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Cut-and-join description of generalized

Brezin–Gross–Witten model

A. Alexandrov

We investigate the Brezin–Gross–Witten model, a tau-function of
the KdV hierarchy, and its natural one-parameter deformation,
the generalized Brezin–Gross–Witten tau-function. In particular,
we derive the Virasoro constraints, which completely specify the
partition function. We solve them in terms of the cut-and-join op-
erator. The Virasoro constraints lead to the loop equations, which
we solve in terms of the correlation functions. Explicit expressions
for the coefficients of the tau-function and the free energy are de-
rived, and a compact formula for the genus zero contribution is
conjectured. A family of polynomial solutions of the KdV hierar-
chy, given by the Schur functions, is obtained for the half-integer
values of the parameter. The quantum spectral curve and its clas-
sical limit are discussed.
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1348 A. Alexandrov

1. Introduction

The Brezin–Gross–Witten (BGW) model

(1) ZBGW =

∫
[dU ] e

1

~Tr (A†U+AU†)

was introduced in the lattice gauge theory over 35 years ago [1, 2]. Later it
was shown that in the weak coupling phase this model satisfies the Virasoro
constraints [3]. Moreover, it is a tau-function of the KdV integrable hierarchy
and can be described by the generalized Kontsevich model [4].

This makes the BGW model interesting and, in many respects, similar
to the Kontsevich-Witten tau-function [5, 6] – one of the most important
and beautiful ingredients of the modern mathematical physics. However,
unlike the Kontsevich–Witten (KW) tau-function, which generates the in-
tersection numbers of the moduli spaces or Riemann surfaces, and many
other matrix models, for which enumerative geometry/combinatorics inter-
pretation is known, similar interpretation of the BGW tau-function is still
not available. Using the generalized Kontsevich model description of this
tau-function, one can try to identify it with the generating function of the
r-spin intersection numbers for r = −2. However, corresponding geometri-
cal construction is not available yet, thus, it is impossible to compare the
intersection numbers with the correlation functions of the matrix model.

In spite of this absence of geometrical interpretation, the BGW tau-
function is known to play (similarly to the KW tau-function) an important
role in the topological recursion/Givental decomposition [7–11]. Namely, it
appears in decomposition of the complex matrix model [12–14] and, in gen-
eral, corresponds to the hard walls (see [15] and references therein).

Recently, it was shown that a natural one parametric deformation of
the KW tau-function, called the Kontsevich–Penner model, describes open
intersection numbers[16–18], a new and extremely interesting set of enu-
merative geometry invariants, which was introduced in [19, 20]. The matrix
integral description allows us to show that their generating function is a
tau-function of the modified KP (MKP) hierarchy, and to construct a full
family of the Virasoro and W-constraints. This model possess a number of
nice properties and, arguably, is even more beautiful and natural then any
of its specifications (in particular, the KW tau-function).

Thus, to find a natural interpretation of the BGW tau-function one can
try to consider its deformation, analogous to the Kontsevich–Penner defor-
mation of the KW tau-function. It is easy to construct this deformation using
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Generalized Brezin–Gross–Witten model 1349

the generalized Kontsevich model representation. In this representation it
corresponds to the logarithmic deformation of the potential. This deformed
model was introduced in [4] and is given by the matrix integral

(2) τN ∼
∫

[dΦ] exp

(
Tr

(
Λ2Φ

~
+

1

~Φ
+ (N −M) log Φ

))
.

From the general properties of the generalized Kontsevich model (GKM)
[21] it follows that it is a tau-function of the MKP hierarchy with discrete
time N . However, other properties of this model have not been investigated
in detail so far. In particular, the Virasoro constraints were not known. The
main goal of this paper is to fill this gap and to describe the generalized
BGW model (2) and its interesting specifications, in particular the original
BGW model.

We show that the tau-function (2) is well definite for any complex (not
necessarily integer!) value of N . Moreover, for any given value of N this is
a tau-function of the KdV hierarchy. We describe the Kac–Schwarz algebra
for this tau-function and derive the Virasoro constraints. Here the differ-
ence with the Kontsevich–Penner model is quite transparent: to describe
the Kontsevich–Penner model one should introduce higher W-constraints,
while the partition function of the generalized BGW model is completely
fixed by the Virasoro constraints. Moreover, only the first of them (the
string equation) depends on N , thus, on the level of linear constraints, the
case of general N is almost as simple as the case with N = 0.

Often the Virasoro and W-constraints can be solved in terms of the
cut-and-join operator. Corresponding method was introduced in [22] for the
Gaussian branch of the Hermitian matrix model and later has been applied
to the KW tau-function [23] and to the Kontsevich–Penner model [17, 18].
We solve the Virasoro constraints for the BGW and generalized BGW tau-
functions in terms of the cut-and-join operator:

(3) τN = e~ŴN · 1,

where

ŴN =
1

2

∞∑
k,m=0

(2k + 1)(2m+ 1)t2k+1t2m+1
∂

∂t2k+2m+1
(4)

+
1

4

∞∑
k,m=0

(2k + 2m+ 3)t2k+2m+3
∂2

∂t2k+1∂t2m+1

+

(
1

16
− N2

4

)
t1.
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1350 A. Alexandrov

Using this operator we derive the coefficients of expansion of the tau-
function and free energy. Here we see that the case of generalized BGW
tau-function is much more interesting comparing to the original BGW tau-
function. In particular, while for the BGW tau-function the genus zero con-
tribution to the free energy is equal to zero (and higher genera contribu-
tions are rational functions of only finite number of times), for general N
this is not the case. Namely, for any genus the free energy is a non-trivial
function of all times. The results of computations allow us to conjecture a
compact expression for the genus zero free energy of the generalized BGW
tau-function.

We also derive an equation for the quantum spectral curve of the gen-
eralized BGW tau-function,

(5)

(
~2x2 ∂

2

∂x2
+ ~2x

∂

∂x
− x− S2

4

)
ΨS(x) = 0,

where S = ~−1N . As for other KP/Toda tau-functions, which describe the
enumerative geometry invariants, the equation for the quantum spectral
curve, up to a conjugation, coincides with one of the Kac–Schwarz operators
[17, 24, 25]. In the classical limit we get a genus zero spectral curve with
one branch point.

The Virasoro constraints allow us to derive the loop equations and to
solve them recursively. The correlation functions are defined on the spectral
curve and they are symmetric polynomials in the inverse global coordinate.
Thus, corresponding differentials are meromorphic with poles only at the
branch point.

For the half-integer values of the parameter N , the generalized BGW
tau-function is a polynomial in times. More specifically, it is given by the
Schur functions of the dilaton shifted times, labelled by the triangular par-
titions. We describe this family of the KdV tau-functions (which constitute
an infinite MKP tau-function) in detail.

All this allows us to conclude that, as in the case of the Kontsevich–
Penner model, the deformed model appears to be more beautiful and natural
then the original one. Unfortunately, a unitary integral representation of
this deformed model is not known, and we do not expect that this model is
directly related to the original lattice gauge models. However, some of our
results (in particular, the cut-and-join representation) should be useful for
the original BGW model. Moreover, from the Virasoro constraints derived
in Section 3.1 it follows that the generalized BGW model describes a model
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Generalized Brezin–Gross–Witten model 1351

of the open-closed string theory involving gravity[26], which can be obtained
from the unitary matrix model in a double scaling limit [27].

The present paper is organized as follows. In Section 2 we consider the
original BGW model and, basically following [4], describe it in terms of
the GKM. Section 3 is devoted to the generalized BGW tau-function. In the
Appendices we present explicit expressions for expansion of the tau-function
and free energy of BGW and generalized BGW tau-functions.

2. Brezin–Gross–Witten model

The partition function of the BGW model [1, 2] is given by an M ×M
unitary matrix integral

(6) ZBGW =

∫
[dU ] e

1

~Tr (A†U+AU†).

Here the Haar measure on the unitary group U(M) is normalised by
∫

[dU ] =
1 and the parameter ~ describes the topological expansion (see below).
Naively, (6) depends on two external matrices, A and A†, but actually it
depends only on their product, more precisely on the square root of it

(7) Λ :=
(
A†A

) 1

2

.

The behaviour of this matrix model is essentially different at large and
small values of ~−1Tr Λ−1 and there is a phase transition between these
two regimes [1, 2, 28]. In this paper we consider only the so-called Kont-
sevich (weak coupling) phase, which corresponds to the large values of the
eigenvalues of the matrix Λ. Below for simplicity we assume that the matrix
Λ is diagonal

(8) Λ = diag (λ1, . . . , λM ).

2.1. Description in terms of generalized Kontsevich model

As many other important matrix models, the BGW model can be described
in terms of the generalized Kontsevich model [21]. Namely, as it was shown
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by A. Mironov, A. Morozov and G. W. Semenoff in [4],

(9) ZBGW =

∫
[dΦ] exp

(
Tr

(
Λ2Φ

~
+

1

~Φ
−M log Φ

))
∫

[dΦ] exp

(
Tr

(
1

~Φ
−M log Φ

)) .

In this section we basically follow the approach of [4].
Actually, (9) as well as (6) depends only on the ratio Λ/~, thus it is

convenient to introduce

(10) Λ̃ :=
Λ

~
= diag (λ̃1, . . . , λ̃M ),

and λ̃i = λi/~.
In (9) we integrate over M ×M normal matrices, that is diagonolizable

matrices

(11) Φ = U diag (φ1, . . . , φM )U †, φi ∈ γ,

where U is unitary and the contour γ runs from −∞ to a small circle en-
closing zero, and then returning to −∞. Then the measure of integration
can be expressed in terms of U and φi’s in the standard way

(12) [dΦ] = ∆(φ)2 [dU ]

M∏
i=1

dφi,

where

(13) ∆(φ) =
∏
i<j

(φj − φi)

is the Vandermonde determinant.
After integration over the unitary matrix U with the help of the HCIZ

formula, (9) reduces to

(14) ZBGW = (−1)
M(M−1)

2

M∏
j=1

(j − 1)!
detMi,j=1

(
λ̃M−ij IM−i(2λ̃j)

)
∆(λ̃2)

.

