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Caustics and Maxwell sets of world sheets

in anti-de Sitter space

Shyuichi Izumiya

A world sheet in anti-de Sitter space is a timelike submanifold con-
sisting of a one-parameter family of spacelike submanifolds. We
consider the family of lightlike hypersurfaces along spacelike sub-
manifolds in the world sheet. The locus of the singularities of light-
like hypersurfaces along spacelike submanifolds forms the caustic
of the world sheet. This notion is originally introduced by Bousso
and Randall in theoretical physics. In this paper we give a mathe-
matical framework for the caustics of world sheets as an application
of the theory of graph-like Legendrian unfoldings.
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760 Shyuichi Izumiya

1. Introduction

In this paper we consider geometrical properties of caustics and Maxwell
sets of world sheets in anti-de Sitter space as an application of the theory
of Legendrian unfoldings [11, 16–19, 21] which is a special but an important
case of the theory of wave front propagations [37]. Anti-de Sitter space is one
of the Lorentz space forms with rich geometric properties. It is defined as a
pseudo-sphere with a negative curvature in semi-Euclidean space with index
2 which admits the biggest symmetry in Riemannian or Lorentz space forms.
Anti-de Sitter space plays important roles in theoretical physics such as the
theory of general relativity, the string theory and the brane world scenario
etc. It is one of the typical model of bulk spaces of the brane world scenario
or the string theory (cf. [3, 4, 22, 23, 31, 35]). On the other hand, one of
the important objects in the theoretical physics is the notion of lightlike hy-
persurfaces (light-sheets in physics) because they provide good models for
different types of horizons [7, 25]. In [20] we considered lightlike hypersur-
faces along spacelike submanifolds with general codimension in anti-de Sit-
ter space. Lightlike hypersurfaces usually have singularities. We showed that
lightlike hypersurfaces are wave fronts and applied the theory of Legendrian
singularities [1, 36] to obtaining geometric properties of the singularities of
lightlike hypersrufaces.

A world sheet (or a brane) in anti-de Sitter space is a timelike subman-
ifold consisting of a one-parameter family of spacelike submanifolds. Each
spacelike submanifold is called a momentary space. Since a momentary space
is a spacelike submanifold, we have a lightlike hypersurface along each mo-
mentary space as a consequence of [20]. The set of singular values of a light-
like hypersurface is called the focal set along the momentary space. Since
the world sheet is a one-parameter family of momentary spaces, we naturally
consider the family of lightlike hypersurfaces along momentary spaces in the
world sheet. The locus of the singularities (the focal sets) of lightlike hy-
persurfaces along momentary spaces is the caustic of the world sheet which
was introduced by Bousso and Randall [3, 4] in order to define the notion of
holographic domains. In this paper we construct a mathematical framework
for the caustic of a world sheet and investigate the geometric properties of
the singularities of the caustics of world sheets. For the purpose, we apply
the theory of graph-like Legendrian unfoldings [19, 21]. We also consider the
notion of Maxwell sets (crease sets) of world sheets which play an impor-
tant role in the cosmology [29, 33]. In their paper [3, 4] the authors draw
pictures on the simplest case (cf. [4, Figures 2 and 3]). However, this case
the caustic coincides with the Maxwell set (i.e. a line). In general, these sets
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are different, so that we consider both of them in this paper and emphasize
that the Maxwell set of a world sheet is also an important subject.

On the other hand, caustics appear in several area in physics (i.e. geo-
metrical optics [27], the theory of underwater acoustics [5] and the theory of
gravitational lensings [28] , and so on) and mathematics (i.e. classical differ-
ential geometry [6, 14, 30] and theory of differential equations [9, 13], and so
on [2]). The notion of caustics originally belongs to geometrical optics. We
can observe the caustic formed by the rays reflected at a mirror. One of the
examples of caustics in the classical differential geometry is the evolute of a
curve in the Euclidean plane which is given by the envelope of normal lines
emanated from the curve. The ray in the Euclidean plane is considered to
be a line, so that the evolute is the caustic in the sense of geometrical optics.
Moreover, the singular points of the evolute correspond to the vertices of the
original curve. The vertex is the point at where the curve has higher order
contact with the osculating circle (i.e. the point where the curvature has an
extremum). Therefore, the evolute provides important geometrical informa-
tion of the curve. We have the notion of evolutes for general hypersurfaces
in the Euclidean space similar to the plane curve case. In particular, there
are detailed investigations on evolutes for surfaces in the Euclidean 3-space
[14, 30]. Analogous to the Euclidean case, we can define the evolute of a
hypersurface in Lorentz-Minkowski space [32, 34]. Since a world sheet is a
timelike submanifold, we may consider the evolute of a timelike hypersur-
face in Lorentz-Minkowski space. However, the normal line is directed by
a spacelike vector, so that the speed of the line exceeds the speed of the
ray. Although the evolute of a timelike hypersurface is a caustic in the the-
ory of Lagrangian singularities, it is not a caustic in the sense of physics.
The situation in anti-de Sitter space is similar to that of Lorentz-Minkowski
space. In a Lorentz manifold, the ray is directed by a lightlike vector, so that
rays emanated from a spacelike submanifold form a lightlike hypersurface.
Moreover, we have no notions of the time constant in the relativity theory.
Hence everything that is moving depends on the time. Therefore, we have to
consider one parameter families of spacelike submanifolds (i.e. world sheets)
in a Lorentz manifold, so that the notion of caustics by Bousso and Ran-
dall [3, 4] is essential. For further theoretical investigation, we construct a
mathematical (geometric) framework for the caustics and the Maxwell sets
of world sheets in this paper.

We remark that the similar construction can be obtained for other
Lorentz space forms (i.e. Lonrentz-Minkowski space and de Sitter space).
For a general Lorentz manifold, the situation is different from the case of
Lorentz space forms. In this case, we cannot construct explicit generating



i
i

“5-Izumiya” — 2018/10/20 — 23:56 — page 762 — #4 i
i

i
i

i
i

762 Shyuichi Izumiya

families for corresponding graph-like Legendrian unfoldings (cf. §6). How-
ever, we can apply the theory of graph-like Legendrian unfoldings by using
the classical method of characteristics for the (singular) eikonal equation
corresponding to the Lorentz metric. The detailed results will be appeared
in elsewhere.

2. Semi-Euclidean space with index 2

In this section we prepare the basic notions on the semi-Euclidean (n+2)-
space with index 2. For detailed properties of the semi-Euclidean space,
see [26]. For any vectors x = (x−1, x0, x1, . . . , xn),y = (y−1, y0, y1, . . . , yn) ∈
Rn+2, the pseudo scalar product of x and y is defined to be 〈x,y〉 =
−x−1y−1 − x0y0 +

∑n
i=1 xiyi. We call (Rn+2, 〈, 〉) a semi-Euclidean (n+2)-

space with index 2 and write Rn+2
2 instead of (Rn+2, 〈, 〉). We say that a non-

zero vector x in Rn+2
2 is spacelike, null or timelike if 〈x,x〉 > 0, 〈x,x〉 = 0

or 〈x,x〉 < 0 respectively. The norm of the vector x ∈ Rn+2
2 is defined to be

‖x‖ =
√
|〈x,x〉|. We define the signature of x by

sign(x) =


1 x is spacelike,

0 x is null,

−1 x is timelike.

For a non-zero vector n ∈ Rn+2
2 and a real number c, we define a hyperplane

with pseudo-normal n by

HP (n, c) = {x ∈ Rn+2
2 |〈x,n〉 = c}.

We call HP (n, c) a Lorentz hyperplane, a semi-Euclidean hyperplane with
index 2 or a null hyperplane if n is timelike, spacelike or null respectively.

We now define anti-de Sitter n+ 1-space (briefly, the AdS n+ 1-space)
by

AdSn+1 = {x ∈ Rn+2
2 | 〈x,x〉 = −1} = Hn+1

1 ,

a unit pseudo n+ 1-sphere with index 2 by

Sn+1
2 = {x ∈ Rn+2

2 | 〈x,x〉 = 1},

and a (closed) nullcone with vertex λ ∈ Rn+2
2 by

Λn+1
λ = {x ∈ Rn+2

2 |〈x− λ,x− λ〉 = 0}.
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Caustics and Maxwell sets of world sheets 763

In particular we write Λ∗ = Λn+1
0 \ {0} and also call it an (open) nullcone.

Our main subject in this paper is AdSn+1. Since the causality of AdSn+1

is violated, it is usually considered the universal covering space ÃdS
n+1

of
AdSn+1 in physics which is called the universal anti-de Sitter space. We
remark that the local structure of these spaces are the same. Since AdSn+1

is a Lorentz space form, there exists a lightcone on each tangent space.
Such a lightcone is explicitly expressed as follows: For any λ ∈ AdSn+1, we
have a hyperplane HP (λ,−1). This hyperplane is the tangent hyperplane
of AdSn+1 at λ. We can show that

HP (λ,−1) ∩AdSn+1 = Λn+1
λ ∩AdSn+1.

