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Linear waves on constant radius limits of

cosmological black hole spacetimes

Dejan Gajic

In this paper we consider the Klein-Gordon equation on spheri-
cally symmetric background spacetimes with a constant area ra-
dius. The spacetimes under consideration are Nariai and Plebański-
Hacyan, and can be considered constant radius limits of Reissner-
Nordström-de Sitter spacetimes. We prove boundedness in the case
of a non-negative Klein Gordon mass and decay unless the mass
is zero. In the latter case we prove decay of solutions that are
supported on all harmonic modes with angular momentum l ≥ 1.
We show that the l = 0 modes of solutions to the massless Klein-
Gordon equation do not decay. They are subject to conservation
laws along degenerate Killing horizons. We apply the estimates
in Nariai to give decay of solutions to the massive Klein-Gordon
equation on an n-dimensional de Sitter background, using only the
vector field method and with no restrictions on the positive Klein-
Gordon mass.
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1. Introduction

Understanding the asymptotics and global causal structures present in so-
lutions (M, g) to the vacuum Einstein equations

(1.1) Ric(g)− 1

2
Rg + Λg = 0,

where Λ is the cosmological constant, is intimately connected to the question
of stability, in the context of the Cauchy problem. In the Λ = 0 setting, an
expectation, dubbed the Final State conjecture, is that every vacuum black
hole solution eventually settles down to a member of the Kerr family.

A necessary precondition for this expectation to hold up is the stability
of subextremal Kerr. This remains an open problem. See the lecture notes
[19] for more details.

The picture in the Λ > 0 case is more intricate. The spherically sym-
metric vacuum setting already provides a wider variety of solutions. Un-
like members of the Schwarzschild family, the analogous spherically sym-
metric Schwarzschild-de Sitter spacetimes (see Figure 1) have an extremal
limit, “extremal Schwarzschild-de Sitter”, composed of an (infinite) sequence
of collapsing and expanding spacetime regions. The metric in the collaps-
ing regions can be constructed as the limit of a sequence of subextremal
Schwarzschild-de Sitter interior regions, in which the difference between
the event horizon and the cosmological horizon radii goes to zero. Anal-
ogously, an expanding region of extremal Schwarzschild-de Sitter can be
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Linear waves on constant radius limits 921

Figure 1. The Penrose diagram of subextremal Schwarzschild-de Sitter,
where each point in the diagram corresponds to a sphere of radius r. The
radius of the event horizon is r+ and the radius of the cosmological horizon
is r++.

constructed as a limit of the expanding regions of a sequence of subex-
tremal Schwarzschild-de Sitter spacetimes, in which the difference between
the radii of the horizons goes to zero. There exists another, lesser-known
limit of subextremal Schwarzschild-de Sitter spacetimes, which we will call
the constant radius limit.

A Nariai spacetime is the maximal extension of a region that can be
viewed as the limit of the regions between the event and cosmological hori-
zons of a sequence of subextremal Schwarzschild-de Sitter spacetimes, in
which the difference between the horizon radii goes to zero. The Nariai ra-
dius is constant everywhere and equal to the radius of the event horizons
of the corresponding extremal limit. Nariai is a homogeneous, geodesically
complete spacetime that was first constructed in [45, 46]. Ginsparg-Perry
showed in [29] that Nariai arises as a constant radius limit.

If we add charge and consider the electrovacuum Einstein equations
with Λ > 0, we find additional constant radius limits of Reissner-Nordström-
de Sitter: charged Nariai, cosmological Bertotti-Robinson and Plebański-
Hacyan [47]. Similarly, in the electrovacuum Λ = 0 setting, the constant
radius limit of Reissner-Nordström is the (regular) Bertotti-Robinson space-
time, first described in [8, 50]. We refer to all these spacetimes as constant
radius spacetimes. See Section 1.2 for a definition and an overview of their
main properties.
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Motivated by the strong cosmic censorship conjecture in the cosmologi-
cal setting, Dafermos-Rendall considered the Einstein-Vlasov matter model
with Λ > 0, describing collisionless dust, in spherical, hyperbolic and planar
symmetry in [16]. They showed in particular that asymptotically extremal
Schwarzschild-de Sitter black hole regions and asymptotically Nariai regions
can form in the evolution of spherically symmetric Einstein-Vlasov data,
even for expanding data that is arbitrarily close to homogeneity. Moreover,
they proved that the formation of such regions constitutes the only possible
obstruction to the validity of the strong cosmic censorship conjecture for
this matter model. See Theorem 1.3 of [16].

The role of constant radius spacetimes in understanding the asymptotics
and global structures of solutions to (1.1) should therefore not be underes-
timated. A natural starting point is to address their stability properties.

The numerical study [9] investigated spacetimes arising from perturba-
tions of Nariai initial data, with topology S1 × S2, within the Gowdy symme-
try class. Note however that the restriction of Gowdy symmetry sidesteps
an important feature present in the dynamics under spherical symmetry,
namely the formation of asymptotically Schwarzschild-de Sitter black holes.

Results pertaining to the nonlinear stability of solutions to (1.1) were
first obtained by Friedrich in [28] for de Sitter, with the use of conformal
methods. The first full nonlinear stability result in the Λ = 0 case followed
soon after in the monumental proof of global stability of the Minkowski
spacetime by Christodoulou-Klainerman in [15]. Their proof relies on quan-
titative estimates for connection and curvature quantities and motivates the
study of quantitative decay of solutions to the linear wave equation

(1.2) �gψ = 0,

in a sufficiently robust setting. Indeed, (1.2) on a fixed background should be
viewed as a “poor man’s linearisation” of the Einstein equations. It is in this
spirit that we initiate a study of (1.2), and more generally the Klein-Gordon
equation,

(1.3) (�g − µ2)ψ = 0,

with µ ∈ R, on fixed constant radius spacetime backgrounds.
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Linear waves on constant radius limits 923

1.1. Previous results on the wave equation in
black hole spacetimes

The study of (1.2) on black hole backgrounds has been a field of active
research for many years.

The first mode stability results on Schwarzschild and Kerr backgrounds
were obtained in [49, 56, 57]. Boundedness of the full solution to (1.2) was
obtained by Kay-Wald [36] and in a more robust and complete setting by
Dafermos-Rodnianski in [23], who introduced the celebrated red-shift vector
field. More recently, decay properties have been proved in Schwarzschild and
Kerr, see [1, 11, 18, 19, 22, 24, 41, 42, 54]. The results in Schwarzschild can
be extended to subextremal Reissner-Norström, see [19] and [10].

Of particular interest is the case of an extremal black hole background.
A mathematical analysis of (1.2) on extremal black hole backgrounds was
first performed by Aretakis in a series of papers [2, 4–6]. Aretakis estab-
lished quantitative decay rates in time for ψ and all its derivatives outside
the event horizon, and moreover for ψ and its tangential derivatives along
the event horizon. Perhaps most surprisingly, non-decay was established for
transversal derivatives ∂rψ along the event horizon, together with blow-up
of ∂krψ, for k ≥ 2. These instability properties have been extended to the
Maxwell equations and linearised gravity by Lucietti-Reall in [40] and to
higher-dimensional black hole spacetimes by Murata in [44]. Moreover, the
instability was shown to also hold for initial data supported away from the
event horizon in a numerical setting, by Lucietti-Murata-Reall-Tanahashi in
[39] (this result was soon after proved in [6]).

A mathematical analysis of (1.2) in the region between the event horizon
and cosmological horizon of Schwarzschild-de Sitter was carried out by Bony-
Häfner [12] in a scattering theory framework. See also results by Melrose-Sá
Barreto-Vasy [43]. They proved exponential decay in time of solutions ψ − ψ0

to (1.2) away from the event horizon, where ψ0 is the zeroth harmonic mode.
In [20] Dafermos-Rodnianski included the event horizon in their analysis,
using the vector field method. They established decay in time, faster than
any given polynomial rate. Exponential decay in time was proved in slowly
rotating Kerr-de Sitter by Dyatlov in [25, 26], including the event horizon.
An analysis of (1.2) and (1.3) in the expanding region of Schwarzschild-de
Sitter and Kerr-de Sitter was performed by Schlue in [53].

The Klein-Gordon equation with a non-positive mass,

(1.4) (�g + µ2)ψ = 0,
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has been studied in the Λ < 0 setting on asymptotically AdS black hole
spacetimes in [32–35]. In particular, Holzegel [32] and Holzegel-Warnick
[35] obtained boundedness of solutions to (1.4) in Kerr-AdS and Holzegel-
Smulevici [33, 34] established logarithmic decay in time, showing moreover
that generic solutions cannot decay faster than logarithmically.

1.2. Properties of constant radius spacetimes

An n-dimensional de Sitter spacetime is denoted by dSn, and an n-
dimensional anti-de Sitter spacetime is denoted by AdSn. We define the
constant radius spacetimes (M, g) to be solutions of the electrovacuum Ein-
stein equations with Λ > 0 that are isometric to warped products Q×r S2,
where the spherical area radius r = r0 is constant and Q is a 2-dimensional
Lorentzian manifold that is isometric to either dS2, AdS2 or R1+1 with a
constant Gaussian curvature K.

Table 1 gives an overview of the geometry of Q corresponding to each
combination of Λ and charge parameter e ∈ R.1 The values appearing in
Table 1 are derived in Section 2.1. Moreover, the constant curvature K is
given by

(1.5) K = r−2
0 (1− 2e2r−2

0 ).

Λ e2 r2
0 Q Spacetime

= 0 6= 0 = e2 AdS2 Bertotti-Robinson

> 0 < 1
2Λ = 1

2Λ

(
1−
√

1− 4Λe2
)
< 2e2 AdS2 cosmological

Bertotti-Robinson

> 0 < 1
2Λ = 1

2Λ

(
1−
√

1− 4Λe2
)
> 2e2 dS2 charged Nariai

> 0 < 1
2Λ = 1

2Λ

(
1 +
√

1− 4Λe2
)

dS2 charged Nariai

> 0 = 0 = 1
Λ dS2 Nariai

> 0 = 1
2Λ = 1

2Λ R1+1 Plebański-Hacyan

Table 1. The relation between Q, r0 and the parameters Λ > 0 and e ∈ R.

1The charge parameter e ∈ R determines uniquely the electromagnetic tensor in
spherically symmetric electrovacuum spacetimes.
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All constant radius spacetimes are geodesically complete and homoge-
neous. Their causal structures are represented in Figure 2. The Penrose dia-
grams of (cosmological) Bertotti-Robinson, (charged) Nariai, and Plebański-
Hacyan are identical to the Penrose diagrams of AdSn, dSn and Rn+1, re-
spectively, where n = 2. These follow from constructing conformal compact-
ifications of AdS2, dS2 and R1+1, and embedding them in a compact region
of R2. See [31] for a construction in the n = 4 case.2

(a) (Cosmological)
Bertotti-Robinson (b) (Charged) Nariai (c) Plebański-Hacyan

Figure 2. The Penrose diagrams of the electrovacuum spherically symmetric
constant radius spacetimes. Each point on the diagram represents a sphere
of radius r, where r has the same value everywhere. The constant radius
spacetimes are geodesically complete and the dashed lines represent points
in the spacetimes that are reached by geodesics in infinite affine time.

In global coordinates (t̃, x̃) on dS2, with t̃ ∈ R, x̃ ∈ R, and (θ, φ) the
standard spherical polar coordinates on S2, the metric on (charged) Nariai
takes the form:

gNariai = K−1(−dt̃2 + cosh2 t̃dx̃2) + r2
0(dθ2 + sin2 θdφ2).

Here, r2
0(e,Λ) takes on the values given in Table 1 and K(e,Λ) is given by

(1.5).

2When n > 2 the conformal compactifications of AdSn, dSn and Rn+1 are instead
embedded in R× Sn−1.
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Similarly, there exists global coordinates (t̃, x̃) on AdS2, with t̃ ∈ R, x̃ ∈
R, such that the metric on (cosmological) Bertotti-Robinson is given by,

gBertotti-Robinson = |K|−1(− cosh2 x̃dt̃2 + dx̃2) + r2
0(dθ2 + sin2 θdφ2).

Finally, the metric on Plebański-Hacyan is simply given by

gPlebański-Hacyan = −dt2 + dx2 + r2
0(dθ2 + sin2 θdφ2),

where (t, x) are global coordinates on R1+1, with t ∈ R and x ∈ R.
Constant radius spacetimes are often forgotten in the literature, when

appealing to Birkhoff’s Theorem for spherically symmetric electrovacuum
spacetimes with Λ ≥ 0. Birkhoff’s Theorem is stated as follows:

Theorem 1.1 (Birkhoff’s Theorem). A spherically symmetric solution
(M, g) of the electrovacuum Einstein equations with a non-negative cos-
mological constant Λ is locally isometric to a Reissner-Nordström-de Sit-
ter solution with parameters Λ ≥ 0 and e,M ∈ R, or a constant radius
spacetime with parameters Λ ≥ 0 and e ∈ R.

In Section 2.2 we will show that the constant radius spacetimes share
the property that each sphere of constant radius forms the intersection of an
ingoing and an outgoing degenerate Killing horizon, with respect to a suit-
able Killing vector field. The degenerate Killing horizons are isometric to the
horizons of either extremal Reissner-Nordström, extremal Schwarzschild-de
Sitter or extremal Reissner-Nordström-de Sitter. Constant radius spacetimes
can be viewed in particular as examples of near-horizon spacetimes of ex-
tremal black holes, which all contain two intersecting degenerate Killing hori-
zons. For an extensive review on near-horizon spacetimes, see [38] and the
references therein.

1.3. Overview of results and techniques

Since (cosmological) Bertotti-Robinson is not globally hyperbolic, the
Cauchy problem for (1.3) is not well-posed without additional boundary
conditions. (Cosmological) Bertotti-Robinson spacetimes will therefore not
be studied in this paper.

We will investigate the asymptotic behaviour of solutions to (1.3) on
Nariai (from now on we include charged Nariai when we refer to Nariai) and
Plebański-Hacyan (PH). This section provides a brief overview of the results
proved in this paper. The main theorems are formulated in Section 4.
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1.3.1. The Klein-Gordon equation on dS2 and R1+1. We can de-
compose solutions ψ of (1.3) into harmonic modes ψ =

∑∞
l=0 ψl satisfying

the 1+1-dimensional Klein-Gordon equation

(1.6) (�gQ − µ2 −m2
l )ψl = 0,

where �gQ is the wave operator corresponding to the induced metric gQ on
Q, where Q = dS2 in the Nariai case and Q = R1+1 in the PH case. The
mass parameter µ2 +m2

l increases with l and m0 = 0. See Section 3.2 for
more details. In order to obtain uniform boundedness and decay of the full
solution ψ, we will in particular determine the precise dependence on l in
the estimates for ψl.

1.3.2. Boundedness and decay in Nariai: a local method. In Nariai
we can either make use of a local or a global red-shift effect to establish
boundedness and decay.

In Sections 5 and Section 6 we restrict to a causally independent static
region in Nariai, which is bounded by two cosmological horizons. Since Nar-
iai is homogeneous, there is no loss of generality in doing so. In Section 2.2 we
show that there exists a timelike Killing vector field, which we call T , in the
interior of the static region. The cosmological horizons are non-degenerate
Killing horizons with respect to T . We foliate the static region with compact
spacelike hypersurfaces by the isometric flow along T of an initial spacelike
hypersurface. The energy flux of the current JT through the spacelike hy-
persurfaces is non-negative definite and conserved, but it degenerates at
the horizons. In order to obtain uniform boundedness of a non-degenerate
energy, we appeal to a theorem of Dafermos-Rodnianski [19] that ensures
the existence of a local red-shift vector field N corresponding to any non-
degenerate Killing horizon in a stationary spacetime. The energy flux of the
current JN is positive definite, non-degenerate and uniformly bounded near
the horizon. Pointwise boundedness estimates then follow by commuting
with T and applying standard elliptic and Sobolev estimates.

In order to prove uniform energy decay in the static region in Nariai, we
first prove integrated local energy decay. We construct a suitable Morawetz
vector field, which we call V , such that spacetime integrals of the divergence
of the current JV control spacetime integrals of derivatives of ψ, after a
slight modification. Integrated local energy decay is a powerful and robust
tool for proving energy decay for solutions to wave equations.

The main obstruction to integrated local energy decay in Nariai is the
trapping of null geodesics. Each sphere foliating the Nariai spacetime con-
tains a trapped null geodesic. Whenever trapped null geodesics are present



i
i

“2-Gajic” — 2018/11/29 — 23:37 — page 928 — #10 i
i

i
i

i
i

928 Dejan Gajic

in a spacetime, derivatives are lost in energy estimates, see [48] and [51].
Fortunately, though trapping is present at each sphere in Nariai, it can be
considered unstable, as shown in Section 2.6. Trapping in Nariai results in
the loss of an angular derivative in the integrated local energy decay state-
ment and in the final energy decay statement.

Trapping is a high-frequency effect, so if we restrict ψ to a single har-
monic mode ψl with l ≥ 1, it does not form an obstruction and we are able
to prove a stronger energy decay statement.

We make further use of the local red-shift effect to control integrated
energies near the cosmological horizons.

The advantage of restricting to a static region in Nariai and proving inte-
grated local energy decay is that the method does not involve the geometry
outside the static region.

1.3.3. Boundedness and decay in Nariai: a global method. In Sec-
tions 7 and 8 we work in global coordinates on dS2, introduced in Sec-
tion 2.3.1, to construct a global vector field Ñ . The energy flux of the corre-
sponding energy current J Ñ through a constant t̃ slice, where t̃ is a standard
global time coordinate in dS2, is controlled by an initial energy. We make
use of the exponential expansion in t̃ of the volume form corresponding to
constant t̃ slices to bound the L2 norm of ψ at a constant t̃ by the initial
Ñ -energy. By commuting with the spacelike Killing vector field present in
dS2, and with the Killing vector fields generating spherical symmetry we are
able to obtain pointwise boundedness of ψ from standard Sobolev estimates.

Moreover, after a modification of the energy current J Ñ , we prove expo-
nential decay in t̃ of the Ñ -energy, resulting in pointwise exponential decay
in t̃ of ψ − ψ0 if µ = 0 and of the full solution ψ if µ 6= 0.

1.3.4. Decay in n-dimensional de Sitter space. The local method
applied to fixed modes ψ = ψ0 provides in particular a proof, using only vec-
tor field methods, of pointwise decay of solutions to the µ 6= 0 Klein-Gordon
equation (1.6) in the static region of dS2. Similarly, the global method ap-
plied to ψ = ψ0 also gives pointwise decay.

We generalise the global method for decay of ψ = ψ0 to higher dimen-
sions to obtain pointwise time decay of solutions to (1.3) with µ 6= 0 on
n-dimensional de Sitter space, with n ≥ 2. De Sitter space dSn is an n-
dimensional submanifold of Rn+1 of constant positive curvature. It is diffeo-
morphic to R× Sn−1 and can be globally foliated by Cauchy hypersurfaces
that are diffeomorphic to Sn−1.

Boundedness and decay results in dS4 for solutions to (1.3), with the
restriction µ = 0 or µ2 ≥ 2Λ

3 , were proved by Schlue in his thesis [52] using
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energy methods, by considering the static region and expanding region in
dS4 separately. Schlue also made use of the presence of a local red-shift effect
near cosmological horizons and a global red-shift effect due to expansion.

Exponential decay for smooth solutions to (1.3) with µ 6= 0, was estab-
lished in a general class of asymptotically de Sitter Lorentzian manifolds by
Vasy in [55], using scattering theory.