Here

(15) Iν(x) =

(
2

x

)ν 1

2πi

∫
γ
e
x2φ

4
+ 1

φ
dφ

φν+1
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is the modified Bessel function and the normalization of (14) can be easily
found from its small x expansion

(16) Iν(x) =
1

Γ(ν + 1)

(x
2

)ν
(1 +O(x)).

From this eigenvalue integral representation it immediately follows that
in the Kontsevich phase

(17) τBGW (Λ) = C−1
BGW ZBGW ,

where

(18) CBGW =
e2Tr Λ̃

∏M
i=1 (j − 1)!

(2π)
M

2 det
(

Λ̃⊗ 1 + 1⊗ Λ̃
) 1

2

,

is a tau-function of the KP hierarchy. Indeed,

(19) τBGW (Λ) =
detMi,j=1 Φj(λi)

∆(λ)
,

which defines a tau-function in the Miwa parametrization

(20) tk =
1

k
Tr Λ−k.

Here Φj ’s are the so called basis vectors, which can be expressed in terms of
the modified Bessel functions (15),

Φj(λ) =
√

4πλ̃ λj−1e−2λ̃Ij−1(2λ̃)(21)

=

√
4πλ̃

2πi
~j−1e−2λ̃

∫
γ
eλ̃

2t+ 1

t
dt

tj
.

We consider only the asymptotic expansion of the modified Bessel function
for large values of λ (we assume that arg λ 6= π)

(22) Φj(λ) = λj−1

(
1 +

∞∑
k=1

(−~)k

λk
ak(j)

16k k!

)
,

where

(23) ak(j) = (4(j − 1)2 − 12)(4(j − 1)2 − 32) · · · (4(j − 1)2 − (2k − 1)2),
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thus, Φj(λ)’s are of the form

(24) Φj(λ) = λj−1(1 +O(λ−1)).

This guarantees that

(25) τBGW (Λ) = 1 +O(λ−1
j ).

Vectors (21) are defined for all j ∈ Z. Vectors for j ≥ 1 define a point of
the big cell of the Sato Grassmannian [29–31]1

(26) WBGW = 〈Φ1,Φ2,Φ3, . . . 〉 .

Any such point corresponds to a tau-function of the KP hierarchy, which is
a formal series in the times tk and solves the bilinear identity

(27)

∮
∞
eξ(t−t

′,z) τ(t− [z−1], ~) τ(t′ + [z−1], ~)dz = 0.

Here ξ(t, z) =
∑∞

k=1 tkz
k and we use the standard notation

(28) t±
[
z−1
]

=

{
t1 ±

1

z
, t2 ±

1

2z2
, t3 ±

1

3z3
, . . .

}
.

Thus, the BGW tau-function

(29) τBGW (t, ~)

is defined by the point (26), or equivalently, it can be considered as a limit
of the ration of determianants (19) as the size of the matrices M tends to
infinity. In this limit all the Miwa variables (20) are independent.

In the Sato Grassmannian description the first basis vector plays a spe-
cial role. It is related to the tau-function by

(30) Φ1(λ) = τ([λ−1], ~),

and is equal to the dual Baker–Akhiezer function at t = 0.

1In this paper we consider only the index (or charge) zero sector of the Sato
Grassmannian, thus all points corresponding to the different values of the discrete
time are described in the same space. Equivalent description should include a flag
of the Sato Grassmannians with different indices.
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It is clear that the parameter ~ is not independent and can be removed
by the time variables rescaling

(31) τBGW (t, ~) = τBGW (t, 1)
∣∣∣
tk=~ktk

.

Let us stress that the expansion of τBGW (t, ~) in ~ is not the genus expan-
sion, but the topological expansion. More concretely,

(32) τBGW (t, ~) = exp

 ∞∑
g=0

∞∑
n=1

~−χFg,n(t)

 ,

where χ = 2− 2g − n can be considered as the Euler characteristic. Here
Fg,n(t) is a genus g contribution to free energy, which is a homogeneous
polynomial in times tk of degree n,

(33)

∞∑
k=0

tk
∂

∂tk
Fg,n(t) = nFg,n(t).

To get the genus expansion, one should multiply the times by ~−1:

(34) τBGW (~−1t, ~) = exp

 ∞∑
g=0

~2g−2Fg(t)

 .

Fg(t) is the genus g contribution to the free energy and

(35) Fg(t) =

∞∑
n=1

Fg,n(t).

It is known [14, 32] that

(36) F0 = 0,F1 = −1

8
log

(
1− t1

2

)
,

and for g > 1 all Fg are polynomials in the variables

(37) Tk =
tk

(2− t1)k
.

Variables Tk are the “moment variables” and expressions for Fk(T) for small
k were obtained in [14, 32]. With the help of the cut-and-join description
of Section 2.3 we are able to find expressions for Fg(T) for g ≤ 30. See
Appendix A for the expressions of Fg(T) for g ≤ 9.
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2.2. KdV hierarchy and Virasoro constraints

It is well-known that the tau-function τBGW (t, ~) does not depend on even
times t2k [32]. Thus, it is a tau-function of the 2-reduction of the KP hierar-
chy, which is the KdV hierarchy [4]. Probably the simplest way to show it is
to use the Sato Grassmannian description and the Kac–Schwarz operators
[33] as it was done in [4].

The Kac–Schwarz (KS) operators [4, 24, 33–36] are the differential op-
erators in one variable which stabilize the point of the Sato Grassmannian
for a given tau-function. For any tau-function the corresponding KS op-
erators constitute an algebra (a subalgebra in w1+∞). Thus, for any KS
operator we can use a correspondence between the w1+∞ and W1+∞ alge-
bras [33, 34, 36, 37] to construct an operator from W1+∞, which annihilates
the tau-function.

Let us consider the operators

(38) a =
λ

2

∂

∂λ
+
λ

~
− 1

4
, b = λ2,

satisfying the commutation relations

(39) [a, b] = b.

Using the integral representation (21) of the basis vectors it is easy to show
[4] that

(40)
aΦj = (j − 1)Φj +

1

~
Φj+1,

bΦj = j~Φj+1 + Φj+2,

thus operators a and b stabilize the point (26) of the Sato Grassmannian

aWBGW ⊂ WBGW ,

bWBGW ⊂ WBGW ,
(41)

and are the KS operators.
However, these two operators do not completely specify the point of the

Sato Grassmannian and the tau-function. Thus, they do not generate the
KS algebra. Let us find some other KS operators. Integration by parts yields

(42)
1

b
aΦj =

(
1

2λ

∂

∂λ
+

1

~λ
− 1

4λ2

)
Φj =

1

~
Φj−1.
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The operator 1
ba is not a KS operator

(43)
1

b
aΦ1 =

1

~
Φ0 /∈ WBGW .

However, combining (42) with (40) one obtains

(44)
1

b
a2 Φj =

1

~
(j − 1)Φj−1 +

1

~2
Φj

and

(45) c =
1

b
a2 =

1

4

∂2

∂λ2
+

1

~
∂

∂λ
+

1

~2
+

1

16λ2

is the KS operator. To the best of our knowledge, this KS operator for the
BGW tau-function has never been considered . Operators a, b and c satisfy
the commutation relations

(46) [c, a] = c, [c, b] = 2a+ 1,

and (39).

Proposition 2.1. Operators a and c completely specify the point WBGW

of the Sato Grassmannian.

Proof. From (45) we see that the operator c acts as

(47) c λk =
1

~2
λk
(
1 +O(λ−1)

)
.

Thus, if this is the KS operator for some point of the Sato Grassmannian,
then the first basis vector should be the eigenfunction of this operator:

(48) cΦ1 =
1

~2
Φ1.

From this equation it immediately follows that the solution corresponds to
the big cell of the Sato Grassmannian,

(49) Φ1 = 1 +O(λ−1),

and it is unique. All higher basis vectors can be generated from Φ1 by the
operator a. �
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From the correspondence between w1+∞ and its central extension W1+∞
it immediately follows that the KS operators bk and bka correspond to the
constraints

(50)
∂

∂t2k
τBGW = νk τBGW , k ≥ 1,

and

(51)

(
1

2
L̂2k −

1

~
∂

∂t2k+1

)
τBGW = µk τBGW , k ≥ 0,

for some constants νk and µk. Here

(52) L̂m =
1

2

∑
a+b=−m

abtatb +

∞∑
k=1

ktk
∂

∂tk+m
+

1

2

∑
a+b=m

∂2

∂ta∂tb

is an operator from the Virasoro subalgebra of the W1+∞ symmetry algebra
of the KP hierarchy.

From the commutation relations between the operators in the l.h.s. of
(50) and (51) it follows that

(53) νk = µk = 0, k > 0.

However, this argument does not allow us to find µ0. This fact corresponds
to the observation that the KS operators a and b do not completely specify a
point of the Sato Grassmannian. From the normalization condition (25) and
the constraint (51) with k = 0 it follows that this constant is proportional
to the first derivative of the tau-function:

(54) µ0 = −1

~
∂

∂t1
τBGW

∣∣∣
t=0

.

This derivative is equal to the coefficient in front of λ−1 of the expansion (22)
of Φ1(λ),

(55) Φ1(λ) = 1 +
~

16λ
+O(λ−2),

thus

(56) µ0 = − 1

16
.
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Since the tau-function is independent of the even times, the Virasoro
constraints (50) can be represented as

(57) ~L̂m τBGW (t, ~) =
∂

∂t2m+1
τBGW (t, ~), m ≥ 0,

where

L̂m :=
1

2

∞∑
k=0

(2k + 1)t2k+1
∂

∂t2k+2m+1
(58)

+
1

4

∑
a+b=m−1

∂2

∂t2a+1∂t2b+1
+

1

16
δm,0.