Therefore, HP (λ,−1) ∩AdSn+1 is the lightcone in the tangent hyperplane
HP (λ,−1) of AdSn+1 at λ. We write it by LCAdS(λ) and call an anti-de
Sitter lightcone (briefly, an AdS-lightcone) at λ ∈ AdSn+1.

For any x1, . . . ,xn+1 ∈ Rn+2
2 , we define a vector x1 ∧ · · · ∧ xn by

x1 ∧ · · · ∧ xn+1 =

∣∣∣∣∣∣∣∣∣∣
−e−1 −e0 e1 · · · en

x1
−1 x1

0 x1
1 · · · x1

n
...

...
...

...
...

xn+1
−1 xn+1

0 xn+1
1 · · · xn+1

n

∣∣∣∣∣∣∣∣∣∣
,

where {e−1, e0, e1, . . . , en} is the canonical basis of Rn+2
2 and xi = (xi−1, x

i
0,

xi1, . . . , x
i
n). We can easily check that

〈x, x1 ∧ · · · ∧ xn+1〉 = det(x,x1, . . . ,xn+1),

so that x1 ∧ · · · ∧ xn is pseudo-orthogonal to any xi (for i = 1, . . . , n).

3. World sheets in anti-de Sitter space

In this section we introduce the basic geometrical framework for the study of
world sheets in anti-de Sitter n+ 1-space. Consider the orientation of Rn+2

2

provided by the condition that det(e−1, e0, e1, . . . , en) > 0. This orientation
induces the orientation of x−1x0-plane, so that it gives a time orientation on

AdSn+1. If we consider the universal anti-de Sitter space ÃdS
n+1

, we can
determine the future direction. The world sheet is defined to be a timelike
submanifold foliated by a codimension one spacelike submanifolds. Here, we
only consider the local situation, so that we considered a one-parameter fam-
ily of spacelike submanifolds. Let AdSn+1 be the oriented and time-oriented
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anti-de Sitter space. Let X : U × I −→ AdSn+1 be a timelike embedding of
codimension k − 1, where U ⊂ Rs (s+ k = n+ 2) is an open subset and I an
open interval. We write W = X(U × I) and identify W and U × I through
the embedding X. Here, the embedding X is said to be timelike if the tan-
gent space TpW of W at p = X(u, t) is a timelike subspace (i.e., Lorentz
subspace of TpAdS

n+1) for any point p ∈W . We write St = X(U × {t})
for each t ∈ I. We call S = {St |t ∈ I} a spacelike foliation on W if St is a
spacelike submanifold for any t ∈ I. Here, we say that St is spacelike if the
tangent space TpSt consists only spacelike vectors (i.e., spacelike subspace)
for any point p ∈ St. We call St a momentary space of S = {St |t ∈ I}. For
any p = X(u, t) ∈W ⊂ AdSn+1, we have

TpW = 〈Xt(u, t),Xu1
(u, t), . . . ,Xus(u, t)〉R,

where Xt = ∂X/∂t,Xuj = ∂X/∂uj . We say that (W,S) (or, X itself) is
a world sheet if W is time-orientable. Since W is time-orientable, there
exists a timelike vector field v(u, t) on W [26, Lemma 32]. Moreover, we
can choose that v is adapted with respected to the time-orientation of
AdSn+1. Here, we say that a timelike vector field v(u, t) on W is adapted if
det(X(u, t),v(u, t), e1, . . . , en) > 0. Let Np(W ) be the pseudo-normal space
of W at p = X(u, t) in Rn+2

2 . Since TpW is a timelike subspace of TpRn+2
2 ,

Np(W ) is a k-dimensional Lorentz subspace of TpRn+2
2 . (cf.,[26]). On the

pseudo-normal space Np(W ), we have a (k − 1)-dimensional spacelike sub-
space:

NAdS
p (W ) = {ξ ∈ Np(W ) | 〈ξ,X(u, t)〉 = 0 },

so that we have a (k − 2)-unit sphere

NAdS
1 (W )p = {ξ ∈ NAdS

p (W ) | 〈ξ, ξ〉 = 1 }.

Therefore, we have a unit spherical normal bundle over W :

NAdS
1 (W ) =

⋃
p∈W

NAdS
1 (W )p.

On the other hand, we write Np(St) as the pseudo-normal space of St
at p = X(u, t) in Rn+2

2 . Then Np(St) is a k + 1-dimensional semi-Euclidean
subspace with index 2 of TpRn+2

2 [26]. On the pseudo-normal space Np(St),
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we have two kinds of pseudo spheres:

Np(St;−1) = {v ∈ Np(St) | 〈v,v〉 = −1 },
Np(St; 1) = {v ∈ Np(St) | 〈v,v〉 = 1 }.

We remark that Np(St;−1) is the k-dimensional anti-de Sitter space and
Np(St; 1) is the k-dimensional pseudo-sphere with index 2. Therefore, we
have two unit spherical normal bundles N(St;−1) and N(St; 1) over St.
By definition, X(u, t) is one of the timelike unit normal vectors of St at
p = X(u, t), so that X(u, t) ∈ Np(St). Since St = X(U × {t}) is a codi-
mension one spacelike submanifold in W, there exists a unique timelike
adapted unit normal vector field nT (u, t) of St such that nT (u, t) is tan-
gent to W at any point p = X(u, t). It means that nT (u, t) ∈ Np(St) ∩ TpW
with 〈nT (u, t),nT (u, t)〉 = −1 and det(X(u, t),nT (u, t), e1, . . . , en) > 0. We
define a (k − 2)-dimensional spacelike unit sphere in Np(St) by

NAdS
1 (St)p[nT ] = {ξ ∈ Np(St; 1) |

〈ξ,nT (u, t)〉 = 〈ξ,X(u, t)〉 = 0, p = X(u, t) }.

Then we have a spacelike unit (k − 2)-spherical bundle N1(St)[nT ] over St
with respect to nT . Since we have

T(p,ξ)N
AdS
1 (St)[nT ] = TpSt × TξNAdS

1 (St)p[nT ],

we have the canonical Riemannian metric on NAdS
1 (St)[nT ] which we write

(Gij((u, t), ξ))16i,j6n−1. Since nT is uniquely determined, we can write
NAdS

1 [St] = NAdS
1 (St)[nT ]. Moreover, we remark that

NAdS
1 (W )|St = NAdS

1 [St] for any t ∈ I.

We now define a map NG : NAdS
1 (W ) −→ Λ∗ by

NG(X(u, t), ξ) = nT (u, t) + ξ.

We call NG an AdS-world nullcone Gauss image of W = X(U × I). A mo-
mentary nullcone Gauss image of NAdS

1 [St] is defined to be the restriction
of the AdS-world nullcone Gauss image

NG(St) = NG|NAdS
1 [St] : NAdS

1 [St] −→ Λ∗.
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This map leads us to the notions of curvatures. Let T(p,ξ)N1[St] be the tan-
gent space of N1[St] at (p, ξ). Under the canonical identification

(NG(St)∗TRn+2
2 )(p,ξ) = T(nT (p)+ξ)Rn+1

1 ≡ TpRn+2
2 ,

we have

T(p,ξ)N1[St] = TpSt ⊕ TξSk−2 ⊂ TpM ⊕Np(St) = TpRn+2
2 ,

where TξS
k−2 ⊂ TξNp(St) ≡ Np(St) and p = X(u, t). Let

Πt : NG(St)∗TRn+2
2 = TN1[St]⊕ Rk+1 −→ TN1[St]

be the canonical projection. Then we have a linear transformation

SN (St)(p,ξ) =−Πt
NG(St)(p,ξ)◦ d(p,ξ)NG(St) : T(p,ξ)N

AdS
1 [St]−→T(p,ξ)N

AdS
1 [St],

which is called a momentary nullcone shape operator of NAdS
1 [St] at (p, ξ).

On the other hand, we choose a pseudo-normal section nS(u, t) ∈
NAdS

1 (W ) at least locally. Then we have

〈nS ,nS〉 = 1 and 〈Xt,n
S〉 = 〈Xui ,n

S〉 = 〈nT ,nS〉 = 0,

so that the vector nT (u, t) + nS(u, t) is lightlike. We define a mapping

NG(St0 ;nS) : U −→ Λ∗

by NG(St0 ;nS)(u) = nT (u, t0) + nS(u, t0), which is called a momentary null-
cone Gauss images of St0 = X(U × {t0}) with respect to nS . Under the iden-
tification of St0 and U × {t0} through X, we have the linear mapping pro-
vided by the derivative of the momentary nullcone Gauss image NG(St0 ;nS)
at each point p = X(u, t0),

dpNG(St0 ;nS) : TpSt0 −→ TpRn+1
1 = TpSt0 ⊕Np(St0).

Consider the orthogonal projection πt : TpSt0 ⊕Np(St0)→ TpSt0 . We define

Sp(St0 ;nS) = −πt ◦ dpNG(St0 ;nS) : TpSt0 −→ TpSt0 .