In the literature one often encounters a restriction to the open subset
dSn,flat of dSn, that can be covered by a single chart (t′, x′1, . . . , x

′
n−1) ∈ R×

Rn−1, with n ≥ 2. This is referred to as the “flat slicing” of de Sitter space.
The Klein-Gordon equation (1.3) in dSn,flat is equivalent to the following

equation for the rescaled function u = e
n−1

2

√
Λ

3
tψ:(

−∂2
t′ + e−2

√
Λ

3
t
n−1∑
i=1

∂2
x′i
−
(
µ2 − (n− 1)2Λ

12

))
u = 0.

In [58] Yagdjian constructed fundamental solutions for (1.3) in dSn,flat to
show in particular exponential decay of ||ψ||Hs(Rn−1)(t

′) in t′, with s > n−1
2 ,

when the Klein-Gordon mass µ2 satisfies the bounds µ2 ∈ (0, ((n−1)2−1)Λ
12 ) ∪

[ (n−1)2Λ
12 ,∞).3 Similar results for (1.3) with µ2 > (n−1)2Λ

12 were obtained in a
general class of asymptotically de Sitter spacetimes by Baskin [7].

Note that the generalisation of the global method for decay in Nariai
gives exponential decay of ||ψ||Hs(Sn−1)(t̃) in t̃ in the full spacetime dSn,

or ||ψ||Hs(Rn−1)(t
′) in t′ in the subset dSn,flat, with s > n−1

2 and only the
restriction µ 6= 0.

1.3.5. Boundedness and decay in Plebański-Hacyan. In PH there
exists a globally timelike Killing vector field that is simply the generator of
time translations in the 2-dimensional quotient spacetime, Q = R1+1. We
denote this vector field by T . We immediately obtain uniform boundedness
of the non-degenerate energy flux of the current JT through a foliation of
isometric spacelike hypersurfaces.

Although there is a globally timelike Killing vector field present in PH,
we need to adopt a different strategy compared to Nariai to obtain pointwise
decay of ψ. We can prove integrated local energy decay, with the loss of an
angular derivative due to the presence of unstable trapping at each sphere
foliating PH, similar to the Nariai case. However, the robust method intro-
duced in [17] for obtaining energy decay from integrated local energy decay
and energy boundedness, even in the case of the massless equation (1.2),

3The quantity µ2 − (n−1)2Λ
12 is treated as an “effective mass”.
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fails because PH is not asymptotically flat. In fact, we show that the energy
flux of the current JT through the future null boundaries N+

A and N+
B of PH

vanishes, where we consider solutions ψ − ψ0 in the µ = 0 case. This implies
that one cannot obtain energy decay by foliating PH with hypersurfaces
asymptoting at N+

A and N+
B .

In [37] Klainerman established pointwise decay of solutions to (1.3) with
µ 6= 0 in Rn+1 by using only vector field methods. In particular, if we take
n = 1 these results extend to the fixed modes ψl in PH, with l ≥ 1, by (1.6).
The arguments in [37] rely fundamentally on the presence of a timelike
Killing vector field and a Killing vector field that generates boosts. Since
both Killing vector fields are present in PH, we are able to apply the methods
in [37] to obtain pointwise decay of the full solution ψ in PH, where we
consider ψ − ψ0 in the µ = 0 case.

1.3.6. Non-decay and conservation laws. As mentioned in Section 1.2,
we can view each null hypersurface in a constant radius spacetime as a
degenerate Killing horizon with respect to a suitable Killing field. One might
expect conservation laws to form potential problems for decay statements,
in light of the behaviour of solutions to (1.2) in extremal black holes and
the general picture presented by Aretakis in [3]. In the case of equation
(1.2) in both Nariai and PH these conservation laws are manifested in the
conservation of (higher-order) transversal derivatives of ψ0 along each null
hypersurface. This follows also from d’Alembert’s formula, since ψ0 satisfies
a 1+1-dimensional wave equation in double-null coordinates. Moreover, by
d’Alembert’s formula there is no pointwise decay of ψ0 for generic initial
data.

The results in [3] for spherically symmetric manifolds also imply that
the higher harmonic modes ψl, l ≥ 1 are not subject to any (higher-order)
conservation laws along degenerate Killing horizons.

1.4. Outline

We construct and discuss the geometry of constant radius spacetimes in
Section 2. In Section 3 we give a short overview of some properties of the
Klein-Gordon equation (1.3) on Lorentzian manifolds. The main theorems
of the paper, corresponding to the results described in Section 1.3, are then
stated in Section 4.

We first consider Nariai. We restrict to the static region in Nariai, prov-
ing uniform boundedness in Section 5 and uniform decay in Section 6, using
a local method.
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We apply a global method for an alternative proof of uniform bound-
edness in Section 7 and uniform decay in Section 8. The same method is
generalised in Section 9 to obtain uniform decay in n-dimensional de Sitter
space.

Subsequently, we consider PH. We prove uniform boundedness in Sec-
tion 10 and uniform decay in Section 11.

Finally, in Section 12 we show that ψ0 does not decay in either Nariai
and PH, in the case where µ = 0.

1.5. Open problems

A remaining open problem is to venture outside of spherical symmetry by
considering (1.3) on a rotating Nariai background. One can construct rotat-
ing Nariai by considering a sequence of Kerr-de Sitter spacetimes in which
the radii of the event horizon and cosmological horizon approach an extremal
value in the limit, with a strictly smaller Cauchy horizon radius. The limit
of the corresponding sequence of regions between the event horizons and
cosmological horizons is the static region of a spacetime which is called ro-
tating Nariai, see [13]. The metric in the stationary region of rotating Nariai
is given by

grN ;a = (r2
0 + a2 cos2 θ)

[
− f(r0)(r0 − r−)(1− x2)dt2

+
1

f(r0)(r0 − r−)(1− x2)
dx2

]

+
r2

0 + a2 cos2 θ

1 + Λa2

3 cos2 θ
dθ2 +

(1 + Λa2

3 cos2 θ) sin2 θ

r2
0 + a2 cos2 θ

(
2ar0xdt+

r2
0 + a2

1 + Λa2

3

dφ

)2

,

where r−(a) is the radius of the Cauchy horizon, f(r) is a positive linear
function of r > 0 and r0(a) > r−(a) is the radius of the event horizons of
extremal Kerr-de Sitter with coinciding cosmological and event horizons.
For a vanishing angular momentum parameter a of Kerr-de Sitter, rotating
Nariai reduces to regular Nariai. Moreover, 2-surfaces of constant t and x are
ellipsoids of constant area. Not only is the trapping of null geodesics more
complicated in rotating Nariai, there is also superradiance present, which is
absent in the non-rotating case.

Similarly, one can consider the limit of a sequence of regions between the
Cauchy horizon and event horizon of Kerr-de Sitter to obtain the rotating
version of Bertotti-Robinson. Moreover, by letting all three horizon radii
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approach the same value in the limit, one can obtain the rotating version of
Plebański-Hacyan. The metric of rotating Plebański-Hacyan is given by

grPH =
(r2

0 + a2 cos2 θ)

2f(r0)

(
−x2dt2 + dx2

)
+
r2

0 + a2 cos2 θ

1 + Λa2

3 cos2 θ
dθ2

+
(1 + Λa2

3 cos2 θ) sin2 θ

r2
0 + a2 cos2 θ

(
2ar0x

2

f(r0)
dt+

r2
0 + a2

1 + Λa2

3

dφ

)2

.

In the above expression a is not a free parameter, but rather the value of
the angular momentum parameter such that r0(a) is the radius of the event
horizon of extremal Kerr-de Sitter in the case that all horizons coincide. The
term−x2dt2 + dx2 can be viewed as the R1+1 metric in Rindler coordinates4,
with a Rindler horizon at x = 0.

1.6. Acknowledgements
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and for his comments and invaluable advice, and Volker Schlue for his com-
ments on the manuscript.

2. The geometry of constant radius spacetimes

We will discuss the geometric properties of constant radius spacetimes and
introduce suitable coordinate charts.

2.1. A classification of the constant radius spacetimes

In this section we will show that any spacetime with a warped product
structure Q×r S2, where r = r0 is constant, satisfying the electrovacuum
Einstein equations, is locally isometric to a constant radius spacetime, as
defined in Section 1.2. Moreover, we will derive the relations between the
geometry of Q and the value of r0, as they appear in Table 1.

4Rindler coordinates are coordinates that cover a subset of Minkowski spacetime.
An observer at rest with respect to Rindler time has a constant positive proper
acceleration.
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We can choose local double-null coordinates on Q such that the metric
on Q×r S2 becomes

(2.1) g = −Ω2(u, v)dudv + r2
/gS2 .

In this form, the Einstein equations reduce to a system of partial differential
equations on the 1+1-dimensional Lorentzian manifold Q, where r : Q →
(0,∞). See for example [21]. We rederive the system of partial differential
equations on Q in Appendix C for Λ > 0 to set the notation.

One of these pde, see also (C.17), is

(2.2) ∂u∂v log(Ω2) =
K

2
Ω2 =

2

r2
∂ur∂vr +

[
1

2r2
− e2

r4

]
Ω2,

where e ∈ R is the charge corresponding to the spherically symmetric elec-
tromagnetic tensor and K is the Gaussian curvature of Q.

Under the assumption of constant r = r0, it follows from (2.2) that K is
constant and is given by

K = r−4
0 (r2

0 − 2e2).

All maximally symmetric n+ 1 dimensional Lorentzian manifolds with
the same constant curvature are locally isometric, see [27] for a proof. More-
over, we do not need the assumption of maximal symmetry if n = 1, so we
can conclude that Q must be locally isometric to dS2 if K > 0, AdS2 if
K < 0 and R1+1 if K = 0. Given Λ and e, we will determine the possible
signs of K and the values of r0.

In the absence of matter fields other than the electromagnetic stress-
energy tensor, we have that

m(r) +
e2

2r
− Λ

6
r3 = M,

where M ∈ R is a constant and m(r) is the Hawking mass, defined by

m(r) = r

(
1

2
+ 2Ω−2∂ur∂vr

)
.

See also (C.21). Hence, m(r0) = r0
2 and we deduce that the following poly-

nomial equation must hold

(2.3) r2
0 − 2Mr0 + e2 − Λ

3
r4

0 = 0.
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This equation also appears in Reissner-Nordström(-de Sitter) spacetimes for
the radii of the event horizons, Cauchy horizons and cosmological horizons.

We also have an equation for ∂u∂vr, see (C.20),

(2.4) ∂u∂vr = −1

r
∂ur∂vr + (e2 − r2 + Λr4)

Ω2

4r3
.

Since r = r0, the equation above is equivalent to the polynomial equation

e2 − r2
0 + Λr4

0 = 0.

2.1.1. Λ = 0. Consider first the special case Λ = 0. By (2.3) and (2.4) we
find that r2

0 = e2 = M2 and K = − 1
e2 < 0. The corresponding spacetimes

are therefore locally isometric to a member of the 1-parameter Bertotti-
Robinson family, described in Section 1.2.

2.1.2. Λ > 0, e = 0 or e2 = 1
4Λ

. Suppose now that Λ > 0. Then (2.3)
implies that

r2
0 =

1

2Λ

(
1±

√
1− 4Λe2

)
.

Consider the special case e = 0. Then we must have that r2
0 = 1

Λ and
K = Λ. The corresponding spacetimes are locally isometric to a member of
the 1-parameter Nariai family, described in Section 1.2.

Consider the special case e2 = 1
4Λ . Then r2

0 = 1
2Λ = 2e2, so K = 0. The

corresponding spacetimes are locally isometric to a member of the 1-
parameter Plebański-Hacyan family, described in Section 1.2.

2.1.3. Λ > 0, 0 < e2 < 1
4Λ

. We are left with the cases where 0 < e2 <
1

4Λ .
If r2

0 >
1

2Λ , we must have

r2
0 =

1

2Λ

(
1 +

√
1− 4Λe2

)
.

Moreover, r2
0 > 2e2, so K > 0. We refer to the corresponding 2-parameter

family of spacetimes dS2 ×r0 S2 as charged Nariai solutions.
If r2

0 <
1

2Λ , we must have

r2
0 =

1

2Λ

(
1−

√
1− 4Λe2

)
.

If r2
0 < 2e2, then K < 0 and we refer to the corresponding 2-parameter

of spacetimes AdS2 ×r0 S2 as cosmological Bertotti-Robinson solutions. If
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2e2 < r2
0 <

1
2Λ , K > 0, and we again refer to the corresponding 2-parameter

family of spacetimes dS2 ×r0 S2 as charged Nariai solutions.

Remark 2.1. We can also consider the Λ < 0 case. If e 6= 0, spherically
symmetric electrovacuum spacetimes with a constant radius function r0 must
satisfy

r2
0 =

1

2|Λ|

(
−1 +

√
1 + 4|Λ|e2

)
.

Consequently, K < 0 for all e 6= 0 and Q must be locally isometric to AdS2.

2.2. Killing vector fields in constant radius spacetimes

We can easily find the Killing vector fields corresponding to the induced met-
ric gQ on Q. Choose (u, v) coordinates such that Ω2(0, v) = 1 and Ω2(u, 0) =
1, where u, v ∈ R. Note that these coordinates do not cover the entire dS2

or AdS2 manifolds.
For all constant radius spacetimes we can then construct the following

basis of Killing vector fields on Q,

T =

(
1− K

4
u2

)
∂

∂u
+

(
1− K

4
v2

)
∂

∂v
,

X =

(
1 +

K

4
v2

)
∂

∂v
−
(

1 +
K

4
u2

)
∂

∂u
,

Y = v
∂

∂v
− u ∂

∂u
.

One can check that T , X and Y indeed span a 3-dimensional Lie algebra.
In particular, in PH the vector field T generates time translations, X gen-
erates space translations and Y generates boosts in R1+1. More generally,
in the context of near-horizon spacetimes, Y is the generator of the dilation
symmetry.

Furthermore, T +X and T −X generate outgoing and ingoing degen-
erate Killing horizons {u = 0} and {v = 0}, respectively. By homogeneity of
the spacetimes, each null hypersurface in a constant radius spacetime is a
degenerate horizon with respect to a suitable Killing vector field.

2.3. Coordinate charts on Nariai

Consider the Nariai spacetime of Section 1.2.
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2.3.1. Global coordinates. There exist coordinates (t̃, x̃, θ, φ), where t̃ ∈
R and x̃ ∈ R are coordinates on dS2, that cover the entire Nariai spacetime,
such that

g = K−1(−dt̃2 + cosh2 t̃dx̃2) + r2
0/gS2 .

Via the global coordinates above, we will derive an expression for the term
Ω2(u, v) appearing in (2.1), with the gauge choice Ω2(u, 0) = Ω2(0, v) = 1.
We will also see that the isometry corresponding to the spacelike Killing
vector field X is naturally expressed in these global coordinates. In order to
write the above metric in a double-null foliation, we define t̂(t̃) such that

dt̂

dt̃
=

1

cosh t̃
.

One can check that the following suffices,

t̂(t̃) = 2 arctan

(
tanh

(
t̃

2

))
,

where t̂ ∈ (−π
2 ,

π
2 ). The inverse is given by

t̃(t̂) = 2 arctanh

(
tan

(
t̂

2

))
.

Now,

g = K−1 cosh2(t̃(t̂))
(
−dt̂2 + dx̃2

)
+ r2

0/gS2

= −K−1 cosh2(t̃(t̂))dûdv̂ + r2
0/gS2 ,

where û = t̂− x̃ and v̂ = t̂+ x̃. We write t̃(t̂) = t̃(û, v̂). To obtain Ω2(0, v) =
1, we first define v(v̂) as the solution to the ODE

dv

dv̂
= K−

1

2 cosh2
(
t̃(0, v̂)

)
= K−

1

2 cos−2

(
v̂

2

)
,

v(0) = 0.

We integrate to find

v(v̂) =
2√
K

tan
v̂

2
.
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Hence, we can only cover the region −π < v̂ < π if we replace the outgoing
null coordinate v̂ with v. The metric becomes

g = − cosh2(t̃(û, v̂))√
K cosh2(t̃(0, v̂))

dûdv.

Define u(û) by

du

dû
=

cosh2 t̃(û, 0))√
K cosh2(t̃(0, 0))

= K−
1

2 cosh2(t̃(û, 0)) = K−
1

2 cos−2

(
û

2

)
,

u(0) = 0.

Then

u(û) =
2√
K

tan
û

2
.

We need to restrict to −π < û < π. Consequently,

g = − cosh2(t̃(û, v̂))

cosh2(t̃(0, v̂)) cosh2(t̃(û, 0))
dudv + r2

0γ(2.5)

= −
cos2

(
û
2

)
cos2

(
v̂
2

)
cos2

(
û+v̂

2

) dudv + r2
0γ,

where u, v ∈ R. We see immediately that Ω2(0, v) = Ω2(u, 0) = 1. The (u, v)
coordinates only cover the region −π < û, v̂ < π of the spacetime with more-
over −π < û+ v̂ < π.

The coordinate vector field ∂x̃ is a Killing vector field. In (u, v) coordi-
nates we find that

X =
√
K∂x̃,

T =
√
K

[(
sin2

(
û

2

)
− cos2

(
û

2

))
∂û +

(
sin2

(
v̂

2

)
− cos2

(
v̂

2

))
∂v̂

]
.

T is timelike in the open rectangle R :={(û, v̂, θ, φ)∈M| (û, v̂)∈(−π
2 ,

π
2 )2}.

2.3.2. Static coordinates. Although the chart (t̃, x̃, θ, φ) covers the en-
tire Nariai spacetime, the Killing vector field T is not naturally expressed. In-
deed, we can equip the rectangleR introduced above with static coordinates,
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which we will denote by (t, x, θ, φ), with t ∈ R, x ∈
(
− 1√

K
, 1√

K

)
and θ, φ co-

ordinates on S2, such that the metric is given by

(2.6) g = −(1−Kx2)dt2 + (1−Kx2)−1dx2 + r2
0/gS2 ,

where K > 0 is the Gaussian curvature introduced above. In order to con-
struct null coordinates, we introduce the tortoise function x∗ such that

dx∗
dx

= (1−Kx2)−1,

x∗(0) = 0.

We integrate the above ode to find,

x∗(x) =
1√
K

arctanh
(√

Kx
)
,

x(x∗) =
1√
K

tanh
(√

Kx∗

)
.

Hence, x∗ ∈ R, with x∗ →∞ when x→ 1√
K

and x∗ → −∞ when x→ − 1√
K

.

Now define the null coordinates u and v by

u := t− x∗,
v := t+ x∗.

Then

(2.7) g = −(1−Kx2)dudv + r2
0/gS2 .

We can relate the null coordinates appearing in (2.7) to the null coor-
dinates in which the metric is expressed by (2.5), that moreover define the
vector field T , to establish that in static coordinates T is given by

T = ∂t.

Static coordinates are therefore the coordinates in which the vector field T
is most naturally expressed. As we remarked in the aforementioned section,
T is timelike in R and becomes null on x = ± 1√

K
. We characterise the

boundary of R as follows in terms of ingoing and outgoing cosmological
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Figure 3. Part of the Penrose diagram of Nariai with a shaded static re-
gion R.

horizons,

∂R = C+ ∪ C− ∪ C+ ∪ C−,

where we can express in global double null coordinates (û, v̂)

C+ =
{
û =

π

2
, v̂ ≥ −π

2

}
,

C+
=
{
v̂ =

π

2
, û ≥ −π

2

}
,

C− =
{
v̂ = −π

2
, û ≤ π

2

}
,

C− =
{
û = −π

2
, v̂ ≤ π

2

}
.

