their argument: the spectrum contains dyons which, as the
coupling goes to zero, g → 0, become classical solitons with masses O(1/g2).
The hypermultiplet fermions, ψa±, a = 1, . . . , Nf , have zero modes in the soli-
ton background, whose quantization yields the Clifford algebra in dimension
2Nf . Since the ψa± carry electric and flavor charge, it follows that the dyons
of even (odd) electric charge are in the chiral (anti-chiral) representation of
the flavor group Spin(2Nf ). The telescopic duality associated with the a-th
quark is simply the action on the dyons of the zero mode operator ψa+ (or ψa−
together with a shift by 2 of the electric charge); in the language of coherent
sheaves over weighted projective lines, this auto-equivalence for SU(2) with
Nf quarks is called the “one-point shift” (cfr. §.10.3 of [56]).

This physical understanding of simple telescopic auto-equivalences leaves
the feeling that something is missing: what about half-hypermultiplets?25

They also should play a role in the duality group. Clearly, the above semi-
classical argument may be applied also in this case (provided the theory is
free from Z/2Z anomalies [57]).

In terms of susy representation theory, the basic difference between
full- and half-hypermultiplets is that in the second case the PCT-conjugate
states belong to the same irreducible representation, while in the first case
we have the direct sum of a representation and its PCT-conjugate one. From
the point of view of the triangle categories which describe the BPS sector,
PCT conjugation is essentially the shift X → X[1]. Then the “abstract”
categorical version of the distinction between full- and half-hypers is the
following: in the first case X and X[1] belong to distinct T -orbits, while
in the second one to the same T -orbit which may be decomposed into two

24A quark is a full hypermultiplet iff its fermionic states form a quaternionic
representation of the gauge group of the form W ⊕W∨.

25A quark supermultiplet in a Lagrangian N = 2 QFT is a half-hypermultiplet
if it states form a quaternionic representation of the gauge group which cannot be
written in the form W ⊕W∨.
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half-orbits. Physical intuition suggests that there must be a generalization
of the telescopic auto-equivalences associated to spherical half -orbits.

Now we give the proper definitions.

4.3.2. Auto-equivalences from spherical half-orbits.

Definition 11. An object A in a 2m-periodic triangle category R, with
Serre functor S = T [n], has a periodic T -orbit of half-period q, if q is the
smallest positive integer such that

(113) T qA = A[m],

so that in the notation introduced at the end of §.4.2

(114) F/FA =
{
T k[j], k = 0, 1, . . . , q − 1, j = 0, 1, 2 . . . , 2m− 1

}
.

The object A has a spherical half-orbit iff, in addition to (113),26

dim Hom(A, T kA[j]) = δ
(2q)
k,0 δ

(2m)
j,0 + δ

(2q)
k,q δ

(2m)
j,m(115)

+ δ
(2q)
k,1 δ

(2m)
j,n + δ

(2q)
k,q+1δ

(2m)
j,m+n.

Then

(116)
∑

ρ∈F/FA

dim Hom(ρA,A) = 2,

so the functor X → LA(X) defined in eqn.(108) still makes sense and is an
auto-equivalence.

4.4. Twists in C (F) vs. telescopic functors in R(F̃)

We return to the set-up of Section 3, in particular to diagram (45).

4.4.1. First case: F̃ is a SCFT. The category B(F̃) = DbA (F̃) has
Serre functor S ≡ T [2], tilting object T = ⊕iTi, and fractional Calabi-Yau
dimension a

b < 2. Thus T b = [a− 2b] ≡ [−m]. In particular, the 4d cluster
category

(117) C (F) = Hu4
(
B(F̃)/TZ)

is m-periodic. C (F) is 2-Calabi-Yau, so the condition (91) holds for all
objects with n = 2; in other words all objects belong to a T -orbit with

26Again, we omit some special cases as q = 1 or m | n.
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p = 1. The condition of A ∈ C (F) being spherical, eqn.(99), becomes

(118) dim HomC (A,A[j]) = δ
(m)
j,0 + δ

(m)
j,2 ,

the special case being m|2; since m = m · gcd(a, 2), this is equivalent to the
condition M ' Id, as in all Lagrangian SCFTs. Note thatm > 1 (sincem = 1
is incompatible with the existence of a cluster-tilting object). Then from
eqn.(92) we see that all spherical objects are automatically rigid. Hence, by
Fact 2, all spherical objects of C (F) actually lay in the orbit category (28).
Given a spherical object A in the orbit category, we consider one of its lifts
in the derived category B(F̃) (still written A). Then

HomC

(
A,A[j]) =

⊕
k∈Z

HomB(A, T kA[j]
)

(119)

=
⊕
k∈Z

DHomB

(
A, T 1−kA[2− j]

)
,

so if A is spherical in C (F) its lift A ∈ B(F̃) satisfies

(120) dim HomB

(
A, T kA[j]

)
=
∑
s∈Z

(
δk,bs δj,ms + δk,bs+1 δj,ms+2

)
,

or, equivalently, its image in the 2m-periodic category C R(F̃)

dim Hom
(
A, T kA[j]

)
(121)

=

{
δ

(b)
k,0 δ

(2m)
j,0 + δ

(b)
k,1 δ

(2m)
j,2 a even

δ
(2b)
k,0 δ

(2m)
j,0 + δ

(2b)
k,1 δ

(2m)
j,2 + δ

(2b)
k,b δ

(2m)
j,m + δ

(2b)
k,b+1 δ

(2m)
j,m+2 a odd.

Conversely, if A ∈ B(F̃) satisfies (120), its image A ∈ C (F) is spherical
unless m = 1. However, we shall see that the m = 1 behaves very much as
the general case, and we don’t need to consider it an exception. In other
terms, if A ∈ C (F) is spherical iff A ∈ C R(F̃) has a spherical (half-) T -
orbit.

We denote the image of A in R(F̃) by the same symbol. In R(F̃)
eqns.(120) (121) become
(122)

dim HomR(A, T kA[j]) =

{
(δ

(b)
k,0 + δ

(b)
k,1)δ

(2)
j,0 a even

(δ
(2b)
k,0 + δ

(2b)
k,1 )δ

(2)
j,0 + (δ

(2b)
k,b + δ

(2b)
k,b+1)δ

(2)
j,1 a odd.
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where p is the period of the object A in R(F̃). The last equation is identical
to the characterization of spherical (half-) T -orbits in R(F). Thus there
is a one–to–one correspondence of twist auto-equivalences in C (F) and of
telescopic auto-equivalences in R(F̃).

To be more explicit, it is convenient to define LA directly at the level of
the derived category B(F̃). Let A ∈ B(F̃) satisfy eqn.(120); then (cfr. (42))

(123) F/FA = A

and, for all X ∈ B(F̃), we define LA(X) ∈ B(F̃) by the cone

(124) →
⊕
ρ∈A

HomB(ρA,X)⊗ ρA can−−−→ X → LA(X)→

which makes sense by eqn.(43). X 7→ LA(X) is an autoequivalence of the
derived category. With reference to the diagram (45), let us apply the functor
π? (? = ∅, r, c, cr) to this triangle. We get

(125)
⊕

ρ∈A/A?

(⊕
σ∈A?

HomB(σρA,X)

)
⊗ ρπ?A→ π?X → π?LA(X)→

Now the sum in the large parenthesis is just

(126) HomB/A?(ρA,X) ≡ HomHu4(B/A?)(ρA,X),

while for the image of A in Hu4(B/A?)

(127) F/FA = A/A? ? = ∅, c, r, cr.

Hence the triangle (125) corresponds to the triangle which defines the tele-
scopic functor in the triangular category Hu4(B/A?), see eqn.(108). We see
that for A,X ∈ B with A satisfying (120) we have

(128) L$?(A)

(
$?(X)

)
= $?

(
LA(X)

)
.

In particular, this equation holds for X = Ti (the indecomposable summands
of the tilting object T ). Since an auto-equivalence is uniquely determined
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by its action on the full subcategory add T , we see that the subgroups 27

(129) Tel(Hu4(B(F̃)/A?)) ⊂ Aut(Hu4(B(F̃)/A?))

are related by the maps $? and are “essentially” equal. We stress that the
case m = 1 is no exception: although the object $c(A) is not spherical in the
standard sense, the autoequivalence L$c(A) still makes sense being induced
from LA. In conclusion,

Fact 9. A ∈ C (F) is spherical if and only if the canonical image in R(F̃)
of its lift Ã ∈ B(F̃) belongs to a spherical T -orbit in R(F̃) (and hence also
in C R(F̃)). In the diagram

(130)

Tel(C R(F̃))
Tel($1)

uukkkkkkkkkkkkkkk
Tel($2)

))SSSSSSSSSSSSSS

Tel(C (F)) oo
≈
ρ

// Tel(R(F̃))

the group homomorphisms Tel($a) (a = 1, 2) are surjective with finite ker-
nels. Then the dashed arrow is a commensurability relation (isomorphism
up to finite groups).

Proof. $1, $2 are one-to-one on the orbits of the spherical objects, and
defines a one-to-one correspondence ρ between the orbits in R(F̃) and C (F).
Since the telescopic functors depend only on the orbit, this sets a well-defined
correspondence between the telescopic functors of the three categories. The
solid morphisms in (130) act as

(131) LA1
LA2
· · ·LAw 7−→ L$a(A1)L$a(A2) · · ·L$a(Aw).

In diagram (130) all relation between the generators LAi which holds in
the upstairs group remains valid in the downstairs ones. Therefore the two
morphisms Aut($a) are epi. We already know that their kernels are finite.

�

27Properly speaking, by the groups Tel(Hu4(B(F̃)/A?)) we mean the subgroups
of the auto-equivalence groups which are generated by telescopic functors of the form
LA with A ∈ B(F̃)/A?. For ? = ∅, c these are the full set of telescopic functors, since
all objects with spherical orbits belong to the orbit subcategory. For ? = r, cr we
cannot exclude that there are other spherical orbits in the triangular hull (but we
believe that there are none).
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4.4.2. Second case: F̃ is asymptotically-free. In this case the 2d
quantum monodromy H is not semi-simple but rather unipotent, that is,
satisfies the minimal equation (73) with some md equal 2.

Instead of working out the general case, we study a special class of brane
categories B = DbA in strictly asymptotically-free (2,2) models which will
suffice for the applications we have in mind. The general case is analogous.

Spherical orbits in cluster categories of tame weighted projective
lines. We consider the categories of branes of σ-models with target space
a weighted projective line (in the sense of [52, 56, 58])28 X(p), of weights
p ≡ (p1, p2, p3)) with strictly positive Euler characteristic

(132) χ(X(p)) = 2−
3∑
i=1

(
1− 1

pi

)
> 0.

This is the condition for (strict) asymptotic-freedom (AF) [23, 24]. We have
B(p) = DbcohX(p), the derived category of coherent sheaves on X(p). The
Serre duality functor is

(133) S : X 7→ X ⊗ ω[1],

where ω is the dualizing sheaf whose degree is, by definition, −χ(X(p)). It
is negative for a AF σ-model, and indeed, the degree of ω is the coefficient
of the β-function of the 2d QFT.

The corresponding cluster category

(134) C (p) ≡ B(p)/〈S−1[2]〉Z = DbcohX(p)/〈⊗ω−1[1]〉Z,

has been studied in [28]. It is the category with the same objects as cohX(p)
and Hom-spaces

(135) HomC (p)(X,Y ) = Homcoh(X,Y )⊕ Ext1
coh(X,Y ⊗ ω−1).

The corresponding root category

(136) R(p) = DbcohX(p)
/

[2Z],

28We follow the notations and conventions of [22].



i
i

“1-Caorsi” — 2019/6/4 — 22:22 — page 1634 — #42 i
i

i
i

i
i

1634 M. Caorsi and S. Cecotti

may be seen as the category cohX(p)
∨

cohX(p)[1] with morphism spaces
(X,Y ∈ cohX(p))

(137)
HomR(X,Y ) = HomR(X[1], Y [1]) = Hom(X,Y ),

HomR(X,Y [1]) = HomR(X[1], Y ) = Ext1(X,Y ).

Fact 10. Assume χ(X(p)) > 0. Let X ∈ C (p) be spherical (respectively, let
Y ∈ R(p) belong to a spherical orbit). Then, as a coherent sheaf, X (resp.
Y ) is fractional Calabi-Yau with ĉ = 1, i.e. there is an integer p such that
SpX = X[p] in DbcohX(p). The CY objects in DbcohX(p) are the sheaves
of zero-rank; they form an Abelian category, namely a P1-family of stable
tubes all of which but (at most) three are homogeneous. The exceptional
tubes have periods {p1, p2, p3}. The simples in the tubes are the only objects
in spherical orbits.

Proof. Let X ∈ cohX(p) seen as an element of the cluster category C (p).
One has

dim HomC (p)(X,X[m])(138)

= dim HomC (p)(X,X ⊗ ωm)

= dim Homcoh(X,X ⊗ ωm) + dim Homcoh(X,X ⊗ ω2−m).

If X has positive rank ρ > 0, i.e. it is a bundle, the rhs goes like

(139) ρ |m|+ const for |m| � 1,

and cannot be spherical. Y ∈ R(p) is fractional CY iff it is fractional CY in
B(p). The rest of the Fact are standard facts about the weighted projective
lines, see e.g. [52, 56, 58]. �

The simples in the tubes indeed belong to spherical orbits. The simples
Sa,i (a ∈ Z/piZ) in the i-th exceptional stable tube Cpi of period pi have
fractional CY dimension pi

pi

(140) SpiSa,i = Sa,i[pi],

and setting S = τ [1] one has

(141) τSa,i = Sa+1,i
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and

dim Hom(Sa,i, τkSb,j [m]) = dim Hom(Sa,i,Sb+k,j [m]) =

= δij

(
δ

(pi)
a,b+k δm,0 + δ

(pi)
a,b+k−1 δm,1

)
.

(142)

The telescopic functors LSa,i depend only on the tube i; in R(p) this follows
from the fact that the Sa,i with the same i belong to the same τ -orbit (141).
In C (p) one has

(143) LSa+1,i
= LτSa,i = LSa,i[1] = LSa,i .

The Li ≡ LSa,i commute between themselves and act on the bundles as shift
in the gradings

(144) X 7−→ X ⊗O(~xi) ≡ X(~xi) for rankX > 0

see Theorem 10.8 of [56]. Eqn.(144) holds in all four categories cohX(p),
B(p), C (p), and R(p).

This shows (for this class of asymptotically-free examples) the isomor-
phism

(145) Tel C (F) ' Tel R(F̃).

In addition, the auto-equivalence group contains the shifts [k], and the per-
mutations of exceptional tubes of same period pi (see [22] for their physical
interpretation).

The general asymptotically-free case is expected to be similar. In particu-
lar, the analysis may be generalized to the auto-equivalence groups generated
by objects with spherical half-orbits.

Remark 7. The mirror symmetric (2,2) models to the above σ-models are
the LG theories with superpotentials in Table 3 whose periods may be read
in Table 1.

Remark 8. In the 4d perspective, each exceptional tube of period pi > 1
corresponds to a Dp Argyres-Douglas superconformal matter system cou-
pled to SU(2) SYM, as in Table 1. The i-th constituent system, taken in
isolation, is described by its own cluster category, which is a Dynkin cluster
category of type Dpi . The 4d quantum monodromy of the sub-constituent,
S, has period (h(Dpi) + 2)/2 = pi and, as always, has the interpretation of
a U(1)R rotation by 2π [9] (of the sub-constituent only). On the cluster
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category of the fully coupled theory C (p) this symmetry operation becomes
the telescopic functor Li. Via the chiral anomaly and the Witten effect [59],
it implies a shift in the electric charge (≡ degree in the math language) of
the dyons (≡ bundles for mathematicians), see eqn.(144).

Remark 9. The story changes dramatically when χ(X(p)) = 0, i.e. when
the (2,2) σ-model is conformal. In this case we have other spherical orbits,
and we get an auto-equivalence group containing SL(2,Z) as aspected on
general physical grounds. See [22] for details.

4.5. Explicit matrix realization of the duality group

We return to the general case and the explicit r × r matrix realization of the
S-duality group discussed in §. 3.5 via its action on the Grothendieck group
of R(F̃).

We write down the explicit matrix LA ≡ bf(LA) which yields the ac-
tion of the telescopic auto-equivalence LA on the Groethendieck group Γ ≡
K0(R(F̃))

(146) [LATi] = [Tj ](LA)ji.

From the definition, for an orbit of period p

(147)

[RAX] = [X]−
p∑

k=1

χ(X,T kA) [T kA],

[LAX] = [X]−
p∑

k=1

χ(T kA,X) [T kA],

and29

(148)

{
[A] = [Ti]ai

[X] = [Ti]xi
⇒

{
[T kA] = (−1)nk [Tj ](H

ka)j

χ(T kA,X) = (−1)nk at(Ht)kEx.

29We write a = (a1, . . . , ar), x = (x1, . . . , xr).



i
i

“1-Caorsi” — 2019/6/4 — 22:22 — page 1637 — #45 i
i

i
i

i
i

Homological S–Duality in 4d N = 2 QFTs 1637

Then

(LA)ij = δij −
p∑

k=1

(
Hka

)
i

(
atEH−k

)
j

(149)

(RA)ij = δij −
p∑

k=1

(
Hka

)
i

(
atEH1−k)

j
(150)

From these expression it is obvious that LA and RA commute with H; using
the fact that A belongs to a spherical orbit

(151) atEHka = δ
(p)
k,0 + δ

(p)
k,1

and H = E−1Et, it is easy to check that

(152) LARA = 1, ⇒ LA, RA ∈ GL(r,Z).

We shall write Tel(R(F̃)) ⊂ GL(r,Z) for the concrete group of matrices
representing the group Tel(R(F̃)) on the charge lattice Γ.

4.6. General properties of the matrix LA

LA, RA satisfy the equations

(
LA − 1

)(
LA +H−1

)
= 0(153) (

RA − 1
)(
RA +H

)
= 0(154)

which show that LA, RA preserve E. Note that the equation satisfied by
LA is independent of the particular spherical orbit A.

A priori, the matrix LA may have a non-trivial Jordan blocks in two
cases:

A) in correspondence to a non-trivial Jordan block of H;

B) associated with the eigenvalue 1 in the eigenspace −1 of H.

Below we shall see that A) cannot happen (unless the H block is associated
to the eigenvalue −1). We recall that the size of the Jordan blocks is at
most 2.
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Then the only non-trivial Jordan blocks of LA appear in the (−1)-
eigenspace of the 2d monodromy. Let Γ−1 be the lattice

(155) Γ−1 ≡
{
x ∈ Γ

∣∣∣Hx = −x
}

which is equipped with a non-degenerate skew-symmetric integral form in-
duced from Ω. The operators LA

∣∣
Γ−1

are unipotent of index 2

(156)
(
LA
∣∣
Γ−1
− 1
)2

= 0.