We call the linear transformation Sp(St0 ;nS) a momentary nS-shape oper-
ator of St0 = X(U × {t0}) at p = X(u, t0). Let {κi(St0 ;nS)(p)}si=1 be the
eigenvalues of Sp(St0 ;nS), which are called momentary nullcone principal
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curvatures of St0 with respect to nS at p = X(u, t0). Then a momentary null-
cone Gauss-Kronecker curvature of St0 with respect to nS at p = X(u, t0) is
defined to be

KN (St0 ;nS)(p) = detSp(St0 ;nS).

We say that a point p = X(u, t0) is a momentary nS-nullcone umbilical point
of St0 if

Sp(St0 ;nS) = κ(St0 ;nS)(p)1TpSt0 .

We say that W = X(U × I) is totally nS-nullcone umbilical if any point p =
X(u, t) ∈W is momentary nS-nullcone umbilical. Moreover, W = X(U ×
I) is said to be totally nullcone umbilical if it is totally nS-nullcone umbilical
for any nS . We deduce now the nullcone Weingarten formula. SinceXui (i =
1, . . . , s) are spacelike vectors, we have a Riemannian metric (the first funda-
mental form ) on St0 = X(U × {t0}) defined by ds2 =

∑s
i=1 gijduiduj , where

gij(u, t0) = 〈Xui(u, t0),Xuj (u, t0)〉 for any u ∈ U. We also have a nullcone
second fundamental invariant of St0 with respect to the normal vector field
nS defined by hij(St0 ;nS)(u, t0) = 〈−(nT + nS)ui(u, t0),Xuj (u, t0)〉 for any
u ∈ U. By the similar arguments to those in the proof of [15, Proposition 3.2],
we have the following proposition.

Proposition 3.1. Let {X,nT ,nS1 , . . . ,n
S
k−1} be a a pseudo-orthonormal

frame of N(St0) with nSk−1 = nS . Then we have the following momentary
nullcone Weingarten formulae:

(a) NG(St0 ;nS)ui = 〈nTui ,n
S〉(nT + nS) +

∑k−2
`=1 〈(nT + nS)ui ,n

S
` 〉nS`

−
∑s

j=1 h
j
i (St0 ;nS)Xuj

(b) πt ◦ NG(St0 ;nS)ui = −
∑s

j=1 h
j
i (St0 ;nS)Xuj .

Here
(
hji (St0 ;n

S)
)

=
(
hik(St0 ;nS)

) (
gkj
)

and
(
gkj
)

= (gkj)
−1.

Since NG(St0 ;nS)ui = dNG(St0 ;nS)(Xui), we have

Sp(St0 ;nS)(Xui(u, t0)) = −πt ◦ NG(St0 ;nS)ui(u, t0),

so that the representation matrix of Sp(St0 ;nS) with respect to the basis

{Xu1
(u, t0),Xu2

(u, t0), . . . ,Xus(u, t0)}

of TpSt0 is (hij(St0 ;nS)(u, t0)). Therefore, we have an explicit expression of
the momentary nullcone Gauss-Kronecker curvature of St0 with respect to
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nS by

KN (St0 ;nS)(u, t0) =
det
(
hij(St0 ;nS)(u, t0)

)
det (gαβ(u, t0))

.

Since 〈−(nT + nS)(u, t),Xuj (u, t)〉 = 0, we have

hij(St0 ;nS)(u, t) = 〈nT (u, t) + nS(u, t),Xuiuj (u, t)〉.

Therefore the momentary nullcone second fundamental invariant of St0 at
a point p0 = X(u0, t0) depends only on the values nT (u0) + nS(u0) and
Xuiuj (u0), respectively. Therefore, we write

hij(St0 ;nS)(u0, t0) = hij(St0)(p0, ξ0),

where p0 = X(u0, t0) and ξ0 = nS(u0, t0) ∈ NAdS
1 (W )p0 . Thus, the momen-

tary nS-shape operator and the momentary nullcone curvatures also depend
only on nT (u0, t0) + nS(u0, t0), Xui(u0, t0) and Xuiuj (u0, t0), independent
of the derivation of the vector fields nT and nS . We may write

Sp0(St0 ; ξ0) = Sp0(St0 ;nS),

κi(St0 , ξ0)(p0) = κi(St0 ;nS)(p0) (i = 1, . . . , s)

and KN (St0 , ξ0)(p0) = KN (St0 ;nS)(p0) at p0 = X(u0, t0)

with respect to ξ0 = nS(u0, t0). We also say that a point p0 = X(u0, t0)
is momentary ξ0-nullcone umbilical if Sp0(St0 ; ξ0) = κi(St0)(p0, ξ0)1Tp0St0 .
The momentary space St0 is said to be totally momentary nullcone um-
bilical if any point p = X(u, t0) is momentary ξ-nullcone umbilical for any
ξ ∈ NAdS

1 (St0)p[nT ]. Moreover, we say that a point p0 = X(u0, t0) is a
momentary ξ0-nullcone parabolic point of W if KN (St0 ; ξ0)(p0) = 0. Let
κN (St)i(p, ξ) be the eigenvalues of the momentary nullcone shape opera-
tor SN (St)(p,ξ), (i = 1, . . . , n− 1). We write κN (St)i(p, ξ), (i = 1, . . . , s) as
the eigenvalues belonging to the eigenvectors on TpSt and κN (St)i(p, ξ),
(i = s+ 1, . . . , n) as the eigenvalues belonging to the eigenvectors on the
tangent space of the fiber of N1[St].

Proposition 3.2. For p0 = X(u0, t0) and ξ0 ∈ NAdS
1 [St0 ]p0 , we have

κN (St0)i(p0, ξ0) = κi(St0 , ξ0)(p0), (i = 1, . . . , s),

κN (St0)i(p0, ξ0) = −1, (i = s+ 1, . . . , n).

We call κN (St)i(p, ξ) = κi(St, ξ)(p), (i = 1, . . . , s) the nullcone principal
curvatures of St with respect to ξ at p = X(u, t) ∈W.
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Proof. Since {X,nT ,nS1 , . . . ,n
S
k−1} is a pseudo-orthonormal frame of N(St)

and

ξ0 = nSk−1(u0, t0) ∈ Sk−2 = N1[St0 ]p,

we have 〈nT (u0, t0), ξ0〉 = 〈nSi (u0, t0), ξ0〉 = 0 for i = 1, . . . , k − 2. There-
fore, we have

Tξ0S
k−2 = 〈nS1 (u0, t0), . . . ,nSk−2(u0, t0)〉.

By this orthonormal basis of Tξ0S
k−2, the canonical Riemannian metric

Gij(p0, ξ0) is represented by

(Gij(p0, ξ0)) =

(
gij(p0) 0

0 Ik−2

)
,

where gij(p0) = 〈Xui(u0, t0),Xuj (u0, t0)〉.
On the other hand, by Proposition 3.1, we have

−
s∑
j=1

hji (St0 ,n
S)Xuj = NG(St0 ,nS)ui = dp0NG(St0 ;nS)

(
∂

∂ui

)
,

so that we have

Sp0(St0 ; ξ0)

(
∂

∂ui

)
=

s∑
j=1

hji (St0 ;n
S)Xuj .

Therefore, the representation matrix of Sp0(St0 ; ξ0) with respect to the basis

{Xu1
(u0, t0), . . . ,Xus(u0, t0),nS1 (u0, t0), . . . ,nSk−2(u0, t0)}

of T(p0,ξ0)N1[St0 ] is of the form

(
hji (St0 ,nS)(u0, t0) ∗

0 −Ik−2

)
.

Thus, the eigenvalues of this matrix are λi = κi(St0 , ξ0)(p0), (i = 1, . . . , s)
and λi = −1, (i = s+ 1, . . . , n− 1). This completes the proof. �
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4. Lightlike hypersurfaces along momentary spaces

We define a hypersurface LHSt : NAdS
1 [St]× R −→ AdSn+1 by

LHSt(((u, t), ξ), µ) = X(u, t) + µ(nT (u, t) + ξ)

= X(u, t) + µNG(St)((u, t), ξ),

where p = X(u, t), which is called a momentary lightlike hypersruface in
anti-de Sitter space along St. We remark that LHSt(NAdS

1 [St]× R) is a light-
like hypersurface. Here a hypersurface is lightlike if the tangent space of the
hypersurface at any regular point is a lightlike hyperplane.

We define a family of functions H : U × I ×AdSn+1 −→ R on a world
sheet W = X(U × I) by H((u, t),λ) = 〈X(u, t),λ〉+ 1. We call H an anti-
de Sitter height function (briefly, AdS-height function) on the world sheet
W = X(U × I). For any fixed (t0,λ0) ∈ I × Rn+2

2 , we write h(t0,λ0)(u) =
H((u, t0),λ0).

