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We show asymptotic completeness for linear massive Dirac fields
on the Schwarzschild-Anti-de Sitter spacetime. The proof is based
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1. Introduction

The aim of this paper is to show asymptotic completeness for the massive
Dirac equation on the Anti-de Sitter Schwarzschild space-time.

When studying a physical system for which the dynamics is described
by a Hamiltonian, one of the fundamental properties we want to prove is
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asymptotic completeness. Roughly speaking, it states that, for large time,
our dynamics behave, modulo possible eigenvalues, like the well-understood
dynamics described by what we call a free Hamiltonian.

The first asymptotic completeness results in General Relativity were
obtained by J. Dimock and B. Kay in 1986 and 1987 ([23],[24], [25]) for
classical and quantum scalar fields. This study was pursued in the 1990’s by
A. Bachelot for classical fields. He obtains scattering theories for Maxwell
fields in 1991 [3] and Klein-Gordon fields in 1994 [4]. After that, J-P. Nico-
las obtained a scattering theory for massless Dirac fields in 1995 [67] and
F. Melnyk obtained a complete scattering for massive charged Dirac fields
[62] in 2003. In all these works, the authors used trace class perturbation
methods. On the other hand, new techniques, using Mourre estimates, were
applied to the wave equation on the Schwarzschild space-time in 1992 by
S. De Bièvre, P. Hislop and I.M Sigal [20]. Using this method, a complete
scattering theory for the wave equation on stationary asymptotically flat
space-times was obtained by D. Häfner in 2001 [43] and D. Häfner and J-P.
Nicolas obtained a scattering theory for massless Dirac fields outside slowly
rotating Kerr black holes in 2004 [46], making use of a positive conserved
quantity which exists for the Dirac equation and not for the Klein-Gordon
equation. In 2004, T. Daudé obtains a scattering theory for Dirac fields on
Reissner-Nordström black holes [19] and on Kerr-Newman black holes in
[18]. Using an integral representation for the Dirac propagator, D. Batic
gives a new approach to the time-dependent scattering for massive Dirac
fields on the Kerr metric in 2007. Recently, V. Georgescu, C. Gérard and
D. Häfner obtained an asymptotic completeness result for the Klein-Gordon
equation in the De-Sitter Kerr black hole, see [39]. See also M. Dafermos,
G. Holzegel and I. Rodnianski for scattering results for the Einstein equa-
tions [16] and M. Dafermos, I. Rodnianski and Y. Shlapentokh-Rothman
for a scattering theory for the wave equation on Kerr black holes exteriors
[17]. One of the principal motivation for all these works is the study of the
Hawking effect. That kind of results are needed to give a mathematically
rigorous description of the Hawking effect, see [6] and [45].

In our work, we are concerned with problems that arise from the Anti-de
Sitter background. Indeed, the Schwarzschild Anti-de Sitter space-time is a
solution of the Einstein vacuum equations with cosmological constant Λ < 0
containing a spherically symmetric black hole. This space-time has a non-
trivial causality. In fact, it is not globally hyperbolic, that is to say, Cauchy
data defined on a slice {t = constant}×]rSAdS ,+∞[×S2 (where rSAdS corre-
spond to the horizon) do not uniquely determine the evolution of the field in
all the space-time. So, first of all, there’s a difficulty in defining the dynamic.
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Scattering theory for the Dirac equation 1009

This is due to the fact that, when studying the geodesics in Boyer-Lindquist
coordinates, null geodesics can reach timelike infinity in finite time. This
suggests that we will need to put asymptotic conditions as r → +∞ in or-
der to determine the dynamic uniquely. This problem was first studied by
Breitenlohner and Freedman ([13],[14]) for scalar fields. They showed that
the need to put boundary conditions depends on the comparison between
the mass of the field and the cosmological constant and discovered two crit-
ical values known as B-F bounds. More recently, A. Bachelot ([8]) showed
a similar bound for the Dirac equation in the Anti-de Sitter space-time
using a spectral approach. This approach uses the fact that, in an appro-
priate coordinate system, the equation can be written as i∂tψ = iHmψ with
Hm independent of t. We thus have to construct a self-adjoint extension of
Hm. In order to put the right boundary condition, we will understand the
asymptotic behavior of the states in the natural domain of Hm. This kind
of method was also used by Ishibashi and Wald ([56],[57]) for integer spin
fields.

Using other techniques, there has been some recent advances concern-
ing scalar fields. We first mention the works of G. Holzegel and J. Smule-
vici who proved, using vectorfield methods, a result of asymptotic stability
of the Schwarzschild-AdS space-time with respect to spherically symmet-
ric perturbations thanks to an exponential decay rate of the local energy
[49]. However, looking at the solutions of the linear wave equation on the
Schwarzschild-AdS black hole with arbitrary angular momentum l, reso-
nances with imaginary part e−

C

l appear (see [38] for details) and the local
energy only decays logarithmically. The same phenomenon appear in the
Kerr-AdS space-time, see [48]. Thus Kerr-AdS is supposed to be unstable.
In these papers, it was supposed that the Dirichlet boundary condition holds.
More recently, G. Holzegel and C. M. Warnick considered other boundary
conditions for the wave equation on asymptotically AdS black hole [51]. This
includes some boundary conditions considered in the context of AdS-CFT
correspondence. This correspondence was also in mind of A. Bachelot in his
paper about the Klein-Gordon equation in the AdS5 space-time [9] and of
A. Enciso and N. Kamran when they study the Klein-Gordon equation in
AdS5 × Y p,q where Y p,q is a Sasaki-Einstein 5-manifold [32].

We now present our results. We denote the natural domain of Hm by

D(Hm) = {φ ∈ H; Hmφ ∈ H} ,

and we will use l2 = − 3
Λ where Λ < 0 is the cosmological constant. We ob-

tain:
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Proposition 1.1. For 2ml > 1, the operator Hm is self-adjoint on D(Hm).

For the case 2ml < 1, we will put MIT boundary conditions. This defines
an operator HMIT

m with natural domain D
(
HMIT
m

)
. Then we obtain:

Proposition 1.2. The operator HMIT
m is self-adjoint on D

(
HMIT
m

)
.

The Cauchy problem is then well-posed by Stone’s theorem.
We then turn our attention to the scattering theory. By means of a

Mourre estimate, we are able to prove velocity estimates. We then introduce
the comparison operator Hc = iγ0γ1∂x with domain

D (Hc) = {ϕ ∈ Hs,n;Hcϕ ∈ Hs,n, ϕ1 (0) = −ϕ3 (0) , ϕ2 (0) = ϕ4 (0)} .

Making use of the velocity estimates, we obtain the following asymptotic
completeness result:

Theorem 1.3 (Asymptotic completeness). For all m > 0 and all ϕ ∈
H, the limits:

lim
t→∞

eitHce−itHmϕ(1.1)

lim
t→∞

eitHme−itHcϕ(1.2)

exist. If we denote these limits by Ωϕ and Wϕ respectively, then we have
Ω∗ = W .

We eventually study the asymptotic velocity. We will say that B = s−
C∞ − lim

n→∞
Bn if, for all J ∈ C∞ (R), we have J (B) = s− lim

t→∞
J (Bn) (where

C∞ (R) is the set of continuous functions which go to 0 at ±∞). Then, we
obtain the following:

Theorem 1.4 (Asymptotic velocity for Hm). Let J ∈ C∞ (R) and A =
−γ0γ1x where γ0, γ1 are Dirac matrices. Then, for all m > 0, the limit:

s− lim
t→∞

eitHmJ

(
A

t

)
e−itHm(1.3)

exists. Moreover, if J (0) = 1, then

s− lim
R→∞

(
s− lim

t→∞
eitHmJ

(
A

Rt

)
e−itHm

)
= 1.(1.4)
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If we define

s− C∞ − lim
t→∞

eitHm
A

t
e−itHm =: P+

m ,(1.5)

then the self-adjoint operator P+
m is densely defined and commute with Hm.

The operator P+
m is called the asymptotic velocity and is in fact the identity

operator.

The paper is organized as follows.
In Section 2, we present the Schwarzschild-AdS geometry and, due to the

lack of global hyperbolicity, the fact that radial null geodesics go to infinity
in finite time. Using the Newman-Penrose formalism, we then obtain the
Dirac equation on this space-time and give a spectral formulation of this
equation for a coordinate system (t, x, θ, ϕ) where the horizon corresponds
to x goes to −∞ and the Anti-de Sitter infinity corresponds to x = 0. We
eventually generalize this equation by giving asymptotic behaviors of the
potentials and we ensure that the Dirac equation in the Schwarzschild-AdS
space-time is part of our generalization. In the rest of the paper, we will
work with this generalization.

In Section 3, we obtain the self-adjointness of our operator for all m > 0.
First, we present the spinoidal spherical harmonics and then we use this
tool to decompose our operator (in fact, we diagonalize the Dirac operator
on the sphere) which leads us to a 1 + 1 dimensional problem for the op-
erator now denoted Hs,n

m . Then we study the states in the natural domain
D (Hs,n

m ) = {ϕ ∈ Hs,n|Hs,n
m ϕ ∈ Hs,n}. The problem is coming from the Anti-

de Sitter infinity where the potential behaves badly. Nevertheless, the po-
tential behaves like in the result of A. Bachelot on the Anti-de Sitter space.
After a unitary transform we can use his result. In this way, we see that the
states behave well when 2ml > 1 but it degenerates at 0 when 2ml < 1.
When 2ml > 1, we prove that our operator is essentially self-adjoint on
C∞0 (]−∞, 0[) and, using an elliptic estimate and a Hardy-type inequality,
we give a precise description of the domain. In the case 2ml < 1, we need to
put a boundary condition to obtain the self-adjointness of our operator. In
this paper, we have chosen the MIT boundary condition. This allows us to
solve the Cauchy problem. We finally prove the absence of eigenvalues for
this operator.

In Section 4, we prove a compactness result. We use an approximation
of our resolvent, separating the behavior close to the black hole horizon and
close to x = 0. We then obtain that f (x) (Hs,n

m − λ)
−1

is compact if f goes
to 0 at the horizon and has a finite limit at x = 0.
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In Section 5, we obtain a Mourre estimate for Hs,n
m using A = Γ1x, where

Γ1 is the matrix diag (1,−1,−1, 1), as conjugate operator.
In Section 6, we obtain some propagation estimates. First, making use

of the Mourre estimate and of an abstract result about minimal velocity
estimates, we prove that the minimal velocity is 1. Then, using a standard
observable and a general result which uses Heisenberg derivative to obtain
velocity estimates, we prove that the maximal velocity is also 1.

In Section 7, we are now able to prove asymptotic completeness for our
hamiltonian. This result is first proved for fixed harmonics and then we prove
that we can sum over all harmonics. It is proved by making use of the two
velocity estimates and a similar reasoning as in the propagation estimates.

In Section 8, we first prove the existence of the asymptotic velocity for
Hc and then deduce the same result for Hm using the wave operators. We
see that the asymptotic velocity operator is the identity.

Aknowledgments. This work was partially supported by the ANR project
AARG.

2. The Schwarzschild Anti-de Sitter space-time and
the Dirac equation

In this section, we present the Schwarzschild Anti-de Sitter space-time and
give the coordinate system that we will work with in the rest of the paper.
We quickly study the radial null geodesics and then formulate the Dirac
equation as a system of partial differential equations which are derived from
the two spinor component expression of this equation by use of the Newman-
Penrose formalism. We finally give a generalization of our equation by just
considering a potential that have the same asymptotic behavior as in the
case of the Schwarzschild Anti-de Sitter space-time.

2.1. The Schwarzschild Anti-de Sitter space-time

Let Λ < 0. We define l2 = −3
Λ . We denote by M the black hole mass.

In Boyer-Lindquist coordinates, the Schwarzschild-Anti-de Sitter metric
is given by:

gab =

(
1− 2M

r
+
r2

l2

)
dt2 −

(
1− 2M

r
+
r2

l2

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)(2.1)
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We define F (r) = 1− 2M
r + r2

l2 . We can see that F admits two complex
conjugate roots and one real root r = rSAdS . We deduce that the singu-
larities of the metric are at r = 0 and r = rSAdS = p+ + p− where p± =(
Ml2 ±

(
M2l4 + l6

27

) 1

2

) 1

3

. (See [49]) The exterior of the black hole will be

the region r > rSAdS and our spacetime is then seen as Rt×]rSAdS ,+∞[×S2.
It is well-know that the metric can be extended for r 6 rSAdS by a coordi-
nate change which gives the maximally extended Schwarschild-Anti-de Sitter
spacetime. In this paper, we are only interested in the exterior region.

In order to have a better understanding of this geometry, we study the
outgoing (respectively ingoing) radial null geodesics (that is to say for which
dr
dt > 0 (respectively dr

dt < 0)). Using the form of the metric we can see that
along such geodesics, we have:

dt

dr
= ±F (r)−1 .(2.2)

We thus introduce a new coordinate r∗ such that t− r∗ (respectively t+ r∗)
is constant along outgoing (respectively ingoing) radial null geodesics. In
other words:

dr∗
dr

= F (r)−1.(2.3)

The coordinate system (t, r∗, θ, ϕ) is called Regge-Wheeler coordinates. r∗
is given by:

r∗(r) = ln
(

(r − rSAdS)α1
(
r2 + rSAdSr + r2

SAdS + l2
)−α1

2

)
(2.4)

+ C arctan

(
2r + rSAdS(

3r2
SAdS + 4l2

) 1

2

)
.

where:

α1 =
rSAdSl

2

3r2
SAdS + l2

=
1

2κ
; C =

l2
(
3r2
SAdS + 2l2

)(
3r2
SAdS + l2

) (
3r2
SAdS + 4l2

) 1

2

(2.5)

We obtain limr→rSAdS r∗(r) = −∞ and limr→∞ r∗(r) = C π
2 . We will consider

the coordinate x = r∗ − C π
2 rather than r∗. We thus have:

lim
r→rSAdS

x (r) = −∞(2.6)

lim
r→∞

x (r) = 0.(2.7)
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This limit proves that, along radial null geodesic, a particle goes to timelike
infinity in finite Boyer-Lindquist time (recall that along these geodesic, t− r∗
and t+ r∗ are constants). This geometric property will be a major issue in
our problem. This implies that our space-time is not globally hyperbolic, so
that we cannot use the standard result by Leray about the global existence
of solution of hyperbolic equations. A similar situation has been encountered
by A.Bachelot in his article [8] concerning the Dirac equation on the Anti-de
Sitter space-time. We expect to do a similar study concerning the self-adjoint
extension.

