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We investigate gauge theories and matter contents in F-theory
compactifications on families of genus-one fibered Calabi–Yau 4-
folds lacking a global section. To construct families of genus-one
fibered Calabi–Yau 4-folds that lack a global section, we consider
two constructions: hypersurfaces in a product of projective spaces,
and double covers of a product of projective spaces. We consider
specific forms of defining equations for these genus-one fibrations,
so that genus-one fibers possess complex multiplications of spe-
cific orders. These symmetries enable a detailed analysis of gauge
theories. E6, E7, and SU(5) gauge groups arise in some models.
Discriminant components intersect with one another in the con-
structed models, and therefore, discriminant components contain
matter curves. We deduce potential matter spectra and Yukawa
couplings.
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1. Introduction

F-theory [1–3] is a framework that extends the type IIB superstring the-
ory to a nonperturbative regime, and the compactification geometries for
F-theory are Calabi–Yau manifolds with a torus fibration. In the F-theory
approach, the modular parameter of a genus-one curve, as a fiber of a torus
fibration, is identified with the axio-dilaton; this formulation enables the
axio-dilaton to have SL2(Z) monodromy. Local F-theory models have been
mainly discussed in recent studies on F-theory model building [4–7]. How-
ever, to deal with the issues of gravity and the early universe including
inflation, global geometries of F-theory compactifications need to be consid-
ered. We investigate the geometries of F-theory compactifications from the
global perspective in this study.

A Calabi–Yau manifold with a torus fibration may or may not admit
a global section. F-theory models on Calabi–Yau manifolds with a global
section have been studied previously, for example, in [8–22]. In recent years,
there has been an increasing interest in F-theory models on Calabi–Yau
genus-one fibrations without a global section1. Initiated in [25, 26], F-theory
compactifications lacking a global section have been discussed in recent stud-
ies. See also, for example, [27–37] for recent advances in F-theory models that
lack a global section. It was argued in [26] that, by considering the Jacobian
fibrations, the F-theory models on Calabi–Yau genus-one fibrations with-
out a global section can be related to the geometry of Calabi–Yau elliptic
fibrations with a section.

In this note, we construct genus-one fibered Calabi–Yau 4-folds with-
out a global section, and we use these spaces as compactification geometries
for F-theory to investigate F-theory models without a section. We consider
two constructions: hypersurfaces in a product of projective spaces, and dou-
ble covers of a product of projective spaces, to construct genus-one fibered
Calabi–Yau 4-folds without a rational section. In these constructions, we
consider Calabi–Yau 4-folds whose discriminant components intersect with

1[23, 24] discussed F-theory compactifications without a global section.
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one another. Therefore, a component contains matter curves. Matter2 with
non-trivial chirality arises in F-theory models considered in this note. We
discuss gauge theories and matter contents in F-theory compactified on such
Calabi–Yau 4-folds. In the two constructions of genus-one fibered Calabi–
Yau 4-folds without a section, we particularly focus on the families given by
specific equations. The specific equations of genus-one fibered Calabi–Yau
4-folds that we choose enable a detailed investigation of the gauge theories
in F-theory models.

In this note, we take a direct approach to deduce physical information
directly from the defining equations of the constructed genus-one fibered
Calabi–Yau 4-folds without a section. We consider two families of hypersur-
faces in a product of projective spaces, which we refer to as “Fermat-type
hypersurfaces” and “hypersurfaces in Hesse form”3; one family of double
covers of a product of projective spaces given by equations of a specific
form. Among the families of genus-one fibered Calabi–Yau 4-folds without a
global section that we consider in this study, genus-one fibers of Fermat-type
hypersurfaces and double covers of a product of projective spaces (given
by equations of specific forms) possess particular symmetries; these sym-
metries of genus-one fibers strictly limit possible monodromies around the
singular fibers. Consequently, these symmetries greatly constrain possible
non-Abelian gauge groups that can form on the 7-branes. We deduce the
non-Abelian gauge symmetries arising on the 7-branes in F-theory mod-
els, and utilizing these constraints imposed by the symmetries of genus-one
fibers, we perform a consistency check of our results.4

Concretely, we consider multidegree (3,2,2,2) hypersurfaces in P2 × P1 ×
P1 × P1, and double covers of P1 × P1 × P1 × P1 ramified over a multidegree
(4,4,4,4) 3-fold. We find that, in F-theory compactifications on Fermat-type
(3,2,2,2) hypersurfaces, generically SU(3) gauge symmetries arise on the 7-
branes, and when the 7-branes coincide, SU(3) symmetries on the 7-branes
collide and are enhanced to E6 symmetry. Only gauge symmetries of type
SU(N) arise on the 7-branes in F-theory compactifications on (3,2,2,2) hy-
persurfaces in Hesse form. In F-theory compactifications on double covers

2See, for example, [38–42] for the correspondence of the singularities of Calabi–
Yau manifolds and the associated matter contents. Matter arising from the structure
of divisor is discussed in [43, 44]. For discussion of the deformation and the reso-
lution of singularities of manifolds, see, for example, [45]. For analysis of matter in
four-dimensional (4d) F-theory with flux, see, e.g., [4, 5].

3Similar conventions of terms were made for K3 hypersurfaces in [36].
4Similar consistency checks of non-Abelian gauge symmetries that form on the

7-branes can be found in [36, 37].
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of P1 × P1 × P1 × P1 ramified over a multidegree (4,4,4,4) 3-fold (given by
equations of specific form), generically SU(2) gauge symmetries arise on
the 7-branes. When the 7-branes coincide, SU(2) gauge symmetries collide
and are enhanced to SO(7) symmetry; when more 7-branes coincide, gauge
symmetries are enhanced further to E7 symmetry.

We compute the Jacobian fibrations of the families of genus-one fibered
Calabi–Yau 4-folds without a global section. We determine the Mordell–
Weil groups of the Jacobian fibrations of specific members of the family of
Fermat-type hypersurfaces, and the family of double covers. In particular,
we deduce that F-theory compactifications on these specific members do not
have a U(1) gauge symmetry.

We also discuss potential matter contents and potential Yukawa cou-
plings. As will be discussed in Section 4, when we consider algebraic 2-cycles
as candidates for four-form fluxes5, we need to consider intrinsic algebraic
2-cycles6. We need to compute their self-intersections to see if they can
cancel the tadpole; however, it is technically difficult to compute the self-
intersection of an intrinsic algebraic 2-cycle in the geometry of Calabi–Yau
4-folds that we consider in this note. We only deduce the potential matter
contents, and potential Yukawa couplings. We compute the Euler character-
istics of the constructed Calabi–Yau 4-folds, to derive constraints imposed
on the self-intersection of a four-form flux to cancel the tadpole.

The outline of this note is as follows: In Section 2, we introduce the two
constructions of genus-one fibered Calabi–Yau 4-folds without a section. The
constructions use hypersurfaces in a product of projective spaces, and dou-
ble covers of a product of projective spaces; to perform a detailed study of
gauge theories, we only consider families given by specific equations in these
constructions. We determine the discriminant loci and their components.
We describe the forms of the discriminant components. In Section 3, we de-
duce the non-Abelian gauge symmetries arising on the 7-branes in F-theory
compactifications on the families of genus-one fibered Calabi–Yau 4-folds
lacking a global section, as introduced in Section 2. We choose the defin-
ing equations of Fermat-type Calabi–Yau hypersurfaces, and Calabi–Yau
4-folds constructed as double covers, so that genus-one fibers possess com-
plex multiplications of specific orders. These particular symmetries constrain
possible non-Abelian gauge groups that can form on 7-branes. We confirm
that the non-Abelian gauge groups that we deduce are in agreement with

5Four-form flux and a generated superpotential were studied in [46]. See, for
example, [34, 47–61] for recent progress of four-form flux in F-theory.

6We explain what we mean by the term “intrinsic algebraic cycles” in Section 4.2.
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these constraints. This gives a consistency check of our solutions. In Sec-
tion 4, we consider the existence of a consistent four-form flux. We compute
the Euler characteristics of Calabi–Yau 4-folds, to derive conditions for the
self-intersections of four-form fluxes to cancel the tadpole. In Section 5, we
determine the potential matter spectra, and potential Yukawa couplings. In
Section 6, we state our conclusions.

2. Genus-one fibered Calabi–Yau 4-folds without a global
section, and discriminant loci

In this section, we construct genus-one fibered Calabi–Yau 4-folds that lack
a global section. We consider the following two constructions:

• multidegree (3,2,2,2) hypersurfaces in P2 × P1 × P1 × P1

• double covers of P1 × P1 × P1 × P1 branched along a multidegree (4,4,
4,4) 3-fold.