Proposition 4.1. Let W be a world sheet and H : U×I×(AdSn+1 \W )→
R the AdS-height function on W. Suppose that p0 = X(u0, t0) 6= λ0. Then
we have the following:

(1) h(t0,λ0)(u0) = ∂h(t0,λ0)/∂ui(u0) = 0, (i = 1, . . . , s) if and only if there

exist ξ0 ∈ NAdS
1 [St0 ]p0 and µ0 ∈ R \ {0} such that

λ0 = LHSt0 (((u0, t0), ξ0), µ0).

(2) h(t0,λ0)(u0) = ∂h(t0,λ0)/∂ui(u0) = detH(h(t0,λ0))(u0) = 0 (i = 1, . . . , s)
if and only if there exist ξ0 ∈ N1[St0 ]p0 such that

λ0 = LHSt0 (((u0, t0), ξ0), µ0)

and 1/µ0 is one of the non-zero momentary nullcone principal curva-
tures κN (St0)i((u0, t0), ξ0), (i = 1, . . . , s).

(3) Under the condition (2), rankH(h(t0,λ0))(u0) = 0 if and only if p0 =
X(u0, t0) is a non-parabolic momentary ξ0-nullcone umbilical point.

Here, H(h(t0,λ0))(u0) is the Hessian matrix of h(t0,λ0) at u0.

Proof. (1) We denote that p0 = X(u0, t0). The condition

h(t0,λ0
)(u0) = 〈X(u0, t0),λ0〉+ 1 = 0
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means that

〈X(u0, t0)− λ0,X(u0.t0)− λ0〉
= 〈X(u0, t0),X(u0, t0)〉 − 2〈X(u0, t0),λ0〉+ 〈λ0,λ0〉
= −2(1 + 〈X(u0, t0),λ0〉) = 0,

so that X(u0, t0)− λ0 ∈ Λ∗. Since ∂h(t0,λ0)/∂ui(u) = 〈Xui(u, t0),λ0〉 and
〈Xui ,X〉 = 0, we have 〈Xui(u, t0),λ0〉 = −〈Xui(u, t0)− λ0〉. Therefore,
∂h(t0,λ0)/∂ui(u0) = 0 if and only if X(u0, t0)− λ0 ∈ Np0M. On the other
hand, the condition h(t0,λ0)(u0) = 〈X(u0, t0),λ0〉+ 1 = 0 implies that

〈X(u0, t0),X(u0, t0)− λ0〉 = 0.

This means that X(u0, t0)− λ0 ∈ Tp0AdSn+1. Hence

h(t0,λ0)(u0) = ∂h(t0,λ0)/∂ui(u0) = 0 (i = 1, . . . , s)

if and only if X(u0, t0)− λ0 ∈ Np0(St0) ∩ Λ∗ ∩ Tp0AdSn+1. Then we denote
that v = X(u0, t0)− λ0 ∈ Np0(St0) ∩ Λ∗ ∩ Tp0AdSn+1. If 〈nT (u0, t0),v〉 =
0, then nT (u0, t0) belongs to a lightlike hyperplane in the Lorentz space
Tp0AdS

n+1, so that nT (u0, t0) is lightlike or spacelike. This contradiction to
the fact that nT (u0, t0) is a timelike unit vector. Thus, 〈nT (u0, t0),v〉 6= 0.
We set

ξ0 =
−1

〈nT (u0, t0),v〉
v − nT (u0, t0).

Then we have

〈ξ0, ξ0〉 = −2
−1

〈nT (u0, t0),v〉
〈nT (u0, t0),v〉 − 1 = 1

〈ξ0,n
T (u0, t0)〉 =

−1

〈nT (u0, t0),v〉
〈nT (u0, t0),v〉+ 1 = 0.

This means that ξ0 ∈ N1[St0 ]p0 . Since −v = 〈nT (u0, t0),v〉(nT (u0, t0) + ξ0),
we have λ0 = X(u0, t0) + µ0NG(St0)((u0, t0)ξ0), where p0 = X(u0, t0) and
µ0 = 〈nT (u0, t0),v〉. For the converse assertion, suppose that

λ0 = X(u0, t0) + µ0NG(St0)((u0, t0), ξ0).

Then

λ0 −X(u0, t0) ∈ Np0(St0)) ∩ Λ∗ and

〈λ0 −X(u0, t0),X(u0, t0)〉 = 〈µ0NG(St0)(p0, ξ0),X(u0)〉 = 0.
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Thus we have λ0 −X(u0) ∈ Np0(St0) ∩ Λ∗ ∩ Tp0AdSn+1. By the previous ar-
guments, these conditions are equivalent to the condition that h(t0,λ0)(u0) =
∂h(t0,λ0)/∂ui(u0) = 0 (i = 1, . . . , s).

(2) By a straightforward calculation, we have

∂2h(t0,λ0)

∂ui∂uj
(u) = 〈Xuiuj (u, t0),λ0〉.

Under the conditions λ0 = X(u0) + µ0(nT (u0) + ξ0), we have

∂2h(t0,λ0)

∂ui∂uj
(u0) = 〈Xuiuj (u0, t0),X(u0, t0)〉

+ µ0〈Xuiuj (u0, t0), (nT (u0, t0) + ξ0)〉.

Since 〈Xui ,X〉 = 0, we have 〈Xuiuj ,X〉 = −〈Xui ,Xuj 〉. Therefore, we have(
∂2h(t0,λ0)

∂ui∂u`
(u0)

)(
gj`(u0, t0)

)
=
(
µ0h

j
i (St0)((u0, t0), ξ0)− δji

)
.

Thus, detH(h(to,ξ0))(u0) = 0 if and only if 1/µ0 is an eigenvalue of
(hij(St0)((u0, t0), ξ0)), which is equal to one of the momentary nullcone prin-
cipal curvatures κN (St0)i((u0, t0), ξ0), (i = 1, . . . , s).

(3) By the above calculation, rankH(h(t0,λ0))(u0) = 0 if and only if

(hij(St0)((u0, t0), ξ0)) =
1

µ0
(δji ),

where 1/µ0 = κN (St0)i((u0, t0), ξ0), (i = 1, . . . , s). This means that p0 =
X(u0, t0) is a non-parabolic momentary ξ0-nullcone umbilical point. �

5. Graph-like big fronts

In this section we briefly review the theory of graph-like Legendrian unfold-
ings. Graph-like Legendrian unfoldings belong to a special class of big Legen-
drian submanifolds (for detail, see [11, 16–18, 38]). Recently there appeared
a survey article [19] on the theory of graph-like Legendrian unfoldings. Let
F : (Rk × (Rm × R), 0)→ (R, 0) be a function germ. We say that F is a
graph-like Morse family of hypersurfaces if (F , dqF) : (Rk × (Rm × R), 0)→
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(R× Rk, 0) is a non-singular and (∂F/∂t)(0) 6= 0, where

dqF(q, x, t) =

(
∂F
∂q1

(q, x, t), . . . ,
∂F
∂qk

(q, x, t)

)
.

Moreover, we say that F is non-degenerate if (F , dqF)|Rk×(Rm×{0}) is
non-singular. For a graph-like Morse family of hypersurfaces F , Σ∗(F) =
(F , dqF)−1(0) is a smooth m-dimensional submanifold germ of (Rk × (Rm ×
R), 0). We now consider the space of 1-jets J1(Rm,R) with the canonical
coordinates (x1, . . . , xm, t, p1, . . . , pm) such that the canonical contact form
is θ = dt−

∑m
i=1 pidxi. We define a mapping Π : J1(Rm,R) −→ T ∗Rm by

Π(x, t, p) = (x, p), where (x, t, p) = (x1, . . . , xm, t, p1, . . . , pm). Here, T ∗Rm is
a symplectic manifold with the canonical symplectic structure ω=

∑m
i=1 dpi∧

dxi (cf. [1]). We define a mapping LF : (Σ∗(F), 0)→ J1(Rm,R) by

LF (q, x, t) =

x, t,−
∂F
∂x1

(q, x, t)

∂F
∂t

(q, x, t)
, . . . ,−

∂F
∂xm

(q, x, t)

∂F
∂t

(q, x, t)
,

 .

It is easy to show that LF (Σ∗(F)) is a Legendrian submanifold germ (cf.,
[1]), which is called a graph-like Legendrian unfolding germ. We call

π|LF (Σ∗(F)) : LF (Σ∗(F)) −→ Rm × R

a graph-like Legendrian map germ, where π : J1(Rm,R) −→ Rm × R is the
canonical projection. We also call

W (LF (Σ∗(F))) = π(LF (Σ∗(F)))

a graph-like big front of LF (Σ∗(F)). We say that F is a graph-like generating
family of LF (Σ∗(F)). Moreover, we call

Wt(LF (Σ∗(F))) = π1(π−1
2 (t) ∩W (LF (Σ∗(F)))

a momentary front for each t ∈ (R, 0), where π1 : Rm × R −→ Rm and π2 :
Rm × R −→ R are the canonical projections. The discriminant set of the
family {Wt(LF (Σ∗(F)))}t∈(R,0) is defined by the union of the caustic

CLF (Σ∗(F)) = π1(Σ(W (LF (Σ∗(F))))
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and the Maxwell stratified set

MLF (Σ∗(F)) = π1(SIW (LF (Σ∗(F)))),

where Σ(W (LF (Σ∗(F))) is the critical value set of π|LF (Σ∗(F)) and
SIW (LF (Σ∗(F))) is the closure of the self intersection set of W (LF (Σ∗(F))).