2.2. The Dirac equation on Schwarzschild Anti-de Sitter
space-time

In the two components spinor notation, the Dirac equation takes the follow-
ing form: {

∇AA′φA = −µχA′
∇AA′χA

′
= −µφA

(2.8)

where ∇AA′ is the Levi-Civita connection, φA is a two-spinor, µ = m√
2

and

m > 0 is the mass of the field.
Thanks to the Newman-Penrose formalism, we can obtain the equation

in the form of a system of partial differential equations. In this formalism,
we introduce a null tetrad (la, na,ma, m̄a), that is

lal
a = nan

a = mam
a = m̄am̄

a = lam
a = nam

a = 0,(2.9)

which is a basis of the complexified of the tangent space. We’ll say that the
tetrad is normalized if:

lan
a = 1 mam̄

a = −1.(2.10)

The two vectors la and na correspond to the directions along which the light
goes to infinity (we can choose la as an outgoing null vector and na as an
ingoing null vector). The vector ma admits bounded integral curves. The
vectors ma and m̄a will generate rotations. In our case, we will consider:

la∂xa =
1√
2
F (r)−

1

2 (∂t + ∂x) , na∂xa =
1√
2
F (r)−

1

2 (∂t − ∂x)

ma∂xa =
1√
2r

(
∂θ −

i

sin θ
∂ϕ

)
, m̄a∂xa =

1√
2r

(
∂θ +

i

sin θ
∂ϕ

)
.
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We remark that this tetrad is normalized and since t± x is constant along
null geodesics, the vector la∂xa and na∂xa are null. Moreover, using the
equation of radial null geodesics with λ as our affine parameter, we deduce
that dt

dr = dt
dλ

dλ
dr = F (r)−1 which gives us an outgoing real null vector. We see

as well that ma is linked to rotations. We give the associated dual vectors:

ladx
a =

1√
2
F (r)

1

2 (dt− dx) , nadx
a =

1√
2
F (r)

1

2 (dt+ dx)

madx
a =

r√
2

(−dθ + i sin(θ)dϕ) , m̄adx
a =

r√
2

(−dθ − i sin(θ)dϕ) .

Using this tetrad, it is then possible to decompose the covariant derivative
in directional derivatives along these directions. We introduce the following
symbols:

D = la∇a, D′ = na∇a, δ = ma∇a, δ′ = m̄a∇a.

We have twelve spin coefficients that are defined by the following expressions:

κ̂ = maDla, ρ = maδ′la, σ = maδla, τ = maD′la,

ε =
1

2
(naDla +maDm̄a) , α =

1

2

(
naδ′la +maδ′m̄a

)
,

β =
1

2
(naδla +maδm̄a) , γ =

1

2

(
naD′la +maD′m̄a

)
,

π = −m̄aDna, λ = −m̄aδ′na, µ = −m̄aδna, ν = −m̄aD′na,

where κ̂ is the spin coefficient usually denoted κ, since κ is the surface gravity
in our convention. We can now give the equation (2.8) as a system of partial
differential equations. These equations act on the components of the spinor
φA, χA

′
in a normalized spinorial basis (oA, ιA) (that is such that oAι

A = 1).
To choose our spinorial basis, we use the null tetrad above. Indeed, we can
define the spinorial basis (oA, ιA), uniquely up to an overall sign, using the
following conditions:

oAōA
′

= la, ιAῑA
′

= na, oAῑA
′

= ma, ιAōA
′

= m̄a, oAι
A = 1.

The dual basis is ε0A = −ιA, ε1A = oA. Let φ0, φ1, χ0′ , χ1′ such that φA =
φ0oA + φ1ιA and χA

′
= χ0′oA

′
+ χ1′ιA

′
where (oA

′
, ιA

′
) is the conjugate basis

of (oA, ιA). In this basis, the components of φA and χA′ are respectively:

φ0 = −φ1, φ1 = φ0, χ0′ = −χ1′ , χ1′ = χ0′ .
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We obtain the following system of partial differential equations:
la∂xaφ1 − m̄a∂xaφ0 + (ε− ρ)φ1 − (π − α)φ0 = m√

2
χ1′

ma∂xaφ1 − na∂xaφ0 + (β − τ)φ1 − (µ− γ)φ0 = − m√
2
χ0′

la∂xaχ
0′ +ma∂xaχ

1′ + (ε̄− ρ̄)χ0′ + (π̄ − ᾱ)χ1′ = − m√
2
φ0

m̄a∂xaχ
0′ + na∂xaχ

1′ +
(
β̄ − τ̄

)
χ0′ + (µ̄− γ̄)χ1′ = − m√

2
φ1.

(2.11)

Using the 4-component spinor ψ =

(
φA
χA
′

)
, we obtain:

(
∂t + γ0γ1

(
F (r)∂r +

F (r)

r
+
F ′ (r)

4

)
+
F (r)

1

2

r
��DS2 + imγ0F (r)

1

2

)
ψ = 0.

(2.12)

where m is the mass of the field and ��DS2 is the Dirac operator on the
sphere. In the coordinate system given by (θ, ϕ) ∈ [0; 2π]× [0;π], we obtain:

��DS2 = γ0γ2
(
∂θ + 1

2 cot θ
)

+ γ0γ3 1
sin θ∂ϕ where singularities appear, but we

just have to change our chart in this case. We will now work in these coor-
dinates.

Recall that Dirac matrices γµ, 0 6 µ 6 3, unique up to unitary trans-
form, are given by the following relations:

γ0∗ = γ0; γj
∗

= −γj , 1 6 j 6 3;

γµγν + γνγµ = 2gµν1, 0 6 µ, ν 6 3.
(2.13)

In our representation, the matrices take the form:

γ0 = i

(
0 σ0

−σ0 0

)
, γk = i

(
0 σk

σk 0

)
, k = 1, 2, 3(2.14)

where the Pauli matrices are given by:

σ0 =

(
1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
.(2.15)

We thus obtain:

γ0γ1 =

(
−σ1 0

0 σ1

)
; γ0γ2 =

(
−σ2 0

0 σ2

)
; γ0γ3 =

(
−σ3 0

0 σ3

)
.(2.16)
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We introduce the matrix:

γ5 = −iγ0γ1γ2γ3(2.17)

which satisfies the relations:

γ5γµ + γµγ5 = 0, 0 6 µ 6 3.(2.18)

We make the change of spinor φ(t, x, θ, ϕ) = rF (r)
1

4ψ(t, r, θ, ϕ) and obtain
the following equation:

∂tφ = i

(
iγ0γ1∂x + i

F (r)
1

2

r
��DS2 −mγ0F (r)

1

2

)
φ.(2.19)

We set:

Hm = iγ0γ1∂x + i
F (r)

1

2

r
��DS2 −mγ0F (r)

1

2 .(2.20)

We introduce the Hilbert space:

H :=
[
L2
(
]−∞, 0[x × S

2
ω, dxdω

)]4
(2.21)

2.3. Generalization

Let q ∈ R and n ∈ N, and define the spaces T q,n by:

T q,n =

{
f ∈ C∞ (]−∞; 0[)

∣∣∣(2.22)

∀α ∈ N, |∂αx f(x)| .

{
eqx , when x→ −∞
(−x)n , when x→ 0

}

We consider two smooth functions A0, B0 such that:

A0 =

{
0 if x 6 −2
1
l if x > −1

; B0 =

{
0 if x 6 −2
l
−x if x > −1.

We will consider the following operator:

Hm = Γ1Dx +A(x)��DS2 −mγ0B(x)(2.23)
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where m is the mass of the field and, for two positive numbers ϑ, β:

A−A0 ∈ T ϑ,2(2.24)

B −B0 ∈ T β,1.(2.25)

We also recall that Γ1 = −γ0γ1 = diag(1,−1,−1, 1) and Dx = 1
i ∂x.

We then check that the Schwarzschild Anti-de Sitter case enters in our
abstract model. For x going to −∞, we have:

r − rSAdS =
(
3r2
SAdS + l2

) 1

2 e
−2κC arctan

(
3rSAdS

(3(rSAdS)2+4l2)

)
+Cπκ

e2κx

− C1e
4κx + o

(
e4κx

)
F (r)

1

2 =

(
3r2
SAdS + l2

) 3

4 D
1

2

4

r
1

2

SAdSl
eκx + C2e

3κx + o
(
e3κx

)
,

F (r)
1

2

r
=

(
3r2
SAdS + l2

) 3

4 D
1

2

4

r
3

2

SAdSl
eκx + C3e

3κx + o
(
e3κx

)
where C1, C2, C3 are constants. Then, for x in a neighbourhood of 0, we
have:

r = − l
2

x
+

1

3
(x) + o (−x)

F (r)
1

2 = − l
x
− x

6l
+ o (x)

F (r)
1

2

r
=

1

l
+
x2

2l3
+ o

(
x2
)
.

The Schwarzschild Anti-de Sitter model is thus a particular case of our

generalized model with A = F (r)
1
2

r and B = F (r)
1

2 .

3. Study of the hamiltonian

In this section, we first present the spinoidal spherical harmonics. This allows
us to reduce our problem to the study of a 1 + 1 dimensional equation with
a new hamiltonian denoted Hs,n

m . We then use the fact that, at AdS infinity,
the potential looks like the one considered by A. Bachelot in [8]. By means
of a unitary transform and a cut-off near AdS infinity, we are able to make
use of his result and obtain the asymptotic behavior of the elements in the
natural domain of our operator. As in [8], the need or not to put a boundary
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condition is linked to the comparison between the mass of the field and the
cosmological constant. For 2ml > 1 (where m is the mass of the field and
l is linked to the cosmological constant), there’s no need to put boundary
conditions. When 2ml < 1, we consider the generalized MIT-bag boundary
condition in order to determine the dynamic uniquely. We then prove the
self-adjointness of our operators. Using an elliptic inequality, we are able to
give the domain of our operator for 2ml > 1. Using Stone’s theorem, we can
solve the Cauchy problem for our equation. At last, we give a proof of the
absence of eigenvalue for all m > 0 which will be useful for the propagation
estimates.

3.1. Description of the domain

3.1.1. The spinoidal spherical harmonics. In the rest of this paper,
we will often make use of spinoidal spherical harmonics (we can refer to [8]
for a more complete presentation of these harmonics) which will permit us
to decompose H as follows:

H =
⊕

(s,n)∈I

(L2(x, dx)
)4 ⊗


T s− 1

2
,n

T s1
2
,n

T s− 1

2
,n

T s1
2
,n


(3.1)

where:

I :=

{
(s, n); s ∈ N +

1

2
, n ∈ Z +

1

2
, s− |n| ∈ N

}
.(3.2)

These functions satisfy the following relations:(
∂

∂θ
+

1

2 tan θ

)
T s± 1

2
,n = ± n

sin θ
T s± 1

2
,n − i

(
s+

1

2

)
T s∓ 1

2
,n,(3.3)

∂

∂ϕ
T s± 1

2
,n = −inT s± 1

2
,n.(3.4)

Since
(
T s1

2
,n

)
(s,n)∈I

and
(
T s− 1

2
,n

)
(s,n)∈I

both span L2
(
S2
)
, we can decompose

f ∈ L2(S2) as follows:

f(θ, ϕ) =
∑

(s,n)∈I

us±,n(f)T s± 1

2
,n(θ, ϕ), us±,n(f) ∈ C.
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Let us introduce the Hilbert spaces W d
± for d ∈ R as the closure of the space:

W±f :=

∑
finite

us±,nT
s
± 1

2
,n; us±,n ∈ C

(3.5)

for the norm

||f ||2W d
±

:=
∑

(s,n)∈I

(
s+

1

2

)2d

|us±,n(f)|2.

Using Plancherel’s formula, L2
(
S2
)

is just W 0. We give some properties of
these spaces (for a more complete presentation, we refer to [8]). We have:

d > 0 =⇒W d
± =

{
f ∈ L2

(
S2
)

; ||f ||W d
±
<∞

}
,(

W d
±

)′
= W−d± and C∞0 (]0, π[θ×]0, 2π[ϕ) ⊂W d

±.

We must remark that T s± 1

2
,n

(θ, 2π) = −T s± 1

2
,n

(θ, 0) 6= 0. Consequently, these

functions are not smooth on the sphere S2. In correspondence with the
decomposition (3.1), we introduce the Hilbert spaces:

Wd = W d
− ×W d

+ ×W d
− ×W d

+(3.6)

equipped with the norm:

‖Φ‖2Wd =

4∑
j=1

∑
(s,n)∈I

(
s+

1

2

)2d ∣∣usj,n∣∣2(3.7)

where:

Φ (θ, ϕ) =
∑

(s,n)∈I


us1,nT

s
− 1

2
,n

(θ, ϕ)

us2,nT
s
+ 1

2
,n

(θ, ϕ)

us3,nT
s
− 1

2
,n

(θ, ϕ)

us4,nT
s
+ 1

2
,n

(θ, ϕ)

 .

3.1.2. A result due to A.Bachelot. We recall a result obtained by
A.Bachelot (see [8]). In this article, the hamiltonian considered was:

HB
m = iγ0

Bγ
1
B

(
FB(r)∂r +

FB (r)

r
+
F ′B (r)

4

)
+ i

FB(r)
1

2

r
��DS2 −mγ0

BFB(r)
1

2

(3.8)
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in (r, θ, ϕ) coordinates where FB (r) = 1 + r2
l2 . Here, m is m̃

√
3
Λ with m̃ the

mass of the field and −Λ the cosmological constant. Moreover, the space
L2 is defined by L2 :=

[
L2
(
[0, π2 [ζ×[0, π]θ × [0, 2π[ϕ, sin θdζdθdϕ

)]4
where

ζ = arctan

(√
Λ
3 r

)
.. Using a change of spinor and a change of coordinates

such that φ(t, ζ, θ, ϕ) = rFB(r)
1

4ψ(t, r, θ, ϕ), he obtains:

HB
m := iγ0

Bγ
1
B

∂

∂ζ
+

i

sin ζ

[
γ0
Bγ

2
B

(
∂

∂θ
+

1

2 tan θ

)
+

1

sin θ
γ0
Bγ

3
B

∂

∂ϕ

]
(3.9)

− m

cos ζ
γ0
B.

where he uses the natural domain:

D(HB
m) :=

{
Φ ∈ L2;HB

mΦ ∈ L2
}
.(3.10)

At last, we recall that the Dirac matrices γ0
B, γ

1
B, γ

2
B, γ

3
B take the form:

γ0
B =

(
I 0
0 −I

)
, γkB =

(
0 σkB
−σkB 0

)
, k = 1, 2, 3(3.11)

where the Pauli matrices are given by:

I =

(
1 0
0 1

)
, σ1

B =

(
1 0
0 −1

)
, σ2

B =

(
0 1
1 0

)
, σ3

B =

(
0 −i
i 0

)
The result is then the following (see Theorem V.1 in [8]):

Theorem 3.1. For all Φ ∈ D(HB
m), we have:

Φ ∈ C0

([
0,
π

2

[
ζ

;W
1

2

)
with ||Φ(ζ, .)||W 1

2
= O(

√
ζ), ζ → 0,(3.12)

and for m > 0, we have∫ π

2

0
||Φ(ζ, .)||2W1

dζ

sin ζ
6 ||HmΦ||2L2 .(3.13)

For m > 1
2 , we have

||Φ(ζ, .)||L2(S2) = O

(√
π

2
− ζ
)
, ζ → π

2
.(3.14)
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For m = 1
2 , we have

||Φ(ζ, .)||L2(S2) = O

(√(
ζ − π

2

)
ln
(π

2
− ζ
))

, ζ → π

2
.(3.15)

For 0 < m < 1
2 , there exist functions ψ− ∈W

1

2

− , χ− ∈W
1

2

+ , ψ+, χ+ ∈ L2(S2)
and φ ∈ C0

(
[0, π2 ]ζ ;L

2(S2;C4)
)

satisfying

Φ(ζ, θ, ϕ) =
(π

2
− ζ
)−m

ψ−(θ, ϕ)
χ−(θ, ϕ)
−iψ−(θ, ϕ)
iχ−(θ, ϕ)

(3.16)

+
(π

2
− ζ
)m

ψ+(θ, ϕ)
χ+(θ, ϕ)
iψ+(θ, ϕ)
−iχ+(θ, ϕ)

+ φ(ζ, θ, ϕ),

||φ(ζ, .)||L2(S2) = o

(√
π

2
− ζ
)
, x→ π

2
.(3.17)

Conversely, for all ψ− ∈W
1

2
+m
− , χ− ∈W

1

2
+m

+ , ψ+ ∈W
1

2
−m
− , χ+ ∈W

1

2
−m

+

there exists Φ ∈ D(HB
m) satisfying (3.16) and (3.17).