These Virasoro constraints for the BGW tau-function were obtained already
in [3]. Constraints (57) have a unique solution with the normalisation (25).
This solution will be constructed in the next section.

The KS operator c corresponds to the W1+∞ operator

(59) Ŵc =
1

4
M̂−2 +

1

~
L̂−1 −

1

8
t2,

where

M̂k =
1

3

∑
a+b+c=k

∗
∗ ĴaĴbĴc

∗
∗(60)

=
1

3

∑
a+b+c=−k

a b c ta tb tc +
∑

c−a−b=k
a b ta tb

∂

∂tc

+
∑

b+c−a=k

a ta
∂2

∂tb∂tc
+

1

3

∑
a+b+c=k

∂3

∂ta∂tb∂tc

are the cubic operators from the W1+∞ algebra. Thus, τBGW is the eigen-
function of the operator Ŵc and, from the consideration of the corresponding
linear constraint at the point tk = 0 for all k we conclude that the eigenvalue
is equal to zero:

(61) Ŵc τBGW = 0.

This equation also allows us to find µ0. Indeed, from the KdV reduction
condition (50) it follows that (61) is equivalent to

(62)

∞∑
k=0

(2k + 2)t2k+2

(
L̂k −

1

~
∂

∂t2k+1

)
τBGW = 0.
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2.3. Cut-and-join operator

Using the approach introduced in [22] we solve the constraints (57) and
construct a simple recursion, which allows us to calculate the coefficients of
the ~-expansion of the tau-function

(63) τBGW (t, ~) = 1 +

∞∑
k=1

~kτ (k)
BGW (t).

Namely, we introduce the Euler operator

(64) D̂ :=

∞∑
k=0

(2k + 1)t2k+1
∂

∂t2k+1
.

Then, combining the Virasoro constraints (57) we obtain

(65) ~ŴBGW τBGW = D̂ τBGW ,

where

ŴBGW =

∞∑
k=0

(2k + 1)t2k+1L̂k(66)

=
1

2

∞∑
k,m=0

(2k + 1)(2m+ 1)t2k+1t2m+1
∂

∂t2k+2m+1

+
1

4

∞∑
k,m=0

(2k + 2m+ 3)t2k+2m+3
∂2

∂t2k+1∂t2m+1
+
t1
16
.

does not depend on ~. From (31) it follows that

(67) D̂ τ
(k)
BGW = k τ

(k)
BGW .

and after substitution of (63) into (65) we get a recursion

(68) τ
(k+1)
BGW =

1

k + 1
ŴBGW τ

(k)
BGW .

Since τ
(0)
BGW = 1, we have

(69) τ
(k)
BGW =

Ŵ k
BGW

k!
· 1.

Thus, we proved
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Theorem 2.2.

(70) τBGW = e~ŴBGW · 1

where the differential operator ŴBGW is given by (66).

With a few lines of Maple code the author was able to find all τ
(k)
BGW for

k ≤ 90. Let us stress that the obtained expressions allow us to find explicitly
all correlation functions ωg,n for g ≤ 30 and arbitrary n (see below).

3. Generalized Brezin–Gross–Witten model

There exists a deformation of the BGW model, which depends on an addi-
tional parameter N (not to be confused with M , the size of the matrices)

(71) ZN (Λ) =

∫
[dΦ] exp

(
Tr

(
Λ2Φ

~
+

1

~Φ
+ (N −M) log Φ

))
∫

[dΦ] exp

(
Tr

(
1

~Φ
+ (N −M) log Φ

)) .

For N = 0 it obviously coincides with the BGW model (9), and for N 6= 0
the unitary integral representation of (71) is not known.

This model was introduced in [4], and in the weak coupling limit (large Λ̃)
it has very natural integrable properties. Namely, from the general theory of
GKM [21], it follows that after a multiplication by a simple quasi-classical
prefactor it is a tau-function of the MKP hierarchy, where N ∈ Z is the
discrete time.

Following the description of the open intersection numbers in terms of
the Kontsevich–Penner model, we do not require N to be an integer. It ap-
pears that the model (71) is defined perfectly well for an arbitrary N ∈ C.
Moreover, the tau-functions corresponding to the half-integer values of N
are particularly interesting: they are polynomials. We call (71) the general-
ized Brezin–Gross–Witten model. In this section we consider the generalized
BGW tau-function in detail.
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3.1. MKP hierarchy and Virasoro constraints

After integration over the unitary group (71) reduces to

ZN (Λ) = (−1)
M(M−1)

2 det(Λ̃)2N(72)

×
M∏
j=1

Γ(j −N)
detMi,j=1

(
λ̃M−N−ij IM−N−i(2λ̃j)

)
∆(λ̃2)

,

which satisfies ZN (0) = 1.
From the general theory of GKM it follows that for the large values of the

eigenvalues of Λ matrix integral (71) corresponds to the MKP tau-function

(73) τN = C−1
N ZN ,

where

(74) CN =
e2Tr Λ̃ det Λ̃N

∏M
i=1 Γ(j −N)

(2π)
M

2 det
(

Λ̃⊗ 1 + 1⊗ Λ̃
) 1

2

.

Indeed, from (72) and (74) we have

(75) τN =
detMi,j=1

(
Φ

(N)
j (λi)

)
∆(λ)

,

where the basis vectors

(76) Φ
(N)
j (λ) := λNΦj−N (λ),

and Φj ’s were defined in (21). The coefficients of their asymptotic series
expansion for the large values of |λ| depend only on j −N

(77) Φ
(N)
j (λ) = λj−1

(
1 +

∞∑
k=1

(−~)k

λk
ak(j −N)

16k k!

)
,

where ak(j) is a polynomial both in k and j given by (23). These basis
vectors define a point on the big cell of the Sato Grassmannian

(78) WN =
〈

Φ
(N)
1 ,Φ

(N)
2 ,Φ

(N)
3 , . . .

〉
.
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The value N = 0 corresponds to the original BGW model considered in
Section 2:

(79) τ0 = τBGW .

From (77) it follows that

(80) τN (t, ~) = τN (t, 1)
∣∣∣
tk=~ktk

.

Let us stress that (77) defines a point of the big cell of the Sato Grass-
mannian, thus, a KP tau-function for any N ∈ C. Moreover, it defines an
MKP hierarchy, which relates τN and τN+n for any n ∈ Z, N ∈ C. The
MKP hierarchy can be described by the bilinear identity, satisfied by the
tau-function τN (t, ~), namely, in our case,
(81)∮
∞
zneξ(t−t

′,z) τN+n(t− [z−1], ~) τN (t′ + [z−1], ~)dz = 0, N ∈ C, n ∈ N0.

Here N0 = {0, 1, 2, . . . } is the set of non-negative integers.
Again, for all N we have2

(82)
aΦ

(N)
j =

(
j − 1− N

2

)
Φ

(N)
j +

1

~
Φ

(N)
j+1,

bΦ
(N)
j = (j −N)~Φ

(N)
j+1 + Φ

(N)
j+2.

Here the KS operators a and b are given by (38) and do not depend on N .
This means, in particular, that they can not uniquely specify the point of
the Sato Grassmannian, because they stabilize all points WN .

Integration by parts yields

(83)
1

b

(
a− N

2

)
Φ

(N)
j =

1

~
Φ

(N)
j−1.

Thus

(84) cN =
1

b

(
a2 − N2

4

)

2This expression for the KS operators indicates that the generalized BGW tau-
function is closely related to the model, considered in [38].
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is the KS operator for τN :

(85) cN Φ
(N)
j =

1

~
(j − 1)Φ

(N)
j−1 +

1

~2
Φ

(N)
j

and

(86) cNWN =WN .

It satisfies the commutation relations

(87) [cN , a] = cN , [cN , b] = 2a+ 1,

and, similar to the case N = 0 considered in Section 2, we have

Proposition 3.1. Operators a and cN completely specify the point WN of
the Sato Grassmannian.

Using the Kac–Schwarz description (82) it is easy to show that the tau-
function τN (t, ~) satisfies the Virasoro constraints

(88) ~L̂(N)
m τN (t, ~) =

∂

∂t2m+1
τN (t, ~), m ≥ 0,

where

L̂(N)
m =

1

2

∞∑
k=0

(2k + 1)t2k+1
∂

∂t2k+2m+1
(89)

+
1

4

∑
a+b=m−1

∂2

∂t2a+1∂t2b+1
+ µ0δm,0,

and

(90) µ0 =
1

16
− N2

4
.

Again, the value of µ0 can be extracted from the expansion of the first basis
vector

(91) Φ
(N)
1 (λ) = 1 + ~

1− 4N2

16λ
+O(λ−2).

In the next section we prove
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Theorem 3.2. There exists a unique (up to normalization) solution of the
Virasoro constraints (88).

This theorem for ~ = 1 was proved in [39], we prove it constructively
and describe the solution in terms of the cut-and-join operator. Thus, the
generalized BGW tau-function τN (t, ~) is the unique solution of the Virasoro
constraints (88) which satisfies the normalisation condition

(92) τN (0, ~) = 1.

Equation (88) for m = 0 is the string equation for the generalized BGW
tau-function. From the KS description it follows that this equation com-
pletely specifies the KdV tau-function.

Lemma 3.3. There is only one tau-function of the KdV hierarchy, which
satisfies the string equation

(93) ~L̂(N)
0 τN (t) =

∂

∂t1
τN (t)

and the normalization condition (92).

Alternatively, the Virasoro constraints can be derived from the expansion
of the operator ŴcN , the derivation is completely similar to the one from
Section 2.2. In particular, this operator specifies the value of constant µ0.

