
i
i

“2-Hong” — 2019/4/12 — 21:57 — page 1149 — #1 i
i

i
i

i
i

ADV. THEOR. MATH. PHYS.
Volume 22, Number 5, 1149–1207, 2018

Mirror of Atiyah flop in symplectic

geometry and stability conditions

Yu-Wei Fan, Hansol Hong, Siu-Cheong Lau,
and Shing-Tung Yau

We study the mirror operation of the Atiyah flop in symplectic
geometry. We formulate the operation for a symplectic manifold
with a Lagrangian fibration. Furthermore we construct geometric
stability conditions on the derived Fukaya category of the deformed
conifold and study the action of the mirror Atiyah flop on these
stability conditions.
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1. Introduction

Flop is a fundamental operation in birational geometry. By the work of
Kollár [Kol89], any birational transformation of compact threefolds with nef
canonical classes and Q-factorial terminal singularities can be decomposed
into flops.
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Atiyah flop is the most well-known among many different kinds of flops.
It contracts a (−1,−1) curve and resolves the resulting conifold singularity
by a small blow-up, producing a (−1,−1) curve in another direction, see
Figure 1.

Figure 1. The Atiyah flop.

In mirror symmetry, complex and symplectic geometries are dual to each
other. Flop is an important operation in complex geometry. It is natural to
ask whether there is a mirror operation in symplectic geometry. In this paper
we focus on the mirror of Atiyah flop.

SYZ mirror symmetry of a conifold singularity is well-known by the
works of [Gro01, CLL12, CnBM14, AAK16, CPU, KL]. A conifold sin-
gularity is given by u1v1 = u2v2 in C4. There are two different choices of
anti-canonical divisors which turn out to be mirror to each other, namely
D1 = {u2v2 = 1} and D2 = {(u2 − 1)(v2 − 1) = 0}. Consider the resolved
conifold OP1(−1)⊕OP1(−1), with the divisor D2 deleted. Its SYZ mir-
ror is given by the deformed conifold {(u1, v1, u2, v2, z) ∈ C4 × C× : u1v1 =
z + q, u2v2 = z + 1}. Here q is the Kähler parameter of the resolved coni-
fold, namely q = e−A where A is the symplectic area of the (−1,−1) curve in
the resolved conifold. The deformed conifold contains a Lagrangian sphere
whose image in the z-coordinate projection is the interval [−1,−q] ⊂ C. The
Lagrangian sphere is mirror to the holomorphic sphere in the resolved coni-
fold.

Now take the Atiyah flop. The Kähler moduli of the resolved conifold is
the punctured real line R− {0}, consisting of two Kähler cones R+ and R−
of the resolved conifold and its flop respectively. A serves as the standard co-
ordinate and flop takes A ∈ R+ to −A ∈ R−. Thus the Atiyah flop amounts
to switching A to −A, or equivalently q to q−1. As a result, the SYZ mir-
ror changes from {u1v1 = z + q, u2v2 = z + 1} to {u1v1 = z + q−1, u2v2 =
z + 1}.
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However the above two manifolds are symplectomorphic to each other,
and hence they are just equivalent from the viewpoint of symplectic geome-
try. Unlike Atiyah flop in complex geometry, the mirror operation does not
produce a new symplectic manifold. It is not very surprising since symplectic
geometry is much softer than complex geometry.

In contrast to complex geometry, the mirror flop is just a symplecto-
morphism rather than a new symplectic manifold. First observe that this
symplectomorphism is non-trivial (Section 4.1).

Proposition 1.1. Given a symplectic threefold (X,ω) and a Lagrangian
three-sphere S ⊂ X, we have another symplectic threefold (X†, ω†) with a
corresponding Lagrangian three-sphere S† ⊂ X†, together with a symplec-
tomorphism f (X,S) : (X,ω)→ (X†, ω†). It has the property that f (X†,S†) ◦
f (X,S) = τ−1

S , where τS is the Dehn twist along the Lagrangian sphere S.

We shall regard X and X† as the same symplectic manifold using the
above symplectomorphism f (X,S).

We need to endow a symplectic threefold with additional geometric
structures in order to make it more rigid, so that the effect of the mir-
ror flop can be seen. In the above local case, {u1v1 = z + q, u2v2 = z +
1} and {u1v1 = z + q−1, u2v2 = z + 1} simply have different complex struc-
tures. However in general requiring the existence of a complex structure on
a symplectic manifold would be too restrictive. Friedman [Fri86] and Tian
[Tia92] showed that there are topological obstructions to complex smoothing
of conifold points; Smith-Thomas-Yau [STY02] found the mirror statement
for topological obstructions to Kähler resolution of conifold points.

In this paper, we consider two kinds of geometric structures, namely
Lagrangian fibrations, and Bridgeland stability conditions on the derived
Fukaya category. First consider a symplectic threefold X equipped with a
Lagrangian fibration π : X → B. Let S ⊂ X be a Lagrangian sphere. We
assume that π around S is given by a local model of Lagrangian fibration
on the deformed conifold, where S is taken as the vanishing sphere under
a conifold degeneration, see Definition 4.3. We call such a fibration to be
conifold-like around S. Then we make sense of the mirror flop by doing a
local surgery around S and obtain another Lagrangian fibration π† : X → B.
(X and X† have been identified by the above symplectomorphism ρX,S .)

Theorem 1.2. Given a symplectic threefold (X,ω) with a Lagrangian fi-
bration π : X → B which is conifold-like around a Lagrangian three-sphere
S ⊂ X, there exists another Lagrangian fibration π† : X → B with the fol-
lowing properties.



i
i

“2-Hong” — 2019/4/12 — 21:57 — page 1152 — #4 i
i

i
i

i
i

1152 Y.-W. Fan, H. Hong, S.-C. Lau, and S.-T. Yau

1) π† is also conifold-like around S.

2) The images of S under π and π† are the same, denoted by S. They
are one-dimensional affine submanifolds in B away from discriminant
locus.

3) π† = π outside a tubular neighborhood of S. In particular the affine
structures on B induced from π and π† are identical away from a
neighborhood of S.

4) The induced orientations on S from π and π† are opposite to each
other.

We call the change from π to π† to be the A-flop of a Lagrangian fibration
along S. As a compact example, consider the Shoen’s Calabi-Yau, which ad-
mits a conifold-like Lagrangian fibration around certain Lagrangian spheres
by the work of Gross [Gro05] and Castaño-Bernard and Matessi [CnBM14].
Then we can apply the A-flop to obtain other Lagrangian fibrations.

More generally we can consider the effect of A-flop along S on Lagrangian
submanifolds other than Lagrangian torus fibers. Given a Lagrangian sub-
manifold L ⊂ X which has T 2-symmetry around S (see Definition 4.7),
we can construct another Lagrangian submanifold L† (which also has T 2-
symmetry around S) which we call to be the A-flop of L, with the property
that (L†)† equals to the inverse Dehn twist of L along S.

Then we can take A-flop of special Lagrangian submanifolds with respect
to a certain holomorphic volume form (if it exists). Formally we start with a
Bridgeland stability condition (Z,S) [Bri07] on the derived Fukaya category,
where Z is a homomorphism of the K group to C, and S is a collection of
objects in the derived Fukaya category which are said to be stable. A stability
condition (Z,S) is said to be geometric if there exists a holomorphic volume
form Ω such that Z is given by the period

∫
·Ω and S is a collection of

graded special Lagrangians with respect to Ω. A-flop should be understood
as a change of stability conditions (Z,S) 7→ (Z†,S†).

In this paper we realize the above for the local deformed conifold in
Section 6. We obtain the following theorem in Section 6.6.

Theorem 1.3. Let X be the deformed conifold {u1v1 = z + q, u2v2 = z +
1, z 6= 0} (where q 6= 1). Equip X with the holomorphic volume form Ω =
dz ∧ du1 ∧ du2. There exists a collection S of graded special Lagrangians
which defines a geometric stability condition (Z,S) on X. Moreover the
flop (Z†,S†) also defines a geometric stability condition with respect to
(f (X,S))∗ΩX† where f (X,S) : X → X† = {u1v1 = z + 1, u2v2 = z + 1/q : z 6=
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0} is the symplectomorphism in Proposition 1.1 (and ΩX† = dz ∧ du1 ∧ du2

on X†).

Stability conditions for the derived Fukaya category were constructed
for the An case by Thomas [Tho06], for certain local Calabi-Yau threefolds
associated to quadratic differentials by Bridgeland-Smith [BS15, Smi15],
and for punctured Riemann surfaces with quadratic differentials by Haiden-
Katzarkov-Kontsevich [HKK]. In this paper we construct stability condi-
tions on the derived Fukaya category of the deformed conifold by applying
the mirror functor construction in [CHLa, CHLb]; in the mirror side we
use the results of Nagao-Nakajima [NN11] about stability conditions on the
noncommutative resolved conifold (see Theorem 6.9).

Theorem 1.4 (see Theorem 6.4). The mirror construction in [CHLb]
applied to the deformed conifold X produces the noncommutative resolved
conifold A given by Equation (6.2). In particular, there is a natural equiva-
lence of triangulated categories

(1.1) Ψ : DbF → Db
nilmodA

where F is a subcategory of Fuk(X) generated by Lagrangians spheres, and
Db

nilmodA is a subcategory of DbmodA consisting of modules with nilpotent
cohomology.

The relation between the mirror construction in [CHLb] and the SYZ
construction is summarized in Figure 2. The SYZ construction uses La-
grangian torus fibration coming from degeneration to the large complex
structure limit. The noncommutative mirror construction in [CHLb] uses La-
grangian vanishing spheres coming from degeneration to the conifold point.

We shall prove that stable modules in Db
nilmodA with respect to a cer-

tain stability condition can be obtained as transformations of special La-
grangians under (1.1); as a result the corresponding stability condition on
DbF is geometric.
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LCSL of the deformed conifold

Another LCSL

conifold

B-side moduli of the local conifold

LVL of the resolved conifold

LVL of its �op

nc resolution of the conifold

A-side moduli of the local conifold

SYZ

nc mirror construction

SYZ

Figure 2. The local conifold is self-mirror. More precisely for the local coni-
fold, a resolution and its flop are just equivalent, and so the upper hemisphere
should be identified with the lower hemisphere.

2. Review on flops and Bridgeland stability conditions

In this section, we recall the results by Toda which relate flops with wall-
crossings in the space of Bridgeland stability conditions on certain triangu-
lated categories. For more details and proofs, see [Tod08].

2.1. Bridgeland stability conditions and crepant small resolutions

Let f : Ŷ → Y be a crepant small resolution in dimension three and C the
exceptional locus, which is a tree of rational curves C = C1 ∪ · · · ∪ CN .

Define the triangulated subcategory DŶ /Y ⊂ D
b(Ŷ ) to be

(2.1) DŶ /Y := {E ∈ Db(Ŷ ) | Supp(E) ⊂ C}.

Let pPer(Ŷ /Y ) ⊂ Db(Ŷ ) (p = 0,−1) be the abelian categories of per-
verse coherent sheaves introduced by Bridgeland [Bri02], and

pPer(DŶ /Y ) :=p Per(Ŷ /Y ) ∩ DŶ /Y .

Proposition 2.1 ([VdB04b]). The abelian categories 0Per(DŶ /Y ) and
−1Per(DŶ /Y ) are the hearts of certain bounded t-structures on DŶ /Y , and

are finite-length abelian categories. The simple objects in 0Per(DŶ /Y ) and
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−1Per(DŶ /Y ) are {ωC [1],OC1
(−1), . . . ,OCN

(−1)} and {OC ,OC1
(−1)[1], . . . ,

OCN
(−1)[1]} respectively.

Theorem 2.2 ([Bri02][Che02]). Let g : Ŷ † → Y be the flop of f , and φ :
Ŷ 99K Ŷ † be the canonical birational map. Then the Fourier-Mukai functor
with the kernel OŶ×Y Ŷ †

∈ Db(Ŷ × Ŷ †) is an equivalence

Φ
OŶ×Y Ŷ †

Ŷ→Ŷ †
: Db(Ŷ )

∼=−→ Db(Ŷ †).

This equivalence restricts to an equivalence DŶ /Y
∼=−→ DŶ †/Y and takes

0Per(Ŷ /Y ) to −1Per(Ŷ †/Y ).

Such an equivalence is called standard in [Tod08].
Let FM(Ŷ ) be the set of pairs (W,Φ), where W → Y is a crepant small

resolution, and Φ : Db(W )→ Db(Ŷ ) can be factorized into standard equiv-
alences and the auto-equivalences given by tensoring line bundles. For each
(W,Φ) ∈ FM(Ŷ ), there is an associated open subset

U(W,Φ) ⊂ Stabn(Ŷ /Y )

of the space of normalized Bridgeland stability conditions on DŶ /Y . A
Bridgeland stability condition on DŶ /Y is called normalized if the central

charge Z([Ox]) of the skyscraper sheaf at each x ∈ C is −1.
Assume in addition that there is a hyperplane section in Y containing

the singular point such that its pullback in Ŷ is a smooth surface, Toda
proved the following theorem.

Theorem 2.3. [Tod08] Let Stab◦n(Ŷ /Y ) be the connected component of

Stabn(Ŷ /Y ) containing the standard region U
(
Ŷ ,Φ = idDb(Ŷ )

)
. Define the

following union of chambers

M :=
⋃

(W,Φ)∈FM(Ŷ )

U(W,Φ).

