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Bootstrapping chiral CFTs at genus two
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Genus two partition functions of 2d chiral conformal field theories
are given by Siegel modular forms. We compute their conformal
blocks and use them to perform the conformal bootstrap. The ad-
vantage of this approach is that it imposes crossing symmetry of
an infinite family of four point functions and also modular invari-
ance at the same time. Since for a fixed central charge the ring
of Siegel modular forms is finite dimensional, we can perform this
analytically. In this way we derive bounds on three point functions
and on the spectrum of such theories.
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1. Introduction

Over the past few years there has been a lot of progress in the modern con-
formal bootstrap, started by [1]. The modern conformal bootstrap combines
crossing symmetry with numerical methods to obtain bounds on operator
dimensions. With current technology, usually one checks crossing symmetry
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of a single four point function only. The ultimate goal is of course to boot-
strap the entire CFT, for which it is necessary to combine all correlation
functions and check for mutual consistency. In [2–4] this was done for three
four point functions, which lead to the 3d Ising model. For two dimensional
CFTs, in addition to crossing symmetry we also require modular invariance.
Similar to the crossing bootstrap, one can perform a modular bootstrap
[5–8], which gives another set of consistency conditions. The ultimate goal
of the full bootstrap is to combine all consistency conditions, and find so-
lutions to them. For 2d CFTs in particular one wants to combine modular
invariance and crossing symmetry at the same time. This is obviously a very
hard problem.

Here we take a step towards this goal by combining an infinite number
of constraints, both from crossing symmetry and from modular invariance.
We do this by considering correlation functions on higher genus surfaces.
Fundamentally, the idea behind this comes from the insight of [9], namely
that consistency of the correlation functions on the sphere, i.e. crossing sym-
metry, and of the torus one-point functions, i.e. modular invariance, implies
that the higher genus correlation functions are well defined. In particular,
they are invariant under the higher genus modular group. We can thus check
an infinite number of crossing symmetry and modular invariance conditions
at the same time. Here we will consider the genus 2 partition function. In
that case the modular group is Sp(4,Z). This group indeed contains the
crossing group and the modular group. Using the technology of [10, 11], we
can relate the partition function to physical quantities such as three point
functions of primaries and the spectrum of the theory.

As usual in the conformal bootstrap, there are two main ingredients.
First, we need to compute the conformal blocks, in this case for g = 2, n = 0.
To do this we choose Schottky coordinates on the moduli space, and obtain
the conformal block using the technology of [10, 11]. The choice of Schottky
coordinates allows us to translate the coefficients of the partition functions to
three point functions. One could of course also use a different technology such
as recursion relations to obtain the conformal block [12], although in that
case one would still have to convert to Schottky coordinates, or some other
suitable set of coordinates in order to connect to the appropriate physical
correlators.

The second ingredient in the modern conformal bootstrap is to impose
the symmetries. This is usually done by expanding around a fixed point of
the symmetry and demanding that the first N odd derivatives vanish. In our
case we impose it instead by demanding that the genus 2 partition function
be a Siegel modular form. This then automatically ensures that it has all
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Bootstrapping chiral CFTs at genus two 1449

the required symmetries. We will only consider chiral or meromorphic CFTs
here, that is theories which only contain left-moving degrees of freedom. The
advantage is then that for fixed central charge the space of such forms is finite
dimensional. This means that we only need to fix a few physical parameters
of the theory, and then automatically obtain all other physical quantities
as functions of those parameters. The physical parameters that we fix are
the spectrum of the lightest states and some of their three point functions.
We will call this the ‘light data’, L. The light data then automatically fixes
the entire partition function, which in particular means that we can express
an infinite number of (sums of squares of) three point functions in terms
of it. Assuming unitarity and imposing that all these squares be positive
then leads to an infinite family of constraints on the physical parameters,
giving the sought-after bounds. Note that in this sense our bootstrap is not
numerical, but analytic, as for instance in [13, 14].

Using this approach we investigate the allowed range of parameters for
unitary meromorphic theories of central charge c = 8k with c ranging from
8 to 72. The results for c = 24 (and less) are of course known using a care-
ful analysis of allowed spin 1 algebras [15]. The results for higher central
charges however are new. We find bounds on the number of states Nh and
the squares of three point functions. More precisely, let cϕ1ϕ2ϕ3

be the three
point function of three primary fields. The coefficients of the partition func-
tion are then given by

(1.1) Ch1h2h3
=

∑
ϕ∈Hhi

cϕ1ϕ2ϕ3
cϕ3ϕ2ϕ1

where the sum runs over all primary fields ϕi of weight hi. We can also define
the average square of a three point function of primary fields of weights h1,
h2, and h3 by

(1.2) 〈c2h1h2h3
〉 =

1

Nh1
Nh2

Nh3

Ch1h2h3 ,

where Nh is the number of primary fields of weight h. These are the quan-
tities that we will bound.

Bounds on three point functions using modular invariance or crossing
symmetry were also considered for instance in [16, 17]. In those cases some
of the operators were taken to be asymptotically heavy. In that sense our
results are the analog results for light operators.

This paper is organized in the following way. In section 2 we describe the
ring of Siegel modular forms and their connection to the partition functions.
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In section 3 we compute the conformal block of the genus 2 vacuum ampli-
tude and in section 4 we give explicit expressions for the genus 2 amplitudes
in terms of the light data. In section 5 we derive constraints from unitarity.

Note added: We coordinated submission with [18] and [19], as there is
some overlap in our results.

2. Siegel modular forms

In this section we summarize some properties of Siegel modular forms which
are important for our purposes, as well as their relation to partition func-
tions. For a chiral CFT of central charge c, partition functions Zg can be
written as a modular form Wg of weight c/2 times some universal function
Fg which only depends on the genus [10, 11]

(2.1) Zg =
Wg

F
c/2
g

.

The function Fg has the appropriate weight such that Zg is indeed invariant
under modular transformations. In addition, the functions Wg(Ω), where Ω
is the period matrix of the genus-g Riemann surface, are holomorphic on
the space of period matrices of the Riemann surface and are modular forms
of degree g and weight k = c/2:

(2.2) Wg

(
AΩ +B

CΩ +D

)
= det(CΩ +D)kWg(Ω),

(
A B
C D

)
∈ Sp(2g,Z).

For g ≤ 3, Wg is a Siegel modular form. For g = 1 this reduces to the defi-
nition of a usual modular form of weight k.

2.1. Genus 1

Here W1 is an ordinary modular form transforming under SL(2,Z), and
the Riemann period matrix is simply τ . F1 is given by the square of the η
function

(2.3) F1 = η(τ)2,

where

(2.4) η = q
1
24

∞∏
n=1

(1− qn).
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Bootstrapping chiral CFTs at genus two 1451

The ring of modular forms is generated by the Eisenstein series

(2.5) G4, G6,

where the subscript denotes the modular weight. For future use, we introduce
also the modular discriminant of the elliptic curve, given by

(2.6) ∆ =
G3

4 −G2
6

1728
= η(τ)24.

2.2. Genus 2

For genus 2 we parametrize the Riemann period matrix as

(2.7) Ω =

(
τ11 τ12

τ21 τ22

)
,

and the multiplicative periods as qij = e2πiτij . The generators of the ring of
Siegel modular forms of degree 2 and even weight are [20]

(2.8) E4, E6, χ10, χ12.