4.6.1. Tel(R(F̃)) acts on Γflavor as Weyl(L). We already know that
the action of Tel(R) on the flavor lattice factors through a finite group.
Here we show that it is a crystallographic reflection group; by the Coxeter
classification [60] this means that the image

(157) Tel(R(F̃)))→ Aut(Γflavor) ' GL(f,Z)

is the Weyl group of a finite-dimensional semi-simple Lie algebra L.

Fact 11. For all spherical orbits A, the restriction of LA to the flavor lattice
Γflavor, LA

∣∣, is an involution (LA
∣∣)2 = 1, and in facts LA

∣∣ is a reflection
σA, meaning that, in addition, the matrix (1−LA)

∣∣ has precisely rank 1.
In particular, the restriction to Γflavor of the telescopic functors of an (Am)-
configuration of spherical orbits yields an action of Weyl(Am) ≡ Sm+1.

Proof. x ∈ Γflavor iff and only if Hx = x. Then, for x ∈ Γflavor

(158) 0 =
(
LA − 1

)(
LA +H−1

)
x ≡

(
L2
A − 1

)
x,

so LA
∣∣ is an involution. On the other hand,

(159)
(
1−LA

)∣∣∣ = v ⊗ vtE
∣∣∣, where v =

1

p

p∑
k=1

Hka.

(1−LA)
∣∣ = 0 iff v = 0, which is impossible since eqn.(151) yields atEv =

2/p. �

Remark 10. This results agrees with the physical picture in §. 3.7, see
eqn.(83). The fact that the Weyl group of the Lie group L is a factor of
the image of Tel(R) does not imply that L is a factor of the flavor group.
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Besides the ambiguity arising from the Abelian sector, encoded in the group
O(h,Z)C , we have to keep into account the automorphisms of the Dynkin
graphs. For instance, in the case of SU(2) with Nf = 4 the S-duality acts
on the SO(8) flavor charges as the group [22]

(160) Aut(SO(8)) n Weyl(SO(8)) 'Weyl(F4).

In the same fashion, for n 6= 4

(161) Aut(SO(2n)) n Weyl(SO(2n)) 'Weyl(SO(2n+ 1)).

4.6.2. Complex reflection groups. Exploiting the special form (73) of
the minimal polynomial for H, modulo commensurability we can write

(162) Γ ≈ Γflavor ⊕

(⊕
d∈D

Γd

)

where

(163) Γd ≡
{
x ∈ Γ

∣∣∣ Φd(H)md x = 0
}

The decomposition (162) is orthogonal for the Euler form E, that is, if
xd ∈ Γd and yd′ ∈ Γd′

(164) xtdE yd′ = 0 unless d = d′.

All auto-equivalence preserves the sub-lattices in the rhs of(162) indi-
vidually. We have already discussed the action of the telescopic functors on
the first summand Γflavor, and also on Γ2 (see argument around eqn.(156)).
Now we focus on one particular Γd with d ≥ 3. We write Hd (resp.RA,d) for
the integral matrix obtained by restricting H (resp.RA) to Γd. We write

Teld ⊂ GL(rank Γd,Z)

for the matrix group generated by the RA,d of all objects A with spherical
orbits.

Let Q[ζ] be the cyclotomic field of a primitive 2d–th root of unity ζ. Hd

(resp.RA,d) may be set in Jordan canonical form over Q[ζ] with eigenvalues
of the form ζ2` (resp. 1 and −ζ2`) with30 ` ∈ (Z/dZ)×, all having the same

30(Z/dZ)× is the group of unities in the ring Z/dZ. By definition |(Z/dZ)×| =
φ(d).
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multiplicity and Jordan structure. We consider the Q[ζ]-space Vd = Γd ⊗
Q[ζ]. One has

(165) Vd =
⊕

`∈(Z/dZ)×

Wd,`, where Wd,` =
{
v ∈ Vd

∣∣∣ (H − ζ2`)2v = 0
}
.

Let Z be the operator which on Wd,` acts as ζ−`.

Lemma. The form (linear on the first argument, anti-linear in the second
one)

(166) H(v, w) = χ(Zv,w∗), v, w ∈ Vd,

is Hermitian and Hd invariant. It decomposes over Q[ζ] into a direct sum
of Hermitian forms Hd,` on each space Wd,`. The dimension of the radical
of Hd,` and its signature are independent of ` ∈ (Z/dZ)×.

The decomposition (165) yields an embedding

(167) Teld →
∏

`∈(Z/dZ)×

U
(
Hd,`,Q[ζ]

)
where U

(
H`,Q[ζ]

)
is the group of “unitary” matrices preserving the Hermi-

tian form Hd,`. The images in the several factors in the rhs of(167) are all
conjugate31 under Gal(Q[ζ]/Q) ' (Z/2dZ)×; it is enough to consider just
one image, say the one with ` = 1, Teld,1.

Finiteness conditions. If Hd,1 is definite, U(Hd,1,C) is compact, and
then Teld,1 is a finite group. This is guaranteed to happen in two cases:

• if wd = 1 (cfr. eqn.(72));

• for all d such that (cfr. eqn.(74))

(168)
1

d
< 1− ĉ

2
.

For all Teld,`, finite or infinite, we have:

31See VI.(1.9) of [61].
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Fact 12. Let d ≥ 3. The restriction RA,d,` of RA in the sub-space Wd,` acts
as a complex reflection, that is, is semi-simple with eigenvalues

(169) − ζ2`, 1, 1, 1, . . . , 1.

Thus, the image in the `–th factor in eqn.(167), Teld,`, is a complex reflec-
tion group.

Proof. One has

(170)
(
1−LA

)∣∣∣
Wd,`

= vd,` ⊗ vtd,`E, where vd,` =
1

d

d−1∑
k=0

ζ−2k`Hka,

and vd,` 6= 0 since by (151)

(171) datE vd,` = 1 + ζ−2` 6= 0

since ζ−2 = e−2πi/d, d 6= 1, 2, and (`, d) = 1. �

Thus the matrices RA,d,` are complex reflections32; a group generated by
complex reflection is called a a complex reflection group. We conclude that
each Teld is a complex reflection group (finite or infinite). The reflection
group Teld is crystallographic with respect to the cyclotomic integers Oζ2 ⊂
Q[ζ2]; indeed,

(172) Γd ' O
rank Γd/φ(d)
ζ2 as Z-modules.

Finite reflection groups. The finite complex reflection groups have been
fully classified by Shephard-Todd [62]. Then, whenever Hd is definite, we
reduce the problem of determining Teld to a comparison with a known list
(this is the strategy used in [22]).

The complete list of finite reflection groups is given by two classes: i) an
infinite sequence G(d, e, r), depending on three integers d, e, r, which may be
seen as a cyclotomic generalization of the symmetric groups Sr = G(1, 1, r);
ii) 34 exceptional groups denoted G4, G5, . . . , G37 whose matrices have sizes
≤ 8.

Shephard-Todd groups are most conveniently presented as quotients of
generalized braid groups, i.e. they are generated by a set of complex reflec-
tions tA which satisfy two kinds of relations [63, 64]:

32A matrix is a complex reflection iff all its eigenvalues but one are equal to 1.
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A) braid relations of the Coxeter form

(173)

s factors︷ ︸︸ ︷
tAtBtAtB · · · =

s factors︷ ︸︸ ︷
tBtAtBtA · · ·;

B) order relations for the generators tA of the form

(174) tdAA = 1.

The braid presentation is especially suited for our purposes: we identify the
tA with the matrices LA restricted to a subspace Wd,` with definite Hermi-
tian form (166). The tA inherit from the telescopic functors their braiding
relations(112), while from eqn.(169) we get the order relations

(175) (tA)2d/ gcd(2,d) = 1.

Note that the exponent is independent of A. Inverting the logic, if the braid
and order relations satisfied by the group Teld,` appear in the Shephard–
Todd list, we conclude that Teld,` is finite. The relations are best written in
terms of a graph [63, 64] which generalizes the usual Dynkin graphs of the
real reflection groups.

4.7. Spherical (half) orbits in R(G)

For later use we need to classify the spherical (half) orbits in the root cat-
egory of a Dynkin graph G of ADE type. In this subsection we consider
1-spherical τ -orbits, i.e. in the general framework of §§.4.1-4.3 we take n = 1
and T = S[−n] ≡ τ (the AR translation [65]). We stress that no new auto-
equivalence of R(G) may arise from such orbits. Indeed,

Fact 13. Let A ∈ R(G) be an object with a spherical (half-) τ -orbit. Then

(176) LA '

{
τ−1 G 6= D2n

εAτ
−1 G = D2n,

where εA is a non-trivial involution, ε2
A = Id.

Proof. In the Dynkin case33 the 2d monodromy is minus the Coxeter of G,
H = −Φ. With the exception of the eigenvalue −1 for D2n, all eigenspaces

33As 2d (2,2) theories these are the minimal N = 2 SCFTs.
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~An−1 : 1 // 2 // 3 // 4 // · · · // n− 2 // n− 1

~Dn :

s

n− 2 n− 3oo · · ·oo 3oo 2oo 1oo

OO

// c

~En :

n− 1

��
1 // 2 // n n− 2oo · · ·oo 4oo 3oo

Figure 2: Reference orientations of Dynkin quivers. The node numbers are
chosen so that for all arrows ψ one has t(ψ) > s(ψ).

of Φ have dimension 1. For G 6= D2n, it follows from eqn.(169) that LA =
−H−1 = Φ−1. Then τLA fixes all Grothendieck classes and is equivalent to
the identity. For G = D2n, ΦLA has all eigenvalues +1 but one which is −1.
Then (τLA)2 fixes all classes so that τLA 6' Id and (τLA)2 ' Id. �

Our interest for the spherical (half)orbits in R(G) is purely technical: in
future sections we shall “twist” together spherical orbits of several Dynkin
graphs to get non-trivial new auto-equivalences. The reader may prefer to
skip this subsection.

For concreteness we fix a reference orientation of the Dynkin quivers. ~G
will always mean a Dynkin quiver of type G with the reference orientation.
The reference quivers (with numbered nodes) are shown in Figure 2. We
write Si for the simple module of C~G with support at the i–th node, Pi for
its indecomposable projective cover [65], and use the standard tilting object

(177) T =
⊕
i∈ ~G

Pi = C~GC ~G.

The Euler matrix in the [Pi] basis reads

(178) Eij = dim End(Pi, Pj) = dim(Pj)i.

The indecomposable objects of

(179) R(G) ' modC~G ∨ (modC~G)[1]
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are in one-to-one correspondence with the roots α ∈ ∆(G) of the Lie algebra
G and will be labelled by the roots {Xα}α∈∆(G). Positive roots correspond

to modules of C~G, while X−α = Xα[1]. Si ≡ Xαi , where αi is i–th simple
root.

4.7.1. Explicit form of the root category R(G). It is convenient to
give an explicit realization of the root category of the Dynkin graph G in
terms of its Auslander-Reiten (AR) quiver [65]; it is just a h(G)-periodic
version of the AR quiver for the derived category, constructed by Happel
[66]. We write G for the opposite quiver of ~G (i.e. the quiver with all arrows
inverted).

Te AR quiver of R(G) is given by

(180) ZG/τh(G),

that is, the quiver whose nodes v are pairs (k, i) with k ∈ Z/h(G)Z and
i ∈ G. An arrow ψ : i→ j in G yields 2h(G) arrows in ZG/τh(G)

(181)
(k, ψ) : (k, i)→ (k, j)

σ(k, ψ) : (k − 1, j)→ (k, i) k ∈ Z
/
h(G)Z.

The operation σ is extended to all arrows by the rule that

(182) σ2(k, ψ) = (k − 1, ψ).

τ acts as (k, i)→ (k − 1, i) and (k, ψ)→ (k − 1, ψ) on all nodes and arrows.
Note that for an arrow ψ : u→ v ≡ (k, i) the path ψσ(ψ) has source in the
node τv = (k − 1, i). The mesh at v is

(183) rv =
∑

ψ : t(ψ)=v

ψσ(ψ).

Each node v in the AR quiver (180) represents an isoclass of indecomposable
objects of R(G), the projective modules Pi being associated to the nodes
(1, i). The morphism space Hom(v, u) is the vector space over the paths
connecting v and u in the AR quiver, modulo the ideal generated by all
meshes rv.

Example 2. The AR quiver for R(A3) is shown in Figure 3, and (half)
the AR quiver of R(D4) in Figure 4.
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Figure 3: The AR quiver of R(A3). Objects are labelled by their Grothen-
dieck class in the root lattice of G. The objects on the right are cycli-
cally identified with the corresponding ones on the left. τ acts by horizon-
tal translation to the left. Examples of mesh relations are ψσ(ψ) = 0 and
ασ(α) + βσ(β) = 0. The τ orbit of P2 = 011 is actually twice a half-orbit.
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Figure 4: The first half of the AR quiver of R(D4); the second half repeats
up to a shift (i.e. an overall minus, in terms of Grothendieck classes). The
double arrows represent a non-trivial path from Ps to τ−2Ps ≡ τ1−h(D4)/2Ps
as described in the text.

4.7.2. Derived Picard groups (S-duality for Argyres-Douglas). We
start by reviewing the derived Picard groups of the Dynkin algebras [67],
i.e. the groups Aut(DbmodC~G). They are generated by the AR translation
τ ≡ S[−1], the shift [1], and the automorphisms of the quiver aut(~G). The
relations between these generators are listed in [67]. After reducing to the
root category

(184) R(G) ≡ DbmodC~G
/

[2Z],

they take the form in Table 4. In the physical terms, this table shows the
S-duality group of the Argyres-Douglas models of type G.

We note a special case. For G = A2n+1 the τ -orbit of Pn+1 (nodes num-
bered as in Figure 2) is twice an half-orbit, see Figure 3.
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4.7.3. Spherical orbits and half-orbits in R(G). We are interested
in periodic orbits and half-orbits which are spherical. Comparing with the
table, we look for full orbits for: i) ~AN−1, ii) ~D2n+1 and objects such that
θA 6' A, and iii) ~E6 for θA 6' A. In all other cases we consider half-orbits.
Two (half)orbits will be called equivalent if they are exchanged by the shift
[1].

We recall that an object A ∈ R(G) belongs to a spherical τ -orbit of
period (resp. half-period) p iff τpA ' A (resp. τpA ' A[1]) and

(185)

p−1∑
k=0

(
dim Hom(A, τkA) + dim Hom(A, τkA[1])

)
= 2.

In the case of a full orbit34 this condition may be stated in terms of the
AR quiver as the requirement that there is no non-zero path connecting the
node of A with another node on the same τ -orbit, i.e. in Figure 3 no non-
trivial path connecting two nodes at the same horizontal level. It is clear from
the figure that this happens precisely for the upper and lower levels since
the mesh relations set all paths to zero in this case; for intermediate levels
this cannot happen. The two spherical orbits in the figure are interchanged
by [1].

In the case of a half -orbit of half-period p, τ−pA = A[1] and so

dim Hom(A, τ1−pA) = dim Hom(A, τA[1])(186)

= dim Hom(τA, τA) = dim Hom(A,A) = 1.

Then the half -orbit is spherical iff the only non-trivial paths in the AR
quiver which connect two distinct point in the orbit are one path from each
A to its translate τ1−pA (with p = h(G)/2). An example of such path for
G = ~D4 is shown in Figure 4.

Since the (half)period p > 2 for all G, this argument shows the

Lemma. A necessary condition for an object A ∈ R(G) to have a spherical
(half) orbit is that its AR triangle has an indecomposable middle term, i.e.

(187) → τA→M → A→ with M indecomposable.

This happens only for nodes in ZG/τh(G) of the form (∗, i1) with i1 a
node of valency 1 in G. If there are no nodes of valency 3 in the graph, the

34A full orbit is necessarily mapped into a distinct orbit by [1], whereas a half-
orbit in closed under shifts.
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G aut(~G) Aut(R(G)) relations

AN−1 1 ZN × Z2 τN = Id [2] = Id
D4 S3 Z6 τ3 = [−1] [2] = Id

D2n n > 2 S2 S2 × Z2(2n−1) τ2n−1 = [−1] [2] = Id
D2n+1 n ≥ 2 S2 S2 × Z4n τ2n = θ[−1] [2] = Id

E6 S2 S2 × Z12 τ6 = θ[−1] [2] = Id
E7 1 Z18 τ9 = [−1] [2] = Id
E8 1 Z30 τ15 = [−1] [2] = Id

Table 4: Auto-equivalences of R(G) [67]. The auto-equivalences of
Db(modCG) are obtained by omitting the relation [2] = Id in the last col-
umn. θ is the element of order 2 in aut(~G).

orbits in ZG/τh(G) generated by valency 1 vertices of Q are spherical: indeed,
no two nodes in the same valency-1 orbit may be connected by a non-trivial
path, since meshes of nodes of valency 2 just enforce commutativity (i.e.
path independence of the morphism, which is then easily seen to be zero).
However, if G contains a full subquiver of the form (numbers inside squares
denote the valency of the node in the total quiver G)

(188) 1 −→

m 2 ’s︷ ︸︸ ︷
2 −→ 2 −→ · · · −→ 2 −→ 3 −→ ?

we may construct a non-zero path between A ≡ (∗, 1 ) and τ−(m+2)A ≡
(∗+m+ 2, 1 ) which factors through to a node in the ? -orbit. In the case
of complete orbits, A has a spherical orbit only if

(189) m+ 2 ≥ h(G),

In presence of a 3-valent vertex, the only complete orbits are those of Ps,
Pc for D2n+1 and P1, P5 for E6, and none of them satisfies the inequality
(189). In view of (186), for half -orbits the inequality (189) gets replaced by
the equality

(190) m+ 2 =
h(G)

2
− 1.

In conclusion,
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Fact 14 (The G = AN−1 case). Write θ for the highest root of AN−1.
In R( ~AN−1) there are two (equivalent) spherical orbits interchanged by the
shift [1]; their period is N . Writing the objects in the first spherical τ -orbit
as Ai ≡ τ iA0, with i ∈ Z/NZ, we have

Ai =

{
X−θ for i = 0

Xαi for 1 ≤ i ≤ N − 1.
(191)

Fact 15 (The G = Dr case). Up to shift by [1]:

1) for r > 4 there is a unique spherical half-orbit generated by the simple
Sv with support at the fundamental representation node (Sv ≡ Sn−2 in
Figure 2). To describe the spherical half-orbit we define the roots

(192) β =
[

0

11 · · · 110

]
, γ =

[
1

00 · · · 011

]
,

and let αi be the simple roots numbered as in Figure 2. Then the spher-
ical half-orbit is Ai = τ iA0 with τn−1Ai ' Ai[1] and

(193) Ai =


Xαn−2

i = 0

X−β i = 1

X−γ i = 2

X−αi−1
3 ≤ i ≤ n− 1.