Then M⊂ Stab◦n(Ŷ /Y ), and any two chambers are either disjoint or equal.
Moreover, M = Stab◦n(Ŷ /Y ).

In other words, we can obtain the whole connected component
Stab◦n(Ŷ /Y ) from the standard region U(Ŷ , id) by sequence of flops and
tensoring line bundles.
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2.2. The conifold

Let Y = Spec C[[x, y, z, w]]/(xy − zw) and f : Ŷ → Y be the blowing up at
the ideal (x, z). As computed in [Tod08],

Stab◦n(Ŷ /Y )/Aut0(DŶ /Y ) ∼= P1 − { 3 points }.

Let Ŷ † → Y be the blowing up at the other ideal (x,w). Then the three
removed points correspond to the large volume limit points of Ŷ and Ŷ †,
and the conifold point.

More precisely, P1 − { 3 points } is obtained by gluing the upper and
lower half complex planes H,H†, and the real line with the origin removed.
The hearts of the Bridgeland stability conditions in H and H† are given by
CohŶ /Y and CohŶ †/Y respectively. The heart of the Bridgeland stability

conditions on the real line is given by the perverse heart 0Per(DŶ /Y ) ∼=−1

Per(DŶ †/Y ).

Let C,C† be the exceptional curves of Ŷ → Y, Ŷ † → Y respectively.
Then the equivalence DŶ /Y −→ DŶ †/Y satisfies

1) Φ(OC(−1)) = OC†(−1)[1].

2) Φ(OC(−2)[1]) = OC† .

3) For x ∈ C, the cohomology of E := Φ(Ox) ∈ DŶ †/Y vanish except for

H0(E) = OC† and H−1(E) = OC†(−1).

One can observe the following wall-crossing phenomenon: the skyscraper
sheavesOx ∈ DŶ /Y are stable objects with respect to the stability conditions

on the upper half plane H, but are unstable in H†. In fact, its image under
Φ is a two term complex E that fits into the following exact triangle:

(2.2) OC†(−1)[1]→ E → OC†
[1]→

Note that the usual skyscraper sheaf at a point in C† can be obtained by
switching the first and the third terms in (2.2).

Remark 2.4. It is well-known that if C is a (−1,−1)-curve, then the ‘flop-
flop’ functor is the same as the inverse of the spherical twist by OC(−1),

i.e. Φ
OŶ×Y Ŷ †

Ŷ †→Ŷ
◦ Φ
OŶ×Y Ŷ †

Ŷ→Ŷ †
= T−1

OC(−1). Proposition 1.1 is the mirror statement
of this fact.
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3. Review on the SYZ mirror of the conifold

SYZ mirror construction for toric Calabi-Yau manifolds was carried out in
[CLL12] using the wall-crossing techniques of [Aur07]. The reverse direction,
namely SYZ construction for blow-up of V × C along a hypersurface in a
toric variety V was carried out by [AAK16]. In this section we recall the
construction for the conifold Y = {(u1, v1, u2, v2) ∈ C4 : u1v1 = u2v2} as a
special case in [CLL12, AAK16]. The statement is that Y − {u2v2 = 1} is
mirror to Y − ({u2 = 1} ∪ {v2 = 1}). The study motivates the definition of
A-flop for Lagrangian fibrations in the next section.

The resolved conifold Ŷ = OP1(−1)⊕OP1(−1) is obtained from a small
blowing-up of the conifold point (u1, v1, u2, v2) = 0. It is a toric manifold
equipped with a toric Kähler form. We have the T 2-action on Ŷ given by
(λ1, λ2) · (u1, v1, u2, v2) = (λ1u1, λ

−1
1 v1, λ2u2, λ

−1
2 v2), and we denote the cor-

responding moment map by (µ1, µ2) : Ŷ → R2. Then from the works of Ruan
[Rua01], Gross [Gro01] and Goldstein [Gol01], there is a Lagrangian fibration

(µ1, µ2, |zw − 1|) : Ŷ → R2 × R≥0.

It serves as one of the local models of Lagrangian fibrations which were used
by Castaño-Bernard and Matessi [CnBM09, CnBM14] to build up global
fibrations from a tropical base manifold.

Figure 3. The base and discriminant loci of Lagrangian fibrations in conifold
transition.

The discriminant locus of this fibration is contained in the hyperplane

{(x1, x2, x3) ∈ R2 × R≥0 : x3 = 1},
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see the top left of Figure 3. This hyperplane is known as the wall for open
Gromov-Witten invariants of torus fibers as it contains images of holomor-
phic discs of Maslov index zero. By studying wall-crossing of holomorphic
discs emanated from infinity divisors (of a compactification of Ŷ ), [CLL12]
constructed the SYZ mirror of Ŷ − {zw = 1}.

Theorem 3.1 (A special case in [CLL12] and [AAK16]). The SYZ
mirror of Ŷ − {u2v2 = 1} is

{(u1, v1, u2, v2) : u1, v1 ∈ C, u2, v2 ∈ C× : u1v1 = 1 + u2 + v2 + qu2v2}

where q = exp−
(
complexified symplectic area of the zero section P1 of Ŷ

)
.

Take the change of coordinates ũ2 = q1/2u2+1/q1/2, ṽ2 = q1/2v2+1/q1/2.
(Here we have fixed a square root of q.) Then the equation becomes u1v1 =
u2v2 + 1− 1/q and the divisors are u2 = 1/q1/2 and v2 = 1/q1/2. Further
rescaling (u1, v1, u2, v2) by q1/2, the SYZ mirror is the deformed conifold

Ỹ = {(u1, v1, u2, v2) ∈ C4 : u1v1 = u2v2 + (q − 1)}

with the divisor {(u2 − 1)(v2 − 1) = 0} deleted. To conclude, we have the
mirror pair Ŷ − {u2v2 = 1} and Ỹ − {(u2 − 1)(v2 − 1) = 0}.

Taking the Atiyah flop of the (−1,−1) curve in Ŷ amounts to switching
q to 1/q. As a result, the mirror of Ŷ − {zw = 1} changes from

{u1v1 = u2v2 + (q − 1)} − {(u2 − 1)(v2 − 1) = 0}

to

{u1v1 = u2v2 + (1/q − 1)} − {(u2 − 1)(v2 − 1) = 0}

under flop on Ŷ . However changing equation just results in a symplecto-
morphism. Thus unlike the flop of a (−1,−1) curve, the mirror flop (of a
Lagrangian vanishing sphere in conifold degeneration) does ‘nothing’ to the
symplectic manifold. We need additional geometric structures to detect the
mirror flop. For this local model it is obvious that they can be distinguished
by complex structures. In general we would like to consider geometric struc-
tures in the symplectic category. This will be further studied in the next
section.

We can also consider a different relative Calabi-Yau so that Lagrangian
spheres can be seen more easily. First rescale (u1, v1, u2, v2) so that Ỹ is
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given as

u1v1 − u2v2 = q1/2 − q−1/2.

Rewrite Ỹ as a double conic fibration,

Ỹ = {(u1, v1, u2, v2, z) ∈ C5 : u1v1 = z + q1/2, u2v2 = z + q−1/2}.

It is equipped with the standard symplectic form from C5. If we flop Ŷ , the
mirror Ỹ becomes {u2v2 = z + q−1/2;u1v1 = z + q1/2}. We take the comple-
ment Ỹ − {z = c} where c ∈ C− {−q1/2,−q−1/2},

We have the Lagrangian fibration

(x1, x2, x3) = (|u1|2 − |v1|2, |u2|2 − |v2|2, |z − c|) : Ỹ → R2 × R≥0

where the boundary divisor is exactly {z = c}. The discriminant loci are
{x1 = 0, x3 = |q1/2+c|} and {x2 = 0, x3 = |q−1/2+c|} contained in the walls
{x3 = |q1/2 + c|} and {x3 = |q−1/2 + c|} respectively, see the top right of
Figure 3. By [AAK16, Theorem 11.1] (or SYZ in [Lau14] by Minkowski
decompositions), the resulting SYZ mirror is the following.

Theorem 3.2 (A special case in [AAK16] and [Lau14]). The SYZ
mirror of Ỹ − {z = c} is Ŷ − ({u2 = 1} ∪ {v2 = 1}).

Denote a = −q−1/2 and b = −q1/2, and without loss of generality assume
that a, b are real, c = 0 and a < b < 0. Consider the Fukaya category of
Ỹ − {z = 0} generated by the two Lagrangian spheres S1 and S2, where

S0 ={z = −t, |u1| = |v1|, |u2| = |v2| : a ≤ t ≤ b},
S1 ={z = exp(tζ1 + (1− t)ζ0) for t ∈ [0, 1], |u1| = |v1|, |u2| = |v2|}

where ζ0 = log |a| − πi and ζ1 = log |b|+ πi . S0 and S1 are oriented by
dt ∧ dθ1 ∧ dθ2 where θ1, θ2 are the arguments of u1, u2 respectively. They
are special Lagrangians and in particular graded by a suitable holomorphic
volume form. (We shall go back to this point in more detail in Section 5.)
Figure 4 shows S0 in the picture of double conic fibration.

Chan-Pomerleano-Ueda [CPU] proved homological mirror symmetry for
the mirror pair (Ỹ − {z = 0}, Ŷ − ({u2 = 1} ∪ {v2 = 1}) making use of the
SYZ transformation. The result is the following.

Theorem 3.3 (Theorem 1.2 and 1.3 of [CPU]). There is an equiva-
lence between the derived wrapped Fukaya category of Ỹ0 := Ỹ − {z = 0} and
the derived category of coherent sheaves of Ŷ0 := Ŷ − ({u2 = 1} ∪ {v2 = 1}).
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Figure 4. Lagrangian S3 seen from the double conic fibration.

Remark 3.4. The spheres S0 and S1 here were denoted as S1 and S0 in
[CPU] respectively.

In Section 5 and 6, Ỹ0 will be denoted as Xt=0 which appears as a
member in a family of symplectic manifolds Xt.

Restricting to the Fukaya subcategory consisting of S0, S1, we have the
equivalence between Db〈S0, S1〉 and DŶ /Y (2.1). We will revisit this equiv-

alence in Section 5 (see Theorem 5.3 for more details on the equivalence).
Then we will compare the flop on B-side and the corresponding operation
on A-side (to be constructed below) using this.

On the other hand, we can take the approach of [CHLb] to construct the
noncommutative mirror of Ỹ0. From homological mirror symmetry between
Ỹ0 and its noncommutative mirror, we obtain stability conditions on the
derived Fukaya category generated by S0 and S1 in Section 6. We will show
that stable objects are special Lagrangian submanifolds.

4. A-flop in symplectic geometry

4.1. Mirror of Atiyah flop as a symplectomorphism

Let (X,ω) be a symplectic threefold and S a Lagrangian sphere of X. By We-
instein neighborhood theorem, a neighborhood of S ⊂ X can always be iden-
tified symplectomorphically with a neighborhood of S ⊂ T ∗S, which can be
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identified with {(u1, v1, u2, v2)∈C4 : u1v1−u2v2 = ε} = {(u1, v1, u2, v2, z)∈
C5 : u1v1 = z + ε, u2v2 = z} for some ε > 0, where ω is given by the restric-
tion of the standard symplectic form on C4. This identification is adapted
to conifold degeneration at the limit ε→ 0.

In other words, we take a conifold-like chart in the following sense.

Definition 4.1. A conifold-like chart around S is (U, ι), where U is an
open neighborhood of S and ι : U ↪→ C× × C4 is a symplectic embedding
(where C× × C4 is equipped with the standard symplectic form) such that
the following holds.

1) The image of U under the embedding is given by

(4.1)

{
u1v1 = z − a,
u2v2 = z − b

for some real numbers a < b, where
∣∣z − a+b

2

∣∣ < R for some fixed R >
b−a

2 , and
∣∣|u1|2 − |v1|2

∣∣ < L,
∣∣|u2|2 − |v2|2

∣∣ < L for some fixed L > 0.
Here z is the coordinate of C× and u1, v1, u2, v2 are the coordinates of
C4. We will also denote the image by U for simplicity.

2) The Lagrangian sphere ι(S) is given by {|u1|= |v1|, |u2|= |v2|, z∈ [a, b]}.

We will simply identify U with its image under ι. Let

V =

{
u1v1 = z − a, u2v2 = z − b,∣∣∣∣z − a+ b

2

∣∣∣∣ ≤ R− ε, ∣∣|ui|2 − |vi|2∣∣ ≤ L− ε for i = 1, 2

}
⊂ U,

V ′ =

{
u1v1 = z − a, u2v2 = z − b,∣∣∣∣z − a+ b

2

∣∣∣∣ < R− 2ε,
∣∣|ui|2 − |vi|2∣∣ < L− 2ε for i = 1, 2

}
⊂ V

for ε > 0 sufficiently small. We have a diffeomorphism from U − V to the
corresponding open subset of

U † :=

{
u1v1 = z − b, u2v2 = z − a,

∣∣∣∣z − a+ b

2

∣∣∣∣ < R, for i = 1, 2

}

defined by z 7→ z, (u1, v1) 7→
(
z−b
z−a

)1/2
(u1, v1), (u2, v2) 7→

(
z−a
z−b

)1/2
(u2, v2).