Here the En are the genus 2 Eisenstein series, and χ10 and χ12 can be ex-
pressed in terms of Eisenstein series as we describe in Appendix A. Following
(2.6), we define the analogue genus 2 function

(2.9) ψ12 =
E3

4 − E2
6

1728
,

which we will use in the upcoming sections.
As we will see in Section 3, in order to relate the genus 2 partition

function to physical quantities, it is useful to go to Schottky space and work
with Schottky coordinates p1, p2, and x,

S2 :=

{
(p1, p2, x) ∈ C3

∣∣∣∣ x 6= 0, 1,(2.10)

0 < |pi| < min

{
|x|, 1

|x|

}
, i = 1, 2

}
.

The relation between the multiplicative periods and the Schottky parameters
are derived in Appendix A of [11]. The power series expansion of qij are of
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the form

q11 = p1

∞∑
n,m=0

n+m∑
r=−n−m

c(n,m, |r|) pn1pm2 xr,(2.11)

q22 = p2

∞∑
n,m=0

n+m∑
r=−n−m

c(m,n, |r|) pn1pm2 xr,(2.12)

q12 = x+ x
∞∑

n,m=1

n+m∑
r=−n−m

d(m,n, r) pn1p
m
2 x

r,(2.13)

and q21 = q12. The coefficients c(n,m, |r|) and d(n,m, r) are listed in Ap-
pendix E of that paper. F2 is essentially a generalization of the η function to
genus 2 and can be found in [21]. We will only use its expansion in Schottky
coordinates

(2.14) F2 =

∞∑
n,m=0

n+m∑
r=−n−m

b(n,m, |r|) pn1 pm2 xr,

with the coefficients b given in [11].

2.3. Factorisation properties

There are two constraints on the modular forms coming from their factori-
sation properties and from the action of the Siegel operator on them. They
provide a way to relate higher genus partition functions to lower genus ones.
These constraints have been studied in detail in [10] (see Section 4.1 of this
reference) and we summarise them below.

In the degeneration limit where a genus g Riemann surface degenerates
to a singular surface which has two smooth components of genus g − k and
k, the Riemann period matrix of the genus g surface is block diagonal and
the modular form fg factorises as

(2.15) fg(Ω
(g)) −→ fg−k(Ω(g−k))⊗ fk(Ω(k)).

For g = 1, assuming that the theory has a unique vacuum, this simply fixes
the overall normalization as

(2.16) lim
τ→i∞

W1(τ) = 1.
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For genus 2, the factorisation properties of the generators of Siegel modular
forms of degree 2 are

(2.17) E4 → G4 ⊗G4, E6 → G6 ⊗G6, χ10 → 0, χ12 → ∆⊗∆,

and for ψ12 we have

(2.18) ψ12 → G3
4 ⊗∆ + ∆⊗G3

4 − 1728∆⊗∆.

Another constraint on Siegel modular forms comes from applying the
Siegel operator on them. The Siegel operator is a linear map which maps a
modular form of degree g to one of degree g − 1:

(2.19) Φ(fg) = Φ(f1) fg−1.

A cusp form of degree g is any element of the kernel of this linear map.
Using (2.16), we find that

(2.20) Φ(Wg) = Wg−1.

For g = 1 we have chosen the normalisation of degree one Eisenstein series
in (2.5) such that the constant term in the Fourier expansion is 1. We then
have

(2.21) Φ(G4) = 1, Φ(G6) = 1.

The discriminant (2.6) is a cusp form of degree 1:

(2.22) Φ(∆) = 0.

The action of the Siegel operator on the generators of modular forms of
degree 2 is

(2.23) Φ(E4) = G4, Φ(E6) = G6, Φ(χ10) = 0, Φ(χ12) = 0,

and so χ10 and χ12 are cusp forms of degree 2. We also have

(2.24) Φ(ψ12) = ∆.
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3. Genus two conformal block expansion

3.1. Genus 2 partition function

Let us now relate the partition functions to physical quantities. For the genus
1 partition function, this is of course straightforward: we simply have usual
graded trace

(3.1) Z1 =

∞∑
h=0

dimHh qh−c/24.

The genus 2 partition function is a bit more subtle. We follow the approach
of [11] and consider the surface to be a sphere of four punctures with two
handles. In terms of the coordinates this means we perform a Schottky
uniformisation of the genus 2 surface. The partition function is then given
by a sum over four point functions on the sphere:

(3.2) Z2 =

∞∑
h1,h2=0

Ch1,h2
(x) ph1

1 ph2
2 ,

with p1, p2, and x being the Schottky coordinates. Here there are 4 punctures
on the sphere with cross ratio x, and two handles glue these punctures
pairwise with coordinates p1 and p2 determining the shapes of these handles.
The sum over functions Ch1,h2

(x) then represent the sum over four point
functions on the sphere where fields of dimensions h1 and h2 run through
the two handles:

Ch1,h2(x) =
∑

φi,ψi∈Hhi

G−1
φ1,ψ1

G−1
φ2,ψ2

(3.3)

×
〈
V out(ψ1,∞) V out(ψ2, x) V in(φ2, 1) V in(φ1, 0)

〉
,

where Gφψ is the metric on the space of states. Ch1,h2
are almost the stan-

dard four point functions, except for a slightly different definition of the “in”
and “out” vertex operators.

Let us explain this in more detail. First note that under a global con-
formal transformation γ, i.e. a Möbius transformation, a state transforms
as

(3.4) U(γ) = γ′(z)L0e
L1

γ′′(z)
2γ′(z) .
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In particular, we have the transposition map γ̂ : z 7→ −1
z , which gives [22, 23]

(3.5) V (φ, z)T = V

(
z−2L0e−

1
zL1φ,−1

z

)
.

The metric Gφψ is then given by

Gφψ = lim
z→0

〈
V

(
z−2L0e−

1
zL1φ,−1

z

)
V (ψ, 0)

〉
(3.6)

= lim
z→∞

〈V (z2L0ezL1φ, z) V (ψ, 0)〉.

Since we are interested in unitary theories, we want to introduce a hermitian
structure. Let “ · ” be the antilinear involution which acts as hermitian
conjugation on the Hilbert space. Note that it acts on operators as

(3.7) Vn(ψ) = (−1)h+nVn(ψ̄).

We will usually choose our primaries to be real, that is to satisfy ϕ̄ = ϕ.
Note that this choice implies for descendant fields that

(3.8) φ̄ = (−1)Nφφ,

where Nφ is the total level of all Virasoro descendants. Using this notation,
the metric G can be related to the standard Kac matrix Kφψ as

(3.9) Kφψ = Gφ̄ψ.

It is useful to write (3.3) as

Ch1,h2(x) =
∑

φi,ψi∈Hhi

K−1
φ1,ψ1

K−1
φ2,ψ2

(3.10)

×
〈
V out(ψ̄1,∞) V out(ψ̄2, x) V in(φ2, 1) V in(φ1, 0)

〉
.

The vertices V in and V out are defined as [11]

V in(φ1, 0) = V (φ1, 0) = φ1(0),(3.11)

V out(ψ1,∞) = V

(
U
(
γ̂(z)

)
ψ1,∞

)
= lim
z→∞

V (z2L0 ez L1ψ1, z),(3.12)
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and

V in(φ2, 1) = V
(

(x− 1)L0e−L1φ2, 1
)
,(3.13)

V out(ψ2, x) = V
(

(x− 1)L0eL1ψ2, x
)
,(3.14)

and are the usual vertex operators for quasi-primary fields φi and ψi since
the corresponding states are annihilated by L1. However, if φi and ψi are not
quasi-primary operators, then the action of L1 on them is non-trivial and
hence, the factors of eL1 are needed to be taken into account. Non-quasi-
primary operators transform non-tensorially under Möbius transformations
and so acquire additional factors. These factors then render the four point
functions crossing symmetric.