Moreover, {
x =

1√
K

}
= C+ ∪ C−,{

x = − 1√
K

}
= C+ ∪ C−.

By passing to ingoing or outgoing Eddington-Finkelstein-type coordi-
nates, we can easily see that C+ and C+

have a positive surface gravity
κ =
√
K with respect to the timelike Killing vector field T . Positivity of the
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surface gravity will play an important role in proving uniform boundedness
and decay of solutions to (1.3).

We can express the global time t̃ as a function of the static coordinates
t and x,

t̃(t, x) = 2 arctanh

(
tan

(
t̂(t, x)

2

))
,

where

t̂(t, x) = arctan

(
tanh

(√
K

2
(t+ x∗(x))

))

+ arctan

(
tanh

(√
K

2
(t− x∗(x))

))

In particular, t̃(t, 0) =
√
Kt and

(2.8) t̃(t, x) ≥
√
K(t− |x∗(x)|).

2.4. The constant radius limit

For completeness, we will give a precise construction of Nariai and Plebański-
Hacyan as the constant radius limits of the region between the cosmologi-
cal and event horizons of a sequence of subextremal Reissner-Nordström-de
Sitter spacetimes. A similar construction can be performed for the region
between the event and Cauchy horizons, where the constant radius limit is
Bertotti-Robinson.

The Reissner-Nordström-de Sitter metric can be expressed as

g = −f(r)

r2
(r − r+)(r++ − r)dt̃2 +

r2

f(r)(r − r+)(r++ − r)
dr2 + r2

/gS2 ,

where t̃ ∈ R, r ∈ (r+, r++) and r+ and r++ are the radii of the event hori-
zon and cosmological horizon, respectively. See for example [30]. The func-
tion f(r) is a quadratic polynomial with f(r) > 0 for r ∈ [r+,∞). Moreover,
r+ < r0 < r++ for all subextremal solutions, where r0 is the radius of the
corresponding extremal solution.

We define ε = ε(M, e) > 0 by ε = r++ − r0 = r0 − r+ and we introduce
the shifted coordinate ρ := r − r0, ρ ∈ (−ε, ε), such that

g = −f(r)

r2
(ρ+ ε)(ε− ρ)dt̃2 +

r2

f(r)(ρ+ ε)(ε− ρ)
dρ2 + r2

/gS2 .



i
i

“2-Gajic” — 2018/11/29 — 23:37 — page 941 — #23 i
i

i
i

i
i

Linear waves on constant radius limits 941

Now rescale, χ := ε−1ρ and τ := εt̃, to obtain

g = −f(r)

r2
(1− χ2)dτ2 +

r2

f(r)(1− χ2)
dχ2 + r2

/gS2 ,

where χ ∈ (−1, 1) and τ ∈ R. Fix Λ > 0 and consider a sequence of subex-
tremal Reissner-Nordström-de Sitter metrics gn, with parameters Mn

and en, such that limn→∞ εn = 0. Then the metric components (gn)αβ in
(τ, χ, θ, φ) coordinates, with τ ∈ R, χ ∈ (−1, 1), 0 < θ < π and 0 < φ < 2π
converge to a limit gN , with

(2.9) gN = −f(r0)

r2
0

(1− χ2)dτ2 +
r2

0

f(r0)(1− χ2)
dχ2 + r2

0/gS2 .

We introduce a final rescaling, x= r0√
f(r0)

χ and t=

√
f(r0)

r0
τ , to rewrite (2.9)

as

(2.10) gN = −
(

1− f(r0)

r2
0

x2

)
dt2 +

(
1− f(r0)

r2
0

x2

)−1

dx2 + r2
0/gS2 .

The metric (2.10) is precisely a Nariai metric in static coordinates, where

K = f(r0)
r2
0

and x ∈ (− 1√
K
, 1√

K
).

Plebański-Hacyan can be constructed as the constant radius limit of
a sequence of extremal Reissner-Nordström-de Sitter spacetimes with the
radii of two horizons coinciding. We consider extremal Reissner-Nordström-
de Sitter in ingoing Eddington-Finkelstein-type coordinates (ṽ, r),

g =
h(r)

r2
(r − r+)2(r − r−)dṽ2 + 2dṽdr + r2

/gS2 ,

where h(r) is a first-order polynomial with h(r) > 0 and r− is the radius
of the Cauchy horizon and r− < r0 < r+ = r++. The case where r− = r+

proceeds analogously. Here, r ∈ (r−, r+) and ṽ ∈ R.
Let ε = ε(e) > 0 be defined by ε = r++ − r0 = r0 − r− and consider the

shifted coordinate ρ = r − r0, ρ ∈ (−ε, ε). Moreover, rescale χ = ε−1ρ, χ ∈
(−1, 1), and v = εṽ, v ∈ R, such that

g = −εh(r)

r2
(χ− 1)(1− χ2)dv2 + 2dvdχ+ r2

/gS2 .

As above, we consider a sequence of charge parameters en such that
limn→∞ ε(en) = 0 and we obtain the limiting spacetime,

gPH = 2dvdχ+ r2
0/gS2 ,
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where we can extend χ ∈ R. If we rescale u := −2χ, we see that the induced
metric gQ is the standard metric on R1+1 in double-null coordinates, u ∈ R,
v ∈ R.

2.5. Foliations by spacelike hypersurfaces

2.5.1. Nariai. Recall from Section 2.3.1 that we can cover Nariai by the
global coordinates (t̃, x̃, θ, φ) with the metric given by

g = K−1
(
−dt̃2 + cosh2 t̃dx̃2

)
+ r2

0/gS2 .

We can therefore foliate Nariai by spacelike hypersurfaces Σ̃τ := {t̃ = τ},
where we take τ ∈ R. See Figure 4. The induced volume form on Στ is given
by

dµΣ̃τ
= K−

1

2 r2
0 cosh τ dxdµS2 .

Note that the volume form is expanding exponentially in the time parameter
τ . The global foliation of Nariai will be used in Sections 7 and 8.

We will also consider a different foliation of a static region R in Nariai.
See Figure 3. Let Σ be an SO(3)-invariant spacelike hypersurface in Nariai,
that is given by a level set of a smooth function hN :M→ R, i.e Σ =
h−1
N ({0}). Let nΣ be the future-directed unit normal to Σ. We make the

assumption that the following uniform bounds hold

C1 ≤ −g−1(dhN , dhN ) ≤ C2,

C1 ≤ −g(nΣ, T ) ≤ C2,

where C1 and C2 are positive constants. We consider a static region R such
that Σ intersects the cosmological horizons C+ and C+

, see Figure 3. By the
assumptions on the normal, we can express the volume form corresponding
to the metric induced on Σ by

dµΣ = bN (ρ)dρdµS2 ,

where (ρ, θ, φ) are coordinates along Σ, with ρ ∈ R, and bN : R→ R+ is a
function that is uniformly bounded above and away from zero everywhere.

Let Στ := φτ (Σ ∩R), where φτ is the isometric flow corresponding to
the vector field T . Consequently,

R∩ J+(Σ) =
⋃

τ∈[0,∞)

Στ .
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Figure 4. The global foliation of Nariai.

By construction, the volume form restricted to Στ can be expressed in the
Lie propagated coordinates (ρ, θ, φ) on Στ

dµΣτ = bN (ρ)dρdµS2

We will use the shorthand notation nτ := nΣτ .
The uniform estimates in Section 5 and Section 6 will be carried out in

the region R(0, τ), defined by

R(0, τ) :=
⋃

τ̄∈[0,τ)

Στ̄ .

More generally, we will consider the regions

R(τ1, τ2) :=
⋃

τ̄∈[τ1,τ2)

Στ̄ .

2.5.2. Plebański-Hacyan. In PH, we can express the metric g on M =
R2 × S2 in (t, x, θ, φ) coordinates, where (t, x) are rectilinear coordinates on
R1+1, to obtain

g = −dt2 + dx2 + r2
0/gS2 .

As in the Nariai case, we take Σ to be the SO(3)-invariant level set of a
smooth function hPH :M→ R and require

C1 ≤ −g−1(dhPH , dhPH) ≤ C2,

C1 ≤ −g(nΣ, T ) ≤ C2,

where C1 and C2 are positive constants. Since T is a globally timelike Killing



i
i

“2-Gajic” — 2018/11/29 — 23:37 — page 944 — #26 i
i

i
i

i
i

944 Dejan Gajic

Figure 5. The global foliation of PH.

vector field, we can define Στ := φτ (Σ), such that

M∩ J+(Σ) =
⋃

τ∈[0,∞)

Στ .

Moreover, we define the region R(0, τ) by

R(0, τ) =
⋃

τ̄∈[0,τ)

Στ̄ .

See Figure 5. More generally, we can consider the regions

R(τ1, τ2) :=
⋃

τ̄∈[τ1,τ2)

Στ̄ .

We can construct coordinates (ρ, θ, φ) on Σ, with ρ ∈ R, such that the
the volume form restricted to Στ is given by

dµΣτ = bPH(ρ)dρdµS2 ,

where bPH : R→ R+ is a function that is uniformly bounded above and
away from zero everywhere.

For our purposes it is also convenient to consider a foliation of the interior
of a lightcone in PH. See Figure 6. We fix the origin (t, x) = (0, 0) to lie in
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Figure 6. The hyperboloidal foliation of the lightcone C in PH.

in Σ. Let (τ, ρ, θ, φ) be coordinates on Στ , where ρ = x|Σ. Then the point
(τ, 0) is equal to (t, 0) in (t, x) coordinates. Moreover, by the assumptions
on Σ, we have that τ ∼ t. We consider the lightcone C defined by

C := {t ≤ |x|}.

C can be foliated by hyperboloids Hs = {(t, x) ∈ Q : t2 − x2 = s2, t ≥
0}, where s > 0. The future-directed normal nHs to Hs is given by,

nHs =
1

s

(
t
∂

∂t
+ x

∂

∂x

)
.

Indeed, since s is constant on Hs, ds] points in the direction of the normal
and

2sds = d(s2) = d(t2 − x2) = 2tdt− 2xdx.

2.6. Trapping of null geodesics

In [51], Sbierski showed that on a globally hyperbolic Lorentzian manifold,
there exist solutions to (1.2) with an energy that is localised around any
given null geodesic. As a consequence, he showed in various black hole space-
times that the presence of trapped null geodesics (a precise definition of
“trapped” in Nariai and PH will be given below) must necessarily lead to a
loss of derivatives in local energy decay statements.

Since Nariai and PH are both spherically symmetric and have a timelike
Killing vector field if we restrict to a static region in Nariai, the dynamics of
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geodesics in both spacetimes can easily be derived and a sensible definition
of trapped null geodesics can be given.

2.6.1. Nariai. Let γ be a null geodesic in R of Nariai. We say γ is trapped
with respect to the foliation Στ if there exists a compact subset K ⊂ Σ0 such
that supp γ ⊂

⋃
τ≥0 φτ (K).

Without loss of generality, we may assume γθ = π
2 . Let us denote

ε = −g(T, γ̇) = (1−Kx2)γ̇t,

` = g(∂φ, γ̇) = r2
0γ̇φ.

By the properties of Killing vector fields along geodesics, the quantities ε > 0
and ` > 0 are conserved along γ.

The equation g(γ̇, γ̇) = 0 can now be rewritten as

ε2 = γ̇2
x + VN (x),

where VN is the effective potential corresponding to the geodesic, given by

VN (x) =
`2

r2
0

(1−Kx2).

The potential has a maximum at x = 0. Consequently, there exist null geo-
desics of the form γ(s) = (t(s), 0, φ(s), π2 ) such that supp γ ⊂ {x = 0}. The
submanifold {x = 0} is called the photon sphere.

Each geodesic is characterised by a triple (x(0), ε, `). Trapped null geo-
desics correspond to the triple (0, ε, `). A non-trivial perturbation of x(0) =
0, causes the resulting null geodesic to no longer be trapped. That is to say,
no longer contained in a bounded region −x0 ≤ x ≤ x0. The trapping can
therefore be considered unstable.

Note that by homogeneity of the spacetime, each sphere foliating Nariai
contains a trapped null geodesic, i.e. each sphere is a photon sphere.

2.6.2. Plebański-Hacyan. As in Narai, we say a null geodesic γ is trapped
in PH with respect to the foliation Στ if there exists a compact subset K ⊂ Σ
such that supp γ ⊂

⋃
τ≥0 φτ (K). Moreover, we can define the following con-

served quantities along a geodesic γ with fixed γθ = π
2 :

ε = −g(T, γ̇) = γ̇t,

` = g(∂φ, γ̇) = r2
0γ̇φ.
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We have that

ε2 = γ̇2
x + VPH(x),

where the effective potential VPH is the constant function

VN (x) =
`2

r2
0

.

There exist trapped null geodesics of the form γ(s) = (t(s), x0, φ(s), π2 )

for each x0 ∈ R, such that ε2 = `2

r2
0
. Hence, each sphere foliating PH is a

photon sphere.

In this case, the perturbations of a triple (x(0), ε, `) = (x0, ε =
√
`

r0
, `)

corresponding to a trapped null geodesic, result in the geodesic remaining
trapped, if and only if the constraint ε2 = `2

r2
0

remains satisfied. In this sense,
perturbations resulting in trapped null geodesics form a codimension 1 sub-
set of all perturbations of the triple (x(0), ε, `). The trapping is unstable.

3. The Klein-Gordon equation on Lorentzian manifolds

3.1. The Cauchy problem

Let Σ be a Cauchy hypersurface in a globally hyperbolic Lorentzian manifold
(M, g). We consider the equation (1.3) with initial data imposed on Σ.

Theorem 3.1. For a fixed µ ∈ R and Ψ ∈ H2
loc(Σ), Ψ′ ∈ H1

loc(Σ), there
exists a unique ψ :M→ R, with ψ|S ∈ H2

loc(S), nSψ|S ∈ H1
loc(S), for all

spacelike submanifolds S ⊂M with unit future normal nS in M, satisfying

(�g − µ2)ψ = 0,

ψ|Σ = Ψ,

nΣψ|Σ = Ψ′.

For m ≥ 1, if Ψ ∈ Hm+1
loc (Σ), Ψ′ ∈ Hm

loc(Σ), then ψ|S ∈ Hm+1
loc (S), nSψ|S ∈

Hm
loc(S). Moreover, if Ψ1, Ψ′1 and Ψ2, Ψ′2 as above and Ψ1 = Ψ2, Ψ′1 = Ψ′2

in an open set U ⊂ Σ, then ψ1 = ψ2 in M\ J±(Σ \ Ū).

The last statement in the theorem above is called the domain of de-
pendence property of the wave equation. In particular, it implies that a
solution ψ of (1.3) in the static region R∩ J+(Σ) of Nariai is independent
of the data Ψ,Ψ′ on Σ \ Σ0. This follows from the fact that there exist no
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causal geodesics connecting points in Σ \ Σ0 to points in R∩ J+(Σ). For
this reason, we are able to restrict our analysis to the region R of Nariai.

Note that in both Nariai and PH we do not impose any decay of Ψ,Ψ′

along the initial hypersurface Σ.

3.2. Spherical harmonic mode decomposition

Since Nariai and PH are spherically symmetric, we can decompose ψ as
follows:

ψ(t, x, θ, φ) =

∞∑
l=0

m=l∑
m=−l

ψm,l(t, x)Y m,l(θ, φ),

where Y m,l ∈ L2(S2) are the spherical harmonics, which form an orthonor-
mal basis under the standard inner product on L2(S2). For convenience, we
denote by (t, x, θ, φ) the static coordinates in the region R of Nariai and also
the standard global coordinates in PH.

We define the harmonic modes by

ψl(t, x, θ, φ) :=

m=l∑
m=−l

ψm,l(t, x)Y m,l(θ, φ).

In particular, since Y 0,0 ≡ 1, ψ0 is a spherically symmetric harmonic mode.
Moreover, we denote

ψl≥L :=

∞∑
l=L

ψl.

By the properties of spherical harmonics, we have that

�g(ψm,lY
m,l) =

(
Sψm,l −

l(l + 1)

r2
0

ψm,l

)
Y m,l,

where S is an operator on Q. By linear independence of Y m,l, we therefore
have that (�g − µ2)ψ = 0 if and only if (�g − µ2)(ψm,lY

m,l) = 0, so in par-
ticular, each ψl satisfies (1.3) separately. Moreover, for ψ = ψl, (1.3) reduces
to (1.6) with

m2
l = r−2

0 l(l + 1).
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In the massless µ = 0 case, we can find an explicit expression for ψ0 in
terms of the spherical means of the initial data,

Ψ0(t, x) =
1

AreaSr

∫
S2

Ψ(t, x, θ, φ)r2dµgS2 ,

Ψ′0(t, x) =
1

AreaSr

∫
S2

Ψ′(t, x, θ, φ)r2dµgS2 .

by using the property that r = r0 is constant on the spacetimes.
Indeed, in a double-null foliation (u, v, θ, φ), we have that

0 = (�g − µ2)ψ0 =
1√
−det g

∂α

(√
−det ggαβ∂βψ0

)
− µ2ψ0(3.1)

= −4Ω−2∂u∂vψ0 − µ2ψ0.

When µ = 0, (3.1) is equivalent to the 1+1-dimensional wave equation
in (u, v) coordinates. We therefore have that

∂uψ0(u, v) = ∂uψ0(u, vΣ(u)),

where (u, vΣ(u)) is a point on Σ.
Consequently, in both Nariai and PH, we can write down an explicit

expression for ψ0 that is reminiscent of d’Alembert’s formula,

(3.2) ψ0(u, v) = ψ0(uΣ(v), v) +

∫ u

uΣ(v)
∂uψ0(ū, vΣ(ū)) dū.

3.3. The vector field method

Let V be a vector field in a Lorentzian manifold (M, g). We consider the
stress-energy tensor T[ψ] corresponding to (1.3), with components

Tαβ[ψ] = ∂αψ∂βψ −
1

2
gαβ

(
∂γψ∂γψ + µ2ψ2

)
.

Let JV [ψ] denote the energy current corresponding to V , which is obtained
by applying V as a vector field multiplier, i.e. in components

JVα (ψ) = Tαβ[ψ]V β.

An energy flux is an integral of JV [ψ] contracted with the normal to a hyper-
surface with the natural volume form corresponding to the metric induced
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on the hypersurface. If the hypersurface is null, the volume form is chosen
such that Stokes’ theorem holds as below.

Consider a bounded spacetime region D, with a boundary ∂D that is a
union of spacelike hypersurfaces S1, S2, timelike hypersurfaces T1, T2 and
null hypersurfaces N1 and N2. We have by Stokes’ Theorem that

Figure 7. A diagrammatic representation of a spacetime region D with
boundary ∂D and a choice of normal directions n∂D.

∫
D

div JV [ψ] =

∫
S1

JV [ψ] · nS1
+

∫
S2

JV [ψ] · nS2
+

∫
T1

JV [ψ] · nT1

+

∫
T2

JV [ψ] · nT2
+

∫
N1

JV [ψ] · nN1
+

∫
N2

JV [ψ] · nN2
,

where the null normals nNi and the volume form on Ni are chosen such that
the theorem holds as above.

In the language of [14] we refer to the divergence term

KV [ψ] := Tαβ[ψ]∇αVβ = divJV [ψ]

as the compatible current to JV [ψ].
The vector field method consists of applying Stokes’ Theorem with care-

fully chosen vector fields to suitable spacetime regions. In particular, if
(M, g) is a spacetime satisfying the Dominant Energy Condition, JV ·W
satisfies the following positivity property:

Lemma 3.2. Let V,W be future-directed causal vector fields. Then
JW [ψ] · V ≥ 0 if (M, g) satisfies the dominant energy condition.
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Moreover, if (M, g) is stationary, with a timelike Killing vector field T ,
KT vanishes and we obtain conservation of the energy fluxes of JT with
respect to suitable spacelike hypersurfaces.