Remark. This result concerning the asymptotic behavior of elements in
the domain of the operator HB

m is first proved for fixed harmonics (i.e fixed
(s, n) ∈ I). In the next sections, we will often make use of the result obtained
for fixed harmonics.

The condition on the mass is a consequence of the fact that the states
in the natural domain of our operator have to be in L2. When the mass
is sufficiently large, the term

(
π
2 − ζ

)−m
in (3.16) is not in L2 so it cannot

appear in the development of the states near π
2 . In this case, we do not need

to put boundary conditions to obtain the self-adjointness of this operator
and well-posedness of the Cauchy problem.

Unfortunately, for a mass too small compared to the cosmological con-
stant, we see that the term

(
π
2 − ζ

)−m
in (3.16) is in L2 which is problematic

for the symmetry of our operator. We thus need to put boundary conditions
to get rid of this term and solve the Cauchy problem.

3.1.3. Unitary transform of Hm. Let us introduce the following do-
mains:



i
i

“3-Idelon-Riton” — 2018/11/30 — 0:56 — page 1023 — #17 i
i

i
i

i
i

Scattering theory for the Dirac equation 1023

- If 2ml > 1:

D(Hm) = {φ ∈ H; Hmφ ∈ H} .(3.18)

- If 2ml < 1, we consider the operator equipped with the domain whose
elements satisfy a generalized MIT-bag condition (where α ∈ R is called
the Chiral angle and γ5 = −iγ0γ1γ2γ3 (see [8])):

D(Hm) =
{
φ ∈ H; Hmφ ∈ H,

∥∥∥(γ1 + ieiαγ
5
)
φ
∥∥∥

2
= o

(√
−x
)
, x→ 0

}
.

(3.19)

First, we’ll try to remove α in the case 2ml < 1. We introduce the following
operator:

Hα
m = ei

α

2
γ5

Hme
−iα

2
γ5

.(3.20)

Since eiαγ
5

is unitary and eiαγ
5

γ1 = γ1e−iαγ
5

, we see that ϕ ∈ D (Hm) if and
only if ei

α

2
γ5

ϕ ∈ D (Hα
m) where:

D (Hα
m) =

{
φ ∈ H; Hα

mφ ∈ H,
∥∥(γ1 + i

)
φ
∥∥

2
= o

(√
−x
)
, x→ 0

}
.

So we can restrict to the case α = 0 which we will do in the following.

We will now modify our hamiltonian in order to exploit the result of A. Bach-
elot. We introduce a new time variable t̃ = −t (and we will continue to denote
by t) which gives:

∂tφ = i (−Hm)φ.(3.21)

Let:

H̃m = γ5
BP
−1(−Hm)Pγ5

B(3.22)

where:

P =
1√
2
ei
π

4

(
Id Id
−iId iId

)
, P ∗ = P−1 =

1√
2
e−i

π

4

(
Id iId
Id −iId

)
,

γ5
B =

(
0 Id
Id 0

)
,

and Id is the identity matrix of order 2. The matrix P satisfies the following
relations:

γ0 = Pγ0
BP
−1; γj = −PγjBP

−1, 1 6 j 6 3.(3.23)
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where the Dirac matrices are defined by (3.11) and (2.14). The matrix γ5
B

satisfies the same relations as γ5 in (2.18). We obtain:

H̃m = iγ0
Bγ

1
B∂x + iγ0

Bγ
2
BA(x)

(
∂θ +

1

2
cot θ

)
(3.24)

+ iγ0
Bγ

3
BA(x)

1

sin θ
∂ϕ −mγ0

BB(x).

3.1.4. Asymptotic behavior of elements of the domain. We intro-
duce the projection Ps,n from H to Hs,n and the operators H̃s,n

m = H̃m|Hs,n ,

Hs,n,B
m = HB

m|Hs,n for (s, n) ∈ I. We denote ψs,n = Ps,n(ψ) with components

ψsi,n for i = 1, . . . , 4. Furthermore, the domain of Hs,n,B
m is given by:

- If 2ml > 1:

D
(
Hs,n,B
m

)
=
{
ϕs,n ∈ Hs,n; Hs,n,B

m ϕs,n ∈ Hs,n
}

- If 2ml<1, we add the condition that
∥∥(γ1

B+i
)
ϕs,n(x, .)

∥∥
W0 =o

(√
−x
)

when x goes to 0.

We then have the:

Lemma 3.2. Let ψ ∈ D
(
H̃m

)
and χ ∈ C∞0 (]−2ε, 0]) such that χ = 1 on

]−ε, 0] with ε > 0. Then χψ ∈ D
(
HB
m

)
.

Proof. Recall that the operator obtained by A. Bachelot in [8] is given by
(3.8) where FB (r) = 1 + r2

l2 . This operator has the same form as in (2.12).
Moreover, when r >> rSAdS , FB and F have the same behavior (F is defined
by F (r) = 1 + r2

l2 −
2M
r ). We make the change of variable r → x where dx

dr =

F (r)−1 and F is defined on ]rSAdS ,+∞[. We obtain:

HB
m = iγ0

Bγ
1
Bg (x) ∂x + iγ0

Bγ
1
B

(
F (r)

r
+
F ′ (r)

4

)
+

3M

2r2
+AB (x)DS2 −mγ0

BBB (x)

where r is understood as a function of x and:

g (x) = 1 +
2M

l4
(−x)3 + o

(
(−x)3

)
, AB (x) =

1

l
+

1

2l3
(−x)2 + o

(
(−x)2

)
BB (x) =

l

−x
+

1

6l
(−x) + o (−x) ,

F (r)

r
=

1

−x
+

2

3l2
(−x) + o (−x)

F ′ (r) =
2

−x
− 2

3l2
(−x) + o (−x)
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when x goes to 0. Since Ps,n(χψ) = χψs,n, we have:

Hs,n,B
m Ps,n(χψ) = g(x)H̃s,n

m Ps,n(χψ)

+ iγ0
Bγ

1
B

(
F (r)

r
+
F ′ (r)

4

)
(1− g (x))χψs,n

+
3M

2r2
χψs,n + γ0

Bγ
2
B (AB(x)− g(x)A(x))

(
s+

1

2

)
χψs,n

−mγ0
B (BB(x)− g(x)B(x))χψs,n(3.25)

Since ψ∈D(H̃m), g is bounded in a neighborhood of 0 and χ∈C∞0 (]−1, 0]x),
the first term is in L2(x, dx). Using the behavior at 0 of g, the terms AB(x)−
g(x)A(x),BB(x)− g(x)B(x) and

(
F (r)
r + F ′(r)

4

)
(1− g (x)) are bounded near

0. We deduce thatHs,n,B
m Ps,n(χψ) ∈ Hs,n. In particular, χψs,n ∈ D

(
Hs,n,B
m

)
.

To be able to sum over (s, n), we need to know that(
s+

1

2

)2

‖(χψs,n)‖2
L2(− 1

2
,0)

is summable. Since ψ ∈ D
(
H̃m

)
, f = H̃mψ admits a decomposition f =∑

(s,n)∈I

fsn. We denote fsi,n (i = 1, . . . , 4) the components of fsn. We obtain

four differential equations:

iχψs4,n
(
χψs3,n

)′
+

(
s+

1

2

)
A (x)

∣∣χψs4,n∣∣2 −B (x)χψs4,nχψ
s
1,n = χψs4,nf

s
1,n,

− iχψs3,n
(
χψs4,n

)′
+

(
s+

1

2

)
A (x)

∣∣χψs3,n∣∣2 −B (x)χψs3,nχψ
s
2,n = χψs3,nf

s
2,n,

iχψs2,n
(
χψs1,n

)′
+

(
s+

1

2

)
A (x)

∣∣χψs2,n∣∣2 +B (x)χψs2,nχψ
s
3,n = χψs2,nf

s
3,n,

− iχψs1,n
(
χψs2,n

)′
+

(
s+

1

2

)
A (x)

∣∣χψs2,n∣∣2 +B (x)χψs1,nχψ
s
4,n = χψs1,nf

s
4,n.

where we have multiply by χψsj,n for j = 1, . . . , 4. Adding these equations
and taking the real part, we obtain:

d

dx
=
(
χψs1,nχψ

s
2,n + χψs3,nχψ

s
4,n

)
+

(
s+

1

2

)
A (x)

4∑
j=1

∣∣χψsj,n∣∣2(3.26)

= <
(
χψs4,nf

s
1,n + χψs3,nf

s
2,n + χψs2,nf

s
3,n + χψs1,nf

s
4,n

)
.
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Using that:

lim
x→0
=
(
χψs1,nχψ

s
2,n + χψs3,nχψ

s
4,n

)
= 0.(3.27)

and that χψsj,n is 0 at 1 for all j = 1, . . . , 4, we obtain:

(
s+

1

2

)∫ 0

− 1

2

A (x)

4∑
j=1

∣∣χψsj,n∣∣2 dx
=

∫ 0

− 1

2

<
(
χψs4,nf

s
1,n + χψs3,nf

s
2,n + χψs2,nf

s
3,n + χψs1,nf

s
4,n

)
dx.

After some calculations, this gives:(
s+

1

2

)2 ∫ 0

− 1

2

(2lA (x)− 1)

4∑
j=1

∣∣χψsj,n∣∣2 dx 6 ∫ 0

− 1

2

4∑
j=1

l2
∣∣f sj,n∣∣2 dx.

Using the asymptotic behavior of A (see (2.24)), we can prove that 2lA (x)−
1 > 1 on the support of χ (for ε sufficiently small). Finally, we obtain:(

s+
1

2

)2 ∫ 0

− 1

2

4∑
j=1

∣∣χψsj,n∣∣2 dx 6 l2 ∫ 0

− 1

2

4∑
j=1

∣∣fsj,n∣∣2 dx(3.28)

and the right hand side is summable because f ∈ H. This gives the lemma.
�

We can know apply Theorem 3.1 to χψ and obtain the asymptotic behavior
of ψ:

Proposition 3.3. If 2ml > 1, we have:

||ψ(ζ, .)||L2(S2) = O
(√
−x
)
, x→ 0.(3.29)

If 2ml = 1, we have:

||ψ(x, .)||L2(S2) = O
(√

(−x) ln (−x)
)
, x→ 0.(3.30)

If 0 < 2ml < 1, there exists functions ψ− ∈W
1

2

− , χ− ∈W
1

2

+ , ψ+, χ+ ∈ L2(S2)
and φ ∈ C0

(
]−∞, 0]x;L2(S2;C4)

)
satisfying (3.16) and (3.17) with π

2 − ζ
replaced by (−x)l.
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Conversely, for all ψ−∈W
1

2
+m
− , χ−∈W

1

2
+m

+ , ψ+∈W
1

2
−m
− , χ+∈W

1

2
−m

+ ,
there exists ψ ∈ D(Hm) satisfying (3.16) and (3.17) with the same replace-
ment as before.

Remark. By restriction to Hs,n, we obtain the same result for s, n fixed.
Moreover, if ϕs,n ∈ D (Hs,n

m ), then it is in H1 (]−∞,−c[) for a constant
c > 0. We conclude that ϕs,n ∈ C0 (]−∞,−c[) ∩ L2 (]−∞,−c[) and:

‖ϕs,n (x, .)‖W0 → 0, x→ −∞.(3.31)

3.1.5. Description of the domain. We now give a description of the
domain of Hm for fixed (s, n) ∈ I. Recall that Hm and H̃m are linked by a
unitary transform, so it does not change the norm of the observables. We
obtain:

−D (Hs,n
m ) = {ψs,n ∈ Hs,n; Hs,n

m ψs,n ∈ Hs,n} , if 2ml > 1;

(3.32)

−D (Hs,n
m ) =

ψs,n∈Hs,n; Hs,n
m ψs,n∈Hs,n, ψs,n=(−x)−ml


ψs−,n(θ, ϕ)

iχs−,n(θ, ϕ)

−ψs−,n(θ, ϕ)

iχs−,n(θ, ϕ)


+φsn (x, θ, ϕ) , ‖φsn (x, ., .)‖W0 = o

(√
−x
)}
, if 2ml < 1.(3.33)

3.2. Self-adjointness for fixed harmonic

In this section, s and n are fixed.

3.2.1. The case 2ml > 1.

Lemma 3.4 (Elliptic estimate). We suppose that 2ml > 1. Then, there
exists a constant C > 0 such that, for all ϕ ∈ C∞0 (]−∞, 0[), we have:

‖−i∂xϕ‖2 6 C
(
‖Hs,n

m ϕ‖2 + ‖ϕ‖2
)

(3.34)

Proof. We write Dx = −i∂x and Γ1 = −γ0γ1. Recall that:

Hs,n
m = Γ1Dx +

(
s+

1

2

)
A (x) γ0γ2 −mB (x) γ0.

We will often denote V (x) =
(
s+ 1

2

)
A (x) γ0γ2 −mB (x) γ0. Choose a par-

tition of unity χ1, χ2 such that χ1 + χ2 = 1, supp (χ1) ⊂]−∞,−ε[ and χ1 =
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1 on ]−∞,−2ε[, supp (χ2) ⊂]− 2ε, 0[ and χ2 = 1 on ]− ε, 0[. We choose
ε > 0 sufficiently small so that, if γ5

B and P are unitary matrices defined as
in (3.22), γ5P−1χ2ϕ ∈ D

(
HB
m

)
when ϕ ∈ D (Hs,n

m ) (it is possible by lemma
3.2). Recall that m is the mass of the field and l correspond to the cosmo-
logical constant. Using equation III.32 in theorem III.4 of [8], (3.22) and
(3.25), we obtain:∥∥Dx

(
γ5
BP
−1χ2ϕ

)∥∥ 6 Cm,l ∥∥g (x)Hs,n
m

(
γ5
BP
−1χ2ϕ

)∥∥+ C̃m,l ‖χ2ϕ‖ ,

where Cm,l and C̃m,l are constants depending on m and l. Since γ5
BP
−1 is

unitary and commute with Dx and g is bounded near 0, we obtain:

‖Dx (χ2ϕ)‖ 6 Cm,l,ε ‖Hs,n
m (χ2ϕ)‖+ C̃m,l ‖χ2ϕ‖ .(3.35)

On the other hand, with CV,ε constant, we have:

‖Dx (χ1ϕ)‖ 6 ‖Hs,n
m (χ1ϕ)‖+ CV,ε ‖ϕ‖ .

Since χ1, χ2 commute with V and are bounded as are their derivatives, we
obtain:

‖Dxϕ‖2 6 C
(
‖Hs,n

m (χ1ϕ)‖2 + ‖Hs,n
m (χ2ϕ)‖2

)
+ C ′ ‖ϕ‖2

6 C̃ ‖Hs,n
m ϕ‖2 + C̃ ′ ‖ϕ‖2 .

�

Proposition 3.5. For 2ml > 1, the operator H̃s,n
m is essentially self-adjoint

on C∞0 (]−∞, 0[). Moreover, if 2ml > 1, the domain of this operator is given
by H1

0 (]−∞, 0[).