We take all primary fields to be orthonormal. We have

V in(φ1, 0)|0〉 = |φ1〉,(3.15)

〈0|V out(ψ̄1,∞) = 〈ψ1|.(3.16)

Let us also define the corresponding three point functions. Namely,

(3.17) Cout(φ1, φ2, φ3;x) = x−h3+h1+h2〈φ3|V out(φ̄2, x)|φ1〉

and

(3.18) Cin(φ1, φ2, φ3;x) = 〈φ1|V in(φ2, 1)|φ3〉.

Inserting a complete set of states φ3, ψ3, we then rewrite (3.2) as

Z2 =
∑

φi,ψi∈H

3∏
i=1

K−1
φiψi

Cout(φ1, φ2, φ3;x)(3.19)

× Cin(ψ1, ψ2, ψ3;x) ph1
1 ph2

2 xh3−h1−h2 .

We shall also slightly rewrite the vertex operators (3.13) and (3.14) to get
nicer expressions for Cin and Cout. Namely, we use

(3.20) V in(φ, 1) = (x− 1)hφV (e−
1

x−1L1φ, 1)

and

(3.21) V out(φ, x) = xL0x−hφ(x− 1)hφV (e
x
x−1L1φ, 1)x−L0 ,
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to find

Cout(φ1, φ2, φ3;x) = (x− 1)hφ2 〈φ3|V (e−
x

1−xL1 φ̄2, 1)|φ1〉,(3.22)

Cin(φ1, φ2, φ3;x) = (x− 1)hφ2 〈φ1|V (e−
1

x−1L1φ2, 1)|φ3〉.(3.23)

These in fact have the property that

Cout(φ1, φ2, φ3;x)∗ = (x∗ − 1)hφ2 〈φ1|V (e−
x

1−xL1 φ̄2, 1)†|φ3〉(3.24)

= (x∗ − 1)hφ2 〈φ1|V (e−L1− x
1−xL1 φ̄2, 1)|φ3〉

= (x∗ − 1)hφ2 〈φ1|V (e−
1

1−xL1φ2, 1)|φ3〉
= (x∗ − 1)hφ2 〈φ1|V (e−

1
x∗−1

L1φ2, 1)|φ3〉
= Cin(φ1, φ2, φ3;x∗).

3.2. Genus two conformal block

We compute the genus 2 partition function (3.19) by decomposing it into
conformal blocks:

(3.25) Z2(p1, p2, x) =
∑

ϕ1,ϕ2,ϕ3∈Hp
cϕ1ϕ2ϕ3

cϕ̄3ϕ̄2ϕ̄1
F2,0(hi, c; p1, p2, x).

Here the triple sum is over all primary fields ϕ of the theory, cϕ1ϕ2ϕ3
is their

three point function, and F2,0(hi, c; p1, p2, x) is the conformal block for the
genus 2 surface with zero punctures given in Schottky coordinates.

As usual in the conformal bootstrap, we now make the assumption that
the theory is unitary. This means that the Kac matrix (3.9) is positive
definite, in particular also for primary fields. This means that we can choose
an orthonormal basis for the primary fields. Note moreover that for any
theory we can choose our primaries to be real, i.e., ϕ = ϕ̄ [23]. In this case
the three point functions are either real or purely imaginary, depending on
the weight of the fields, due to the general identity

(3.26) c∗ϕ1ϕ2ϕ3
= (−1)h1+h2+h3cϕ̄1ϕ̄2ϕ̄3

.

In addition, because of cϕ1ϕ2ϕ3 = (−1)h1+h2+h3cϕ3ϕ2ϕ1 we have

cϕ1ϕ2ϕ3
cϕ̄3ϕ̄2ϕ̄1

= |cϕ1ϕ2ϕ3
|2,
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and so the coefficients in front of the conformal block are necessarily non-
negative. The Kac matrix is then simply the Kac matrix of the descendants,
with the primaries being orthonormal.

For a primary field ϕ, we define the associated descendant state |ϕ, ~N〉
as:

(3.27) |ϕ, ~N〉 = LN1
LN2
· · ·LNn |ϕ〉,

where ~N = (N1, N2, . . . , Nn), and − ~N is a partition with N1 ≤ N2 ≤ · · · ≤
Nn < 0. We define | ~N | = N :=

∑
iNi. The Kac matrix between two such

states is then defined in the usual way,

(3.28) K ~N, ~M = 〈ϕ, ~N |ϕ, ~M〉.

Note that K vanishes between two different primary fields, and only de-
pends on ϕ through its weight hϕ. For brevity, we have thus suppressed the
dependence on ϕ. Using (3.19) and (3.25), we can then compute F2,0:

F2,0 = |cϕ1ϕ2ϕ3
|−2

∑
~Ni, ~Mi

3∏
i=1

K−1
~Ni, ~Mi

Cin(hi, ~Mi;x)Cout(hi, ~Ni;x)(3.29)

× ph1−N1
1 ph2−N2

2 xh3−N3−h1+N1−h2+N2 .

To compute explicit expressions, it is useful to define the ‘ordinary’ three
point function

C(hi, ~Ni) = 〈h1, ~N1|V (|h2, ~N2〉, 1)|h3, ~N3〉(3.30)

= 〈h1, ~N1|Vh3−N3−h1+N1
(|h2, ~N2〉)|h3, ~N3〉,

where V is the usual vertex operator (see Section 3.3 below for more details).
Using this we shall then write Cin and Cout in terms of ‘ordinary’ three point
functions:

Cout(hi, ~Ni;x) = (−1)N2(x− 1)h2−N2(3.31)

×
−N2∑
l=0

1

l!

(
−x

1− x

)l
C(h3, ~N3, h2, L

l
1
~N2, h1, ~N1),

Cin(hi, ~Ni;x) = (x− 1)h2−N2

×
−N2∑
l=0

1

l!
(1− x)−lC(h1, ~N1, h2, L

l
1
~N2, h3, ~N3).
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Note the extra factor of (−1)N2 in Cout which accounts for the fact that in
Cout the operator inserted is φ̄2 rather than φ2.

3.3. Computing three point functions

Finally, let us explain how to compute the ordinary three point functions
(3.30) recursively for general descendant fields. We use the recursion formula
of [24] to write the expression for the `th descendant of the operator φ`
located at x and 1. This operator might be a Virasoro primary, the identity,
or a descendant of them and so in general picking up the mode is non-trivial.
In terms of the modes Vn, the general expression reads

V−N1

(
V−N2

(ψ)χ
)

=
∑
L≥0

((
N2 + L− hψ

L

)
V−N2−L(ψ)V−N1+N2+L(χ)

(3.32)

+ (−1)N2−hψ+2

(
N2 + L− hψ

L

)
V−N1+hψ−L−1(χ)V−hψ+L+1(ψ)

)
.

In particular, for our purposes we have ψ = T — so that the modes Vn(T ) ≡
Ln are the Virasoro modes — and so the modes Vn on the right hand side
of equation (3.30) are found to be given by

V−N1

(
L−N2

χ
)

=
∑
`≥0

((
N2 + `− 2

`

)
L−N2−` V−N1+N2+`(χ)(3.33)

+ (−1)N2

(
N2 + `− 2

`

)
V−N1−`+1(χ)L`−1

)
.

We note that equation (3.32) is valid for any value of the modes N1, N2 ∈ Z.
For the non-negative values of the arguments of the binomial coefficients we
have the standard expression

(3.34)

(
n

m

)
=

{
n!

m!(n−m)! , 0 ≤ m < n,

0, otherwise.
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For the negative values of the arguments, the extended binomial coefficients
are given by

(3.35)

(
n

m

)
=


(−1)m

(−n+m−1
m

)
, m ≥ 0,

(−1)n−m
(−m−1
n−m

)
, m ≤ n,

0, otherwise,

where n < 0.