These two constructions have the trivial canonical bundles K = 0, and they
are therefore Calabi–Yau 4-folds. Furthermore, natural projections onto P1 ×
P1 × P1 give genus-one fibrations, so they are genus-one fibered. Addition-
ally, they have natural projections onto P1 × P1, which give K3 fibrations.

For each of these two constructions, we only consider families given by
specific equations, whose symmetries allow for a detailed investigation of
gauge theories. Gauge theories in F-theory on the families of Calabi–Yau 4-
folds will be discussed in Section 3. In this section, we introduce the families
of genus-one fibered Calabi–Yau 4-folds given by specific equations. We show
that they do not admit a global section. We determine the discriminant
loci of the families of Calabi–Yau 4-folds, and we describe the forms of the
discriminant components.

2.1. Multidegree (3, 2, 2, 2) hypersurfaces in P2 × P1 × P1 × P1

2.1.1. Two types of equations for (3, 2, 2, 2) hypersurfaces. Multi-
degree (3,2,2,2) hypersurfaces in P2 × P1 × P1 × P1 are Calabi–Yau 4-folds.
A fiber of the natural projection onto P1 × P1 × P1 is a degree 3 hypersur-
face in P2, which is a genus-one curve; therefore, (3,2,2,2) hypersurfaces in
P2 × P1 × P1 × P1 are genus-one fibration over the base 3-fold P1 × P1 × P1.
A fiber of a natural projection onto P1 × P1 is a bidegree (3,2) hypersurface
in P2 × P1, which is a genus-one fibered K3 surface, and therefore, projection
onto P1 × P1 gives a K3 fibration.
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In this note, we particularly focus on two families of (3,2,2,2) hypersur-
faces given by the following two types of equations:

(t− α1)(t− α2)fX3 + (t− α3)(t− α4)gY 3 + (t− α5)(t− α6)hZ3 = 0(1)

(t− β1)(t− β2)aX3 + (t− β3)(t− β4)bY 3 + (t− β5)(t− β6)cZ3(2)

− 3(t− β7)(t− β8)dXY Z = 0.

[X : Y : Z] is homogeneous coordinates on P2, and t is the inhomogeneous
coordinate on the first P1 in P2 × P1 × P1 × P1. αi (i = 1, . . . , 6) and βj
(j = 1, . . . , 8) are points in this first P1. f, g, h and a, b, c, d are bidegree
(2,2) polynomials on P1 × P1, where the P1’s in the product P1 × P1 are the
last two P1’s in P2 × P1 × P1 × P1.

We refer to the family of hypersurfaces given by the first type equa-
tion (1) as Fermat-type hypersurfaces, and we refer to the family of hyper-
surfaces given by the second type equation (2) as hypersurfaces in Hesse
form.

For Fermat-type hypersurface (1), a K3 fiber of the projection onto the
product P1 × P1 of the second and third P1’s is described by the following
equation:

(3) (t− α1)(t− α2)X3 + (t− α3)(t− α4)Y 3 + (t− α5)(t− α6)Z3 = 0

This is Fermat-type K3 hypersurface, which is discussed in [36]. Similarly,
for the hypersurface in Hesse form (2), a K3 fiber of the projection onto
the product P1 × P1 of the second and third P1’s is given by the following
equation:

(t− β1)(t− β2)X3 + (t− β3)(t− β4)Y 3(4)

+ (t− β5)(t− β6)Z3 − 3(t− β7)(t− β8)XY Z = 0.

This is K3 hypersurface in Hesse form, which is discussed in [36].
In [36], it was shown that Fermat-type K3 hypersurfaces (3) and K3 hy-

persurfaces in Hesse form (4) are genus-one fibered, but their generic mem-
bers lack a global section to the fibration. If Fermat-type (3,2,2,2) Calabi–
Yau hypersurfaces (1) admit a rational section, it restricts as a global section
to the K3 fiber. This means that Fermat-type K3 hypersurfaces (3) admit a
global section, which is a contradiction. Similar reasoning applies to (3,2,2,2)
Calabi–Yau hypersurfaces in Hesse form (2). We therefore conclude that
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Fermat-type (3,2,2,2) Calabi–Yau hypersurfaces (1) and Calabi–Yau hyper-
surfaces in Hesse form (2) are genus-one fibered, but they lack a rational
section.

2.1.2. Discriminant locus and forms of discriminant components of
Fermat-type (3, 2, 2, 2) hypersurfaces. We determine the discriminant
locus, and the forms of the discriminant components of Fermat-type (3,2,2,2)
hypersurface

(5) (t− α1)(t− α2)fX3 + (t− α3)(t− α4)gY 3 + (t− α5)(t− α6)hZ3 = 0.

A genus-one fibered Calabi–Yau 4-fold and its Jacobian fibration have iden-
tical discriminant loci. We deduce the discriminant components of Fermat-
type (3,2,2,2) Calabi–Yau hypersurface (5) by studying the Jacobian fibra-
tion.

The Jacobian fibration of Fermat-type hypersurface (5) is given by the
following equation:

(6) X3 + Y 3 + Π6
i=1(t− αi) · fgh · Z3 = 0.

The Jacobian fibration (6) transforms into the following Weierstrass form
[62]

(7) y2 = x3 − 24 · 33 ·Π6
i=1(t− αi)2 · f2g2h2.

Therefore, the discriminant of the Jacobian fibration (6) is given by the
following equation:

(8) ∆ ∼ Π6
i=1(t− αi)4 · f4g4h4.

The discriminant locus of the Jacobian (6), which is given by ∆ = 0, is
identical to the discriminant locus of the Fermat-type hypersurface (5).

Therefore, the loci given by the following equations in the base 3-fold
P1 × P1 × P1 describe the discriminant locus of the Fermat-type hypersur-
face (5):

t = αi (i = 1, . . . , 6)(9)

f = 0

g = 0

h = 0.
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Each equation in (9) gives a discriminant component. We use the following
notations to denote the discriminant components:

Ai := {t = αi} (i = 1, . . . , 6)(10)

B1 := {f = 0}
B2 := {g = 0}
B3 := {h = 0}.

We require that

(11) B1 ∩B2 ∩B3 = φ

to ensure that the Calabi–Yau condition is unbroken.
Component Ai, i = 1, . . . , 6, is isomorphic to P1 × P1. The bidegree (2,2)

curve in P1 × P1 is a curve of genus 1 7, i.e., an elliptic curve Σ1, and there-
fore, component Bi, i = 1, 2, 3, is isomorphic to P1 × Σ1.

Next, we determine the intersections of discriminant components; in
other words, we find the forms of matter curves that discriminant compo-
nents contain. When αi 6= αj , Ai and Aj are parallel. Intersection Ai ∩Bj is
a genus-one curve Σ1. Two bidegree (2,2) curves in P1 × P1 meet at 8 points8,
and therefore, Bi ∩Bj , i 6= j, is a sum of parallel 8 rational curves P1. We
summarize the forms of discriminant components and their intersections in
Table 1 below.

2.1.3. Discriminant locus and forms of discriminant components
of (3, 2, 2, 2) hypersurfaces in Hesse form. We determine the dis-
criminant locus and the forms of the discriminant components of (3,2,2,2)
hypersurface in Hesse form

(t− β1)(t− β2)aX3 + (t− β3)(t− β4)bY 3(12)

+ (t− β5)(t− β6)cZ3 − 3(t− β7)(t− β8)dXY Z = 0.

We require that all four polynomials {a, b, c, d} do not have simultaneous
zero, to preserve the Calabi–Yau condition. We also assume that β7, β8 6= βi,
i = 1, . . . , 6.

7A nonsingular curve of bidegree (a, b) in P1 × P1 is a curve of genus (a− 1)(b−
1).

8Two curves of bidegrees (a, b) and (c, d) in P1 × P1 meet at ad+ bc points.
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Component Topology

Ai P1 × P1

Bi P1 × Σ1

Intersections

Ai ∩Bj Σ1

Bi ∩Bj parallel 8 P1’s

Table 1: Discriminant components of Fermat-type hypersurface, and their
intersections.

We use the following notations

A := (t− β1)(t− β2)a(13)

B := (t− β3)(t− β4)b

C := (t− β5)(t− β6)c

D := (t− β7)(t− β8)d,

and the notation

FHesse := (t− β1)(t− β2)aX3 + (t− β3)(t− β4)bY 3(14)

+ (t− β5)(t− β6)cZ3 − 3(t− β7)(t− β8)dXY Z.