3.2. Cut-and-join operator

Similar to the case of the BGW tau-function, considered in Section 2, we
can solve the Virasoro constraints for the generalized BGW tau-function in
terms of the cut-and-join operator:

Lemma 3.4. The solution of the Virasoro constraints (88) with the nor-
malization (92) is given by

(94) τN (t) = e~ŴN · 1
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where

ŴN =
1

2

∞∑
k,m=0

(2k + 1)(2m+ 1)t2k+1t2m+1
∂

∂t2k+2m+1
(95)

+
1

4

∞∑
k,m=0

(2k + 2m+ 3)t2k+2m+3
∂2

∂t2k+1∂t2m+1

+

(
1

16
− N2

4

)
t1

= ŴBGW −
N2

4
t1.

All other solutions of the Virasoro constraints (88) correspond to the multi-
plication of (94) by a constant.

Proof. Let us consider an arbitrary series in the time variables tk

(96) Z(t) = C +

∞∑
k=1

Z(k)(t).

where Z(k)(t) is a homogeneous polynomial of degree k,

(97) D̂Z(k)(t) = k Z(k)(t),

and C is some constant. Then, if Z(t) solves the Virasoro constraints (88),
then

(98) ~ŴN Z(t) = D̂Z(t).

From the comparison of the terms in the r.h.s. and the r.h.s. with the same
degree we conclude

(99) ~ŴN Z
(k)(t) = D̂Z(k+1)(t),

thus, from (97) it follows that

(100) Z(k+1)(t) =
~

k + 1
ŴN Z

(k)(t)

or

(101) Z(k)(t) =
~k

k!
Ŵ k
N C.
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In particular, for C = 1 we get the solution (94), which coincides with the
generalized BGW tau-function. �

We call (95) the cut-and-join operator for the generalized BGW tau-
function. This operator does not belong to the W1+∞ algebra of symmetries
of the KP hierarchy, thus, integrability is not obvious from the representa-
tion (94).

From the proof of Lemma 95 we see that the coefficients of the topological
expansion

(102) τN (t, ~) = 1 +

∞∑
k=1

~k τ (k)
N ,

satisfy the recursion

(103) τ
(k+1)
N =

1

k + 1
ŴN τ

(k)
N .

Using this recursion we calculated τ
(k)
N for k ≤ 60, expressions for k ≤ 10 are

given in Appendix B. There we introduce

Bk(N) = (−1)kak(N + 1)(104)

= (1− 4N2)(32 − 4N2) · · · ((2k − 1)2 − 4N2).

In Section 3.6 we show that for k ≤ m(m+1)
2 the polynomials τ

(k)
N are divisible

by Bm(N).
From (94) we see that the tau-function is actually a series in N2 (not in

N), thus

(105) τBGW−N (t, ~) = τBGWN (t, ~).

From this observation and from the explicit expression for τ
(1)
N we conclude

Lemma 3.5.

(106) τN (t, ~) = τÑ (t, ~)

if and inly if Ñ = ±N .

In particular, it means that the generalized BGW tau-function is not
periodic in the variable N , and it is enough to consider only the values of
N with <N ≥ 0.
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Operator (66) has a rather natural free field representation. Indeed, let
us introduce a bosonic current

(107) Ĵ(z) =

∞∑
k=1

(
(2k + 1)t2k+1z

2k +
1

2z2k+2

∂

∂t2k+1

)
+
iN

2z
,

then

(108) ŴN =
1

2πi

∮ (
•
•

1

3
Ĵ(z)3 +

1

16z2
Ĵ(z) ••

)
zdz,

where we use the standard normal ordering for the bosonic operators.
To consider the genus expansion we have to rescale the times tk 7→ ~−1tk.

Then we can rewrite (94) as

(109) τN (~−1t, ~) = e
1

~2 Ŵ
(−1)+Ŵ (0)+~2Ŵ (1) · 1,

where

(110)

Ŵ (−1) = −S
2

4
t1,

Ŵ (0) =
1

2

∞∑
k,m=0

(2k + 1)(2m+ 1)t2k+1t2m+1
∂

∂t2k+2m+1
+

1

16
t1,

Ŵ (1) =
1

4

∞∑
k,m=0

(2k + 2m+ 3)t2k+2m+3
∂2

∂t2k+1∂t2m+1
,

and we introduced a new parameter

(111) S = ~N.

From this representation it follows that after the times rescaling the gener-
alized BGW tau-function has a natural genus expansion

(112) τN (~−1t, ~) = exp

 ∞∑
g=0

~2g−2Fg(t, S)

 .

From the zeroth equation (88) it immediately follows that

(113)

∞∑
k=0

(2k + 1)t̃2k+1
∂

∂t2k+1
Fg(t, S) =

S2

2
δg,0 −

1

8
δg,1,
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where the dilaton shift of the time variables is defined by

(114) t̃k = tk −
2

~
δk,1.

Thus, up to the genus zero and genus one contributions, we can express all
Fg(t, S) in terms of the “moment variables”

(115) Tk =
tk

(2− t1)k
,

namely

(116) Fg(t, S) = F̃g(T, S) +

(
S2

2
δg,0 −

1

8
δg,1

)
log

(
1− t1

2

)
.

Moreover, from (80) it follows that Fg(T, S) are the homogeneous functions
of degree g − 1

(117)

( ∞∑
m=1

mT2m+1
∂

∂T2m+1
− S

2

∂

∂S

)
F̃g(T, S) = (g − 1) F̃g(T, S).

Thus, the genus g contribution is given by the sum

(118) F̃g(T, S) =

∞∑
k=0

(−1)kS2kF̃ (k)
g (T),

where we introduced the polynomials F̃ (k)
g (T) such that

(119)

∞∑
m=1

mT2m+1
∂

∂T2m+1
F̃ (k)
g (T) = (g + k − 1)F̃ (k)

g (T).

For k = 0 they coincide with the free energies for BGW tau-function, given
in Appendix A,

(120) F̃ (0)
g (T) = Fg(T).

Using the recursion (103) we found expressions for F (k)
g (T) for all g + k ≤ 20.

For k > 0 and g + k ≤ 8 they are given in Appendix C.
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3.3. Quantum spectral curve

The quantum spectral curve3 for the generalized BGW tau-function, as for
many other examples of the generating functions related to the KP/Toda
hierarchies [17, 24, 25], can be derived from the Sato Grassmannian descrip-
tion. Actually, the principal specialisation of any KP tau-function coincides
with the first basis vector of the corresponding point of the Sato Grass-
mannian. Often, the KS algebra contains an operator, which annihilates
this basis vector, and namely this operator describes the quantum spectral
curve.

It follows from (85) that for the generalized BGW tau-function this
vector is annihilated by a shifted operator cN :

(121)

(
cN −

1

~2

)
Φ

(N)
1 (λ) = 0.

Let us introduce a new variable:

(122) x = λ2.

Then the corresponding wave function

(123) ΨS(x) :=
~

√
4π x

1

4

e
2
√
x

~ Φ
(S~−1)
1 (

√
x)

is the modified Baker function

(124) ΨS(x) = IS~−1

(
2
√
x

~

)
.

It satisfies the modified Bessel equation

(125)

(
~2x2 ∂

2

∂x2
+ ~2x

∂

∂x
− x− S2

4

)
ΨS(x) = 0.

which is the quantum spectral curve equation for the generalized BGW
model. If we introduce the operators

(126) x̂ = x, ŷ = ~
∂

∂x
,

3For more details on quantum spectral curves see [40] and references therein.
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then we can rewrite the quantum spectral curve equation as

(127)

(
x̂ŷx̂ŷ − x̂− S2

4

)
ΨS(x) = 0,

which in the classical limit reduces to the curve

(128) x2y2 − x− S2

4
= 0

or, equivalentely

(129) y2 =
1

x
+

S2

4x2
.

This curve admits a rational parametrization:

(130) x =
S2 (z − 1)

(z − 2)2
, y =

z(z − 2)

2S(z − 1)
,

thus, the spectral curve is of genus zero.
The branch points are the zeros of the differential dx,

(131) dx = − S2z

(z − 2)3
dz,

which do not coincide with the zeros of the differential dy,

(132) dy =
z2 − 2z + 2

2 (z − 1)2 S
dz.

We see, that on the curve (130) there is only one branch point,

(133) z = 0,

which corresponds to

(134) y = 0, x = −S
2

4
.

For the BGW model, that is for S = 0, the quantum spectral curve
equation reduces to

(135) (ŷx̂ŷ − 1) Ψ0(x) = 0
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and in the classical limit

(136) y2 =
1

x
.

In this limit y plays the role of the global rational coordinate. This can be
considered as the curve for the r-spin intersection numbers with r = −2.

We claim that the Chekhov–Eynard–Orantin topological reduction [9–
11] for the spectral curves (129) and (136) should give the expressions for
the correlation functions of the generalized BGW and BGW models corre-
spondingly. However, in the next section we will derive the recursion relation
for the correlation functions using only the Virasoro constraints (88).

3.4. Correlation functions

The Virasoro constraints can also be reformulated in terms of the correlation
functions (multiresolvents). This reformulation leads to the loop equations
[41–46].

Sometimes the loop equations can be solved systematically, producing
simple recursive relations for the correlation functions [47–50]. Let use define
the connected correlation functions

(137) Wg,n(x1, . . . , xn) := ∇̂(x1)∇̂(x2) · · · ∇̂(xn)Fg(t, S)
∣∣∣
t=0

,

where

(138) ∇̂(x) =

∞∑
k=1

1

xk+1

∂

∂t2k+1
.

Obviously, the correlation functions are symmetric functions of the variables
x1, . . . , xn and contain all information about the tau-function.

From the Virasoro constraints (88) it follows that the correlation func-
tions of the generalized BGW tau-function satisfy the loop equations:
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Wg,m+1(x, x1, . . . , xm)

(139)

=
1

4
Wg−1,m+2(x, x, x1, . . . , xm) +

(
1

16x
δg,1 −

S2

4x
δg,0

)
δm,0

+
1

4

∑
q+p=g, I∪J={1,2,...,m}

Wq,m1+1(x, xi1 , . . . , xim1
)Wp,m2+1(x, xj1 , . . . , xjm2

)

+

m∑
i=1

(
xi

∂

∂xi
+

1

2

)
Wg,m(x1, . . . , xi−1, x, xi+1, . . . , xm)−Wg,m(x1, . . . , xm)

x− xi

for all m ≥ 0 and g ≥ 0. This is a simple S-deformation of the loop equations
for the BGW tau-function, which were derived in [14].