4. Fixing partition functions

4.1. Conventions

As discussed in Section 2, partition functions can be expressed in terms
of Siegel modular forms which have a finite-dimensional space. This means
that for a fixed value of the central charge c, it is enough to fix finitely
many parameters to obtain the full partition function. We will call this set
of parameters the light data L. As we will see, the set L consists on one hand
of the multiplicities of the lightest fields in the theory, and on the other hand
of a finite number of light three point functions.

Our conventions are the following: we denote by

(4.1) Nh,

the number of primary fields of weight h. We have, of course, N0 = 1 which
corresponds to the identity operator. We denote by

(4.2) cϕ1ϕ2ϕ3
≡ 〈ϕ1|ϕ2(1)|ϕ3〉,

the three point function of three primary fields ϕi, ϕj , ϕk, and by

(4.3) Ch1h2h3
=

∑
ϕ∈Hphi

cϕ1ϕ2ϕ3
cϕ3ϕ2ϕ1

=
∑

ϕ∈Hphi

|cϕ1ϕ2ϕ3
|2,

the sum over absolute squares of the three point functions of all primary
fields of appropriate weight. We have of course Chh0 = Nh. The unitarity
condition then reads

(4.4) Ch1h2h3
≥ 0,

since each term in the sum |cϕ1ϕ2ϕ3
|2 is a non-negative real number.
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4.2. Strategy

The genus 1 partition function is completely fixed by Nh. More precisely, it
is fixed by the number of primary fields with dimension h,

(4.5) h ∈ {0, . . . , b c
24
c},

where b c denotes the floor function. This means that all the higher Nh with
h > b c24c can be expressed as linear functions of the first few Nh. The genus
2 partition function is of the form

(4.6) Z2 =
W2

F k2
,

where c = 2k. As discussed in Subsection 2.2, for fixed central charge the
space of W2 is finite dimensional, so that there are only a finite number of
free parameters. Our goal is again to fix these parameters in terms of the
light data L. To do this we proceed in two steps.

In a first step, we use the factorisation properties of the modular forms
as well as the action of the Siegel operator on these forms as described in
Section 2.3 to relate it to the genus 1 partition function. This fixes some
of the parameters in terms of the Nh. For c ≤ 24, we will see that this
completely fixes all the coefficients. The light data thus only consists of
the Nh given in (4.5). For c > 24, however, there are still free parameters
after this procedure: the partition function is thus not uniquely fixed by
the spectrum of the theory, but also depends on a finite number of the
three point function coefficients. In these cases, we have to perform a second
step: we write the partition function Z2 in terms of the conformal blocks
as in (3.25) with general coefficients Ch1h2h3

(see equation (3.29)). We then
compare this with the expansion of (4.6) in Schottky coordinates, matching
the coefficients term by term. To fix the remaining free parameters of W2, it
is then enough to specify just a finite number of the lightest Ch1h2h3 . These
are the ones that comprise the second part of the the light data L. We shall
now carry out these steps and compute the partition functions of CFTs for
different values of the central charge. The results are outlined in the next
subsection.

4.3. Expressions

4.3.1. c=8. The only degree 1 modular form of weight k = 4 is the Eisen-
stein series G4. Equations (2.20) and (2.21) then fix the normalization to
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give

(4.7) W c=8
1 = G4.

Similarly the genus 2 form is given by the weight 4 form E4,

(4.8) W c=8
2 = E4,

where, using (2.20) and (2.23), the overall constant is fixed to 1. We then
have

(4.9) Zc=8
2 =

E4

(F 12
2 )

1
3

,

where F k2 is the reference partition function defined in (2.14). This describes
the E8 lattice CFT.

4.3.2. c=16. Similar to the previous case, the only contribution to the
modular forms W1 of weight k = 8 comes from G4:

(4.10) W c=16
1 = G2

4.

For c = 2k = 16 we find

(4.11) W c=16
2 = E2

4 , Zc=16
2 =

E2
4

(F 12
2 )

2
3

.

This is either the E8 × E8 or the SO(32) lattice theory. Note that up to
genus 2, we cannot see the difference between the two.

4.3.3. c=24. This is the first case where we have a free parameter, as we
now have G3

4 and G2
6, or equivalently G3

4 and ∆, contributing to W1:

(4.12) W c=24
1 = a1G

3
4 + a2∆.

Using the constraint (2.20), we find that a1 = 1 and so

(4.13) W c=24
1 = G3

4 + a∆.

To fix a, we write the genus one chiral character of the CFT which is the
form [10]:

(4.14) χc1 =

(
q

η24

) c
24

W c
1 .
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Note that we have shifted the definition of the partition function (2.1) by
an overall factor of qc/12 for the leading term in the expansion to be 1. For
the CFT with c = 24 we then find

χc=24
1 = q

(G3
4 + a∆)

∆
= q(j(τ) + a)(4.15)

= 1 + (744 + a)q + 196884q2 + 21493760q3 +O(q4),

where we have used equation (2.6). This lets us identify the coefficient of q
with the number of spin 1 currents:

(4.16) N1 = 744 + a,

thus fixing the only free parameter a in terms of the light data L = {N1}:

(4.17) W c=24
1 = G3

4 + (N1 − 744)∆.

For the genus 2 amplitude there are three possible contributions:

(4.18) W c=24
2 = b1E

3
4 + b2ψ12 + b3χ12.

Imposing the two constrains coming from applying the Siegel operator and
the factorisation property of W2 as in Section 2.3 fixes all these three free
parameters as

(4.19) b1 = 1, b2 = N1 − 744, b3 = (N1 − 744)(N1 + 984).

We then have

(4.20) Zc=24
2 =

W c=24
2

F 12
2

,

where

(4.21) W c=24
2 = E3

4 + (N1 − 744)ψ12 + (N1 − 744)(N1 + 984)χ12.

The genus 1 and 2 partition functions are completely fixed in terms of N1.

4.3.4. c=32. This is the first case where the light data contains multiplic-
ities as well as three point functions, namely, L = {N1, C111}. W1 is given
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by

(4.22) W c=32
1 = G4

(
G3

4 + (N1 − 992)∆
)
,

and the genus 2 amplitude reads

Zc=32
2 =

1

(F 12
2 )

4
3

(
E4

4 + (N1 − 992)E4 ψ12(4.23)

+ (N1 − 992)(N1 + 736)E4 χ12

+
1

3
(N2

1 − 520N1 + 246016− 12C111)E6 χ10

)
.

We note that the coefficient of the cusp form χ10 is not fixed by the con-
straint equations from factorisation (2.17) and Siegel operator (2.23). To find
this coefficient, we expand the partition function in terms of the Schottky
coordinates, and match it with the conformal block expansion of the parti-
tion function described in Subsection 3.2. We then evaluate the coefficient
of the cusp form in terms of N1 and C111.

4.3.5. c=40. Here the light data is L = {N1, C111, C222}. The modular
form W c=40

1 is given by

(4.24) W c=40
1 = G2

4

(
G3

4 + (N1 − 1240)∆
)
,

and the genus 1 partition function is found to be

χc=40
1 = q

(
j(τ) + (N1 − 1240)

)
χc=16

1(4.25)

= 1 +N1q + (496N1 + 20620)q2

+ (69752N1 + 86666240)q3 +O(q4).