We now define equivalence relations among graph-like Legendrian un-
foldings. Let F : (Rk × (Rm × R), 0)→ (R, 0) and G : (Rk × (Rm × R), 0)→
(R, 0) be graph-like Morse families of hypersurfaces. We say that LF (Σ∗(F))
and LG(Σ∗(G)) are Legendrian equivalent if there exist a diffeomorphism
germ Φ : (Rm × R, π(p)) −→ (Rm × R, π(p′)) and a contact diffeomorphism
germ Φ̂ : (J1(Rm,R), p) −→ (J1(Rm,R), p′) such that π ◦ Φ̂ = Φ ◦ π and
Φ̂(LF (Σ∗(F))) = (LG(Σ∗(G))), where p = LF (0) and p′ = LG(0). We also
say that LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-Legendrian equivalent if these
are Legendrian equivalent by a diffeomorphism germ Φ : (Rm × R, π(p)) −→
(Rm × R, π(p′)) of the form Φ(x, t) = (φ1(x), t+ α(x)) and a contact dif-
feomorphism germ Φ̂ : (J1(Rm,R), p) −→ (J1(Rm,R), p′) with π ◦ Φ̂ = Φ ◦
π. Moreover, graph-like big fronts W (LF (Σ∗(F))) and W (LG(Σ∗(G))) are
S.P+-diffeomorphic if there exists a diffeomorphism germ

Φ : (Rm × R, π(p)) −→ (Rm × R, π(p′))

of the form Φ(x, t) = (φ1(x), t+ α(x)) such that

Φ(W (LF (Σ∗(F)))) = W (LG(Σ∗(G)))

as set germs. By definition, if LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-
Legendrian equivalent, then W (LF (Σ∗(F))) and W (LG(Σ∗(G))) are S.P+-
diffeomorphic. The converse assertion holds generically [19, 21].

Proposition 5.1 ([21]). Suppose that the sets of critical points of

π|LF (Σ∗(F)), π|LG(Σ∗(G))

are nowhere dense and these map germs are proper, respectively.
Then LF (Σ∗(F)) and LG(Σ∗(G))are S.P+-Legendrian equivalent if and only
if W (LF (Σ∗(F))) and W (LG(Σ∗(G))) are S.P+-diffeomorphic.

We remark that if W (LF (Σ∗(F))) and W (LG(Σ∗(G))) are S.P+-diffeo-
morphic by a diffeomorphism germ Φ : (Rm × R, π(p)) −→ (Rm × R, π(p′)),
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then

Φ(CLF (Σ∗(F)) ∪MLF (Σ∗(F))) = CLG(Σ∗(G)) ∪MLG(Σ∗(G)).

For a graph-like Morse family of hypersurfaces F : (Rk × (Rm × R), 0)→
(R, 0), by the implicit function theorem, there exist function germs F : (Rk ×
Rm, 0)→ (R, 0) and λ : (Rk × (Rm × R), 0) −→ R with λ(0) 6= 0 such that
F(q, x, t) = λ(q, x, t)(F (q, x)− t). We have shown in [19] that F is a graph-
like Morse family of hypersurfaces if and only if F is a Morse family of
functions. Here we say that F : (Rk × Rm, 0) −→ (R, 0) is a Morse family of
functions if

dFq =

(
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rm, 0) −→ Rk

is non-singular. We consider a graph-like Morse family of hypersurfaces

F(q, x, t) = λ(q, x, t)(F (q, x)− t).

In this case Σ∗(F) = {(q, x, F (q, x)) ∈ (Rk × (Rm × R), 0) | (q, x) ∈ C(F )},
where

C(F ) =

{
(q, x) ∈ (Rk × Rm, 0)

∣∣∣ ∂F

∂q1
(q, x) = · · · = ∂F

∂qk
(q, x) = 0

}
.

Moreover, we define a map germ L(F ) : (C(F ), 0) −→ T ∗Rm by

L(F )(q, x) =

(
x,
∂F

∂x1
(q, x), . . . ,

∂F

∂xm
(q, x)

)
It is known that L(F )(C(F )) is a Lagrangian submanifold germ (cf., [1]) for
the canonical symplectic structure. In this case F is said to be a generating
family of the Lagrangian submanifold germ L(F )(C(F )). We remark that
Π(LF (Σ∗(F))) = L(F )(C(F )) and the graph-like big front W (LF (Σ∗(F)))
is the graph of F |C(F ). Here we call π|L(F )(C(F )) : L(F )(C(F )) −→ Rm
a Lagrangian map germ, where π : T ∗Rm −→ Rm is the canonical projec-
tion. Then the set of critical values of π|L(F )(C(F )) is called a caustic of
L(F )(C(F )) = Π(LF (Σ∗(F))) in the theory of Lagrangian singularities,
which is denoted by CL(F )(C(F )). By definition, we have

CL(F )(C(F )) = CLF (Σ∗(F)).

Let F ,G : (Rk × (Rm × R), 0)→ (R, 0) be graph-like Morse families of
hypersurfaces. We say that Π(LF (Σ∗(F))) and Π(LG(Σ∗(G))) are Lagran-
gian equivalent if there exist a diffeomorphism germ Ψ : (Rm, π ◦Π(p)) −→
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(Rm, π ◦Π(p′)) and a symplectic diffeomorphism germ Ψ̂ : (T ∗Rm,Π(p)) −→
(T ∗Rm,Π(p′)) such that

π ◦ Ψ̂ = Ψ ◦ π and Ψ̂(Π(LF (Σ∗(F)))) = Π(LG(Σ∗(G))),

where p = LF (0) and p′ = LG(0). By definition, if Π(LF (Σ∗(F))) and
Π(LG(Σ∗(G))) are Lagrangian equivalent, then the caustics CLF (Σ∗(F)) and
CLG(Σ∗(G)) are diffeomorphic as set germs. The converse assertion, however,
does not hold (cf. [21]). Recently, we have shown the following theorem (cf.
[17, 19, 21])

Theorem 5.2. With the same notations as the above, Π(LF (Σ∗(F))) and
Π(LG(Σ∗(G))) are Lagrangian equivalent if and only if LF (Σ∗(F)) and
LG(Σ∗(G)) are S.P+-Legendrian equivalent.

We have the following corollary of Proposition 5.1 and Theorem 5.2.

Corollary 5.3. Suppose that the sets of critical points of π|LF (Σ∗(F)),
π|LG(Σ∗(G)) are nowhere dense and these map germs are proper, respectively.
Then Π(LF (Σ∗(F))) and Π(LG(Σ∗(G))) are Lagrangian equivalent if and
only if W (LF (Σ∗(F))) and W (LG(Σ∗(G))) are S.P+-diffeomorphic.

There are the notions of Lagrangian stability of Lagrangian submani-
fold germs and S.P+-Legendrian stability of graph-like Legendrian unfolding
germs, respectively. Here we do not use the exact definitions of those notions
of stability, so that we omit to give the definitions. For detailed properties of
such stabilities, see [1, 19]. We have the following corollary of Theorem 5.2.

Corollary 5.4. The graph-like Legendrian unfolding LF (Σ∗(F)) is S.P+-
Legendrian stable if and only if the corresponding Lagrangian submanifold
Π(LF (Σ∗(F))) is Lagrangian stable.

Let F : (Rk × (Rm × R), 0)→ (R, 0) be a graph-like Morse family of
hypersurfaces. We define f : (Rk × R, 0) −→ (R, 0) by f(q, t) = F(q, 0, t).
For graph-like Morse families of hypersurfaces F : (Rk × (Rm × R), 0)→
(R, 0) and G : (Rk × (Rm × R), 0)→ (R, 0), we say that f and g are S.P -K-
equivalent if there exist a function germ ν : (Rk × R, 0) −→ R with ν(0) 6=
0 and a diffeomorphism germ φ : (Rk × R, 0) −→ (Rk × R, 0) of the form
φ(q, t) = (φ1(q, t), t) such that f(q, t) = ν(q, t)g(φ(q, t)). Although we do not
give the definition of S.P+-Legendrian stability, we give a corresponding
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notion for graph-like Morse family of hypersurfaces. We say that F is an
infinitesimally S.P+-K-versal unfolding of f if

Ek+1 =

〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉
Ek+1

+

〈
∂f

∂t

〉
R

+

〈
∂F
∂x1
|Rk×{0}×R, . . . ,

∂F
∂xm
|Rk×{0}×R

〉
R
,

where Ek+1 is the local R-algebra of C∞-function germs (Rk × R, 0) −→ R.
It is known the following theorem in [12, 38].

Theorem 5.5. The graph-like Legendrian unfolding LF (Σ∗(F)) is S.P+-
Legendre stable if and only if F is an infinitesimally S.P+-K-versal unfolding
of f.