2) for ~D4 there are three spherical half-orbits generated, respectively, by
the three peripheral simples Sv, Ss, and Sc permuted by the automor-
phism S3 of the quiver. One has (α, β = v, s, c)

(194)
3∑

k=1

(
dim Hom(Sα, τ

kSβ) + dim Hom(Sα, τ
kSβ[1])

)
=

{
2 if α = β

1 otherwise.

Thus we have a Â2-configuration of spherical orbits. All orbits are ob-
tained form the Sv one by acting with the S3 automorphisms. The
three associated telescopic functors La satisfy the CB3 braiding rela-
tions, i.e.

(195) LaLbLa = LbLaLb a, b ∈ {1, 2, 3}.

Fact 16 (Er case). R(Er) does not contain spherical (half)-orbits.
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Proof. We present a second proof of this Fact, introducing an argument
we shall use often. For simplicity, we consider G = E7 or E8 and write h̃ =
h(G)/2 which is an odd integer in both cases. Assume (absurd) that the
object A has a spherical half-orbit. Then

(196) (−1)k χ(A, τkA) = δ
(h̃)
k,0 + δ

(h̃)
k,1

so that

h̃∑
k=1

(
− e−2πm/h̃

)k
χ(A, τkA) = 1 + e−2πim/h̃(197)

= h̃atE

1

h̃

h̃∑
k=1

e−2πimk/h̃Hk

a,
where a is the vector which represents [A] in the Grothendieck group. The

expression in the large parenthesis is just the projector on the e2πim/h̃–
eigenspace of H. If for some m ∈ Z/h̃Z this eigenspace is zero, we get a
contradiction and conclude that no object A can have a spherical half-orbit.
This is the case, since the number of distinct eigenvalues of H = −Φ is
r(G) < h̃ ≡ h(G)/2 for G = E7, E8. �

Remark 11. Let us return to the involution εA in eqn.(176) for G = D2n.
If n > 2 we have a unique spherical orbit (Fact 15), so a unique telescopic
functor, and a unique involution θ in the derived Picard group. Hence εA = θ.
For n = 2 we have 3 independent telescopic functors, hence 3 distinct εA,
and 3 involutions in the subgroup S3 of the derived Picard group, so that
{εA} = {involutions in S3}.

5. S-duality in (G,G′) and (G, Ĥ) models

The method used in Section 7 to compute explicitly the S-duality groups of
a large class of 4d N = 2 is rather abstract. In order to make the logic clear,
we first consider a simpler set of models, where things are much easier to
visualize. The more general approach of Section 7 is modeled on the present
section, although at a higher level of abstraction.

As introductory examples we consider the first two families of N = 2
models, (G,G′) and (Ĥ,G). Their BPS spectra were already studied in
refs.[9, 20] from the point of view of the Representation Theory of quiv-
ers with superpotential [13]. Indeed, these models have a very convenient
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quiver with superpotential given by the triangle tensor product in the sense
of Keller [68] of the two acyclic quivers G, G′ (resp.G, Ĥ). These models
are also well understood in terms of the 4d/2d correspondence [9]: their 2d
counterparts are the (2,2) LG models with superpotentials

(198) W (x, y, u, v) = WG(x, y) +WG′(u, v)

and, respectively,

(199) W (x, y, u, v) = WG(x, y) +WĤ(u, v)

where WG(x, y) are the ADE minimal singularities (cfr. Table 2) and
WĤ(u, v) the affine superpotentials (cfr. Table 3). In this section we study

the S-duality groups of the (G,L) models (L = G′ or Ĥ) as a warm-up for
the more complicated QFTs of Section 7, and as an illustration of the ideas
and techniques of homological S-duality.

5.1. Review of the (G,L) QFTs in the categorical language

In this subsection L stands for an acyclic quiver which is either of Dynkin
type G′ or of affine type Ĥ. The main difference between the two cases is
that the Coxeter element of a Dynkin quiver is semi-simple, while for an
(acyclic) affine quiver it is never semi-simple: this just reflects the fact that
the N = 2 theories (G,G′) are superconformal while the (G, Ĥ) ones are
asymptotically-free. In this subsection we follow [68]; we refer to that paper
for more precise statements and further details.

5.1.1. The cluster category C (G,L). The triangle tensor product of G
and L yields the quiver with superpotential G� L [68]; its Jacobian algebra

(200) Jac(G,L) = C(G� L)/∂W

is a certain “completion” of the product path algebra CG× CL with extra
“diagonal” arrows and corresponding relations [68]. The BPS states of the
(G,L) QFT (in a physical regime covered by the triangle product form of
the quiver) are then given by the modules of Jac(G,L) which are stable with
respect to the N = 2 central charge [13]

(201) Z : K0(mod Jac(G,L))→ C.

The category of prime interest for us is not the module category
mod Jac(G,L) but rather the associated cluster category C (G,L). Consider
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the derived category

(202) D(G,L) = Db
(
modCG× CL

)
.

The AR translations in the module categories of the two factor algebras
induce auto-equivalences of the above derived category which, following [68],
we write as τ ⊗ 1 and 1⊗ τ , respectively. Their composition is

(203) τ ⊗ τ ≡ S[−2],

where S is the Serre functor of the triangle category D(G,L).
As described in §.3.1, the cluster category C (G,L) is the triangular hull

of the orbit category of the derived category of D(G,L) with respect to
S[−2] ≡ τ ⊗ τ , that is,

(204) C (G,L) = Hu4

(
D(G,L)

/
〈τ ⊗ τ〉Z

)
.

Fractional Calabi-Yau objects in the derived category. The 2d cor-
respondent of a 4d (G,G′) model is a (2, 2) SCFT. Let X ∈ Db(modCG×
CG′), and let h(G), h(G′) be the Coxeter numbers of the Dynkin graphs G
and G′. From eqn.(203)

Sh(G)h(G′)X =
(
τh(G)h(G′) ⊗ τh(G)h(G′)

)
X[2h(G)h(G′)](205)

= X[2h(G)h(G′)− 2h(G′)− 2h(G)]

where we used that, in Db(modCG) with G of Dynkin type, one has τh(G) =
[−2]35. Then all objects in the derived category Db(modCG× CG′) have
Calabi-Yau fractional dimension

(206) ĉ(G,G′) =
2
(
h(G)h(G′)− h(G)− h(G′)

)
h(G)h(G′)

= ĉ(G) + ĉ(G′),
(
in Q

)
where ĉ(G) is the Virasoro central charge of the 2d minimal N = 2 SCFT
of type G. Of course, (206) is precisely the physical definition of ĉ. When
ĉ(G) + ĉ(G′) < 1 the 4d theory is an Argyres-Douglas model. ĉ(G) + ĉ(G′)
is equal 1 only for the three pairs (D4, A2), (A3, A3) and (A5, A2), which

correspond to the three elliptic complete SCFTs E
(1,1)
6 , E

(1,1)
7 , and E

(1,1)
8 ,

respectively. For ĉ(G) + ĉ(G′) > 1, the cluster category C (G,G′) is strictly
larger than the orbit category ([46] Theorem 1.4).

35For a more precise statement, see Table 4, omitting the relation [2] = Id which
does not hold in the derived category.
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The 2d model corresponding to the category Db(modCG× CĤ) is not
UV conformal, hence not all objects are fractional Calabi-Yau. However
objects with zero G magnetic charge36 are fractional CY with dimension
1 + ĉ(G) (in Q).

5.2. The root category R(G,G′) and its auto-equivalences

As in §.3.2 the root category R(G,G′) is defined as

(207) R(G,G′) = Hu4

(
D(G,G′)/[2Z]

)
.

We are interested in the group of its auto-equivalences, or, more precisely,
in the group

(208) Aut(R(G,G′)) ⊂ GL
(
r(G)r(G′),Z

)
which represent their action on its Grothendieck group ∼ Zr(G) r(G′).

5.2.1. Auto-equivalences inherited from R(G) and R(G′). The
auto-equivalence T ≡ τ ⊗ τ = S[−2] of D(G,G′) induces an auto-equivalence
of the root category which we still write T . More generally, all auto-equi-
valences σ ∈ Aut(R(G)) (resp. σ′ ∈ Aut(R(G′))), induce auto-equivalences
of R(G,G′) of the form

(209) σ ⊗ Id, Id⊗ σ′.

The auto-equivalences of R(L), with L = G or Ĥ, may be read from the
derived Picard group of the corresponding hereditary algebra, see [67]. For G
Dynkin, the auto-equivalence group is described in Table 4. For Ĥ affine, up
to physically irrelevant motions of P1 (if we have less than three exceptional
tubes), the derived Picard group is generated by the automorphisms of the
quiver, τ , and [1].

In general R(G,G′) has additional auto-equivalences of a more subtle
kind which are generated by telescopic functors. These are the more inter-
esting ones for our physical applications. We start by studying T -orbits in
the root category.

36An object X ∈ Db(modCG× CĤ) has zero G magnetic charge iff m([X]) = 0
where

m ≡ Id⊗ ∂R : K0(Db(modCG× CĤ))→ Zr(G)

and ∂R is the Ringel defect in modCĤ.
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5.2.2. T -orbits in R(G,G′). Given an object A ∈ D(G,G′), we use the
same symbol A to denote its canonical image in the root category. For all
object A

(210) T lcm(h(G),h(G′))A = A

[
−2

h(G) + h(G′)

gcd(h(G), h(G′))

]
' A in R(G,G′),

so that all objects in the orbit category belong to T -orbits of period p di-
viding lcm(h(G), h(G′)). To be more precise, let us introduce the reduced
Coxeter number h̃(G) and the automorphism θ(G) of the Dynkin graph G,

h̃(G) =

{
1
2 h(G) for G = A1, Dr, Er

h(G) otherwise,
θ(G) =

{
θ for G = D2n+1, E6

Id otherwise,

(211)

s(G) = 2 h̃(G)/h(G), θ(G)2 = Id.(212)

The minimal relation in DbmodCG (cfr.Table 4), may then be written in
an unified way as

(213) τ h̃(G) ' θ(G) [−s(G)].

The minimal relation between T ≡ τ ⊗ τ , the shifts [k], and graph au-
tomorphisms in D(G,G′) is then

(214) T m(G,G′) = Θ(G,G′)
[
− Σ(G,G′)

]
,

where37

Σ(G,G′) ≡ s(G)h̃(G′)

(h̃(G), h̃(G′))
+

s(G′)h̃(G)

(h̃(G), h̃(G′))
,(215)

m(G,G′) ≡ lcm(h̃(G), h̃(G′)),(216)

Θ(G,G′) ≡ θ(G)h̃(G′)/(h̃(G),h̃(G′)) ⊗ θ(G′)h̃(G)/(h̃(G),h̃(G′)),(217)

from which we may read the minimal period p for each object in
D(G,G′)/[2Z]. There are two possibilities:

A) the integer Σ(G,G′) is odd: the objects fixed by the automorphism
Θ(G,G′) have half-orbits of half-period q = m(G,G′), while all other
objects have periodic orbits of period p = 2m(G,G′);

37For brevity, sometimes we write gcd(a, b) simply as (a, b).
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B) the integer Σ(G,G′) is even: the objects fixed by the automorphism
Θ(G,G′) have periodic orbits of period p = m(G,G′) while all other
objects have double period 2p.

In particular, for the models (Ar−1, Ar′−1) (r, r′ ≥ 3) all objects have period
p = lcm(r, r′). In case B), Θ(G,G′) = Id, except when one (or both) Dynkin
graphs G, G′ are of type D2`+1 or E6 and moreover

(218) s(G)h̃(G′) = s(G′)h̃(G) =
(
h̃(G), h̃(G′)

)
mod 2

(
h̃(G), h̃(G′)

)
.

Except in this special case, all objects in R(G,G′) have the same period p.
With the exception of the free hypermultiplet,

(219) R(A1, A1) ' C (A1, A1) ' vect⊕ vect[1],

we always have p > 1. From now on we assume G,G′ 6= A1, unless otherwise
stated.38

The first condition in Definition 4, eqn.(101), is then satisfied by all
objects in R(G,G′). Let us consider the second one, eqn.(102). In the present
case n = 2, and the condition becomes

(220) dim Hom(A, T kA[m]) = δ
(p)
k,0 δ

(2)
m,0 + δ

(p)
k,1 δ

(2)
m,0.

In particular, an object belonging to a spherical orbit is a rigid brick. By
footnote 27, we limit ourselves to A’s in the orbit category D(G,G′)/[2Z].

5.2.3. Necessary conditions for the existence of spherical (half-
)orbits.

Spherical full orbits. If the model (G,L) has no flavor charge39, there
is no full spherical orbit in R(G,L). In facts, a stronger statement holds:

Fact 17. A necessary condition for the existence of a spherical full-orbit of
period p is

(221)

{
0,

1

p
,

2

p
, . . . ,

1̂

2
, . . . ,

p− 1

p
mod 1

}
⊆ Spectrum

(
1

2πi
logH

)
,

(the notation 1̂
2 means that one-half should be omitted from the list). In

particular, 1 should belong to the spectrum of H, that is, Γflavor 6= 0.

38If G or G′ is equal A1 the model is equivalent to an Argyres-Douglas theory
whose duality group has already been discussed in the previous section.

39Compare with the physical discussion in §. 4.3.1.
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Proof. A necessary condition for the full T -orbit of an object A to be spher-
ical (of period p) is that for all s ∈ Z/pZ
(222)

1

p

(
1 + e2πis/p

)
=

1

p

p∑
k=1

e2πiks/p χ(A, T kA) = atE

(
1

p

p∑
k=1

e2πis/pHk

)
a

where a is the integral vector representing [A] ∈ K0(R(G,G′)) ' Zr(G) r(G′).
The sum in the large parenthesis is the projector on the e−2πis/p-eigenspace
of H. If for some s 6= p/2 this eigenspace vanishes, we get a contradiction
and conclude that no object may have a spherical orbit. �

For (G,G′) we have
(223)

Spectrum

(
1

2πi
logH

)
=

{
`

h(G)
+

`′

h(G′)
mod 1

∣∣∣∣ ` ∈ e(G), `′ ∈ e(G′)
}

where e(G) is the set of exponents of the Lie algebra G.

Example 3. For (AN−1, AN ′−1) we have no spherical orbit whenever
gcd(N,N ′) = 1.

Spherical half-orbits. In agreement with the discussion in §. 4.3.1, spher-
ical half -orbit may exist even if no flavor charge is present. Indeed, for half-
orbits of half-period q eqn.(222) gets replaced by40

1

q

(
1 + eπi(2s−1)/q

)
=

1

q

q−1∑
k=0

eπik(2s−1)/q χ(A, T kA)(224)

= atE

(
1

2q

2q−1∑
k=0

e2πik(2s−1)/(2q)Hk

)
a

for all s ∈ Z/qZ. Then in R(G,G′)

Fact 18. A necessary condition for the existence of a spherical half-orbit
of half-period q is
(225){

1

2q
,

3

2q
,

5

2q
. . . ,

1̂

2
, . . . ,

2q − 1

2q
mod 1

}
⊆ Spectrum

(
1

2πi
logH

)
.

40Recall that, if a is the dimension vector of an object belonging to a periodic
half -orbit, Hqa = −a.
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5.2.4. Action of τ ⊗ 1 and simple generators. If A ∈ R(G,L) be-
longs to a spherical (half-)orbit, also (τk ⊗ 1)A belongs to a spherical (half-
)orbit for all k. Let d be the smaller positive integer such that (τd ⊗ 1)A =
TnA[j] for some n, j ∈ Z. The objects {(τk ⊗ 1)A}dk=1 generate d inequiva-
lent spherical (half-)orbits.

For L = G′, and

(226)
(
θ(G)⊗ 1

)
A =

(
1⊗ θ(G)

)
A = A

the condition (τd ⊗ 1)A = TnA[j] reduces to

(227) n = d mod h̃(G), n = 0 mod h̃(G′).

By Chinese remainder, the smallest positive solution is d = gcd(h̃(G), h̃(G′)),
and so, acting with τ ⊗ 1 on a spherical (half-)orbit satisfying (226) we pro-
duce d = gcd(h̃(G), h̃(G′)) inequivalent spherical (half-)orbits. The multi-
plicity of each eigenvalue e2πis/p 6= −1 in the spectrum of H is less or equal
d. The restriction of the group Tel(G,G′) to the H-eigenspace

(228) Vs =
{
v ∈ Γ⊗ C

∣∣∣Hv = e2πis/pv
}
, dimVs ≤ d,

is then an unitary reflection group acting on a vector space of dimension
≤ d; its is generated by at most d simple reflections

(229) σs,i = 1− vs,i ⊗ wts,i (i = 1, . . . ,dimVs ≤ d)

whose vectors vi (resp. co-vectors wti) span Vs (resp. V ∨s ). The spanning
condition is satisfied by the vectors and co-vectors of the restrictions to the
eigenspaces Vs of the d telescopic matrices

(230) L(τk⊗1)A

∣∣∣
Vs
≡ (Φk ⊗ 1)LA(Φ−k ⊗ 1)

∣∣∣
Vs

= 1− vs,k ⊗ wts,k

generated by the action of τ ⊗ 1.
It is natural to expect that “generically” the telescopic functors gener-

ated by the action of τ ⊗ 1 on a single spherical T -orbit form a set of simple
generators of the group Tel(G,G′) of the (G,G′) SCFT. This expectation
is confirmed in the special cases (D4, A2), (A3, A3) and (A5, A2) which cor-

respond to the three elliptic complete models E
(1,1)
r [22].

In the rest of the section, we shall explore the group Tel(G,G′) generated
by a set of “simple reflections” of the above form. We do not rule out the
possibility of further enhancements of the duality group in special models.
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5.2.5. Diadic objects. In the spirit of §.5.2.4, we need to find one spher-
ical (half-)orbit of R(G,G′), to which we apply τk ⊗ 1 to produce a gener-
ating set of Tel(G,G′). To find some spherical (half-)orbits, we focus on a
simple class of objects of the root category.

Definition 12. We say that an object

(231) A ∈ modCG× CG′

is diadic if it has the form

(232) A = X ⊗X ′,

with X ∈ modCG, X ′ ∈ modCG′ indecomposable. We extend this defini-
tion to X,X ′ objects of the corresponding derived categories, which are the
repetitive categories of modCG and modCG′, respectively. The canonical
images of X ⊗X ′ in C (G,G′) and R(G,G′) will be also called diadic and
denoted by the same symbol.

We want to understand when a diadic object X ⊗X ′ belongs to a spher-
ical orbit (resp. spherical half-orbit). A first necessary condition is that X
and X ′ are rigid bricks which both belong to a full-orbit or both belong
to a half-orbit (resp. one to a full- and one to a half-orbit). Let q be the
(half)period of the rigid brick X. We write

(233) dim Hom(X, τkX) + dim Hom(X, τkX[1])− δ(q)
k,0 − δ

(q)
k,1 =

∑
h∈H

ah δ
(q)
k,h

where H ⊂ Z/qZ \ {0, 1} is the subset of k’s such that the lhs is non-zero.
The ah’s are positive integers which satisfy the Serre symmetry ah = a1−h.
X belongs to a spherical (half)orbit if and only if H = ∅.