Genus-one fiber degenerates exactly when the equations

(15) ∂XFHesse = ∂Y FHesse = ∂ZFHesse = 0

have a solution for [X : Y : Z] ∈ P2.
From this and by comparing degrees, we obtain the discriminant of the

equation (12), as follows:

(16) ∆ = ABC(ABC −D3)3

The discriminant (16) may be rewritten explicitly as

(17) ∆ = Π6
i=1(t− βi) · abc ·

[
Π6
i=1(t− βi) · abc− (t− β7)3(t− β8)3d3

]3
.
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We use the notation

(18) e := Π6
i=1(t− βi) · abc− (t− β7)3(t− β8)3d3

for simplicity. The vanishing of the discriminant ∆ = 0 describes the dis-
criminant locus. Therefore, the following equations describe the discriminant
components:

t = βi (i = 1, . . . , 6)(19)

a = 0

b = 0

c = 0

e = 0.

We use the following notations to denote the discriminant components:

Ai := {t = βi} (i = 1, . . . , 6)(20)

B1 := {a = 0}
B2 := {b = 0}
B3 := {c = 0}
B4 := {e = 0}.

Component Ai is isomorphic to P1 × P1. The bidegree (2,2) curve in
P1 × P1 is a genus-one curve Σ1, and therefore, components B1, B2 and B3

are isomorphic to P1 × Σ1. B4 is some complicated complex surface. We do
not discuss the form of B4.

When βi 6= βj , components Ai and Aj are parallel. Intersection Ai ∩Bj ,
i = 1, . . . , 6, j = 1, . . . , 4, is isomorphic to Σ1. Bi ∩Bj , i, j = 1, 2, 3, i 6= j, is
a sum of 8 disjoint rational curves P1. Bi ∩B4, i = 1, 2, 3, is a union of 8 P1’s
and 2 Σ1’s. The forms of the discriminant components and their intersections
are shown in Table 2 below.

2.2. Double covers of P1 × P1 × P1 × P1 ramified along a
multidegree (4, 4, 4, 4) 3-fold

2.2.1. Equations for double covers of P1 × P1 × P1 × P1. Double
covers of P1 × P1 × P1 × P1 ramified along a multidegree (4,4,4,4) 3-fold are
Calabi–Yau 4-folds. A fiber of the natural projection onto P1 × P1 × P1 is
a double cover of P1 branched along 4 points, which is a genus-one curve.
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Component Topology

Ai P1 × P1

Bi (i = 1, 2, 3) P1 × Σ1

Intersections

Ai ∩Bj (j = 1, . . . , 4) Σ1

Bi ∩Bj (i, j = 1, 2, 3, i 6= j) disjoint 8 P1’s

Bi ∩B4 (i = 1, 2, 3) union of 8 P1’s and 2 Σ1’s

Table 2: Discriminant components of hypersurfaces in Hesse form, and their
intersections. Form of component B4 is omitted.

Therefore, projection onto P1 × P1 × P1 is a genus-one fibration. Addition-
ally, a fiber of natural projection onto P1 × P1 is a double cover of P1 × P1

branched along a (4,4) curve, which is a genus-one fibered K3 surface; pro-
jection onto P1 × P1 gives a K3 fibration.

In this note, we focus on the family of double covers given by the fol-
lowing type of equation:

(21) τ2 = f · a(t) · x4 + g · b(t).

x is the inhomogeneous coordinate on the first P1 in the product P1 × P1 ×
P1 × P1, and t is the inhomogeneous coordinate on the second P1. a and
b are degree 4 polynomials in the variable t. f and g are bidegree (4,4)
polynomials on P1 × P1, where the P1’s in the product P1 × P1 are the last
two P1’s in the product P1 × P1 × P1 × P1. By splitting the polynomials a
and b into linear factors, the equation (21) may be rewritten as:

(22) τ2 = f ·Π4
i=1(t− αi) · x4 + g ·Π8

j=5(t− αj).

The fiber of the projection onto the product of the third and the fourth
P1’s in P1 × P1 × P1 × P1 is given by the following equation:

(23) τ2 = Π4
i=1(t− αi) · x4 + Π8

j=5(t− αj).
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This is a genus-one fibered K3 surface discussed in [37], and it was shown
in [37] that this K3 surface does not admit a global section. Therefore, by a
similar argument as that stated in Section 2.1.1 we conclude that the double
covers (21) do not have a rational section.

2.2.2. Discriminant locus and forms of discriminant components
of double covers of P1 × P1 × P1 × P1. We determine the discriminant
locus, and the forms of the discriminant components of double cover (21).
The Jacobian fibration of double cover (21) is given by the following equation
[63]:

(24) τ2 =
1

4
x3 − fg ·Π8

i=1(t− αi) · x.

The discriminant of the Jacobian fibration (24) is given by

(25) ∆ ∼ f3g3 ·Π8
i=1(t− αi)3.

The condition ∆ = 0 describes the discriminant locus of the Jacobian (24).
This is identical to the discriminant locus of double cover (21).

Therefore, the discriminant locus in the base P1 × P1 × P1 is described
by the following equations:

t = αi (i = 1, . . . , 8)(26)

f = 0

g = 0.

Each equation in (26) gives a discriminant component. We use the following
notations to denote the discriminant components:

Ai := {t = αi} (i = 1, . . . , 8)(27)

B1 := {f = 0}
B2 := {g = 0}.

Discriminant component Ai, i = 1, . . . , 8, is isomorphic to P1 × P1. The
bidegree (4,4) curve in P1 × P1 is a genus 9 curve Σ9, and therefore, compo-
nent Bi, i = 1, 2, is isomorphic to P1 × Σ9.

We determine the forms of the intersections of components. When αi 6=
αj , Ai and Aj are parallel. Ai ∩Bj , i = 1, . . . , 8, j = 1, 2, is isomorphic to
genus 9 curve Σ9. Two bidegree (4,4) curves in P1 × P1 meet at 32 points,
and therefore, B1 ∩B2 is the disjoint sum of 32 rational curves P1. The
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forms of the discriminant components and their intersections are shown in
Table 3 below.

Component Topology

Ai P1 × P1

Bi P1 × Σ9

Intersections

Ai ∩Bj Σ9

B1 ∩B2 disjoint 32 P1’s

Table 3: Discriminant components of the double cover of P1 × P1 × P1 × P1,
and their intersections.

3. Gauge symmetries

We deduce the non-Abelian gauge symmetries that form on the 7-branes in
F-theory compactifications on genus-one fibered Calabi–Yau 4-folds lacking
a global section, which we constructed in Section 2. Genus-one fibers of the
Fermat-type Calabi–Yau hypersurfaces (1) and double covers (21) possess
complex multiplications of specific orders. These greatly limit the possible
monodromies around the singular fibers, and as a result, possible types of
singular fibers are also restricted. These strictly constrain the possible non-
Abelian gauge groups that can form on the 7-branes. Using this fact, we
check the consistency of solutions of non-Abelian gauge groups in Section 3.4.
Some F-theory models that do not have U(1) gauge symmetry are discussed
in Section 3.5.

3.1. Non-Abelian gauge groups and singular fibers

When a Calabi–Yau 4-fold has a genus-one fibration, the structures of sin-
gular fibers9 along the codimension one locus in the base are in essence

9See [64–72] for discussion of elliptic surfaces, elliptic fibration, and singular
fibers. [62] discusses elliptic curves and the Jacobian. [73–75] discuss elliptic fi-
brations of 3-folds.
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Figure 1: Singular fibers.

the same as those of singular fibers of elliptic surfaces. Therefore, Kodaira’s
classification [64, 65] applies to singular fibers on discriminant components.
According to Kodaira’s classification, the types of singular fibers fall into
two classes: i) six types II, III, IV , II∗, III∗, and IV ∗; and ii) two infinite
series In (n ≥ 1) and I∗m (m ≥ 0).

Fibers of type I1 and II are rational curves P1 with one singularity (II
is a rational curve with a cusp, and I1 is a rational curve with a node); fibers
of the other types are unions of smooth P1’s intersecting in specific ways.
Type III fiber is a union of two rational curves tangential to each other
at one point, and type IV fiber is a union of three rational curves meeting
at one point. For each fiber type In, n rational curves intersect to form an
n-gon. Figure 1 shows images of the singular fibers. Each line in the image
represents a rational curve P1. Two rational curve components in a singular
fiber intersect only when two lines in an image intersect.

Non-Abelian gauge group that forms on the 7-branes is determined by
the singular fiber type over a discriminant component. The correspondence
between the non-Abelian gauge symmetries on the 7-branes and the fiber
types is discussed in [3, 38]. The correspondences of the types of singular
fibers and the singularity types are presented in Table 4 below.
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fiber type singularity type

In (n ≥ 2) An−1

I∗m (m ≥ 0) D4+m

III A1

IV A2

II∗ E8

III∗ E7

IV ∗ E6

Table 4: Correspondence between singular fiber types and singularity types.