The genus 2 partition function is of the form

Zc=40
2 =

1

(F 12
2 )

5
3

(
E5

4 + (N1 − 1240)E2
4 ψ12 + (N1 − 1240)(N1 + 488)E2

4 χ12

(4.26)

+
1

3
(N2

1 − 1016N1 + 615040− 12C111)E4E6 χ10

+
(

9312N2
1 − 20665776N1 +

77050410528

5
− 905520C111 + 16C222

)
χ2

10

)
,

which is expressed in terms of N1, C111, and C222.
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4.3.6. c=48. The light data is now L = {N1, N2, C111, C222}. We have

(4.27) W c=48
1 = G6

4 + (N1 − 1488)G3
4∆ + (N2 − 743N1 + 159769)∆2.

The genus 1 partition function reads

χc=48
1 = q2

(
j(τ)2 + (N1 − 1488)j(τ) + (N2 − 743N1 + 159769)

)
(4.28)

= 1 +N1q + (1 +N1 +N2)q2 + (196884N1 + 42987520)q3

+ (21493760N1 + 40491909396)q4

+ (842806210N1 + 8463554690796)q5 +O(q6),

and is determined in terms of N1 and N2. The higher values of Nh, h > 2,
are then fixed in terms of N1 and N2. The genus 2 amplitude reads

Zc=48
2 =

1

(F 12
2 )

2

(
E6

4 +
(
N1 − 1488

)
E3

4 ψ12(4.29)

+
(
N2

1 + 238N1 − 2N2 − 676658
)
E3

4 χ12

+
(
− 743N1 +N2 + 159769

)
ψ2

12

+
(
− 731855N2

1 − 269472862N1 + 242N1N2

+N2
2 + 734258N2 + 91785533041

)
χ2

12

−
(
N1 + 1968)(743N1−N2− 159769

)
ψ12 χ12

+
1

3

(
N2

1 − 26N1 − 2N2 + 787534− 12C111

)
E2

4 E6 χ10

+
1

9

(
819977N2

1 + 137560792N1 − 392N1N2 −N2
2

− 855434N2 − 10238832C111 + 144C222

+ 229938936071
)
E4 χ

2
10

)
,

and is completely determined in terms of N1, N2, C111, and C222, as ex-
pected.

A special case of the our expressions correspond to the proposed ex-
tremal CFTs [25]. These theories have no primary fields with dimension
h ≤ c/24 and so the three point functions including these primaries vanish.
For the case of c = 48, this simply means that N1 = N2 = 0, and there-
fore also C111 = C222 = 0, so then we can immediately obtain the genus 2
partition function from (4.29). Note that this was already computed in [26].
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It is clear that we can continue this procedure to higher central charge,
the only difference being that the expressions will become more and more
complicated. We have also computed the genus 2 amplitude for theories with
c = 56, 64, and 72. The full expressions are given in Appendix B.

5. Constraints

From the expressions we obtained in the previous section for genus 2 am-
plitudes, and from conformal block expansion described in Section 3.2, we
can read off an infinite number of identities expressing an infinite number
of three point functions and the total number of primary fields in terms of
finitely many free parameters of the light data:

(5.1) Nh(L), Ch1h2h3(L).

This constrains the parameter space, i.e., the allowed light data L, since we
necessarily have

(5.2) Nh ≥ 0,

and, for unitary theories, we have

(5.3) Ch1h2h3
≥ 0.

We can then find bounds on the squares of three point functions Ch1h2h3

(4.3), and also on averages of squares of three point functions defined as

(5.4) 〈c2h1h2h3
〉 =

1

Nh1Nh2Nh3

Ch1h2h3
.

We will next discuss constraints we find for each value of the central charge.

5.1. c=24

The only free parameter is the number of currents N1. Using the genus 1
partition function, we can read off the expressions for the Nh,

(5.5)

N2 = 196883−N1, N3 = 21296876−N1,

N4 = 842609326, N5 = 19360062527,

N6 = 312092484374 +N1, N7 = 3898575000125.
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Equation (5.2) then already gives a (weak) upper bound on N1, namely
N1 ≤ 196883. To improve on this bound, we turn to the coefficients Ch1h2h3

.
Starting with lowest weights,

(5.6) C111 =
1

12
N1(N1 − 24),

we find that the condition (5.3) gives

(5.7) N1 = 0, N1 ≥ 24,

which gives a lower bound. The next highest coefficient is

(5.8) C112 = C121 = C211 =
23

24
N1(N1 + 2),

which gives N1 ≥ 0 and so does not improve the bound (5.7). We note that
the sums over the square of the three point function coefficients are sym-
metric under the exchange of the indices, as expected. We next have

(5.9) C122 =
5

12
N1(78744− 5N1),

which introduces a tighter upper bound on the number of currents

(5.10) 0 ≤ N1 ≤ 15748.

Expanding the partition function (4.21) up to order O(p5
1 p

5
2), we find that

the coefficient which yields the stringent upper bound is

(5.11) C223 = 12011438064− 1

468
N1 (107015N1 + 38610024) ,

giving

(5.12) 0 ≤ N1 ≤ 7059.

All in all, we find

(5.13) N1 = 0, or 24 ≤ N1 ≤ 7059.

We note that this bound is less restrictive than the one obtained by
Schellekens [15], i.e., N1 = 0 or 24 ≤ N1 ≤ 1128. We could of course im-
prove our bounds by following his analysis of the allowed spin 1 algebras. In
the spirit of our bootstrap approach we do not do this, since in particular it
would not generalize to constraining higher spin fields.
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Figure 1. Upper and lower bounds on C111 for the c = 32 theory.
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N1
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4

<c111
2 >

Figure 2. Upper bound on 〈c2111〉 = C111

N3
1

for c = 32.

5.2. c=32

The genus 1 partition function of the c = 32 theory is fixed by N1. The
multiplicities Nh for the first few low lying values of h are given by

N2 = 13 (19N1 + 10731) , N3 = 3875N1 + 69193488,(5.14)

N4 = 30380N1 + 6928824200, N5 = 174250N1 + 322955200393.
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Turning to the genus 2 partition function (4.23) and imposing positiv-
ity (5.3) for the higher Ch1h2h3

, we obtain the following upper and lower
bounds for C111:
(5.15)

C111 ≤


1
8

(
16N2

1 + 15N1

)
0 ≤ N1 < 17,

1
497

(
60N2

1 + 16440N1

)
17 ≤ N1 < 97359,

1
367

(
21N2

1 + 2281170N1

)
97359 ≤ N1 < 4118426,

1
204575(9900N2

1 + 8709154344N1) N1 ≥ 4118426.

and
(5.16)

C111 ≥

{
0 0 ≤ N1 < 787,

1
56116(1768N2

1 − 1119161N1 − 213439590) N1 ≥ 787.

Figure 1 shows the allowed region for C111. The bounds obtained in (5.15)
and (5.16) grow quadratically in N1.

It is instructive to consider the averaged quantity 〈c2111〉 = C111

N3
1

defined

in (1.2). Figure 2 shows the upper bound on 〈c2111〉 as a function of N1.
Maximizing over N1, we find a global upper bound

(5.17) 〈c2111〉 =
C111

N3
1

≤ 31

8
.

Using the bounds obtained in (5.15) and (5.16), we can also obtain global
bounds on the averages of the squares of higher three point functions
〈c2h1h2h3

〉. For the first few low lying coefficients we find

(5.18) 〈c2112〉 ≤ 1.3864 · 10−5, 〈c2222〉 ≤ 1.22274 · 10−7.

The fact that these three point functions are so small on average indicates
that there is some symmetry leading to a selection rule. On the other hand,
for C333 the upper bound has its maximum at N1 = 97359, giving a global
bound

(5.19) 〈c2333〉 ≤ 0.31,

which is much larger than (5.18).
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Figure 3. The allowed region for the light data N1, C111, and C222, satisfying
the unitarity constraints for the c = 40 theory.