The simplest case is g = m = 0, and in this case (139) gives a quadratic
equation for W0,1:

(140) W0,1(x)2 − 4W0,1(x)− S2

x
= 0

so that

(141) W0,1(x) = 2

(
1−

√
1 +

S2

4x

)
,

or

(142) W0,1(x) = 2

∞∑
k=0

(
−S

2

8x

)k+1
(2k − 1)!!

(k + 1)!
.

This allows us to solve recursively the Loopequations (139) for g +m >
0,
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Lemma 3.6.

Wg,m+1(x, x1, . . . , xm) =
1√

1 + S2

4x

(143)

×

(
1

4

′∑
q+p=g,I∪J={1,2,...,m}

Wq,m1+1(x, xi1 , . . . , xim1
)Wp,m2+1(x, xj1 , . . . , xjm2

)

+

m∑
i=1

(
xi

∂

∂xi
+

1

2

)
Wg,m(x1, . . . , xi−1, x, xi+1, . . . , xm)−Wg,m(x1, . . . , xm)

x− xi

+
1

4
Wg−1,m+2(x, x, x1, . . . , xm) +

1

16x
δg,1δm,0

)
,

where we exclude from the sum two terms: with q = g, I = {1, 2, . . . ,m},
J = {∅} and with p = g, I = {∅}, J = {1, 2, . . . ,m}.

In particular, the genus zero two-point function is

W0,2(x1, x2) =
1√

1 + S2

4x1

(
x2

∂

∂x2
+

1

2

)
W0,1(x1)−W0,1(x2)

x1 − x2
(144)

=
1

2(x1 − x2)2

 S2 + 2(x1 + x2)√
1 + S2

4x1

√
1 + S2

4x2

− 2(x1 + x2)

 .

It is regular at the coincident points (that is when x1 = x2 and y1 = y2),
and has a second order pole when the points are on different sheets above
the same base point (that is when x1 = x2 and y1 = −y2),

(145) W0,2(x1, x2) = − 4x1

(x1 − x2)2
+ · · · .

In genus one we have

(146) W1,1(x) =
1√

1 + S2

4x

(
1

4
W0,2(x, x) +

1

16x

)
=

1

24x
(
1 + S2

4x

) 5

2

,

or

(147) W1,1(x) =
1

24 · 3x

∞∑
k=0

(
−S

2

8x

)k
(2k + 3)!!

k!
.
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On the next level of recursion we have

W0,3(x1, x2, x3) = − S2

8x1x2x3

√
1 + S2

4x1

√
1 + S2

4x2

√
1 + S2

4x3

,(148)

W1,2(x1, x2) =
1

212x3
1x

3
2

(
1 + S2

4x1

) 7

2
(

1 + S2

4x2

) 7

2

(149)

×
(
S8 − 6 (x1 + x2)S6 − 136S4x2x1

− 128x1x2 (x2 + x1)S2 + 128x1
2x2

2
)
,

W2,1(x) =
S4 − 20S2x+ 9x2

210x4
(
1 + S2

4x

) 11

2

.(150)

For the stable cases (the cases with 2g + n− 2 > 0, that is, for all Wg,n’s
except for W0,1 and W0,2) let use define the differentials forms

ωg,n(z1, . . . , zn) := S2g−2+nWg,n(x1, . . . , xn)d
√
x1 · · · d

√
xn(151)

= S2g−2+nWg,n(x1, . . . , xn)

2n
√
x1 · · ·xn

dx1 · · · dxn.

They satisfy the recursion relations which follow from (143) and can be
easily found for small g and n. In particular,

ω1,1(z) =
z − 1

z4
dz,(152)

ω2,1(z) =

(
105− 210 z + 133 z2 − 28 z3 + z4

)
(z − 2)2 (z − 1)

z10
dz(153)

ω1,2(z1, z2) =
(
54 z2

2z1
4 + 24 z2

3z1
3 − 14 z2

3z1
4 + 54 z2

4z1
2(154)

− 14 z2
4z1

3 + z2
4z1

4 + 24 z1
2z2

2 − 80 z1
4z2

− 24 z1
3z2

2 − 24 z1
2z2

3 − 80 z1z2
4

+ 40 z2
4 + 40 z1

4
) 1

z1
6z2

6
dz1dz2

ω0,3(z1, z2, z3) =
8

z2
1z

2
2z

2
3

dz1dz2dz3(155)

Conjecture 3.7. All ωg,n are the meromorphic differentials, defined on the
spectral curve (130) and symmetric in zj’s. Moreover, for any g and n

(156)
z2

1 · · · z2
n ωg,n(z1, . . . , zn)

dz1 · · · dzn
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is a polynomial in each of variables z−1
1 , . . . , z−1

n . Thus, ωg,n have poles of
finite degree only at the branch point zj = 0.

It should be simple to prove this conjecture using the Chekhov–Eynard–
Orantin topological recursion methods, which are beyond the scope of this
paper.

In the limit of S = 0 the correlation functions Wg,n coincide with the
original BGW model. In this case all Wg,n are polynomials in x−1

j , see [14].

3.5. Genus zero contribution

Formulas (C1)–(C8) as well as higher terms indicate that the coefficients of
the expansion of genus zero free energy are quite simple.

Conjecture 3.8.[
T j13 T

j2
5 T

j3
7 · · ·

]
F̃0(T, S) =

(−1)m+1 (3j1 + 5j3 + 7j3 + · · · − 1)!

2m (2m+ 2)!
(157)

× (3!!)j1 (5!!)j2 (7!!)j3 . . .

(1!)j1 j1! (2!)j2 j2! (3!)j3 j3! · · ·
S2m+2,

where

(158) m = j1 + 2j2 + 3j3 + · · · .

From this conjecture and from the definition of the variables Tk it im-
mediately follows that

F0(t, S) =
∑

j0,j1,j2,...
j0+j1+···>0

A(j0, j1, j2, . . . )(159)

× (−1)m+1S2m+2 (j0 + 3j1 + 5j2 + · · · − 1)!

2m+j0+3j1+5j2+··· (2m+ 2)!
tj01 t

j1
3 t

j2
5 · · · ,

where

(160) A(j0, j1, j2, . . . ) =
(1!!)j0 (3!!)j1 (5!!)j2 · · ·

(0!)j0 j0! (1!)j1 j1! (2!)j2 j2! · · ·
.

This expression is consistent with expressions for the correlation functions
obtained in Section 3.4. It should help to identify the coefficients of the
generalized BGW model with the enumerative geometry invariants. This
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conjecture probably can be proved with the help of the Baker–Campbell–
Hausdorff analysis of (109).

Let us give for comparison an expression for the genus zero free energy
of the Kontsevich–Witten tau-function

FKW0 (t, S) =
∑

j0,j1,j2,...

A(j0, j1, j2, . . . )(161)

×m! δ(−j0 + j2 + 2j3 + · · ·+ 3) tj01 t
j1
3 t

j2
5 · · · .

3.6. Polynomial tau-functions of KdV hierarchy

It appears that for N − 1
2 ∈ Z the generalized BGW tau-function is a poly-

nomial in times. From (105) it follows that it is enough to consider only
positive values of N . In this section we assume that

(162) l = N − 1

2
∈ N0.

Then we have

Theorem 3.9. For the half-integer value of N the generalized BGW tau-
function is polynomial in times. Moreover, up to the dilaton shift of the
times, it is equal to the the Schur function corresponding to the triangular
partition of l(l+1)

2 ,

(163) λ(l) = (l, l − 1, l − 2, . . . , 1) .

Namely

(164) τl+ 1

2
(t) = Cl sλ(l)(t̃)

where the dilaton shift is given by (114) and

(165) Cl =
(−~)

l(l+1)

2

2l2

l∏
k=1

(2l − 2k + 1)!

(l − k)!
.

Proof. In this case all sums in the expressions for the basic vectors (77) have
only a finite numbers of terms:
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(166)

Φ
(l+ 1

2
)

j (λ) =


λj−1 +

l−j+1∑
k=1

(−~)k
ak(j − l − 1

2)

16k k!
λj−k−1 for j ≤ l + 1,

λj−1 +

j−l−2∑
k=1

(−~)k
ak(j − l − 1

2)

16k k!
λj−k−1 for j > l + 1.

Thus, Φ
(l+1/2)
j is not polynomial (contains negative powers of λ) only for

j < l
2 + 1, and in this case the most singular term is proportional to λ2j−l−2.

Moreover,

(167) Φ
(l+ 1

2
)

l+1 (λ) = λl, Φ
(l+ 1

2
)

l+2 (λ) = λl+1,

thus, from (82) we see that

(168) λk ∈ Wl+ 1

2
for k ≥ l.

Therefore, for any M ≥ l a ratio of determinants

(169) τl+ 1

2
(Λ) =

detMi,j=1

(
Φ

(l+ 1

2
)

j (λi)
)

∆(λ)

is a symmetric polynomial (not homogeneous!) in the eigenvalues λ−1
j of

total degree l(l+1)
2 . It means that if we put deg tk = k, τl+ 1

2
is a polynomial

in times tk of degree l(l+1)
2 , for example

τ 1

2
= 1,

τ 3

2
= 1− ~

t1
2

= −~
2
t̃1,(170)

τ 5

2
= 1− 3

2
~ t1 +

3

4
~2 t1

2 +
3

8
~3 t3 −

1

8
~3 t1

3 = ~3

(
3

8
t̃3 −

1

8
t̃31

)
.