3.2. Non-Abelian gauge groups in F-theory on (3, 2, 2, 2)
hypersurfaces

We deduce non-Abelian gauge symmetries in F-theory compactification on
(3,2,2,2) hypersurfaces.

3.2.1. Fermat-type (3, 2, 2, 2) hypersurfaces. We deduce the non-
Abelian gauge symmetries that form on the 7-branes in F-theory compacti-
fications on the Fermat-type (3,2,2,2) Calabi–Yau hypersurfaces
(28)

(t− α1)(t− α2)fX3 + (t− α3)(t− α4)gY 3 + (t− α5)(t− α6)hZ3 = 0.

As stated in Section 2.1.2, the Jacobian fibration of Fermat-type hypersur-
face (28) is given by the following equation:

(29) X3 + Y 3 + Π6
i=1(t− αi) · fgh · Z3 = 0.

The Jacobian fibration (29) transforms into the following Weierstrass form:

(30) y2 = x3 − 24 · 33 ·Π6
i=1(t− αi)2 · f2g2h2,

and the discriminant of the Jacobian fibration (29) is given by the following
equation:

(31) ∆ ∼ Π6
i=1(t− αi)4 · f4g4h4.
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Fermat-type (3,2,2,2) hypersurface (28) and the Jacobian fibration (29)
have the identical singular fiber types over the same discriminant loci, thus
the result of singular fibers for the Jacobian fibration (29) gives identical
singular fibers of Fermat-type hypersurface (28).

We determine the types of singular fibers of the Jacobian fibration (29)
from the Weierstrass form (30) and the discriminant (31). We show the
correspondence of the singular fiber types and the vanishing orders of the
coefficients of the Weierstrass form in Table 5. We find that, when αi (i =

Fiber type Ord(a4) Ord(a6) Ord(∆)

I0 ≥ 0 ≥ 0 0

In (n ≥ 1) 0 0 n

II ≥ 1 1 2

III 1 ≥ 2 3

IV ≥ 2 2 4

I∗0 2 ≥ 3 6

≥ 2 3 6

I∗m (m ≥ 1) 2 3 6 +m

IV ∗ ≥ 3 4 8

III∗ 3 ≥ 5 9

II∗ ≥ 4 5 10

Table 5: Correspondence of the types of singular fibers and the vanishing
orders of coefficients a4, a6, and the discriminant ∆, of the Weierstrass form
y2 = x3 + a4x+ a6.

1, . . . , 6) are mutually distinct, the singular fiber on component Ai is of type
IV . The polynomial

(32) y2 + 24 · 33 ·Π6
i=1(t− αi)2 · f2g2h2

splits into linear factors as

(33) (y + 22 · 3
√

3i ·Π6
i=1(t− αi) · fgh)(y − 22 · 3

√
3i ·Π6

i=1(t− αi) · fgh).
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Thus, we find that type IV fiber on component Ai is of split type [38].
Therefore, SU(3) gauge symmetry arises on 7-branes wrapped on compo-
nent Ai. When the multiplicity of αi is 2, (i.e. when there is one j 6= i such
that αi = αj), 7-branes wrapped on components Ai and Aj coincide, and
the fiber type is enhanced to IV ∗. Since polynomial (32) splits into lin-
ear factors as (33), we find that type IV ∗ fiber on component Ai is split.
The corresponding gauge group on 7-branes is enhanced to E6. To preserve
Calabi–Yau condition, the multiplicity cannot be greater than 2. Type of sin-
gular fibers on component Bi is IV , and we see that they are of split type
from factorization (33); SU(3) gauge symmetry arises on 7-branes wrapped
on component Bi. The results are summarized in Table 6 below.

Component Fiber type non-Abel. Gauge Group

Ai IV SU(3)

IV ∗ E6

Bi IV SU(3)

Table 6: Types of singular fibers and corresponding non-Abelian gauge
groups on discriminant components of Fermat-type hypersurface.

3.2.2. (3, 2, 2, 2) hypersurfaces in Hesse form. We determine the
types of singular fibers of (3,2,2,2) hypersurfaces in Hesse form

(t− β1)(t− β2)aX3 + (t− β3)(t− β4)bY 3(34)

+ (t− β5)(t− β6)cZ3 − 3(t− β7)(t− β8)dXY Z = 0

by computing the singular fibers of the Jacobian fibration. As we saw in
Section 2.1.3, the equation for (3,2,2,2) hypersurface in Hesse form (34) has
the following discriminant:

(35) ∆ = Π6
i=1(t− βi) · abc · e3.

In (35), we have used the notation

(36) e = Π6
i=1(t− βi) · abc− (t− β7)3(t− β8)3d3

for simplicity.
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The Jacobian fibration of (3,2,2,2) hypersurface in Hesse form (34) is
given as:

(37) X3 + Y 3 + Π6
i=1(t− βi) · abc · Z3 − 3(t− β7)(t− β8)dXY Z = 0.

The discriminant of the Jacobian fibration (37) of (3,2,2,2) hypersurface in
Hesse form (34) is also given by (35).

As in Section 2.1.3, we use the following notations:

A := (t− β1)(t− β2)a(38)

B := (t− β3)(t− β4)b

C := (t− β5)(t− β6)c

D := (t− β7)(t− β8)d,

Using the notations (38), (3,2,2,2) hypersurface in Hesse form (34) may be
rewritten as:

(39) AX3 +BY 3 + CZ3 − 3D ·XY Z = 0.

The Jacobian fibration (37) of (3,2,2,2) hypersurface in Hesse form (34) may
be rewritten as:

(40) X3 + Y 3 +ABCZ3 − 3D ·XY Z = 0.

Using the notations (38), both the discriminants of (3,2,2,2) hypersurface in
Hesse form (39) and the Jacobian fibration (40) are given as follows:

(41) ∆ = ABC(ABC −D3)3.

Jacobian fibration (40) transforms into the general Weierstrass form as

(42) y2 − 3Dxy + (ABC −D3)y = x3.

We complete the square in y as ỹ = y + 1
2(−3Dx+ABC −D3), and com-

plete the cube in x as x̃ = x+ 3
4D

2 to obtain the following Weierstrass form:

ỹ2 = x̃3 −
(

3

2
ABCD +

3

16
D4

)
x̃(43)

+

(
1

4
(ABC)2 +

5

8
ABCD3 − 1

32
D6

)
.

We deduce from Weierstrass form (43) that type of singular fibers over
each discriminant component is In for some n ≥ 1. Therefore, the types of
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singular fibers can be determined by studying the orders of the zeros of the
discriminant (35). In the general Weierstrass form (42), polynomial

(44) y2 − 3Dxy

can be factored as

(45) y(y − 3Dx).

Thus, we conclude that singular fibers on component B4 are of split type.
Under the translation in x and y that replaces x with x−D2, and y with

y −D3, the general Weierstrass form (42) transforms into another general
Weierstrass form:

(46) y2 − 3Dxy +ABCy = x3 − 3D2x2 +ABCD3.

Polynomial

(47) y2 − 3Dxy + 3D2x2

splits into linear factors as

(48)

(
y − 1

2
(3− i

√
3)Dx

)(
y − 1

2
(3 + i

√
3)Dx

)
.

Therefore, we deduce that singular fibers on components Ai, i = 1, 2, . . . , 6,
are split. Non-Abelian gauge groups that form on the 7-branes wrapped on
components Ai, i = 1, 2, . . . , 6, and component B4, are of the form SU(N).

When βi’s are mutually distinct, the fiber type on component Ai is I1,
and non-Abelian gauge symmetry does not form on the 7-brane wrapped
on Ai. As the multiplicity of βi increases, more 7-branes become coincident,
and the non-Abelian gauge group becomes further enhanced. The maximum
enhancement occurs when all βi, i = 1, . . . , 6, are equal, and all six 7-branes
wrapped on Ai coincide. The fiber type on component A1 for this case is
I6, and SU(6) gauge symmetry arises on the 7-branes wrapped on A1. In
Section 5, we compute the potential matter spectra for this most enhanced
situation.

Singular fibers on component Bi, i = 1, 2, 3, have type I1; a non-Abelian
gauge group does not form on the 7-brane wrapped on component Bi, i =
1, 2, 3. Singular fibers on component B4 have type I3, and SU(3) gauge group
arises on 7-branes wrapped on B4. Results are summarized in Table 7.
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Component Fiber type non-Abel. Gauge Group

I1 None.

I2 SU(2)

Ai I3 SU(3)

I4 SU(4)

I5 SU(5)

I6 SU(6)

B1,2,3 I1 None.

B4 I3 SU(3)

Table 7: Types of singular fibers and corresponding non-Abelian gauge
groups on discriminant components of hypersurface in Hesse form.