(We choose a branch of the square root. It is well-defined since a, b /∈ U − V .)
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By Moser argument, we can cook up a symplectomorphism isotopic to this
diffeomorphism. Thus we have fixed a symplectomorphism ρ from U − V to
an open subset of U †.

In analogous to a flop along a (−1,−1) curve in complex geometry, we
define another symplectic threefold (X†, ω†) by gluing (X − V, ω) with a
suitable open subset of U † by the above symplectomorphism ρ on U − V .
By construction (an open subset of) U † is a conifold chart of X† around the
Lagrangian sphere S† ⊂ U † defined by {|u1| = |v1|, |u2| = |v2|, z ∈ [a, b]}.

However, unlike the flop along a (−1,−1) holomorphic sphere, (X†, ω†)
is just symplectomorphic to the original (X,ω), since the gluing map ρ can
be extended to U → U †. Let

ψ̃± : {(u1, v1, u2, v2, z) ∈ C5 : u1v1 = z − a, u2v2 = z − b}
→ {u1v1 = z − b, u2v2 = z − a}

be defined by (u1, v1, u2, v2, z) 7→ (±iu1,±i v1,±iu2,±i v2,−z + a+ b) re-
spectively. It commutes with the T 2 action

(λ1, λ2) · (u1, v1, u2, v2, z) = (λ1u1, λ
−1
1 v1, λ2u2, λ

−1
2 v2, z)

and hence descends to the symplectic reduction, which is simply rotating the
z-plane by π around (a+ b)/2. Let ψ be the restriction of ψ̃+ to V ′. Then we
have a symplectomorphism U → U † by interpolating between the gluing map
ρ and ψ in the region R− 2ε <

∣∣z − a+b
2

∣∣ < R− ε, L− 2ε <
∣∣|ui|2 − |vi|2∣∣ <

L− ε. Namely we take a diffeomorphism which equals to ψ on V ′, and is
given by

z 7→eπi f(|z−(a+b)/2|)(z − (a+ b)/2) + (a+ b)/2

(u1, v1) 7→
(
eπi f(|z−(a+b)/2|)(z − (a+ b)/2) + (a− b)/2

z − a

)1/2

(u1, v1)

(u2, v2) 7→
(
eπi f(|z−(a+b)/2|)(z − (a+ b)/2) + (b− a)/2

z − b

)1/2

(u2, v2)

on U − V . Here f(r) is a decreasing function valued in [0, 1] which equals
to 1 for r < R− 2ε and equals to 0 for r > R− ε. The square root z1/2 is
taken for the branch 0 < arg(z) ≤ π. By Moser argument we have a sym-
plectomorphism isotopic to this, and ρ is the restriction to U − V .

In conclusion, given a symplectic manifold (X,ω) and a conifold-like
chart around a Lagrangian sphere S, we have a symplectomorphism f (X,S) :
(X,ω)→ (X†, ω†) by a surgery in analogous to flop in complex geometry.
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The operation does not produce a new symplectic manifold because sym-
plectic geometry is too soft.

If we do the operation twice, we obtain X†† which is canonically iden-
tified with X as follows. X†† is glued from X − V and U = U †† by ρ† ◦ ρ.
The composition of

z 7→ z, (u1, v1) 7→
(
z − b
z − a

)1/2

(u1, v1), (u2, v2) 7→
(
z − a
z − b

)1/2

(u2, v2)

and z 7→ z, (u1, v1) 7→
(
z − a
z − b

)1/2

(u1, v1), (u2, v2) 7→
(
z − b
z − a

)1/2

(u2, v2)

is simply identity. Hence the gluing ρ† ◦ ρ = Id and X†† = X. Below we
see that doing the above operation twice produces the Dehn twist along
the Lagrangian sphere S, which induces a non-trivial automorphism on the
Fukaya category.

Proposition 4.2 (same as Proposition 1.1). f (X†,S†) ◦ f (X,S) : X →
X†† = X equals to the inverse of the Dehn twist of X along S.

Proof. f (X†,S†)◦f (X,S) : X → X†† is given as follows. WriteX = X†† = (X−
V ) ∪Id U . The map is identity on X − V . In V ′ ⊂ U it is given by ψ2 which
maps ui 7→ −ui, vi 7→ −vi, z 7→ z, and in particular is the antipodal map on
the three-sphere

{u1v1 = z − a, u2v2 = z − b, z ∈ [b, a], |ui| = |vi| for i = 1, 2} ⊂ V ′.

On U − V ′ it is isotopic to

z 7→e2πi f(|z−(a+b)/2|)(z − (a+ b)/2) + (a+ b)/2

(u1, v1) 7→
(
e2πi f(|z−(a+b)/2|)(z − (a+ b)/2) + (b− a)/2

z − a

)1/2

(u1, v1)

(u2, v2) 7→
(
e2πi f(|z−(a+b)/2|)(z − (a+ b)/2) + (a− b)/2

z − b

)1/2

(u2, v2),

where f(r) is a decreasing function valued in [0, 1] which equals to 1 for
r < R− 2ε and equals to 0 for r > R− ε. The square root z1/2 is taken for
the branch where 0 < arg(z) ≤ 2π. Thus we see that it is the inverse of the
Dehn twist. �
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4.2. Lagrangian fibrations

We see from the last section that the mirror of the Atiyah flop surgery does
not produce a new symplectic manifold unfortunately. We need additional
geometric structures in order to distinguish X† from X. In this section we
consider Lagrangian fibrations. Conceptually it can be understood as a ‘real
polarization’, playing the role of the complex polarization (namely the com-
plex structure) for flop of a (−1,−1) curve.

From now on we identify X and X† as the same symplectic manifold
using the symplectomorphism f (X,S).

Let π : X → B be a Lagrangian torus fibration. We consider a conifold
degeneration of X with a vanishing sphere S, such that the Lagrangian
fibration around S is like the one on the deformed conifold [Gro01, Gol01].

Definition 4.3. Assume the notations in Section 4.1. A Lagrangian fibra-
tion π is said to be of conifold-like if we have the commutative diagram

U ι(U)

f(U) I × (−L,L)× (−L,L)
?

π

-ι

?

(|z−c|, 12 (|u1|2−|v1|2), 1
2
(|u2|2−|v2|2))

-
∼=

where
∣∣c− a+b

2

∣∣ > R and |c− a| 6= |c− b|, and I is a certain open interval.

Theorem 4.4 (Theorem 1.2 in the Introduction). Given a symplectic
threefold (X,ω) with a Lagrangian fibration π : X → B which is conifold-like
around a Lagrangian three-sphere S ⊂ X, there exists a Lagrangian fibration
π† : X → B with the following properties.

1) π† is also conifold-like around S.

2) The images of S under π and π† are the same, denoted by S. It is
a one-dimensional affine submanifold in B away from discriminant
locus.

3) π† = π outside a neighborhood V ⊃ S and V ⊂ U . In particular the
affine structures on B induced from π and π† are identical away from
a neighborhood of S.

4) From above, there is a canonical correspondence between orientations
of regular fibers of π and that of π†. Fix an orientation of torus fibers
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of π over the image of U , and an orientation of a regular fiber of π|S
(which is topologically T 2). Then the induced orientations on S through
π and π† are opposite to each other.

Proof. π† is constructed from the symplectomorphism f : X → X† given in
the last subsection. Namely we glue the Lagrangian fibration of X − V with
the Lagrangian fibration of U † by ρ. This gives a Lagrangian fibration on
X†, and hence on X by the symplectomorphism f . It is constructed directly
as follows.

For each fixed u1, u2, v1, v2, take the diffeomorphism φu1,u2,v1,v2 on {z ∈
C : |z − (a+ b)/2| < R} defined by

φu1,u2,v1,v2(z) = e
πi f

(
( |z−(a+b)/2|

R )
2
+
(
|u1|

2−|v1|
2

L

)2

+
(
|u2|

2−|v2|
2

L

)2
)

(4.2)

× (z − (a+ b)/2) + (a+ b)/2

where f(r) is a decreasing function valued in [0, 1] which equals to 1 for
r < 1− 2ε and equals to 0 for r > 1− ε. Thus φu1,u2,v1,v2 is identity on{

(u1, v1, u2, v2, z) ∈ U :

(
|z − (a+ b)/2|

R

)2

+

(
|u1|2 − |v1|2

L

)2

+

(
|u2|2 − |v2|2

L

)2

> 1− ε

}
.

Define a fibration U → I × (−L,L)× (−L,L) by(
|φu1,u2,v1,v2 (z)− c| , 1

2
(|u1|2 − |v1|2),

1

2
(|u2|2 − |v2|2)

)
.

For |u1| = |v1|, |u2| = |v2|, the resulting level curves of |φ(0, 0, z)− c| are
depicted in Figure 5a. Since the fibration is T 2-equivariant and any curve on
the plane is Lagrangian, it is a Lagrangian fibration by symplectic reduction.
Moreover it agrees with the original Lagrangian fibration π on U − V . Hence
we can glue this with the original Lagrangian fibration on X − V , and obtain
another Lagrangian fibration π† : X → B.

By definition π = π† away from V . In the neighborhood defined by(
|z−(a+b)/2|

R

)2
+
(
|u1|2−|v1|2

L

)2
+
(
|u2|2−|v2|2

L

)2
< 1− 2ε, the fibration is sim-

ply (
|z − (a+ b− c)| , 1

2
(|u1|2 − |v1|2),

1

2
(|u2|2 − |v2|2)

)
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which is also conifold-like around S. The image of S under either π and
π† is the interval [b− c, a− c]× {0} × {0}. Since the fibration around S is
compatible with the symplectic reduction of the T 2-action on (u1, v1, u2, v2),
the second and third coordinates (b2, b3) =

(
1
2(|u1|2 − |v1|2), 1

2(|u2|2 − |v2|2)
)

serve as the action coordinates of the base of the Lagrangian fibration. Thus
the image S ⊂ {b2 = b3 = 0} is an affine submanifold.

Since π = π† outside V ⊂ U and every torus fiber of π and π† has non-
empty intersection in X − V , the orientations can be canonically identi-
fied. We have induced orientations on the fibers of |z − c| and also fibers
of |φu1,u2,v1,v2(z)− c|. The induced orientation on S from π (or π† resp.) is
such that ω(u, v) > 0 where u is a tangent vector along the orientation of
S and v (or v′ resp.) is a tangent vector along the orientation of a fiber of
|z − c| (or a fiber of |φu1,u2,v1,v2(z)− c| resp.). It follows that v = −v′ (up to
scaling by a positive number) and hence the two induced orientations on S
are opposite to each other. �

To distinguish from the usual notion of flop in complex geometry, we call
π† to be the A-flop of the Lagrangian fibration π (where ‘A’ stands for the
’symplectic side’ in mirror symmetry). It is the mirror operation of Atiyah
flop.

In analogous to foliations, we identify two Lagrangian fibrations if they
are related by diffeomorphisms as follows.

Definition 4.5. Two Lagrangian fibrations π1, π2 : X → B are said to be

equivalent if there exists a symplectomorphism Φ : X
∼=→ X and a diffeomor-

phism φ : B
∼=→ B such that φ ◦ π1 = π2 ◦ Φ.

The following easily follows from construction.

Proposition 4.6. If we make different choices of (U, ι) and the function f
in the proof of Theorem 4.4, the resulting Lagrangian fibrations are equiva-
lent.

4.3. A-flop on Lagrangian submanifolds

We can also consider the effect of A-flop on Lagrangian submanifolds other
than torus fibers. We restrict to the following kind of Lagrangian submani-
folds.
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(a) The symplectic reduction of La-
grangian torus fibers before and after the
A-flop.

(b) The discriminant locus before and af-
ter the A-flop.

Definition 4.7. Let S be a Lagrangian sphere in X. A Lagrangian subman-
ifold L ⊂ X is said to have T 2-symmetry around S if there exists a conifold-
like chart (U, (u1, v1, u2, v2, z)) around S such that the image of L ∩ U under
z is a curve and the fiber at each point is given by |ui|2 − |vi|2 = ci(z) for
some real-valued function ci on the curve, i = 1, 2.

Given L with T 2-symmetry with respect to a conifold-like chart (U,
(u1, v1, u2, v2, z)) around S, we define L† as follows. Recall the diffeomor-
phism φu1,u2,v1,v2 on {z ∈ C : |z − (a+ b)/2| < R} in Equation (4.2). Write
the image of L ∩ U under z as a level curve f(z) = 0 of a real-valued function
f . Then L† is given as{

(u1, v1, u2, v2, z)∈U : f(φu1,u2,v1,v2(z))=0, |ui|2−|vi|2 =ci(z) for i=1, 2
}

in U and equals to L outside U . Since the image of L† is a curve in the sym-
plectic reduction by T 2, it is a Lagrangian submanifold with T 2-symmetry.
Note that L† and L can be topologically different from each other.

By construction we have

Proposition 4.8. (L†)† equals to the inverse of the Dehn twist applied
to L.

If we have a stability condition (Z,S) on the Fukaya category gener-
ated by Lagrangians with T 2-symmetry around S, then A-flop should give
another stability condition (Z†,S†) where Z†(L†) = Z(L). In the next two
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sections we will restrict to the deformed conifold and carry out this con-
struction explicitly.