In [19] we have shown the following theorem.

Theorem 5.6. Let F ,G : (Rk × (Rm × R), 0)→ (R, 0) be graph-like Morse
families of hypersurfaces such that LF (Σ∗(F)),LG(Σ∗(G)) are S.P+-Legen-
drian stable. Then the following conditions are equivalent:

(1) LF (Σ∗(F)) and LG(Σ∗(G)) are S.P+-Legendrian equivalent,

(2) f and g are S.P -K-equivalent,

(3) Π(LF (Σ∗(F))) and Π(LG(Σ∗(G))) are Lagrangian equivalent,

(4) W (LF (Σ∗(F))) and W (LG(Σ∗(G))) are S.P+-diffeomorphic.

6. Unfolded lightlike hypersrufaces

Returning to our situation, we have the following proposition.

Proposition 6.1. Let H be the AdS-height function on W. For any ((u, t),λ)
∈ ∆∗H−1(0), the germ of H at (u,λ) is a non-degenerate graph-like Morse
family of hypersurfaces.

Proof. We denote that

X(u, t) = (X−1(u, t), X0(u, t), X1(u, t), . . . , Xn(u, t))

and λ = (λ−1, λ0, λ1, . . . , λn).
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We define an open subset U+
−1 = {λ ∈ AdSn+1 | λ−1 > 0 }. For any λ ∈ U+

−1,
we have

λ−1 =
√

1− λ2
0 + λ2

1 + · · ·λ2
n.

Thus, we have a local coordinate of AdSn+1 given by (λ0, λ1, . . . , λn) on
U+
−1. By definition, we have

H(u, t,λ) = −X−1(u, t)

√√√√1− λ2
0 +

n∑
i=1

λ2
i

−X0(u, t)λ0 +X1(u, t)λ1 + · · ·+Xn(u, t)λn.

We now prove that the mapping

∆∗H|(U × {t} × U+
−1) =

(
H,

∂H

∂u1
, . . . ,

∂H

∂us

)
: U × {t} × U+

−1 −→ R× Rs

is non-singular at (u, t,λ) ∈ ∆∗H−1(0) ∩ (U × {t} × U+
−1). Indeed, the Ja-

cobian matrix of ∆∗H|(U × {t} × U+
−1) is given by

X−1
λ0

λ−1
−X0 −X−1

λ1

λ−1
+X1 · · · −X−1

λn
λ−1
−Xn

A X−1u1

λ0

λ−1
−X0u1

−X−1u1

λ1

λ−1
+X1u1

· · · −X−1u1

λn
λ−1
−Xnu1

...
...

. . .
...

X−1us

λ0

λ−1
−X0us −X−1us

λ1

λ−1
+X1us · · · −X−1us

λn
λ−1
−Xnus


,

where

A =


〈Xu1

,λ〉 · · · 〈Xus ,λ〉
〈Xu1u1

,λ〉 · · · 〈Xu1us ,λ〉
...

. . .
...

〈Xusu1
,λ〉 · · · 〈Xusus ,λ〉

 .

We now show that the rank of

B =



X−1
λ0

λ−1
−X0 −X−1

λ1

λ−1
+X1 · · · −X−1

λn
λ−1
−Xn

X−1u1

λ0

λ−1
−X0u1

−X−1u1

λ1

λ−1
+X1u1

· · · −X−1u1

λn
λ−1
−Xnu1

...
...

. . .
...

X−1us

λ0

λ−1
−X0us −X−1us

λ1

λ−1
+X1us · · · −X−1us

λn
λ−1
−Xnus
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is s+ 1 at (u, t,λ) ∈ Σ∗(H). Since (u, t,λ) ∈ Σ∗(H), we have

λ = X(u, t) + µ

(
nT (u, t) +

k−1∑
i=1

ξini(u, t)

)

with
∑k−1

i=1 ξ
2
i = 1, where {X,nT ,nS1 , . . . ,n

S
k−1} is a pseudo-orthonormal

(local) frame of N(M). Without the loss of generality, we assume that µ 6= 0
and ξk−1 6= 0. We denote that

nT (u, t) =t(nT−1(u, t), nT0 (u, t), . . . , nTn (u, t)),

ni(u, t) =t(ni−1(u, t), ni0(u, t), . . . , nin(u, t)).

It is enough to show that the rank of the matrix

C =



X−1
λ0

λ−1
−X0 −X−1

λ1

λ−1
+X1 · · · −X−1

λn
λ−1
−Xn

X−1u1

λ0

λ−1
−X0u1

−X−1u1

λ1

λ−1
+X1u1

· · · −X−1u1

λn
λ−1
−Xnu1

...
...

. . .
...

X−1us

λ0

λ−1
−X0us −X−1us

λ1

λ−1
+X1us · · · −X−1us

λn
λ−1
−Xnus

nT−1

λ0

λ−1
− nT0 −nT−1

λ1

λ−1
+ nT1 · · · −nT−1

λn
λ−1
− nTn

n1
−1

λ0

λ−1
− n1

0 −n1
−1

λ1

λ−1
+ n1

1 · · · −n1
−1

λn
λ−1
− n1

n

...
...

. . .
...

nk−2
−1

λ0

λ−1
− nk−2

0 −nk−2
−1

λ1

λ−1
+ nk−2

1 · · · −nk−2
−1

λn
λ−1
− nk−2

n



is n+ 1 at (u, t,λ) ∈ Σ∗(H). We denote that

ai =t(xi(u, t), xiu1
(u, t), . . . , xius(u, t), n

T
i (u, t), n1

i (u, t), . . . , n
k−2
i (u, t)).

Then we have

C =

(
a−1

λ0

λ−1
− a0,−a−1

λ1

λ−1
+ a1, . . . ,−a−1

λn
λ−1

+ an

)
.
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It follows that

detC =
λ−1

λ−1
det(a0,a1, . . . ,an) +

λ0

λ−1
det(a−1a1, . . . ,an)

− λ1

λ−1
(−1) det(a−1,a0,a2, . . . ,an)

− · · · − λn
λ−1

(−1)n−1 det(a−1a0,a1, . . . ,an−1).

Moreover, we define δi = det(a−1,a0,a1, . . . ,ai−1,ai+1, . . . ,an) for i =
−1, 0, 1, . . . , n and a = (−δ−1,−δ0,−δ1, (−1)2δ2, . . . , (−1)n−1δn). Then we
have

a = X ∧Xu1
∧ · · · ∧Xus ∧ nT ∧ n1 ∧ · · · ∧ nk−2.

We remark that a 6= 0 and a = ±‖a‖nk−1. By the above calculation, we
have

detC =

〈(
λ−1

λ−1
,
λ0

λ−1
, . . . ,

λn
λ−1

)
,a

〉
=

1

λ−1

〈
X(u) + µ

(
nT (u) +

k−1∑
i=1

ξini(u)

)
,a

〉

=
1

λ−1
×±µξk−1‖a‖ = ±µξk−1‖a‖

λ−1
6= 0.

Therefore the Jacobi matrix of ∆∗H is non-singular at (u, t,λ) ∈ ∆∗H−1(0).
For other local coordinates of AdSn+1, we can apply the same method

for the proof as the above case. Therefore, the AdS-height function H is a
non-degenerate big Morse family of hypersurfaces.

On the other hand, we have

∂H

∂t
(u, t,λ) = 〈Xt(u, t),λ〉.

Since ξ∈NAdS
1 [St]p=NAdS

1 (W )p and Xt(u, t)∈TpW, we have 〈Xt(u, t), ξ〉=
0. Moreover, we have 〈X,X〉 = −1, so that 〈Xt(u, t),X(u, t)〉 = 0. There-
fore, for λ = X(u, t) + µ(nT (u, t) + ξ), we have

∂H

∂t
(u, t,λ) = 〈Xt(u, t),λ〉 = µ〈Xt(u, t),n

T (u, t)〉.

We remark that nT (u, t) is a timelike vector such that 〈nT (u, t),Xui(u, t)〉 =
0, (i = 1, . . . , s). Since {Xt(u, t),Xu1

(u, t), . . . ,Xus(u, t)} is a basis of the
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Lorentz space TpW and nT (u, t) ∈ TpW, we have 〈Xt(u, t),n
T (u, t)〉 6= 0.

Moreover, λ /∈W implies µ 6= 0. Thus we have ∂H/∂t(u, t) 6= 0 for λ =
X(u, t) + µ(nT (u, t) + ξ). This completes the proof. �

We also consider the local coordinate U+
−1. Since H is a non-degenerate

graph-like Morse family of hypersurfaces, we have a non-degenerate graph-
like Legendrian unfolding

LH : Σ∗(H) −→ J1(U+
−1, I).