3.3. Non-Abelian gauge groups in F-theory on double covers of
P1 × P1 × P1 × P1

We deduce the non-Abelian gauge groups in F-theory compactifications on
double covers

(49) τ2 = f ·Π4
i=1(t− αi) · x4 + g ·Π8

j=5(t− αj).

As stated in Section 2.2.2, the Jacobian fibration of double cover (49) is
given by the following equation:

(50) τ2 =
1

4
x3 − fg ·Π8

i=1(t− αi) · x.

The discriminant of the Jacobian fibration (50) is given by

(51) ∆ ∼ f3g3 ·Π8
i=1(t− αi)3.

We determine the types of singular fibers of double cover (49) by com-
puting the types of singular fibers of the Jacobian fibration (50). When αi’s
are mutually distinct, the singular fiber on component Ai has type III; the
SU(2) gauge group arises on the 7-branes wrapped on component Ai for this
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case. When the multiplicity of αi is 2, say there is j 6= i such that αi = αj ,
then the 7-branes wrapped on components Ai and Aj become coincident,
and singular fiber on component Ai has type I∗0 . The polynomial

(52) x3 − fg · x

splits into the quadratic factor and the linear factor as

(53) x(x2 − fg)

for generic polynomials f, g. Therefore, we conclude that I∗0 fiber on com-
ponent Ai is semi-split; the non-Abelian gauge symmetry on the 7-branes
wrapped on component Ai becomes enhanced to SO(7). When the multi-
plicity of αi is 3, the singular fiber on component Ai has type III∗, and the
gauge symmetry on component Ai is further enhanced to E7. To preserve
the Calabi–Yau condition, no further enhancement is possible. The singular
fibers on component Bi is of type III; the SU(2) gauge group arises on
7-branes wrapped on component Bi. The results are displayed in Table 8
below.

Component Fiber type non-Abel. Gauge Group

III SU(2)

Ai I∗0 SO(7)

III∗ E7

Bi III SU(2)

Table 8: Types of singular fibers and corresponding non-Abelian gauge
groups on discriminant components of double cover of P1 × P1 × P1 × P1

(49).

3.4. Consistency check by monodromy

We consider monodromies around singular fibers to perform a consistency
check of solutions of non-Abelian gauge groups, which we obtained in Sec-
tions 3.2.1, 3.3. Genus-one fibers of Fermat-type (3,2,2,2) hypersurfaces (28)
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and double covers (49) possess particular symmetries, and as a result, these
symmetries strictly constrain monodromies around singular fibers. We con-
firm that the non-Abelian gauge symmetries obtained by us in agreement
with these restrictions.

3.4.1. Monodromy and J-invariant. Genus-one fibers of Fermat-type
(3,2,2,2) hypersurfaces (28) and double covers (49) have constant j-invariants;
they are constant over the base 3-fold P1 × P1 × P1.

Concretely, generic genus-one fiber of the Fermat-type (3,2,2,2) hyper-
surface is the Fermat curve10, whose j-invariant is known to be 0. Therefore,
the j-invariant of singular fibers is forced to be 0.

Smooth genus-one fiber of double cover (49) is invariant under the map:

(54) x→ e2πi/4x,

whose order is 4. This is a complex multiplication of order 4, and there-
fore, the generic genus-one fiber has the j-invariant 1728. This forces the
j-invariant of singular fibers to be 1728.

Each fiber type has a specific monodromy and j-invariant. We display
the monodromy and their orders in SL2(Z), and the j-invariant, for each
fiber type in Table 9 below. “Finite” in the table means that the j-invariant
of fiber type I∗0 can take any finite value in C. Results in Table 9 were derived
in [64, 65]11.

3.4.2. Fermat-type (3, 2, 2, 2) hypersurfaces. As we saw in Section
3.4.1, singular fibers of the Fermat-type (3,2,2,2) hypersurface have j-
invariant 0. As can be seen in Table 9, the fiber types with j-invariant 0
are only II, IV , I∗0 , IV ∗, and II∗. (j-invariant of type I∗0 fiber can take
the value 0.) Fiber types on discriminant components that we obtained in
Section 3.2.1 are IV, IV ∗, which is in agreement with constraint imposed
by the j-invariant. Monodromies of order 3 characterize non-Abelian gauge
symmetries arising on 7-branes in F-theory compactifications on Fermat-
type (3,2,2,2) hypersurfaces.

3.4.3. Double covers of P1 × P1 × P1 × P1. As we saw in Section 3.4.1,
singular fibers of double cover (49) have j-invariant 1728. According to Ta-
ble 9, fiber types with j-invariant 1728 are only III, I∗0 , and III∗. This

10The Fermat curve possesses complex multiplication of order 3.
11Euler numbers of fiber types were obtained in [65], and they have an interpre-

tation as the number of 7-branes wrapped on.
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Fiber

Type
j-invariant Monodromy

order of

Monodromy

# of 7-branes

(Euler number)

I∗0 finite −

(
1 0

0 1

)
2 6

Ib ∞

(
1 b

0 1

)
infinite b

I∗b ∞ −

(
1 b

0 1

)
infinite b+6

II 0

(
1 1

−1 0

)
6 2

II∗ 0

(
0 −1

1 1

)
6 10

III 1728

(
0 1

−1 0

)
4 3

III∗ 1728

(
0 −1

1 0

)
4 9

IV 0

(
0 1

−1 −1

)
3 4

IV ∗ 0

(
−1 −1

1 0

)
3 8

Table 9: Fiber types, their j-invariants, monodromies, and the associated
numbers of 7-branes.

agrees with the fiber types that we obtained in Section 3.3 on discriminant
components of double covers. Monodromies of order 2 and 4 characterize
non-Abelian gauge symmetries on 7-branes in F-theory compactification on
double covers (49).

3.5. F-theory models without U(1) symmetry

We specify the Mordell–Weil groups of the Jacobian fibrations of special
genus-one fibered Calabi–Yau 4-folds. We find that the Mordell–Weil groups
of Jacobian fibrations of the special genus-one fibered Calabi–Yau 4-folds
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that we consider here have the rank 0, therefore, we deduce that F-theory
compactifications on these special genus-one fibered Calabi–Yau 4-folds do
not have a U(1) gauge symmetry.

3.5.1. Special Fermat-type (3, 2, 2, 2) hypersurface. We particularly
consider the following special Fermat-type (3,2,2,2) hypersurface:

(55) (t− α1)2fX3 + (t− α2)2gY 3 + (t− α3)2hZ3 = 0.

The Jacobian fibration of this special Fermat-type hypersurface (55) is given
by the following equation:

(56) X3 + Y 3 + (t− α1)2(t− α2)2(t− α3)2 · fgh · Z3 = 0.

The projection onto the last two P1’s in P2 × P1 × P1 × P1 gives a K3 fibra-
tion, and picking a point in the base surface P1 × P1 gives a specialization
to this K3 fiber. The K3 fiber of the Jacobian fibration (56) is given by the
following equation:

(57) X3 + Y 3 + (t− α1)2(t− α2)2(t− α3)2Z3 = 0.

This is the Jacobian fibration of the Fermat-type K3 hypersurface (3), which
is discussed in [36], with reducible fiber type E3

6 . According to Table 2 in
[76], extremal K3 surface12 with reducible fiber type E3

6 is uniquely deter-

mined, and its transcendental lattice has the intersection matrix

(
2 1
1 2

)
.

The Mordell–Weil group of this extremal K3 surface is determined in [76, 77]
to be Z3.

By considering the specialization of the Jacobian fibration (56) to its
K3 fiber (57), we find that the Mordell–Weil group of the Jacobian (56)
is isomorphic to that of its K3 fiber (57), which is Z3. This shows that the
Mordell–Weil group of the Jacobian fibration (56) is isomorphic to Z3. Thus,
we conclude that the global structure of the non-Abelian gauge group in F-
theory compactified on the special Fermat-type (3,2,2,2) hypersurface (55)

12Extremal K3 surface is an elliptic K3 surface with a section having the Picard
number 20, with the Mordell–Weil rank 0.
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is given by the following:

(58) E3
6 × SU(3)3/Z3.

In particular, the Mordell–Weil group of the Jacobian fibration (56) has
rank 0, therefore, F-theory compactified on the Fermat-type (3,2,2,2) hyper-
surface (55) does not have a U(1) gauge symmetry.

3.5.2. Special double cover of P1 × P1 × P1 × P1. Next, we consider
the double cover of P1 × P1 × P1 × P1 given by the following equation:

(59) τ2 = f · (t− α1)3(t− α2) · x4 + g · (t− α2)(t− α3)3.

The Jacobian fibration of this double cover is given by:

(60) τ2 =
1

4
x3 − fg · (t− α1)3(t− α2)2(t− α3)3 · x.