Fact 19 (criterion for a spheric diadic (half)orbit). Let q, q′ be
the (half)periods of the rigid bricks X, X ′. X ⊗X ′ belongs to a spherical
(half)orbit iff gcd(q, q′) > 1 and the following three sets are all empty

(234)

K =
{
h ∈ H

∣∣ h = 0 or 1 mod gcd(q, q′)
}
,

K ′ =
{
h ∈ H ′

∣∣ h = 0 or 1 mod gcd(q, q′)
}
,

J =
{

(h, h′) ∈ H ×H ′
∣∣ h− h′ = 0 mod gcd(q, q′)

}
.
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Proof. Assume gcd(q, q′) > 1. Then X ⊗X ′ belong to a spherical orbit iff

2 =

lcm(q,q′)∑
k=1

1∑
j=0

dim Hom(X ⊗X ′, T k(X ⊗X ′)[j])

(235)

≡
lcm(q,q′)∑
k=1

 1∑
j=0

dim Hom(X, τkX[j])

 ·
 1∑
j=0

dim Hom(X ′, τkX ′[j])


≡ 2 +

∑
h∈K

ah +
∑
h′∈K′

a′h′ +
∑

(h,h′)∈J

ah a
′
h′ .

�

Tensor product of spherical (half)orbits. The cheapest way to sat-
isfy the above criterion is to take H = H ′ = ∅, that is, X and X ′ which
belong to spherical (half)orbits. From §.4.7, we see that in this case A ≡
X ⊗X ′ satisfies eqn.(226). If τkX and τk

′
X are two spherical (half)orbits

of (half)periods q, q′, we have qq′ diadic objects τkX ⊗ τk′X ′ which form
spheric (half)orbits of length lcm(q, q′). Therefore we have gcd(q, q′) disjoint
spherical (half)orbits

(236)
{
T k(τaX ⊗X ′)

}
a ∈ Z

/
gcd(q, q′)Z,

for each pair of spherical (half)orbits in R(G), R(G′). Then a pair of spher-
ical (half)orbits τkX, τk

′
X ′ produces gcd(q, q′) telescopic functors

(237) La = LτaX⊗X′ a ∈ Z
/

gcd(q, q′)Z.

The spherical orbits in R(AN−1) were described in Fact 14. With the
notation used there, for R(AN−1, AN ′−1) we have the distinct telescopic
functors

(238) La = LAa⊗A′1 a ∈ Z
/

gcd(N,N ′)Z.

However, in addition to the tensor-product ones, in R(AN−1, AN ′−1) there
are also diadic spherical orbits which are not tensor products of spherical
(half)orbits, as well as spherical orbits which are non-diadic, as we now
discuss.



i
i

“1-Caorsi” — 2019/6/4 — 22:22 — page 1659 — #67 i
i

i
i

i
i

Homological S–Duality in 4d N = 2 QFTs 1659

5.2.6. Diadic spherical orbits in R(AN−1, AN ′−1). The path algebra
C ~AN−1 of the linear AN−1 quiver is a uniserial algebra,41 and its indecom-
posable modules are uniquely identified by their top and length. We write
Mi,` for the indecomposable module of length ` and top Si. The τ -orbit of

the module Mi,` in R( ~AN−1) ≡ DbmodC ~AN−1/[2Z] has the form

(239) τ i−1M1,` =

{
Mi,` for 1 ≤ i+ ` ≤ N
Mi+`−N,N−`[−1] for N − ` < i ≤ N.

Since the τ -orbits of modules of length ` and N − ` are interchanged by the
shift [1], with no loss we may restrict to orbits of objects with ` ≤ N/2. A
simple computation yields:

Lemma. For 1 ≤ ` ≤ N/2, one has in R( ~AN−1)

(240)

1∑
j=0

dim Hom(Mi,`, τ
kMi,`[j]) =

∑̀
h=1−`

δ
(N)
k,h .

Hence in R(AN−1, AN ′−1) for ` ≤ N/2 and `′ ≤ N ′/2

lcm(N,N ′)∑
k=1

1∑
j=0

dim Hom
(
Mi,` ⊗Mj,`′ , T

k(Mi,` ⊗Mj,`′ [j])
)

(241)

=
∑̀
h=1−`

`′∑
h′=1−`′

δ
(gcd(N,N ′))
h,h′ .

The diadic orbit {T k(Mi,` ⊗Mj,`′)} is spherical iff the rhs is 2. This cannot
happen if ` and `′ are both ≥ 2; at least one of the two factors Mi,`, Mj,`′

should be simple. Modulo interchanging the two factors, we may assume
Mj,`′ = S1 with no loss. Then the condition reduces to

(242)
∑̀
h=1−`

(
δ

(gcd(N,N ′))
h,0 + δ

(gcd(N,N ′))
h,1

)
= 2,

that is,

(243) 2` ≤ gcd(N,N ′).

Therefore,

41 For uniserial (Nakayama) algebras see Chapter V of [65].
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Fact 20. The distinct diadic spherical T -orbits in R(AN−1, AN ′−1) are
generated by
(244)

τaS1 ⊗M1,`′ , M1,` ⊗ τaS1, τaS1 ⊗M1,`′ [−1], M1,` ⊗ τaS1[−1],

where 2 ≤ 2` ≤ gcd(N,N ′) and 1 ≤ a ≤ gcd(N,N ′). Up to shift, there are

(245) gcd(N,N ′)

[
gcd(N,N ′)

2

]
diadic spherical orbits.

Simple telescopic functors. The telescopic functor associated to orbits
which are tensor products of spherical orbits, eqn.(237), suffice to produce
all the telescopic functor associated to the spherical diadic orbits in Fact 20.
For instance, the triangle which defines LSi⊗Sj (τMi,` ⊗ Sj) is

(246) → τMi,` ⊗ Sj → LSi⊗Sj (τMi,` ⊗ Sj)→ Si ⊗ Sj →,

so that LSi⊗Sj (Mi+1,` ⊗ Sj) = Mi,`+1 ⊗ Sj and

(247) LSi⊗SjLMi+1,`⊗SjRSi⊗Sj = LMi,`+1⊗Sj .

All telescopic functors associated to diadic spherical orbits may then be
written as words in the telescopic functors La associated to tensor products
of spheric orbits, eqn.(237). More general words in the La produce telescopic
functor associated to spherical orbits which are not diadic.

This result is consistent with the heuristic discussion at the end of §.5.2.4.
We take the La in eqn.(237) as the “simple” telescopic functors.

5.2.7. Braiding relations in Aut(AN−1, AN ′−1). In view of Fact 8,
to determine the quadratic and cubic braid relations between the La we need
to compute the sum

lcm(N,N ′)∑
k=1

1∑
j=0

dim Hom(Ai ⊗A′a, T k(Aj ⊗Ab)[j])(248)

= 2 δ
(gcd(N,N ′))
i−j,a−b + δ

(gcd(N,N ′))
i−j,a−b+1 + δ

(gcd(N,N ′))
i−j+1,a−b .

When gcd(N,N ′) > 2, at most one of the three terms in the rhs can
be non-zero for given i, a, j, b. If the first term is non zero, Ai ⊗A′a and
Aj ⊗A′b belong to the same spherical T -orbit and hence LAi⊗A′a ≡ LAj⊗A′b .
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If the non-zero term is the second or third, Ai ⊗A′a and Aj ⊗A′b form a (A2)-
configuration of spherical orbits in the sense of Definition 10, and hence the
corresponding pair of telescopic functors satisfy the B3 relation. Finally, if all
three terms vanishes, the telescopic functors LAi⊗A′a and LAj⊗A′b commute.
We conclude

Fact 21. Let gcd(N,N ′) > 2. Then the gcd(N,N ′) simple telescopic func-
tors La satisfy the relations of the affine Artin braid group GÃgcd(N,N′)−1

⊂
Bgcd(N,N ′)+1, that is,

LaLa+1La = La+1LaLa+1, a ∈ Z/ gcd(N,N ′)Z(249)

LaLb = LbLa, for |a− b| ≥ 2.(250)

For a review of Artin’s groups see [69]. The center of the affine Artin
braid group is trivial, Z(GÃn) = 1 [70].

Remark 12. In the special case gcd(N,N ′) = 2 one expects that the two
independent simple telescopic functors L1 and L2 satisfy “model-dependent”
higher braid relations of the form

(251)

s>3 factors︷ ︸︸ ︷
L1L2L1L2 · · · =

s>3 factors︷ ︸︸ ︷
L2L1L2L1 · · · .

The precise braiding relation for a given pair (N,N ′) may be determined
from the explicit matrices La which yield the action of the functors La
on the lattice K0(R(AN−1, AN ′−1), cfr. §.4.5. We have checked the pairs
(N,N ′) = (4, 6), (4, 10), (6, 10), (6, 14) and (10, 14); from these examples we
infer the following rule:

Let L1, L2 be the two distinct “simple” telescopic endo-functors of

R(AN−1, AN ′−1) with gcd(N,N ′) = 2.

They satisfy the following relations

Llcm(N,N ′)
1 = Llcm(N,N ′)

2 = Id(252) (
L1L2

)lcm(N,N ′)/2
=
(
L2L1

)lcm(N,N ′)/2
= Id.(253)
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Example 4. Suppose N | N ′. Then for each root α ∈ ∆(AN−1) we have a
distinct telescopic endo-functor42 in R(AN−1, AN ′−1)

(254) Lα ≡ LXα⊗A1
,

and the adjoint action of the telescopic functors on themselves is given by
the Weyl group of SU(N)

(255) LαLβL−1
α = Lwα(β),

so that they generate a braid group BN in one-less generator. Indeed, from
(247)

(256) LN = L1L2 · · · LN−2 LN−1L−1
N−2 · · · L

−1
2 L

−1
1 .

The group of auto-equivalences of R(Ar−1, Ar′−1). Besides the tele-
scopic functors in Fact 21, R(Ar−1, Ar′−1) as the auto-equivalences gener-
ated by the shift [1], the translation T = τ ⊗ τ , and the functor

Z = τaN/gcd(N,N ′) ⊗ τ bN ′/gcd(N,N ′)(257)

where a, b ∈ Z such that
aN

gcd(N,N ′)
− bN ′

g.c.d.(N,N ′)
= 1.

They satisfy the relations

(258) T lcm(N,N ′) = Id, Z gcd(N,N ′) = Id, [1]2 = Id.

Moreover, T and [1] commute with all auto-equivalences, and hence with
the La. On the other hand,

(259) ZLa Z−1 = La+1.

The group generated by the La and Z, subjected to the relations (249)
(250) (259) is known as the circular braid group (or annular braid group)
CBgcd(N,N ′) [71] which is isomorphic to the Artin braid group of finite type

42We label the objects of the R(G) with the roots of the Lie algebra G using the
correspondence

(root of G) ↔ (indecomposable object of R(G))

discussed after eqn.(179).
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associated with the Dynkin graph Bgcd(N,N ′) [71]. Its center is the infinite
cyclic group generated by Z [71].

The group which acts effectively on the root (cluster) category is the
quotient of CBgcd(N,N ′) by some normal subgroup N (the isotropy group).
Thus,

Fact 22. Let gcd(N,N ′) > 2. The group of auto-equivalences of the root
category R(AN−1, AN ′−1) consists at least in a group of the form

(260) Z
/

lcm(N,N ′)Z× Z
/

2Z× CBgcd(N,N ′)

/
N,

where the first factor is generated by T and the second one by [1].

The auto-equivalences of the cluster category C (AN−1, AN ′−1) then fol-
lows as in §.4.4.1.

Special models and consistency checks. We have the equivalences

(261) C (D4) ' C (A2, A2), C (E6) ' C (A3, A2), C (E8) ' C (A4, A2)

and hence consistency requires a correspondence between the spherical (half)
orbits we found in Facts 15, 16 for R(D4), R(E6), and R(E8) and the ones
found in the present subsection for (respectively) R(A2, A2), R(A3, A2), and
R(A4, A2).

This is trivially true for the last two pairs in eqn.(261) since on both
sides of the equivalence we found no spherical object/orbit. In R(A2, A2)
we found gcd(h(A2), h(A2)) = 3 spherical orbits, in perfect agreement with
the 3 spherical orbits of Facts 15. Hence

(262) LSα ←→ LτaS1⊗S1
, α = v, s, c, a ∈ Z/3Z,

which generate a braid group CB3.

5.2.8. Telescopic functors in R(Dn+1, Dn′+1). Using eqn.(237) we
construct the “simple” telescopic functors La associated to tensor products
of the spherical half-orbits described in Fact 15. In the case n, n′ > 3 we
have gcd(n, n′) independent such functors

(263) La = LτaA0⊗A′0 , a ∈ Z
/

gcd(n, n′)Z.
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To get the braid relations between the La’s we compute

lmc(n,n′)∑
k=1

1∑
j=0

dim Hom(Ai ⊗A′0, T k(Aj ⊗A0)[j])(264)

= 2 δ
(gcd(n,n′))
ij + δ

(gcd(n,n′))
i,j+1 + δ

(gcd(n,n′))
i,j−1 .

Fact 22 applies to the SCFT (Dn+1, Dn′+1) (n, n′ > 3) with the replacement

(265) (N,N ′)→ (n, n′).

For n = 3m > 3, n′ = 3 we get 9 simple telescopic functors (notation as in
eqn.(194))

(266) La,α = LτaA0⊗Sα , a ∈ Z/3Z, α = v, s, c.

and, for n = n′ = 3, 27 simple telescopic functors

(267) La,α,α̇ = LτaSα⊗Sα̇ , a ∈ Z/3Z, α, α̇ = v, s, c.

Braid relations. For n = 3m > 3, n′ = 3 we have

3m∑
k=1

1∑
j=0

dim Hom
(
τaA0 ⊗ Sα, T k(τ b ⊗ Sβ)[j]

)
(268)

= 2δα,β δ
(3)
a,b + δ

(3)
a,b+1 + δ

(3)
a,b−1,

and the braid relations are

(269) La+1,αLa,βLa+1,α = La,βLa+1,αLa,β, La,αLa,β = La,βLa,α.

For n = n′ = 3 we have

3∑
k=1

1∑
j=0

dim Hom
(
τaSα ⊗ Sα̇, T k(τ bSβ ⊗ Sβ̇)

)
(270)

= δ
(3)
a,b

(
1 + 3δα,βδα̇,β̇ − δα,β − δα̇,β̇

)
+
(
δ

(3)
a,b+1 + δ

(3)
a,b−1

)(
δα,β + δα̇,β̇ − δα,βδα̇,β̇

)
from which we read the braid relations.
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5.2.9. LA functors in R(AN−1, Dn+1). If gcd(N,n) > 1 we have the
diadic spherical half-orbits generated by the tensor products

(271) Ai ⊗A′a or Ai ⊗ Sα for n = 3.

where Ai (A′0 and Sα) are described in Fact 14 (resp. Fact 15). For n 6= 3
we have gcd(N,n) simple auto-equivalences

(272) La = LτaA1⊗A′0 a ∈ Z/gcd(N,n)Z.

If gcd(N,n) > 2, these auto-equivalence satisfy the braid relations (249),
(250), (259) and Fact 22 applies to the SCFT (AN−1, Dn+1) with the re-
placement N ′ → n.

Remark 13. As in §.5.2.7, a consistency check is in order. The model

(A2, D4) is equivalent to E
(1,1)
6 . For (A2, D4) the group of auto-equivalences

we have found is (up to some finite group) a realization of CB3 (generated

by three telescopic functors) while for E
(1,1)
6 (again modulo a finite group)

we have a realization of B3 (generated by two telescopic functors). This is
consistent since CB3 is a subgroup of B3 of finite index.

5.3. S-duality in (G, Ĥ) models

The categorical description of the asymptotically-free models (G, Ĥ) is ob-
tained from the (G,G′) one by replacing the finite-type Dynkin graph G′

with the affine one Ĥ. This has a crucial consequence: the Coxeter element
Φ of an affine Lie algebra is never semi-simple, and hence T = τ ⊗ τ has not
finite order in the root category R(G, Ĥ). Consequently, not all its objects
belong to periodic T -orbits, but only the proper subclass of its CY objects.43

Since telescopic functors are constructed out of spherical finite orbits, the
categories R(G, Ĥ) are “poorer” of spherical orbits than the R(G,G′) ones,
and hence have “smaller” S-duality groups.

This can be understood on physical grounds.44 As explained in [24],
the non-trivial Jordan blocks of H measure the non-zero β-functions of the

43The class of CY-objects in D(G, Ĥ) coincide with the class of objects having
zero G magnetic charge (cfr. footnote 36). Objects are CY iff they are mutually
local with respect to the W bosons.

44The following physical discussion holds in the derived Jacobian module category
of the triangle form of the quiver, in a weakly-coupled physical regime such that the
stable light modules are in fact modules of CG× CĤ (i.e. modules with vanishing
extra “diagonal” arrows).
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gauge couplings, that is, the deviation from conformal invariance. In aN = 2
theory a scale anomaly implies a U(1)R anomaly, so that a U(1)R rotation
by an angle φ implies a shift in the Yang-Mills vacuum angle

(273) θ → θ + αφ,

where α is the β-function coefficient. The physical interpretation45 of the
functor T is a U(1)R rotation by φ = 2π/h(G). We know from the Witten
effect [59] that a U(1)R rotation by 2π, generated by T h(G), acts on the
electric and magnetic charges as

(274)

(
e
m

)
→
(
e+ αm
m

)
≡
(

1 α
0 1

)(
e
m

)
where α measures the chiral anomaly, but also the failure of H to be semi-
simple46. If α is not zero, there is a preferred S-duality frame, defined by the
condition that the magnetic charge is invariant under 2π chiral rotations.
Then only transformations which preserve this magnetic charge can be du-
alities, and the S-duality group is restricted to a parabolic subgroup of the
superconformal one.

5.3.1. The regular subcategory and spherical orbits. As mentioned
in the introduction, the models (G, Ĥ) have the physical interpretation of
SYM with gauge group G coupled to some superconformal matter system
(which may contain its own SYM subsectors). There is a well-defined trian-
gle sub-category of the derived category D(G, Ĥ) which corresponds to the
matter sector (or, more generally, to the states of zero magnetic charge). We
shall discuss such sub-constituent categories in the next section. Here we
limit to consider simple objects in D(G, Ĥ) which do belong to the matter
sub-category. Since the matter is conformal, objects in the sub-category are
fractional CY, and are mapped into periodic objects of R(G, Ĥ).