5.3. c=40

The genus one partition function is still determined by N1 alone, giving

(5.20)

N2 = 9 (55N1 + 2291) ,

N3 = 69255N1 + 86645620,

N4 = 2044760N1 + 24157197490,

N5 = 81 (401060N1 + 28684566739) .

The genus 2 partition function now depends on the light data N1, C111 and
C222. Imposing the constraints (5.2) and (5.3), we can determine the allowed
region for these three parameters, which is depicted in Figure 3.

To give a better picture, we can also derive upper bounds on C111 and
C222 as a function of N1 only. To do this first note that coefficients of the
form C1h2h3

depend only on C111 and N1. For instance, we have

(5.21) C112 = −C111

2
+N2

1 +
19N1

20
,
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which directly gives an upper bound

(5.22) C111 ≤ 2N1

(
N1 +

19

20

)
.

Similarly, higher C1h2h3
give an upper bound on C111 which is piecewise

quadratic in N1, and is plotted in Figure 4. This allows us to find a global
bound for the average square of the three point function c111 by maximising
over N1:

(5.23) 〈c2111〉 =
C111

N3
1

≤ 39

10
.

To find similar bounds on C222, we consider higher coefficients Ch1h2h3
with

hi > 1, which depend on all three parameters of the light data, i.e., N1, C111

and C222. We eliminate the dependence on C111 using the bound obtained
for C111 in terms of N1. In this way, we derive an upper bound on C222,
which we have plotted in Figure 5. The averaged quantity 〈c2222〉 has the
following global bound:

(5.24) 〈c2222〉 . 9.48 · 10−6.

200 400 600 800 1000
N1

50000

100000

150000

200000

C111

Figure 4. Upper bound on C111 for c = 40.
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C222

Figure 5. Upper bound on C222 for c = 40.

5.4. c=48

The multiplicities of primary fields with higher dimensions are given in terms
of N1 and N2. For the first few multiplicities we have

(5.25)

N3 = 196882N1 −N2 + 42987519,

N4 = 15625(1363N1 + 2588731)−N2,

N5 = 2773(303862N1 + 3052113849),

N6 = 4189(4621643N1 + 189648425948),

N7 = 312092484375N1 +N2 + 44323300777781250,

N8 = 3875(1006083871N1 + 439403786287702).

We observe that some of the expressions depend on both N1 and N2, while
others depend only on N1. This is in general the case for theories with central
charge c = 24`, ` ∈ Z: the torus partition function of such theories contains a
term which is proportional to ∆c/24 = ∆`, where ∆ is the discriminant (2.6).
Taking into account the pre-factor of the character (4.14) which is of the form

q/∆
c/24

, we find that the contribution of this term to the character is only
one term: a` q

`, where a` is a constant (see equations (4.27) and (B.9)). The
coefficient of each term in the q-expansion of the character (ah q

h) includes
the contribution from Virasoro primaries of that dimension (i.e., Nh) as well
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as Virasoro descendants of primary fields of lower dimensions:

(5.26) ah = Nh +

h−1∑
i=0

p(h− i)Ni,

where p(h− i) are the integer partitions corresponding to descendants at
level (h− i).1 Thus, the contribution of a` to Nh, h > `, only appears in the
descendants of lower dimensional primaries and so is dressed with the integer
partitions corresponding to the descendant level. It is then easy to see that,
for some values of h > `, the cancellations between the terms containing a`
(dressed with integer partitions) yields vanishing of N` in the expression for
Nh, as observed in equation (5.25) above for ` = 2 (see also (5.33) for the
case of ` = 3). We note that this is only the case for theories with c = 24`,
and suggests that in these theories the multiplicity of the ‘heavy’ field with
h = c/24 either does not affect the number of heavier primary fields (Nh,
h > c/24), or comes in with a coefficient of O(1) whereas the coefficients of
Nhi with hi < c/24 are orders of magnitude larger.

Imposing (5.2) and (5.3), we then obtain the following bounds on N2,
which is valid if N1 > 0:

(5.27) 23N1 + 71 ≤ N2 ≤
1

5
(78739N1 + 11951203).

Here the upper and lower bound come from C133 and C122, respectively.
Next we obtain a bound on C111 by considering the coefficients C1h2h3

,
which again only depend on N1, N2, and C111, yielding

(5.28) 0 ≤ C111 ≤
504

3029
N1(N1 + 152),

where the upper bound comes from C133, and we have used (5.27) to elimi-
nate the dependence on N2. If we want to keep the dependence on N2, the
result is shown in Figure 6.

Finally, by considering the higher coefficients Ch1h2h3 , and using (5.28)
to bound C111, we find the region in the space of parameters N1, and N2, and
C222 which satisfies all the constraints. This region is depicted in Figure 7.

We note that the c = 48 extremal CFT partition function, for which we
have N1 = N2 = C111 = C222 = 0, satisfies all our inequalities and is com-
patible with our results.

1We note that since L−1 annihilates the vacuum, the counting of the number of
descendants is different for i = 0 compared to i > 1.
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Figure 6. Parameter space of N1, N2, and C111 for CFTs with c = 48 satis-
fying (5.2) and (5.3).

Figure 7. Parameter space of N1, N2, and C222 for CFTs with c = 48 satis-
fying (5.2) and (5.3).
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Figure 8. Allowed parameter space of N1, N2, and C122 for CFTs with
c = 56.

5.5. c=56

The multiplicities Nh are fixed by N1 and N2 as

(5.29)

N3 = 139750N1 + 247N2 + 7402775,

N4 = 851(81313N1 + 39875487) + 3875N2,

N5 = 5679389(1220N1 + 2985119) + 30380N2.

The coefficients C112 depends on N1 and C111, and yields the following
bound on C111

(5.30) C111 ≤
1

14

(
28N2

1 + 27N1

)
.

Similarly, we can find bounds on the other light data. As an example, Fig-
ure 8 shows the region in the parameter space where the constraints (5.2)
and (5.3) are satisfied for C122.
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Figure 9. Allowed parameter space of N1, N2, and C122 for CFTs with
c = 64.

5.6. c=64

The multiplicities of primary fields depend on N1 and N2. For the first few
low lying values we have

(5.31)

N3 = 3(7038N1 + 165N2 + 92837),

N4 = 86714875N1 + 69255N2 + 13996384631,

N5 = 140095(602550N1 + 483860983) + 2044760N2.

From C112 we find the bound

(5.32) C111 ≤
1

16

(
32N2

1 + 31N1

)
.

As an example for the other light data, we again plot the allowed region for
C122 in Figure 8.
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5.7. c=72

The multiplicities of primary fields Nh are determined by N1, N2, and N3,
and for the first few values of h we have

(5.33)

N4 = 43184401N1 + 196882N2 −N3 + 2593096792,

N5 = 40470218750N1 + 21296875N2 −N3 + 12753498297254,

N6 = 8464354312603N1 + 842609326N2 + 9516562869359272,

N7 = 71(11189529807869N1 + 272676937N2 + 36808438051520256).

Again we see that some of the multiplicities only depend on N1 and N2 and
not on N3. If N1 > 0, then from C144 and C133 we obtain upper and lower
bounds on N3:

94N1 + 23N2 + 119(5.34)

≤ N3 ≤
1

5
(12029942N1 + 78739N2 + 585513523).

Note that again the extremal partition function satisfies all our constraints
and is thus compatible with unitarity.
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Appendix A. Eisenstein series of degree one and two

The Eisenstein series of degree g and weight k are defined as

(A.1) E
(g)
k (Ω) =

∑
C,D

det(CΩ +D)−k,

(
A B
C D

)
∈ Sp(2g,Z),

A.1. Degree one

The Eisenstein series of degree one are of the form

(A.2) E
(1)
k (τ) =

∑
c,d∈Z

(c,d)6=(0,0)

1

(cτ + d)k
,

(
a b
c d

)
∈ SL(2,Z).