4.4. Examples

4.4.1. Deformed conifold. Consider the deformed conifold

X = {(u1, v1, u2, v2, z) ∈ C4 × C× : u1v1 = z − a, u2v2 = z − b}

where a < b < 0. (We have taken away the divisor z = 0.) We can take the
flop of the Lagrangian fibration

π = (|u1|2 − |v1|2, |u2|2 − |v2|2, |z|)

which is special with respect to the holomorphic volume form Ω = d log z ∧
du1 ∧ du2. The base of the fibration is R2 × R>0. The discriminant locus of
the fibration is {0} × R× {|a|} ∪ R× {0} × {|b|}. After the flop, the discrim-
inant locus becomes {(0, t, |φ0,t,0,0(a)|) : t ∈ R} ∪ {(t, 0, |φ0,t,0,0(b)|) : t ∈ R}
where φ is given in Equation (4.2). For t� 1, φ0,t,0,0(a) = b and φ0,t,0,0(b) =
a; for t big enough, φ0,t,0,0(a) = a and φ0,t,0,0(b) = b. The base and dis-
criminant locus are shown in Figure 5b. The new fibration π† is no longer
special with respect to Ω; however it is equivalent to the corresponding
special Lagrangian fibration on X† = {(u1, v1, u2, v2, z) ∈ C4 × C× : u1v1 =
z − b, u2v2 = z − a} with respect to Ω† (defined by the same expression as
Ω).

We have a family of complex manifolds defined by

u1v1 =z −
(
a+ b

2
+
b− a

2
eπi (1+s)

)
,

u2v2 =z −
(
a+ b

2
+
b− a

2
eπi s

)
for s ∈ [0, 1] joining X and X†. They are depicted in Figure 6. Each member
has a special Lagrangian fibration defined by the same formula as π above.
Before (or after) the moment s = 1

2 , the Lagrangian fibrations are all equiva-
lent. Approaching the moment s = 1

2 , two singular Lagrangian fibers collide
into one and the Lagrangian fibration changes. Thus s = 1

2 is the ‘wall’. It
can also been seen clearly from the base, see the top right of Figure 3. At
the moment s = 1

2 , the two discriminant loci (which are two lines in different
directions) collides.
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Figure 6. A-flop shown in the double conic fibration picture

The torus fibers of π and π† are different objects in the Fukaya cate-
gory. Namely consider a fiber T = {|z| = k, |u1| = |v1|, |u2| = |v2|} of π where
|b| < k < |a| and the corresponding fiber T † = {|φ(z)| = k, |u1| = |v1|, |u2| =
|v2|} of π†. We shall see in Section 5 that T , which is special Lagrangian
with respect to Ω, is a surgery S1#S0 for a morphism in Mor(S1, S0),
while T †, which is special Lagrangian with respect to Ω†, is a surgery
S0#S1 for a morphism in Mor(S0, S1). S0, S1 are Lagrangian spheres de-
fined by S0 = {z = −t, |u1| = |v1|, |u2| = |v2| : a ≤ t ≤ b} and S1 = {z = 1 +
exp(tζ1 + (1− t)ζ0) for t ∈ [0, 1], |u1| = |v1|, |u2| = |v2|} where ζ0 = log |a| −
iπ and ζ1 = log |b|+ iπ.

4.4.2. Deformed orbifolded conifold. For k ≥ l ≥ 1, the orbifolded
conifold Ok,l is the quotient of the conifold {u1v1 = u2v2} ⊂ C4 by the
abelian group Zk × Zl, where the primitive roots of unity ζk ∈ Zk and ζl ∈ Zl
act by

(u1, v1, u2, v2) 7→ (ζku1, ζ
−1
k v1, u2, v2),

and (x, y, z, w) 7→ (u1, v1, ζlu2, ζ
−1
l v2).

In equations

Ok,l =
{
u1v1 = (z − 1)k, u2v2 = (z − 1)l

}
⊂ C5.

It is a toric Gorenstein singularity whose fan is the cone over the rectangle
[0, k]× [0, l] ⊂ R2. For the purpose of constructing a Lagrangian torus fibra-
tion with only codimension-two discriminant loci, we shall delete the divisor
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{z = 0} ⊂ Ok,l and obtain

X0 =
{

(u1, u2, v1, v2, z) ∈ C4 × C× : u1v1 = (z − 1)k, u2v2 = (z − 1)l
}
.

We shall consider smoothings of X0, which correspond to the Minkowski
decompositions of the rectangle [0, k]× [0, l] into k copies of [0, 1]× {0} and
l copies of {0} × [0, 1] [Alt97]. Explicitly a smoothing is given by

X = {(u1, u2, v1, v2, z) ∈ C4 × C× | u1v1 = f(z), u2v2 = g(z)}

where f(z) and g(z) are polynomials of degree k and l respectively, such that
the roots ri and sj of f(z) and g(z) respectively are pairwise-distinct and
non-zero. For later purpose we shall assume |ri|, |sj | are all pairwise distinct.

X admits a double conic fibration X → C× by projecting to the z-
coordinate. There is also a natural Hamiltonian T 2-action on X given by
(s, t) · (u1, v1, u2, v2, z) := (su1, s

−1v1, tu2, t
−1v2, z) for (s, t) ∈ T 2 ⊂ C2. The

symplectic reduction of X by the T 2-action is identified with C×, the base
of the double conic fibration. Using the construction of Goldstein [Gol01]
and Gross [Gro01], we have the Lagrangian fibration

π : X → B := R2 × (0,∞)

π(u1, v1, u2, v2, z) =

(
1

2
(|u1|2 − |v1|2),

1

2
(|u2|2 − |v2|2), |z|

)
.

The map to the first two coordinates is the moment map of the Hamil-
tonian T 2-action. We denote the coordinates of B by b = (b1, b2, b3). The
discriminant locus is given by the disjoint union of lines(

k⋃
i=1

{b1 = 0, b3 = |ri|}

)
∪

 l⋃
j=1

{b2 = 0, b3 = |sj |}

 ⊂ B,
and the fibers are special Lagrangians in the same phase π/2 with respect
to the volume form Ω := du1 ∧ du2 ∧ d log z ([KL, Proposition 3.17]).

Now let a = r1 and b = s1. Assume that |a| 6= |b|; zero and all other
roots ri, sj lie outside the disc |z − (a+ b)/2|. Let S0 be the Lagrangian
matching sphere corresponding to the straight line segment joining a and
b. Then the above Lagrangian fibration is conifold-like around S. The flop
of this is equivalent to the corresponding Lagrangian fibration on X† =
{u1v1 = f †(z), u2v2 = g†(z)}, where f † and g† are polynomials with sets of
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roots {s1, r2, . . . , rk} and {r1, s2, . . . , sl} respectively; and the Lagrangian
fibration is

π†(u1, v1, u2, v2, z) =

(
1

2
(|u1|2 − |v1|2),

1

2
(|u2|2 − |v2|2), |z|

)
: X† → B.

The Lagrangian fibration π† is no longer special with respect to Ω on X;
however it is (equivalent to) a special Lagrangian fibration with respect to
Ω† = du1 ∧ du2 ∧ d log z on X†.

4.4.3. Shoen’s Calabi-Yau. Given a compact simple integral affine three-
fold B with singularities ∆, Castaño-Bernard and Matessi [CnBM09] con-
structed a symplectic manifold X together with a Lagrangian fibration
X → B inducing the given affine structure. It is achieved by gluing local
models of Lagrangian fibrations around ∆ with the Lagrangian fibration over
the affine manifold B −∆. In particular their construction can be applied
to Shoen’s Calabi-Yau [CnBM14]. The Lagrangian fibration is conifold-like,
and so the mirror flop defined here can be applied.

Shoen’s Calabi-Yau is given by the fiber product of two elliptic fibra-
tions on K3 surfaces over the base P1. The affine base manifold (which is
topologically S3) of Shoen’s Calabi-Yau was found by Gross [Gro05, Section
4]. Section 9.2 of [CnBM14] constructed a conifold degeneration of the affine
base forming nine conifold points simultaneously.

We quickly review their construction here. Consider the following poly-
hedral decomposition of S3. Take six copies of triangular prisms

Conv{(0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1)},

three of them are labeled as σj and three of them are labeled as τk for
j, k ∈ Z3. Take nine copies of cubes

Conv{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)}

and label them as ωjk. See Figure 7. The top triangular face of σj is glued
to the bottom triangular face of σj+1 (j ∈ Z3), and so topologically

⋃3
j=1 σj

forms a solid torus. Similarly do the same thing for τk so that
⋃3
k=1 τk forms

another solid torus. For the nine cubes, glue the top face of ωjk with the
bottom face of ωj+1,k for j ∈ Z3, and glue the right face of ωjk with the
left face of ωj,k+1 for k ∈ Z3. This topologically forms a two-torus times an
interval. Finally glue the front face of ωjk with the j-th square face of τk,
and glue the back face of ωjk with the k-th square face of σj . Here the square
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faces of σj and τk are ordered counterclockwisely. This forms S3 as gluing
of two solid tori along their boundaries.

(0,0,0)

(0,0,1)

(1,0,0)

(1,0,1)

(0,1,0)

(0,1,1)
glue

glue

glue

glue

The whole is a three-sphere topologically.

Figure 7. Polytopes in the polyhedral decomposition of the affine base of
Shoen’s CY.

The fan structure at every vertex of the polyhedral decomposition is that
of P2 × P1. Together with the standard affine structure of each polytope, this
gives S3 an affine structure with singularities. The discriminant locus is given
by the dotted lines shown in Figure 7. Note that each dotted line in a square
face of a prism indeed has multiplicity three. Thus the discriminant locus is
a union of 24 circles counted with multiplicities. Moreover the dotted lines
in cubes form three horizontal and three vertical circles, intersecting with
each other at nine points. These are the nine conifold singularities (which
are positive nodes).

By gluing local models of Lagrangian fibrations around discriminant
locus with the Lagrangian fibration from the affine structure away from dis-
criminant locus, [CnBM14] produced a symplectic manifold which is home-
omorphic to the Shoen’s Calabi-Yau. Moreover by using the results on sym-
plectic resolution of Smith-Thomas-Yau [STY02] and complex smoothing of
Friedman [Fri86] and Tian [Tia92], they showed that the existence of certain
tropical two-cycles containing a set of conifold points ensure that the nodes
can be simultaneously resolved (and smoothened in the mirror side). In par-
ticular all the nine nodes in this example can be resolved simultaneously.
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In the smoothing the three horizontal and three vertical circles which
form part of the discriminant locus are moved apart so that they no longer
intersect with each other. This gives a symplectic manifold X together with
a Lagrangian fibration. The corresponding affine base coincides with the one
in the previous work of Gross [Gro05, Section 4].

The local model for each conifold point in this example is the Lagrangian
fibration (|u1|2 − |v1|2, |u2|2 − |v2|2, |z|) on {(u1, v1, u2, v2, z) ∈ C4 × C× :
u1v1 = z − a = u2v2} for a < 0; the local model for its smoothing is the fibra-
tion defined by the same expression on {(u1, v1, u2, v2, z) ∈ C4 × C× : u1v1 =
z − a, u2v2 = z − b} for a < b < 0. A Lagrangian fibration corresponding to
the simultaneous smoothing can be constructed by gluing these local mod-
els. In particular X and the fibration are conifold-like around each of the
vanishing spheres corresponding to the nine conifold points. Hence we can
perform A-flop around each of these spheres and obtain new Lagrangian
fibrations. The operation can be understood as link surgery in the base S3.

Note that we cannot always keep the circles Ai, Bj in constant levels
in the A-flop. For instance, suppose Ai and Bj are contained in the planes
in levels ai, bj respectively with a1 < a2 < a3 < b1 < b2 < b3. (These planes
have normal vectors pointing to the right if drawn in Figure 7.) Now we
perform the A-flop along the vanishing sphere between levels a1 and b1.
The resulting fibration is equivalent to the one with these circles in levels
a2 < a3 < b1 < a′1 < b2 < b3 where a′1 is the new level of A1. At this stage all
these circles are still kept in constant levels. Now let’s do the A-flop along
the vanishing sphere between levels a2 and b3. Then the resulting fibration
cannot have all these circles in constant levels: if they were in constant levels,
then a2 < b1 < a′1 < b3 < a2, a contradiction!

5. Derived Fukaya category of the deformed conifold

In Example 4.4.1, we consider a path of complex structures on the deformed
conifold (with a fixed symplectic form) given by the equations

Xs =

{
u1v1 = z −

(
a+ b

2
+
b− a

2
eπi (1+s)

)
,(5.1)

u2v2 = z −
(
a+ b

2
+
b− a

2
eπi s

)
, z 6= 0

}

for s ∈ [0, 1]. (Xs=0 and Xs=1 were denoted as X and X† in 4.4.1, respec-
tively.) This deformation of complex structures parametrized by s is SYZ
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mirror to the flop operation on the resolved conifold. In the last section we
realized this operation as surgery of a Lagrangian fibration.

In this section, we study the effect of deformation of complex struc-
tures (together with holomorphic volume forms) on special Lagrangians.
This would motivate us to consider A-flop on stability conditions of the
derived Fukaya category.