We consider the subcategory R ⊂ modCĤ of regular modules [72]. It is
a P1 family of stable tubes, almost all homogeneous, except (at most) three
which have periods {p1, p2, p3} (listed for the various Ĥ in the left part of

45T acts on the Grothendieck class of the root category as H, the 2d monodromy
matrix. Thus, by definition, in 2d T is a chiral rotation by 2π. From Appendix A,
we see that a U(1)R rotation by an angle 2π in 2d corresponds to a U(1)R rotation
in 4d by an angle φ = 2π(1− ĉ/2). In Q we have ĉ(G, Ĥ) = 2(1− 1/h(G)) (cfr.
Table 2) and φ = 2π/h(G).

46The 2× 2 matrix in eqn.(274) is the restriction of Hh(G) to the subgroup of
the Grothendieck group generated by a dual pair of electric/magnetic charges.
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Table 1). In the i–th tube there are pi regular simples Ra,i (a ∈ Z/piZ) on
which the AR translation τ acts periodically with period pi [72]

Ra+1,i = τRa,i, τpiRa,i = Ra,i(275)

dim Hom•(Ra,i, τ
kRa,j) = δij

(
δ

(pi)
k,0 + δ

(pi)
k,1

)
.(276)

Spherical orbits in R(AN−1, Ĥ). The diadic objects of the form X ⊗
Ra,i ∈ R(AN−1, Ĥ) are periodic of period lcm(N, pi). The same argument
as in Fact 17 shows that for gcd(N, pi) = 1 there are no spherical orbits.
Using eqn.(233), for lcm(N, pi) > 1, we get

lcm(N,pi)∑
k=1

1∑
j=0

dim Hom(X ⊗Ra,i, T k(X ⊗Ra,i)[j])(277)

= 2 +
∑
h∈H

ah
(
δ

(gcd(N,pi))
h,0 + δ

(gcd(N,pi))
h,1

)
The condition is as in Fact 20: all objects X of length 2` ≤ gcd(N, pi)
produce spherical orbits. The simple telescopic functors are of the form

(278) La,i = LA0⊗τaR1,i
a ∈ Z/gcd(N, pi).

The independent telescopic functor in the i-th tube, Li,a are cyclically per-
muted by the auto-equivalence Zi defined as in eqn.(257) (with N ′ → pi)

(279) Zi La,i Z−1
i = La+1,i, Z

gcd(N,pi)
i = 1.

while telescopic functors associated with distinct tubes commute. If the con-
dition g.c.d.(N, pi) > 2 holds, the La,i’s generate the affine Artin braid group
GÃgcd(N,pi)−1

(280)
La,i La+1,i La,i = La+1,i La,i La+1,i,

La,iLb,i = Lb,iLa,i for |a− b| > 1,

while the functors {Zi, La,i, | a ∈ Z/ gcd(N, pi)Z)) generate the cyclic (an-
nular) braid group CBgcd(N,pi). In particular, if only one exceptional tube is
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onmlhijkpm onmlhijk(p− 1)m onmlhijk(p− 2)m · · · onmlhijk2m gfed`abcm

Figure 5: The (Apm−1, Â(p, 1)) theory as a linear quiver gauge theory. Nodes
represent SU((p− k)m) gauge sectors coupled through bifundamental hy-
permultiplets represented by the edges. The β–functions of all gauge cou-
pling vanish, except for the leftmost node which has a negative β-function
with coefficient (p+ 1)m.

present47 and gcd(N, p) > 2, the S-duality group has again the form
(281)

Tel(AN−1, Â(p, 1)) =
(
Z/lcm(N, p)Z× CBgcd(N,p)

)
/N, gcd(N, p) > 2,

where Z/lcm(N, p)Z stands for the cyclic group generated by T and where
N is a normal subgroup.

5.3.2. S-duality in SU linear quiver gauge theories. I. We illus-
trate the above conclusion in an important class of examples: the model
(AN−1, Â(p, 1)) where p | N and p > 1 [20]. This model is actually the linear
quiver theory in Figure 5 where m ≡ N/p. It has flavor symmetry U(1)p−1

and all its gauge couplings are exactly marginal, except the one in the first
node, which is just asymptotically-free. Since the model is Lagrangian, m =
1. The S-duality group of the full theory may act on the electric/magnetic
charges of the first node only through the parabolic group (274). We ex-
pect a more interesting S-duality action on the electric/magnetic charges
of the other nodes which have vanishing β-function: a finite-index subgroup
Γk ⊂ SL(2,Z) should rotate the electric/magnetic charges of the k–th group
leaving all the others invariant.

From this physical picture, we get a prediction for the S-duality group
of the model (Apm−1, Â(p, 1)): it should contain at least the “obvious” sub-
group

(282) Γ1 × Γ2 × · · ·Γp−1 × (parabolic).

47If several exceptional tubes are present the S-duality group contains, in addition
to the S-dualities produced by telescopic functors, T and 1⊗ τ , the permutation
of the tubes of the same period pi.
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We shall return to the relation of the S-duality group Γk of each SYM
sub-sector with the duality group of the fully interacting theory in §. 6.3.
Here we discuss the dualities of the fully interacting theory without reference
to the properties of its constituents.

The braid presentation of the S-duality group Tel(Apm−1, Â(p, 1)) is
obtained from eqns.(278)–(281), by setting lcm(N, p) = N and gcd(N, p) =
p. Note that for p = 1 (pure SYM) there is no telescopic functor (since there
is no flavor charge). For p > 1 we have (at least) the p simple telescopic
functors La (a ∈ Z/pZ).

If p > 2 these functors satisfy the relations

La La+1 La = La+1 La La+1, LaLb = LbLa for |a− b| > 1,(283)

ZLa Z−1 = La+1, Zp = 1,(284)

that is, they yield a realization of the annular braid group CBp.
Then, the S-duality group of the linear quiver in Figure 5 is given by

the product of the cyclic group generated by the quantum monodromy M
by a group of the form

(285) CBp/N,

where N is a model-dependent normal subgroup which can be determined
by writing down the explicit matrices LτaA0×R1

specific for each model. We
shall present some concrete examples in the next section.

The special case p = 2. Whenever p > 2, the S-duality group

Tel(Apm−1, Â(p, 1))

has a presentation in terms of the generators Z, La subjected to two sets
of relations: the universal ones (283),(284) and the model-dependent ones
given by N. When p = 2, we get two simple telescopic functors L1, L2 and the
universal relation reduce to (284). Explicit computations suggests that the
following higher braiding relation holds in all p = 2 linear quivers starting
from SU(N) (N = 2m)

(286)

N factors︷ ︸︸ ︷
L1L2L1L2 · · · =

N factors︷ ︸︸ ︷
L2L1L1L1 · · ·

in analogy with the rule (253).
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Figure 6: The SO/USp quiver gauge theory corresponding to the
(SO(2mp+ 2), Â(p, 1)) model [20]. Conventions: A double circle contain-
ing an integer K stands for an SO(K + 2) gauge group, a dashed circle for
an USp(K) gauge group, and the edges connecting them bi-fundamental
half -hypermultiplets.

5.3.3. S-duality in SO/USp linear quiver theories. The models of
the form (Dmp+1, Â(p, 1)) represents a linear quiver theory with alternating
SO and USp gauge groups [20] as in Figure 6. Edges now represent bi-
fundamental half-hypermultiplet which do not carry any flavor charge. p =
1 yields pure SO(2m+ 2) SYM; to get an interesting S-duality group we
assume p > 1.

Since the model has no flavor charge, in view of §.4.3.1 the interesting
auto-equivalences arise from spherical half -orbits.

Consider in D(Dmp+1, Â(p, 1)) = DbmodC ~Dmp+1 × CÂ(p, 1) the objects
of the form

(287) Ai ⊗Rk

where Ai belong to the spherical half-orbit described in Fact 15, and Rk
(k ∈ Z/pZ) is a regular simple in the exceptional tube of period p. One has

Smp(Ai ⊗Rk) = (τmpAi ⊗ τmpRk)
[
2mp

]
(288)

= (Ai ⊗Rk)
[
2mp− 1

]
⇐⇒ Ai ⊗Rk has fractional CY dimension

a

b
=

2mp− 1

mp
.

In particular, a is odd, as required for an half-orbit. If mp > 3 we get the
usual p > 1 simple auto-equivalences

(289) La = HA0⊗τaR1
a ∈ Z/pZ,

which for p > 2 satisfy the same braid relation as before.
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6. Sub-constituents and dualities

Breaking a complicated N = 2 system into simpler sub-constituents is a
powerful technique to study its properties. Besides being a useful tool, it
provides a clear physical picture of what is going on.

6.1. The physical principle

Let us start by describing, in rough terms, the physical situation we have in
mind. Often a N = 2 QFT may be decomposed into several distinct physical
systems weakly coupled together, the classical example being the decompo-
sition into a Yang-Mills sector and a matter sector. The decomposition into
sub-sectors is not unique in general, but depends on a choice of duality
frame which specifies which degrees of freedom are weakly coupled in the
given physical situation. With respect to such a duality frame, we have a col-
lection of N = 2 theories, Fs (s = 1, . . . ,K), coupled together by interaction
terms of the form

(290) S =

K∑
s=1

SFs + λst;ij

∫
d4xd4θO(s)

i O
(t)
j +O(λ2

st;ij),

where O(s)
i are non-trivial chiral operators in the s-th QFT and λst;ij cou-

plings. For example, if F1 is a SYM sector with gauge group G, and F2 is

a matter system with a flavor symmetry F ⊃ G, the O(1)
i ’s are gauge fields

and the O(2)
j ’s flavor currents of G.

Suppose that the s-th QFT, Fs, taken in isolation, has a certain duality

group S(s). In general S(s) acts non-trivially on the operators O(s)
i ,

(291) φ(O(s)
i ) 6= O(s)

i , φ ∈ S(s),

and φ does not extend to a duality of the fully coupled theory Ffully. For
instance, let the matter system F2 be SU(2) SQCD withNf = 4. This theory
has a SO(8) flavor symmetry, and a SL(2,Z) duality group which acts by
Spin(8) triality on the flavor charges [29]. We may gauge a subgroup G ⊂
SO(8). The SL(2,Z) duality will not extend to the gauged theory, being
broken by the gauge interaction. However, the isotropy (normal) subgroup
of the interaction

(292) I(s)
int ≡

{
φ ∈ S(s)

∣∣∣ φ(O(s)
i ) = O(s)

i ∀ i
}
⊂ S(s)
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is expected, on physical grounds, to extend to a duality of the fully coupled
theory Ffully. In the example of SU(2) Nf = 4 SQCD, the isotropy subgroup
is the principal congruence subgroup Γ(2) ⊂ SL(2,Z) [29], and we expect
this subgroup of dualities to be preserved by any gauging of the flavor group.

In this example, the isotropy group has finite index in the duality group
S(s). This is true for all gauge interactions: we have seen in §. 4.6.1 that the
action of the S-duality group S(s) on the flavor lattice factorizes through

a finite reflection group Ws. The gauge-interaction isotropy group I(s)
int is

defined by

(293) 1→ I(s)
int → S(s)→Ws → 1

and has finite index.

6.1.1. UV completeness vs. S-duality. We may generalize the argu-
ment to arbitrary couplings. A non-trivial interaction (290) between unitary
QFTs may be consistent with UV completeness (no Landau poles) only if

(294) dimension
(
O(s)
i O

(t)
j

)
≤ 2 =⇒ dimension

(
O(s)
i

)
< 2.

It follows from formulae in [9], reviewed in Appendix A, that, in 4d N = 2
theories with a good 2d correspondent, the dimensions d4 of the 4d chiral
fields which generate the N = 2 chiral ring R4 are related to the eigenvalues
e2πih of the 2d quantum monodromy H (with h in the range 0 ≤ h ≤ 1/2)
by the formula
(295)

d4 = 1 +
h

1− ĉ/2
, with h ∈

{
Spectrum

(
1

2πi
logH

) ∣∣∣∣ 0 ≤ h ≤ 1

2

}
,

where ĉ is the fractional CY dimension of the 2d brane category B. We
may assume ĉ ≥ 1 without loss.48 The flavor charges ∈ Γflavor correspond to
the eigenvalue 1 of H (h = 0), and the corresponding 4d conserved super-
currents have dimension 1. Only the generators of R4 may have dimensions
< 2, and they satisfy the bound provided

(296) 0 ≤ h < 1− ĉ

2
.

The S-duality group S(s) acts through a finite reflection group on the Hs

eigenspaces associated to eigenvalues e2πih with h as in (296) (compare with

48Otherwise the full S-duality group is finite, and all its sub-groups are trivially
of finite index.
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eqns.(74) (168)). Then, S(s)/Iint is a finite group for all interactions consis-
tent with UV completeness. We are lead to the following

“Physical principle”. Modulo commensurability, the S-duality group S(s)
of the s–th sub-sector is equal to the subgroup of the S-duality group Sfully

of the fully coupled theory which maps the states of the s-th sub-sector into
themselves.

We now rephrase the above physical picture in the categorial language.

6.2. Constituents and cluster categories

In general, there is no simple relation between the cluster category of the
fully interacting QFT, Cfully, and the cluster categories of its constituent
sub-sectors, C (s). This is to be expected, since Cfully describes the QFT
non-perturbatively in all duality frames and at all couplings, whereas the
constituent picture emerges only asymptotically in the limit in which the
appropriate coupling λ is sent to zero, λ→ 0, (λ being defined with reference
to a specific duality frame). To “extract” a constituent sub-sector Fs from
the interacting cluster category Cfully, one needs to go through a number of
steps which involve extra data and choices:

i) select a cluster-tilting object T ∈ Cfully suitable for the relevant weak
coupling limit;

ii) with respect to the chosen T , the coupling λ (to be sent to zero)
is defined by the additional datum of a one-parameter family of the
stability functions (N = 2 central charges) Zλ on the Jacobian module
category, i.e.

(297) Zλ : K0

(
Cfully

/
add T [1]

)
→ C;

iii) once specified T and Zλ we find the set Ξ(λ) of Jacobian modules which
are stable for a given value of λ. A X ∈ Ξ(λ) corresponds to a BPS
particle of mass |Zλ(X)|. Modules X which are stable as λ→ 0 such
that |Zλ(X)| remains bounded in the limit, then should correspond
to the BPS states of the several decoupled sectors. If Ξ is the set of
stable objects with bounded mass at λ = 0, we have Ξ = ∪sΞs with
Ξs the set of stable objects describing BPS particles belonging to the
s–th subsector;

iv) the chosen Zλ produces in the limit λ→ 0 the s–th subsector in a par-
ticular physical regime (BPS chamber) described by a pair (T(s), Z(s)),
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where T(s) ∈ C (s) is a tilting object, and Z(s) : K0(C (s)/add Ts[1])→
C a stability function. The set of stable objects of C (s)/add Ts[1] then
coincides with Ξs;

v) in particular, the interacting Jacobian module category

J ≡ Cfully/add(T [1])

should contain all the simples Si ∈ C (s)/add Ts[1] (since they are stable
for all choices of Z(s)) and

dim HomJ(Si, Sj)− dim Ext1
J(Si, Sj)(298)

− dim HomJ(Sj , Si) + dim Ext1
J(Sj , Si) ≡ Bij

should agree with the exchange matrix Bij of the endo-quiver of Ts
which belongs to the quiver mutation class of the s–th constituent
QFT.

Roughly speaking, this procedure sets a (non-intrinsic) correspondence
between certain objects of Cfully and objects of C (s), A↔ A(s). Suppose that
two corresponding objects, A ∈ Cfully and A(s) ∈ C (s), are both spherical,
thus defining two Thomas-Seidel auto-equivalences, TA and TA(s)

, in the
respective cluster categories. In this case, it is natural to interpret the duality
TA of the fully interacting theory as arising from the duality TA(s)

of the s–th
constituent sector.

6.2.1. A simple example in full detail. To illustrate the idea, we study
in great detail a simple example which contains all the essential elements
of the general case. We consider the 4d N = 2 asymptotically free affine
theory Â(p, 1) QFT [23]: p = 1 is pure SU(2) SYM, p = 2 is SU(2) SQCD
with Nf = 1, and in general it is SU(2) SYM coupled to an Argyres-Douglas
model of type Dp [23]. To avoid discussing special cases, we take p ≥ 3. We
consider the regime in which the Yang-Mills coupling gYM is very small;
the stable BPS spectrum then consists of the W boson, the BPS states of
the matter Dp system, and infinite towers of heavy dyons with magnetic
charges ±1 and masses O(1/g2

YM). As gYM → 0 the dyons get infinite mass
and decouple, and we remain with the Dp matter states plus the W .

The corresponding cluster category C (p) may be regarded as the cate-

gory c̃ohX(p) with objects the coherent sheaves over the weighted projective
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line X(p) with a single exceptional point of weight p endowed with the Z2-
graded morphism spaces [28]

Hom
c̃oh

(X,Y ) = Homcoh(X,Y )⊕ Ext1
coh(X, τ−Y ) '(299)

' Homcoh(X,Y )⊕DHomcoh(Y, τ2X).

The magnetic charge of a sheaf is its rank, so the light BPS states with
zero magnetic charge are described by finite-length sheaves (i.e. skyscrapers
with support in a point of X(p)). The Dp matter states (having spins ≤ 1/2)
correspond to rigid finite-length sheaves; they belong to the exceptional tube
(i.e. they are skyscrapers with support at the exceptional point of weight p).
The full subcategory C̃p ⊂ C (p) over the objects in the exceptional tube is

called the cluster tube of period p [28]. The indecomposable objects of C̃p are

the same ones of the usual stable tube Cp, but C̃p contains additional odd
morphisms (299). The Abelian category Cp is uniserial [72] with p simple
objects, Si, i ∈ Z/pZ, cyclically rotated49 by τ :

(300) τSi ' Si+1, τpSi ' Si.

An indecomposable Ei,` ∈ Cp is uniquely determined [72] by its top Si and
length ` ∈ N,

topEi,` ≡ Ei,`
/

rad Ei,` ' Si,(301)

rad`−1 Ei,` 6= 0, rad` Ei,` = 0.(302)

The periodic tube Cp then is identified with the category nilCÂ(p, 0) of

nilpotent finite-dimensional representations of the cyclic quiver Â(p, 0) (Fig-
ure 7).