4. Main theorems

4.1. Results in Nariai and dSn

In this section we present the results for (1.3) on a Nariai background and
on n-dimensional de Sitter space.

4.1.1. Results in Nariai. We first consider the Cauchy problem for (1.3)
(see Section 3.1) in a static region R in Nariai, introduced in Section 2.3.2,
that is covered by the static coordinates (t, x, θ, φ). We foliate R by the
compact spacelike hypersurfaces Στ , see Section 2.5.1.

The current JT [ψ] corresponding to the Killing vector field T = ∂t is
defined in Section 3.3. The energy flux of JT can be estimated by

JT [ψ] · nΣτ ∼ (∂tψ)2 + (1−Kx2)(∂xψ)2 + | /∇ψ|2 + µ2ψ2,

and it degenerates at the cosmological horizons {x = ± 1√
K
}.

In Section 5 we consider the timelike local red-shift vector fields N and
N . The corresponding currents JN [ψ] and JN [ψ] are each positive definite
and non-degenerate at one of the cosmological horizons, so

JN [ψ] · nΣτ + JN [ψ] · nΣτ ∼ (∂tψ)2 + (∂xψ)2 + | /∇ψ|2 + µ2ψ2.

The differences between N , N and T are denoted R = N − T and R =
N − T .

Furthermore, by spherical symmetry of Nariai we can decompose the
solutions ψ to (1.3) into spherical harmonic modes ψl, defined in Section 3.2.

We use the shorthand notation Ωkψ, to denote the angular derivatives

Ωj1
1 Ωj2

2 Ωj3
3 (ψ),

where Ωi, i = 1, 2, 3 are the generators of the SO(3) symmetry and j1 + j2 +
j3 = k. Since Ωk is a product of Killing vector fields, we can commute Ωk

with the Klein-Gordon operator.
We also consider the Cauchy problem for (1.3) in the entire Nariai space-

time, where we work in global coordinates (t̃, x̃, θ, φ). We foliate the entire
spacetime by the spacelike hypersurfaces Σ̃τ , see Section 2.5.1.
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The global vector field Ñ is defined by,

Ñ =
1

cosh t̃
∂t̃,

with corresponding energy current

J Ñ · nΣ̃τ
dµΣ̃τ

∼
[
(∂t̃ψ)2 +

1

cosh2 t̃
(∂x̃ψ)2 + | /∇ψ|2 + µ2ψ2

]
dµS2dx̃.

We can moreover commute (1.3) with the globally spacelike Killing vector
field X =

√
K∂x̃.

All integrals below are with respect to the natural volume form corre-
sponding to the induced metric. The following statements hold in Nariai:

Theorem 4.1 (Boundedness in the static region of Nariai). There
exists a constant C = C(e,Λ,Σ) > 0 such that for all µ ∈ R∫

Στ

JN [ψ] · nΣτ + JN [ψ] · nΣτ ≤ CEN [ψ],

where

EN [ψ] :=

∫
Σ0

JN [ψ] · nΣ0
+ JN [ψ] · nΣ0

.

Additionally, there exists a constant C = C(µ, e,Λ,Σ) > 0 such that

||ψ||L∞(Στ ) ≤ C
[√

EN [ψ] + EN [Tψ] + EN [Rψ] + EN [Rψ]

+ ||Ψ0||L∞(Σ0) + ||Ψ′0||L1(Σ0) + ||∇ΣΨ0||L1(Σ0)

]
,

If µ 6= 0, we can remove the L1 and L∞ norms of Ψ0 and Ψ′0 on the right-
hand side of the above inequality and we have that C = µ−2C̃(e,Λ,Σ).

Theorem 4.1 is proved in Propositions 5.2 and 5.3.

Theorem 4.2 (Decay in the static region of Nariai). There exists
a constant C = C(e,Λ,Σ) > 0 such that for all µ ∈ R and k ∈ N we can
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estimate ∫
Στ

JN [ψ] · nΣτ + JN [ψ] · nΣτ ≤ Cτ−k
∑
|m|≤k

EN [Ωmψ].

Additionally, if we restrict ψ = ψl≥1 in the µ = 0 case, there exists a
constant Ck = Ck(k, e,Λ,Σ, µ) > 0, such that for all µ ∈ R

||ψ||L∞(Στ ) ≤ Ckτ−
k

2

√∑
|m|≤k EN [Ωmψ] + EN [ΩmTψ] + EN [ΩmRψ] + EN [ΩmRψ].

If µ 6= 0, we have that Ck = µ−2C̃k(e,Λ,Σ).
Moreover, there exist constants C = C(µ, e,Λ,Σ) > 0 and c̃(e,Λ,Σ) > 0,

such that for c(l) = c̃
l(l+1) when l ≥ 1 and c(0) = c̃, we can estimate∫

Στ

JN [ψl] · nΣτ + JN [ψl] · nΣτ ≤ e−c(l)τEN [ψl],

||ψl||L∞(Στ ) ≤ Ce−
c(l)

2
τ
√
EN [ψl] + EN [Tψl] + EN [Rψl] + EN [Rψl],

where in the second estimate we need to take l ≥ 1 if µ = 0 and we have that
C = µ−2C̃(e,Λ,Σ), if µ 6= 0.

Theorem 4.2 is proved in Propositions 6.6, 6.8 and 6.9.

Theorem 4.3 (Global boundedness in Nariai). For any τ ≥ 0, we can
estimate ∫

Σ̃τ

J Ñ [ψ] · nτ ≤
∫

Σ̃
J Ñ [ψ] · nΣ̃ =: ẼN [ψ].

Moreover, there exists a constant C = C(K,µ) > 0 such that

||ψ||2
L∞(Σ̃τ )

≤ C
∑

|k|+|m|≤2,|m|≤1

ẼN [ΩmXkψ]

+ C
(
||Ψ0||2L∞(Σ̃τ0 )

+ ||Ψ′0||2L1(Σ̃τ0 )
+ ||∂x̃Ψ0||2L1(Σ̃τ0 )

)
,

where in the µ 6= 0 case C = C̃(K)r−2
0 µ−2, and we can remove the L1 and

L∞ norms of Ψ0 and Ψ′0 on the right-hand side of the above inequality.

Theorem 4.3 is proved in Proposition 7.1 and Corollary 7.2.
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Theorem 4.4 (Global decay in Nariai). Let ψ = ψl≥1 if µ = 0. Then
there exist constants C = C(K, r0, µ) > 0 and c = c(K,µ, r0) > 0, such that∫

Σ̃τ

J Ñ [ψ] · nτ ≤ Ce−cτ ẼN [ψ],

where in the case µ 6= 0, C = C̃(r0,K)ec̃(K)τ0, with
τ0 > max{1, log(2

√
2
√
K|µ|−1)} and c = (1 + µ−2 + µ2)−1c̃(K, r0).

Moreover,

||ψ||2
L∞(Σ̃τ )

≤ Ce−cτ
∑

|k|+|m|≤2,|m|≤1

ẼN [ΩmXkψ].

Theorem 4.4 is proved in Corollaries 8.3 and 8.4.

Theorem 4.5 (Non-decay in Nariai for µ = 0). Let µ = 0. There exists
a constant

ψ = ψ(e,Λ,Σ0,Ψ0,Ψ
′
0),

such that in R
ψ(u, v, θ, φ)→ ψ,

as u→∞ and v →∞. For generic Ψ0 and Ψ′0, ψ is non-vanishing.

Theorem 4.5 is proved in Section 12.

4.1.2. Results in dSn. Theorem 4.4 applied to ψ = ψ0 implies in par-
ticular uniform global decay of solutions to (1.3) with µ 6= 0 in dS2. The
results can in fact be generalised to obtain uniform global decay of solutions
ψ to (1.3) with µ 6= 0 in dSn, with n ≥ 2.

Let (t̃, θ1, . . . , θn−2, φ) be global coordinates on dSn, where t̃ ∈ R and
(θ1, . . . , θn−2, φ) are the standard n-spherical polar coordinates on Sn−1, in
which the metric is given by

gdSn = K−1(−dt̃2 + cosh2 t̃/gSn−1),

where K > 0. See for example [31]. We now take the global red-shift vector
field to be

Ñ =
1

cosh(n−1) t̃
∂t̃.
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Theorem 4.6 (Decay in dSn for µ 6= 0). Let s ∈ N be the smallest integer
satisfying s > n−1

2 . Then there exists constants C = C(n,K, µ) > 0 and c =
c(n,K, µ) > 0 such that

|ψ|2(t̃, θ1, . . . , θn−2, φ) ≤ Ce−ct̃
∑
|k|≤s

Ẽ[Ωkψ],

where Ωi, i = 1, . . . , n are the generators of (n− 1)-spherical symmmetry,
C = C̃(n,K)ec̃(n,K)τ0, with τ0 > max{1, log(2

√
2
√
K
√

n
2 |µ|

−1)} and c = (1 +
µ−2)−1c̃(n,K) and

Ẽ[ψ] :=

∫
{t̃=0}

√
KJ Ñ [ψ] · ∂t̃.

Theorem 4.6 is proved in Corollary 9.4.

4.2. Results in Plebański-Hacyan

We also consider the Cauchy problem for (1.3) in PH. We work in (t, x, θ, φ)
coordinates, where (t, x) are the rectilinear coordinates on R1+1.

It is convenient to consider double-null coordinates (u, v, θ, φ), where u =
t− x and v = t+ x. We can express Σ as a graph in double-null coordinates

Σ = {(uΣ(v), v, θ, φ), | v ∈ R, (θ, φ) ∈ S2}
= {(u, vΣ(u), θ, φ), |u ∈ R, (θ, φ) ∈ S2}.

We foliateM by Στ , see Section 2.5.2. The current JT [ψ] corresponding
to the vector field T = ∂t is defined in Section 3.3. The energy flux of JT

can be estimated by

JT [ψ] · nΣτ ∼ (∂tψ)2 + (∂xψ)2 + | /∇ψ|2 + µ2ψ2.

We can foliate the interior of a lightcone C by hyperboloids Hs, see
Section 2.5.2. A natural Killing vector field to employ in the hyperboloidal
foliation is the boost vector field Y = x∂t + t∂x.

All integrals below are with respect to the natural volume form corre-
sponding to the induced metric. The following statements hold in Plebański-
Hacyan:
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Theorem 4.7 (Boundedness in Plebański-Hacyan). For all µ ∈ R we
have that ∫

Στ

JT [ψ] · nΣτ ≤ EPH [ψ],

where

EPH [ψ] :=

∫
Σ
JT [ψ] · nΣ0

.

Additionally, there exists a constant C̃ = C̃(µ,Λ,Σ) > 0 such that

||ψ||L∞(Στ ) ≤ C̃
[√

EPH [ψ] + EPH [Tψ]

+ ||Ψ0||L∞(Σ) + ||Ψ′0||L1(Σ) + ||∇ΣΨ0||L1(Σ)

]
,

If µ 6= 0, we can remove the L1 and L∞ norms of Ψ0 and Ψ′0 on the right-
hand side of the above inequality and we have that C = µ−2C̃(Λ,Σ).

Theorem 4.7 is proved in Proposition 10.1.

Theorem 4.8 (Integrated local energy decay). For any x0 > 0, there
exists a constant C = C(Λ,Σ, x0) > 0 such that

∫ ∞
0

(∫
Στ∩{|x|≤x0}

JT [ψ] · nΣτ

)
dτ ≤ C

∑
|k|≤1

EPH [Ωkψ].

Theorem 4.8 is proved in Proposition 11.5

Theorem 4.9 (Decay in Plebański-Hacyan). There exists a constant
C = C(µ,Λ,Σ) > 0 such that

||ψ||L∞(Στ ) ≤ Cτ−
1

2

√∑
|k|≤1

EPH [Ωkψ] + EPH [ΩkY ψ],

where we need to restrict ψ = ψl≥1 if µ = 0 and we have that C = µ−2C̃(Λ,Σ)
if µ 6= 0.

Theorem 4.9 is proved in Proposition 11.3.
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Theorem 4.10 (Non-decay in Plebański-Hacyan for µ = 0). Let µ =
0. On N+

A , ψ attains the values

ψ|N+
A

(u) = ψ0(u, vΣ(u)) +

∫ ∞
vΣ(u)

∂vψ0(uΣ(v̄), v̄) dv̄.

Similarly, on N+
B ψ attains the values

ψ|N+
B

(v) = ψ0(uΣ(v), v) +

∫ ∞
uΣ(v)

∂uψ0(ū, vΣ(ū)) dū.

For generic initial Ψ0 and Ψ′0, the above expressions converge to non-zero
constants as u→∞ or v →∞.

Theorem 4.10 is proved in Section 12.

5. Uniform boundedness in the static region of Nariai

In this section we will show that we can obtain uniform boundedness results
in the static region, without making use of the Killing vector field X, but by
using the Killing vector field T together with the local red-shift along the
cosmological horizons bounding R. We will moreover see that we can prove
uniform boundedness of solutions to (1.3) independently of an integrated
local energy decay statement.

5.1. Energy boundedness

First, recall that the control of the Ḣ1(Σ) norm of ψ by JT [ψ] · nΣ degen-
erates at the horizons

JT [ψ] · nΣ ∼ (∂tψ)2 + (∂xψ)2 + (1−Kx2)
(
| /∇ψ|2 + µ2ψ2

)
.

Moreover, JT immediately provides uniform boundedness of a degener-
ate energy after applying Stokes’ Theorem in the region R(0, τ),∫

Στ

JT [ψ] · nτ ≤
∫

Σ0

JT [ψ] · n0,

where we used that divJT [ψ] = 0.
In order to obtain a non-degenerate energy boundedness statement, we

introduce the red-shift vector fields N and N . Either N or N̄ is timelike at
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a cosmological horizon. Therefore we can estimate

JN [ψ] · nΣ + JN [ψ] · nΣ ∼ (∂tψ)2 + (∂xψ)2 + | /∇ψ|2 + µ2ψ2.

The theorem below is proved in a more general setting in [19] for the
µ = 0 case, but it immediately holds for µ 6= 0.

Theorem 5.1 (The Dafermos-Rodnianski Red-Shift Theorem).
There exist timelike vector fields N and N in the static region R of Nariai,
with positive constants B1 and B2 and bounds 0 < x1 < x0 <

√
K, such that

(i)

KN [ψ] ≥ B1J
N [ψ] · nτ x ≤ −x0,

KN [ψ] ≥ B1J
N [ψ] · nτ x ≥ x0.

(ii)

N = T x ≥ −x1,

N = T x ≤ x1.

(iii)

|KN [ψ]| ≤ B2J
T [ψ] · nτ , and JN [ψ] · nτ ∼ JT [ψ] · nτ −x0 ≤ x ≤ −x1,

|KN [ψ]| ≤ B2J
T [ψ] · nτ , and JN [ψ] · nτ ∼ JT [ψ] · nτ x1 ≤ x ≤ x0.

The red-shift effect results in a non-degenerate energy boundedness state-
ment.

Proposition 5.2. There exists a uniform constant C > 0, such that

(5.1)

∫
Στ

JN [ψ] · nτ + JN [ψ] · nτ ≤ C
∫

Σ0

JN [ψ] · n0 + JN [ψ] · n0.

Proof. We apply Stokes’ theorem to the energy flux with respect to N . The
N case follows analogously. Let 0 ≤ τ ′ < τ , then by the Red-shift Theorem∫

Στ

JN · nτ ≤
∫

Σ′τ

JN · nτ ′ −
∫
R(τ ′,τ)

KN

≤
∫

Στ′

JN · nτ ′ + C

∫ τ

τ ′

∫
Στ̄∩{−x0≤x≤−x1}

JT · nτ dτ̄

− C
∫ τ

τ ′

∫
Στ̄∩{x≤−x0}

JN · nτ dτ̄
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We add
∫ τ
τ ′

∫
Στ̄
JN · nτ̄ dτ̄ to both sides and rearrange the terms to obtain,∫

Στ

JN · nτ −
∫

Στ′

JN · nτ ′ +

∫ τ

τ ′

∫
Στ̄

JN · nτ̄ dτ̄ ≤ C
∫ τ

τ ′

∫
Στ̄

JT · nτ̄ dτ̄

≤ C(τ − τ ′)
∫

Στ′

JT · nτ ′ ,

where we used the degenerate energy bound in the last equality. The above
inequality is of the form,

f(t)− f(t′) +

∫ t

t′
f(s) ds ≤ C(t− t′)D0.

By dividing by t− t′ and taking the limit t→ t′ we obtain the differential
inequality

d

dt
(tf(t)) ≤ CD0

and therefore f(t) ≤ CD0. We can conclude that∫
Στ

JN [ψ] · nτ ≤ C
∫

Σ0

JN [ψ] · n0.

�

5.2. Pointwise boundedness

We use standard Sobolev and elliptic estimates on Στ to obtain pointwise
estimates from the energy estimate in Proposition 5.2.

Proposition 5.3. In Nariai there exists a uniform constant C > 0 such
that

||ψ||L∞(Στ ) ≤ C
(
||Ψ0||L∞(Σ) + ||Ψ′0||L1(Σ) + ||∂xΨ0||L1(Σ)

+

√
EN [ψ] + EN [Tψ] + EN [Rψ] + EN [Rψ]

)
,

where

EN [ψ] =

∫
Σ0

{
JN [ψ] · n0 + JN [ψ] · n0

}
.

If µ 6= 0, we can leave out the norms of Ψ0 and Ψ′0 everywhere above.
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Proof. By compactness of Σ0, all metric components and their derivatives
are bounded, which justifies the use of the following elliptic estimate, see for
example the Appendix of [5] for a derivation,
(5.2)

||gij(∇2ψ)ij ||2L2(Σ0) ≤ C
∫

Σ0

{
JN [ψ] · nΣ + JN [Nψ] · nΣ + JN [Nψ] · nΣ

}
,

where i, j denote components along Σ. We can in fact conclude that

||ψ||2
Ḣ1(Σ0)

+ ||ψ||2
Ḣ2(Σ0)

≤ ||ψ||2
Ḣ1(Σ0)

+ C||gij(∇2ψ)ij ||2L2(Σ0)

≤ C
∫

Σ0

{
JN [ψ] · nΣ + JN [Nψ] · nΣ + JN [Nψ]

}
.

Together with the Sobolev inequality in Proposition A.4 and the Poincaré
inequality in Proposition B.1, we get for µ = 0 and ψ = ψ≥1

||ψ≥1||2L∞(Σ0) ≤ C
∫

Σ0

{
JN [ψ] · nΣ + JN [Nψ] · nΣ + JN [Nψ]

}
,

where C > 0 is a uniform constant.
If µ 6= 0, we no longer need Proposition B.1 and we find that

||ψ||2L∞(Σ0) ≤ C
∫

Σ0

{
JN [ψ] · nΣ + JN [Nψ] · nΣ + JN [Nψ]

}
.

By construction, Στ is isometric to Σ0 for all τ ≥ 0, so the above estimates
holds with Σ0 replaced by Στ and with C unchanged. We can moreover
estimate

JN [ψ] · nΣ ≤ C
[
JN [Tψ] · nΣ + JN [Rψ] · nΣ

]
,

where R = N − T and C > 0 is a uniform constant. Since [�g, T ] = 0, by
the Killing property of T , the estimates in Proposition 5.2 hold for Tψ
replacing ψ.