Recall from Section 3 that we have two Lagrangian spheres S0 and S1

in Xs=0. Moreover, there is a sequence of Lagrangian spheres {Sn : n ∈ Z}
in Xs=0 which corresponds to a collection of non-trivial matching paths in
the base of the double conic fibration Xs=0 → C×. We depict these spheres
in the universal cover of C×(3z) as shown in Figure 8.

Definition 5.1. F is defined to be the full subcategory of Fuk(Xs=0) gen-
erated by S0 and S1.

The main purpose of this section is to prove the following.

Theorem 5.2. Regular Lagrangian torus fibers of π which have non-empty
intersection with S0, as well as the Lagrangian spheres Si, are contained
in F .

The theorem follows from Proposition 5.7 and 5.9 below.
The torus fibers and spheres Si are special Lagrangians with respect to

the holomorphic volume form

Ω := d log z̄ ∧ du1 ∧ du2

on Xs=0. Here we used d log z̄ instead of d log z to match the ordering of
phases on both sides of the mirror1. In particular, we measure the angle
in clockwise direction for phases of Si. The diagram in the right side of
Figure 8 compares the phases of Si’s, where S0 has the biggest phase in our
convention. In Section 6 we will see that taking these to be stable objects
defines a Bridgeland stability condition on the derived Fukaya category.

1In order to match the phase inequality in the mirror side, we can either impose
the mirror functor to be contravariant, or use the complex structure induced by
the conjugate volume form d log z̄ ∧ du1 ∧ du2 like here. All Si are still special La-
grangians under this volume form, and we have the phase inequalities θ(Si) > θ(Sj)
for 0 < i < j or i < j < 1. This matches the ordering of the phases of stable objects
in an exact triangle of the mirror B-side convention. Namely for an exact triangle

L1 → L1#L2 → L2
[1]→ where Li are special Lagrangians, their phases should satisfy

θ(L1) ≤ θ(L1#L2) ≤ θ(L2).
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Moreover each Si corresponds to another Lagrangian sphere S†i in F , the
flop of Si constructed in Section 4.3. The Lagrangian torus fibers of π† and
S†i are special with respect to the pull-back holomorphic volume form from
Xs=1, and they define another Bridgeland stability condition. In fact, we
have S†i = ρ−1(S′−i) where {S′n : n ∈ Z} is the set of new special Lagrangian
spheres in Xs=1 which map to straight line segments by z-projection as in
Figure 18.

For later use we orient these spheres as follows. In conic fiber direction,
each Si restricts to a 2-dimensional torus {|u1| = |v1|, |u2| = |v2|}. We fix
the orientation on the fiber torus to be dθ1 ∧ dθ2 where θi are the arguments
of ui respectively. We orient their matching paths as in the right side of
Figure 8.

Figure 8. Sequence of Lagrangian spheres in Xs=0.

Set L0 := S0 and L1 := S1. They are distinguished objects in the set
{Sn} of Lagrangian spheres in the sense that they have minimal/maximal
slopes (or phases) as well as they generate DbF . We will study Lagrangian
Floer theory of L0 and L1 intensely in Section 6.1.

Recall from Section 2 that DŶ /Y is the subcategory of Db(Ŷ ) generated

by OC(−1)[1] and OC . [CPU] proved the following equivalence of subcate-
gories of Fuk(Xs=0) and Db(Ŷ ).

Theorem 5.3. [CPU] There is an equivalence DbF ' DŶ /Y , sending

(5.2) L0 7→ OC(−1)[1] L1 7→ OC .
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Using the chain model of Abouzaid [Abo11], they explicitly computed
the A∞-structure of the endomorphism algebras of L0 ⊕ L1 to conclude that

(5.3) End(L0 ⊕ L1) ' End(OC(−1)[1]⊕OC).

See [CPU, Section 5, 7] for more details.
In this paper, we shall use either the Morse-Bott model in [FOOO09] or

pearl trajectories [BC07, She15] to study Lagrangian torus fibers and the
noncommutative mirror functor. They are conceptually easier to understand.

Figure 9. Transformation of L0 and L1 by the symplectomorphism ρ

The A-flop can be realized by the symplectomorphism ρ from Xs=0 to
Xs=1 given in 4.4.1 (see Figure 6). Figure 9 shows how ρ acts on Li, where
the third diagram describes the moment at which L0 and L1 happen to
have the same phases. Observe that Xs=1 (5.1) is obtained from Xs=0 by
swapping two sets of coordinates (u1, v1) and (u2, v2). However, swapping
the coordinates is different from the symplectomorphism that gives A-flop,
as its effect on z-plane shows.

As in Figure 9, ρ sends L0 and L1 to special Lagrangian spheres in
Xs=1 which we denote by L′0 and L′1 respectively. Let F ′ denote the Fukaya
subcategory of Xs=1 consisting of L′0 and L′1. There is a natural functor
ρ∗ : F → F ′ induced by the symplectomorphism ρ. On the other hand, we
can repeat the same argument as in the proof of Theorem 5.3 to see that

DbF ′ ' DŶ †/Y with L′0 7→ OC†(−1) and L′1 7→ OC†(−2)[1]
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Notice that this identification is coherent with the fact that L′0 is somewhat

similar to the orientation reversal of L0, whereas L1
ρ7→ L′1 can be understood

as a change of winding number with respect to z = 0.
In fact, we have

(5.4) End(L′0 ⊕ L′1) ' End(L0 ⊕ L1)

as two set of objects are related by a symplectomorphism, and

(5.5) End (OC†(−1)⊕OC†(−2)[1]) ' End (OC(−1)[1]⊕OC)

due to the flop functor (see 2.2). It directly implies that the functor ρ∗
induced by the symplectomorphism is mirror to the flop functor through
the identification of A and B side categories via [CPU]. Namely,

Proposition 5.4. We have a commutative diagram of equivalences:

(5.6) DbF

ρ∗

��

' // DŶ /Y

Φ

��
DbF ′ ' // DŶ †/Y

Proof. It obviously commutes on the level of objects by the construction.
(5.3), (5.4) and (5.5) imply that the diagram also commutes on morphism
level. �

We shall study how the symplectomorphism ρ or its induced functor ρ∗
acts on various geometric objects in DbF . For that, we should examine what
kind of geometric objects are actually contained in DbF .

5.1. Geometric objects of DbF

Let us first prove that any torus fiber intersecting L0 and L1 is isomorphic to

a mapping cone Cone
(
L0

α→ L1

)
for some degree-1 element α ∈ HF (L0,L1)

in the derived Fukaya category. In particular this will imply that the category
DbF contains those torus fibers as objects.

One can choose the gradings on Li such that

HF ∗(L0,L1) = H∗(S1
a)[−1]⊕H∗(S1

b )[−1].

Here, we use the Morse-Bott model, where S1
a and S1

b denotes the intersec-
tion loci over z = a and z = b, respectively. Both S1

a and S1
b are isomorphic



i
i

“2-Hong” — 2019/4/12 — 21:57 — page 1178 — #30 i
i

i
i

i
i

1178 Y.-W. Fan, H. Hong, S.-C. Lau, and S.-T. Yau

to a circle. Thus degree 1 elements in HF (L0,L1) are given by linear com-
binations of (Poincarè duals of) fundamental classes of S1

a and S1
b . The

cone Cone(L0
α→ L1) can be identified with a boundary deformed object

(L0 ⊕ L1, α) (see [FOOO09] or [Sei08]).
Let Lc := (for a < c < b) be a Lagrangian torus that intersects L0 at

z = c. This condition determines Lc uniquely, as components of Lc in dou-
ble conic fiber direction should satisfy the same equation as those of L0

and L1. We orient Lc as in Figure 8 in z-plane components, and use the
standard one (from dθ1dθ2 as for Si) along the conic fiber directions. Lc
cleanly intersects L0 and L1 along 2-dimensional tori which we denote by
T0 := Lc ∩ L0 and T1 := Lc ∩ L1. One can see that CF (Lc,L0) = C∗(T0)
and CF (L1, Lc) = C∗(T1) for suitable choice of a grading on Lc. Similarly,
CF (L0, Lc) = C∗(T0)[−1] and CF (Lc,L1) = C∗(T1)[−1].

Let Uρ1,ρ2,ρz be a unitary flat line bundle on Lc whose holonomies along
circles in the double conic fibers are ρ1 and ρ2 and that along the circle in
z-plane is ρz.

Lemma 5.5. If (ρ1, ρ2) 6= (1, 1), then

(5.7) HF (L0, (Lc, Uρ1,ρ2,ρz)) = 0, HF (L1, (Lc, Uρ1,ρ2,ρz)) = 0.

Proof. One can simply use the Morse-Bott model for each of cohomology
groups in (5.7). Each of this group is simply a singular cohomology of the
intersection loci, equipped with twisted differential. Since the intersection
loci are 2-dimensional torus in the double conic fiber, the twisting is de-
termined by (ρ1, ρ2). Here we only have classical differential, as there is no
holomorphic strip between Li and Tc. One can easily check that the coho-
mology vanishes if the twisting is nontrivial.

Alternatively, one can perturb Lagrangians to have transversal intersec-
tions as in Figure 16 to see that the Floer differential has coefficients ρ1 − 1
and ρ2 − 1, which are nonzero for nontrivial (ρ1, ρ2). �

The lemma implies that (Lc, Uρ1,ρ2,ρz) has no Floer theoretic intersection
with L0 or L1 unless ρ1 = ρ2 = 1. From now on, we will only consider flat
line bundles of the type U0,0,ρz on Lagrangian torus fibers, which will be
written as Uρz instead of U0,0,ρz for notational simplicity. Let P0 := PD[T0] ∈
CF ∗(Lc,L0) = C∗(T0) and P1 := PD[T1] ∈ CF ∗(L1, Lc) = C∗(T1). We also
set αa := PD[S1

a] ∈ CF ∗(L0,L1) and αb := PD[S1
b ] ∈ CF ∗(L0,L1). Notice

that degαa = degαb = 1 whereas degP0 = degP1 = 0.
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Figure 10. Two triangles contributing to m1 and m2.

Lemma 5.6.

P0 ∈ CF 0((Lc, Uρz), (L0 ⊕ L1, α))

and P1 ∈ CF 0((L0 ⊕ L1, α), (Lc, Uρz))

are cycles with respect to m0,α
1 and mα,0

1 respectively if and only if α is given
as λaαa + λbαb ∈ CF 1(L0,L1) with (λa : λb) = (Tω(∆2)ρz : Tω(∆1))2 where
∆1 and ∆2 are triangles shaded in Figure 10.

Proof. We will prove the lemma for P1 only, and the proof for P0 is similar.
We pick a point × as in Figure 10 for representative of Uρz so that when
boundary of a holomorphic polygon passes this point, the corresponding mk-
operation is multiplied by ρ±1

z depending on the orientation. (More precisely,
the point × represent 2-dimensional subtorus in Lc lying over this point,
which is called a hyper-torus and used to fix the gauge of a flat line bundle
in [CHL14].)

Observe that two holomorphic triangles ∆1 and ∆2 shown in Figure 10
contribute to the following operations:

(5.8) m2(λaαa, P1) = λaT
ω(∆1)P̄0, m2(λbαb, P1) = −ρzλbTω(∆2)P̄0.

2It is harmless to put T = e−1 since only finitely many polygons contribute to
A∞-structures. Nevertheless we will keep the notation T to highlight contributions
from nontrivial holomorphic polygons.



i
i

“2-Hong” — 2019/4/12 — 21:57 — page 1180 — #32 i
i

i
i

i
i

1180 Y.-W. Fan, H. Hong, S.-C. Lau, and S.-T. Yau

where P̄0 is PD[T0] regarded as an element of CF (L0, Lc) = C∗(T0)[−1] ⊂
CF ((L0 ⊕ L1, α), (Lc, Uρz)) (note that deg P̄0 = 1). We do not provide the
precise sign rule here since it is not crucial in our argument. Indeed we
can assume that two operations in (5.8) produces outputs with the opposite
signs by replacing λb to −λb if necessary.

Therefore we see that

mα,0
1 (P1) =

∑
k

mk(α, . . . , α, P1) =
(
λaT

ω(∆1) − ρzλbTω(∆2)
)
P̄0 = 0

if and only if λa and λb have the ratio as given in the statement. �

We next prove that P0 and P1 in Lemma 5.6 give isomorphisms between
two objects (Lc, Uρz) and Cone(L0

α→ L1) where α is chosen as in Lemma
5.6. Here, it is enough to present the ratio between λa and λb, as the mapping
cone does not depend on the scaling of α by an element in C× (or in Λ \ {0}
if we do not substitute T by e−1).

Proposition 5.7. We have

(Lc, Uρz) ∼= Cone(L0
α→ L1)

in the derived Fukaya category of Xs=0 where α = λaαa + λbαb is chosen as
in Lemma 5.6.