The rigid bricks of Cp are the indecomposables with length ` < p; the
additive closure of the class of rigid bricks in Cp is an Abelian category equiv-
alent to the category of modules of the Jacobian algebra of the cyclic quiver
Â(p, 0) bounded by the ideal generated by the derivatives of the superpoten-
tialW = cycle. The quiver with superpotential (Â(p, 0),W = cycle) belongs
to the mutation class of the Argyres-Douglas SCFT of type Dp [23]. The

49We have inverted the numeration of the simple sheaves with respect to [22]
Si → Sp−i.
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• φ1 // •
φ8

��@@@@@@@

•

φ2

??~~~~~~~
•
φ7

��
•

φ3

OO

•

φ6��~~~~~~~

•
φ4

__@@@@@@@
•

φ5

oo

W = (8-cycle) = φ1φ2φ3φ4φ5φ6φ7φ8

Figure 7: Example: the cyclic affine quiver Â(8, 0) and its superpotential.

cluster category of the Dp model is most conveniently written as

(303) C (Dp) ' DbmodCDp/〈τ−1[1]〉Z

for any Dynkin quiver of type Dp; for convenience we orient the Dynkin
quiver as

(304)

1

2 // 3

OO

// 4 // 5 // · · · // p− 1 // p

The indecomposable objects of C (Dp) then are the indecomposable modules

of CDp together with50 Pi[1] (i = 1, . . . , p). The rigid bricks in C̃p ⊂ C (p)
correpond to the indecomposables of the cluster category C (Dp) which are
not direct summands of TDp [1],

(305) C (Dp)/add TDp [1] ' add(rigid bricks) ⊂ C̃p,

50As always, Pi is the (indecomposable) projective cover of the simple Si with
support at the i–th node of the quiver (304). Note that the orientation of (304)
differs from the one in Figure 2 by the inversion of the arrow between nodes 2
and 3. Under the isomorphism of the derived categories of the corresponding path
algebras, the module P2 for the quiver in Figure 2 becomes the object P2[1] for the
quiver (304). Thus the Z2 automorphism θ now acts as P2[1]↔ P1 ≡ S1.
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where the tilting object TDp has the explicit form

T1 ⊕ T2 ⊕ T3 ⊕ · · · ⊕ Tp(306)

= P2 ⊕ S1 ⊕ S2 ⊕ P2/P4 ⊕ P2/P5 ⊕ · · · ⊕ P2/Pp,

HomC (Dp)(Ti, Tj [k])(307)

'

{
C for k = 0 and j 6= i+ 1

0 otherwise,
with i, j ∈ Z/pZ,

so that, as it should,

(308) EndC (Dp)(TDp)op = Jac
(
Â(p, 0),W = cycle

)
.

The AR translation τ of Cp induces an auto-equivalence of C̃p which we
write as τ̃ ; under the identification (305), we have

(309) τ̃ Ti = Ti+1.

We think of τ̃ as a duality of the fully interacting theory which maps matter
states into matter states and hence should correspond to an S-duality of the
matter SCFT of type Dp. The S-dualities of the Argyres-Douglas theories
were computed in §.4.7.2: they are induced by the auto-equivalences of the
derived category τ , θ, and [1] (as defined in terms of the Dynkin quiver with
the reference orientation of Figure 2). Using the comment in footnote 50,
one easily checks that

(310) Ti+k ' (θτ)kTi,

where ' means equality of their images in the cluster category

DbmodCDp/〈τ−1[1]〉Z.

The two sides do not agree in other categories such as the derived or root one:
this confirms the idea that the cluster one is the “right” physical category.
Thus, as S-dualities of the Dp Argyres-Douglas theory, τ̃ ' θτ . Note that,
for all p, we have51

(311) (θτ)p−1 = θ[−1] ' (θτ)−1 ⇒ τ̃p ' Id,

51Here and below we write = for equivalences which hold in the derived category
DbmodCDp and ' for equivalences which hold only in the cluster (orbit) category
C (Dp).
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in agreement with the fact that τp = Id in Cp. Note that the quantum mon-

odromy M in the Â(p, 1) model is τ2, which induces τ̃2 on C̃p which is
identified with (θτ)2 = τ2 which is the quantum monodromy for the Argyres-
Douglas model of type Dp.

The matter-sector S-duality τ̃ is induced by an auto-equivalence of the
derived category DbmodCÂ(p, 1) of the fully interacting theory which is
implemented by the inverse of a telescopic functor LSi (the one point shift
[56]) associated to the τ -orbit of an exceptional simple Si, i ∈ Z/pZ, with
τSi = Si+1. In Cp one has LS1 ' τ−1 [22]. Therefore the Thomas-Seidel twist
TS1 of the cluster category C (p) for the fully interacting theory restricts to
the auto-equivalence τ̃−1 of the cluster tube C̃p.

All objects in the spherical orbit {τkS1} belong to Cp and are rigid,
so they are identified with objects in the Jacobian module category
C (Dp)/add TDp [1] (cfr. eqn.(305)). In particular, we have the identification

(312) Si ≡ ker
(
Ti+1 → Ti

)
←→ Si−1 for i = 5, . . . , p+ 1,

so that the spherical object S1 ∈ C̃p is identified with the simple module Sp ∈
modCDp whose (half)orbit in R(Dp) is spherical. This sets a correspondence
between the twist functor TS1 for the fully interacting cluster category C (p)
and the twist functor TSp for the sub-constituent cluster category C (Dp)

(313) τ̃−1 ←→ TS1 ←→ TSp .

This correspondence may be made precise: since τ̃−1 ' τ̃p−1 ←→ T 1−p
S1 we

compare τ̃−1 with the functor L1−p
Sp

. From eqn.(176), Fact 15, and Re-
mark 11,

(314) L1−p
Sp

=

{
τp−1 p odd

θp−1τp−1 p even
=

{
θ[−1] p odd

θ−1[−1] p even
' (θτ)−1,

so that the equivalence τ̃ ' θτ in C (Dp) may be seen as a correspondence of
Thomas-Seidel twists in the interacting and constituent cluster categories.

Remark 14. While we have a nice correspondence TS1 ↔ TSp between
auto-equivalences in the cluster categories, the relation between the tele-
scopic functors LS1 , LSp is not so good. Indeed, LS1 has order p in DbCp/[2],
while LS1

has order 2p− 2 in R(Dp). In particular, the explicit matrices LA
do not yield (in general) the actual action of the dualities on the constituent
charge lattices.
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6.3. SU linear quivers II

We return to the SU linear quiver gauge theories of Figure 5. In §. 5.3.2
we found in some simple examples a S-duality group big enough to accom-
modate the “physically expected” duality group (282). Now we discuss how
that group is related to the constituent S-duality.

The models in Figure 5 are special instances of (G, Â(p, 1)) QFTs. They
have cluster categories of the form

(315) C (G, Â(p, 1)) ≡ Hu4

(
Dbmod(C~G× CÂ(p, 1))

/
〈T 〉Z

)
, T = τ ⊗ τ.

Roughly speaking, we may repeat on the second factor, CÂ(p, 1) all the
constructions we performed in the example of §.6.2.1. We then define the
cluster G-tube of period p to be

C̃p(G) ≡ Hu4

(
Dbmod(C~G× Cp)

/
〈T 〉Z

)
(316)

⊂ Hu4

(
Dbmod(C~G× CÂ(p, 1))

/
〈T 〉Z

)
.

For G = A1 this gives back the usual cluster tube C̃p. C̃p(G) is related to the

Dp(G) SCFT [20] as the cluster tube C̃p is related to the Argyres-Douglas
SCFT of type Dp. Roughly speaking, Dp(G) is described by the “relatively

rigid” objects of C̃p(G).

We see the Jacobian algebra Jac(G� Â(p, 1)) as the completion of the
product algebra C~G× CÂ(p, 1). The modules of the product algebra are
then identified with a class of modules of the Jacobian one (namely the
Jacobian modules with vanishing diagonal arrows). Let Ra ∈ modCÂ(p, 1)
be the regular simples in the exceptional p-tube. We write Si,a for the diadic

module Si ⊗Ra ∈ modC~G× CÂ(p, 1) seen as a module of Jac(G� Â(p, 1)).
The skew-symmetric matrix

(317) Bia,jb = dim Ext1(Sia, Sjb)− dim Ext1(Sjb, Sia)

defines the quiver QDp(G) of the constituent Dp(G) sub-sector which should
be equipped with the appropriate superpotential WDp(G) [20].

Now suppose that gcd(p, h̃(G)) > 1. Then Si ⊗Ra has a spherical
(half)orbit in R(G, Â(p, 1)) which induces a Thomas-Seidel auto-equivalence
TSi⊗Ra in the cluster category C (G, Â(p, 1)) of the fully interacting model.
Si ⊗Ra is identified with Si,a which, in turn, gets identified with a simple of
the Jacobian algebra of Dp(G), hence with a BPS state of the constituent
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(1, 1) //

��

����������������
(1, 2) //

��

����������������
(1, 3)

��

����������������

(2, 1) //

��88888888888888
(2, 2) //

��88888888888888

eeKKKKKKKKKKKKKKKKKKKKK

(2, 3)

��88888888888888

eeKKKKKKKKKKKKKKKKKKKKK

(3, 1) // (3, 2)

jjUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

bbDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
// (3, 3)

jjUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

bbDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Figure 8: The quiver A3 � Â(2, 1).

sub-system Dp(G). It is clear from eqn.(316) that TSi⊗Ra preserves the clus-

ter G-tube C̃p(G) and it is natural to expect that it sends its “relatively
rigid” objects into objects of the same kind. In other words, the duality of
the fully interacting theory given by the auto-equivalence TSi⊗Ra “restricts”
to a duality of the constituent Dp(G) sector.

We illustrate this idea in some simple example.

6.3.1. Example: SU(4)× SU(2) with bi-fundamental. We focus on
the first example in Appendix B of [19], m = p = 2, i.e. the quiver gauge
theory

(318) onmlhijkSU(4) onmlhijkSU(2)

The SU(2) YM coupling, g2, is exactly marginal, while the SU(4) coupling
g4 is asymptotically-free. The quiver A3 � Â(2, 1) for this model is presented
in Figure 8.

The decoupling limit g4 → 0 produce the (free) vectors of SU(4) SYM
plus a “matter” system which is just SU(2) SQCD with Nf = 4. Considering
this matter system in isolation, it has flavor symmetry SO(8), the quarks
transforming in the vector representation. The vector representation is fixed
by the Z2 outer automorphism of the D4 graph which interchanges the two
spinor representations, s↔ c, and the SU(4) gauge interaction breaks only
the group S3/Z2 ' Z/3Z of the flavor triality. Then the physical arguments
of §.6.1 suggests
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S2 ⊗R2

xxqqqqqqqqqq

++WWWWWWWWWWWWWWWWWWWWWWWWWW

S1 ⊗R2

33gggggggggggggggggggggggggg
S1 ⊗R1

&&MMMMMMMMMM S3 ⊗R1

ffMMMMMMMMMM
S3 ⊗R3

ssgggggggggggggggggggggggggg

S2 ⊗R1

kkWWWWWWWWWWWWWWWWWWWWWWWWWW

88qqqqqqqqqq

Figure 9: The Dirac quiver of the “matter” sector of (A3, Â(2, 1)). It is a
quiver in the SU(2) SCQD Nf = 4 mutation class (≡ the elliptic Dynkin

class D
(1,1)
4 ). Notice that the Z2 Galois automorphism [18] of the quiver

(which greatly simplifies computation of its BPS spectrum and quantum
monodromy [18, 73, 74]) is given by Sα ⊗R2 ↔ Sα ⊗R1 which is the sym-
metry induced by the charge conjugation C of the fully coupled theory (324)
(as well as by the involution 1⊗ τ).

Physical expectation. The subgroup S ⊂ PSL(2,Z) of the S-duality of
SU(2) with Nf = 4 which extends to a duality of the fully coupled theory
(324) has index 3.

We proceed to check this physical statement from the homological side
using the strategy outlined around eqn.(317). The objects Si,a correspond
to the diadic objects

(319) Si ⊗Ra ⊂ modC ~A3 × CÂ(2, 1), i = 1, 2, 3, a = 1, 2,

where R2 is the regular simple with support on the node 2 of the CÂ(2, 1)
quiver

(320)

2
ρ

��>>>>>>>>

1

φ
@@��������

ψ
// 3

and R1 ≡ τR2. Using eqn.(317), we construct the quiver of the “matter”
sector, see Figure 9. This quiver is a well-known member of the mutation
class of the SU(2) SQCD Nf = 4 quiver [23, 75].

The orbits {T k(Sα ⊗Ra)} (α = 1, 2, 3, a = 1, 2) are spherical in
R(A3, Â(2, 1))); in facts they are the same spherical orbits we studied in
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§. 5.3.2. The corresponding telescopic functors,

(321) La = LS1⊗τaR2
, a ∈ Z/2Z,

then correspond to Thomas-Seidel auto-equivalences of the cluster category
of the SU(2) Nf = 4 subsector, that is, to S-dualities of the “matter system”
which extend to dualities of the fully interacting theory (324).

Since p = 2, we are in the special case where the usual braiding relations
(283) (284) do not apply. However we may read the model-dependent braid
relations from the concrete realization of the duality group in terms of the
known 9× 9 matrices La. One finds the order 4 braid relation

(322) L1L2L1L2 = L2L1L2L1,

which defines the Artin braid group GB2
associated with the Dynkin graph

B2 [71, 76, 77]

(323) © 4 ©

For all n one has

Fact 23 ([76]52). The Artin braid group of type Bn, GBn, is an index n+ 1
subgroup of Bn+1 ≡ GAn. Indeed, it is the subgroup of braids for which the
string beginning in position one also ends in position one.

In the case of SU(2) with Nf = 4 the S-duality is realized through a B3

action with a trivial action of its center (recall that PSL(2,Z) = B3/Z(B3)).
Then the braid group we find for the sub-constituent, GB2

, has index 3 in
the braid group of the isolated SU(2) Nf = 4 theory, as expected on physical
grounds.

6.3.2. Example: SU(3)× SU(2) with (3, 2)⊕ (1, 2). We consider
the case m = 1, p = 3, i.e. the quiver gauge theory53

(324) onmlhijkSU(3) onmlhijkSU(2) 1

Again the SU(2) YM coupling, g2, is exactly marginal, while the SU(3)
coupling g3 is asymptotically-free. Taking g3 → 0 we remain with the free

52See also [69] §. 3.1 Example 2.
53This is the third example in Appendix B of [19].
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2 // 3

��????????

α

??�������� // ω

S1 ⊗R1

S1 ⊗R2

S1 ⊗R3

S2 ⊗R1

S2 ⊗R2

S2 ⊗R3

��

\\9999999

//
eeLLLLLLLLLLLLLLLLLLLLLLLLLLL

BB�������
//ssggggggggggggggggggggggggggg

uulllllllllllllll

//

��

\\9999999

BB�������

Figure 10: Left: The Â(3, 1) affine quiver. Right: The constituent quiver
of ~A2 � Â(3, 1).

SU(3) gauge vectors plus a matter system which is again SU(2) SQCD with
Nf = 4. The quiver for the interacting theory is ~A2 � Â(3, 1). We number
the nodes of the affine quiver as in the left Figure 10.

The regular simples are the simples with support on the nodes 2 and
3, R2 and R3, and the indecomposable R1 of dimension α+ ω. One has
τRa = Ra+1 (a ∈ Z/3Z) and τ3Ra = Ra. The simples Si,a correspond to the
six diadic objects Si ⊗Ra (i = 1, 2) with Dirac pairing54

〈Si ⊗Ra, Si ⊗Rb〉 = −δ(3)
a,b+1 + δ

(3)
a,b−1(325)

〈S1 ⊗Ra, S2 ⊗Rb〉 = δ
(3)
a,b − δ

(3)
a,b−1(326)

leading to the quiver in the right Figure 10. Mutating this quiver at any
node one gets the SU(2) Nf = 4 quiver in the standard form, Figure 9.

By the same physical argument as in §. 6.3.1, we again expect the duali-
ties of the constituent theory which survive the coupling to the SU(3) SYM
sector to have index 3 in the S-duality group. In facts, we expect the same
subconstituent duality group. This time we have p = 3, so eqns.(283) (284)
apply, and we get the cyclic braid group CB3. It has correctly index 3 in B3.
In facts it is the same braid group as in the previous example since:

Fact 24 ([71]). One has CBn ' GBn.

6.3.3. Example: SU(2N)× SU(N) with bifundamental. This is
the example p = 2, m = N . The matter SCFT is SU(N) SQCD with Nf =
2N . The situation is very similar to the one in §. 6.3.1, except that at p = 2

54We have changed the sign conventions by an overall −1.
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the braid relations are model-dependent, and so we expect a different re-
lation between L1 and L2. Using their explicit matrix realizations in the
Grothendieck group of the root category55 we checked the following relation

(327)

2N factors︷ ︸︸ ︷
L1L2L1L2 · · · =

2N factors︷ ︸︸ ︷
L2L1L2L1 · · ·

for all N ≤ 6. Thus we expect that, for all this family of models, the essential
part of the S-duality group is a quotient of the Artin braid group B(I2(2N))
associated to the graph I2(2N)

(328) © 2N ©

7. A more general framework for S-duality

The analysis of S-duality in (G,L) models in sect. 5 exploited the fact that
they have a quiver, G� L, of a very convenient form. The methods of sect. 5
cannot be applied directly to the models of greatest interest, the Dp(G) and

the D
(1,1)
4 (G), E

(1,1)
r (G) SCFTs, since in these cases either no quiver with

superpotential is known or they are not convenient for our purposes. Even

for the SU(2) tubular models D
(1,1)
4 , E

(1,1)
r , which do have nice quivers [23],

the quiver approach is not the best way to study their homological S-duality,
and in [22] one used their alternative description in terms of coherent sheaves
over weighted projective lines X(p). Here we replace the quiver approach of
sect. 5 with a precise version of the physically motivated idea of META-
quivers [20].

Let ~G be the Dynkin quiver of type G with the reference orientation in
Figure 2. We write r ≡ r(G) for its rank. Following Bongartz and Gabriel
[78], we see ~G as a bounded C-linear category, whose objects are the nodes
i ∈ ~G while the Hom-space Hom(i, j) is the vector C-space over the paths
in ~G connecting i to j, composition being path concatenation.

Let H be a C-linear Abelian category, with finite-dimensional Hom/Ext-
spaces, which is hereditary [56] i.e.

(329) Extk(A,B) = 0 for all A,B ∈ H, and k ≥ 2,

55We stress again that these matrices do not represent (in general) the action of
the dualities on the charges of the constituent theories.
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and has Serre duality in the form

(330) Ext1(A,B) ' DHom(B, τA),

for a certain functor τ : H → H (the AR translation). Note that we do not
ask H to have projectives nor injectives; neither we ask the functor τ to be
an equivalence. We also do not require H to have a tilting object ; instead we
impose the weaker condition that its Grothendieck group K0(H) is a finite-
rank lattice. Examples of categories H satisfying the above requirements
are:

1) the category of modules of a finite-dimensional basic hereditary algebra
modCQ (Q an acyclic quiver). This category has enough projectives
and injectives and also tilting objects;

2) the category of coherent sheaves, cohX(p), over the weighted projec-
tive line X(p) of weights p ≡ (p1, p2, . . . , ps). This category has no in-
jectives nor projectives (so τ is an auto-equivalence), but it has tilting
objects;

3) Cp a stable tube of period p, which we can identity with the category

nilCÂ(p, 0), where Â(p, 0) is the A
(1)
p−1 affine Dynkin graph with the

cyclic orientation and nil(·) stands for the Abelian category of the
nilpotent (finite-dimensional) modules. This category has no injective,
nor surjective, nor tilting objects, but it is uniserial. Moreover τ is an
equivalence satisfying τp = Id.