The K3 fiber of the Jacobian fibration (60) is given by the equation:

(61) τ2 =
1

4
x3 − (t− α1)3(t− α2)2(t− α3)3 · x.

K3 surface (61) is extremal K3 with the reducible fiber type E2
7D4. As

discussed in [37], the Mordell–Weil group of this extremal K3 surface (61)
is Z2 [76, 77].

As per reasoning similar to the argument in Section 3.5.1, we consider
the specialization of the Jacobian fibration of the double cover (60) to its
K3 fiber (61) and find that the Mordell–Weil group of the Jacobian (60)
is isomorphic to that of its K3 fiber (61). Therefore, we conclude that the
Mordell–Weil group of the Jacobian fibration (60) is isomorphic to Z2. Thus,
we deduce that the global structure of the non-Abelian gauge group in F-
theory compactification on the special double cover (59) is given by the
following:

(62) E2
7 × SO(7)× SU(2)2/Z2.

The Mordell–Weil group of the Jacobian (60) has rank 0, therefore, it
follows that F-theory compactification on the double cover (59) does not
have a U(1) gauge symmetry.
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4. Discussion of consistent four-form flux and Euler
characteristics of Calabi–Yau 4-folds

4.1. Review of conditions on four-form flux

We briefly review physical conditions imposed on four-form flux G4 of genus-
one fibered Calabi–Yau 4-fold Y . The quantization condition [78] imposed
on four-form flux is given by the following equation:

(63) G4 +
1

2
c2(Y ) ∈ H4(Y,Z).

In particular, when the second Chern class c2(Y ) is even, the term 1
2c2(Y ) is

irrelevant. To preserve supersymmetry in 4d theory, the following conditions
need to be imposed [79] on four-form flux:

(64) G4 ∈ H2,2(Y )

(65) G4 ∧ J = 0.

J in the condition (65) represents a Kähler form.
Furthermore, to ensure that the 4d effective theory has Lorentz sym-

metry, four-form flux is required to have one leg in the fiber [80]. When
genus-one fibration admits a global section, this condition is given by the
following equations:

G4 · p̃−1(C) · p̃−1(C ′) = 0(66)

G4 · S0 · p̃−1(C) = 0(67)

for any C,C ′ ∈ H1,1(B3). B3 denotes base 3-fold. In the equations (66) and
(67), p̃ denotes the projection from elliptically fibered Calabi–Yau 4-fold Y
onto base 3-fold B3. In the equation (67), S0 denotes a rational zero section.

Generalization of the conditions (66) and (67) to genus-one fibration
without a section was proposed in [34]; the generalized equations are as
follows:

G4 · p−1(C) · p−1(C ′) = 0(68)

G4 · N̂ · p−1(C) = 0(69)

for any C,C ′ ∈ H1,1(B3). In the equations (68) and (69), p denotes the
projection from genus-one fibered Calabi–Yau 4-fold Y onto base 3-fold B3.
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N̂ is some appropriate sum of an n-section N that Calabi–Yau genus-one
fibration Y possesses and exceptional divisors.

The condition to cancel the tadpole, including 3-branes, is given as fol-
lows [81, 82]:

(70)
χ(Y )

24
=

1

2
G4 ·G4 +N3.

N3 denotes the number of 3-branes minus anti 3-branes, and the stability of
compactification requires N3 ≥ 0.

4.2. Intrinsic algebraic 2-cycles as candidates for four-form fluxes

We use algebraic 2-cycles as candidates for four-form fluxes. With this choice,
the condition (64) is satisfied.

We refer to algebraic 2-cycles of (3,2,2,2) hypersurfaces as the intrin-
sic algebraic 2-cycles of (3,2,2,2) hypersurfaces in this study, when they do
not belong to the algebraic 2-cycles obtained as the restrictions of algebraic
cycles in the ambient space P2 × P1 × P1 × P1. Similarly, we refer to the
algebraic 2-cycles of double covers of P1 × P1 × P1 × P1 as the intrinsic al-
gebraic 2-cycles, when they do not belong to the algebraic 2-cycles obtained
as the pullbacks of algebraic cycles of the product P1 × P1 × P1 × P1.

We show that the nonintrinsic algebraic 2-cycles of a (3,2,2,2) hypersur-
face, namely the algebraic 2-cycles obtained as the restrictions of algebraic
cycles in P2 × P1 × P1 × P1, do not yield consistent four-form fluxes. This
can be shown as follows: an algebraic 2-cycle obtained as the restriction of
an algebraic cycle in the product P2 × P1 × P1 × P1 is given as follows:

(71) (α1 x
2 + α2 xy + α3 xz + α4 xw + α5 yz + α6 yw + α7 zw)|Y .

We used |Y to denote the restriction to Calabi–Yau (3,2,2,2) hypersurface
Y . αi, i = 1, . . . , 7, are the coefficients. We apply the condition (68). For the
pair (y, z) in the base 3-fold P1 × P1 × P1, the condition (68) requires that

(α1 x
2 + α2 xy + α3 xz + α4 xw + α5 yz + α6 yw + α7 zw) · yz|Y(72)

= (α1 x
2yz + α4 xyzw)(3x+ 2y + 2z + 2w)

= (2α1 + 3α4)x2yzw = 0.

Therefore, we obtain:

(73) 2α1 + 3α4 = 0.
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Similarly, by applying the condition (68) to the pairs (y, w) and (z, w), we
obtain:

2α1 + 3α3 = 0(74)

2α1 + 3α2 = 0.

Thus, we find that the algebraic 2-cycle (71) should be of the following form:

(75)

(
α1 x

2 − 2

3
α1 xy −

2

3
α1 xz −

2

3
α1 xw + α5 yz + α6 yw + α7 zw

)
|Y .

A Kähler form J can be expressed as follows:

(76) J = a x+ b y + c z + dw,

where coefficients a, b, c, d are strictly positive:

(77) a, b, c, d > 0.

By applying the condition (65), we obtain:

(
α1 x

2 − 2

3
α1 xy −

2

3
α1 xz −

2

3
α1 xw + α5 yz + α6 yw + α7 zw

)
(78)

× (a x+ b y + c z + dw)|Y

=

(
α1 x

2 − 2

3
α1 xy −

2

3
α1 xz −

2

3
α1 xw + α5 yz + α6 yw + α7 zw

)
× (a x+ b y + c z + dw)(3x+ 2y + 2z + 2w)

= a

(
3α5 −

8

3
α1

)
x2yz + a

(
3α6 −

8

3
α1

)
x2yw

+ a

(
3α7 −

8

3
α1

)
x2zw +

[
2a(α5 + α6 + α7) + b

(
3α7 −

8

3
α1

)
+ c

(
3α6 −

8

3
α1

)
+ d

(
3α5 −

8

3
α1

)]
xyzw

= 0.

Thus, we obtain the following conditions on coefficients:
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α5 =
8

9
α1(79)

α6 =
8

9
α1

α7 =
8

9
α1.

Therefore, the algebraic 2-cycle (71) should be of the following form:(
α1 x

2 − 2

3
α1 xy −

2

3
α1 xz −

2

3
α1 xw(80)

+
8

9
α1 yz +

8

9
α1 yw +

8

9
α1 zw

)
|Y .

With the conditions (79), the equation (78) reduces to

(81)
16a

3
α1 xyzw = 0.

Thus, we find that that the conditions (65) and (68) require that

(82) α1 = 0.

This means that the algebraic 2-cycle (80) vanishes. Thus, we conclude that
the conditions (65) and (68) rule out all algebraic 2-cycles obtained as the
restrictions of algebraic cycles in the ambient space P2 × P1 × P1 × P1 to
the (3,2,2,2) hypersurface.

A similar argument as that stated previously shows that nonintrinsic
algebraic 2-cycles of a double cover of P1 × P1 × P1 × P1 do not yield con-
sistent four-form flux.

In Calabi–Yau 4-folds that we constructed, however, it is considerably
difficult to explicitly describe intrinsic algebraic 2-cycles. Consequently, it
is difficult to compute the self-intersections of intrinsic algebraic 2-cycles in
constructed Calabi–Yau 4-folds, and owing to this, it is difficult to determine
whether the tadpole can be cancelled using intrinsic algebraic 2-cycles. We
do not discuss whether a consistent four-form flux exists. In Section 4.3
below, we compute the Euler characteristics of Calabi–Yau 4-folds, to derive
conditions on the self-intersection of four-form flux to cancel the tadpole.
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4.3. Euler characteristics and self-intersection of four-form flux
to cancel tadpole

4.3.1. Multidegree (3, 2, 2, 2) hypersurfaces in P2 × P1 × P1 × P1.
We compute the Euler characteristic of a multidegree (3,2,2,2) hypersurface
Y in P2 × P1 × P1 × P1. We have the following exact sequence of bundles:

(83) 0 −−−−→ TY −−−−→ TP2×P1×P1×P1 |Y −−−−→ NY −−−−→ 0.