However, when commuting �g with Y , we have to estimate an additional
spacetime integral of the error term R(ψ)�g(Rψ), when replacing ψ with Rψ
in Proposition 5.2. In [19] it is shown in a very general setting that the error
terms in the region {|x| ≤ x0} can be absorbed by the remaining spacetime
integrals of KN [Rψ], KN [ψ] and KN [Tψ] if x0 is suitably large, relying on
the positivity of the surface gravity to infer that the term proportional to
(R2ψ)2 (that does not come with a smallness constant) has a favourable
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sign. We can therefore conclude that∫
Στ

JN [Nψ] · nτ ≤ C
∫

Σ0

JN [Tψ] · n0 + JN [Rψ] · n0,

where C > 0 is a uniform constant. A similar estimate holds for N replacing
N and R = N − T .

We can conclude in the case that µ 6= 0,

||ψ||2L∞(Στ ) ≤ C
∫

Στ

JN [ψ] · nτ + JN [ψ] · nτ + JN [Nψ] · nτ + JN [Nψ] · nτ

≤ C(EN [ψ] + EN [Tψ] + EN [Rψ] + EN [Rψ]).

(5.3)

Similarly, for µ = 0 we conclude

||ψ≥1||2L∞(Στ ) ≤ C(EN [ψ] + EN [Tψ] + EN [Rψ] + EN [Rψ])(5.4)

where we used the orthonormality of harmonic modes:∫
S2

ψlψ
′
l = δll′

∫
S2

ψ2
l ,

where δll′ is the Kronecker delta.
We are left with estimating |ψ0| in the µ = 0 case. By (3.2) we find that

||ψ0||2L∞(Στ ) ≤ C
[
||Ψ0||2L∞(Σ0) + ||Ψ′0||2L1(Σ0) + ||∂xΨ0||2L1(Σ0)

]
,

where C > 0 depends on the choice of Σ. Consequently, we can estimate

||ψ||2L∞(Στ ) ≤ C
(
||Ψ0||2L∞(Σ0) + ||Ψ′0||2L1(Σ0) + ||∂xΨ0||2L1(Σ0)(5.5)

+ EN [ψ] + EN [Tψ] + EN [Rψ] + EN [Rψ]

)
.

�

We have now proved Theorem 4.1.

6. Uniform decay in the static region of Nariai

We obtain energy decay inR by first showing that an integrated local energy
decay statement holds.
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6.1. Integrated energy decay

Recall from Section 2.3.2 that

x∗(x) =
1√
K

arctanh
(√

Kx
)
.

The metric in the region R can be expressed in (t, x∗, θ, φ) coordinates,

g = D(−dt2 + dx2
∗) + r2

0/gS2 ,

where D(x∗) := (1−Kx2).
The compatible current KV to JV , with V = f(x∗)∂x∗ , is given by

KV [ψ] =
1

2
(1−Kx2)−1f ′

[
(∂tψ)2 + (∂x∗ψ)2

]
+

[
Kxf − 1

2
f ′
] (
| /∇ψ|2 + µ2ψ2

)
.

We need to have f ′ > 0 in order to control (∂tψ)2 and (∂x∗ψ)2. In that case,
we necessarily lose control of the remaining terms at the photon sphere
x = 0. We therefore need to modify the current JV .

Consider the first modified current,

JV,1α := JVα +
f ′

2
ψ∂αψ −

1

4
ψ2∂αf

′.

The corresponding first modified compatible current is given by,

KV,1 : = ∇αJV,1α

= KV +
1

2
(∂αf ′)ψ∂αψ +

f ′

2
∂αψ∂αψ +

f ′

2
ψ�gψ

− 1

2
ψ∂αψ∂αf

′ − 1

4
ψ2�gf

′

= KV +
f ′

2
gαβ∂αψ∂βψ −

1

4D
f ′′′ψ2 +

µ2

2
f ′ψ2

=
1

D
f ′(∂x∗ψ)2 +Kxf

(
| /∇ψ|2 + µ2ψ2

)
− 1

4D
f ′′′ψ2.

We now have potential non-negativity of the terms above, for a suitable
choice of f . However, we have lost control over (∂tψ)2 and the control over
| /∇ψ|2 still degenerates at x = 0. This is a manifestation of the photon sphere
{x = 0} containing trapped null geodesics.
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Observe that

(6.1)

∫
S2

| /∇ψl|2 dµS2 =
l(l + 1)

r2
0

∫
S2

ψ2
l dµS2 .

We will first restrict to single harmonic modes ψ = ψl with l ≥ 1, in order
to control | /∇ψl|2 by ψ2

l at the cost of a factor l(l + 1), which will result in
the loss of an angular derivative in the final estimate.

In the regime |x| ≥ x0 we can use the compatible red-shift currents KN

and KN to control badly signed error terms. It is essential that these error
terms can be taken arbitrarily small compared to the terms with a good sign
in the region x1 ≤ |x| ≤ x0, as the red-shift currents KN and KN fail to be
non-negative definite in this region. In order to control boundary currents,
we will also cut off f at a large x∗, so that JV,1 vanishes for suitably large
x∗.

Lemma 6.1. Restrict l ≥ 1. Let α > x∗(x0) be a suitably large constant.
Then there exists a function f : R→ R such that the corresponding current
KV,1 is non-negative when |x∗| ≤ α and vanishes for |x∗| > e

2α.
In the region |x| ≤ x0 we can control∫

S2

KV,1[ψl]DdµS2 ≥ Cα−3

∫
S2

(∂xψl)
2 +

1

l(l + 1)
| /∇ψl|2 + µ2ψ2

l dµS2 ,

where C > 0 is a constant independent of l and α.
In the region x1 ≤ |x| ≤ x0 we can moreover control∫

S2

KV,1[ψl]DdµS2 ≥ Cα−1

∫
S2

(∂xψl)
2 + | /∇ψl|2 + µ2ψ2

l dµS2 ,

where C > 0 is a constant independent of l and α.
Furthermore, for |x∗| ∈ [α, e2α], we can control∫

S2

KV,1[ψl]DdµS2 ≥ −Cα−3

∫
S2

(∂xψl)
2 + | /∇ψl|2 + µ2ψ2

l dµS2 ,

where C > 0 is a constant independent of l and α.
If l = 0, the above estimates hold without the | /∇ψl|2 term.

Proof. We define f̃ : (−eα,∞)→ R by

f̃(x∗) =
(x∗
α

+ e
)

log
(x∗
α

+ e
)
−
(x∗
α

+ e
)
.
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Then f̃(x∗) ≥ 0 for x∗ ≥ 0 and f̃(x∗) ≤ 0 for −eα < x∗ < 0, so xf̃(x∗) ≥ 0
for x∗ > −eα.

Moreover,

f̃ ′(x∗) = α−1 log
(x∗
α

+ e
)
,

f̃ ′′(x∗) = α−1(x∗ + eα)−1,

f̃ ′′′(x∗) = −α−1 (x∗ + eα)−2 .

In particular, f̃ ′ > 0 and f̃ ′′′ < 0 for x∗ > −eα.
Let χ : R→ R be the function defined by

χ(z) = (1≥α ∗ ηα,R)(z),

where 1z≥α is an indicator function and ηα,R(z) := R−1η( z−αR ), where η is
the bump function defined in Lemma A.2. Take R := eα

2 − α > 0. Therefore,
χ is a cut-off function satisfying χ(|x∗|) = 1 for |x∗| ≤ α and χ(x∗) = 0 for
|x∗| ≥ e

2α.
Moreover, we can estimate

(6.2) sup
x∈R
|χ(k)(x)| ≤ R−k sup

y∈(0,1)
|η(k)(y)| ≤ CkR−k ≤ Ckα−k.

We define f : R→ R by f(x∗) = f̃(x∗)χ(|x∗|) for |x∗| ≤ e
2α and f(x∗) =

0 for |x∗| ≥ e
2α. By applying the chain rule when differentiating f , we obtain

DKV,1 = χ

[
f̃ ′D2(∂xψ)2 +KxDf̃

(
| /∇ψ|2 + µ2ψ2

)
− f̃ ′′′

4
ψ2

]
+D2f̃χ′(∂xψ)2

− 1

4

[
3f̃ ′′χ′ + 3f̃ ′χ′′ + f̃χ′′′

]
ψ2.

From the above expression, it follows that in the region |x| ≤ x0, we can
estimate

KV,1 ≥ Cα−3
[
(∂xψl)

2 + ψ2
l

]
,

where C = C(x0,K, r0, µ) > 0 is a constant that is independent of α.
Away from x = 0, in the region x1 ≤ |x| ≤ x0 we can in fact obtain an

estimate that is less degenerate in α,

KV,1 ≥ Cα−1
[
(∂xψl)

2 + | /∇ψl|2 + µ2ψ2
l

]
.

Now consider the region α < |x∗| < eα
2 .
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The terms multiplied by χ are non-negative. Moreover, we can estimate
in the region α ≤ |x∗| ≤ eα

2

|D2f̃ | ≤ C(1− tanh2(
√
Kα)) ≤ Cα−3.

Together with the bounds for the derivatives of χ in (6.2), we can therefore
estimate in the region α ≤ |x∗| ≤ eα

2 ,

KV,1 ≥ −Cα−3
[
(∂xψl)

2 + | /∇ψl|2 + ψ2
l

]
.

We integrate over S2 and apply (6.1) to obtain the statements in the
lemma. �

In order to estimate (∂tψl)
2 we will use the fact that we have control

over | /∇ψl|2 by the proposition above. We consider a different vector field
multiplier W = g(x∗)∂x∗ and use the unmodified compatible current.

Lemma 6.2. In the region |x| ≤ x0 there exists a function g : R→ R such
that we can estimate for all l ≥ 0∫
S2

(∂tψl)
2 + (∂x∗ψl)

2 dµS2 ≤ C
∫
S2

| /∇ψl|2 + µ2ψ2
l dµS2 + C

∫
S2

KW [ψl]DdµS2 ,

where C = C(x0) > 0. Moreover, for x0 suitably large KW is positive definite
when |x| ≥ x0.

Proof. Define

g(x∗) = α−1 arctan(α−1x∗),

g′(x∗) =
1

x2
∗ + α2

.

Then

KW [ψ] =
1

2
D−1g′

[
(∂tψ)2 + (∂x∗ψ)2

]
+

[
Kxg − 1

2
g′
] (
| /∇ψ|2 + µ2ψ2

)
.

We use that g′ > 0 is bounded for all x∗, together with Lemma 6.1, to arrive
at the required estimate. Moreover, for x0 and α suitably large, KW ≥ 0
outside −x0 ≤ x ≤ x0, because the g term dominates the g′ term. �
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Proposition 6.3. There exists a uniform constant C > 0, such that we can
bound for all l ≥ 1∫ τ

τ ′

∫
Στ̄∩{−x0≤x≤x0}

(
xf(x) +

1

l(l + 1)

)
×
[
(∂tψl)

2 + (∂x∗ψl)
2 + | /∇ψl|2

]
+ µ2ψ2

l dτ̄

≤ C
∫
R(τ ′,τ)

KV,1[ψl] +KW [ψl] + C

∫
R(τ ′,τ)

KN [ψl] +KN [ψl].

In the l=0 case, the above estimate holds without the factor
(
xf(x)+ 1

l(l+1)

)
.

Proof. Combining the estimates of Lemma 6.1 and Lemma 6.2 gives in par-
ticular ∫ τ

τ ′

∫
Στ̄∩{−x0≤x≤x0}

[
xf(x) +

1

l(l + 1)

]
(6.3)

×
[
(∂tψl)

2 + (∂x∗ψl)
2 + | /∇ψl|2 + µ2ψ2

l

]
dτ̄

+ α2

∫ τ

τ ′

∫
Στ̄∩{x1≤|x|≤x0}

(∂tψl)
2 + (∂x∗ψl)

2 + | /∇ψl|2 + µ2ψ2
l dτ̄

≤ Cα3

∫
R(τ ′,τ)∩{|x∗|≤α}

KV,1 + α−3KW ,

where the factor D appearing in front of KV,1 and KW on the right hand
side is absorbed into the volume form,

√
det g = Dr2

0 sin θ.
Note that the factor 1

l(l+1) → 0 as l→∞, so the estimate degenerates in
the high angular frequency limit at x = 0. If our integration domain excludes
a region around the photon sphere x = 0, we can in fact drop the 1

l(l+1) factor.
Since we want to bound the right-hand side by suitable boundary cur-

rents, we would like to extend the integration domain on the right-hand
side to the entire region R(τ ′, τ). As a result of the estimates in the region
α ≤ |x| ≤ e

2α in Lemma 6.1 and Lemma 6.2, we have that

α3

∫
R(τ ′,τ)∩{|x∗|≤α}

KV,1 ≤ α3

∫
R(τ ′,τ)

KV,1(6.4)

+ C

∫ τ

τ ′

∫
Στ̄∩{− e2α<x∗≤α}

JN · nτ dτ̄

+ C

∫ τ

τ ′

∫
Στ̄∩{α<x∗≤ e2α}

JN · nτ dτ̄ .
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By the Red-Shift Theorem, we can further estimate∫ τ

τ ′

∫
Στ̄∩{− e2α<x∗<−α}

JN · nτ dτ̄ ≤
1

B1

∫
R(τ ′,τ)

KN

+
B2

B1

∫ τ

τ ′

∫
Στ̄∩{−x0<x<−x1}

JN · nτ dτ̄ .

We can absorb the JN · nτ integral into the second integral on the left-hand
side of (6.3) by taking α > 0 suitably large. We can estimate the error terms

in [α, e2α] analogously, employing JN · nτ .
We can now conclude that∫ τ

τ ′

∫
Στ̄∩{−x0≤x≤x0}

[
xf(x) +

1

l(l + 1)

]
×
[
(∂tψl)

2 + (∂x∗ψl)
2 + | /∇ψl|2 + µ2ψ2

l

]
dτ̄

≤ C
∫
R(τ ′,τ)

KV,1 +KW + C

∫
R(τ ′,τ)

KN +KN .

�

Proposition 6.4. The following spacetime estimate holds,∫ τ

τ ′

∫
Στ̄∩{−x0≤x≤x0}

JN [ψ] + JN [ψ] · nτ dτ̄

≤ C
∑
|k|≤1

∫
Στ′

JN [Ωkψ] + JN [Ωkψ] · nτ ′ ,

where C > 0 is a uniform constant.

Proof. By boundedness of the function g, we can estimate for n a causal
normal vector field,

|JW · n| ≤ C(JN · n+ JN · n).

Moreover, by construction JV,1 vanishes for x∗ outside a bounded interval,
so JV,1 · n = 0, for n = nC+ and n = nC+ . Moreover, by (6.1) we can also
estimate

|JV,1 · nτ | ≤ CJT · nτ ,
if µ 6= 0. If µ = 0, this estimate holds only for l ≥ 1. In the l = 0 case there
is no need for the current JV,1 and we can control all derivatives by solely
employing JW and KW .
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Together with the non-degenerate energy boundedness statement we
conclude by Stokes’ theorem that∫

R(τ ′,τ)
KV,1 +KW + C

∫
R(τ ′,τ)

KN +KN

≤ C
∫

Στ′

JN [ψl] · nτ ′ + JN [ψl] · nτ ′ .

In order to obtain an l independent estimate, we apply (6.1) once more.
Moreover, Lemma 6.2 gives the required estimate for l = 0. This implies
that for all l ∫ τ

τ ′

∫
Στ̄∩{−x0≤x≤x0}

JN [ψl] + JN [ψl] · nτ dτ̄

≤ C
∑
|k|≤1

∫
Στ′

JN [Ωkψl] + JN [Ωkψl] · nτ ′ ,

By the orthonormality property of ψl and the independence of l in the
uniform constants in the above estimate, the estimate holds for general ψ.

�

Corollary 6.5. The following spacetime estimate holds∫ τ

τ ′

∫
Στ̄

JN [ψ] · nτ + JN [ψ] · nτ dτ̄(6.5)

≤ C
∑
|k|≤1

∫
Στ′

JN [Ωkψ] · nτ ′ + JN [Ωkψ] · nτ ′ ,

where C > 0 is a uniform constant.

Proof. This follows directly from Proposition 6.4 combined with the Red-
Shift Theorem in the regions {x ≥ x0} and {x < −x0}. �

6.2. Energy decay

The integrated energy decay statement (6.5) implies energy decay by an
application of the pigeonhole principle.
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Proposition 6.6.∫
Στ

JN [ψ] · nτ + JN [ψ] · nτ ≤ Ckτ−k
∑
|m|≤k

EN [Ωmψ],

where Ck > 0 is a uniform constant that depends on k ∈ N.

Proof. We will first prove the following statement by induction: there exists
a dyadic sequence {τj} such that∫

Στj

JN [ψ] · nτj + JN [ψ] · nτj

≤ Cτ−kj
∑
|m|≤k

∫
Σ0

JN [Ωmψ] · n0 + JN [Ωmψ] · n0,

where C = C(k).
The k = 0 case trivially holds by the non-degenerate energy bound. Now

suppose there exists a dyadic sequence {τj}, such that the above statement
holds for all m ≤ k. By (6.5) we can estimate∫ τj+1

τj

∫
Στ̄

JN [ψ] · nτ + JN [ψ] · nτ dτ̄

≤ C0

∑
|m|≤1

∫
Στj

JN [Ωmψ] · nτj + JN [Ωmψ] · nτj

≤ C0Ckτ
−k
j

∑
|m|≤k+1

∫
Σ0

JN [Ωmψ] · n0 + JN [Ωmψ] · n0.

By the pigeonhole principle, there must therefore exist a τj ≤ τ ′j ≤ τj+1, such
that∫

Στ′
j

JN [ψ] · nτ ′j + JN [ψ] · nτ ′j ≤ CCkτ
−k
j τ ′−1

j

∑
|m|≤k+1

∫
Σ0

JN [Ωmψ] · n0

+ JN [Ωmψ] · n0.

In particular, the sequence {τ ′2j+1} is also dyadic and we obtain∫
Στ′2j+1

JN [ψ] · nτ ′2j+1
+ JN [ψ] · nτ ′2j+1

≤ CCkτ ′
−k−1
2j+1

∑
|m|≤k+1

∫
Σ0

JN [Ωmψ] · n0 + JN [Ωmψ] · n0.
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Let τ ≥ 0 be arbitrary. Then there exists a j ∈ N such that τj ≤ τ ≤ τj+1.
By non-degenerate energy boundedness and τ ∼ τj , we conclude∫

Στ

JN [ψ] · nτ + JN [ψ] · nτ ≤ C
∫

Στj

JN [ψ] · nτj + JN [ψ] · nτj

≤ Cτ−k
∑

|m|≤k+1

∫
Σ0

JN [Ωmψ] · n0

+ JN [Ωmψ] · n0.

�

If we restrict to single modes ψ = ψl (or to low angular frequencies), l ≥ 1,
we can obtain a stronger energy decay statement, with a uniform constant
that depends on l. We will need a Grönwall-type lemma.

Lemma 6.7. Let f : R→ [0,∞) be a function that satisfies the inequalities

(i) ∫ t

t′
f(t̄) dt̄ ≤ C1f(t′),

(ii)

f(t) ≤ C2f(t′),

for all 0 ≤ t′ < t and C1,2 > 0 constants. Then there exists a numerical con-
stant c > 0 such that

f(t) ≤ C2f(0)e
− c

C1C2
t
.

Proof. Let and consider a sequence {ti} such that t0 = 0 and 2C1C2 ≤ ti −
ti−1 ≤ 4C1C2. By the pigeonhole principle, we can take ti+1 to satisfy

f(ti+1) ≤ 1

2C1C2

∫ ti+4C1C2

ti+2C1C2

f(t̄) dt̄.