For physical applications to UV complete 4d N = 2 QFTs, we are interested
only in a subset of the above examples: 1) with Q Dynkin or affine, 2) with
χ(X(p)) ≡ 2−

∑s
i=1(1− 1/pi) ≥ 0, and 3). Examples 2) with χ(X(p)) > 0

are equivalent to examples 1) with Q affine.

We write ~G(H) for the category of linear functors from ~G to H

(331) ~G(H) ≡ Funct(~G,H).

A functor X ∈ ~G(H) associates an object X (i) ∈ H to each node i ∈ ~G and
a morphism

(332) X (ψ) ∈ HomH
(
X (i),X (j)

)
to each arrow i

ψ−→ j of ~G. ~G(H) is a linear Abelian category of global dimen-
sion at most 2, and all auto-equivalence σ of H induce an auto-equivalence
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1⊗ σ of ~G(H) [79]

(333) 1⊗ σ : ~G(H)→ ~G(H), 1⊗ σ : X 7→ σ ◦ X ∈ Funct(~G,H).

In the special case H = vect, the functor category ~G(vect) is just the
category of (finite-dimensional) modules of the path algebra C~G,

(334) ~G(vect) = modC~G.

More generally, taking H = modCG′ or H = modCĤ, we get

(335)
~G(modCG′) ' mod(CG× CG′),
~G(modCĤ) ' mod(CG× CĤ),

so that the functor category ~G(H) may be seen as the natural generalization
of the modules of a product of two hereditary algebras.

We consider the bounded derived categoryDb ~G(H). From ~G(vect) andH
the derived category inherits the two auto-equivalences τG ⊗ 1 and 1⊗ τH
analogous to the ones studied in [68] when H is a module category (we
use the same notation in the general case). Hence we may define the orbit
category

(336) Db ~G(H)
/
〈τG ⊗ τH〉Z,

the cluster category

(337) C (G,H) = Hu4

(
Db ~G(H)

/
〈τG ⊗ τH〉Z

)
,

and the root category

(338) R(G,H) = Hu4

(
Db ~G(H)

/[
2Z
])
,

The correspondence between our N = 2 QFTs and cluster categories is
then
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(339)

QFT cluster category

(G,G′) C (G,modCG′) ≡ C (G,G′)

(G, Ĥ) C (G,modCĤ) ' C (G, cohX(p1, p2, p3))56

Dp(G) C (G,Cp)

D
(1,1)
4 (G) C (G, cohX(2, 2, 2, 2))

E
(1,1)
6 (G) C (G, cohX(3, 3, 3))

E
(1,1)
7 (G) C (G, cohX(4, 4, 2))

E
(1,1)
8 (G) C (G, cohX(6, 3, 2))

The S-duality group of each N = 2 model (of this class) is then

(340) Aut C (G,H)
/

Aut C (G,H)0,

which is again essentially equal to the correspondent auto-equivalence group
for the root category R(G,H) using the argument in §§. 3.4, 4.4.1.

7.1. Diadic functors

Let X ∈ ~G(vect) be a Dynkin module; we write xi = dimX(i) and choose
bases, so that X(i) gets identified with Cxi and X(ψ) with a xt(ψ) × xs(ψ)

complex matrix.
We define a product ⊗ : ~G(vect)×H → ~G(H) as follows (here A ∈ H

and X ∈ ~G(vect))

(X ⊗A)(i) =

xi summands︷ ︸︸ ︷
A⊕A⊕ · · · ⊕A(341)

(X ⊗A)(ψ) = X(ψ)⊗ IdA.(342)

Functors of the form X ⊗A will be called diadic.
The category ~G(H) is homologically generated by the diadic functors.57

In facts, the functors of the form Si ⊗A, where Si are the simples of ~G(vect),
suffice to generate the full ~G(H). The same statement holds with the Si re-
placed by their projective covers Pi (or injective envelopes Ii). The following

56With
∑3

i=1 1/pi > 1.
57For this an other homological assertions on the category ~G(H), see Appendix B.
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“Kunneth formula”

(343) Extk~G(H)
(X ⊗A, Y ⊗B) =

⊕
i+j=k

Exti~G(vect)
(X,Y )⊗ ExtjH(A,B)

is shown in Appendix B. In particular the Euler form

(344) χ(A,B) =
∑
k∈Z

(−1)k dim Extk(A,B),

for diadic objects factorizes

(345) χ(X ⊗A, Y ⊗B) = χ(X,Y ) · χ(A,B).

Suppose that H has a tilting object T =
⊕

s∈S Ts, as it happens in all

our examples but Cp. Let Pi be the projective cover of Si in ~G(vect). We
claim that

(346) T =

r⊕
i=1

⊕
s∈S

Pi ⊗ Ts

is a tilting object in ~G(H). Indeed, one has to show that: i) Extk(T , T ) = 0
for k ≥ 1, and ii) the Pi ⊗ Ts generate ~G(H). Statement ii) follows from the
observations after eqn.(342), while i) is automatic in view of eqn.(343) and
the definition of tilting object T . Then

(347) Db
(
~G(H)

)
' Db

(
modEnd ~G(H)(T )

)
,

and

(348) K0(~G(H)) ' Zr|S|.

The last two equations remain true if T is a tilting object in Db(H) (which
is simply the repetitive category of the hereditary category H [56]). Now we
are in a position to check the consistency of the identifications (339) with
the ones given by the 4d/2d correspondence. We only need the equivalences
[28]

Db(cohX(4, 4, 2)) ' vectX(4, 4, 2) ' Db(mod(CA3 × CA3))(349)

Db(cohX(6, 3, 2)) ' vectX(6, 3, 2) ' Db(mod(CA5 × CA2)),(350)
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to realize that the categories of the E
(1,1)
7 (An−1), E

(1,1)
8 (An−1) SCFTs are

properly identified. All other cases may be seen as straightforward general-
izations of these ones. In Appendix B one shows the following

Fact 25. Let X ∈ ~G(vect) be a rigid brick. Then the linear functor JX : H →
~G(H),

(351) JX : A 7→ X ⊗A, JX : ψ 7→ IdX ⊗ ψ,

embeds H as a full exact subcategory closed under extensions. The left (or
right) derived functor JX embeds fully faithfully D(H) into D(~G(H)).

Recall that by Gabriel theorem [65] all indecomposable objects X ∈
~G(vect) are rigid bricks. Their dimension vectors [X] ∈ K0(~G(vect)) are the
positive roots of G under the natural identification of the Grothendieck
group and root lattice of G, and an indecomposable X is uniquely identified
(up to isomorphism) by its Grothendieck class [X].

Corollary 1. X ∈ ~G(vect) indecomposable. Then JX : H → ~G(H) sends
bricks into bricks and preserves the spin and R-symmetry charges of the
corresponding BPS particle (cfr. eqn.(15)).

We shall write JX for the homomorphism of Grothendieck groups in-
duced by JX

(352) JX : K0(H)→ K0(~G(H)), JX [A] 7→ [JX(A)] ≡ [X]⊗ [A].

7.2. The canonical SYM sector

As mentioned above,58 the categories cohX(p) ≡ ~A1(cohX(p)) with
χ(X(p)) ≥ 0 describe UV complete SU(2) gauge theories coupled to a set
(Dp1 , . . . , Dps) of Argyres-Douglas matter systems. The BPS spectrum at
weak Yang-Mills coupling consists of the W boson, the BPS states of the
Dpi matter systems, and magnetically charged states (all of them being hy-
permultiplets for χ(X(p)) > 0, while for χ(X(p)) = 0 we have also dyonic
vector multiplets). In all cases there is a canonical choice of S-duality frame
in which the W boson corresponds to the P1-family of skyscraper brick
sheaves {Sλ}λ∈P1 [22, 24].

58See [24] for more details.
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Likewise, the functor category ~G(cohX(p)) describes N = 2 SYM with
gauge group G coupled to a set (Dp1(G), . . . , Dps(G)) of SCFTs of type
Dp(G) [20]. In the standard duality frame the W bosons of the G SYM

sector are described as follows. By Gabriel theorem [65], the map ~G(vect)→
K0(~G(vect)), X 7→ dimX, yields a one-to-one correspondence between the
rigid bricks Xα ∈ ~G(vect) and the positive roots of G,

(353) dimXα = α ∈ ∆+(G).

The W bosons of G, associated to the positive roots correspond to the P1-
families of functors

(354) JXα(Sλ) ∈ ~G(cohX(p)), α ∈ ∆+(G), λ ∈ P1.

This choice of duality frame defines the magnetic charges mi(−) for the
gauge group G defined as

(355) Cijmj(X) = χ(Jαi(Sλ), X)− χ(X, Jαi(Sλ)),

where Cij is the Cartan matrix of G. The states surviving the decoupling
limit gYM → 0 are described by the category controlled by the functions
{mi(−)}; once eliminated the gauge W -bosons, what remains correspond to
the matter constituents (Dp1(G), . . . , Dps(G)).

In other words, the electric charges of the W -bosons associated to the
simple roots αi of the gauge group G have the form αi ⊗ e, with e ≡ [Sλ]
the charge vector of the SU(2) W -boson, while the magnetic charges have
the form α∨i ⊗m, with m the SU(2) magnetic charge. Concretely, a functor
X ∈ ~G(cohX(p)), associates to each object (node) i ∈ ~G a coherent sheaf
X (i) ∈ cohX(p). The electric and magnetic G charges of X are suitable lin-
ear combinations of the degrees and ranks of the sheaves X (i). The charge
vector of the i–th simple W -boson has support on the i–th object and van-
ishing rank, while the i–th magnetic charge of the functor X is

(356) mi(X ) = rankX (i).

In particular, for the category cohX(p) ≡ ~A1(cohX(p)), the SU(2) mag-
netic charge coincides with the rank. Hence the controlled category is the
Abelian subcategory of finite length objects S [56]

(357) S =
∨
λ∈P1

Cλ
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with all Cλ homogeneous stable tubes but for s exceptional ones which have
periods pi.

The subcategory of ~G(cohX(p)) controlled by the magnetic charges (356)
is then

(358) ~G(S ) =
∨
λ∈P1

~G(Cλ),

and, in the decoupling limit gYM → 0 we may study the controlled category
of functors tube by tube. Then we are reduced to the case of ~G(Cp), with
Cp a stable tube of period p.

7.3. Auto-equivalences

7.3.1. Induced auto-equivalences. Let σ be an auto-equivalence of the
derived category DbH. It extends to an equivalence 1⊗ σ of the derived
category Db ~G(H) and, since it commutes with T ≡ τG ⊗ τH as well as with
the double shift [2], also to auto-equivalences of the cluster C (G,H) and
root R(G,H) categories. The same statement holds for the elements ϑ of
the derived Picard group Aut(DbmodC~G), which induce auto-equivalences
ϑ⊗ 1 of all three categories Db ~G(H), C (G,H) and R(G,H).

The group homomorphism

(359) 1⊗− : AutDbH → Aut C (G,H)

has kernel τh(G)[−2] or τh(G)/2[−1], depending on G. In all cases

(360) ker(1⊗−) ⊂ Z(AutDbH).

In particular, the auto-equivalences generated by telescopic functors LA of
DbH which satisfy non-trivial braiding relations (if any), are mapped to non
trivial auto-equivalences

(361) LA ≡ 1⊗ LA,

which satisfy the same braiding relations as the LA.

7.3.2. Telescopic functors. In addition, to the auto-equivalence inher-
ited from DbH (and DbmodC~G), we may have new auto-equivalences pro-
duced by the telescopic functors associated to spherical objects in C (G,H).
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The arguments of §§. 3.4, 4.4.1 extend to this more general case: the spheri-
cal objects in C (G,H) are in correspondence with the spherical (half)orbits
in the root category R(G,H).

The spherical (half)orbits which are easy to describe are the diadic ones.
Here we focus on the group of dualities associated to the diadic telescopic
functors. As before, we have

Fact 26. If gcd(p, h̃(G)) > 1, the tensor product of an object in A ∈ DbH
which belongs to a spherical orbit {τkA} times an object in X ∈ DbR(G)
which belongs to a spherical (half)orbit {τkX} yields a spherical (half)orbit
T k(X ⊗A) ∈ R(G,H), and hence telescopic autoequivalences LX⊗τaA, where
a ∈ Z/gcd(p, h̃)Z. If gcd(p, h̃) > 2, the telescopic auto-equivalences LX⊗τaA
satisfy the braiding relations of CBgcd(p,h̃).

The induced auto-equivalences LA act on the telescopic auto-equivalence
LX⊗B by the adjoint action

(362) LA LX⊗B = LX⊗LA(B) LA,

thus generating the telescopic functors associated to new spherical orbits.

7.4. The case H = cohX(p) with X(p) tubular

The essentially new case, where novel phenomena appear is when H is the
category of coherent sheaves over a tubular line.

7.4.1. Review of the G = SU(2) case. The hereditary categories with
interesting telescopic autoequivalences are the coherent sheaves of the four
tubular weighed projective lines, cohX(p) with χ(p) = 0, having weights,

(363) p = (2, 2, 2, 2), (3, 3, 3), (4, 4, 2), (6, 3, 2).

They correspond to the four SU(2) SCFT with matter in the fundamental.
In this subsection we shall write simply X for a weighted projective line of
tubular type. We set p ≡ p1 ≡ lcm(pi) equal to a maximal weight, that is,
respectively, 2, 3, 4, and 6. One has

(364) τp = Id in DbcohX(p) with χ(X(p)) = 0.

On DbcohX(p) act two independent telescopic functors which we may
take to be associated to the spherical τ -orbits of the structure sheaf O and
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of a simple sheaf with support at an exceptional point of maximal period p,
Si,1. These two telescopic functors satisfy the B3 relation [26, 27]

(365) LOLSi,1LO = LSi,1LOLSi,1 ,

and in fact generate the full B3 group. The center Z(B3) of B3 is the infinite
cyclic group generated by

(366) (LOLSi,1)
3 =

{
τ−3[1] p 6= 3

π23[1] p = 3

where π23 is the permutation which exchanges the last two special points.
The full autoequivalence group Aut(DbcohX) is a semi-direct product of B3

and the geometric auto-equivalences

(367) 1→ Pic(X)0 n Aut(X)→ Aut(DbcohX)→ B3 → 1,

where Pic(X)0 is the group of the degree zero line bundles (acting by tensor
product X 7→ X ⊗ L) and Aut(X) is the group of geometric automorphisms
of X which is (roughly) the group of permutation of the special points having
the same weight pi.

One has

(368) SL(2,Z) = B3/Z(B3)2

and this is the quotient of Aut(DbcohX) which acts effectively on the SU(2)
electromagnetic charges59 (e,m),

(369)

(
e
m

)
7−→

(
a b
c d

)(
e
m

)
,

(
a b
c d

)
∈ SL(2,Z),

and which is the S-duality group in the strict sense of the word. Writing
eqn.(369) we mean that, for all M ∈ SL(2,Z), we may find (non uniquely)
an auto-equivalence σM ∈ Aut(Db cohX) such that, for all derived coherent

59The SU(2) electric charge e of a coherent sheaf E ∈ cohX is its degree normal-
ized so that a simple in the tube of largest period has degree 1 (that is, the generic
skyscraper has degree p); the SU(2) magnetic charge m of E is its rank as a sheaf.
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sheaves X,

(370)

(
deg σM (X)
rankσM (X)

)
= M

(
degX
rankX

)
.

The subgroup which acts trivially on the other conserved charges (flavor
as well as internal electromagnetic charges of the Dpi matter systems) is the
principal congruence subgroup Γ(p) ⊂ SL(2,Z) [22]. Then we have an effec-
tive action on the matter charges of the (finite) quotient group SL(2,Z/pZ).

7.4.2. General gauge group G. We consider the cluster (resp. root)
category

(371) C (G, cohX),
(

resp. R(G, cohX)
)
,

where X is a weighted projective line of tubular type. The corresponding 4d

N = 2 theories are the D
(1,1)
4 (G), E

(1,1)
r (G) SCFTs of [21]. They have the

physical interpretation of SYM with gauge group G coupled to four or three
“matter” SCFTs of type Dpi(G) such that the G Yang-Mills coupling gYM

is exactly marginal.

C (G, cohX) has at least two kinds of auto-equivalences:

A) the ones inherited by Aut(DbcohX), eqn.(367). In particular, all DZVX
models have a SL(2,Z) group of dualities generated by the two induced
functors (cfr. eqn.(361)),

(372) LO and LSi,1 ,

which acts diagonally on all the electric/magnetic charges of the gauge
group G

(373)

(
deg(1⊗ σM · X )(i)
rank(1⊗ σM · X )(i)

)
= M

(
degX (i)
rankX (i)

)
,

M =

(
a b
c d

)
∈ SL(2,Z).

This is the duality predicted in [21]. Note that the group of induced
auto-equivalences ' Aut(DbcohX), eqn.(367), is strictly larger than
the expected modular group SL(2,Z);

B) for particular pairs (affine star, simply-laced Lie algebra) there is a fur-
ther enhancement of the S-duality group due to the presence of spher-
ical objects in C (G,H) (equivalently, of spherical orbits in R(G,H)).
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As in Section 5, the spherical objects (orbits) which are easy to detect
are the diadic ones (but, of course, there may also be non diadic spherical
orbits harder to find). Again, tensor products of spherical orbits with periods
which are not coprime, yield spherical orbits. In the present case we get two
different kinds of such orbits (and associated telescopic auto-equivalences):

a) for each period pa ∈ p such that gcd(pa, h̃(G)) > 1 and each spherical
(half)orbit {τkX} ∈ R(G) we have the spherical (half)orbit T k(X ⊗
Sj,a), j ∈ Z/gcd(pa, h̃(G))Z, where Sj,a are the simple sheaves with
support at the a–th exceptional point of X. This class of orbits exists
independently of the fact that the G Yang-Mills coupling is marginal,
and correspond to S-dualities of the individual matter constituent of
type Dpa(G) which extend to dualities of the fully coupled QFT, as
described in Section 6;

b) if the overall Yang-Mills beta-function vanish, i.e.for X of tubular type,
we typically have additional spherical orbits (and dualities) of a more
interesting kind since they correspond to an unexpected enhancement
of the S-duality group. If gcd(p, h̃(G)) > 1 we have telescopic functors
of the form

(374) LX⊗τ jO j ∈ Z/gcd(p, h̃(G))Z,

which are additional dualities of the fully coupled theory which do not
arise from the dualities of the single constituents.

The telescopic auto-equivalences in items a), b) satisfy a number of
braiding relations. If gcd(p, h̃(G)) > 2 we have the universal relations of
third order as discussed in Section 5. In addition, we have the model depen-
dent braiding relations similar to the ones encountered in Section 5. Finally,
we have relations between the telescopic auto-equivalences and the induced
auto-equivalences, in particular the ones induced by the telescopic functors
of DbcohX, eqn.(372).