By definition, we have

∂H

∂λ0
((u, t),λ) = X−1(u)

λ0

λ−1
−X0(u),

∂H

∂λi
((u, t),λ) = −X−1(u)

λi
λ−1

+Xi(u),

(i = 1, . . . , n) and ∂H/∂t((u, t),λ) = 〈Xt(u, t),λ〉. It follows that[
∂H

∂t
((u, t),λ) :

∂H

∂λ0
((u, t),λ) :

∂H

∂λ1
((u, t),λ) : · · · : ∂H

∂λn
((u, t),λ)

]
= [〈Xt,λ〉 : X−1(u)λ0 −X0(u)λ−1 :

X1(u)λ−1 −X−1(u)λ1 : · · · : Xn(u)λ−1 −X−1(u)λn].

We denote that

Di(X,λ) = det

(
X−1 Xi

λ−1 λi

)
, (i = 0, 1, . . . , n).

Then we have

LH((u, t),λ) =

(
λ, t,−D0((X,λ)

〈Xt,λ〉
,
D1((X,λ)

〈Xt,λ〉
, . . . ,

Dn((X,λ)

〈Xt,λ〉

)
,

where

Σ∗(H) =
{

((u, t),λ)
∣∣∣ λ = LHSt(((u, t), ξ), µ) ((p, ξ), µ)

∈ NAdS
1 [St]× R, p = X(u, t)

}
.

We observe that H is a graph-like generating family of the non-degenerate
graph-like Legendrian unfolding LH(Σ∗(H)). Proposition 4.1 asserts that
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the graph-like big front W (LH(Σ∗(H)) of the non-degenerate graph-like
Legendrian unfolding LH(Σ∗(H)) is given by{

(λ, t) ∈ AdSn+1 × I
∣∣∣ λ = LHSt(((u, t), ξ), µ),

ξ ∈ NAdS
1 [St]p, p = X(u, t), µ ∈ R

}
.

We define a mapping LH : NAdS
1 (W )× R −→ AdSn+1 × I by

LH(X(u, t), ξ, µ) = (LHSt(X(u, t), ξ, µ), t),

which is called an unfolded lightlike hypersruface of W. We write LH(W,S) =

LH(NAdS
1 (W )× R). Then we have LH(W,S) = W (LH(Σ∗(H)), so that the

image of the unfolded lightlike hypersruface of W is the graph-like big
front set of LH(Σ∗(H)). Each momentary front is the lightlike hypersur-
face LHSt(NAdS

1 [St]× R), which is called a momentary lightlike hypersru-
face along the momentary space St. By assertion (2) of Proposition 4.1, a
singular point of the momentary lightlike hypersruface LHSt(NAdS

1 [St]× R)
is a point λ0 = LHSt0 (((u0, t0), ξ0, µ0) for 1/µ0 = κN (St0)i((u0, t0), ξ0), i =
1, . . . , s. Then we have the following corollary of Proposition 4.1.

Corollary 6.2. A singular point of LH(W,S) is the point (λ, t) ∈ AdSn+1 ×
I such that λ=LHSt(((u, t), ξ, µ), where 1/µ=κN (St)i((u, t), ξ), i=1, . . . , s.

For a non-zero nullcone principal curvature κN (St0)i((u0, t0), ξ0) 6= 0,
we have an open subset Oi ⊂ NAdS

1 (W ) such that κN (St)i(X(u, t), ξ) 6= 0
for (X(u, t), ξ) ∈ Oi. Therefore, we have a non-zero nullcone principal cur-
vature function κN (S)i : Oi −→ R. We define a mapping LFκN (St)i : Oi ∩
NAdS

1 [St] −→ AdSn+1 by

LFκN (St)i(X(u, t), ξ) = X(u, t) +
1

κN (St)i(X(u, t), ξ)
NG((u, t), ξ).

We also define

LFSt =

s⋃
i=1

{
LFκN (St)i(X(u, t), ξ) | (X(u, t), ξ) ∈ NAdS

1 [St]

s.t. κN (St)i(X(u, t), ξ) 6= 0
}
.

We call LFSt the momentary lightlike focal set along St = X(U × {t}) in
AdSn+1. By definition, the momentary lightlike focal set along St = X(U ×
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{t}) is the critical values set of the momentary lightlike hypersurface
LHSt(NAdS

1 [St]× R) along St. Moreover, an unfolded lightcone focal set of
(W,S) is defined to be

LF(W,S) =
⋃
t∈I

LFSt × {t} ⊂ AdSn+1 × I.

Then LF(W,S) is the critical value set of LH.

7. Contact with lightcones

In this section we consider the geometric meanings of the singularities of
momentary lightlike hypersrufaces in Anti-de Sitter space from the view
point of the theory of contact of submanifolds with model hypersurfaces in
[24]. We begin with the following basic observations.

Proposition 7.1. Let λ0 ∈ AdSn+1 and St0 = X(U × {t0}) a monetary
space of W = X(U × I) without points satisfying KN (St0)(p, ξ) = 0. Then
St0 ⊂ Λn+1

λ0
∩AdSn+1 if and only if λ0 = LFSt0 is the momentary lightcone

focal set. In this case we have LHSt0 (NAdS
1 [St0 ]× R) ⊂ Λn+1

λ0
∩AdSn+1 and

St0 = X(U × {t0}) is totally momentary nullcone umbilical.

Proof. By Proposition 3.1, KN (St0)(p0, ξ0) 6= 0 if and only if

{(nT + nS), (nT + nS)u1
, . . . , (nT + nS)us}

is linearly independent for p0 = X(u0, t0) ∈ St0 and ξ0 = nS(u0, t0), where
nS : ×I −→ NAdS

1 [St0 ] is a local section. By the proof of the assertion (1)
of Proposition 4.1, St0 ⊂ Λn+1

λ0
∩AdSn+1 if and only if hλ0,t0(u) = 0 for any

u ∈ U, where hλ0,t0(u) = H(u, t0,λ0) is the AdS-height function on St0 . It
also follows from Proposition 4.1 that there exists a smooth function η :
U ×NAdS

1 [St0 ] −→ R and section nS : U × I −→ NAdS
1 [St0 ] such that

X(u, t0) = λ0 + η(u,nS(u, t0))(nT (u, t0)± nS(u, t0)).

In fact, we have η(u,nS(u, t0)) = −1/κN (St0)i(p, ξ) i = 1, . . . , s, where p =
X(u, t0) and ξ = nS(u, t0). It follows that κN (St0)i(p, ξ) = κN (St0)j(p, ξ),
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so that St0 = X(U × {t0}) is totally nullcone umbilical. Therefore we have

LHSt0 (u,nS(u, t0), µ) = λ0 + (µ+ η(u,nS(u, t0))(nT (u, t0)± nS(u, t0)).

Hence we have LHSt0 (NAdS
1 [St0 ]× R) ⊂ Λn+1

λ0
∩AdSn+1. By definition, the

critical value set of LHSt0 (NAdS
1 [St0 ]× R) is the lightlike focal set LFSt0 ,

which is equal to λ0 by the previous arguments.
For the converse assertion, suppose that λ0 = LFSt0 . Then we have

λ0 = X(u, t0) +
1

κN (St0)i(X(u, t0), ξ)
NG(St0)(u, t0, ξ),

for any i = 1, . . . , s and (p, ξ) ∈ NAdS
1 [St0 ], where p = X(u, t0). Thus, we

have

κN (St0)i(X(u, t0), ξ) = κN (St0)j(X(u, t0), ξ)

for any i, j = 1, . . . , s. This means that St0 is totally momentary nullcone um-
bilical. Since NG(St0)(u, t0, ξ) is null for any (u, ξ), we have X(U × {t0}) ⊂
Λn+1
λ0
∩AdSn+1. This completes the proof. �

We now consider the relationship between the contact of a one parameter
family of submanifolds with a submanifold and the S.P -K-classification of
functions. Let Ui ⊂ Rr, (i = 1, 2) be open sets and gi : (Ui × I, (ui, ti)) −→
(Rn,yi) immersion germs. We define gi : (Ui×I, (ui, ti)) −→ (Rn×I, (yi, ti))
by gi(u, t) = (gi(u), t). We denote that (Y i, (yi, ti)) = gi(Ui × I), (yi, ti)).
Let fi : (Rn,yi)−→(R, 0) be submersion germs and denote that (V (fi),yi)=
(f−1
i (0),yi). We say that the contact of Y 1 with the trivial family of V (f1)

at (y1, t1) is of the same type in the strict sense as the contact of Y 2 with the
trivial family of V (f2) at (y2, t2) if there is a diffeomorphism germ Φ : (Rn ×
I, (y1, t1)) −→ (Rn × I, (y2, t2)) of the form Φ(y, t) = (φ1(y, t), t+ (t2 − t1))
such that Φ(Y 1) = Y 2 and Φ(V (f1)× I) = V (f2)× I. In this case we write
SK(Y 1, V (f1)× I; (y1, t1)) = SK(Y 2, V (f2)× I; (y2, t2)). We can show one
of the parametric versions of Montaldi’s theorem of contact between sub-
manifolds as follows:

Proposition 7.2. We use the same notations as in the above paragraph.
Then the following conditions are equivalent:

(1) SK(Y 1, V (f1)× I; (y1, t1)) = SK(Y 2, V (f2)× I; (y2, t2))

(2) f1 ◦ g1 and f2 ◦ g2 are S.P -K-equivalent (i.e., there exists a diffeo-
morphism germ Ψ : (U1 × I, (u1, t1)) −→ (U2 × I, (u2, t2)) of the form
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Ψ(u, t) = (ψ1(u, t), t+ (t2 − t1)) and a function germ

λ : (U1 × I, (u1, t1)) −→ R

with λ(u1, t1) 6= 0 such that (f2 ◦ g2) ◦ Φ(u, t) = λ(u, t)f1 ◦ g1(u, t)).