By the assumptions (i) and (ii) of the lemma we can therefore estimate

f(ti+1) ≤ 1

2C2C1
C2f(ti + 2C1C2) ≤ 1

2
f(ti).

Consequently, we have for all i ∈ N that

f(ti) ≤ f(0)e−i log 2.



i
i

“2-Gajic” — 2018/11/29 — 23:37 — page 971 — #53 i
i

i
i

i
i

Linear waves on constant radius limits 971

Now let t ≥ 0. There exists a j ∈ N such that t ∈ [tj , tj+1). Moreover, we
can estimate

j ≥ t

4C1C2
.

Invoking assumption (ii), we therefore arrive at the estimate

f(t) ≤ C2f(tj) ≤ C2f(0)e
− log 2

4C1C2
t
.

�

Proposition 6.8. Let ψ = ψl, with l ≥ 0, then∫
Στ

JN [ψl] · nτ ≤ Ce−c(l)τ
∫

Σ0

JN [ψl] · nτ + JN [ψl] · nτ ,

where C > 0 is a uniform constant, independent of l and c(l) = C̃
l(l+1) for

l ≥ 1 and c(0) = C̃, where C̃ > 0 is independent of l.

Proof. The proposition follows directly from the integrated energy decay
statement for ψl with a factor l(l + 1) on the right-hand side for l ≥ 1, and
Lemma 6.7. �

6.3. Pointwise decay

We can straightforwardly obtain pointwise decay from the energy decay
statements in Propositions 6.6 and 6.8.

Proposition 6.9. If we restrict to l ≥ 1 in the µ = 0 case, we obtain the
following decay of solutions to (1.3), with suitably regular initial data, in
regions R:

||ψ||2L∞(Στ ) ≤ Cτ
−k
∑
|m|≤k

EN [Ωmψ]+EN [ΩmTψ]+EN [ΩmRψ]+EN [ΩmRψ].

where R = N − T and R = N − T , and C > 0 is a uniform constant.
Moreover, if we restrict to a single mode ψ = ψl, there exist uniform

constants C > 0 and C̃ > 0, such that for c(l) = C̃
l(l+1) when l ≥ 1 and c(0) =

C̃, we can estimate

||ψl||2L∞(Στ ) ≤ Ce
−c(l)τ (EN [ψl] + EN [Tψl] + EN [Y ψl] + EN [Y ψl]

)
,

where in the second estimate we need to take l ≥ 1 if µ = 0.
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Proof. The statements of the proposition follow from the energy estimates
in Propositions 6.6 and 6.8 by commuting �g with Y , as in Proposition 5.3.
The additional error terms are spacetime integrals of N(ψ)�g(Y ψ) and can
be absorbed into KN [Y ψ] and KN [Tψ] for suitably large x1 < x0. This can
be repeated for Y .

The restriction l ≥ 1 arises in the µ = 0 case because ψ0 is uniformly
bounded but does not decay, see Section 12. �

We have now proved Theorem 4.2.

7. Uniform boundedness in Nariai via a global method

In this section we work in the global coordinates (t̃, x̃, θ, φ) on Nariai, intro-
duced in Section 2.3.1. Consider the timelike vector field

Ñ = f(t̃)∂t̃.

The corresponding energy current through the foliation Σ̃τ introduced in
Section 2.5.1, is given by

J Ñ [ψ] · nτ =

√
Kf

2

[
(∂t̃ψ)2 + cosh−2 t̃(∂x̃ψ)2 +K−1(| /∇ψ|2 + µ2ψ2)

]
.

Proposition 7.1. Let f(t̃) = cosh−1 t̃. Then for any τ ≥ 0,

(7.1)

∫
Σ̃τ

J Ñ [ψ] · nτ ≤
∫

Σ̃
J Ñ [ψ] · nΣ̃ =: ẼN [ψ].

In particular, there exists a constant C = C(K) > 0 such that∫
R

∫
S2

(∂t̃ψ)2 + cosh−2 t̃(∂x̃ψ)2 +K−1(| /∇ψ|2 + µ2ψ2) dµS2dx̃
∣∣∣
t=τ

(7.2)

≤ Cr−2
0 ẼN [ψ].

Proof. Denote f ′(t̃) = df
dt (t̃). The compatible current KÑ corresponding to

J Ñ is given by

KÑ =
K

2
(−f ′ + f tanh t̃)[(∂t̃ψ)2 + cosh−2 t̃(∂x̃ψ)2]

+
1

2
(−f ′ − f tanh t̃)[| /∇ψ|2 + µ2ψ2].
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With the choice f(t̃) = cosh−1 t̃, f ′ = −f tanh t̃. We can therefore estimate

KÑ = Kf tanh t̃[(∂t̃ψ)2 + cosh−2 t̃(∂x̃ψ)2] ≥ 0.

By the non-negativity of KÑ , we can apply Stokes’ theorem in the spacetime
region bounded by Σ̃τ and Σ̃ to obtain (7.1).

Using the exponential growth of the volume form on Σ̃τ , dµΣ̃τ
=

K−
1

2 r2
0 cosh t̃dx̃dµS2 , the estimate (7.2) follows. �

By commuting with the spacelike Killing vector field X, we can obtain
global uniform pointwise boundedness of ψ.

Corollary 7.2. There exists a constant C = C(K,µ) > 0 such that

||ψ||2
L∞(Σ̃τ )

≤ C
∑

|k|+|m|≤2,|m|≤1

ẼN [ΩmXkψ](7.3)

+ C
(
||Ψ0||2L∞(Σ̃)

+ ||Ψ′0||2L1(Σ̃)
+ ||∂x̃Ψ0||2L1(Σ̃)

)
,

where in the µ 6= 0 case C = C̃(K)r−2
0 µ−2, with C̃(K) > 0, and we can re-

move the L1 and L∞ norms of Ψ0 and Ψ′0 on the right-hand side of the
above inequality.

Proof. Recall, X =
√
K∂x̃. We therefore commute with Ωi and X and apply

the Sobolev estimate Proposition A.4, together with the Poincaré inequality
(6.1), to obtain (7.3) in the case that ψ = ψl≥1 or µ 6= 0. ψ0 can be bounded
as in Proposition 5.3. �

We have now proved Theorem 4.3.

8. Uniform decay in Nariai via a global method

In order to obtain energy decay, we modify the current J Ñ ,

J Ñ,1α := J Ñα +
h′

2
ψ∂αψ −

1

4
ψ2∂αh

′,

where h = h(t̃) and h′(t̃) = dh
dt̃

(t̃). The corresponding modified compatible
current is defined as follows:

(8.1) KÑ,1 := ∇αJ Ñ,1α = KN +
h′

2
gαβ∂αψ∂βψ −

1

4
ψ2�gh

′,



i
i

“2-Gajic” — 2018/11/29 — 23:37 — page 974 — #56 i
i

i
i

i
i

974 Dejan Gajic

where

�gh
′ = −K(h′′′ + h′′ tanh t̃).

We will show in the proof of the proposition below that the modified energy
current J Ñ,1 globally satisfies an estimate analogous to (i) of Theorem 5.1
for the local red-shift current JN · nτ ,∫

S2

KÑ,1[ψl≥1]dµS2 ≥ C
∫
S2

J Ñ [ψl≥1] · nτdµS2 .

Proposition 8.1. Let ψ = ψl≥1. Moreover, take τ0 > max{log(2
√
Kr0), 1}.

Then there exists a constant c = c(K,µ, r0) > 0, such that∫
Σ̃τ

J Ñ [ψ] · nτ ≤ e−c(τ−τ0)

∫
Σ̃τ0

J Ñ [ψ] · nτ0 ,

where in the case µ = 0, c = c(K)(1 + r2
0)−1 > 0 and in the case µ 6= 0, c =

c̃(K)(1 + r2
0 + µ−2 + µ2r2

0)−1 > 0.

Proof. Let f(t) = cosh−1 t̃. By (8.1), we obtain the following expression for

KÑ,1:

KÑ,1 = K

(
−f ′ − h′

2

)
(∂t̃ψ)2 +K

(
−f ′ + h′

2

)
cosh−2 t̃(∂x̃ψ)2 +

h′

2
| /∇ψ|2

+
K

4

(
h′′′ + h′′ tanh t̃

)
ψ2,

where we have used that f ′ = −f tanh t̃. We take h = −f , then

h′ = −f ′ = f tanh t̃,

−f ′ − h′

2
= −f

′

2
=
f

2
tanh t̃,

−f ′ + h′

2
=

3f

2
tanh t̃.

Moreover,

h′′ =
1− sinh2 t̃

cosh3 t̃
,

h′′′ =
sinh3 t̃− 5 sinh t̃

cosh4 t̃
,
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so

h′′′ + h′′ tanh t̃ =
−4 sinh t̃

cosh4 t̃
= − 4

cosh2 t̃
h′.

The ψ2 term is the only term that has the wrong sign. However, using that
ψ = ψl≥1 and applying the Poincaré inequality (6.1), we can control

∫
S2

K

cosh2 t̃
h′ψ2 dµS2 ≤ Kr2

0

cosh2 t̃

∫
S2

h′

2
| /∇ψ|2 dµS2

≤ 1

4

∫
S2

h′

2
| /∇ψ|2 dµS2 ,

if we require cosh τ0 ≥ 2
√
Kr0. This follows in particular from the lower

bound τ0 > max{log(2
√
Kr0), 1}. Hence,∫

S2

J Ñ [ψ] · nτ ≤
C

tanh τ0

∫
S2

KÑ,1[ψ] ≤ C
∫
S2

KÑ,1,

where in the case µ = 0, C > 0 is a numerical constant and in the case µ 6= 0,
C = C̃(K)(µ2r2

0 + 1), with C̃(K) > 0.
We can estimate∫

S2

J Ñ,1 · nτ dµS2 =

∫
S2

J Ñ · nτ −
√
K
f tanh t̃

2
ψ∂tψ

−
√
K

4
ψ2 1− sinh2 t̃

cosh2 t̃
f dµS2

≤ C
∫
S2

J Ñ · nτ dµS2 ,

where C = C̃(K)(r2
0 + 1) > 0 if µ = 0 and C = C̃(K)(µ−2 + 1) > 0 if µ 6= 0.

Applying Stokes’ theorem in the spacetime region bounded by Σ̃τ and
Σ̃τ0 , together with the boundedness statement of Proposition 7.1 therefore
results in the estimate∫ τ

τ0

∫
Σ̃τ̄

J Ñ · nτ dτ̄ ≤ C
∫
J+(Σ̃τ0 )∩J−(Σ̃τ )

KÑ,1 ≤ C
∫

Σ̃τ0

J Ñ · nτ0 ,

where C = C̃(K)(1 + r2
0) > 0 if µ = 0 and C = C̃(K)(µ2r2

0 + 1)(1 + µ−2) >
0 if µ 6= 0.
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We apply energy boundedness from Proposition 7.1 and Lemma 6.7 to
obtain the decay estimate∫

Σ̃τ

J Ñ [ψ] · nτ ≤ e−c(τ−τ0)

∫
Σ̃τ0

J Ñ [ψ] · nτ0 ,

where in the case µ = 0, c = c(K)(1 + r2
0)−1 > 0 and in the case µ 6= 0, c =

c̃(K)(1 + r2
0 + µ−2 + µ2r2

0)−1 > 0. �

Proposition 8.2. Let µ 6= 0. Take τ0 > max{log(2
√

2
√
K|µ|−1), 1}. Then

there exist a constant c = c(K) > 0, such that∫
Σ̃τ

J Ñ [ψ0] · nτ ≤ e−
c

1+µ−2 (τ−τ0)
∫

Σ̃τ0

J Ñ [ψ0] · nτ0 .

Proof. In the µ 6= 0 case we deal with the spherically symmetric modes ψ0,
satisfying

(8.2) �gψ0 = µ2ψ0,

by considering the auxiliary metric

g̃ = K−1(−dt̃2 + cosh2 t̃dx̃2) + r̃0
2
/gS2 .

We take r̃0
2 := 2µ−2. Consider ψ(t, x, θ, φ) = ψ0(t, x)Y11(θ, φ). By definition

of r̃0
2 and the expression (1.6), (8.2) is equivalent to �g̃ψ = 0, with ψ the

solution arising from initial data Ψ = Ψ0Y11, Ψ′ = Ψ′0Y11 on Στ0 .
By Proposition 8.1 applied to ψ, with respect to the metric g̃, we can

estimate ∫
R

∫
S2

|Y11|2
[
(∂t̃ψ0)2 + cosh−2 t̃(∂x̃ψ0)2 +

µ2

K
ψ2

0

]
r2

0 dµS2dx̃
∣∣∣
t̃=τ

(8.3)

≤ e−
c

1+r2
0

(τ−τ0)
∫
R

∫
S2

|Y11|2
[
(∂t̃ψ0)2 + cosh−2 t̃(∂x̃ψ0)2

+
µ2

K
ψ2

0

]
r2

0 dµS2dx̃
∣∣∣
t̃=τ0

.

Since
∫
S2 |Y11|2 dµS2 = 1 we can rewrite (8.3) to obtain∫

Σ̃τ

J Ñ [ψ0] · nτ ≤ e−
c

1+µ−2 (τ−τ0)
∫

Σ̃τ0

J Ñ [ψ0] · nτ0 ,

where c = c(K) > 0. �
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Corollary 8.3. Let ψ = ψl≥1 if µ = 0. Then there exist constants C =
C(K, r0, µ) > 0 and c = c(K,µ, r0) > 0, such that

(8.4)

∫
Σ̃τ

J Ñ [ψ] · nτ ≤ Ce−cτ ẼN [ψ],

where in the case µ 6= 0, C = C̃(r0,K)ec̃(K)τ0, with
τ0 > max{1, log(2

√
2
√
K|µ|−1)} and c = (1 + µ−2 + µ2)−1c̃(K, r0).

Proof. By the orthogonality of the modes ψl≥1 and ψ0, we can combine the
estimates in Propositions 8.1, 8.2 and 7.2 to obtain (8.4). �

Remark 8.1. It may seem that the energy decay statement of Proposi-
tion 8.3 is in contradiction with the results of Sbierski [51] mentioned in
Section 2.6, as there is no loss of derivatives due to the trapping of null
geodesics. However, these results require in particular that g(N,N) ≤ −c
for some uniform constant c > 0, where N is a timelike vector field used to
define the energy current corresponding to a foliation of spacelike hypersur-
faces. See for example Theorem 2.42 of [51]. We have that g(Ñ , Ñ)→ 0 as
t→∞, so the results of Sbierski do not apply to ẼN .

The energy EN defined in Section 5 does however satisfy the requirements
needed for the results of Sbierski to hold, so there must be a loss of derivatives
in the corresponding energy decay statement, as seen in Proposition 6.6.

Corollary 8.4. Let ψ = ψl≥1 if µ = 0. Then there exists constants C =
C(K, r0, µ) > 0 and c = c(K,µ, r0) > 0 such that

||ψ||2
L∞(Σ̃τ )

≤ Ce−cτ
∑

|k|+|m|≤2,|m|≤1

ẼN [ΩmXkψ],

where in the case µ 6= 0, C = C̃(r0,K)ec̃(K)τ0, with
τ0 > max{1, log(2

√
2
√
K|µ|−1)} and c = (1 + µ−2 + µ2)−1c̃(K, r0).

Proof. The pointwise estimate follows from Corollary 8.3, by applying
Sobolev estimates on R× S2 as in Proposition 7.2. �

We have now proved Theorem 4.4.

Remark 8.2. We can compare the pointwise decay result from Proposi-
tion 6.9 to the result of Corollary 8.4. Using the relation (2.8) between t,
defined in the static region, and t̃, defined globally, we can replace e−cτ by
ec̃|x∗|e−c̃t in the static region, where c̃ > 0 is a uniform constant. The factor
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ec̃|x∗| blows up as we approach the cosmological horizons. Therefore, while
Corollary 8.4 gives a stronger decay rate at a fixed x compared to Proposi-
tion 6.9, the decay estimate is not uniform in x.

Moreover, unlike Corollary 8.4, Proposition 6.9 does not rely on the
geometry outside the static region.

9. Uniform decay in n-dimensional de Sitter space

The methods of Sections 7 and 8 can be generalised to spacetimes of the form
dSn ×r0 S2, where n ≥ 2, to obtain in particular uniform decay of solutions
to (1.3) with µ 6= 0 on a dSn background.

Choose r2
0 := 2µ−2 and consider dSn ×r0 S2 in global coordinates

(t̃, θ1, . . . , θn−2, φ, ϑ, ϕ), where (θ1, . . . , θn−2, φ) are coordinates on Sn−1 and
(ϑ, ϕ) are coordinates on S2. The metric is then given by

g = K−1(−dt̃2 + cosh2 t̃/gSn−1) + r2
0/gS2 .

Let Σ̃ = {t̃ = 0}, Σ̃τ := {t̃ = τ} and nτ = nΣ̃τ
the corresponding future-

directed normal. Consider the timelike vector field

Ñ = f(t̃)∂t̃.

We consider (1.2) on dSn ×r0 S2. The corresponding energy current
through the foliation Σ̃τ is given by

J Ñ [ψ] · nτ =

√
Kf

2

[
(∂t̃ψ)2 + | /∇ψ|2 +K−1r−2

0 | /̊∇ψ|
2
]
,

where | /∇ψ|2 = cosh−2 t̃| /∇Sn−1ψ|2 with /∇Sn−1 denoting the derivative re-

stricted to Sn−1, and /̊∇ denotes the derivative restricted to S2.

Proposition 9.1. Let f(t̃) = cosh−(n−1) t̃. Then for any τ ≥ 0,∫
Σ̃τ̃

J Ñ [ψ] · nτ ≤
∫

Σ̃
J Ñ [ψ] · nΣ̃ =: Ẽ[ψ].

Proof. The proof proceeds in the same way as the proof of Proposition 7.1,
with KÑ for general n given by

KÑ =
K

2
(−f ′+f(n− 1) tanh t̃)(∂t̃ψ)2+

K

2
(−f ′−f(n−1) tanh t̃+2)| /∇ψ|2

+
1

2
(−f ′ − f(n− 1) tanh t̃)r−2

0 | /̊∇ψ|
2.
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By choosing f(t̃) = cosh−(n−1) t̃, KÑ ≥ 0 easily follows. �

As in Nariai, we can perform a decomposition of ψ into spherical har-
monics on S2,

ψ =
∑
l≥0

ψl,

where

ψl(t̃, θ1, . . . , θn−2, φ, ϑ, ϕ) :=

l∑
m=−l

ψm,l(t̃, θ1, . . . , θn−2, φ)Y m,l(ϑ, ϕ).

Proposition 9.2. Let ψ = ψl≥1. Moreover, take

τ0 ≥ max

{
log

(
2
√
Kr0

√
n

2

)
, 1

}
.

Then there exists a constant c = c(K,n) > 0, such that∫
Σ̃τ

J Ñ [ψ] · nτ ≤ e
− c

1+r2
0

(τ−τ0)
∫

Σ̃τ0

J Ñ [ψ] · nτ0 .

Proof. As in Nariai, we define the modified current J Ñ ,

J Ñ,1α := J Ñα +
h′

2
ψ∂αψ −

1

4
ψ2∂αh

′,

where h = h(t̃) and h′(t̃) = dh
dt̃

(t̃). The corresponding modified compatible
current is defined as follows:

KÑ,1 := ∇αJ Ñ,1α = KN +
h′

2
gαβ∂αψ∂βψ −

1

4
ψ2�gh

′,

where

�gh
′ = −K(h′′′ + (n− 1)h′′ tanh t̃).