Proof. Recall that:

H̃s,n
m = iγ0

Bγ
1
B∂x + γ0

Bγ
2
B

(
s+

1

2

)
A(x)−mγ0

BB(x)

with domain D
(
H̃s,n
m

)
=
{
ψs,n ∈ Hs,n; H̃s,n

m ψs,n ∈ Hs,n
}

and if ψs,n ∈

D
(
H̃s,n
m

)
, then we have:

‖ψs,n(x, .)‖L2(S2) = O
(√

(−x)
)
, x→ 0, if 2ml > 1;(3.36)

‖ψs,n(x, .)‖L2(S2) = O
(√

x ln (−x)
)
, x→ 0, if 2ml = 1;(3.37)

‖ψs,n (x, .)‖W0 → 0, x→ −∞.(3.38)
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Let us prove that H̃s,n
m is symmetric on its domain. We remark that

(
γ0
Bγ

2
B

)∗
= γ0

Bγ
2
B,
(
γ0
Bγ

1
B

)∗
= γ0

Bγ
1
B and

(
γ0
B

)∗
= γ0

B. So:〈
γ0
Bγ

2
BA (x)

(
s+

1

2

)
φs,n, ψs,n

〉
Hs,n

=

〈
φs,n,

(
γ0
Bγ

2
B

)
A (x)

(
s+

1

2

)
ψs,n

〉
Hs,n

,〈
γ0
BB (x)φs,n, ψs,n

〉
Hs,n =

〈
φs,n, γ

0
BB (x)ψs,n

〉
Hs,n .

Thus, in the calculation of
〈
H̃s,n
m φs,n, ψs,n

〉
Hs,n
−
〈
φs,n, H̃

s,n
m ψs,n

〉
Hs,n

, it

remains only the boundary term due to integration by parts. Using (3.37),
this gives the symmetry of our operator on its domain.

We then use the same trick as in [8]. Let us consider a new operator H
with the same expression as H̃s,n

m but defined on D(H) = C∞0 (]−∞, 0[).

Then H∗ is H̃s,n
m with domain D(H∗) included in D

(
H̃s,n
m

)
. Let φ± ∈

ker (H∗ ± iId). Then, using the symmetry of H̃s,n
m and that H∗ = H̃s,n

m , we
have:

0 =
〈
H̃s,n
m φ±, φ±

〉
−
〈
φ±, H̃

s,n
m φ±

〉
(3.39)

= 〈H∗φ±, φ±〉 − 〈φ±, H∗φ±〉 = ∓2i ‖φ±‖2Hs,n .

We conclude that φ± = 0. This proves that H̃s,n
m is essentially self-adjoint

on C∞0 (]−∞, 0[).
For the last part, using the last lemma, we see that, for 2ml > 1, we have:

D (Hs,n
m ) ⊂ H1

0 (]−∞, 0[). Indeed, if we take ϕ ∈ D (Hs,n
m ), it is the limit of

a sequence (ϕn)n∈N ∈ (C∞0 )N for the graph norm. The last lemma gives
that ∂xϕn is a Cauchy sequence so that it converges in H1

0 . A distribution
argument gives that this limit is ∂xϕ which is in L2 by the lemma.

Moreover, we haveHs,n
m = iγ0γ1∂x + γ0γ2

(
s+ 1

2

)
A (x)−mγ0B (x) with

A having the behavior as in (2.24) and B as in (2.25). Using the fact that B
and BB have the same behavior when x→ 0 and the unitary transform, we
can use the proof of Theorem III.4 in [8] to prove a Hardy type inequality
of the form: ∥∥Bχ2

2ϕ
∥∥ 6 c (‖ϕ‖+ ‖−i∂xϕ‖) .(3.40)

Using the fact that A is bounded, we have a similar estimate for

γ0γ2

(
s+

1

2

)
A (x)−mγ0B (x) .

Thus H1
0 ⊂ D (Hs,n

m ). This proves the proposition. �
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3.2.2. The case 2ml < 1. Recall that if 0 < 2ml < 1, then, for all ψs,n ∈
D
(
H̃s,n
m

)
, there exists functions ψ− ∈W

1

2

− , χ− ∈W
1

2

+ , ψ+, χ+ ∈ L2(S2)

and φ ∈ C0
(
[0, π2 ]x;L2(S2;C4)

)
such that ‖σsn(x, θ, ϕ)‖W0 = o

(√
(−x)

)
as

x goes to 0 and:

ψs,n (x, θ, ϕ) = (−x)−ml


ψs−,n(θ, ϕ)

χs−,n(θ, ϕ)

−iψs−,n(θ, ϕ)

iχs−,n(θ, ϕ)

+ (−x)ml


ψs+,n(θ, ϕ)

χs+,n(θ, ϕ)

iψs+,n(θ, ϕ)

−iχs+,n(θ, ϕ)

(3.41)

+ σsn(x, θ, ϕ),

:= (−x)−ml Ψs
−,n(θ, ϕ) + (−x)ml Ψs

+,n(θ, ϕ)

+ σsn(x, θ, ϕ)

We denote by H̃MIT
s,n the operator H̃s,n

m with domain:

D(H̃MIT
s,n ) =

{
ψs,n ∈ Hs,n; H̃s,n

m ψs,n ∈ Hs,n, ψs+,n = χs+,n = 0
}
.(3.42)

which is a consequence of the discussion after proposition V I.2 in [8]. We
have the:

Proposition 3.6. The operator H̃MIT
s,n is self-adjoint on D

(
H̃MIT
s,n

)
.

Proof. Let φs,n, ψs,n ∈ D(H̃MIT
s,n ). As in the proof of Proposition 3.5, when

calculating 〈
H̃MIT
s,n φs,n, ψs,n

〉
Hs,n
−
〈
φ, H̃MIT

s,n ψ
〉
Hs,n

,

only boundary values of φs,n, ψs,n are left. Using that

φs,n (x, θ, ϕ) = (−x)−ml


φs−,n(θ, ϕ)

ξs−,n(θ, ϕ)

−iφs−,n(θ, ϕ)

iξs−,n(θ, ϕ)

+ ϕsn (x, θ, ϕ)

:= (−x)−ml Φs
−,n (θ, ϕ) + ϕsn

‖ϕs,n‖L2(S2) = o
(√

(−x)
)
, x→ 0,

and a similar formula for ψs,n with Φs
−,n, ϕ

s
n replaced by Ψs

−,n, σ
s
n respec-

tively, we can calculate these boundary values in a neighbourhood of 0
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(with the scalar product being the one of L2
(
S2
)

and we write φs,n (x)
for φs,n (x, .)):

〈
φs,n (x) , γ0

Bγ
1
Bψs,n (x)

〉
= (−x)−ml

(〈
Φs
−,n, σ

s
n (x)

〉
+
〈
ϕsn (x) ,Ψs

−,n
〉)

+ 〈ϕsn (x) , σsn (x)〉W0 .

Indeed, γ0
Bγ

1
B arranges the terms such that

〈
(−x)−ml Φs

−,n, (−x)−ml Ψs
−,n

〉
W0

= 0.

Using the behavior at 0 of ϕsn, σ
s
n and at −∞ of φs,n, ψs,n, we deduce that

H̃MIT
s,n is symmetric.

Let ψs,n ∈ D(H̃s,n,MIT,∗
m ). Then, since D(H̃s,n,MIT,∗

m ) ⊂ D(H̃s,n
m ), ψ ad-

mits a decomposition, in a neighbourhood of 0, as in (3.41). Moreover,

H̃s,n,MIT,∗
m = H̃s,n

m on D
(
H̃s,n,MIT,∗
m

)
(using distributions). We have:

0 =
〈
H̃s,n,MIT
m φs,n, ψs,n

〉
−
〈
φs,n, H̃

s,n,MIT,∗
m ψs,n

〉
= lim

x→0

〈
(−x)−ml Φs

−,n, (−x)ml Ψs
+,n

〉
,

for all φs,n ∈ D
(
H̃s,n,MIT
m

)
and ψs,n ∈ D

(
H̃s,n,MIT,∗
m

)
. In other words, we

have:

2

〈(
φs−,n
ξs−,n

)
,

(
ψs+,n
χs+,n

)〉
= 0.(3.43)

But, for all φs−,n, ξ
s
−,n ∈ C∞0 (Ys,n), we can find φ ∈ D(H̃s,n,MIT

m ) admitting
these components as coordinates. Thus ψs+,n = χs+,n = 0. We conclude that

D
(
H̃s,n,MIT,∗
m

)
⊂ D

(
H̃s,n,MIT
m

)
and that H̃s,n,MIT

m is self-adjoint on his

domain. �

3.3. Self-adjointness of H̃m

3.3.1. The case 2ml > 1. We equip H̃m with the domain:
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D(H̃m) =
{
u ∈ H; H̃mu ∈ H

}

=


∑

(s,n)∈I


us1,nT

s
− 1

2
,n

us2,nT
s
1

2
,n

us3,nT
s
− 1

2
,n

us4,nT
s
1

2
,n

 ; ∀(s, n) ∈ I, usn ∈ L2 (]−∞, 0[x , dx) ,

H̃s,n
m


us1,nT

s
− 1

2
,n

us2,nT
s
1

2
,n

us3,nT
s
− 1

2
,n

us4,nT
s
1

2
,n

 ∈ L2,
∑

(s,n)∈I

∥∥∥∥∥∥∥∥∥∥
(H̃s,n

m ± i)


us1,nT

s
− 1

2
,n

us2,nT
s
1

2
,n

us3,nT
s
− 1

2
,n

us4,nT
s
1

2
,n


∥∥∥∥∥∥∥∥∥∥

2

L2

<∞


.

(3.44)

We then have:

Proposition 3.7. Suppose that 2ml > 1. Then the operator H̃m is self-
adjoint on its domain.

Proof. H̃m is symmetric. Indeed, let ϕ,ψ ∈ D
(
H̃m

)
. We can decompose

ϕ =
∑

(s,n)∈I
ϕs,n and the same for ψ. Then:

〈
H̃mϕ,ψ

〉
=

∑
(s,n)∈I

〈
H̃s,n
m ϕs,n, ψs,n

〉
(3.45)

=
∑

(s,n)∈I

〈
ϕs,n, H̃

s,n
m ψs,n

〉
=
〈
ϕ, H̃mψ

〉

since H̃s,n
m is symmetric. We can prove that H̃m is closed in the same way.

Let x=
∑

(s,n)∈I
xs,n∈H. Since H̃s,n

m is self-adjoint, there exists ys,n∈D
(
H̃s,n
m

)
such that (H̃m ± i)ys,n = (H̃s,n

m ± i)ys,n = xs,n. Thus

x =
∑

(s,n)∈I

(H̃m ± i)ys,n =
(
H̃m ± i

)
y
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where y =
∑

(s,n)∈I
ys,n ∈ D

(
H̃m

)
since:

∑
(s,n)∈I

∥∥∥H̃s,n
m ys,n

∥∥∥2
+ ‖ys,n‖2 =

∑
(s,n)∈I

∥∥∥(H̃s,n
m ± i)ys,n

∥∥∥2
=
∑

(s,n)∈I

‖xs,n‖2 <∞.

Consequently, (ys,n)(s,n)∈I is summable and x ∈ Im(H̃m ± i) so Im(H̃m ±
i) = H and H̃m is self-adjoint. �

3.3.2. The case 2ml < 1. Let us denote H̃MIT
m the operator H̃m with

domain:

D
(
H̃MIT
m

)
=


∑

(s,n)∈I


us1,nT

s
− 1

2
,n

us2,nT
s
1

2
,n

us3,nT
s
− 1

2
,n

us4,nT
s
1

2
,n

 ; ∀(s, n) ∈ I, usn ∈ L2 (]−∞, 0[x , dx) ,

H̃s,n
m


us1,nT

s
− 1

2
,n

us2,nT
s
1

2
,n

us3,nT
s
− 1

2
,n

us4,nT
s
1

2
,n

 ∈ L2,
∑

(s,n)∈I

∥∥∥∥∥∥∥∥∥∥
(H̃s,n

m ± i)


us1,nT

s
− 1

2
,n

us2,nT
s
1

2
,n

us3,nT
s
− 1

2
,n

us4,nT
s
1

2
,n


∥∥∥∥∥∥∥∥∥∥

2

L2

<∞

∑
(s,n)∈I

∥∥∥∥∥∥∥∥∥∥
(
γ1
B + i

)

us1,nT

s
− 1

2
,n

us2,nT
s
1

2
,n

us3,nT
s
− 1

2
,n

us4,nT
s
1

2
,n


∥∥∥∥∥∥∥∥∥∥

2

L2

= o
(√
−x
)
, x→ 0


(3.46)

Proposition 3.8. Suppose that 2ml < 1. Then the operator H̃MIT
m is self-

adjoint with domain D
(
H̃MIT
m

)
.

Proof. Let us remark that, if the boundary condition is fulfilled for φ ∈
D
(
H̃MIT
m

)
, then it is fulfilled for φs,n ∈ D

(
H̃s,n,MIT
m

)
. We can now prove,

as in the proof of Proposition 3.7, that H̃MIT
m is symmetric on its domain.

Show that H̃MIT
m is closed will require more effort. Choose a sequence

(ψj)j∈N of elements of D
(
H̃MIT
m

)
such that ψj → ψ and H̃MIT

m ψj → ϕ

where ψ,ϕ ∈ H and the convergence is understood in the norm of H. Using
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distributions, we have H̃MIT
m ψ = ϕ ∈ H and we have to show that ψ satisfies

the boundary condition. We can write:

ψj =
∑

(s,n)∈I

ψs,nj , ψ =
∑

(s,n)∈I

ψs,n, ϕ =
∑

(s,n)∈I

ϕs,n,(3.47)

and we obtain:

ψs,nj → ψs,n; H̃s,n,MIT
m ψs,nj → ϕs,n

in the norm of Hs,n. Thus, ψs,n ∈ D
(
H̃s,n,MIT
m

)
since H̃s,n,MIT

m is closed

and ψs,n admits a decomposition as in (3.33) where:∑
(s,n)∈I

(∥∥φs1,n∥∥2

W0 +
∥∥φs2,n∥∥2

W0 +
∥∥φs3,n∥∥2

W0 +
∥∥φs4,n∥∥2

W0

)
= o (−x)

when x goes to 0, using the proof of theorem V.1 in [8] and the fact that ϕ is
in the natural domain of Hm. Since γ1

B + i eliminates the terms containing

(−x)−ml, we have:∥∥(γ1
B + i

)
ϕ (x, .)

∥∥2

L2(S2)
(3.48)

6 C
∑

(s,n)∈I

(∥∥φs1,n∥∥2

W0 +
∥∥φs2,n∥∥2

W0 +
∥∥φs3,n∥∥2

W0 +
∥∥φs4,n∥∥2

W0

)
where the last term is o (−x). This proves that the boundary condition is
fulfilled and that the operator H̃MIT

m is closed. To prove the self-adjointness
of H̃MIT

m , we follow the same argument as in Proposition 3.7 where we have

to prove that y =
∑

(s,n)∈I
ys,n ∈ D

(
H̃MIT
m

)
. The only difference is that the

boundary condition has to be fulfilled. Since ys,n ∈ D
(
H̃s,n,MIT
m

)
, we can

decompose ys,n as for ϕs,n just above. A similar argument shows that y

satisfies the boundary condition. Thus H̃MIT
m is self-adjoint on D

(
H̃MIT
m

)
.