The Eisenstein series have Fourier expansions in terms of the multiplicative
period q = e2πiτ . It is customary to use the normalisation

(A.3) Gk(τ) :=
E

(1)
k (τ)

2ζ(k)
= 1 +

2

ζ(1− k)

∞∑
n=1

σk−1(n) qn,

where ζ(k) is the Riemann ζ function and σk(n) is the divisor sum function

(A.4) σk(n) =
∑
d|n

dk.

A.2. Degree two

The Fourier expansion of the Eisenstein series of degree two in terms of the
period matrices τij is of the form [27]

(A.5) E
(2)
k (Ω) ≡ Ek(Ω) =

∑
N

ak(n,m, r) e2πi tr(NΩ),

where Ω is given by (2.7) and

(A.6) N =

(
n r

2
r
2 m

)
.
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In terms of the multiplicative periods we have

(A.7) Ek =

∞∑
n,m=0

∑
r∈Z

4nm−r2≥0

ak(n,m, r) qn11 q
m
22 q

r
12.

The Fourier coefficients ak(n,m, r) are given by

ak(n,m, r) =
2

ζ(3− 2k)ζ(1− k)
(A.8)

×
∑

d|(n,m,r)

dk−1H

(
k − 1,

4nm− r2

d2

)
,

where H(k − 1, N) is the Cohen function introduced in [28]. It can be com-
puted from a modified version of the Dirichlet L-series as H(k − 1, N) =
L−N (2− k) (page 21 of [29]). This modified Dirichlet L-series in turn is
defined as
(A.9)

LD(s) =


0 if D 6= 0, 1 (mod4),

ζ(2s− 1) if D = 0,

LD0
(s)
∑
d|f
µ(d)

(
D0

d

)
d−sσ1−2s(f/d) if D = 0, 1 (mod4) , D 6= 0.

Here D0 is the discriminant of the algebraic number field Q(
√
D), and f is

given by D = D0f
2.
(
D0

d

)
is the Kronecker symbol, and LD0

(s) is its asso-
ciated Dirichlet L-series defined in the usual way as LD0

(s) = L
(
s,
(
D0

·
))

=∑∞
n=1

(
D0

n

)
n−s. µ is the Möbius µ-function, and σ is again the divisor sum

function (A.4). The Cohen function is always rational with a bounded de-
nominator and a table with some values of the Cohen function is provided
in [28]. We choose the normalization such that ak(0, 0, 0) = 1.

The other two generators of the ring of degree 2 modular forms (2.8)
can be written as

(A.10) χ10 =
43867

212 · 35 · 52 · 7 · 53
(E10 − E4E6),

and

(A.11) χ12 =
131 · 593

213 · 37 · 53 · 72 · 337
(32 · 72E3

4 + 2 · 53E2
6 − 691− E12).
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Appendix B. More on genus two partition functions

This appendix contains the genus 1 and genus 2 partition functions for
meromorphic CFTs with central charge c = 56, c = 64, and c = 72.

B.1. c=56

The light data of the CFT has 6 elements:

L = {N1, N2, C111, C122, C222, C223}.

We find

W c=56
1 = G7

4 + (N1 − 1736)G4
4 ∆(B.1)

+ (−991N1 +N2 + 401661)G4 ∆2.

The character then reads

χc=56
1 = q2

(
j(τ)2 + (N1 − 1736)j(τ)(B.2)

+ (N2 − 991N1 + 401661)
)
χc=8

1

= 1 +N1q + (1 +N1 +N2)q2

+ (7402776 + 139752N1 + 248N2)q3

+ (4124N2 + 69337116N1 + 33941442214)q4 +O(q5).

There are 10 terms contributing to the genus 2 amplitude:

Zc=56
2 =

1

(F12)7/3

(
b1E

7
4 + b2E

4
4 ψ12 + b3E

4
4 χ12 + b4E4 ψ

2
12(B.3)

+ b5E4 χ
2
12 + b6E4 ψ12 χ12 + b7E

2
4 χ

2
10

+ b8E
3
6 χ10 + b9E6 ψ12 χ10 + b10E6χ12 χ10

)
,
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where

(B.4)

b1 = 1, b2 = N1 − 1736,

b3 = N1(N1 + 238)− 2(N2 + 394717),

b4 = N2 − 991N1 + 401661,

b5 = (−991N1 +N2 + 401661)(737N1 +N2 + 387837),

b6 = (−N1 − 1720)(991N1 −N2 − 401661),

b7 =
1

1827

(
137030075N2

1 + 114086N2N1 + 35003496654N1

+ 203N2
2 − 203522406N2 + 57549384551511

− 1781149608C111 − 2322656C122

+ 26796C222 − 2436C223

)
,

b8 =
1

3

(
N2

1 − 26N1 − 2N2 + 918790− 12C111

)
,

b9 =
1

3

(
1457N2

1 +N2N1 + 264101N1 − 3704N2

+ 1488057192− 17772C111 − 12C122

)
,

b10 =
2

609

(
− 15219925N2

1 + 75110N2N1 + 30968282142N1

+ 203N2
2 − 20201052N2 − 12792520067067

+ 445554144C111 − 1504804C122

− 1218C222 − 1218C223

)
.

B.2. c=64

The light data of the theory has 8 elements in this case: L = {N1, N2, C111,
C122, C222, C223, , C233, C333}. The degree 1 modular form W c=64

1 is found
to be

(B.5) W c=64
1 = G8

4 + (N1 − 1984)G5
4 ∆ + (N2 − 1239N1 + 705057)G2

4 ∆2,

and the character reads

χc=64
1 = q2

(
j(τ)2 + (N1 − 1984)j(τ) + (N2 − 1239N1 + 705057)

)
(χc=8

1 )2

= 1 +N1q + (1 +N1 +N2)q2 + 4(124N2 + 5279N1 + 69628)q3+

+ 8 (8719N2 + 10841999N1 + 1749582893)q4 +O(q5).(B.6)
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The genus 2 partition function consists of contributions from 12 terms:

Zc=64
2 =

1

(F12)8/3

(
b1E

8
4 + b2E

5
4 ψ12 + b3E

5
4 χ12 + b4E

2
4 ψ

2
12(B.7)

+ b5E
2
4 χ

2
12 + b6E

2
4 ψ12 χ12 + b7E

4
4 E6 χ10

+ b8E
3
4 χ

2
10 + b9E4E6 ψ12χ10 + b10E4E6 χ12 χ10,

+ b11 ψ12 χ
2
10 + b12 χ12 χ

2
10

)
,

where

(B.8)

b1 = 1, b2 = N1 − 1984,

b3 = N1(N1 + 238)− 2(N2 + 451105),

b4 = N2 − 1239N1 + 705057,

b5 = (−1239N1 +N2 + 705057)(489N1 +N2 + 262689),

b6 = (−N1 − 1472)(1239N1 −N2 − 705057),

b7 =
1

3
(N2

1 − 26N1 − 2N2 + 1050046− 12C111),

b8 =
1

198

(
15101526N2

1 + 1452N2N1 + 3334984620N1 + 22N2
2

− 22587411N2 + 7475259339009− 192900048C111

− 120768C122 + 2904C222 − 264C223

)
,

b9 =
1

3

(
− 519N2

1 +N2N1 + 802641N1 − 496N2 − 349708272

+ 5940C111 − 12C122

)
,

b10 =
1

66

(
− 309012N2

1 − 5544N2N1 + 11166410904N1

+ 44N2
2 − 3344715N2 − 7826350562613

+ 161128704C111 − 195216C122

− 264C222 − 264C223

)
,

b11 =
1

1089

(
− 24762459808N2

1 + 92107488N2N1

+ 25689118498597N1 − 243936N2
2

− 22372632711N2 − 9067003012774080

+ 306936877136C111 − 195216C212

− 264C222 − 264C223

)
,
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b12 =
4

363

(
− 94717727296N2

1 + 2931120192N2N1 + 589970738884957N1

− 7248384N2
2 − 723196407978N2 − 425511987841071945

+ 20051460666080C111 − 27307245504C212

− 1034989956C222 + 24772572C223

+ 435600C323 + 17424C333

)
.