Let us prove, that the tau-unctions τl+ 1

2
actually coincide (up to a con-

stant normalization) with the Schur functions. The shift of the times in the
tau-functions corresponds to the action of the multiplication operator on
the Sato Grassmannian. Namely, if a given tau-function τ(t) is described by
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the point W of the Sato Grassmannian, the tau-function

(171) τ̃(t) = τ(t + a)

corresponds to the point of the Sato Grassmannian, specified by

(172) W̃ = e
∑ akλ

k

k W.

In particular, to get rid of the dilaton shift (114) we introduce

(173) τ̃l+ 1

2
(t) = τl+ 1

2

(
t +

2

~
δk,1

)
,

which corresponds to the point of the point of Sato Grassmannian

(174) W̃l+ 1

2
= e

2λ

~ Wl+ 1

2
.

Let us show that

(175) λ2k−2−l ∈ W̃l+ 1

2
for l ≥ k > 0.

Indeed, from (172) it follows that

(176) e
2λ

~

∞∑
j=1

αjΦ
(l+ 1

2
)

j (λ) ∈ W̃l+ 1

2

for any constants αj . In particular, from (21) and (76) it follows that if
we choose these constants such that

∑∞
j=1 αj~jt1−j = exp(t−1), then (176)

reduces to

(177) λl+1

∫
γ
eλ̃

2t dt

t−l+
1

2

∈ W̃l+ 1

2
.

Since

(178)

∫
γ
eλ̃

2t dt

t−l+
1

2

∼ λ−2l−1

it proves (175) for k = 1. To prove (175) for l ≥ k > 1 one have just to choose
other values for the constants αj .
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Thus

(179) W̃l+ 1

2
=
〈
λ−l, λ2−l, λ4−l, . . . , λl−4, λl−2, λl, λl+1, . . .

〉
It does not belong to the big cell of the Sato Grassmannian, and the KdV
tau-function is (up to a constant factor) the Schur function, corresponding
to the triangular Young tableau with

(180) λ(l) = (l, l − 1, l − 2, . . . , 1) .

These KdV tau-functions were described already in [51]. The constant Cl in
(164) can be easily found from the comparison of the r.h.s. and the l.h.s. for
t = 0. Namely,

(181) sλ(t)
∣∣∣
tk=0,k>1

= sλ(tk = δk,1) t
|λ|
1 ,

thus

(182) Cl =
~
l(l+1)

2

(−2)
l(l+1)

2 sλ(l)(tk = δk,1)
=

(−~)
l(l+1)

2

2l2

l∏
k=1

(2l − 2k + 1)!

(l − k)!
.

�

We have a corollary

Lemma 3.10. The tau-function of the KdV hierarchy given by the Schur
function

(183) τ(t) = sλ(l)(t),

where the partition is given by (180), is uniquely (up to normalization) spec-
ified by the Virasoro constraints

(184) L̂m τ(t) = 0, m ≥ 0,

where

L̂m =
1

2

∞∑
k=0

(2k + 1)t̃2k+1
∂

∂t2k+2m+1
(185)

+
1

4

∑
a+b=m−1

∂2

∂t2a+1∂t2b+1
− l(l + 1)

4
δm,0.
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Polynomially of the tau-function (164) means that in this case the ex-
pansion (102) is finite, and

(186)
(
Ŵl+ 1

2

) l(l+1)

2
+1
· 1 = 0.

Also, since

(187) Bk

(
l +

1

2

)
= 0, k > |l|,

the terms τ
(k)
N , which are polynomials in N , are indeed divisive by Bl(N)

for k ≤ l(l+1)
2 .

Thus, it is natural to express the free energy in terms of only Bm(N)
and Tk. Namely, for

(188) τN (~−1t, ~) = exp (F(t, N, ~))

where we do not introduce the variable S, (111), we have

(189) F(t, N, ~) =
4N2 − 1

8
log

(
1− t1

2

)
+
∑
k=2

~2g−2Fg(T, N)

where

(190) Fg(T, N) =

g∑
k=2

Bk(N)Fg,k(T).

Polynomials Fg,k can be found using the cut-and-join operator or from (164).
In Appendix D we give expressions for g ≤ 6.

4. Concluding remarks

In this paper we have investigated the generalized BGW tau-function. Ob-
tained results are not only interesting for the matrix model theory, but also
should help to identify the generalized BGW tau-function with a generat-
ing function of some enumerative geometry invariants. A natural candidate
would be a version of open r = −2 spin intersection numbers. However,
probably this interpretation is too naive. One of the reasons is that the in-
troduction of the variable N , which should add boundaries to the theory,
is not accompanied by new variables for the descendants on the boundary
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(which appears in the Kontsevich-Penner model and constitute a second
infinite set of times of the KP tau-function).

The results also should help to develop the theory of the Givental de-
composition. The cut-and-join representation (in particular, its free field
version) should allow us to represent the decomposition formulas purely in
terms of simple exponential operators. Of course, the same analysis can be
applied to other antipolynomial generalized Kontsevich models.

This paper contains all necessary prerequisites for construction of the
Chekhov–Eynard–Orantin topological recursion for the generalized BGW
model, namely, the quantum and classical spectral curves, rational parame-
trization, wave function, one and two point correlation functions in genus
zero and loop equations. It would be interesting to compere our results
with the contour integral expressions for the n-point (all-genera) correlation
functions obtained in [52] and with the recursion relations for the KdV
hierarchy correlation functions from [53]. It is also interesting to find the
compact expressions for the higher genera contributions to the free energy.
Some compact expressions for the higher genera contributions to the free
energy in terms of the moments are given in [54], but their conclusions about
the relation of this model with the Kontsevich-Witten tau-function and the
structure of the Virasoro constraints look to be not completely consistent
with our results. These topics are beyond the scope of the present paper and
will be considered later.
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Nature et technologies (FRQNT) and by RFBR grants 15-01-04217 and 15-
52-50041YaF.

Appendix A. Free energy of BGW tau-function

(A1) F2 =
9

128
T3
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(A2) F3 =
567

1024
T3

2 +
225

1024
T5

(A3) F4 =
64989

4096
T3

3 +
388125

32768
T5T3 +

55125

32768
T7

F5 =
70864875

65536
T5T3

2 +
14123025

65536
T7T3 +

6251175

262144
T9(A4)

+
130301217

131072
T3

4 +
28252125

262144
T5

2

F6 =
286765250859

2621440
T3

5 +
2269176525

4194304
T11 +

37656646875

1048576
T3T5

2(A5)

+
18826455375

524288
T7T3

2 +
25035955875

4194304
T3T9

+
12519714375

2097152
T7T5 +

81770259375

524288
T5T3

3

F7 =
27537582342375

16777216
T9T3

2 +
7852650127875

33554432
T9T5(A6)

+
206914899886875

16777216
T3

2T5
2 +

34484117212125

4194304
T7T3

3

+
34539827452875

1048576
T5T3

4 +
9180336943125

16777216
T5

3

+
1963178035875

16777216
T7

2 +
19600404065991

1048576
T3

6

+
602628451425

33554432
T13 +

13769702800875

4194304
T7T5T3

+
3925999556325

16777216
T11T3

F8 =
169591162989488625

67108864
T7T3

4 +
26488676216338875

2147483648
T11T5(A7)

+
26487328325483025

2147483648
T13T3 +

26488802802632625

2147483648
T9T7
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+
75275622313203375

134217728
T9T3

3 +
6632707287504375

67108864
T3T7

2

+
339191251470703125

67108864
T5

2T3
3 +

645210015875843625

67108864
T5T3

5

+
13265904719221875

134217728
T7T5

2 +
13264818560895825

134217728
T11T3

2

+
75280511033859375

134217728
T5

3T3 +
538246474955839917

117440512
T3

7

+
1762688220418125

2147483648
T15 +

26530744498689375

134217728
T9T5T3

+
112917280552295625

67108864
T5T3

2T7

F9 =
77431411127351806875

1073741824
T7

2T3
2 +

258385134479852784375

536870912
T5

3T3
2

(A8)

+
2715656473902641360625

1073741824
T5

2T3
4 +

258375760190755743375

1073741824
T9T3

4

+
32565363218292436875

4294967296
T9T5

2 +
1806818862379174875

2147483648
T11T7

+
51619703670742474575

1073741824
T11T3

3 +
3613628364405184125

4294967296
T13T5

+
8141354220180706875

1073741824
T7

2T5 +
16281810076944587175

2147483648
T13T3

2

+
1806755425928578125

2147483648
T15T3 +

849028159501396875

17179869184
T17

+
309725220277322836875

2147483648
T5T3

2T9 +
16282283116759356375

1073741824
T9T3T7

+
16282250837254450125

1073741824
T11T3T5 +

154866013725681129375

1073741824
T5

2T3T7

+
129190312318002901875

134217728
T5T3

3T7 +
103246107731883140625

8589934592
T5

4

+
7227277861688852625

17179869184
T9

2 +
996625993639547388375

268435456
T5T3

6

+
271561567871335604625

268435456
T7T3

5

Appendix B. Coefficients of generalized BGW tau-function

(B1) τ
(1)
N =

B1(N)

24 1!
t1
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(B2) τ
(2)
N =

B2(N)

27 2!
t21

(B3) τ
(3)
N =

B2(N)

211 3!

(
24 t3 − 4 t1

3N2 + 17 t1
3
)

(B4) τ
(4)
N =

B3(N)

216 4!

(
96 t3 − 4 t1

3N2 + 17 t1
3
)
t1

τ
(5)
N =

B3(N)

220 5!

(
16 t1

5N4 − 200 t1
5N2 − 960 t1

2t3N
2(B5)

+ 3840 t5 + 7920 t1
2t3 + 561 t1

5
)

τ
(6)
N =

B3(N)

224 6!

(
7680 t1

3t3N
4 − 64N6t1

6 + 1456 t1
6N4(B6)

− 142080 t1
3t3N

2 + 23001 t1
6 − 92160 t1t5N

2

− 10444 t1
6N2 − 23040 t3

2N2 + 649440 t1
3t3

+ 944640 t1t5 + 466560 t3
2
)

τ
(7)
N =

B4(N)

228 7!