We take h = −f from which is is easy to derive that

h′′′ + (n− 1)h′′ tanh t̃ =
−2n

cosh2 t̃
h′.

It is straightforward to show that

KÑ,1 =
K

2
(n− 1)f tanh t̃(∂t̃ψ)2 +

n+ 1

2
Kf tanh t̃| /∇ψ|2

+
1

2
(n− 1)h′r−2

0 | /̊∇ψ|
2 − nK

2 cosh2 t̃
h′ψ2.
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We can estimate

nK

2 cosh2 t̃
h′
∫
S2

ψ2 dµS2 ≤ nK

2

r2
0

cosh2 t̃

∫
S2

1

2
h′r−2

0 | /̊∇ψ|
2 dµS2

≤ 1

4

∫
S2

1

2
h′r−2

0 | /̊∇ψ|
2 dµS2 ,

if we take τ0 ≥ max{1, log
(

2
√
Kr0

√
n
2

)
}.

The remainder of the proof proceeds in the same way as the proof of
Proposition 8.1. �

Proposition 9.3. There exist constants C = C(n,K, µ) > 0 and
c = c(n,K, µ) > 0, such that

(9.1)

∫
Σ̃τ

J Ñ [ψ0] · nτ ≤ Ce−cτ ẼN [ψ0],

where in the case µ 6= 0, C = C̃(n,K)ec̃(n,K)τ0, with
τ0 > max{1, log(2

√
2
√
K
√

n
2 |µ|

−1)} and c = (1 + µ−2)−1c̃(n,K).

Proof. The proof proceeds in the same was as the proof of Proposition 8.2,
using the results of Proposition 9.2 for ψ = ψ0Y11 and r2

0 = 2µ−2, together
with Proposition 9.1. �

The metric gdSn does not depend on the coordinates on Sn−1 so there
exist Killing vector fields Ωi, with i = 1, . . . , n that generate the (n− 1)-
spherical symmetry, as in the n = 3 case. Moreover, Proposition B.2 can be
generalised to n ≥ 2 to obtain∫

Sn−1

| /∇Sn−1ψ|2 dµSn−1 =

n∑
i=1

∫
Sn−1

(Ωiψ)2 dµSn−1 .

We can therefore commute the wave operator �g with Ωi and apply standard
Sobolev estimates on Sn−1 to obtain pointwise decay from Proposition 9.3.

Corollary 9.4. Let s ∈ N be the smallest integer satisfying s > n−1
2 . Then

there exists constants C = C(n,K, µ) > 0 and c = c(n,K, µ) > 0 such that

||ψ0||2L∞(Σ̃τ )
≤ Ce−cτ

∑
|k|≤s

Ẽ[Ωkψ0],

where C = C̃(n,K)ec̃(n,K)τ0, with τ0 > max{1, log(2
√

2
√
K
√

n
2 |µ|

−1)} and
c = (1 + µ−2)−1c̃(n,K)



i
i

“2-Gajic” — 2018/11/29 — 23:37 — page 981 — #63 i
i

i
i

i
i

Linear waves on constant radius limits 981

We have now proved Theorem 4.6.

Remark 9.1. Instead of considering the entire manifold dSn, we could
have restricted to an open subset dSn,flat that can be covered by a single
chart (t′, x′1, . . . , x

′
n−1), where t ∈ R and x′i ∈ R for all i = 1, . . . , n− 1, see

also Section 1.3.4. The metric in these coordinates is given by

g = −dt′2 + e2
√

Λ

3
t′
n−1∑
i=1

dx2
i .

By considering a foliation of constant t′ hypersurfaces, we can obtain ex-
ponential decay in t′ using the methods from this section. In particular, we

need to take Ñ = f(t′)∂t′ with f(t′) = e−(n−1)
√

Λ

3
t′ and h = −f in the mod-

ified current J Ñ,1 · nτ .
One can easily show that �gh

′ = 0, which means that we do not need to
take the product dSn,flat ×r0 S2 and restrict to ψl≥1 first, but we can consider
dSn,flat directly.

10. Uniform boundedness in Plebański-Hacyan

We now consider (1.3) on PH. Boundedness follows very easily in this case.

Proposition 10.1. In PH, we can estimate∫
Στ

JT [ψ] · nΣτ ≤ EPH [ψ],

where

EPH [ψ] :=

∫
Σ
JT [ψ] · nΣ,

and moreover, there exists a uniform constant C > 0 such that

||ψ||L∞(Στ ) ≤ C
(
||Ψ0||L∞(Σ) + ||Ψ′0||L1(Σ) + ||∂xΨ0||L1(Σ)

+
√
EPH [ψ] + EPH [Tψ]

)
.

If µ 6= 0, we can remove the L1 and L∞ norms of Ψ0 and Ψ′0 on the right-
hand side of the above inequality.

Proof. In PH there exists a uniformly timelike Killing vector field T . Non-
degenerate energy boundedness is implied by energy conservation, see the
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comments in Section 3.3. Moreover, we can apply the elliptic estimate (5.2)
with N replaced by T and commute �g with T to arrive at the pointwise
boundedness statement. �

We have now proved Theorem 4.7.

11. Uniform decay in Plebański-Hacyan

As in the static region of Nariai, we can show that integrated local energy
decay holds in PH. However, we will not use this to obtain pointwise de-
cay. Instead, we will derive pointwise decay directly by exploiting the boost
isometry in R1+1, generated by the Killing vector field Y .

11.1. Pointwise decay

To obtain global pointwise decay from global energy decay with respect to
the current JT in PH, we would need positivity of the energy flux associated
to JT , through the null boundary N+

A and N+
B . We show below that this flux

vanishes, implying instead the non-decay of the energy flux of JT through
any foliation of spacelike hypersurfaces asymptoting at the null boundaries
N+
A and N+

B .

Proposition 11.1. Let u0 < −1 and v0 < −1. If µ = 0, restrict ψ = ψl≥1.
Then ∫

N+
A∩{u≤u0}

JT [ψ] · ∂u = 0,∫
N+
B∩{v≤v0}

JT [ψ] · ∂v = 0,

if EPH [ψ] + EPH [∂uψ] +
∑
|k|≤1EPH [Ωkψ] is finite.

Proof. Without loss of generality, we only consider N+
A . Let D be the space-

time region bounded in the past by Σ, and in the future by the null hypersur-
faces {u = u0} and the null boundary segmentN+

A ∩ {u ≤ u0}. In particular,
u ≤ u0 everywhere in D.

Define the vector fields V and W in D by

V =
v

|u| log2 |u|
∂v,

W =
1

log |u|
∂u.
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We have that

KV [ψ] = − 2

|u| log2 |u|
(
| /∇ψ|2 + µ2ψ2

)
+ non-negative terms,

KW [ψ] =
2

|u| log2 |u|
(
| /∇ψ|2 + µ2ψ2

)
.

Consequently, KV [ψ] +KW [ψ] ≥ 0.
By Stokes’ theorem in D, we then have that∫
N+
A∩{u≤u0}

JV [ψ] · ∂u + JW [ψ] · ∂u ≤
∫

Σ∩{u≤u0}
JV [ψ] · nΣ + JW [ψ] · nΣ

−
∫
D
KV [ψ] +KW [ψ]

≤
∫

Σ∩{u≤u0}
JV [ψ] · nΣ + JW [ψ] · nΣ.

By the properties of Σ in Section 2.5.2, it follows that v ∼ −u on Σ ∩
{u ≤ u0}, so

JV [ψ] · nΣ + JW [ψ] · nΣ ≤ CJT [ψ] · nΣ.

Moreover, ∫
S2

ψ2dµS2 ≤ C

v

∫
S2

JV [ψ] · ∂u.

In the µ = 0 case the above estimate follows from the Poincaré inequality
on S2.

The statement of the proposition follows immediately, after commuting
with ∂u and Ωi and taking the limit v →∞. �

By homogeneity of PH, we can in fact conclude from Proposition 11.1
that ∫

N+
A

JT [ψ] · ∂u = 0,∫
N+
B

JT [ψ] · ∂v = 0.

Consider a lightcone C with the hyperboloidal foliation, see Section 2.5.2.
We can apply Stokes’ Theorem to the region bounded in the future by Hs
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and in the past by H1, in order to obtain the estimate∫
Hs
JT [ψ] · nHs ≤

∫
H1

JT [ψ] · nH1
.

Moreover, in the region |x| ≤ t we can estimate

JT [ψ] · nHs =
t

s
Ttt +

x

s
Ttx

=
t

2s

[
(∂tψ)2 + (∂xψ)2 + | /∇ψ|2 + µ2ψ2

]
+
x

s
(∂tψ)(∂xψ)

≥ t

2s
(| /∇ψ|2 + µ2ψ2).

Let Γ be a Killing vector field of (M, g). Then we can replace ψ above by
Γψ. Before proving pointwise decay of ψ, we need to make use of a scaled
Sobolev inequality on the hyperboloid.

Lemma 11.2. Let U(x) := u
(√

s2 + x2, x
)

, where U is suitably regular

such that the right-hand side below is well-defined. Then for (t, x) ∈ Hs

(11.1) t|u(t, x)|2 ≤ C
∫
R
U(x̄)2 + (s2 + x̄2)(∂x̄U)2(x̄) dx̄.

Proof. We parametrise Hs by the x-coordinate and use that t =
√
x2 + s2,

with x ∈ R. By the scaled Sobolev inequality in Lemma A.3, we have for
BR(x0) ⊂ R

R|U(x0)|2 ≤ C

[∫
|y|≤R

U2(x0 + y) dy +R2

∫
|y|≤R

(∂yU)2(x0 + y) dy

]
.

Now let R = 1
2

√
s2 + x2

0 = 1
2 t(x0).

s2 + (y + x0)2 = s2 + x2
0 + 2yx0 + y2 ≥ (2R)2 − 4R|y|+ y2 = (2R− |y|)2.

By virtue of |y| < R in BR(x0), we therefore obtain√
s2 + (y + x0)2) ≥ 2R− |y| > R.

With the above inequality, (11.1) gives the statement of the lemma directly.
�
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Proposition 11.3. If we restrict to l ≥ 1 in the µ = 0 case, we obtain the
following decay of solutions to (1.3) for all µ ∈ R, with suitably regular initial
data,

||ψ||2L∞(Στ ) ≤ Cτ
−1
∑
|k|≤1

{
EPH [Ωkψ] + EPH [ΩkY ψ]

}
.

Proof. We commute (1.3) with Y = x∂t + t∂x, which is tangent to Hs, be-
cause on Hs we have the following equality,

(Y f)2 =

(
x

(
∂t

∂x

)−1

+ t

)2

(∂xf)2 = 4(s2 + x2)(∂xf)2.

When integrating the natural volume form induced on Hs we have to take
into account the factor √

det g|HS =
s

t
.

We can now apply Lemma 11.2 to ψ and Ωiψ and integrate over S2 to obtain∫
S2

| /∇ψ|2 + µ2ψ2 dµS2

=

3∑
i=1

∫
S2

r−4
0 (Ωiψ)2 + µ2ψ2 dµS2

≤ Ct−1
3∑
i=1

∫
Hs

t

s
[(Ωiψ)2 + µ2ψ2 + (Y Ωiψ)2 + µ2(Y ψ)2]

≤ Ct−1

∫
Hs

t

s

[
| /∇ψ|2 + µ2ψ2 + | /∇Y ψ|2 + µ2(Y ψ)2

]
≤ Ct−1

∫
Hs

{
JT [ψ] · nHs + JT [Y ψ] · nHs

}
,

where we have used Proposition B.2 multiple times.
Suppose µ = 0. We apply Proposition A.4 , Proposition B.1 and Propo-

sition B.2 together with the assumption that ψ is supported on the modes
l ≥ 1, to obtain for a fixed t and x

(11.2) ||ψ||2L∞(S2) ≤ C||ψ||
2
H2(S2) ≤ C

3∑
i=1

|| /∇Ωiψ||2L2(S2),
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where C depends on r0. Hence, we can estimate in C

ψ2(t, x, θ, φ) ≤ Ct−1
∑
|k|≤1

∫
Hs×S2

{
JT [Ωkψ] · nHs + JT [Y Ωkψ] · nHs

}
≤ Ct−1

∑
|k|≤1

∫
H1×S2

{
JT [Ωkψ] · nH1

+ JT [Y Ωkψ] · nH1

}
≤ Cτ−1

∑
|k|≤1

∫
Σ0

{
JT [Ωkψ] · nΣ0

+ JT [Y Ωkψ] · nΣ0

}
where in the second to last step we used Stokes’ Theorem on the region in
M bounded in the future by H1 and in the past by Σ0.

Now suppose µ 6= 0. Because our estimate now includes a zeroth-order
term, we do not need to restrict to l ≥ 1. We use (11.2), together with

| /∇2
ψ|2 ≤ r−8

0

3∑
i,j=1

(ΩiΩjψ)2 = r−4
0

3∑
i=1

| /∇Ωiψ|2.

to obtain in C

ψ2(t, x, θ, φ) ≤ Cτ−1
∑
|k|≤1

∫
Σ0

{
JT [Ωkψ] · nΣ0

+ JT [Y Ωkψ] · nΣ0

}
,

where C now also depends on µ. Since the constants in the estimates do not
depend on the choice of C, we can conclude the statement of the proposition.

�

We have now proved Theorem 4.9.

11.2. Integrated local energy decay

The argument in the previous section is not very robust, as it fundamentally
relies on the presence of a boost vector field Y . We complement the uniform
boundedness result above by an integrated local energy decay statement, in
which Y does not appear. Because of the trapping of null geodesics along
each fixed x hypersurface, we will lose derivatives in the estimate.

We consider a vector field V = f(x)∂x. The corresponding spacetime
current KV is given by

KV [ψ] =
f ′

2

[
(∂tψ)2 + (∂xψ)2 − | /∇ψ|2 − µ2ψ2

]
.
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We need to modify the current JV [ψ] to control the | /∇ψ|2 and µψ2 terms
in the resulting compatible current.

Let

JV,1α [ψ] := JVα [ψ] +
f ′

2
ψ∂αψ −

1

4
ψ2∂αf

′.

Then

KV,1[ψ] := ∇αJV,1α [ψ] = KV [ψ] +
f ′

2
gαβ∂αψ∂βψ −

1

4
f ′′′ψ2

= f ′(∂xψ)2 − f ′′′

4
ψ2.

With the modified current we lose control over (∂tψ)2, but we are able to
control (∂xψ)2 and | /∇ψ|2 if we assume ψ = ψl, where l ≥ 1. Indeed, by the
Poincaré inequality,∫

S2

ψ2
l dµS2 =

r2
0

l(l + 1)

∫
S2

| /∇ψl|2 dµS2 .

Proposition 11.4. There exists a uniform constant C > 0 such that for
all x ∈ [−x0, x0], and l ≥ 1∫

S2

KV,1[ψl] +KW [ψl] ≥ C
∫
S2

(∂tψl)
2 + (∂xψl)

2 +
1

l(l + 1)
| /∇ψl|2 + µ2ψ2

l ,

for suitable V = f(x)∂x and W = g(x)∂x. Moreover, if µ 6= 0, we can include
l = 0, by removing the | /∇ψl|2 term in the above estimate. If µ = 0, we can
estimate directly,∫

S2

KW [ψ0] dµS2 ≥ C
∫
S2

(∂tψ0)2 + (∂xψ0)2 dµS2 ,

for all x ∈ [−x0, x0].

Proof. We restrict to the region {−x0 ≤ x ≤ x0}, where x0 can be chosen
arbitrarily large, and want to prove integrated decay in {−x0 ≤ x ≤ x0}.

Define the function f on [−x0, x0] by

f(x) = (x+ x0 + E) log(x+ x0 + E)− (x+ x0 + E) + F > 0,
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where E,F >0 are sufficiently large constant, to ensure f(x)>0 on [−x0, x0].
We obtain,

f ′(x) = log(x+ x0 + E) > 0,

f ′′(x) =
1

x+ x0 + E
> 0,

f ′′′(x) = − 1

(x+ x0 + E)2
< 0.

We can now estimate for l ≥ 1∫
S2

(∂xψl)
2 +

1

l(l + 1)
| /∇ψl|2 + µ2ψ2

l ≤ C
∫
S2

KV,1[ψl].

for all x ∈ [−x0, x0].
Now choose g(x) = ε(x+ x0 + E), for ε > 0 a suitably small constant.

Then we also gain control of (∂tψl)
2, and we absorb the badly signed terms

in KW by KV,1. �

We resort to Stokes’ Theorem to estimate the spacetime integral of KV,1,
using that X = ∂x is a Killing vector field.

Proposition 11.5. There exists a a uniform constant C > 0 such that,

∫ ∞
0

(∫
Στ∩{|x|≤x0}

JT [ψ] · nΣ̃τ

)
dτ ≤ C

∑
|l|≤1

EPH [Ωlψ].

Proof. By Stokes’ Theorem, we have for l ≥ 1∫
{|x|≤x0}

KV,1[ψ] =

∫
Στ1∩{|x|≤x0}

JV,1[ψ] · nΣτ1
−
∫

Στ2∩{|x|≤x0}
JV,1[ψ] · nΣτ2

+

∫
{x=x0}∩{0≤τ̄≤τ}

JV,1[ψ] · ∂
∂x

−
∫
{x=−x0}∩{0≤τ̄≤τ}

JV,1[ψ] · ∂
∂x
.

It easily follows from the Poincaré inequality on the sphere that

|JV,1[ψl] · nΣτ | ≤ CJT [ψl] · nΣτ1
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in {−x0 ≤ x ≤ x0} for l ≥ 1. The above estimate holds for l ≥ 0 if µ 6= 0.
We can also estimate

|JW [ψ] · nΣτ | ≤ CJT [ψl] · nΣτ1
.

Moreover,

∫
S2

JV,1[ψ] · ∂
∂x

∣∣∣
x=x0

dµS2 ≤
∫
S2

{
f

2

[
(∂xψ)2 + (∂tψ)2 − | /∇ψ|2 − µ2ψ2

]
+
ff ′

2
ψ∂xψ −

r2
0

4l(l + 1)
ff ′′| /∇ψ|2

}∣∣∣
x=x0

dµS2

≤
∫
S2

{
f

2

[(
1 +

1

ε

f ′2

2

)
(∂xψ)2 + (∂tψ)2

]

− f

2

[
1 +

r2
0

4l(l + 1)
f ′′

− ε r2
0

l(l + 1)

f ′2

2

]
| /∇ψ|2 − f

2
µ2ψ2

}∣∣∣
x=x0

dµS2

≤ C
∫
S2

J
∂

∂x [ψ] · ∂
∂x

∣∣∣
x=x0

dµS2 .

where in the second inequality we have used Young’s inequality with ε on
ψ∂xψ. We need to take ε > 0 suitably small. Similarly,

−
∫
S2

JV,1[ψ] · ∂
∂x

∣∣∣
x=−x0

dµS2

≤
∫
S2

{
− f

2

[
1− εf

′2

2

]
(∂xψ)2 − f

2
(∂tψ)2

+
f

2

[
1 +

r2
0

4l(l + 1)
f ′′ +

1

ε

r2
0

l(l + 1)

f ′2

2

]
| /∇ψ|2

}
dµS2

≤ −C
∫
S2

J
∂

∂x [ψ] · ∂
∂x

∣∣∣
x=−x0

dµS2 .