TY is the tangent bundle of a genus-one fibered Calabi–Yau multidegree
(3,2,2,2) hypersurface Y , and this naturally embeds into the tangent bundle
TP2×P1×P1×P1 of the ambient space P2 × P1 × P1 × P1. |Y means the restric-
tion to Y . NY is the resultant normal bundle. We have

(84) NY ∼= O(3, 2, 2, 2).

From the exact sequence (83), we obtain

(85) c(TY ) =
c(TP2×P1×P1×P1)|Y

c(NY )
.

We have

(86) c(TP2×P1×P1×P1)|Y = (1 + 3x+ 3x2)(1 + 2y)(1 + 2z)(1 + 2w)|Y ,

and

(87) c(NY ) = 1 + 3x+ 2y + 2z + 2w.

From equations (85), (86), and (87), we can compute c(TY ). The top Chern
class of c(TY ) gives the Euler characteristic of (3,2,2,2) Calabi–Yau hyper-
surface Y . Therefore, we find that

(88) χ(Y ) = 1584,

and

(89)
χ(Y )

24
= 66.

We also obtain the second Chern class c2(Y ) from (85):

(90) c2(Y ) = (3x2 + 6xy + 6xz + 6xw + 4yz + 4zw + 4wy)|Y .

From this, we see that the second Chern class c2(Y ) is not even.
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From (88), we obtain the net number of 3-branes N3 needed to cancel
the tadpole as:

N3 =
χ(Y )

24
− 1

2
G4 ·G4 = 66− 1

2
G4 ·G4.(91)

This must be a non-negative integer, and we therefore obtain a numerical
bound on the self-intersection of a four-form flux G4:

(92) 132 ≥ G4 ·G4.

Notice that the result (88) of the Euler characteristic is valid for both
the Fermat-type hypersurface and the hypersurface in Hesse form.

4.3.2. Double covers of P1 × P1 × P1 × P1 ramified along a multi-
degree (4, 4, 4, 4) 3-fold. We compute the Euler characteristic of double
cover Y of P1 × P1 × P1 × P1 branched along a (4,4,4,4) 3-fold B. The Euler
characteristic χ(Y ) of a double cover Y is given by

(93) χ(Y ) = 2 · χ(P1 × P1 × P1 × P1)− χ(B).

We have

(94) χ(P1 × P1 × P1 × P1) = 24 = 16,

therefore

(95) χ(Y ) = 32− χ(B).

We use the exact sequence:

(96) 0 −−−−→ TB −−−−→ TP1×P1×P1×P1 |B −−−−→ NB −−−−→ 0

to obtain the equality

(97) c(TB) =
c(TP1×P1×P1×P1)|B

c(NB)
.

(98) NB ∼= O(4, 4, 4, 4),

therefore

(99) c(NB) = 1 + 4x+ 4y + 4z + 4w.
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We have

(100) c(TP1×P1×P1×P1)|B = (1 + 2x)(1 + 2y)(1 + 2z)(1 + 2w)|B.

From the equality (97), we can compute c(B). The top Chern class of c(B)
gives the Euler characteristic χ(B). Therefore, we deduce that

(101) χ(B) = −3712.

We finally obtain the Euler characteristic χ(Y ):

(102) χ(Y ) = 32− χ(B) = 32− (−3712) = 3744.

This is divisible by 24:

(103)
χ(Y )

24
= 156.

The net number of 3-branes N3 needed to cancel the tadpole is

(104) N3 =
χ(Y )

24
− 1

2
G4 ·G4 = 156− 1

2
G4 ·G4.

N3 must be a non-negative integer, and therefore, a bound on the self-
intersection of four-form flux G4 that we obtain is

(105) 312 ≥ G4 ·G4.

5. Matter spectra and Yukawa couplings

We discuss matter fields arising on discriminant components and along mat-
ter curves in F-theory compactifications on constructed genus-one fibered
Calabi–Yau 4-folds. As discussed in [5], suppose gauge group G on 7-branes
breaks to a subgroup Γ such that

(106) Γ×H ⊂ G

is maximal. This corresponds to the deformation of singularity associated
with gauge group G, and consequently, matter fields arise on 7-branes [39].
When Γ×H has a representation (τ, T ), matter fields arise in representation
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τ of Γ, and its generation is given by [5]

(107) nτ − nτ∗ = −
∫
S
c1(S)c1(T ).

S denotes a component of the discriminant locus on which 7-branes are
wrapped, and T denotes a bundle transforming in representation T of H.
We consider the case in which H is U(1). Let L be a supersymmetric line
bundle on component S.

We discuss matter contents in F-theory compactifications on families of
(3,2,2,2) hypersurfaces in Hesse form and double covers of P1 × P1 × P1 × P1

branched along a multidegree (4,4,4,4) 3-fold below. We focus on specific dis-
criminant components whose forms are isomorphic to P1 × P1. Supersym-
metric line bundles on these components are isomorphic to O(a, b) for some
integers a and b, a, b ∈ Z; for line bundles O(a, b) to be supersymmetric, the
integers a and b are subject to the condition ab < 0 [5].

As discussed in [5], Yukawa couplings arise from the following three
cases:

• interaction of three matter fields on a bulk component

• interaction of a field on a bulk component and two matter fields local-
ized along a matter curve, and

• triple intersection of three matter curves meeting in a point

Components we consider below have forms isomorphic to P1 × P1, which is
a Hirzebruch surface. Therefore, Yukawa coupling does not arise from the
first case [5]. We consider Yukawa couplings arising from the second case.

As stated in Section 4, the existence of a consistent four-form flux is
undetermined for Calabi–Yau genus-one fibrations constructed in this note.
We can only say that matter contents and Yukawa couplings that we obtain
below could arise.

5.1. Matter spectra for (3, 2, 2, 2) hypersurfaces in Hesse form

We compute matter spectra in F-theory compactifications on (3,2,2,2) hy-
persurfaces in Hesse Form. We focus on component A1, and we consider
the extreme case in which all six components {Ai}6i=1 are coincident. A1 is
abbreviated to A below. In this case, singular fibers on the bulk A have type
I6, and the SU(6) gauge group arises on the 7-branes wrapped on A. The
form of A is isomorphic to P1 × P1.
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When SU(6) breaks to SU(5) with

(108) SU(6) ⊃ SU(5)× U(1),

the adjoint 35 of SU(6) decomposes as [83]:

(109) 35 = 240 + 56 + 5−6 + 10.

Therefore, matter fields 5 (could) arise on the bulk A. The generation of
matter fields 5 on the bulk A is given by:

(110) n5 − n5 = −
∫
A
c1(A)c1(L6) = −12(a+ b).

A ∩Bi = Σ1, i = 1, 2, 3, 4, and therefore, the bulk A contains four mat-
ter curves Σ1, which are genus-one curves. When the supersymmetric line
bundle L is turned on, 20 of SU(6) along matter curve Σ1 decomposes as

(111) 20 = 10−3 + 103.

Therefore, the mater fields 10 could localize along a matter curve Σ1.
Since matter curve A ∩Bi = Σ1 is a bidegree (2,2) curve in P1 × P1, the

restriction LΣ1
of the line bundle L ∼= O(a, b) to matter curve A ∩Bi = Σ1

is

(112) LΣ1
∼= OΣ1

(V )

for some divisor V with degV = 2(a+ b). We have

(113) n10 = h0(K
1/2
Σ1
⊗ L−3

Σ1
) = h0(OΣ1

(−3V )).

Similarly, we have

(114) n10 = h0(3V ).

By the Riemann–Roch theorem,

(115) n10 − n10 = deg(−3V ) = −6(a+ b).

Therefore, when a+ b > 0 mater fields 5−6 arise on the bulk A, and
matter fields 103 localize along matter curve Σ1. For this case, Yukawa
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coupling that arises is

(116) 5−6 · 103 · 103.

When a+ b < 0, matter fields 56 arise on the bulk A, and matter fields 10−3

localize along matter curve Σ1. Yukawa coupling for this case is

(117) 56 · 10−3 · 10−3.

The results are shown in Table 10 below.
(3,2,2,2) Calabi–Yau hypersurface in Hesse form has a 3-section, there-

fore F-theory compactification on it has a discrete Z3 symmetry [28, 33, 84].
Thus, massless fields are charged under a discrete Z3 symmetry; Yukawa
coupling has to be invariant under the action of Z3 [29]. We confirm that
Yukawa couplings (116) and (117) indeed satisfy this requirement.