(
1612800 t7 − 10444 t1

7N2 − 64N6t1
7 + 23001 t1

7(B7)

+ 1456 t1
7N4 + 13440 t1

4t3N
4 − 248640 t1

4t3N
2

+ 1136520 t1
4t3 − 322560 t1

2t5N
2 + 3306240 t1

2t5

+ 3265920 t1t3
2 − 161280 t1t3

2N2
)

τ
(8)
N =

B4(N)

232 8!

(
1311057 t1

8 − 687312 t1
8N2 + 124768 t1

8N4(B8)

+ 256N8t1
8 − 86016 t1

5N6t3 + 2817024 t1
5t3N

4

− 29949696 t1
5t3N

2 + 103650624 t1
5t3 + 502548480 t1

3t5

+ 3440640 t1
3t5N

4 − 84295680 t1
3t5N

2 + 2580480 t1
2t3

2N4

+ 744629760 t1
2t3

2 − 89026560 t1
2t3

2N2 − 51609600 t1t7N
2

+ 735436800 t1t7 + 727695360 t5t3

− 20643840 t5t3N
2 − 9472N6t1

8
)
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τ
(9)
N =

B4(N)

236 9!

(
105345515520 t9 − 28333670400 t1

2t7N
2(B9)

+ 928972800 t1
2t7N

4 − 26295736320 t1
3t3

2N2

+ 1571512320 t1
3t3

2N4 − 30965760 t1
3t3

2N6

− 1024N10t1
9 + 61931520 t3

3N4 + 1261854720 t1
4t5N

4

− 30965760 t1
4t5N

6 + 743178240 t1t5t3N
4

+ 454358016 t1
6t3N

4 − 25288704 t1
6N6t3

+ 516096N8t1
6t3 + 425701785600 t1t5t3

− 38273679360 t1t5t3N
2 − 3541999104 t1

6t3N
2

+ 215115264000 t1
2t7 + 10859168 t1

9N4 − 1114752N6t1
9

+ 10105935840 t1
6t3 + 73497715200 t1

4t5

− 49919508 t1
9N2 + 145202803200 t1

3t3
2

− 3622993920 t3
3N2 + 54528N8t1

9 − 5202247680 t9N
2

+ 85218705 t1
9 + 70265180160 t3

3 − 16851179520 t1
4t5N

2
)

τ
(10)
N =

B4(N)

240 10!

(
1036733644800 t1

2t5t3N
4 − 22483928678400 t1

2t5t3N
2(B10)

− 14863564800 t1
2t5t3N

6 − 9762729984000 t1
3t7N

2

+ 603832320000 t1
3t7N

4 − 12386304000 t1
3t7N

6

− 6250999910400 t1
4t3

2N2 + 549758361600 t1
4t3

2N4

− 21366374400 t1
4t3

2N6 + 309657600 t1
4N8t3

2

− 3048253931520 t1
5t5N

2 + 319040225280 t1
5t5N

4

− 14615838720 t1
5t5N

6 + 247726080 t1
5N8t5

− 427128111360 t1
7t3N

2 + 67623045120 t1
7t3N

4

− 5233582080 t1
7N6t3 + 198328320N8t1

7t3

− 2949120N10t1
7t3 + 155381151744000 t1

2t5t3 + 4096N12t1
10

− 5455392768000 t1t3
3N2 + 190129766400 t1t3

3N4

− 2477260800 t1t3
3N6 − 8011461427200 t1t9N

2

+ 208089907200 t1t9N
4 + 76202709811200 t7t3

− 5179952332800 t7t3N
2 + 74317824000 t7t3N

4

+ 38097174528000 t5
2 + 76902226329600 t1t9

+ 52344714240000 t1
3t7 + 10730666419200 t1

5t5
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+ 992397296 t1
10N4 − 124813568N6t1

10 + 1053904737600 t1
7t3

+ 8439552N8t1
10 − 3984998904 t1

10N2 + 26499511584000 t1
4t3

2

+ 51293581516800 t1t3
3 − 2571396710400 t5

2N2 + 29727129600 t5
2N4

+ 6220965465 t1
10 − 292864N10t1

10
)

Appendix C. Free energy of generalized BGW model

(C1) F̃ (1)
0 = 0

(C2) F̃ (2)
0 =

1

23
T3

(C3) F̃ (3)
0 =

1

25 · 2
(
22 · 3T3

2 + 22 T5

)

(C4) F̃ (4)
0 =

1

27 · 3
(
33 · 5T5T3 + 23 · 33 T3

3 + 3 · 5T7

)

F̃ (5)
0 =

1

29 · 4
(
25 · 33 · 5T3

2T5 + 25 · 3 · 7T7T3(C5)

+ 24 · 33 · 11T3
4 + 23 · 32 · 5T5

2 + 23 · 7T9

)

F̃ (6)
0 =

1

211 · 5
(
2 · 32 · 52 · 7T9T3 + 22 · 53 · 7T7T5 + 24 · 32 · 52 · 7T3

2T7(C6)

+ 24 · 33 · 52 · 13T5T3
3 + 23 · 33 · 53 T5

2T3

+ 24 · 34 · 7 · 13T3
5 + 2 · 3 · 5 · 7T11

)

F̃ (7)
0 =

1

213 · 6
(
26 · 33 · 52 · 7T5T3T7 + 24 · 36 · 53 T3

2T5
2(C7)

+ 24 · 35 · 5 · 7T3
2T9 + 23 · 34 · 52 T9T5

+ 26 · 34 · 52 · 7T3
3T7 + 28 · 36 · 52 T5T3

4

+ 24 · 34 · 11T11T3 + 24 · 33 · 53 T5
3

+ 24 · 3 · 52 · 7T7
2 + 28 · 36 · 17T3

6 + 23 · 32 · 11T13

)
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F̃ (8)
0 =

1

215 · 7
(
27 · 37 · 17 · 19T3

7 + 24 · 34 · 52 · 72 T5T3T9(C8)

+ 25 · 33 · 52 · 72 · 17T3
2T7T5 + 32 · 72 · 11 · 13T13T3

+ 25 · 35 · 5 · 72 · 17T3
4T7 + 24 · 33 · 53 · 7 · 17T5

3T3

+ 33 · 5 · 72 · 11T11T5 + 24 · 34 · 72 · 11T11T3
2

+ 24 · 32 · 53 · 72 T7T5
2 + 25 · 36 · 52 · 7 · 17T3

3T5
2

+ 25 · 3 · 52 · 73 T7
2T3 + 32 · 52 · 73 T9T7

+ 24 · 34 · 5 · 72 · 17T3
3T9 + 25 · 37 · 7 · 17 · 19T5T3

5

+ 3 · 7 · 11 · 13T15

)

F̃ (1)
1 =

5

16
T3(C9)

F̃ (2)
1 =

93

64
T3

2 +
35

64
T5(C10)

F̃ (3)
1 =

75

8
T3

3 +
825

128
T5T3 +

105

128
T7(C11)

F̃ (4)
1 =

6225

1024
T5

2 +
35397

512
T3

4 +
17415

256
T3

2T5(C12)

+
3045

256
T7T3 +

1155

1024
T9

F̃ (5)
1 =

140373

256
T3

5 +
40005

2048
T9T3 +

35595

256
T3

2T7 +
20825

1024
T7T5(C13)

+
73125

512
T5

2T3 +
178875

256
T3

3T5 +
3003

2048
T11

F̃ (6)
1 =

64925

4096
T7

2 +
1165509

256
T3

6 +
373875

4096
T5

3 +
1036665

4096
T9T3

2(C14)

+
542325

1024
T5T3T7 +

15015

8192
T13 +

1552635

1024
T7T3

3 +
256725

8192
T9T5

+
121275

4096
T11T3 +

9605925

4096
T5

2T3
2 +

1819665

256
T3

4T5
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F̃ (7)
1 =

69903081

1792
T3

7 +
513135

32
T7T3

4 +
921375

1024
T5T3T9(C15)

+
9520875

1024
T5T3

2T7 +
466725

1024
T7

2T3 +
6041385

2048
T9T3

3

+
693693

16384
T13T3 +

744975

16384
T11T5 +

866943

2048
T3

2T11

+
33969375

1024
T5

2T3
3 +

9218205

128
T3

5T5 +
3290625

1024
T5

3T3

+
760725

16384
T9T7 +

485625

1024
T5

2T7 +
36465

16384
T15

F̃ (1)
2 =

259

256
T5 +

657

256
T3

2(C16)

F̃ (2)
2 =

6201

128
T3

3 +
36015

1024
T5T3 +

4935

1024
T7(C17)

F̃ (3)
2 =

74529

512
T7T3 +

397035

512
T3

2T5 +
765693

1024
T3

4(C18)

+
30723

2048
T9 +

149985

2048
T5

2

F̃ (4)
2 =

7390845

16384
T9T3 +

28598265

2048
T3

3T5 +
6086745

2048
T3

2T7(C19)

+
12284325

4096
T5

2T3 +
3744825

8192
T7T5 +

106851717

10240
T3

5

+
603603

16384
T11

F̃ (5)
2 =

9707635

16384
T7

2 +
51448425

16384
T5

3 +
140271507

1024
T3

6(C20)

+
229158315

1024
T3

4T5 +
1265323275

16384
T5

2T3
2 +

38701215

32768
T9T5

+
149588775

16384
T9T3

2 +
208346985

4096
T7T3

3 +
18927909

16384
T11T3

+
76102635

4096
T5T3T7 +

2543541

32768
T13
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F̃ (6)
2 =

441784935

256
T3

7 +
3217790205

4096
T7T3

4 +
50498175

2048
T7

2T3(C21)