Proof. Let us fix λa and λb to be ρzT
ω(∆2) and Tω(∆1) for simplicity. We

claim that

mα,0,α
2 (P1, P0) = C(1L0

+ 1L1
), m0,α,0

2 (P0, P1) = C1Lc

for some common constant C. (One should rescale P0 and P1 to get strict
identity morphisms.) To see this, pick generic points “?” on L0, L1 as in
Figure 10, whose number of appearance in the boundary of holomorphic
discs determines the coefficient of 1Li

. The same triangles in the proof of
Lemma 5.6 now contribute as

mα,0,α
2 (P1, P0) = λaT

ω(∆1)1L1
+ ρzλbT

ω(∆2)1L0

= ρzT
ω(∆1)+ω(∆2) (1L0

+ 1L1
)

Here two contributions add up contrary to (5.8). In fact, the relative signs
are completely determined by z-directions since all the Lagrangians share
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the other directions, and one can use the sign rule due to Seidel [Sei11] for
z-plane components.

It is easy to check that the computation does not depend on the choice
of generic points ? (it is essentially because P0 and P1 are cycles). Likewise,
∆2 contributes to

m0,α,0
2 (P0, P1) = ρzλbT

ω(∆2)1Lc
= ρzT

ω(∆1)+ω(∆2)1Lc
.

In particular, Proposition 5.7 implies the following exact sequence in the
derived Fukaya category

L1 → (Lc, Uρz)→ L0
[1]→ .

�

Remark 5.8. Analogously, the following gives an exact triangle in DŶ /Y :

OC → Oy → OC(−1)[1]
[1]→

for a point y in C, or equivalently Oy ∼= Cone(OC(−1)[1]→ OC) for some
degree 1 morphism. Note that Oy is a SYZ mirror of one of torus fibers Lc
(with a flat line bundle Uρz). Proposition 5.7 and the above exact triangle
shows that the equivalence (5.2) sends torus fibers to skyscraper sheaves
over points in C.

By symmetric argument (or by the triangulated structure on
DbFuk(Xs=0)), one also has

Cone(L0[1]
β→ Lc) ∼= L1

in DbFuk(Xs=0) where deg(β) = 1. Here, [1] can be though of as taking
orientation reversal of the z-component of L0 (or, more precisely, such change
of grading). A similar statement holds true for other Lagrangian spheres
{Sm : m ∈ Z} (Figure 8).

Proposition 5.9. Lagrangian sphere Si for any i can be obtained from tak-
ing successive cones from S0 and S1. More precisely, one has the following:

• for m ≥ 1,

Sm+1
∼= Cone(Lc → Sm),

• for n ≤ 0,

Sn−1
∼= Cone(Sn[1]→ Lc[1]).
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Figure 11. Triangles contributing to m1 and m2 on CF (Sm[1]⊕ Sm+1, Lc)
and CF (Lc, Sm[1]⊕ Sm+1).

Proof. We only prove the first identity, and the proof for the second can be
performed in a similar manner. One can easily check that Lc=Cone(Sm[1]

α→
Sm+1) (for n ≤ 0) by the same argument as in the proof of Lemma 5.6, where
α is a degree 1 morphism from Sn−1 to Sn[1]. The contributing pair of
triangles are as shown in Figure 11, and hence we should take into account
the relative areas of these two triangles together with the location of c ∈
(a, b), when we choose α. We omit the details as it is completely parallel to
the proof of Lemma 5.6.

From Lc = Cone(Sm[1]
α→ Sm+1), we have an exact triangle in the de-

rived Fukaya category Sm+1→Lc→Sm[1]
[1]→ or equivalently Sm→Sm+1→

Lc
[1]→, which implies Sm+1 = Cone(Lc → Sm) for some degree 1 morphism.

�

We conclude that DbF contains a sequence of Lagrangian spheres {Sn :
n ∈ Z} and P1 \ {0,∞}-family of Lagrangian tori parametrized by (c, ρz),
where two missing points 0 and ∞ are presumably corresponding to two

singular torus fibers. Indeed, DbF contains the cones Cone(L0
λbαb→ L1),

Cone(L0
λaαa→ L1), and we believe that they are isomorphic to two singular
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fibers that pass through z = a and z = b, respectively. Although a similar
argument as in the proof of Proposition 5.7 seem to go through, we do not
spell this out here due to technical reasons.

Notice that the above Lagrangian submanifolds are all special, thus they
are expected to be stable objects in the Fukaya category. Later in Section 6,
we will study their transformations into noncommutative resolution of the
conifold Y to give stable quiver representations.

Remark 5.10. By the equivalence in Theorem 5.3, Lagrangians spheres
correspond to line bundle on the exceptional curve C (or their shifts) as
follows:

Sm 7→ OC(m− 1) for m ≥ 1
Sn 7→ OC(n− 1)[1] for n ≤ 0.

One can easily check this comparing the cone relations in Proposition 5.9
and exact sequences consisting of line bundles and skyscraper sheaves on C.

5.2. Mirror to perverse point sheaves

In this section, we describe how torus fibers (intersecting L0 and L1) are
affected by A-flop. We will see that they behave precisely in the same way as
skyscraper sheaves supported at points in C(⊂ Ŷ ). Note that points in Ŷ are
mirror to torus fibers in SYZ point of view, and those in C are mirror to torus
fibers that intersect Li. Thus it is natural to expect that those torus fibers
are transformed to unstable objects (i.e. non-special Lagrangians) which can
be written as mapping cones analogous to (2.2).

Proposition 5.11. The functor ρ∗ sends (Lc, ρz) to Cone(L′0
α′→ L′1) for a

degree 1 morphism α′.

Proof. The proof is the same as that of Lemma 5.6, except that α′ in
HF (L′0,L′1) now represent outer (non-convex) angle in the z-plane picture.
Altenatively, since ρ∗ sends cones to cones, and ρ∗(L0) = L′0, ρ∗(L1) = L′1,
we have

ρ∗(Lc, ρz) = ρ∗(Cone(L0
α→ L1))

= Cone(ρ(L0)
ρ∗(α)→ ρ(L1)) = Cone(L′0

α′→ L′1)

where α′ is a degree one morphism from L′0 to L′1, and occupies outer angles
(after z-projection) as in Figure 12. �
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Figure 12. Transformation of torus fibers under ρ.

Remark 5.12. Note that we have an exact triangle

L′1 → ρ∗(Lc, ρz)→ L′0
[1]→

from Proposition 5.11. Thus L′1 can be thought of as a subobject of ρ∗(Lc, ρz).
L′1 has bigger phase than ρ∗(Lc, ρz), which is another way to explain unsta-
bility of ρ∗(Lc, ρz).

Likewise, flop sends most of Lagrangians spheres in {Sm : m ∈ Z} to non-
special objects. In fact, it is easy to see from the picture that S0 and S1 are
the only spheres in this family that remain special after A-flop. We conclude
that the equivalence ρ∗ does not preserve the set of special Lagrangians, and
hence the A-flop can be thought of as a nontrivial change of holomorphic
volume form, while keeping the symplectic structure as its induced from a
symplectomorphism. We will revisit this point of view in 6.6.
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6. Non-commutative mirror functor for the deformed
conifold and stability conditions

So far, we have studied A-flop on the smoothing Xs=0 (5.1) of the coni-
fold mostly in SYZ perspective comparing with its SYZ mirror, the resolve
conifold (taken away a divisor) . In this section we will consider a certain
quiver algebra as another mirror to Xs=0, which is well-known to be a non-
commutative crepant resolution of the conifold. The relation between non-
commutative resolution and commutative one will be explained later (see
Remark 6.3). The mirror quiver category will enable us to study stability
conditions more explicitly.

There is a natural way to obtain the above quiver as a formal defor-
mation space of the object L = L0 ⊕ L1 (recall L0 = S0 and L1 = S1 are
Lagrangian spheres with maximal/minimal phases) in the Fukaya category.
By the result in [CHLa], such a construction comes with an A∞-functor from
a Fukaya category to the category of quiver representations. We will con-
struct geometric stability conditions using the functor, and examine A-flop
on these stability conditions.

We begin with an explicit computation of the A∞-structure on CF (L,L),
which is crucial to describe formal deformation space of L.

6.1. Floer cohomology of L

As our Lagrangian L is given as a direct sum, CF (L,L) consists of four
components:

CF (L,L) = CF (L0,L0)⊕ CF (L1,L1)⊕ CF (L0,L1)⊕ CF (L1,L0).

The first two components are both isomorphic to the cohomology of the
three-sphere as graded vector spaces, and hence have degree-0 and degree-
3 elements only. These elements will not be used for formal deformations.
We only take degree-1 elements for deformations, so that the Z-grading is
preserved.

Recall that L0 and L1 intersect along two disjoint circles. There are sev-
eral computable models for CF (L0,L1) and CF (L1,L0) provided in [Abo11].
Explicit computation was given in [CPU] using one of these models, which
we spell out here.



i
i

“2-Hong” — 2019/4/12 — 21:57 — page 1186 — #38 i
i

i
i

i
i

1186 Y.-W. Fan, H. Hong, S.-C. Lau, and S.-T. Yau

Theorem 6.1. (See [CPU, Theorem 7.1].) The A∞-structure on CF (L,L)
are given as follows. As vector spaces,

CF (Li,Li) = Λ〈1Li
〉 ⊕ Λ〈[pt]Li

〉 for i = 0, 1
CF (L0,L1) = Λ〈X〉 ⊕ Λ〈Z〉 ⊕ Λ〈Ȳ 〉 ⊕ Λ〈W̄ 〉
CF (L1,L0) = Λ〈Y 〉 ⊕ Λ〈W 〉 ⊕ Λ〈X̄〉 ⊕ Λ〈Z̄〉.

with degrees of generators given as

deg 1Li
= 0, deg[pt]Li

= 3,
degX = deg Y = degZ = degW = 1,
deg X̄ = deg Ȳ = deg Z̄ = deg W̄ = 2.

We have m1 ≡ 0 and m≥4 ≡ 0. The only nontrivial operations are

−m2(X, X̄) = −m2(Z, Z̄) = m2(Ȳ , Y ) = m2(W̄ ,W ) = [pt]L0
,

m2(X̄,X) = m2(Z̄, Z) = −m2(Y, Ȳ ) = −m2(W, W̄ ) = [pt]L1
,

m3(X,Y, Z) = −m3(Z, Y,X) = W̄ , m3(Y,Z,W ) = −m3(W,Z, Y ) = X̄,
m3(Z,W,X) = −m3(X,W,Z) = Ȳ , m3(W,X, Y ) = −m3(Y,X,W ) = Z̄.

and those determined by the property of the unit 1Li
.

In what follows, we take an alternative way to compute A∞-structure on
CF (L,L) hiring pearl trajectories, which is more geometric in the sense that
it shows explicitly the holomorphic disks (attached with Morse trajectories)
contributing to the A∞-operations. This will also help us to have geometric
understanding of various computations to be made later, although most of
the proof will rely on algebraic arguments.

First we choose a generic Morse function fi on Li with minimum and
maximum only for i = 0, 1. We denote these critical points by 1Li

, [pt]Li
by

obvious analogy, where deg 1Li
= 0 and deg [pt]Li

= 3. Then CF (Li,Li) is
defined to be the Morse complex of fi, which is nothing but the 2-dimensional
vector space generated by 1Li

, [pt]Li
.

The Morse trajectories of fi are described as follows. Recall that the two
Lagrangians L0 and L1 intersect along two disjoint circles which we denoted
by S1

a and S1
b (lying over z = a and z = b, respectively). We want to argue

that generically, there is a unique gradient flow line in each Li that runs
from S1

a to S1
b and vice versa. We may assume that there are no critical

points on S1
a or S1

b by genericity.
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Let W−
(
S1
b

)
be the unstable manifold of S1

b with respect to the Morse
function fi on Li, namely

W−
(
S1
b

)
=
{
x ∈ L0 : ϕt(x) ∈ S1

b for some t ≥ 0
}

where ϕt is the flow of∇fi. Including the maximum (1Li
in our notation), the

unstable manifold of S1
b is topologically a disk that bounds S1

b . Now observe
that two circles S1

a and S1
b form a Hopf link in Li. Therefore, generically S1

a

intersects the disk W−
(
S1
b

)
∪ {max} at one point as shown in Figure 13.

Therefore we see that there is a unique trajectory flowing from S1
a to S1

b .
This is the only property of the Morse functions f0 and f1 which we will use
later.

Figure 13. A trajectory of the Morse function fi from S1
a to S1

b .

For the other components of CF (L,L), we perturb L1 in double conic
fiber direction as in Figure 14, so that L0 and L1 intersect each other
transversely at four different points after perturbation. Therefore, both
CF (L0,L1) and CF (L1,L0) are generated by these four points, which we
denote as follows.

CF (L0,L1) = Λ〈X〉 ⊕ Λ〈Z〉 ⊕ Λ〈Ȳ 〉 ⊕ Λ〈W̄ 〉
CF (L1,L0) = Λ〈Y 〉 ⊕ Λ〈W 〉 ⊕ Λ〈X̄〉 ⊕ Λ〈Z̄〉

with degrees of generators given as

degX = deg Y = degZ = degW = 1,

deg X̄ = deg Ȳ = deg Z̄ = deg W̄ = 2.
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Here, X and X̄ are represented by the same point, but regarded as ele-
ments in CF (L0,L1) and CF (L1,L0) respectively, and similar for Y, Z,W .
In fact, they can be thought of as Poincare dual to each other. Obviously,
they are all cycles (i.e. m1-closed) since opposite strips (pairs of strips on
cylinders in Figure 14) cancel pairwise. Therefore CF (L,L) comes with a
trivial differential.