Gauge Group a+ b Matter on A # Gen. on A Matter on Σ1 # Gen. on Σ1 Yukawa

SU(6) > 0 5 12(a+ b) 10 6(a+ b) 5 · 10 · 10

< 0 5 −12(a+ b) 10 −6(a+ b) 5 · 10 · 10

Table 10: Potential matter spectra for hypersurface in Hesse form.

5.2. Matter spectra for double covers of P1 × P1 × P1 × P1

branched along a multidegree (4, 4, 4, 4) 3-fold

We compute matter spectra in F-theory compactifications on double covers
of P1 × P1 × P1 × P1 branched along a multidegree (4,4,4,4) 3-fold (21).

When A1 is not coincident with any other Ai, i 6= 1, singular fibers on
A1 have type III, and SU(2) gauge groups arise on the 7-branes wrapped
on A1. For this situation, matter does not arise on the 7-branes wrapped on
A1.

When A1 is coincident with another Ai, say A1 = A2, SO(7) gauge group
arises on the 7-branes wrapped on A1. A1 is abbreviated to A. When gauge
group SO(7) breaks to USp(4) under

(118) SO(7) ⊃ USp(4)× U(1),

21 of SO(7) decomposes as

(119) 21 = 100 + 52 + 5−2 + 10.
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Therefore, matter fields 5 (could) arise on the bulk A. The generations of 5
on the bulk A is given by:

(120) n52
− n5−2

= −
∫
A
c1(A)c1(L2) = −4(a+ b).

A ∩Bi = Σ9, i = 1, 2, and therefore, the bulk A contains 2 matter
curves13 Σ9 of genus 9. 8 of SO(7) decomposes under (118) as

(121) 8 = 41 + 4−1.

Therefore, the matter fields 4 (could) localize along matter curves Σ9. Since
f and g are bidegree (4,4) polynomials, the restriction LΣ9

of the line bundle
L to the matter curve Σ9 has degree 4(a+ b). The degree of the canonical
bundle KΣ9

is 2g − 2 = 16. Let W be the divisor associated with the line

bundle K
1/2
Σ9
⊗ LΣ9

, so that OΣ9
(W ) = K

1/2
Σ9
⊗ LΣ9

. The degree of W is 8 +
4(a+ b). Now, by the Riemann–Roch theorem,

n41
− n4−1

= h0(W )− h0(KΣ9
−W )(122)

= degW + 1− 9

= 4(a+ b).

Therefore, we have

(123) n52
− n5−2

= −(n41
− n4−1

).

When a+ b > 0, matter fields 5−2 arise on the bulk A, and matter fields 41

localize along matter curves Σ9. Yukawa coupling that arises is

(124) 5−2 · 41 · 41.

When a+ b < 0, matters 52 arise on the bulk A, and matter fields 4−1

localise along matter curves Σ9. Yukawa coupling for this case is

(125) 52 · 4−1 · 4−1.

Next, we consider the case in which component A1 is coincident with
two other components. Then, singular fiber on A1 are enhanced to type

13There are only two matter curves Σ9, A ∩B1 and A ∩B2, in component A;
triple intersection of matter curves in bulk A does not occur for double covers (21).
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III∗, and E7 gauge group arises on the 7-branes wrapped on A1. We again
abbreviate component A1 to A. When E7 breaks to E6 under

(126) E7 ⊃ E6 × U(1),

133 of E7 decomposes as

(127) 133 = 780 + 272 + 27−2 + 10.

Therefore, matter fields 27 (could) arise on component A. The generations
of 27 on the bulk A is given by:

(128) n27 − n27 = −
∫
A
c1(A)c1(L2) = −4(a+ b).

Bulk A contains two matter curves Σ9 of genus 9, A ∩Bi = Σ9, i = 1, 2.
56 of E7 decomposes under (126) as

(129) 56 = 27−1 + 271 + 13 + 1−3.

Therefore, matter fields 27 localize along the matter curves Σ9. The re-
striction LΣ9

of the line bundle L to matter curve Σ9 has degree 4(a+ b).

Let W be the divisor associated with the line bundle K
1/2
Σ9
⊗ L−1

Σ9
, so that

OΣ9
(W ) = K

1/2
Σ9
⊗ L−1

Σ9
. By applying the Riemann–Roch theorem, we find

that the generation of 27 along matter curve Σ9 is given by:

(130) n27 − n27 = h0(W )− h0(KΣ9
−W ) = −4(a+ b).

When a+ b > 0, matter fields 27 arise on the bulk A, and along matter
curves Σ9. Yukawa coupling that arises is

(131) 27−2 · 271 · 271.

When a+ b < 0, matter fields 27 arise on the bulk A, and along matter
curves Σ9. Yukawa coupling for this case is

(132) 272 · 27−1 · 27−1.

Double cover (21) has a bisection, and F-theory compactification on
it has a discrete Z2 symmetry [26, 84]. Massless fields are charged under a
discrete Z2 symmetry, and Yukawa coupling has to be invariant under the Z2
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action. We confirm that Yukawa couplings (124), (125), (131), (132) satisfy
this requirement.

The results are shown in Table 11 below.

Gauge Group a+ b Matter on A # Gen. on A Matter on Σ9 # Gen. on Σ9 Yukawa

E7 > 0 27 4(a+ b) 27 4(a+ b) 27 · 27 · 27

< 0 27 −4(a+ b) 27 −4(a+ b) 27 · 27 · 27

SO(7) > 0 5 4(a+ b) 4 4(a+ b) 5 · 4 · 4

< 0 5 −4(a+ b) 4 −4(a+ b) 5 · 4 · 4

Table 11: Potential matter spectra for double cover of P1 × P1 × P1 × P1

(21).

6. Conclusions

We considered (3,2,2,2) hypersurfaces in P2 × P1 × P1 × P1, and double cov-
ers of P1 × P1 × P1 × P1 ramified over a (4,4,4,4) 3-fold, to construct genus-
one fibered Calabi–Yau 4-folds. By considering specific types of equations,
we constructed two families of (3,2,2,2) hypersurfaces, namely Fermat-type
hypersurfaces and hypersurfaces in Hesse form. For double covers, we con-
sidered a family described by specific types of equations:

(133) τ2 = f · a(t) · x4 + g · b(t).

We showed that these three families of genus-one fibered Calabi–Yau 4-folds
lack a global section. Genus-one fibers of Fermat-type (3,2,2,2) hypersurfaces
and double covers (133) possess complex multiplication of specific orders, 3
and 4, respectively, and these symmetries enabled a detailed study of the
gauge theories in F-theory compactifications.

We determined the discriminant loci of these families, and we specified
the forms of the discriminant components and their intersections. In partic-
ular, discriminant components contain matter curves.

SU(3) gauge groups generically arise on 7-branes wrapped on discrim-
inant components in F-theory compactifications on Fermat-type (3,2,2,2)
hypersurfaces; when 7-branes coincide, the gauge symmetry is enhanced to
E6. Only gauge groups of the form SU(N) arise on 7-branes in F-theory com-
pactifications on (3,2,2,2) hypersurfaces in Hesse form. SU(2) gauge groups
generically arise on 7-branes in F-theory compactifications on double cov-
ers of P1 × P1 × P1 × P1 (133). When 7-branes coincide, the SU(2) gauge
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group is enhanced to SO(7); when more 7-branes coincide, gauge group is
enhanced to E7.

We specified the Mordell–Weil groups of Jacobian fibrations of specific
Fermat-type hypersurfaces and specific double covers. They are Z3 and Z2,
such the Mordell–Weil groups have the rank 0, and F-theory compactifica-
tions on these specific Calabi–Yau genus-one fibrations do not have U(1)
gauge symmetry.

We computed the potential matter spectra and potential Yukawa cou-
plings on specific components. We did not discuss the existence of a consis-
tent four-form flux in this note. We computed the Euler characteristics of
Calabi–Yau 4-folds constructed in this note, in order to derive the conditions
imposed on four-form fluxes to cancel the tadpole.
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[17] M. Cvetič, D. Klevers, and H. Piragua, F-theory compactifications with
multiple U(1)-factors: Addendum, JHEP 1312 (2013) 056.
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[57] M. Cvetič, T. W. Grimm, and D. Klevers, Anomaly cancellation and
abelian gauge symmetries in F-theory, JHEP 02 (2013) 101.

[58] A. P. Braun, A. Collinucci, and R. Valandro, Hypercharge flux in F-
theory and the stable Sen limit, JHEP 07 (2014) 121.

[59] N. Cabo Bizet, A. Klemm, and D. Vieira Lopes, Landscaping with fluxes
and the E8 Yukawa Point in F-theory, arXiv:1404.7645 [hep-th].
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