+
634027905

4096
T9T3

3 +
338585247

131072
T13T3 +

349538805

131072
T11T5

+
97956243

4096
T3

2T11 +
3266594325

2048
T5

2T3
3

+
13610282013

4096
T3

5T5 +
1317331125

8192
T5

3T3

+
351871695

131072
T9T7 +

205991625

8192
T5

2T7 +
402291225

8192
T5T3T9

+
971414325

2048
T5T3

2T7 +
19246227

131072
T15

F̃ (1)
3 = 75T3

3 +
114225

2048
T5T3 +

16145

2048
T7(C22)

F̃ (2)
3 =

1399965

2048
T7T3 +

7170255

2048
T3

2T5 +
13407093

4096
T3

4(C23)

+
604835

8192
T9 +

2804625

8192
T5

2

F̃ (3)
3 =

75131595

16384
T9T3 +

265649625

2048
T3

3T5 +
58951305

2048
T3

2T7(C24)

+
118222875

4096
T5

2T3 +
37711975

8192
T7T5 +

192117987

2048
T3

5

+
6483477

16384
T11

F̃ (4)
3 =

711506425

65536
T7

2 +
5317009425

16384
T5T3T7 +

201052995

131072
T13(C25)

+
3562329375

65536
T5

3 +
8767078173

4096
T3

6 +
14797367145

4096
T3

4T5

+
84554265825

65536
T5

2T3
2 +

2843426025

131072
T9T5

+
10571621445

65536
T9T3

2 +
14033060055

16384
T7T3

3

+
1411098975

65536
T11T3
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F̃ (5)
3 =

1211928290217

28672
T3

7 +
84821501835

4096
T7T3

4(C26)

+
11533969125

16384
T7

2T3 +
140161531545

32768
T9T3

3

+
20835465651

262144
T13T3 +

21099663585

262144
T11T5

+
22803571791

32768
T3

2T11 +
682677669375

16384
T5

2T3
3

+
344109377925

4096
T3

5T5 +
71155771875

16384
T5

3T3

+
21140849835

262144
T9T7 +

11630143875

16384
T5

2T7

+
23039048025

16384
T5T3T9 +

211982823675

16384
T5T3

2T7

+
1256693295

262144
T15

F̃ (1)
4 =

16776921

16384
T7T3 +

84428595

16384
T3

2T5 +
155619117

32768
T3

4(C27)

+
7400547

65536
T9 +

33567585

65536
T5

2

F̃ (2)
4 =

5177752965

262144
T9T3 +

61659550053

163840
T3

5 +
461311851

262144
T11(C28)

+
17389528605

32768
T3

3T5 +
3952037565

32768
T3

2T7

+
7910056125

65536
T5

2T3 +
2591640625

131072
T7T5

F̃ (3)
4 =

25761027005

262144
T7

2 +
124408920975

262144
T5

3 +
284951872593

16384
T3

6(C29)

+
491651138745

16384
T3

4T5 +
2877392953125

262144
T5

2T3
2

+
103019276745

524288
T9T5 +

371988099945

262144
T9T3

2

+
478941497055

65536
T7T3

3 +
51393633291

262144
T11T3

+
186325900005

65536
T5T3T7 +

7612223619

524288
T13
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F̃ (4)
4 =

19375419429891

32768
T3

7 +
39967361286615

131072
T7T3

4(C30)

+
1441907245275

131072
T7

2T3 +
17044272862155

262144
T9T3

3

+
5457509668611

4194304
T13T3 +

5481470419425

4194304
T11T5

+
2872551695013

262144
T3

2T11 +
80106396840225

131072
T5

2T3
3

+
157614682018959

131072
T3

5T5 +
17136214183125

262144
T5

3T3

+
5484436521795

4194304
T9T7 +

2892529880625

262144
T5

2T7

+
5765593974525

262144
T5T3T9 +

25639814092725

131072
T5T3

2T7

+
343519458711

4194304
T15

F̃ (1)
5 =

14960246805

524288
T9T3 +

49062715875

65536
T3

3T5(C31)

+
11274351795

65536
T3

2T7 +
22552975125

131072
T5

2T3

+
7482105225

262144
T7T5 +

34468789653

65536
T3

5

+
1352576043

524288
T11

F̃ (2)
5 =

418486752775

1048576
T7

2 +
1979457545625

1048576
T5

3(C32)

+
4336231722327

65536
T3

6 +
7582592016315

65536
T3

4T5

+
45038717337375

1048576
T5

2T3
2 +

1673842629375

2097152
T9T5

+
5932794319515

1048576
T9T3

2 +
7503673495185

262144
T7T3

3

+
836393983425

1048576
T11T3 +

2967884007375

262144
T5T3T7

+
126762200565

2097152
T13



i
i

“1-Alexandrov” — 2019/5/3 — 22:18 — page 1393 — #47 i
i

i
i

i
i

Generalized Brezin–Gross–Witten model 1393

F̃ (3)
5 =

295477654037589

65536
T3

7 +
78832872717795

32768
T7T3

4(C33)

+
23702887069575

262144
T7

2T3 +
274556802988755

524288
T9T3

3

+
46148268185019

4194304
T13T3 +

46210569510105

4194304
T11T5

+
47349163650789

524288
T3

2T11 +
1262180334313125

262144
T5

2T3
3

+
152599213285155

16384
T3

5T5 +
137510048829375

262144
T5

3T3

+
46217234012355

4194304
T9T7 +

23725543608375

262144
T5

2T7

+
47401263300825

262144
T5T3T9 +

412202168102025

262144
T5T3

2T7

+
2989207836615

4194304
T15

F̃ (1)
6 =

2356605625185

4194304
T7

2 +
11038896821475

4194304
T5

3(C34)

+
23660311883769

262144
T3

6 +
41645338352865

262144
T3

4T5

+
249159522789225

4194304
T5

2T3
2 +

9426278461365

8388608
T9T5

+
33108811628445

4194304
T9T3

2 +
41522675471235

1048576
T7T3

3

+
4712392198503

4194304
T11T3 +

16556502355785

1048576
T5T3T7

+
721976952807

8388608
T13

F̃ (2)
6 =

15185336065870311

917504
T3

7 +
9454513725058185

1048576
T7T3

4(C35)

+
11387713000125

32768
T7

2T3 +
1041752546225055

524288
T9T3

3

+
1442169677387439

33554432
T13T3 +

1442721973704165

33554432
T11T5

+
182141818558623

524288
T3

2T11 +
1182045374663625

65536
T5

2T3
3
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+
36199921141511001

1048576
T3

5T5 +
4169029399318125

2097152
T5

3T3

+
1442776147146495

33554432
T9T7 +

729014470760625

2097152
T5

2T7

+
1457590887545625

2097152
T5T3T9 +

781513453641375

131072
T5T3

2T7

+
95041284259779

33554432
T15

F̃ (1)
7 =

23275794518914797

1048576
T3

7 +
12810322271682495

1048576
T7T3

4(C36)

+
1999590270994575

4194304
T7

2T3 +
22719742197138315

8388608
T9T3

3

+
3987196321745637

67108864
T13T3 +

3987584386351335

67108864
T11T5

+
3998836418130477

8388608
T3

2T11 +
102487735548028125

4194304
T5

2T3
3

+
48784570534530045

1048576
T3

5T5 +
11361282083218125

4194304
T5

3T3

+
3987621333347085

67108864
T9T7 +

1999731386512125

4194304
T5

2T7

+
3999155802479775

4194304
T5T3T9 +

34081835456653425

4194304
T5T3

2T7

+
264952094603625

67108864
T15

Appendix D. Free energy of generalized BGW model as a
linear combination of Bk(N)

F (2)
N =

1

27
B2(N)T3(D1)

F (3)
N =

1

210
B3(N)

(
T5 + 3T 2

3

)
− 3

28
B2(N)T 2

3(D2)

F (4)
N =

1

215
B4(N)

(
5T7 + 32 · 5T3T5 + 23 · 32T 3

3

)
(D3)

− 3

210
B3(N)

(
5T3T5 + 13T 3

3

)
+

3

27
B2(N)T 3

3



i
i

“1-Alexandrov” — 2019/5/3 — 22:18 — page 1395 — #49 i
i

i
i

i
i

Generalized Brezin–Gross–Witten model 1395

F (5)
N =

1

218
B5(N)

(
7T9 + 32 · 5T5

2 + 22 · 33 · 5T3
2T5(D4)

+ 22 · 3 · 7T7T3 + 2 · 33 · 11T3
4
)

− 3

214
B4(N)

(
52 T5

2 + 5 · 7T7T3 + 34 · 5T3
2T5 + 34 · 7T3

4
)

+
32

211
B3(N)

(
5T 2

5 + 32 · 13T 4
3 + 22 · 3 · 5T 2

3 T5

)
− 33

29
B2(N)T 4

3

F (6)
N =

1

222 · 5
B6(N)

(
3 · 5 · 7T11 + 32 · 52 · 7T9T3 + 23 · 34 · 7 · 13T3

5(D5)

+ 23 · 32 · 52 · 7T3
2T7 + 22 · 33 · 53 T5

2T3

+ 2 · 53 · 7T7T5 + 23 · 33 · 52 · 13T5T3
3
)

− 3

217 · 5
B5(N)

(
53 · 7T7T5 + 32 · 53 · 7T3

2T7 + 3 · 52 · 7T9T3

+ 33 · 52 · 89T5T3
3 + 2 · 3 · 53 · 13T5

2T3

+ 2 · 33 · 1087T3
5
)

+
32

215 · 5
B4(N)

(
53 · 7T7T5 + 2 · 3 · 53 · 7T3

2T7

+ 22 · 33 · 54 T5T3
3 + 22 · 3 · 53 · 7T5

2T3

+ 34 · 312 T3
5
)

− 33

210 · 5
B3(N)

(
53 · 7T 2

3 T5 + 53T 2
5 + 2 · 3 · 229T 5

3

)
T3

+
34

27 · 5
B2(N)T 5

3
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