In the next section we shall discuss a few interesting examples and write
down the duality group in detail.

Remark 15. As discussed around eqn.(85), sometimes we have more than
one convenient way to write the cluster category of a N = 2 QFT. Some
dualities may be manifest in one realization, and other dualities in a different
realization. Of course, the physical S-duality group should contain all such
dualities, and the comparison between different realizations may help (in
some instance) to detect dualities which otherwise would go unnoticed. For
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instance, we have

(375) E
(1,1)
6 (A2) ' (D4, D4) ' E(1,1)

6 (A2)′,

where E
(1,1)
6 (A2)′ stands for a second inequivalent identification of the

(D4, D4) SCFT with the E
(1,1)
6 (A2) theory obtained by interchanging the

role of the two D4’s in the identification. In facts, using the automorphisms

of D4, we get two other inequivalent “E
(1,1)
6 (A2) structures”, E

(1,1)
6 (A2)′′

and E
(1,1)
6 (A2)′′′. Each identification induces its own auto-equivalences

(376) {LO,LSi,1}, {L ′
O,L

′
Si,1}, {L

′′
O,L

′′
Si,1}, and {L ′′′

O ,L
′′′
Si,1}

all of which belong to the S-duality group of the theory. The corresponding

argument says that the E
(1,1)
6 (D4) SCFT has 10 inequivalent “E

(1,1)
6 (D4)

structures”, each of which induces a distinct pair LO, LSi,1 , each pair gen-
erating a SL(2,Z) subgroup of the S-duality group (and also a copy of the
finite group Pic(X)0 n Aut(X), cfr. eqn.(367)). We shall discuss this more in
detail in the next section.

8. The sequence of “cubic” N = 2 SCFTs

We have seen above that for certain special models we have an enhance-
ment of the S-duality group which becomes much larger than usual. This
enhancement is maximized for a family of N = 2 models which we call the
“cubic” sequence.

We consider the 4d N = 2 SCFTs whose 2d correspondent is a Landau-
Ginzburg with a cubic superpotential in n chiral superfields

(377) W =

n∑
i=1

X3
i +

∑
i,j,k

all distinct

aijkXiXjXk + lower order

One has ĉ = n/3, so the condition ĉ < 2 yields n ≤ 5. The five SCFTs in the
cubic sequence are listed in Table 5. The coupling constants aijk correspond
to exactly marginal deformations of the 4d SCFT

(378) #
(
marginal deformations

)
=

(
n

3

)
.
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n
(
n
3

)
SCFT a.k.a. L ? G F

1 0 Argyres-Douglas A2 (A2, A1)
2 0 Argyres-Douglas D4 (A2, A2) SU(3)

3 1 E
(1,1)
6 i.e. E

(1,1)
6 (A1) (D4, A2) SU(2)

4 4 E
(1,1)
6 (A2) (D4, D4) X SU(3)× SU(2)3 U(1)6

5 10 E
(1,1)
6 (D4) X SO(8)× SO(5)3 × SO(3)6

Table 5: The cubic N = 2 SCFTs. The symbol X means that the SCFT
has a weakly coupled Lagrangian formulation. G is the Yang-Mills gauge
group whose coupling constants are exactly marginal. F is the flavor group.

The 4d model has flavor symmetry F if and only if n is even. In this case

(379) rankF =

(
n

n/2

)
.

The last two models in the sequence have a weakly-coupled Lagrangian
formulation: they are the generalized quiver gauge theories in Figures 11
and 12.

The n-th model in the sequence has a root category with 3n−1 obvious
spherical orbits which lead to 3n−1 telescopic functors. In addition we have

(380) 2

(
n

3

)
induced auto-equivalences of the form LA, see Remark 15. These genera-
tors are related by several generalized braiding relations.

With some abuse of notation, we write the 3n−1 telescopic functors in
the form

(381) Lτk1S1⊗τk2S1⊗···⊗τkn−1S1⊗S1
, ki ∈ Z/3Z.

The precise meaning of the abusive notation is that the matrices giving
the action of the telescopic functors in the Grothendieck group of the root
category have the form

Lτk1S1⊗τk2S1⊗···⊗τkn−1S1⊗S1
(382)

= 1−
3∑

k=1

(
n⊗
s=1

Hk+ks
s as

)
⊗

(
n⊗
s=1

atsEsH
−k−ks
s

)
,
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where Hs, Es, and as are n copies of (respectively) the monodromy, Euler
matrix, and simple charge vector for the (2,2) minimal model of type A2. In
the rhs of (382) we set kn = 0 as a convention. To simplify the notation, we
write L(ki) for the matrix in eqn.(382). In addition, for each triplet of inte-
gers {i, j, k} ⊂ {1, 2, . . . , n} we have the two induced functors of the several

“E
(1,1)
6 (G) structures” see Remark 15. Using Remark 13, we may equiv-

alently write three induced functors per triplet; their Grothedieck matrix
takes the form (α = 1, 2, 3)

Lijk(α) = 1−
3∑

k=1

(
n⊗
s=1

Hk+αδs,i
s

)
Kijk

(
n⊗
s=1

H−k−αδs,is

)
(383)

Kijk = 1⊗ · · · ⊗Ki ⊗ · · · ⊗Kj ⊗ · · · ⊗Kk ⊗ · · · ⊗ 1(384)

Ks = as ⊗ atsEs(385)

A moment thought suggests that this is not yet the full story. Let Ξ ⊂
{1, 2, . . . , n} be a non-empty subset and write

(386) KΞ =

n⊗
s=1

KΞ(s), KΞ(s) =

{
Ks if s ∈ Ξ,

1s otherwise.

and

(387) LΞ

(
{ks}s∈Ξ

)
=

3∑
k=1

(
n⊗
s=1

Hk+ks
s

)(
1

3
+ (−1)|Ξ|KΞ

)( n⊗
s=1

H−k−kss

)

Note that the rhs depends on the ks mod ks → ks + k, so that for each Ξ
we get 3|Ξ|−1 generators. In total

1

3

∑
∅6=Ξ⊂{1,...,n}

3|Ξ| =
1

3

 ∑
αi∈{0,1}n

3
∑
i αi − 1

(388)

=
4n − 1

3
=

n∑
k=1

(
n

k

)
3k−1.

For instance, for n = 5 we have 341 braid generators. Of course, the same ma-
trix group is generated by one generator LΞ per subset Ξ together with the
n matrices Hs; since H−1

s = L{s}, we remain with only 2n − 1 generators,
but in this economical presentation the generalized braid group structure is
less manifest.
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1

?>=<89:;2

1 ?>=<89:;2 ?>=<89:;3 ?>=<89:;2 1

Figure 11: The gauge theory E(1,1)(A2). A circled K stands for a SU(K)

gauge group, f for f fundamentals, and edges for bi-fundamental hyper-
multiplets.

?>=<89:;765401233 • ?>=<89:;765401233

?>=<89:;765401233 ?>=<89:;765401235

�O
�O
�O

?>=<89:;765401233

• ?>=<89:;765401235 /o/o/o ?>=<89:;765401238 /o/o/o ?>=<89:;765401235 •

?>=<89:;765401233 ?>=<89:;765401233

Figure 12: The gauge theory E(1,1)(D4). A doubly-circled K stands for a
SO(K) gauge group, a curly edge for a 1

2(8,4) half bi-spinor, and a • for a
1
2(4,2,2) half tri-spinor.

We also have a “geometric” Sn auto-equivalence which generalizes the
auto-equivalence Aut(X) ≡ S3 for the tubular projective line of weights
(3, 3, 3) (which describes the n = 3 cubic SCFT). Up to the action of Sn

we may reduce to one subset per cardinality, say to the sub-sets [k] ≡
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1 +L{s} +L2
{s} = 0

(1−L{s,t} +L2
{s,t})(L

2
{s,t} − 1) = 0(

L3
{s,t,u} − 1

)(
L{s,t,u} − 1

)
= 0

(1−L{s,t} +L2
{s,t,u,v})(L

2
{s,t,u,v} − 1) = 0(

L3
{1,2,3,4,5} − 1

)(
L{1,2,3,4,5} − 1

)
= 0

Table 6: Minimal equations for the matrices LΞ.

{1, . . . , k} ⊂ {1, . . . , n}. Then

(389) L[k] = M [k] ⊗
n−k factors︷ ︸︸ ︷

1⊗ · · · ⊗ 1

where 1 stands for the 2× 2 identity matrix and M [k] is the 2k × 2k matrix
such that

(390)

(
M [k]

)
1,i

=
(
v[k]

)
i(

M [k]

)
i,1

= −1(
M [k]

)
i,j

= δi,j − δi,2k δj,2k for i, j 6= 1

with v[k] the vector in Z2k defined by the recursion

(391)

{
v[0] = −1

v[k+1] =
(
v[k],−v[k]

)
.

(392) (1−L[k])(L[k] +H−1
[k] ) = 0.

The minimal equations for the matrices LΞ are written in Table 6. We stress
that these matrices have no direct bearing on the action of the dualities on
the charges. However the braiding relation between the LΞ are mapped into
braiding relations between the corresponding Thomas-Seidel twists TΞ for
the cluster category. This yields a presentation of the subgroup Tel(C ) of
the S-duality group.

The generalized braid groups have two kinds of relations, binary and
ternary [63]:
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• binary of order n: they involve two letters s and t

(393)

n factors︷ ︸︸ ︷
ststst · · · =

n factors︷ ︸︸ ︷
tststs · · ·

• ternary of order n: they involve three letters s, t and u

(394)

n factors︷ ︸︸ ︷
stustu · · · =

n factors︷ ︸︸ ︷
tustus · · ·

which may or not be cyclic in the three letters s,t,u.

For instance, consider the n = 5 cubic model and focus on the subgroup
of the S-duality group generated by the 81 telescopic functors of the form
(381). A search by Mathematica of generalized braid relations between the
corresponding 81 matrices (382) produced relations of the following kinds:

• binary relations of order 2 and 3;

• cyclic ternary relations of order 4 and 12.

Remark 16. Pragmatically, the way we determined the duality group
used only properties of the hypersurface singularity W = 0 with W as in
eqn.(377). For 4d N = 2 SCFT defined by a quasi-homogeneous hypersur-
face singularity W , we can use the same explicit formulae. Most such models
are already covered by the analysis in the previous sections, but there are
some special 4d SCFT defined by a quasi-homogeneous singularity which
have no simple description in terms of a category of the form ~G(H). Exam-
ples are the model defined by the singularity

(395) W = X5 + Y 5 + Z5

with fractional CY dimension ĉ = 9/5, or some higher Arnold singulari-
ties [18, 80]. The brane category is well known [14], and we easily write
down the matrices LA which represent the telescopic auto-equivalences on
its Grothendieck group: they are written in terms of simple data of the sin-
gularity (Stokes matrix, monodromy, and roots). It is tempting to conjecture
that the S-duality group is again commensurable to the matrix group con-
structed out of the geometric data of the singularity. As an example for
(5, 5, 5) triangle singularity in eqn.(395), the relevant matrices are given by
eqns.(386) (387) n = 3 and the order of Hs for the A1 minimal model, 3,
replaced by the order of the monodromy of the A4 minimal model, 5.
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Appendix A. 4d/2d correspondence and 4d chiral operators

The 4d/2d correspondence [9] states that — for a certain class of 4d N =
2 models — the exchange matrices Bij of their quivers arise as the BPS
counting matrices of 2d (1, 1) models with ĉ < 2. More precisely, for a N = 2
QFT in this class there is a 2d (1, 1) theory with n supersymmetric vacua
and 0 ≤ ĉ < 2 such that

(A.1) B = St − S

where S is the unipotent integral tt∗ Stokes matrix of the 2d model [47]. In
a suitable basis the matrix S is upper triangular with 1’s along the diagonal,
and the off–diagonal (generically) integral entries count the 2d BPS states
as in [47]. Quiver mutations correspond to 2d wall–crossing. The matrix
H = (St)−1S is the 2d quantum monodromy with eigenvalues

(A.2)
{

exp
(
2πi(qa−ĉ/2)

)
: qa≡UV U(1)R charges of 2d chiral primaries

}
.

In particular, only Stokes matrices such that the eigenvalues of H are roots
of unity may correspond to unitary 2d QFT.

It follows from 2d PCT that the set {qa} is symmetric under

(A.3) qa ←→ ĉ− qa.

The 2d theory has always an operator with qa = 0, namely the identity, so
exp(±2πiĉ/2) are always eigenvalues of H. A priori this fixes ĉ/2 only mod
1, but since 0 ≤ ĉ/2 < 1, the value of ĉ is uniquely fixed once we know which
eigenvalue ofH is to be identified with exp(2πiĉ/2). Only eigenvalues consis-
tent with the symmetry (A.3) may be identified with ĉ. ĉ is also determined
as the fractional CY dimension of the corresponding derived brane category.

4d flavor charges correspond to zero–eigenvectors of B, (S − St)ψ = 0.
Now

(A.4) Sψ = Stψ ⇐⇒ Hψ ≡ (St)−1Sψ = ψ,

so flavor charges correspond to eigenvectors of the 2d quantum monodromy
associated to the eigenvalue +1, that is, comparing with eqn.(A.2), to 2d
chiral primaries of dimension ĉ/2 mod 1. Since 2d unitarity imples qa ≤ ĉ <
ĉ/2 + 1, the dimension of the 2d ‘flavor’ operators Of is precisely ĉ/2. The
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dual parameters mf in the 2d action

(A.5) S0 +
∑
f

(∫
d2z d2θ mf Of + H.c.

)

have a 2d U(1)R charge 1− ĉ/2. From the 4d viewpoint the mf ’s, being dual
to conserved flavor charges, have the dimension of masses; so

(A.6) 4d dimension =
2d U(1)R charge

1− ĉ/2
.

In particular, the dimensions of the operators parametrizing the Coulomb
branch are given by the k numbers

(A.7)
{

∆1,∆2, . . . ,∆k

}
≡
{

1− qa
1− ĉ/2

such that qa < ĉ/2

}
which are determined by H and the identification of which eigenvalue is
identified with exp(2πiĉ/2), up to a few mod 1 ambiguities. Note that for an
interacting theory ∆` > 1, as required by 4d unitarity. Since the minimal qa
is always zero, the largest dimension of a Coulomb branch operator is given
by

(A.8) ∆k =
1

1− ĉ/2
.

Appendix B. Some homological results

Proposition 1. The category ~G(H) is homologically generated by the diadic
objects of the form Si ⊗A (resp. Pi ⊗A) where A ∈ H and the Si are the
simples of ~G(vect) (resp.Pi are the projective covers of the Si).

Before giving the proof, we define the concept of linear orientation of a
Dynkin quiver:

Definition 13. A Dynkin quiver with n vertices numbered as 1, 2, . . . , n is
linearly oriented iff there exists only one source, labelled by “1”, and for all
arrows i→ j, one has j > i.

Proof of the proposition. Let ~G be a linearly oriented Dynkin quiver. Let
~G[i] be the full subquiver of ~G over the nodes {1, 2, ...., i}. The node i+ 1

is connected to ~G[i] by a single arrow ψi+1 with target i+ 1. Let X ∈ ~G(H)
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be a functor; we write X[i] for its restriction to the full C-linear subcategory
~G[i] ⊂ ~G. Clearly, we may see X[i] as an object of ~G(H) extending it by zero.

In the Abelian category ~G(H) we have the exact sequence

(B.9) 0→ Si ⊗X (i)→ X[i] → X[i−1] → 0.

Since X[1] = X (1)⊗ S1, and X ≡ X[n], by recursion on i we get the first
claim. The second one follows from the exact sequence

(B.10) 0→
⊕
j∈J(i)

Pj ⊗A→ Pi ⊗A→ Si ⊗A→ 0.
�

It is clear that

Hom ~G(H)(X1 ⊗A1, X2 ⊗A2)(B.11)

' Hom ~G(vect)(X1, X2)⊗HomH(A1, A2).

More generally, for diadic functors one has the “Kunneth formula”

Proposition 2. For A,B ∈ H and X,Y ∈ ~G(vect), one has

Extk~G(H)
(X ⊗A, Y ⊗B)(B.12)

=
⊕
i+j=k

Exti~G(vect)
(X,Y )⊗ ExtjH(A,B), ∀k

In particular, the global dimension of ~G(H) is one more the global dimension
of H. Since we assume H to be hereditary, gl.dim. ~G(H) = 2. The Serre
functor of ~G(H) is the product of the Serre functors for ~G(vect) and H.

(B.13) S = τ [1]⊗ τ [1] ≡ τ ⊗ τ [2].

The proof proceeds by induction on the lengths of X and Y . The ex-
pression is true for simples; then one shows that if it is true for X (resp.Y )
it is true also for an extension of X (resp.Y ) by a simple.

One has a simple formula for the Euler form

(B.14) χ ~G(H)(X,Y ) :=

2∑
s=0

(−1)kExtk~G(H)
(X,Y )

which depends only on the Grothedieck classes [X], [Y ] of X, Y . One has

(B.15) χ ~G(H)(X1 ⊗A1;X2 ⊗A2) = χ ~G(vect)(X1, X2)χH(A1, A2).



i
i

“1-Caorsi” — 2019/6/4 — 22:22 — page 1705 — #113 i
i

i
i

i
i

Homological S–Duality in 4d N = 2 QFTs 1705

B.1. Embedding of autoequivalences

Proposition 3. JR : H → Funct(~G,H), A 7→ R⊗A, with R ∈ ~G(vect) a
rigid brick, is a full exact embedding whose image is closed under extension.

Proof. We have to show that the functor is fully faithful:

Hom ~G(H)(JR(A), JR(B)) ∼= Hom ~G(H)(R⊗A,R⊗B)(B.16)

∼= Hom ~G(vect)(R,R)⊗HomH(A,B)

∼= HomH(A,B),

where in the last equality we used that R is a brick. To see that the image
is closed under extensions notice that for a rigid brick R

(B.17) Ext1
~G(H)

(R⊗A,R⊗B) ' Ext1
H(A,B).

The elements of the rhs are the classes of exact sequences of the form

0→ B
β−→ C

α−→ A→ 0, which correspond in the lhs to the classes of exact
sequences of the form

(B.18) 0→ R⊗B IdR⊗β−−−−→ R⊗ C IdR⊗α−−−−→ R⊗A→ 0.

�
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[63] M. Broué, G. Malle, and R. Rouquier, On complex reflection groups
and their associated braid groups, Representations of groups (Banff, AB,
1994), CMS Conf. Proc. 16, Providence, R.I. American Mathematical
Society (1995), pp. 1–13.



i
i

“1-Caorsi” — 2019/6/4 — 22:22 — page 1710 — #118 i
i

i
i

i
i

1710 M. Caorsi and S. Cecotti
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