�

3.3.3. Self-adjointness of Hm. Recall that the domain of Hm is:

- If 2ml > 1:

D(Hm) = {φ ∈ H; Hmφ ∈ H} .

- If 0 < m < 1
2l , we will denote by HMIT

m the operator Hm with domain:

D(HMIT
m ) =

{
φ∈H; Hmφ∈H,

∥∥(γ1 + i
)
φ (x, .)

∥∥
L2(S2)

=o
(√
−x
)
, x→0

}
.
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We obtain the following theorem:

Theorem 3.9. - For all m > 1
2l , the operator Hm with domain D (Hm)

is self-adjoint.

- For all m < 1
2l , the operator HMIT

m with domain D(HMIT
m ) is self-

adjoint.

Proof. Recall that H̃m = γ5
BP
−1 (−Hm)Pγ5

B where γ5
B and P are unitary

matrices. Thus Hm = Pγ5
B

(
−H̃m

)
γ5
BP
−1. This is clear that ψ ∈ D (Hm)

if and only if γ5
BP
−1ψ ∈ D

(
H̃m

)
for m > 1

2l . Moreover, recall that γ1 =

−Pγ1
BP
−1 and γ1

Bγ
5
B = −γ5

Bγ
1
B using (3.23) and (2.18). We then obtain:∥∥(γ1 + i

)
ψ
∥∥ =

∥∥(γ1
B + i

)
γ5
BP
−1ψ

∥∥ .
Thus ψ ∈ D (Hm) if and only if γ5

BP
−1ψ ∈ D

(
H̃m

)
for all m > 0. This

shows that Hm is self-adjoint equipped with the convenient domain. �

3.4. The Cauchy problem

Using Stone theorem, we obtain:

Theorem 3.10. Let ψ0 ∈ H, there exists a unique solution ψ to the equa-
tion:

∂tψ = iHmψ(3.49)

such that

ψ ∈ C0 (Rt;H)(3.50)

and satisfying:

ψ (t = 0, .) = ψ0 (.)(3.51)

∀t ∈ R, ‖ψ (t, .)‖H = ‖ψ0(.)‖H .(3.52)

3.5. Absence of eigenvalues

Proposition 3.11. For all m > 0 , the Dirac operator Hm, defined in
(2.23), does not admit any eigenvalues.
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Proof. Let us first show the absence of eigenvalues for Hs,n
m for all m > 0

and all (s, n)∈I. Since Hs,n
m is self-adjoint on its domain, the eigenvalues (if

they exist) are all real. So, suppose that there exists λ ∈ R and ϕ ∈ D (Hs,n
m )

such that Hs,n
m ϕ = λϕ.

We define:

w(x) = eiλγ
0γ1xϕ(x)

such that

w′(x) = iλγ0γ1w(x) + eiλγ
0γ1xϕ′(x).

But, with V (x) = γ0γ2A(x)
(
s+ 1

2

)
−mγ0B(x), we have:

Hs,n
m ϕ− λϕ = 0⇔ iγ0γ1ϕ′(x) = (λ− V (x))ϕ(x)

⇔ ϕ′(x) = iγ0γ1 (V (x)− λ)ϕ(x)

So, we obtain:

w′(x) = iγ0γ1eiλγ
0γ1xV (x)e−iλγ

0γ1xw(x).(3.53)

Write: W (x) = iγ0γ1eiλγ
0γ1xV (x)e−iλγ

0γ1x. Let T ∈]−∞, 0[, we can then
solve the preceding equation by:

w(x) = e
∫ x
T
W (t)dtw(T ).

As in the remark after Proposition 3.3, each component of ϕ goes to 0 at
−∞. Consequently, w(x) →

x→−∞
0.

On the other hand, for all x < 0,

∫ x

−∞
|W (t)| dt <∞ so:

lim
T→−∞

e
∫ x
T
W (t)dt = e

∫ x
−∞W (t)dt

exists and is finished. As a consequence, we have:

lim
T→−∞

e
∫ x
T
W (t)dtw(T ) = 0.

We then deduce that w(x) = 0 for all x < 0 so it is the same for ϕ. Conse-
quently, Hs,n

m admits no eigenvalues.
We can now consider Hm. If λ ∈ R is an eigenvalue of Hm then there

exists ϕ ∈ D (Hm) such that (Hm − λ)ϕ = 0. Using the decomposition of
ϕ in spherical harmonics, if ϕ is non zero, there exists (s, n) ∈ I such that
ϕs,n 6= 0 and ϕs,n satisfies (Hs,n

m − λ)ϕs,n = 0. This is impossible since Hs,n
m
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does not admit eigenvalues. Thus ϕ is identically 0. We deduce that Hm

does not admit any eigenvalue for all m > 0. �

4. Compactness results

The purpose of this section is to prove that, for a well chosen function f ,
the operator f (x) (Hs,n

m − z)−1
is compact for all z ∈ ρ (Hs,n

m ). We will make
use of this result for proving Mourre estimates in the following section. The
key point here for the Mourre estimate is that f only admits a finite limit
at 0.

This result is proved by separating our operator in two operators denoted
H+ and H−. The operator H+ has a potential which behaves like the one in
Hs,n
m at 0 and is extended so that the potential becomes confining. Hence the

resolvent of this operator is itself compact. For H−, we preserve the behavior
near the horizon of the black hole and extend it so that it decreases to 0
at 0. By extending the states and the potential, we are thus able to view
the resolvent as the restriction of a resolvent on the entire line. For this
last resolvent, we are able to use standard results about Hilbert-Schmidt
operators.

We now enter into the details. We have:

Hs,n
m = Γ1Dx +

(
s+

1

2

)
A(x)γ0γ2 −mγ0B(x).(4.1)

where A and B behave like:

A−A0 ∈ T κ,2; B −B0 ∈ T κ̃,1

with κ, κ̃ > 0. Moreover, Γ1 = −γ0γ1 where γ0γ1 is given in (2.16). The main
result of this section is:

Proposition 4.1. Let f ∈ C (]−∞, 0]) such that f goes to 0 at −∞. Let
z ∈ ρ(Hs,n

m ) where ρ(Hs,n
m ) is the resolvent set of Hs,n

m . Then the operator
f(x) (Hs,n

m − z)−1
is compact on H for all m > 0.

4.1. Asymptotic operators

4.1.1. Operator H−. Let us first introduce the operator Hc = iγ0γ1∂x
where γ0γ1 = diag (−1, 1, 1,−1). We can thus prove the:
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Proposition 4.2. The operator Hc = iγ0γ1∂x is self-adjoint on the domain
defined by:

D (Hc) = {ϕ ∈ Hs,n;Hcϕ ∈ Hs,n, ϕ1 (0) = −ϕ3 (0) , ϕ2 (0) = ϕ4 (0)}

Proof. Since D (Hc) ⊂ H1 (]−∞, 0[) ⊂ C0 (]−∞; 0[), we can deduce that
the elements of D (Hc) go to 0 at −∞ and from the boundary condition, we
deduce the symmetry of Hc on D (Hc). The closedness is also proven using
the fact that D (Hc) ⊂ C0 (]−∞; 0[).

On the other hand, since C∞0 (]−∞, 0[) ⊂ D (Hc), we can prove (using
distribution) that H∗c = Hc on D (H∗c ). We then study the default spaces.
Let ψ ∈ ker (H∗c + i). Since x→ e−x is not in L2 (]−∞, 0[), we obtain:

ker (H∗c + i) = vect



ex

0
0
0

 ,


0
0
0
ex


 ∩D (H∗c ) .

But, if ψ ∈ D (H∗c ), then, for all ϕ ∈ D (Hc), we have:

0 = 〈Hcϕ,ψ〉 − 〈ϕ,H∗cψ〉 = lim
x→0

(
−iϕ1 (x)ψ1 (x) + iϕ2 (x)ψ2 (x)

+iϕ3 (x)ψ3 (x)− iϕ4 (x)ψ4 (x)
)
.

Choosing ϕ such that ϕ1 (0) 6= 0, we see that ker (H∗c + i) = {0}. The same
is true for H∗c − i = {0}. This shows that Hc is self-adjoint on D (Hc). �

Now, let us define the operator H− by:

H− = Hc + V−(x)(4.2)

where

V−(x) =

{
xId, for x > d

γ0γ2A(x)
(
s+ 1

2

)
−mγ0B(x), for x 6 c.

(4.3)

with c, d two negative constants such that c 6 d. We remark that V− is
bounded on R∗−. Using the Kato-Rellich theorem, we obtain:

Corollary 4.3. The operator H− equipped with D (Hc) is self-adjoint.

Remark. Note that the potential of H− equals the potential of Hs,n
m for x

negative and |x| large.
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4.1.2. Operator H+. Let us define the operator H+ by:

H+ = Γ1Dx + V+(x)(4.4)

where

V+(x) =

{
γ0γ2A(x)

(
s+ 1

2

)
−mγ0B(x), for x > b.

−x2γ0, for x 6 a.
(4.5)

This time, the potential behaves like the potential in Hs,n
m at 0 and increases

at −∞. We then have a confining potential. This type of potential has been
encountered in the article of A.Bachelot [8]. For proving the self-adjointness
of his operator, he uses the method we have recovered for proving the self-
adjointness of our operator Hm. We just indicate the differents stages of the
proof. We introduce the domain:

D(H+) =
{
ϕ ∈ L2(R∗−,C4); H+ϕ ∈ L2(R∗−),∥∥(γ1 + i)ϕ(x, .)

∥∥
L2(S2)

= o
(√
x
)
, x→ 0

}
if 2ml < 1 and we remove the boundary condition for 2ml > 1. In the fol-
lowing proof of compactness of (H+ − z)−1, we obtain estimates that allow
us to prove the symmetry of this operator for ml > 1

2 . As before, we can
do a unitary transform and obtain a result similar as lemma 3.2. We then
obtain the asymptotic behavior of ϕ. This allows us to conclude in the case
ml > 1

2 . If ml < 1
2 , we introduce the MIT boundary condition and a suitable

partition of unity in order to separate the behavior at 0 from the one at −∞.
We then obtain:

Proposition 4.4. The operator H+ equipped with D (H+) is self-adjoint.

4.2. Compactness of f (x) (H− − z)−1

Lemma 4.5. Let f ∈C0 (]−∞, 0]) such that lim
x→−∞

f (x)=0 and z∈ρ (H−).

Then f (.) (H− − z)−1 is compact.

Proof. Let ϕ ∈ D (Hc) and g = (Hc − z)ϕ be defined on ]−∞, 0[. Denote
by ϕi and gi, i = 1, . . . , 4, their components. We will extend these functions
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to R in the following way:

ϕ̃1(x) =

{
ϕ1(x) if x 6 0,

−ϕ3(−x) if x > 0
; ϕ̃2(x) =

{
ϕ2(x) if x 6 0,

ϕ4(−x) if x > 0

ϕ̃3(x) =

{
ϕ3(x) if x 6 0,

−ϕ1(−x) if x > 0
; ϕ̃4(x) =

{
ϕ4(x) if x 6 0,

ϕ2(−x) if x > 0.

The components are thus in H1 (R). We also extend g into g̃ ∈
[
L2 (R)

]4
in

the same way. Here, we have put H̃c for the operator with the same formula
as Hc but acting on functions defined on R. Some calculation gives that

(Hc − z)ϕ = g if and only if
(
H̃c − z

)
ϕ̃ = g̃ for all z in the resolvent set

of Hc.
Let f ∈ C0 (]−∞, 0]) such that lim

x→−∞
f (x) = 0. We consider a sequence

(gn)n∈N ∈
(
L2
(
R∗−
))N

such that gn ⇀ 0 and we want to prove that

f(x) (Hc − z)−1 gn

goes to 0 strongly in L2. We introduce un = (Hc − z)−1 gn and extend gn
and un into g̃n and ũn as before. Consequently, g̃n ⇀ 0 in L2 (R) and ũn =(
H̃c − z

)−1
g̃n. We mention here a consequence of theorem IX.29 in [72]

which say that if f, g ∈ L∞ (Rn) and:

lim
|x|→∞

f (x) = 0, lim
|ξ|→∞

g (ξ) = 0,

then the operator f (x) g (−i∇) is compact. Since x→ (x− z)−1 ∈ L∞ and
|x− z|−1 →

|x|→∞
0, we deduce that:

f̃(x)
(
H̃c − z

)−1
g̃n

L2(R)→
n→∞

0,

where f̃ is the extension of f by symmetry on R+. Therefore, we have:

1]−∞,0[(x)f̃(x)
(
H̃c − z

)−1
g̃n = 1]−∞,0[(x)f(x)ũn

= f(x)un = f(x) (Hc − z)−1 gn.

So f(x) (Hc − z)−1 gn
L2(R∗−)
→

n→∞
0 and the operator f(x) (Hc − z)−1 is compact.
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Since V− goes to 0 at −∞ and 0 and using the identity:

f(x) (H− − z)−1 = −f(x) (H− − z)−1 V−(x) (Hc − z)−1 + f(x) (Hc − z)−1 ,

we deduce that (H− − z)−1 − (Hc − z)−1 is compact and consequently that
f(x) (H− − z)−1 is also compact. �

4.3. Compactness of (H+ − z)−1

Lemma 4.6. The operator (H+ − z)−1 is compact.

Proof. We follow the proof of the compactness result in [8]. Let us show that
the set:

K = {ϕ ∈ D(H+); ‖ϕ‖+ ‖H+ϕ‖ 6 1}(4.6)

is compact. We consider a sequence (ϕn)n∈N ∈ KN. Using the Banach-
Alaoglu theorem and distributions, we obtain the existence of a sub-sequence
(ϕν) such that:

ϕν ⇀
ν→∞

ϕ; fν =: H+ϕν ⇀
ν→∞

H+ϕ := f.

Let:

W (x) =

{
mB(x) = −ml

x +O (x) , for x > b.

x2, for x 6 a,

so that W is smooth on ]a, b[. The equation H+ϕν = fν can be written:

(
Γ1Dx − γ0W (x)

)
ϕν = −γ0γ2

(
s+

1

2

)
A (x)ϕν + fν .

We denote gν the right hand side of this equation. Then gν is in L2(]−∞, 0[)
and gν ⇀ g where g is defined by replacing ϕν , fν by ϕ, f respectively. We
thus obtain four differential equations:

∂x
(
ϕ1
ν + ϕ3

ν

)
+W (x)

(
ϕ1
ν + ϕ3

ν

)
= i
(
g1
ν − g3

ν

)
∂x
(
ϕ2
ν − ϕ4

ν

)
+W (x)

(
ϕ2
ν − ϕ4

ν

)
= −i

(
g2
ν + g4

ν

)
∂x
(
ϕ1
ν − ϕ3

ν

)
−W (x)

(
ϕ1
ν − ϕ3

ν

)
= i
(
g1
ν + g3

ν

)
∂x
(
ϕ2
ν + ϕ4

ν

)
−W (x)

(
ϕ2
ν + ϕ4

ν

)
= i
(
g4
ν − g2

ν

)(4.7)
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For some constants λjν , j = 1, . . . , 4, the solutions are:(
ϕ1
ν + ϕ3

ν

)
(x) = λ1

νe
−
∫ x
−1
W (u)du(4.8)

+ i

∫ x

−∞

(
g1
ν − g3

ν

)
e
∫ t
−1
W (u)du−

∫ x
−1
W (u)dudt,(

ϕ2
ν − ϕ4

ν

)
(x) = λ2

νe
−
∫ x
−1
W (u)du(4.9)

− i
∫ x

−∞

(
g2
ν + g4

ν

)
e
∫ t
−1
W (u)du−

∫ x
−1
W (u)dudt,(

ϕ1
ν − ϕ3

ν

)
(x) = λ3

νe
∫ x
−1
W (u)du(4.10)

+ i

∫ x

0

(
g1
ν + g3

ν

)
e−

∫ t
−1
W (u)du+

∫ x
−1
W (u)dudt,(

ϕ2
ν + ϕ4

ν

)
(x) = λ4

νe
∫ x
−1
W (u)du(4.11)

+ i

∫ x

0

(
g4
ν − g2

ν

)
e−

∫ t
−1
W (u)du+

∫ x
−1
W (u)dudt.