Now we are ready to spell out A∞-algebra structure on CF (L,L) in
terms of the above model. Recall from [BC07, She15] that A∞-operation
counts the configurations which consist of several holomorphic disks (pearls)
joined by gradient trajectories as shown in Figure 14. The constant disk at
X (and X̄) attached with flows to [pt]Li

contributes as m2(X, X̄) = [pt]L0
.

Similarly, we have

m2(X, X̄) = m2(Z, Z̄) = −m2(Ȳ , Y ) = −m2(W̄ ,W ) = −[pt]L0
,

m2(X̄,X) = m2(Z̄, Z) = −m2(Y, Ȳ ) = −m2(W, W̄ ) = [pt]L1
.

Other m2’s are either determined by properties of units 1Li
, or zero by degree

reason.

Figure 14. Pearl trajectory contributing to m3(X,Y, Z).

Computation of m3 involves more complicated pearl trajectories. We
give an explicit picture for one of those trajectories, and the rest can be
easily found in a similar way. In Figure 14, one can see a pearl trajectory
consisting of two bigons connected by a gradient flow, which contributes to
m3(X,Y, Z) with output W̄ . The red colored connecting flow in Figure 14 is
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precisely the gradient trajectory in Figure 13, and hence the corresponding
moduli is isolated. The pearl trajectory degenerates into a Morse tree when
perturbing L0 back to the original position (see Figure 15), which one of
models in [Abo11] takes into account.

Figure 15. Morse trees for m3(X,Y, Z).

Consequently, we have the following complete list of nontrivial m3-
operations:

m3(X,Y, Z) = −m3(Z, Y,X) = W̄ ,

m3(Y,Z,W ) = −m3(W,Z, Y ) = X̄,

m3(Z,W,X) = −m3(X,W,Z) = Ȳ ,

m3(W,X, Y ) = −m3(Y,X,W ) = Z̄.

We remark that the symplectic area of a pearl trajectory becomes zero
after taking limit back to the original clean intersection situation (so that it
degenerates into a Morse tree), which explains why there are no T appearing
in the above computations. If one wants to keep working with the perturbed
picture, one can simply rescale generators so that the coefficients of m3 to
be still 1.

Note that the A∞-structure computed in this way precisely coincides
with the one given in Theorem 6.1.
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6.2. Construction of mirror from L

As in [CHLb], we take formal variables x, y, z, w and consider the deforma-
tion parameter b = xX + yY + zZ + wW , and solve the following Maurer-
Cartan equation:

(6.1) m1(b) +m2(b, b) +m3(b, b, b) + · · · = 0.

where mk with inputs involving x, y, z, w are defined simply by pulling out
the coefficient of Floer generators to the front, i.e.,

mk(x1X1, . . . , xkXk) = (−1)∗xkxk−1 · · ·x1mk(X1, . . . , Xk).

Here (−1)∗ is determined by usual Koszul sign convention, and in particular,
is positive when xiXi is one of {xX, yY, zZ,wW}.

Remark 6.2. In [CHLb], “weak” Maurer-Cartan equations were mainly
considered (i.e. the right hand side of (6.1) replaced by λ · 1L), but in our
example, weak Maurer-Cartan equation cannot have solutions unless λ = 0
due to degree reason.

By Theorem 6.1, the Maurer-Cartan equation (6.1) is equivalent to

(zyx− xyz)W̄ + (wzy − yzw)X̄ + (xwz − zwx)Ȳ + (yxw − wxy)Z̄ = 0.

Therefore, b is a solution of 6.1 if and only if (x, y, z, w) is taken from the
path algebra (modulo relations) A of the following quiver with the potential:

Q : v0·
z

**

x

""
·v1

y

jj

w

cc Φ = (xyzw)cyc − (wzyx)cyc

where the vertex vi corresponds to the object Li and arrows correspond to
degree 1 morphisms between Li’s (or their associated formal variables). See
[CHLb, Section 6] for more details. The quiver algebra has the following
presentation:

A :=
ΓQ

〈∂xΦ, ∂yΦ, ∂zΦ, ∂wΦ〉
(6.2)

=
ΓQ

〈xyz − zyx, yzw − zwy, zwx− xwz,wxy − yxw〉
.
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Remark 6.3. (Q,Φ) is well-known to be the noncommutative crepant res-
olution of the conifold (see for instance [VdB04a]). In fact, one can easily
check that the subalgebra of A consisting of loops based at one of ver-
tices is isomorphic to the function algebra of the conifold. For e.g., if we
set α = xy, β = xw, γ = zy, δ = zw, then the relations among x, y, z, w force
α, β, γ, δ to commute with each other and to satisfy αδ = βγ.

By [CHLb], we have an (trianglulated) A∞-functor from the Fukaya
category to DbModA (here, DbModA denotes dg-enhanced triangulated
category)

Ψ̃L : DbF → DbModA.
In the rest of the section, we will use the degree shift Ψ := Ψ̃L[3] instead
of Ψ̃L itself, in order to have the images of the geometric objects in DbF
lying in the standard heart ModA of DbModA. This point will be clearer
after the computation of Ψ(Si) in the next section. We will also see that the
functor is an equivalence onto a certain subcategory of DbModA.

6.3. Transformation of L0 and L1 and their central charges

We first compute the images of L0 and L1 themselves under Ψ. Ψ(L0) is
simply a chain complex over A given by CF (L,L0), which is a direct sum

CF (L,L0) = CF (L0,L0)⊕ CF (L1,L0)

= 〈1L0
, [pt]L0

〉 ⊕ 〈Y,W, X̄, Z̄〉

with a differential mb
1. Recall that mb

1(p) =
∑

kmk(b, . . . , b, p).
We have already made essential computations for mb

1 (see Theorem 6.1).
Using the previous computation, the list of mb

1 acting on the generators is
given as follows:

mb
1(1L0

) = yY + wW

mb
1(Y ) = xwZ̄ − zwX̄

mb
1(W ) = zyX̄ − xyZ̄

mb
1(X̄) = x[pt]L0

mb
1(Z̄) = z[pt]L0

mb
1([pt]L0

) = 0

Therefore [pt]L0
is the only nontrivial class in the cohomology. Moreover,

x[pt]L0
and z[pt]L0

are zero in the cohomology, and hence we obtain a finite
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dimensional representation of (Q,Φ) over C. Consequently, mb
1-cohomology

of Ψ(L0) ∈ DbModA is 1-dimensional vector space (over C) supported over
the vertex v0, generated by the class [pt]L0

. We remark that this vector space
sits in degree 0 part due to the shift Ψ = Ψ̃L[3].

Likewise, Ψ(L1) gives a 1-dimensional C-vector space supported over v1

after taking mb
1-cohomology. In particular, the image of Ψ lies in a subcat-

egory DbmodA consisting of objects with finite dimensional cohomology.

Theorem 6.4. Ψ : DbF → DbmodA is a fully faithful embedding, which
sends L0 an L1 to their corresponding vertex simples. Moreover, it is an
equivalence onto Db

nilmodA, the full subcategory of DbmodA consisting of
objects with nilpotent cohomologies.

Proof. As Db
nilmodA is a full subcategory of DbmodA, it suffices to prove

that

Ψ : DbF → Db
nilmodA

is an equivalence. Since the image of generators L0 and Li are vertex simples
which are nilpotent over A, Ψ lands on Db

nilmodA.
We prove that the morphism level functor on hom(Li,Lj) (i, j = 0, 1)

induces isomorphisms of cohomology groups. Without loss of generality, it is
enough to consider hom(L0,L0) and hom(L0,L1). By [CHLb, Theorem 6.10],
we know that both

Ψ1 : hom(L0,L0)→ hom(Ψ(L0),Ψ(L0))

Ψ1 : hom(L0,L1)→ hom(Ψ(L0),Ψ(L1))

induce injective maps on the level of cohomology. Thus, it is enough to check
that

dim Ext(Ψ(L0),Ψ(L0)) = 2 and dim Ext(Ψ(L0),Ψ(L1)) = 4.

On the other hand, it is known by [VdB04b] (see [Sze08] also) thatDbnilmodA
is equivalent to DŶ /Y (2.1) with vertex simples corresponding to OC and

OC(−1)[1]. Therefore, the computation of endomorphisms ofOC⊕OC(−1)[1]
due to [CPU, Section 5] finishes the proof. �

From now on, we take Db
nilmodA to be the target category of Ψ.

Let zi be the central charge of Li, namely zi :=
∫
Li

Ω. We define a
central charge on quiver representations as follows. For a representation
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V := (V0, V1) of (Q,Φ) (with some maps between V0 and V1 which we omit-
ted),

(6.3) Z(V ) := z0 dimV0 + z1 dimV1.

We define a dimension vector of a representation V by

dim(V ) := (dimV0, dimV1) ∈ Z2
≥0

for later use. For general objects in DbmodA, Vi above should be replaced
by the corresponding cohomology.

Proposition 6.5. The object level functor

Ψ0 : Obj
(
DbF

)
→ Obj

(
Db

nilmodA
)

is a central charge preserving map.

Proof. The statement is obviously true for L0 and L1 as they are mapped
to modules with 1-dimensional cohomology supported at the corresponding
vertices. Since the central charges on both sides are additive (i.e. they are
the maps from the K-groups) and Ψ is a triangulated functor, the statement
directly follows. �

In particular, special Lagrangians L0 and L1 are sent to simple and hence
stable objects on quiver side.

6.4. Stables on quiver side

Set ζi to be the argument of zi taken in (0, π] for i = 0, 1. Since L0 and L1

are special Lagrangians, ζi is nothing but the phase of Li. According to our
convention (see the discussion below Theorem 5.2), we have ζ0 > ζ1.

Nagao and Nakajima used the following notion of stability for the abelian
category modA.

Definition 6.6. We define stability of quiver representations of (Q,Φ) as
follows.

1) We define the phase function ζ on modA by

ζ(V ) = ζ0 dimV0 + ζ1 dimV1 ∈ R

for V ∈ modA.
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2) An object V of modA is said to be stable (semistable resp.) if for any
subobject W of V ,

ζ(W ) < ζ(V ) (ζ(W ) ≤ ζ(V ) resp.).

It is elementary to check that argZ(V ) ∈ (0, π] for V ∈ modA induces
the equivalent stability on the abelian category modA as Definition 6.6.
In fact, one can easily check that two quantities have the same ordering
relations.

Lemma 6.7. For V,W ∈ modA, ζ(V ) ≤ ζ(W ) if and only if argZ(V ) ≤
argZ(W ).

The proof is elementary, and we omit here. In particular, the set of stable
objects remains the same even if we use argZ(V ) in place of ζ(V ).

Remark 6.8. One advantage of using Z(V ) (rather than ζ) is that it can be
lifted to a Bridgeland stability condition onDb

nilmodA. In fact, one can check
that it is equivalent to the perverse stability on DŶ /Y via the identification

Db
nilmodA ∼= DŶ /Y . [NN11, Remark 4.6] gives a correspondence between

stable objects in the heart of each category.

We briefly review the classification of stable objects in modA following
[NN11]. We first set up the notation as follows. We define A-module V±(m)
by (Cm,Cm±1) together with the maps corresponding arrows given as in the
left two columns in (6.4) where right (left, resp.) arrows are x, z (y, w, resp.).
Likewise, V †±(m) denotes A-module (Cm,Cm∓1) which can be visualized as
the right two columns in (6.4). Up to isomorphism, one can assume that all
arrows act by the identity map from C to itself.

(6.4) C
C

33

++ C
C

33

...
...

C
++ C

C
33

++ C
V+(m)

C
** C

C
44

** C
...

...

C
C

**

44

C
C

44

V−(n)

C
ssC

C
kk

ssC
...

...

C
C

kk

ssC
C

kk

V ′+(m)

C
C

jj

ttC
C

jj

...
...

C
ttC

C
jj

ttC
V ′−(n)
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We are now ready to state the classification result by Nagao-Nakajima.

Theorem 6.9. [NN11, Theorem 4.5] Stable modules W in modA are clas-
sified as follows:

1) when ζ0 > ζ1

• V+(m) (m ≥ 1)
• A-module W with dimW = (1, 1) parametrized by Ŷ
• V−(n) (n ≥ 0)

2) when ζ0 < ζ1

• V ′+(m) (m ≥ 1)

• A-module W with dimW = (1, 1) parametrized by Ŷ †

• V ′−(n) (n ≥ 0)

In particular, {ζ1 = ζ2} gives a wall, and the wall structure consists of only
two chambers.

In order to precisely match the pictures in [NN11], one should locate the
vertex v1 to the left in the quiver diagram. For instance, the vertex simple at
the left vertex in [NN11] corresponds to OC whereas in our case v1 (sitting
on the right) represents the Lagrangian L1(= S1) which is mirror to OC . See
[NN11, Remark 4.6].

Remark 6.10. Modules with dimension vector (1, 1) in (1) and (2) of The-
orem 6.9 can be presented as

(6.5) C
z

))

x

""
C

y

ii

w

aa

for some (x, y, z, w) ∈ C4. Note that (6.5) is nilpotent if and only if either
x = z = 0 or y = w = 0. Notice that (6.5) has three dimensional deformation
(scaling actions of arrows x, y, z, w up to overall rescaling) whereas V±(k) is
rigid for all k. Later, we will see that (6.5) is mirror to a Lagrangian torus
fibers whose first Betti number is 3, and V±(k) is mirror to a Lagrangian
sphere.