Since X = ∂
∂x is Killing, we have that KX [ψ] = 0. We can therefore

apply Stokes’ Theorem in the regions {|x| ≥ x0} to estimate the energy flux
through {x = ±x0} of the JX current .
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±
∫
{x=±x0 0≤τ̄≤τ}

JX · ∂x

≤
∫

Σ∩{|x|≥x0}
JX · nΣτ1

+

∫
{v=τ+x0,−x0≤u≤τ−x0}

JX · ∂u

+

∫
{u=τ+x0,−x0≤v≤τ−x0}

JX · ∂v.

We have that∫
{v=τ+x0,−x0≤u≤τ−x0}

JX · ∂u

=

∫
{v=τ+x0,−x0≤u≤τ−x0}

{
−(∂uψ)2 +

1

4

(
| /∇ψ|2 + µ2ψ2

)}
≤
∫
{v=τ+x0,−x0≤u≤τ−x0}

JT · ∂u ≤ C
∫

Σ
JT · nΣ

and similarly∫
{u=τ+x0,−x0≤v≤τ−x0}

JX · ∂v ≤
∫
{u=τ+x0,−x0≤v≤τ−x0}

JT · ∂v

≤ C
∫

Σ
JT · nΣ.

We conclude that

±
∫
{x=±x0 0≤τ̄≤τ}

JV,1 · ∂x ≤ C
∫

Σ
JT [ψ] · nΣ.

By a similar argument we obtain the above estimate with JW replacing JV,1.
Consequently, we obtain an integrated local energy decay statement for

ψ = ψl, with l ≥ 1.

(11.3)

∫ ∞
0

(∫
Στ∩{|x|≤x0}

JT [ψl] · nΣτ

)
dτ ≤ Cl(l + 1)

∫
Σ
JT [ψl] · nΣ,

where C > 0 is independent of l. If l = 0, we can drop the l(l + 1) factor.
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We can use (11.3) and (6.1) to obtain∫ τ2

τ1

(∫
Στ∩{|x|≤x0}

JT [ψ] · nΣ̃τ

)
dτ ≤ C

∑
|k|≤1

∫
Σ
JT [Ωkψ] · nΣ.(11.4)

�

We have now proved Theorem 4.8.

12. Non-decay for µ = 0

We can now easily show that ψ does not decay in time in the case µ = 0.
Consider first the region R of Nariai in double-null coordinates. By (3.2) we
have for all (u, v) ∈ R,

ψ0(u, v) = ψ0(uΣ0
(v), v) +

∫ u

uΣ0
(v)
∂uψ0(ū, vΣ0

(ū)) dū.

For generic initial data Ψ, Ψ′, the above expression converges to a constant
ψ̄ on Στ as τ →∞. Theorem 4.5 immediately follows.

In PH, we treat the two null boundaries separately. On the null boundary
N+
B we can write

ψ0(∞, v) = ψ0(uΣ(v), v) +

∫ ∞
uΣ(v)

∂uψ0(ū, vΣ(ū)) dū.

We can derive an expression analogous to (3.2), reversing the roles of u and
v, to obtain on the null boundary N+

A

ψ0(u,∞) = ψ0(u, vΣ(u)) +

∫ ∞
vΣ(u)

∂vψ0(uΣ(v̄), v̄) dv̄.

In both cases, the expressions do not vanish for generic initial data. Theo-
rem 4.10 now follows.

Appendix A. Sobolev estimates

Lemma A.1. Let u ∈ Hs(Rn). Then for s ∈ N, s > n
2

||u||L∞(Rn) ≤ C||u||Hs(Rn),

where C depends only on n and s.
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Lemma A.2. Let u ∈ Hs(B), where B = I1 × I2 × I3 ⊂ R3, Ii intervals in
R. Then

||u||L∞(B) ≤ C||u||H2(B),

where C depends only on B.

Proof. We want to construct ū ∈ H2(R3), such that ū(x) = u(x) for x ∈ B
and ū(x) = 0 for x /∈ U , where U ⊂ R3 is an open containing B. Consider
the bump function η : R→ R:

η(x) := Ae−
1

1−x2 for |x| ≤ 1,

η(x) := 0 for |x| > 1,

where A is a constant such that
∫
Rn η(x) dx = 1. For each ε > 0 we can define

ηε(x) := ε−nη(ε−1x). Then
∫
Rn ηε(x) dx = 1 and spt(ηε) ⊂ [−ε, ε]. One can

show that ηε ∈ C∞(R) for all ε > 0. Consider the step functions χi : R→ R,
χ(xi) := 1 if xi ∈ Ii and χ = 0 if xi /∈ Ii. χi are locally integrable functions,
but are not smooth. However, the mollifications χεi := ηε ∗ χi are smooth
and satisfy

χεi(x) = 1 forx ∈ [ai, bi]

χεi(x) = 0 forx /∈ [ai − ε, bi + ε],

where Ii = [ai, bi], ai, bi ∈ R ∪ {−∞,∞}.
Extend u continuously to R3, such that |u(x)| ≤ supy∈B |u(y)|. Now de-

fine ū ∈ H2(R3) by ū(x) := u(x)v(x), where v(x) := χε1(x1)χε2(x2)χε3(x3). let
B̃ := [a1 − ε, b1 + ε]× [a2 − ε, b2 + ε]× [a3 − ε, b3 + ε]. We have that ū(x) =
u(x) for x ∈ B and ū(x) = 0 for x /∈ B̃. Furthermore, |ū(x)| ≤ supy∈B |u(y)|.

By Lemma A.1 it follows that

||u||2L∞(B) = ||ū||2L∞(R3) ≤ K||ū||
2
H2(R3),

with K > 0 a constant independent of u. We have that
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||ū||2H2(R3) = ||u||2H2(B) +

∫
B̃\B

[
(uv)2 +

3∑
i=1

(∂i(uv))2 +

3∑
i,j=1

(∂i∂j(uv))2

]
dx

= ||u||2H2(B) +

∫
B̃\B

[
3∑
i=1

(v∂iu+ (∂iv)u)2

+

3∑
i,j=1

(v∂i∂ju+ 2∂iv∂ju+ (∂i∂jv)u)2

]
dx

≤ ||u||2H2(B) + C̃(ε)||u||2
H2(B̃\B)

≤ C||u||2H2(B),

where we used that v and its derivatives only depend on ε, and C̃(ε)→ 0
as ε→ 0. We can therefore choose C(ε) > 0 sufficiently small, such that
||u||2

H2(B̃\B)
< ||u||2H2(B). Consequently,

||u||2L∞(B) ≤ KC||u||
2
H2(B).

�

Corollary A.3. Let u ∈ Hs(BR(x0)), where s > n
2 and BR(x0) = {y ∈ Rn :

|y − x0| < R}. Then

||u||L∞(BR(x0)) ≤ C
s∑

k=0

Rk−
n

2 ||∂ku||L2(BR(x0)),

where C depends only on B1(x0).

Proof. By using a suitable cut-off function analogous to the function v in
Lemma A.2, we infer from Lemma A.1 that

||u||L∞(B1(x0)) ≤ C
s∑

k=0

||∂ku||L2(B1(x0)),

for u ∈ Hs(B1(x0)). Define ũ by ũ(x0 + y) := u(x0 +Ry), then∫
|y−x0|<1

(∂kũ)2(x0 + y) dy = R2k

∫
|y−x0|<1

(∂ku)2(x0 +Ry) dy

= R2k−n
∫
|z−x0|<R

(∂ku)2(x0 + z) dz,
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where z = Ry. Hence, u ∈ Hs(B1(x0)) if and only if ũ ∈ Hs(BR(x0)). To-
gether with ||u||L∞(BR(x0)) = ||ũ||L∞(B1(x0)), this proves the corollary. �

Proposition A.4. Let u ∈ H2(I × S2), where I ⊆ R. Then there exists a
C > 0 independent of u, such that

||u||L∞(I×S2) ≤ C||u||H2(I×S2).

Proof. The chart (θ, φ) covers the entire sphere, without a meridian con-
necting the poles. The metric components of γ are bounded from below and
away from zero, if we restrict θ ∈ [η, π − η] for η > 0 small. If we can bound
the integral over the region S = {η ≤ θ ≤ π − η} independently of u, then
we can redefine (θ, φ) 7→ (θ̃, φ̃), so as to cover the remaining region S2 \ S
by η ≤ θ̃ ≤ π − η and use the same bound as before. We find that

||u||2H2(I×S) =

∫
I

∫ 2π

0

∫ π−η

η

(
u2 + | /̊∇u|2 + (∂xu)2 + | ˚/∇2

u|2

+ | /̊∇∂xu|2 + (∂2
xu)2

)
sin θ dθdφdx,

where

| /̊∇u|2 = /g
AB
S2 ∇Au∇Bu = (∂θu)2 + sin−2 θ(∂φu)2,

| ˚/∇2
u|2 = /g

AB
S2 /g

CD
S2 ∇A∇Cu∇B∇Du

= /g
AB
S2 /g

CD
S2 (∂A∂Cu− ΓEAC∂Eu)(∂B∂Du− ΓEBD∂Eu)

= (∂2
θu)2 + 2 sin−1 θ (∂θ∂φu+ cot θ∂φu)2

+ sin−2 θ
(
∂2
φu+ sin θ cos θ∂θu

)2
,

where we used that the only non-zero components of the Christoffel sym-
bols on S2 are Γθθφ = − cot θ and Γθφφ = − sin θ cos θ. We can use Cauchy’s
inequality with ε to absorb the mixed terms in the squares into the remaining

terms in | /̊∇u|2 + | ˚/∇2
u|2 and estimate,

C||u||2H2(I×S2) ≥ ||u||
2
H2(I×S).

We conclude that

||u||2L∞(I×S2) ≤ C̃||u||
2
H2(I×[0,2π]×[0,π]) ≤ C̃||u||

2
H2(I×S) ≤ C||u||

2
H2(I×S2).

where we applied Corollary A.2 in the first inequality. �
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Appendix B. Estimates on S2

Proposition B.1 (Poincaré inequality on S2). Let ψ ∈ H̊1(S2), such
that ψl = 0 for l ≥ L, L ≥ 1. Then

||ψ||2L2(S2) ≤
1

L(L+ 1)
||ψ||2

H̊1(S2)
.

Proof. We can perform the following integration by parts

∫
S2

| /̊∇ψ|2 = −
∫
S2

ψ /̊∆ψ =

∫
S2

∞∑
l,l′=0

l∑
m=−l

l′∑
m′=−l′

l(l + 1)ψm,lψm′,l′Y
m,lY m′,l′

≥ L(L+ 1)

∫
S2

|ψ|2.
�

Proposition B.2. Let Ωi, i = 1, 2, 3 be the elements of the Lie algebra
generating to SO(3) isometries on R3. Then

(i) r2| /̊∇ψ|2 =
∑3

i=1(Ωiψ)2,

(ii) r4| ˚/∇2
ψ|2 ≤

∑3
i,j=1 |ΩiΩjψ|2,

where r2 = |x|2, xi standard coordinates on R3.

Proof. Assuming for convenience of notation Einstein summation, we can
write Ωi = Ωk

i
∂
∂xk

Ωk
i = εijkxj ,

which implies that

Ωk
i Ω

l
i = εijkεimlxjxm = (δjmδkl − δjlδkm)xjxm = r2δkl − xkxl.

Now we can conclude that

3∑
i=1

(Ωiψ)2 = r2|∇ψ|2 − (x · ∇ψ)2 = r2

(
|∇ψ|2 −

(
x

|x|
· ∇ψ

)2
)

= r2| /̊∇ψ|2,
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which proves (i). Using that Ωi are Killing vector fields and the expressions
above, we can obtain the inequality

r2| ˚/∇2
ψ|2 ≤

3∑
i=1

|LΩidψ|2 =

3∑
i=1

|d(LΩiψ)|2

=

3∑
i=1

| /̊∇(Ωiψ)|2 = r−2
3∑

i,j=1

|ΩiΩjψ|2,

which proves (ii). �

Appendix C. The Einstein equations in spherical symmetry

We introduce T̂ , defined as

Rµν −
1

2
Rgµν = 8πTµν − Λgµν =: 2T̂µν

.
Assume the splitting of the metric

g = gab(x)dxadxb + r2(x)/gS2AB
(y)dyAdyB,

where {xa}, a = 0, 1 are coordinates on the quotient manifoldQ =M/SO(3)
and, {yA}, A = 2, 3 are coordinates on the orbits, which are 2-spheres
equipped with the standard metric /gS2 . Relevant quantities which get af-
fected by this splitting are the Christoffel symbols

Γµνρ =
1

2
gµσ(gσν,ρ + gσρ,ν − gνρ,σ).

The quantities Γabc and ΓABC are equal to the two-dimensional Christoffel
symbols of the respectively Q and a sphere of radius r(x), x ∈M. There
are also mixed terms

ΓabC = 0,(C.1)

ΓaBC = −r∂br/gS2BC
gab,(C.2)

ΓAbc = 0,(C.3)

ΓABc = r−1∂crδ
A
B.(C.4)

The Riemann tensor can be expressed in terms of the Christoffel symbols

Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓτνσΓµτρ − ΓτνρΓ

µ
τσ.
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We can obtain the Ricci tensor by contraction: Rνσ = Rµνµσ. It’s convenient
to split

Rab = R̄ab +R′ab,

where R̄ab contains only Christoffel symbols with lower case indices and R′ab
constitutes the remaining terms. The symmetries of the Riemann tensor
imply that in two dimensions there is only one independent component, so
we can write

(C.5) R̄abcd = K(gabgcd − gabgcd),

where K is the Gaussian curvature of (Q, ḡ).
Contraction of (C.5) implies that R̄ab = Kgab. Similarly, we can split

RAB = /gS2AB
+R′AB, where we used that the Gaussian curvature on S2 is

1 and the Christoffel symbols are invariant under a rescaling of the metric
by a constant factor. We can therefore write

Rab = ∂µΓµab − ∂bΓ
µ
aµ + ΓτabΓ

µ
τµ − ΓτaµΓµτb(C.6)

= R̄ab − ∂bΓAaA + ΓdabΓ
A
dA − ΓAaBΓBAb

= Kgab −∇b(2r−1∂ar)− 2r−2∂ar∂br

= Kgab − 2r−1∇a∇br,

where in the second equality we used the expressions (C.1)–(C.4). Similarly,

RaA = ∂µΓµaA − ∂AΓµaµ + ΓτaAΓµτµ − ΓτaµΓµτA(C.7)

= ΓBaAΓCBC − ΓBaCΓCBA

= 0.

Finally,

RAB = /gS2AB
+ ∂aΓ

a
AB + ΓbABΓdbd + ΓbABΓCbC − ΓCAbΓ

b
CB − ΓdACΓCdB(C.8)

= /gS2AB
(1−∇a(r∂ar)).

The form of the Ricci tensor carries over to the energy-momentum tensor
via Einstein’s equation. We can write

(C.9) T̂µν =
1

2

(
Rµν −

1

2
Rgµν

)
.
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By inserting the expressions (C.6)–(C.8) into (C.9), we obtain

T̂Ab = 0,(C.10)

T̂AB =
1

2

(
1−∇a(r∂ar)−

1

2
R

)
γAB =: r2(x)S(x)γAB.(C.11)

Now we can rewrite Einstein’s equations in the following form

Kgab − 2r−1∇a∇br = Rab = 2(T̂ab −
1

2
gab(tr T̂ + 2S))(C.12)

(1−∇a(r∂ar))/gS2AB
= RAB = −r2tr T̂ /gS2AB

.(C.13)

Taking the trace of (C.12) and inserting (C.13) gives

(C.14) K =
1

r2
(1− ∂ar∂ar) + tr T̂ − 2S.

Using (C.14), we can rearrange (C.13):

(C.15) ∇a∇br =
1

2r
(1− ∂cr∂cr)gab − r(T̂ab − gabtr T̂ ).

Equations (C.14) and (C.15) are therefore equivalent to Einstein’s equations
in the case of spherical symmetry.

A crucial result of spherical symmetry is that Q is a two dimensional
manifold. This implies that ingoing and outgoing null lines span the tangent
space. Hence, we can write

ḡ = −Ω2(u, v)dudv.

This allows us to get simple expressions for the Christoffel symbols.

Γuvv = Γuuv = Γvuv = Γvuu = 0,

Γuuu = Ω−2∂u(Ω2),

Γvvv = Ω−2∂v(Ω
2).

In null coordinates (u, v) we can write the equation for the Gaussian curva-
ture as

−1

2
KΩ2 = R̄uv = −∂vΓ̄uuu = −∂v

(
Ω−2∂uΩ2

)
,

where the bar indicates that were working with the induced metric gab on
Q. We can rewrite the above expression to obtain:

K = 2Ω−2∂v(Ω
−2∂uΩ2) = 2Ω−2∂u∂v log Ω2,



i
i

“2-Gajic” — 2018/11/29 — 23:37 — page 999 — #81 i
i

i
i

i
i

Linear waves on constant radius limits 999

Hence, (C.14) can be rewritten to obtain

(C.16) ∂u∂v log Ω2 =
Ω2

2r2
(1− ∂ar∂ar) +

Ω2

2
tr T̂ − Ω2Ŝ.

The Einstein-Maxwell stress-energy tensor in null coordinates is given by

T =
e2Ω2

8πr4
dudv +

e2

8πr2 /gS2 ,

where e is the total charge (which is topological, because there is no source
term in the Maxwell equations). Consequently,

T̂ =

[
e2

2r4
+

Λ

2

]
Ω2dudv +

[
e2

2r4
− Λ

2

]
r2
/gS2 .

Now we see that

1

2
tr T̂ − Ŝ = −

(
e2

2r4
+

Λ

2

)
−
(
e2

2r4
− Λ

2

)
= −e

2

r4
.

Consequently, equation (C.16) becomes

(C.17) ∂u∂v log Ω2 =
2

r2
∂ur∂vr +

Ω2

2r2
− e2

r4
Ω2.

We can also rewrite (C.15) in null coordinates. We have that

∇u∇vr = ∂u∂vr,

0 = ∇u∇ur = ∂u∂ur − Γuuu∂ur,

0 = ∇v∇vr = ∂v∂vr − Γvvv∂ur.

Consequently,

Ω−2∂u∂ur − (Ω−4∂uΩ2)∂ur = 0,

and similarly for derivatives with respect to v. The above expression gives
us Raychaudhuri’s equations:

∂u(Ω−2∂ur) = 0,(C.18)

∂v(Ω
−2∂vr) = 0.(C.19)
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Furthermore,

∂u∂vr =
1

2r
(1− ∂cr∂cr)guv −

rΩ2

2

(
e2

2r4
+

Λ

2

)
+
rΩ2

2

(
e2

r4
+ Λ

)
= −Ω2

4r
− 1

r
∂ur∂vr +

e2Ω2

4r3
+

Λ

4
rΩ2.

Rewriting the above expression, we arrive at the final equation

(C.20) ∂u∂vr = −1

r
∂ur∂vr +

(
e2 − r2 + Λr4

) Ω2

4r3
.

The equations (C.17), (C.18), (C.19) and (C.20) are Einstein’s equations
in null coordinates for the spherically symmetric Einstein-Maxwell system
with positive cosmological constant.

A useful quantity to consider is the Hawking mass, defined by

m(r) := r

(
1

2
+ 2Ω−2∂ur∂vr

)
.

By filling in the equations (C.18), (C.19) and (C.20) it follows that

∂um =
∂ur

2r2
(e2 + Λr4),

∂vm =
∂vr

2r2
(e2 + Λr4).

Consequently, the renormalised mass $ := m+ e2

2r −
Λ
6 r

3 satisfies

(C.21) ∂u$ = ∂v$ = 0.

We can therefore take $ = M , where M ∈ R is constant.
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