Proof of the pointwise convergence of the integral terms.

We have:∫ x

−1
W (u)du =

−ml ln(−x) +

∫ x

−1
O(u)du, for x > b.

x3

3 −
a3

3 +
∫ a
−1W (u)du, for x 6 a.

(4.12)

where

∫ x

−1
O(u)du is bounded on [b; 0[. We obtain:

e
∫ x
−1
W (u)du =

{
(−x)−ml e

∫ x
−1
O(u)du, for x > b.

C1e
x3

3 , for x 6 a.

e−
∫ x
−1
W (u)du =

{
(−x)ml e−

∫ x
−1
O(u)du, for x > b.

C2e
− x3

3 , for x 6 a.

where C1, C2 are positive constants. We thus see that e
∫ t
−1
W (u)du is square

integrable on ]−∞, x[ and that e−
∫ t
−1
W (u)du is square integrable on ]x, 0[.

Consequently, since gν is weakly convergent, we deduce that:∫ x

−∞

(
g1
ν − g3

ν

)
e
∫ t
−1
W (u)du−

∫ x
−1
W (u)dudt

→
ν→∞

∫ x

−∞

(
g1 − g3

)
e
∫ t
−1
W (u)du−

∫ x
−1
W (u)dudt
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when ν →∞. The same is true for the integral with g1
ν + g3

ν .

Majorations of integral terms by L2 functions independent of ν.

In the following, we will only treat
(
ϕ1
ν + ϕ3

ν

)
and

(
ϕ1
ν − ϕ3

ν

)
. The other

functions can be treated in the same way. When a 6 x 6 b, the functions
are smooth hence integrable. We study the other cases:

a) First, using the Cauchy-Schwarz inequality and that g1
ν + g3

ν is bounded
in L2, we obtain:∣∣∣∣∫ x

0

(
g1
ν + g3

ν

)
e
∫ x
t
W (u)dudt

∣∣∣∣2 . ∣∣∣∣∫ x

0
e−2

∫ t
−1
W (u)du+2

∫ x
−1
W (u)dudt

∣∣∣∣(4.13)

Therefore, we prove that the right hand side is integrable:
i) If x > b, using the expression of W , the right hand side is integrable

since:∣∣∣∣∫ 0

x
e−2

∫ t
−1
W (u)du+2

∫ x
−1
W (u)dudt

∣∣∣∣ 6 e2C

∣∣∣∣∣
∫ 0

x

(
−1

x

)2ml

(−t)2ml dt

∣∣∣∣∣
= e2C −x

1 + 2ml
.

ii) If x 6 a, we have:∣∣∣∣∫ 0

x
e2
∫ x
t
W (u)dudt

∣∣∣∣ = (C1)2e2 x
3

3

(∫ a

x
(C2)2e−2 t

3

3 dt+

∫ 0

a
e−2

∫ t
−1
W (u)dudt

)
.

The function (C1)2e2 x
3

3

(∫ 0

a
e−2

∫ t
−1
W (u)dudt

)
is integrable on

]−∞, a] and:∫ a

x
e−2 t

3

3 dt 6 − 1

2a2
e−2 a

3

3 +
1

2x2
e−2 x

3

3 − 1

a3

∫ a

x
e−2 t

3

3 dt,

by integration by parts. Choosing a such that 1 + 1
a3 > 0, we deduce

that e2 x
3

3

∫ a
x e
−2 t

3

3 dt is integrable on ]−∞, a] and goes to 0 at −∞.

b) Secondly, as above, we study the integrability of∫ x

−∞
e2
∫ t
−1
W (u)du−2

∫ x
−1
W (u)dudt.
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i) If x > b, using the expression of W and separating the integral from
−∞ to b and from b to x, we have to study

(−x)2ml e−2
∫ x
−1
T (u)du

∫ b

−∞
e2
∫ t
−1
W (u)dudt

and

(−x)2ml e−2
∫ x
−1
T (u)du

∫ x

b

(
−1

t

)2ml

e2
∫ t
−1
T (u)dudt.

The first term is clearly integrable and since e2
∫ t
−1
T (u)du is bounded

on [b, 0[, we can perform the second integral to see that it is also
integrable.

ii) If x 6 a, since

∫ x

−∞

1

t3
e

2t3

3 dt 6 0, by integration by part, we have:

∫ x

−∞
e2
∫ t
−1
W (u)du−2

∫ x
−1
W (u)dudt 6 C2

2C
2
1

1

2x2
.

This ends the proof of the integrability.

Convergence in L2 of integral terms.

We can use the dominate convergence theorem to obtain:∫ x

0

(
g1
ν + g3

ν

)
e−

∫ t
−1
W (u)du+

∫ x
−1
W (u)dudt(4.14)

L2

→
ν→∞

∫ x

0

(
g1 + g3

)
e−

∫ t
−1
W (u)du+

∫ x
−1
W (u)dudt.

and the same for the integral with g1
ν − g3

ν .

Study of the sequences λiν , i = 1, . . . , 4.

a) Let us study the convergence of λ3
ν in (4.10) (we can do the same

for λ4
ν).

- Ifml < 1
2 , using that e

∫ x
−1
W (u)du ∈ L2, ϕν ⇀ ϕ and (4.14), the term:(

λ3
ν − λ3

) ∥∥∥e∫ x−1
W (u)du

∥∥∥2

L2

=

〈((
ϕ1
ν − ϕ3

ν

)
−
∫ x

0

(
g1
ν + g3

ν

)
e−

∫ t
−1
W (u)du+

∫ x
−1
W (u)dudt

)
, e
∫ x
−1
W (u)du

〉
L2

−
〈((

ϕ1 − ϕ3
)
−
∫ x

0

(
g1 + g3

)
e−

∫ t
−1
W (u)du+

∫ x
−1
W (u)dudt

)
, e
∫ x
−1
W (u)du

〉
L2
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goes to 0 as ν → −∞. We deduce that λ3
ν →ν→∞ λ3.

- If ml > 1
2 , e

∫ x
−1
W (u)du /∈ L2 and λ3

ν = 0.

b) We then study the convergence of λ1
ν and λ2

ν .

Since ϕ1
ν + ϕ3

ν ∈ L2, e−
∫ x
−1
W (u)du /∈ L2 and the other terms are in

L2, we deduce that λ1
ν = λ2

ν = 0 for all ν ∈ N.

Convergence in L2 of the sequences ϕ1
ν − ϕ3

ν , ϕ2
ν + ϕ4

ν , ϕ1
ν + ϕ3

ν , ϕ2
ν − ϕ4

ν .

Using the dominate convergence theorem, we deduce that ϕ1
ν − ϕ3

ν
L2

→
ν→∞

ϕ1 − ϕ3. The same is true for the other functions. Thus, the sequence (ϕn)n∈N
admits a converging sub-sequence which proves that K is compact. Conse-
quently, (H+ + i)−1 is compact and so is (H+ − z)−1 for all z ∈ ρ(H+) using
a resolvent identity. �

4.4. Proof of Proposition 4.1

Proof. Let j−, j+ ∈ C∞ such that j2
− + j2

+ = 1, supp(j−) ⊂]−∞, c[ and
supp(j+) ⊂]b, 0[. We define:

Q(z) = j−(x) (H− − z)−1 j−(x) + j+(x) (H+ − z)−1 j+(x).

Since Hs,n
m − z = H− − z on ]−∞, c[ and Hs,n

m − z = H+ − z on ]b, 0[, we
have:

(Hs,n
m − z)Q(z) = 1− w(z)

where:

w(z) = −
(

[(Hs,n
m − z) , j−(x)] (H− − z)−1 j−(x)

+ [(Hs,n
m − z) , j+(x)] (H+ − z)−1 j+(x)

)
.

Since [(Hs,n
m − z) , j−(x)] = iγ0γ1j′−(x) and [(Hs,n

m − z) , j+(x)] = iγ0γ1j′+(x)
and j′−, j

′
+ have compact support, we deduce that w(z) is compact for all

z ∈ ρ (H) using the last two sections. Moreover, w : ρ (H)→ L
(
L2
)

is ana-
lytic.

Since j′−, j
′
+, j−, j+ are bounded, for some constant C > 0, we have:

‖w(z)ϕ‖2 6
C

|=z|
‖ϕ‖2 ,

for all ϕ ∈ L2. We then choose z such that the imaginary part satisfies C
|=z| <

1. Therefore, 1− w(z) is invertible. Using the analytic Fredholm theorem,
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we have that 1− w(z) is invertible for all z ∈ ρ (H) r S where S is a discrete
set without accumulation points.

For these z, we deduce that:

(Hs,n
m − z)−1 = Q(z) (1− w(z))−1 .(4.15)

Let f be a continuous function going to 0 at −∞ and admitting a finite limit
at 0. Then f(x)Q(z) is compact. Thus for z ∈ ρ (H) r S, f(x) (Hs,n

m − z)−1

is compact. Using the analyticity of z → (Hs,n
m − z)−1

, we obtain the com-
pactness for all z ∈ ρ (Hs,n

m ). �

5. Mourre estimates

5.1. Mourre theory

We recall here some facts about the Mourre theory. Let A be a self-adjoint
operator. We say that the pair (A, H) satisfies the Mourre conditions if

D(A) ∩D(H) is dense in D(H)(5.1)

eitA preserves D(H) for t¿0, sup
|t|61

∥∥HeitAu∥∥ <∞, ∀u ∈ D(H)(5.2)

[iH,A] defined as quadratic form on D(H) ∩D(A)

extend to a bounded operator from D(H) into H.(5.3)

The Mourre conditions are stronger than C1(A) regularity. We recall the
definition of Ck(A):

Definition 5.1. We say that H ∈ Ck(A) if there exists z ∈ C \ σ(H) such
that

R 3 t 7→ eitA (z −H)−1 e−itA(5.4)

is Ck for the strong topology of L(H).

We then have the following lemma (see [1, Proposition 5.1.2, Theo-
rem 6.3.4]):

Lemma 5.2. Suppose that (H,A) satisfies the Mourre conditions. Then
H ∈ C1(A).

We also recall a lemma concerning the C2(A) regularity:
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Lemma 5.3. Suppose that H ∈ C1(A) and that the commutator [iA, H] ex-
tends to a bounded operator from D(H) into H. We denote [iA, H]0 this ex-
tension. If, in addition, the commutator [iA, [iA, H]0] defined as a quadratic
form on D(A) ∩D(H) extends to a bounded operator from D(H) into D(H)∗,
then H ∈ C2(A).

5.2. Mourre estimate

We will use A = Γx as conjugate operator where

Γ = −γ0γ1 = diag (1,−1,−1, 1) .

The operator A is self-adjoint when equipped with domain

D(A) = {ϕ ∈ Hs,n; Aϕ ∈ Hs,n}.(5.5)

Lemma 5.4. For all m > 0, the pair (Hs,n
m ,A) satisfies the Mourre condi-

tions. Consequently, Hs,n
m ∈ C1(A)

Proof. Let us check (5.1):
Case 2ml < 1:
Let χ be a C∞ function such that χ = 1 on [−1, 0], suppχ ⊂]− 2, 0]. We

set χk(x) = χ
(
x
k

)
for all k ∈ Nr {0}. This implies that suppχk(x) = 1 on

]− k, 0]. We have χ′k(x) = 1
kχ
′ (x
k

)
so that it is bounded. Using these facts,

we see that χkϕ ∈ D(A) ∩D (Hs,n
m ) if ϕ ∈ D (Hs,n

m ).
We now show that χkϕ →

k→∞
ϕ for the norm:

‖ϕ‖Hs,n
m

= ‖ϕ‖Hs,n + ‖Hs,n
m ϕ‖Hs,n .

By the dominate convergence theorem we have χkϕ
Hs,n−→
k→∞

ϕ. Moreover, |χ′k(x)|
6 1

kC, so:

‖Hs,n
m ϕ−Hs,n

m χkϕ‖ 6
C0

k
‖ϕ‖+ ‖Hs,n

m ϕ− χkHs,n
m ϕ‖ .

which gives the desired result when k goes to infinity for ϕ ∈ D (Hs,n
m ). We

deduce (5.1).
We denote D (Hs,n

m )c = {χkϕ; ϕ ∈ D (Hs,n
m ) , k ∈ Nr {0}}.

Case 2ml > 1:
In this case, C∞0 (]−∞, 0[) is a subset of D (A) ∩D (Hs,n

m ) and is dense
in D (Hs,n

m ).
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Let us check (5.2):
For all t > 0,

eitA = diag(eitx, e−itx, e−itx, eitx).

Let ϕ ∈ D (Hs,n
m ), then:

- eitAϕ ∈ Hs,n.

- Hs,n
m eitAϕ = eitAHs,n

m ϕ+ teitAϕ. So

Hs,n
m eitAϕ ∈ Hs,n and sup

|t|61

∥∥Hs,n
m eitAϕ

∥∥ <∞.
We need to check the boundary condition in the case 2ml < 1. We have:

∥∥(γ1 + i
)
eitAϕ(x, .)

∥∥
W0 =

∥∥∥∥∥∥∥∥

ieitxϕ1 + ie−itxϕ3

ie−itxϕ2 − ieitxϕ4

ieitxϕ1 + ie−itxϕ3

−ie−itxϕ2 + ieitxϕ4


∥∥∥∥∥∥∥∥

[L2(S2)]4

.

Let’s consider:
∥∥ieitxϕ1+ie−itxϕ3

∥∥
L2(S2)

when x goes to 0. By Taylor expan-

sion, we must check that−x
(
‖ϕ1(x, .)‖L2(S2)+‖ϕ3(x, .)‖L2(S2)

)
is o
(

(−x)
1

2

)
.

Since ϕ ∈ D (Hs,n
m ), there exists functions ψ− ∈W

1

2

− , χ− ∈W
1

2

+ and a func-

tion φ ∈ C0
(
[0, π2 ]x;L2(S2;C4)

)
, such that ‖φsn(r∗, θ, ϕ)‖W0 = o

(√
(−x)

)
as x→ 0, satisfying:

ψs,n =
(
−x−ml

)
ψs−,n(θ, ϕ)

χs−,n(θ, ϕ)

−iψs−,n(θ, ϕ)

iχs−,n(θ, ϕ)

+ φsn(r∗, θ, ϕ).

We thus obtain:

−x ‖ϕ1(x, .)‖L2(S2) 6 Cs,n (−x)1−ml − x
(
o
(

(−x)
1

2

))
.

Since 1−ml> 1
2 when ml< 1

2 , we have that −2x ‖ϕ1(x, .)‖L2(S2) =o
(
(−x)

1

2

)
.