In what follows, we shall show that transformations of special Lagran-
gians in DbF by our functor Ψ recovers all the stable representations which
are nilpotent.
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6.5. Transformation of special Lagrangians in DbF
before/after flop

We next compute the transformation of other geometric objects in DbF =
Db〈L0,L1〉 under the mirror functor Ψ induced by L = L0 ⊕ L1. Recall
from 5.1 that this category contains Lagrangian spheres and torus fibers
(intersecting spheres) as geometric objects.

We begin with a torus fiber Lc (a < c < b) in X that intersects each of
L0 and L1 along T 2 at z = c. (see 5.1). Suppose Lc is also equipped with a
flat line bundle U whose holonomy along a circle in z-direction is ρ. Recall
that we only consider U with trivial holonomies along both of double conic
fiber directions as otherwise they would not belong to the category.

Lemma 6.11. The transformation of (Lc, ρ) by Ψ is the representation of
(Q,Φ) (after taking cohomology) given as

(6.6) C λ1

//λ2 // C

v0·
z

**

x

""
·v1

y

jj

w

cc

where [λ1 : λ2] parametrizes the exceptional curve C in Ŷ . and the maps in
the other direction (i.e. actions of y and w) are zero.

Proof. Recall from Proposition 5.7 that (Lc, ρ) is a mapping cone Cone(L0
α→

L1) for nonzero α ∈ HF 1(L0,L1) uniquely determined up to scaling. i.e. the
following defines an exact triangle in DbF

(6.7) L1 → (Lc, ρz)→ L0
[1]→ .

Since the functor Ψ is a triangulated equivalence and α 6= 0, Ψ(Lc, ρz)
is also a nontrivial extension of Ψ(L1) and Ψ(L0). It is elementary exercise
to show that all nontrivial extensions of these two representations which
are nilpotent should be of the form given in (6.6). Moreover, since we have
HF 1(L0,L1) ∼= Ext1(Ψ(L0),Ψ(L1)) by the morphism level functor of Ψ, we
see that Ψ(Lc, ρ) gives all possible extensions as α varies, or equivalently
c and ρ (in (Lc, ρ)) vary. Note that the family of such (Lc, ρ) precisely
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parametrizes points in the exceptional curve C by SYZ mirror construction
due to [CPU]. �

We remark that the cones Cone(L0
λaαa→ L1) and Cone(L0

λbαb→ L1) in
DbF (which are supposedly singular torus fibers) are sent to the represen-
tations of the same form with one of λi being zero, which together with
Ψ(Lc, ρ) completes the P1-family of stable representations.

Geometric argument. We provide a more geometric computation of
Ψ(Lc, ρ) making use of pearl trajectory model introduced in 6.1. As shown in
Figure 16, Lc intersect L0 ∪ L1 at eight different points after perturbation.
Let

L0 ∩ Lc := {a00, a01, a10, a11}
L1 ∩ Lc := {b00, b01, b10, b11}

(see Figure 16) where deg aij = i+ j + 1 and deg bij = i+ j. Note that the
degrees for generators in L0 ∩ Lc are shifted by 1 due to Floer theoretic
grading from intersections in z-direction.

Figure 16. Perturbation of Lc,Li and polygons contributing to mb
1 on

CF (L, (Lc, ρ)).



i
i

“2-Hong” — 2019/4/12 — 21:57 — page 1198 — #50 i
i

i
i

i
i

1198 Y.-W. Fan, H. Hong, S.-C. Lau, and S.-T. Yau

mb
1 for the above generators can be computed as follows:

mb
1(b00) = (Tω(∆1)x− ρTω(∆2)z)a00 + xyb01 + zyb10

mb
1(b01) = (ρTω(∆2)z − Tω(∆1)x)a01 − zwb11

mb
1(b10) = (ρTω(∆2)z − Tω(∆1)x)a10 + xyb11

mb
1(b11) = (Tω(∆1)x− ρTω(∆2)z)a11

mb
1(a00) = yxa01 + wza10

mb
1(a01) = −wza11

mb
1(a10) = yxa11

mb
1(a11) = 0

Here, the coefficients of the form (Tω(∆1)x− ρTω(∆2)z) in front of aij (in
mb

1(bij)) is from the pair of holomorphic polygons projecting to the shaded
triangles ∆1 and ∆2 in z-plane shown in Figure 16. (They are the same
triangles appearing in the proof of Lemma 5.6.) Other terms are contributed
by pearl trajectories consisting of two 2-gons joined by a gradient flow, which
have the same shape as the one contributing to m3 drawn in Figure 14.

Therefore the mb
1-cohomology is generated by [a11] as A-module, and we

have Tω(∆1)x[a11] = ρTω(∆2)z[a11] (since their difference is mb
1(b11)). More-

over, these are the only nontrivial scalar multiplication since wz[a11] =
yx[a11] = 0. In particular, we see that λ1, λ2 in (6.6) satisfy λ1 :λ2 =ρTω(∆2) :
Tω(∆1).

On the other hand, Ψ transforms Lagrangian spheres Sk into the follow-
ing stable representations.

Proposition 6.12. The images of spheres {Sk : k ∈ Z} in DbF (after tak-
ing cohomology) are given as follows:

1) For m ≥ 1, Ψ(Sm) = V+(m),

2) For n ≤ 0, Ψ(Sn) = V−(|n|).

where V±(k) are as in (left two columns of) (6.4).

Proof. We will only prove (1), and the proof of (2) can be done in a similar
manner. The statement is true for m = 1 by Theorem 6.4. We will proceed
by induction. Let us assume that it is true for m. By Proposition 5.9, we
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have

Sm+1
∼= Cone(Lc

α→ Sm)

for some α which implies the exact triangle Sm → Sm+1 → Lc
[1]→ in DbF .

Since α is a nonzero element in the Floer cohomology, Sm+1 is a nontrivial
extension of Sm and Lc. We see that Ψ(Sm+1) is an extension of V+(m) and

Ψ(Lc) = C λ1

//λ2 // C . For simplicity, we choose a suitable Lc such that λ1 =

−λ2, and hence, after rescaling two arrows act as id and −id respectively.
On the other hand, we already know one nontrivial extension of these

two modules, which is nothing but V+(m+ 1). To see this, observe that the
map σ : V+(m)→ V+(m+ 1) defined by

σ :
ei 7→ ei + ei+1,
fj 7→ fj + fj+1

is an injective A-module map, where ei (resp. fj) denotes the standard basis
of V+(m) spanning the i-th (resp. j-th) component C over v0 (resp. v1) for
1 ≤ i ≤ m− 1 (resp. 1 ≤ j ≤ m). See (6.8) below.

(6.8) C = 〈f1〉
〈e1〉 = C

x 22

z ,, C = 〈f2〉
〈e2〉 = C

22

...
...

〈em−2〉 = C
,,
C = 〈fm−1〉

〈em−1〉 = C
x 22

z ,, C = 〈fm〉
V+(m)

Now the cokernel of σ is spanned by [e1] and [f1], and x[e1] = [xe1] = [f1]
and z[e1] = [ze1] = [f2] = −[f1] since f1 + f2 is in the image of σ. Therefore,
we have

0→ V+(m)
σ→ V+(m+ 1)→

(
C −id

//id // C
)
→ 0.
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Moreover, V+(m+ 1) is the only nontrivial extension of V+(m) and

C −id
//id // C since

dim Ext
(
C −id

//id // C , V+(m)
)
∼= dim HF 1(Lc, Sm) = 1.

(Here, we used the fact that Ψ is an equivalence, and the induction hypothe-
sis that Ψ(Sm) = V+(m).) We conclude that Sm+1 should map to V+(m+ 1)
by Ψ. �

Geometric argument. Alternatively, one can compute the image of
spheres under Ψ directly by holomorphic disk counting (or more precisely
computing mb

1 on CF (L, Si)). We give a brief sketch of the computation
for Sm for m ≥ 1. On z-plane, the projection of Sm intersects the interval
(a, b) (m− 1)-times (not including the end points a and b). Here, we perturb
L0,L1 and Sm along the fiber direction as in the proof of Lemma 6.11 so
that they mutually intersect transversely.

Let us denote these m− 1 points in (a, b) by c1, c2, . . . , cm−1 as shown
in Figure 17. These are the only locations where one has the highest degree
intersections (i.e. degree 3 elements in CF (L, Sm) that map to degree 0
elements by Ψ = Ψ̃L[3]). Cohomology long exact sequence tells us that it
is enough to consider these elements, as cohomologies of Ψ(S0) and Ψ(S1)
are supported only at this degree. We remark that the intersection L ∩ Sm
occurring at z = a and z = b only produces degree 0 and 1 elements in the
Floer complex, which are not in the highest degree.

Denote these highest degree intersection points by

c̃1, c̃2, . . . , c̃m−1

where c̃i projects down to ci. (Obviously there is only one highest degree in-
tersection point over each c̃i after perturbation.) There are pairs of triangles
whose z-projections are given as shaded region in Figure 17. Each of these
pair contributes to mb

1 with the same input, say ri as in the figure, and gives
rise to

(6.9) mb
1(ri) = zc̃i − xc̃i+1.

Also, there are pearl trajectories with a similar shape to the ones contribut-
ing to formal deformation (m3) of L, which lies over the interval [a, b]. These
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Figure 17. Contributing holomorphic polygons to (the differential of)
Ψ(Sm).

trajectories induce

(6.10) mb
1(pi) = ±yxc̃i, mb

1(qi) = ±wzc̃i

where pi and qi are the two degree 2 intersection points lying over ci.
Set ei := [c̃i] which belong to the v0-component of the resulting quiver

representation . (6.9) implies

zei = xei+1,

and we denote this element by fi which belongs to v1-component. We also
set f1 := xe1 and fm := zem−1. Combining (6.9) and (6.10) implies all other
actions of A are trivial. Therefore the resulting cohomology has precisely
the same as V+(m) as a A-module.

Effect of A-flop. The images of L0 = S0 and L1 = S1 under the symplec-
tomorphism ρ : Xs=0 → Xs=1 gives another Lagrangian spheres S′0 and S′1
(see Figure 9). In addition, we have a new sequence of special Lagrangian
spheres {S′k : k ∈ Z} depicted in Figure 18. Readers are warned that S′k is
not an image of Sk under A-flop unless k = 0 or k = 1. Note that phases of
other spheres lie between those of S′0 and S′1 due to our choice of gradings
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(or orientations) as in Figure 18. (Recall that we measure the phase angles
in clockwise direction.)

We perform the same mirror construction making use of L′0 = S′0 and
L′1 = S′1 which obviously produce the same quiver with the potential. Only
difference is that now the ordering of the phases of L′0 and L′1 are switched.
Namely, in this case, we have ζ ′0 < ζ ′1 where ζ ′i is a phase of L′i. Thus one can
naturally expect to obtain stable representations in (2) of Theorem 6.9 by
applying the resulting functor Ψ′ : Db〈S′0, S′1〉 → Db

nilmodA to {S′k} and new
torus fibers (which can be represented as straight vertical lines in Figure 18).

Figure 18. Special Lagrangian spheres S′k in Xs=1.

Proposition 6.13. Torus fibers intersecting S′0 and S′1 are transformed
under Ψ′ into

C Cλ1oo
λ2

oo

after taking mb
1-cohomology, where [λ1 : λ2] parametrizes the exceptional

curve C† in Ŷ †. The images of spheres {S′k : k ∈ Z} in DbF ′ (after taking
cohomology) are given as follows:

1) For m ≥ 1, Ψ(S′m) = V †+(m),

2) For n ≤ 0, Ψ(S′n) = V †−(|n|).
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where V †±(k) are as in (right two columns of) (6.4).

The proof is essentially the same as that of Proposition 6.12, and we will
not repeat here.

6.6. Bridgeland stability on DbF

As mentioned in Remark 6.8, Db
nilmodA admits a Bridgeland stability

through the isomorphism Db
nilmodA ∼= DŶ /Y . Therefore, DbF also admits a

Bridgeland stability condition (Z,S) by pulling-back the one on Db
nilmodA

via the equivalence Ψ. By Proposition 6.5, we see that the pull-back sta-
bility on DbF is geometric in the sense that its central charge is given by
the period

∫
Ωs=0. Moreover, the discussion in 6.5 tells us that the special

Lagrangian spheres Sk and tori (that intersects spheres) are stable objects
in the heart.

After applying A-flop, we consider the subcategory F ′ generated by S′0
and S′1 in Xs=1. By the same reason, DbF ′ admits a Bridgeland stability
condition whose stable objects (in the heart) are special Lagrangian spheres
S′k’s and new torus fibers in Xs=1. Note that their inverse image under

ρ : Xs=0 → Xs=1 are {S†i }, the A-flop of the spheres {Si} in Xs=0, which
were discussed in Section 4.3.

By pulling back this stability condition on DbF ′ via ρ∗, we get a new sta-
bility condition (Z†, S†) on DbF (whose central charge comes from ρ∗Ωs=1)
with the set of stable objects

S† = {L† : L is stable with respect to (Z,S)}.

This proves Theorem 1.3.
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