B.3. c=72

The light data of the theory is L = {N1, N2, N3, C111, C122, C222, C223, C233,
C333, C334}. The modular form W c=72

1 contains contributions from four
terms:

W c=72
1 = G9

4 + (N1 − 2232)G6
4∆ + (−1487N1 +N2 + 1069957)G3

4∆2(B.9)

+ (159026N1 − 743N2 +N3 − 36867719)∆3,

and, using (4.14), the genus 1 partition function is found to be

χc=72
1 = 1 +N1q + (1 +N1 +N2)q2 + (1 + 2N1 +N2 +N3)q3(B.10)

+
(

43184404N1 + 54(3646N2 + 48020311)
)
q4

+ 4
(

10128350789N1 + 512(10495N2 + 6228560251)
)
q5

+ 54
(

157498350003N1+16005555N2+176468917663891
)
q6

+O(q7).

The genus 2 amplitude consists of 17 terms of the form:

Zc=72
2 =

1

(F 12
2 )

3

(
b1E

9
4 + b2E

6
4 ψ12 + b3E

6
4 χ12 + b4E

3
4 ψ

2
12(B.11)

+ b5E
3
4χ

2
12 + b6E

3
4 ψ12 χ12 + b7 ψ

3
12 + b8 ψ

2
12 χ12

+ b9 ψ12 χ
2
12 + b10 χ

3
12 + b11E

5
4 E6 χ10

+ b12E
4
4 χ

2
10 + b13E

2
4 E6 ψ12χ10

+ b14E
2
4 E6 χ12χ10 + b15E4 ψ12 χ

2
10

+ b16E4 χ12 χ10 + b17E6 χ
3
10

)
,
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where

b1 = 1, b2 = N1 − 2232,

b3 = N2
1 + 238N1 − 2 (N2 + 507493) ,

b4 = −1487N1 +N2 + 1069957,

b5 = −676419N2
1 + (240N2 − 2 (N3 + 39441780))N1 +N2

2 + 1803962N2

− 720N3 + 239514348745,

b6 = −1487N2
1 + (N2 − 1227209)N1 + 3453N2 − 3N3 + 1420230525,

b7 = 159026N1 − 743N2 +N3 − 36867719,

b8 = (N1 + 2952) (159026N1 − 743N2 +N3 − 36867719) ,

b9 = (1969N1 +N2 + 2314117) (159026N1 − 743N2 +N3 − 36867719) ,

b10 = 91515328324N2
1 + (−270936572N2 + 734500N3 + 27617614928260)N1

− 731855N2
2 +N2

3 + 242N2(N3 − 1092878759) + 270214322 +N3

− 11321414397534479,

b11 =
1

3
(−12C111 +N2

1 − 26N1 − 2N2 + 1181302),

b12 =
1

27
(2462547N2

1 − 1290N2N1 + 156350382N1 + 3N2
2 − 3746382N2

+ 1296N3 + 1300027361735)− 1137592C111 +
17120C122

333
+ 396C222 − 36C223,

b13 =
1

3
(−767N2

1 +N2N1 + 1003687N1 + 1485N2 − 3N3 − 685444851

+ 8916C111 − 12C212),

b14 = −2

9
(−74733N2

1 − 363N2N1 + 3N3N1 − 575177475N1 − 3N2
2

− 1013904N2 + 1080N3 + 878731318367 + 18C222 + 18C223)

+ 2927424C111 −
108088C122

111
,

b15 = −867016339094N2
1

12321
+

20152397N2N1

111
− 139N3N1

9

+
198581235265705N1

4107
− 1273N2

2

9
+

1146291334N2

9

− N2N3

9
− 2295505N3

9
− 256516494599113

9

+
1158890673456C111

1369
− 190139008C122

111
− 14364C222 + 1348C223 + 4C322 + 16C323,
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b16 = −12936962575678N2
1

1369
+

7297613773N2N1

111
− 10182755N3N1

111

+
23259488428568161N1

4107
+

324899N2
2

3
− N2

3

3
+

94920984976N2

3

− 158N2N3

3
− 30406417204N3

573
− 36705982837911919

3

+
613750982045768C111

1369
+

20533968136C122

111
− 11890998C222

− 170710C223 −
374664C233

101
+ 24C333 + 16C334,

and,

b17 =
103598772879382N2

1

36963
− 10744270517N2N1

999
+

2868763N3N1

999

− frac44331239306584169N136963 +
319738N2

2

27
− 2N2

3

27

− 137795278558N2

27
+

632N2N3

27
+

50261856514N3

5157

+
17090981447176756

27
− 143270294050616C111

4107

+
31421366264C122

333
+ 1187070C222 −

300838C223

3

− 286488C233

101
− 56C333 +

16C334

3
.

References

[1] R. Rattazzi, V. S. Rychkov, E. Tonni, and A. Vichi, Bounding scalar
operator dimensions in 4D CFT, JHEP 0812 (2008) 031.

[2] F. Kos, D. Poland, and D. Simmons-Duffin, Bootstrapping mixed cor-
relators in the 3D Ising model, JHEP 1411 (2014) 109.

[3] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi, Bootstrapping the
O(N) Archipelago, JHEP 11 (2015) 106.

[4] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi, Precision Islands
in the Ising and O(N) models, arXiv:1603.04436 [hep-th].

[5] S. Hellerman, A universal inequality for CFT and quantum gravity,
JHEP 1108 (2011) 130.

[6] D. Friedan and C. A. Keller, Constraints on 2d CFT partition functions,
JHEP 1310 (2013) 180.



i
i

“3-Zadeh” — 2019/5/3 — 22:20 — page 1486 — #40 i
i

i
i

i
i

1486 C. A. Keller, G. Mathys, and I. G. Zadeh

[7] C. A. Keller and H. Ooguri, Modular constraints on Calabi-Yau com-
pactifications, Commun. Math. Phys. 324 (2013), 107–127.

[8] S. Collier, Y.-H. Lin, and X. Yin, Modular bootstrap revisited, arXiv:
1608.06241 [hep-th].

[9] G. W. Moore and N. Seiberg, Classical and quantum conformal field
theory, Commun. Math. Phys. 123 (1989) 177.

[10] M. R. Gaberdiel and R. Volpato, Higher genus partition functions of
meromorphic conformal field theories, JHEP 06 (2009) 048.

[11] M. R. Gaberdiel, C. A. Keller, and R. Volpato, Genus two partition
functions of chiral conformal field theories, Commun. Num. Theor.
Phys. 4 (2010), 295–364.

[12] M. Cho, S. Collier, and X. Yin, Recursive representations of arbitrary
Virasoro conformal blocks, arXiv:1703.09805 [hep-th].

[13] P. Bouwknegt, Extended conformal algebras, Phys. Lett. B207 (1988)
295.

[14] M. Headrick, A. Maloney, E. Perlmutter, and I. G. Zadeh, Rényi en-
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