Since ϕ ∈ D (Hs,n
m ), this proves that the boundary condition is fulfilled and

then (5.2).
Let us check (5.3):
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First, we see that xA(x) and xB(x) are bounded functions on ]−∞, 0[.
Let u, v ∈ D (Hs,n

m )c in the case 2ml < 1 and u, v ∈ C∞0 (]−∞, 0[) in the
case 2ml > 1, we have:

[Hs,n
m , iA] (u, v)=

〈
u+2i

(
s+

1

2

)
xA(x)γ2γ1u+2imxB(x)γ1u, v

〉
.(5.6)

This shows that:

|[Hs,n
m , iA] (u, v)| 6 C1 ‖u‖Hs,n ‖v‖Hs,n

for some constant C1 and consequently, (5.3) is satisfied. �

We then have the following:

Proposition 5.5. Recall that A = Γx. Let I ⊂ R be a compact non-empty
interval. Then, for all m > 0, we have:

1I (Hs,n
m ) [Hs,n

m , iA]1I (Hs,n
m ) > 12

I (Hs,n
m ) + 1I (Hs,n

m )K1I (Hs,n
m )(5.7)

where 1I is the characteristic function of I and K is a compact operator.

Proof. We remark that xA(x) →
x→−∞,0

0, that xB(x) →
x→−∞

0 and that

xB(x) →
x→0
−l using the asymptotic behavior of A and B described in (2.24)

and (2.25). We obtain

[Hs,n
m , iA] > Id− (2s+ 1)xA(x)γ2γ1 − 2mxB(x)γ1.

Consider a compact non-empty interval I ⊂ R and Ĩ a compact interval

strictly containing I. Let ς ∈ C∞0
(
Ĩ
)

such that ς ≡ 1 on I. We have:

ς (Hs,n
m ) [Hs,n

m , iA] ς (Hs,n
m ) > ς2 (Hs,n

m ) +K.(5.8)

where K= ς (Hs,n
m )

(
−(2s+1)xA(x)γ2γ1−2mxB(x)γ1

)
ς (Hs,n

m ) is compact.
Indeed, by Proposition 4.1 and the use of Helffer-Sjöstrand formula, we see
that ς (Hs,n

m ) multiplied by a good function will be compact. The asymptotic
behavior of A and B gives that xA (x) and xB (x) are bounded near 0 and
goes to 0 at −∞. This gives the compacity of K. Multiplying both sides by
1I (Hs,n

m ), this gives the desired result since 1Iς = 1I . �

Using the absence of eigenvalues, we deduce the following corollary:
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Corollary 5.6. For all m > 0, all λ ∈ R and all 0 < ε < 1, there exists a
compact non-empty interval I ′ ⊂ R containing λ such that:

1I′ (H
s,n
m ) [Hs,n

m , iA]1I′ (H
s,n
m ) > (1− ε)12

I′ (H
s,n
m ) .(5.9)

Recall that 1I′ is the characteristic function of I ′.

Proof. We have the Mourre estimate with I such that λ ∈ I. Let I ′ ⊂ I such
that λ ∈ I ′. We can multiply both sides by 1I′ (H

s,n
m ) to obtain the same in-

equality with I replaced by I ′. Since λ is not an eigenvalue of Hs,n
m , 1I′ (H

s,n
m )

tends strongly to 0 when the size of I ′ decreases. Then 1I′ (H
s,n
m )K1I′ (H

s,n
m )

goes to 0 in the operator norm (K is compact). We can thus choose I ′ suf-
ficiently small such that the desired inequality holds. �

6. Propagation estimates

In this section, we first present abstract results about propagation estimates
and the minimal velocity estimate. Then, we apply this to prove that our
minimal and maximal velocity is 1. This will be useful in the proof of asymp-
totic completeness.

6.1. Abstract propagation estimates

We present the abstract theory of propagation estimates. Proofs can be
found in [21].

Consider a Hilbert space H and (H,D (H)) a self-adjoint operator on H.
Let Φ (t) be a C1 uniformly bounded function with values in L (H) defined
on R+. We define the Heisenberg derivative of Φ by:

DΦ (t) :=
d

dt
Φ (t) + i [H,Φ (t)] .

6.1.1. Basic principle.

Lemma 6.1. [21, Lemma B.4.1, B.4.2] Let Φ (t) be a C1 uniformly bounded
function with values in L (H) and defined on R+.

i) If there exists measurables functions with values in L (H) B (t) , Bi (t),
i = 1, . . . , n with

DΦ (t) > C0B
∗ (t)B (t)−

n∑
i=1

B∗i (t)Bi (t)
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such that for all i ∈ {1, . . . , n}∫ ∞
1

∥∥Bi (t) e−itHu
∥∥2
dt 6 C ‖u‖2 , ∀u ∈ H

then there exists a constant C1 > 0 such that∫ ∞
1

∥∥B (t) e−itHu
∥∥2
dt 6 C1 ‖u‖2 , ∀u ∈ H.

ii) Suppose that B2,i (t) and B1,i (t) are mesurable functions with value in
L (H) and that the function Φ satisfies

|〈ψ2,DΦ (t)ψ1〉| 6
n∑
i=1

‖B2,i (t)ψ2‖ ‖B1,i (t)ψ1‖ ,

for all ψ1, ψ2 ∈ H, with∫ ∞
1

∥∥B2,i (t) e−itHu
∥∥2
dt 6 C1 ‖u‖2 , ∀u ∈ H

and ∫ ∞
1

∥∥B1,i (t) e−itHu
∥∥2
dt 6 C1 ‖u‖2 , ∀u ∈ D,

where D is a dense subset of H. Then the limit

s− lim
t→∞

eitHΦ (t) e−itH

exists.

6.1.2. Abstract minimal velocity estimates.

Proposition 6.2. [41, Proposition A.1] Let H ∈ C1+ε (A) for ε > 0. Let
∆ be an interval such that

1∆ (H) [H, iA] 1∆ (H) > c01∆ (H) .

Then, for all g ∈ C∞0 (R), supp g ⊂ (−∞, c0) and for f ∈ C∞0 (∆), we have∫ ∞
1

∥∥∥∥g(At
)
f (H) e−itHu

∥∥∥∥2 dt

t
6 C ‖u‖2 , ∀u ∈ H,

s− lim
t→∞

g

(
A
t

)
f (H) e−itH = 0.
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6.2. Propagation estimates

We have seen that [Hs,n
m , iA] admits a bounded extension from D (A) ∩

D (Hs,n
m ) to D (Hs,n

m ). We denote this extension by [Hs,n
m , iA]0. We have:

[[Hs,n
m , iA]0 , iA] = 4

((
s+

1

2

)
x2A (x) γ2γ0 +mx2B (x) γ0

)
(6.1)

so [[Hs,n
m , iA]0 , iA] extends to a bounded operator to D (Hs,n

m ) with values
in Hs,n. Using lemma 5.3, we deduce that H ∈ C2 (A). Using the Mourre
estimate and a partition of unity argument, this gives:

Proposition 6.3. For all m > 0, g ∈ C∞0 (R), supp (g) ⊂ (−∞, 1− δ) and
f ∈ C∞0 (R), we have:

∫ ∞
1

∥∥∥∥g(At
)
f (Hs,n

m ) e−itH
s,n
m u

∥∥∥∥2 dt

t
6 C ‖u‖2 , ∀u ∈ Hs,n,(6.2)

s− lim
t→∞

g

(
A
t

)
e−itH

s,n
m = 0.(6.3)

Proof of Proposition 6.3. Using the corollary 5.6 where we denote I our in-
terval, we obtain∫ ∞

1

∥∥∥∥g(At
)
f (Hs,n

m ) e−itH
s,n
m u

∥∥∥∥2 dt

t
6 C ‖u‖2 , ∀u ∈ Hs,n,

s− lim
t→∞

g

(
A
t

)
f (Hs,n

m ) e−itH
s,n
m = 0,

for f ∈ C∞0 (I) by the abstract velocity estimate. For f ∈ C∞0 (R), we can
cover supp (f) by a finite number of intervals I1, . . . , In where a Mourre
estimate holds. Then, we consider a partition of unity subordinate to this
cover η1, . . . , ηn and we note fi = ηif for all i = 1, . . . , n. Then:∫ ∞

1

∥∥∥∥g(At
)
f (Hs,n

m ) e−itH
s,n
m u

∥∥∥∥2 dt

t

6
n∑
i=1

∫ ∞
1

∥∥∥∥g(At
)
fi (Hs,n

m ) e−itH
s,n
m u

∥∥∥∥2 dt

t

6 Cn ‖u‖2 , ∀u ∈ Hs,n,
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and:

s− lim
t→∞

g

(
A
t

)
f (Hs,n

m ) e−itH
s,n
m =

n∑
i=1

s− lim
t→∞

g

(
A
t

)
fi (Hs,n

m ) e−itH
s,n
m = 0.

Thanks to a density argument, we obtain the desired limit. �

Proposition 6.3 allows us to obtain:

Lemma 6.4. Let J− ∈ C∞ such that supp (J−) ⊂]−∞, 1− ε[ and J− (x) =
1 for all x ∈]−∞, 1− 2ε[ and let χ ∈ C∞0 . Then, for all m > 0, we have:∫ ∞

1

∥∥∥∥J−(At
)
χ (Hs,n

m ) e−itH
s,n
m u

∥∥∥∥2 dt

t
6 C ‖u‖2 , ∀u ∈ Hs,n(6.4)

lim
t→∞

J−

(
A
t

)
e−itH

s,n
m u = 0, ∀u ∈ Hs,n.(6.5)

Proof. 1) Let θ1, θ2 ∈ C∞ such that supp (θ1) ⊂]−∞,−1− ε
2 [, supp (θ2)

⊂]− 1− ε, 1− ε[ and θ1 + θ2 = 1. Then, using the triangular inequal-
ity and the minimal velocity estimate, we only need to prove the inte-
gral estimate for θ1J−.

So suppose that K ∈ C∞ such that supp (K) ⊂]−∞,−1− ε
2 [ and

K (x) = 1 for all x ∈]−∞,−1− ε[. We define F (s) =
∫∞
s K2 (t) dt

and

Φ (t) = χ (Hs,n
m )F

(
A
t

)
χ (Hs,n

m )

such that Φ is C1 uniformly bounded. We have:

DΦ (t) =
1

t
χ (Hs,n

m )
A
t
K2

(
A
t

)
χ (Hs,n

m )

+ iχ (Hs,n
m )

[
Hs,n
m , F

(
A
t

)]
χ (Hs,n

m ) ,

where[
Hs,n
m , F

(
A
t

)]
=
i

t
K2

(
A
t

)
+

(
s+

1

2

)
A (x)

(
F
(
−x
t

)
− F

(x
t

))
γ1γ2

−mB (x)
(
F
(
−x
t

)
− F

(x
t

))
γ1,

with∣∣∣∣F (−xt
)
− F

(x
t

)∣∣∣∣ 6 −2x

t
sup

y∈[ xt ,−
x

t ]
K2 (y) 6 −2x

t
1{x6(−1− ε

2)t},
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where 1 is the characteristic function and supy∈[ xt ,−
x

t ]
K2 (y) is thought

as a function depending on the variables x and t. We know that for
x < 0 and |x| sufficiently large, the functions A and B are exponen-
tially decaying. If we fix T sufficiently large, then, since ex 6 1

−x3 for
x sufficiently small, for all t > T , we have:∣∣∣A (x)

(
F
(
−x
t

)
− F

(x
t

))∣∣∣ 6 C

t2
ζ{x6(−1− ε

2)T}.

We can do the same thing with B. We obtain:

−DΦ (t) =
1

t
χ (Hs,n

m )

(
1− A

t

)
K2

(
A
t

)
χ (Hs,n

m ) +O
(
t−2
)

>
2 + ε

2

t
χ (Hs,n

m )K2

(
A
t

)
χ (Hs,n

m ) +O
(
t−2
)
,

since At 6 −1− ε
2 on the support of K2. By lemma 6.1.1, this shows

that: ∫ ∞
1

∥∥∥∥K (At
)
χ (Hs,n

m ) e−itH
s,n
m u

∥∥∥∥2 dt

t
6 C ‖u‖2(6.6)

for all u ∈ Hs,n. This proves the first statement of the lemma.

2) We next set:

Φ (t) = χ (Hs,n
m ) J2

−

(
A
t

)
χ (Hs,n

m ) .

So, we have:

DΦ (t) 6
4ε

t
χ (Hs,n

m )
(
J
′

−J−

)(A
t

)
χ (Hs,n

m ) +O
(
t−2
)

where supp
(
J ′−J−

)
⊂]1− 2ε, 1− ε[ so it is integrable by the minimal

velocity estimate. Using lemma 6.1.1 and the integrability in 6.6, this
gives

lim
t→∞

eitH
s,n
m χ (Hs,n

m ) J2
−

(
A
t

)
χ (Hs,n

m ) e−itH
s,n
m u = 0, ∀u ∈ Hs,n.

Using the last lemma, we obtain the desired limit by a density argu-
ment. �
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Proposition 6.5. Let g ∈ C∞ such that supp (g) ⊂]1 + ε,∞[ with ε > 0
and such that g (x) = 1 for all x ∈]1 + 2ε,∞[. Let ζ ∈ C∞0 (R). Then, for all
m > 0, we have:

∫ ∞
1

∥∥∥∥g(At
)
e−itH

s,n
m ζ (Hs,n

m )u

∥∥∥∥2 dt

t
6 C ‖u‖2 , ∀u ∈ Hs,n(6.7)

s− lim
t→∞

g

(
A

t

)
e−itH

s,n
m = 0.(6.8)

Proof of the Proposition 6.5. Let J ∈ C∞ (R) such that

supp (J) ⊂ (1 + ε,+∞)

with ε > 0 and J (x) = 1 for all x ∈]1 + 2ε,+∞[. Let ζ ∈ C∞0 (R). We define

F (s) =

∫ s

−∞
J2 (u) du

and

Φ (t) = ζ (Hs,n
m )F

(
A
t

)
ζ (Hs,n

m )

so that Φ is C1 uniformly bounded. As in the last proof, we calculate the
Heisenberg derivative of Φ and thanks to the support of J , we obtain:

−DΦ (t) >
ε

t
ζ (Hs,n

m ) J2

(
A
t

)
ζ (Hs,n

m )(6.9)

+ ζ (Hs,n
m )

(
i

(
s+

1

2

)
A (x)

(
F

(
−x
t

)
− F

(x
t

))
γ2γ1

+ imB (x)

(
F

(
−x
t

)
− F

(x
t

))
γ1

)
ζ (Hs,n

m ) ,

and we have:∣∣∣∣F (−xt
)
− F

(x
t

)∣∣∣∣ 6 −2x

t
sup

y∈[ xt ,
−x
t ]
J2 (y)1{1+ε6−x

t }.
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Using the exponential decay of A and B, we obtain:

ζ (Hs,n
m )

(
i

(
s+

1

2

)
A (x)

(
F

(
−x
t

)
− F

(x
t

))
γ2γ1

(6.10)

+ imB (x)

(
F

(
−x
t

)
− F

(x
t

))
γ1

)
ζ (Hs,n

m ) = O
(
e−

κ

2
t
)

for t sufficiently large. We deduce that:

∫ ∞
1

∥∥∥∥J (At
)
e−itH

s,n
m ζ (Hs,n

m )u

∥∥∥∥2 dt

t
6 C ‖u‖2 , ∀u ∈ Hs,n.(6.11)

Next, we use:

Φ (t) = ζ (Hs,n
m ) J2

(
A
t

)
ζ (Hs,n

m ) ,

and obtain:

DΦ (t) =
2

t
ζ (Hs,n

m )
−A
t
J

(
A
t

)
J ′
(
A
t

)
ζ (Hs,n

m )

+
2

t
ζ (Hs,n

m ) J

(
A
t

)
J ′
(
A
t

)
ζ (Hs,n

m )

+ ζ (Hs,n
m )

(
i

(
s+

1

2

)
A (x)

(
J2

(
−x
t

)
− J2

(x
t

))
γ2γ1

+imB (x)

(
J2

(
−x
t

)
− J2

(x
t

))
γ1

)
ζ (Hs,n

m ) .

The first two terms are integrable due to the support of J and (6.11). The
last two are also integrable using the support of J . Consequently:

s− lim
t→∞

J

(
A
t

)
e−itH

s,n
m ζ (Hs,n

m )

exists and is zero by (6.11). The proposition follows by density. �
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7. Asymptotic completeness

7.1. Comparison operator

Our comparison operator will be Hc defined by:

Hc = iγ0γ1∂x(7.1)

where γ0γ1 = diag (−1, 1, 1,−1) and with domain:

D (Hc) = {ϕ ∈ Hs,n;Hcϕ ∈ Hs,n, ϕ1 (0) = −ϕ3 (0) , ϕ2 (0) = ϕ4 (0)}(7.2)

By Proposition 4.2, this is a self-adjoint operator on its domain.

7.2. Asymptotic completeness

Recall that A = Γx where Γ = −γ0γ1. We have:

Theorem 7.1 (Asymptotic completeness for fixed harmonics). For
all m > 0 and all ϕ ∈ Hs,n, the limits

lim
t→∞

eitHce−itH
s,n
m ϕ(7.3)

lim
t→∞

eitH
s,n
m e−itHcϕ(7.4)

exist. If we denote them by:

Ωs,nϕ = lim
t→∞

eitHce−itH
s,n
m ϕ(7.5)

Ws,nϕ = lim
t→∞

eitH
s,n
m e−itHcϕ(7.6)

for all ϕ ∈ Hs,n, we have Ω∗s,n = Ws,n.

Proof. Let J−, J0, J+ ∈ C∞ such that J− + J0 + J+ = 1, the supports of
J−, J+ are as in 6.5 and 6.4, and J0 = 1 on ]1− ε, 1 + ε[, supp (J0) ⊂]1−
2ε, 1 + 2ε[ with ε > 0. Using Proposition 6.5 and lemma 6.4, it suffices to
prove that, for all ϕ ∈ Hs,n, the limit:

lim
t→∞

eitHcJ0

(
A
t

)
e−itH

s,n
m ϕ
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exists. We remark that J0

(
x
t

)
6= 0 if and only if x > (1− 2ε) t > 0. Since

x < 0, J0

(
x
t

)
= 0, for all t > 0 and x < 0. We thus have:

J0

(
A
t

)
= J0

(
−x
t

)
M0

where M0 = diag (0, 1, 1, 0). We then define:

Φ (t) = χ (Hc) J0

(
A
t

)
χ (Hs,n

m ) ,

and, denoting V (x) =
(
s+ 1

2

)
A (x) γ1γ2 −mB (x) γ0, we have:

DΦ (t) =
d

dt
Φ (t) + i (HcΦ (t)− Φ (t)Hs,n

m )

=
2

t
χ (Hc)

(x
t

+ 1
) (
J ′0J0

)(−x
t

)
M0χ (Hs,n

m )

− iχ (Hc) J
2
0

(
−x
t

)
M0V (x)χ (Hs,n

m ) .

On the support of J ′0J0, we have x
t + 1 6 2ε. Moreover, J0

(−x
t

)
6= 0 if and

only if − (1 + 2ε) t 6 x 6 − (1− 2ε) t. Since A,B are exponentially decreas-
ing at −∞, we obtain:

DΦ (t) 6
4ε

t
χ (Hc)

(
J ′0J0

)(A
t

)
χ (Hs,n

m ) +O
(
t−2
)
.

Using the support of J ′0J0, minimal and maximal velocity estimates, the
right hand side is integrable. Hence the limit exists. We can show that the
second limit exists in the same way. Finally, for all t > 0 and ϕ,ψ ∈ Hs,n,
we have

〈
eitHce−itH

s,n
m ϕ,ψ

〉
=
〈
ϕ, eitH

s,n
m e−itHcψ

〉
which proves the last state-

ment. �

Therefore, we obtain:

Theorem 7.2 (Asymptotic completeness). For all m > 0 and all ϕ ∈
H, the limits:

lim
t→∞

eitHce−itHmϕ(7.7)

lim
t→∞

eitHme−itHcϕ(7.8)

exist. If we denote these limits by Ωϕ and Wϕ respectively, we have Ω∗ = W .
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Proof. We can decompose ϕ =
∑

(s,n)∈I
ϕs,n where

ϕs,n ∈ Hs,n and
∑

(s,n)∈I

‖ϕs,n‖2Hs,n <∞.

We have:

eitHce−itHmϕ =
∑

(s,n)∈I

eitHce−itH
s,n
m ϕs,n.

Since limt→∞ e
itHce−itH

s,n
m ϕs,n = Ωs,nϕs,n exists for all (s, n) ∈ I and

eitHce−itH
s,n
m is unitary, we deduce, using the dominate convergence theo-

rem, that the limit in the theorem exists. We can do the same for the other
limit. The last statement follows as in the last proof. �

8. Asymptotic velocity

8.1. Abstract theory

In this section, we follow the appendix B.2 in [21]. We consider a sequence
(Bn)n∈N of vectors of self-adjoint operators which commute in a Hilbert
space H. More precisely:

Bn =
(
B1
n, . . . , B

m
n

)
,

[
Bi
n, B

j
n

]
= 0, 0 6 i, j 6 m, n = 1, 2, . . . .

We have the following proposition:

Proposition 8.1. Suppose that, for all g ∈ C∞ (Rm), there exists

s− lim
n→∞

g (Bn) .(8.1)

Then there exists a unique vector of self-adjoint operators

B =
(
B1, . . . , Bm

)
(8.2)

such that (8.1) is equal to g (B). B is densely defined if, for some g ∈
C∞ (Rm) such that g (0) = 1, we have:

s− lim
R→∞

(
s− lim

t→∞
g
(
R−1Bn

))
= 1.(8.3)

We then define:
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Definition 8.2. Under the hypotheses of the preceding proposition, we will
write:

B = s− C∞ − lim
n→∞

Bn.(8.4)

8.2. Asymptotic velocity for Hc

Theorem 8.3 (Asymptotic velocity for Hc). Let J ∈ C∞ (R). Then the
limit:

s− lim
t→∞

eitHcJ

(
A
t

)
e−itHc(8.5)

exists and is equal to J (1)1 where 1 is the identity. Moreover, if J (0) = 1,
then

s− lim
R→∞

(
s− lim

t→∞
eitHcJ

(
A
Rt

)
e−itHc

)
= 1.(8.6)

If we define

s− C∞ − lim
t→∞

eitHc
A
t
e−itHc =: P+

c ,(8.7)

then the self-adjoint operator P+
c is densely defined and it commutes with

Hc. P
+
c is called the asymptotic velocity.

Proof. Recall that A = −γ0γ1x where −γ0γ1 = diag (1,−1,−1, 1). Thus, for
J ∈ C∞ (R), we have J

(A
t

)
= diag

(
J
(
x
t

)
, J
(
−x
t

)
, J
(
−x
t

)
, J
(
x
t

))
. More-

over, we have Hc = iγ0γ1∂x. Let ψ0 ∈ D (Hc), we wish to solve the equation

∂tψ (t, x) = iHcψ (t, x) ,

ψ (0, .) = ψ0 (.) =
(
ψ0

1 (.) , ψ0
2 (.) , ψ0

3 (.) , ψ0
4 (.)

)
where iHc = diag (1,−1,−1, 1) ∂x. We will prove that the formula:

ψ (t, x) =


ψ0

1 (x+ t)1R− (x+ t)− ψ0
3 (− (x+ t))1R+ (x+ t)

ψ0
2 (x− t)1R− (x− t) + ψ0

4 (−x+ t)1R+ (x− t)
ψ0

3 (x− t)1R− (x− t)− ψ0
1 (−x+ t)1R+ (x− t)

ψ0
4 (x+ t)1R− (x+ t) + ψ0

2 (− (x+ t))1R+ (x+ t)

 .

gives an explicit solution for this problem. Since x < 0 in our case,
1R+ (x− t) = 0 for all t > 0, but we need this term for the group property
of this solution.
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We first prove that our formula gives a solution of the desired equation.
Indeed, for all t > 0, we see that ψ3 (t, 0) = ψ0

3 (−t) and ψ1 (t, 0) = −ψ0
3 (−t)

since 1R− (t) = 0 for t > 0. Thus ψ3 (t, 0) = −ψ1 (t, 0). On the other hand,
we have ψ2 (t, 0) = ψ0

2 (−t) and ψ4 (t, 0) = ψ0
2 (−t) which gives us ψ2 (t, 0) =

ψ4 (t, 0). The boundary conditions are thus satisfied. It remains to prove
that it satisfies the equation. For the first component of our formula, using
the boundary consition and the derivation in the distributional sense, we
obtain:

∂tψ1 (t, x) = ψ0 ′

1 (x+ t)1R− (x+ t) + ψ0 ′

3 (− (x+ t))1R+ (x+ t) .

We also have:

∂xψ
0
1 (t, x) = ψ0 ′

1 (x+ t)1R− (x+ t) + ψ0 ′

3 (− (x+ t))1R+ (x+ t)

which gives ∂tψ1 (t, x) = ∂xψ1 (t, x). For the second and third components,
1R− (x− t) is constant so its derivative is 0 and we can check that ∂tψ2 (t, x)
= −∂xψ2 (t, x) and ∂tψ3 (t, x) = −∂xψ3 (t, x). For the fourth component, we
obtain:

∂tψ4 (t, x) = ψ0 ′

4 (x+ t)1R− (x+ t)− ψ0 ′

2 (− (x+ t)) .

We have the same for ∂xψ4 (t, x) so that ∂tψ4 (t, x) = ∂xψ4 (t, x). So ∂tψ (t, x)
= iHcψ (t, x) in the sense of distribution. Since ψ0 ∈ D (Hc), the derivatives
are, in fact, well defined in Hs,n and the equality is satisfied in Hs,n. We
thus have a solution.

We then turn our attention to the asymptotic velocity. We have:

eitHcJ

(
A
t

)
e−itHcψ0

=


J
(
x
t + 1

) (
ψ0

1 (x)1R− (x)1R− (x+ t) + ψ0
1 (x)1R+ (−x)1R+ (x+ t)

)
J
(
−x
t + 1

) (
ψ0

2 (x)1R− (x)1R− (x− t)
)

J
(
−x
t + 1

) (
ψ0

3 (x)1R− (x)1R− (x− t)
)

J
(
x
t + 1

) (
ψ0

4 (x)1R− (x)1R− (x+ t) + ψ0
4 (x)1R+ (−x)1R+ (x+ t)

)
 .

This last term converges pointwise to J (1)ψ0 (x) as t→∞. Since J , 1R− ,
1R+ , 1R− are bounded and ψ0 ∈ Hs,n, we can use the dominate convergence
theorem to conclude that:

lim
t→∞

eitHcJ

(
A
t

)
e−itHcψ0 = J (1)ψ0.
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If J ∈ C∞ (R) with J (0) = 1, then

lim
t→∞

eitHcJ

(
A
Rt

)
e−itHcψ0 = J

(
1

R

)
ψ0,

and the last term goes to J (0)ψ0 = ψ0. So

s− lim
R→∞

(
s− lim

t→∞
eitHcJ

(
A
Rt

)
e−itHc

)
= 1.

The last part of the theorem follows from the abstract theory. �

We can know study the spectrum of P+
c :

Proposition 8.4. σ (P+
c ) = {1}

Proof. Let J ∈ C∞ (R) such that J (1) = 0. We can approach J by a se-
quence (Jn)n∈N of C∞0 (R) functions which are zero in a neighbourhood of
1 in L∞. By density, we can suppose that J ∈ C∞0 (R) and J is zero in
a neighbourhood of 1. Using minimal and maximal velocity estimates, we
obtain:

J
(
P+
c

)
= s− lim

t→∞
eitHcJ

(
A
t

)
e−itHc = 0(8.8)

Now, if we have J (1) 6= 0, we can suppose that J ∈ C∞0 (R) is constant, non
zero, in a neighbourhood of 1. Then, for all ϕ ∈ H, we have:

J
(
P+
c

)
ϕ− J (1)ϕ = s− lim

t→∞
eitHc

(
J

(
A
t

)
− J (1)

)
e−itHcϕ.

Since J (x)− J (1) is zero in a neighbourhood of 1, we obtain J (P+
c )ϕ =

J (1)ϕ 6= 0. This ends the proof. �

The following consequence is immediate:

Corollary 8.5. P+
c = 1
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8.3. Asymptotic velocity for Hm

Theorem 8.6 (Asymptotic velocity for Hm). Let J ∈ C∞ (R). Then,
for all m > 0, the limit:

s− lim
t→∞

eitHmJ

(
A
t

)
e−itHm(8.9)

exists. Moreover, if J (0) = 1, then

s− lim
R→∞

(
s− lim

t→∞
eitHmJ

(
A
Rt

)
e−itHm

)
= 1(8.10)

If we define

s− C∞ − lim
t→∞

eitHm
A
t
e−itHm =: P+

m ,(8.11)

then the self-adjoint operator P+
m is densely defined and commutes with Hm.

The operator P+
m is called the asymptotic velocity.

Proof. We can write

eitHmJ

(
A
t

)
e−itHm = eitHmeitHceitHcJ

(
A
t

)
e−itHceitHce−itHm

Using uniform boundedness of our operators and introducing Ω and W at
the right place, this limit is equal to WJ (P+

c ) Ω where W,Ω are defined in
theorems 7.2. We can use the same argument for the second limit and the
existence of P+

m follows by the abstract theory and we have:

J
(
P+
m

)
= WJ

(
P+
c

)
Ω(8.12)

�

We deduce:

Proposition 8.7. For all m > 0, σ (P+
m) = {1}

Proof. Using the last proof, we have:

J
(
P+
m

)
= WJ

(
P+
c

)
Ω

for all J ∈ C∞ (R) where Ω,W are unitary and Ω−1 = W . �
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We then have the following consequence:

Corollary 8.8. For all m > 0, P+
m = 1.
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[73] A. Sà Barreto and M. Zworski, Distibution of resonances for spherical
black holes, Math. Res. Lett. 4 (1997), 103–122.

[74] S. Tang and M. Zworski, From quasimodes to resonances, Math. Res.
Lett. 5 (1998), 261–272.

[75] B. Thaller, The Dirac Equation, Springer, 1992.

[76] A. Vasy, Microlocal analysis of asymptotically hyperbolic and kerr-de
sitter spaces, Inv. Math. 194 (2013), 381–513.

[77] R. M. Wald, General Relativity, The University of Chicago Press, 1984.

[78] C. Warnick, On quasinormal modes of asymptotically anti-de sitter
black holes, arXiv:1306.5760, to appear in Comm. Math. Phys.

[79] S. Weinberg, Gravitation and Corsmology, John Wiley and Sons, 1972.
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