Since the proof of Proposition 7.2 is given by the arguments just along
the line of the proof of the original theorem in [24], we omit the proof here.

We now consider a function hλ : AdSn+1 −→ R defined by

hλ(x) = 〈x,λ〉+ 1,

where λ ∈ AdSn+1. For any λ0 ∈ AdSn+1, we have the Lorentzian tangent
hyperplane HP (λ0,−1) of de Sitter space AdSn+1 at λ0, so that we have
an AdS-lightcone

h−1
λ0

(0) = AdSn+1 ∩HP (λ0,−1) = LCAdS(λ0).

Moreover, we consider a point λ0 = LHSt0 (X(u0, t0), ξ0, µ0). Then we have

hλ0
◦X(u0, t0) = H((u0, t0),LHSt0 (X(u0, t0), ξ0, µ0)) = 0.

By Proposition 4.1, we also have relations that

∂hλ0
◦X

∂ui
(u0, t0) =

∂H

∂ui
((u0, t0),LHSt0 (X(u0, t0), ξ0, µ0)) = 0.

for i = 1, . . . , s. This means that the AdS-lightcone h−1
λ0

(0) = LCAdS(λ0)
is tangent to St0 = X(U × {t0}) at p0 = X(u0, t0). The AdS-lightcone
LCAdS(λ0) is said to be a tangent anti-de Sitter lightcone (briefly, a tan-
gent AdS-lightcone) of St0 = X(U × {t0}) at p0 = X(u0, t0). We write that
LCAdS(St0 ; p0, ξ0, µ0) = LCAdS(λ0), where λ0 = LHSt0 (X(u0, t0), ξ0, µ0).
Then we have the following simple lemma.

Lemma 7.3. Let X : U × I −→ AdSn+1 be a world sheet in anti-de Sitter
space. We consider two points (p1, ξ1, µ1), (p2, ξ2, µ2) ∈ N1(St0)× R, where
pi = X(ui, t0), (i = 1, 2). Then

LHSt0 (X(u1, t0), ξ1, µ1)) = LHSt0 (X(u2, t0), ξ2, µ2))

if and only if

LCAdS(St0 , p1, ξ1, µ1) = LCAdS(St0 , p2, ξ2, µ2).



i
i

“5-Izumiya” — 2018/10/20 — 23:56 — page 786 — #28 i
i

i
i

i
i

786 Shyuichi Izumiya

By the definition of unfolded lightlike hypersruface,

LH(X(u1, t1), ξ1, µ1) = LH(X(u2, t2), ξ2, µ2)

if and only if t1 = t2 and LHSt1 (X(u1, t1), ξ1, µ1) = LHSt1 (X(u2, t1), ξ2, µ2).
Eventually, we have tools for the study of the contact between world sheets
and anti-de Sitter lightcones. Since we have hλ(u, t) = hλ ◦X(u, t), we have
the following proposition as a corollary of Proposition 7.2.

Proposition 7.4. Let Xi : (U × I, (ui, ti)) −→ (AdSn+1, pi) (i = 1, 2) be
world sheet germs with Wi = Xi(U × I) and λi = LHSti (X(ui, ti), ξi, µi).
Then the following conditions are equivalent:

(1) SK(W 1, LC
AdS(St1 , p1, ξ1, µ1)× I; (p1, t1))

= SK(W 2, LC
AdS(St2 , p2, ξ2, µ2)× I; (p2, t2)),

(2) h1,λ1
and h2,λ2

are S.P -K-equivalent.

8. Caustics and Maxwell sets of world sheets

In this section we apply the theory of graph-like Legendrian unfoldings to
investigate the singularities of the caustics and the Maxwell sets of world
sheets. In [3, 4] Bousso and Randall gave an idea of caustics of world sheets
in order to define the notion of holographic domains. The family of lightlike
hypersrufaces {LHSt(NAdS

1 [St]× R)}t∈J sweeps out a region in AdSn+1. A
caustic of a world sheet is the union of the sets of critical values of lightlike
hypersrufaces along momentary spaces {St}t∈I . A holographic domain of the
world sheet is the region where the light-sheets sweep out until caustics. So
this means that the boundary of the holographic domain consists the caustic
of the world sheet. The set of critical values of the lightlike hypersruface of a
momentary space is the lightlike focal set of the momentary space. Therefore
the notion of caustics in the sense of Bousso-Randall is formulated as follows:
A caustic of a world sheet (W,S) is defined to be

C(W,S) =
⋃
t∈I

LFSt = π1(LF(W,S)),

where π1 : AdSn+1 × I −→ AdSn+1 is the canonical projection. We call
C(W,S) a BR-caustic of (W,S). By definition, we have Σ(W (LH(Σ∗(H))) =
LF(W,S), so that we have the following proposition.
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Proposition 8.1. Let (W,S) be a world sheet in AdSn+1 and H : U × I ×
(AdSn+1 \W ) −→ R the AdS-height function on W. Then we have
C(W,S) = CLH(Σ∗(H)).

In [3, 4] the authors did not consider the Maxwell set of a world sheet.
However, the notion of Maxwell sets plays an important role in the cosmology
which has been called a crease set by Penrose (cf. [29, 33]). Actually, the
topological shape of the event horizon is determined by the crease set of
lightlike hypersrufaces. Here, we write M(W,S) = MLH(Σ∗(H)) and call it a
BR-Maxwell set of the world sheet (W,S).

LetXi : (U × I, (ui, ti)) −→ (AdSn+1, pi), (i = 1, 2) be germs of timelike
embeddings such that (Wi,Si) are world sheet germs, where Wi = Xi(U ×
I). For λi = LHSti (X(ui, ti), ξi, µi), let

Hi : (U × I × (AdSn+1 \Wi), (ui, ti,λi)) −→ R

be AdS-height function germs. We also write hi,λi(u, t) = Hi(u, t,λi). Since

W (LHi(Σ∗(Hi))) = LH(Wi,Si),

we can apply Theorem 5.2 and Corollary 5.3 to our case. Then we have the
following theorem.

Theorem 8.2. Suppose that the set of critical points of π|LHi
(Σ∗(Hi)) are

nowhere dense and these map germs are proper for i = 1, 2, respectively.
Then the following conditions are equivalent:

(1) (LH(W1,S1),λ1) and (LH(W2,S2),λ2) are S.P+-diffeomorphic,

(2) LH1
(Σ∗(H1)) and LH2

(Σ∗(H2)) are S.P+-Legendrian equivalent,

(3) Π(LH1
(Σ∗(H1))) and Π(LH2

(Σ∗(H2)) are Lagrangian equivalent.

We remark that conditions (2) and (3) are equivalent without any as-
sumptions (cf. Theorem 5.2). Moreover, if we assume that LHi(Σ∗(Hi)) are
S.P+-Legendrian stable, then we can apply Proposition 7.4 and Theorem
5.6 to show the following theorem.

Theorem 8.3. Suppose that LHi(Σ∗(Hi)) are S.P+-Legendrian stable for
i = 1, 2, respectively. Then the following conditions are equivalent:

(1) (LH(W1,S1),λ1) and (LH(W2,S2),λ2) are S.P+-diffeomorphic,

(2) LH1
(Σ∗(H1)) and LH2

(Σ∗(H2)) are S.P+-Legendrian equivalent,
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(3) Π(LH1
(Σ∗(H1))) and Π(LH2

(Σ∗(H2)) are Lagrangian equivalent,

(4) h1,λ1
and h2,λ2

are S.P -K-equivalent,

(5) SK(W 1, LC
AdS(St1 , p1, ξ1, µ1)× I; (p1, t1))

= SK(W 2, LC
AdS(St2 , p2, ξ2, µ2)× I; (p2, t2)).

By definition and Proposition 8.1, we have the following proposition.

Proposition 8.4. If Π(LH1
(Σ∗(H1))) and Π(LH2

(Σ∗(H2)) are Lagrangian
equivalent, then BR-caustics C(W1,S1), C(W2,S2) and BR-Maxwell sets
M(W1,S1), M(W2,S2) are diffeomorphic as set germs, respectively.

9. World hyper-sheets in AdSn+1

In this section we consider the case when k = 2. For an open subset U ⊂
Rn, let X : U × I −→ AdSn+1 be a timelike embedding such that (W,S)
is a world sheet. In this case (W,S) is said to be a world hyper-sheet in
AdSn+1. Since the pseudo normal space Np(W ) is a Lorentz plane, NAdS

p (W )

is a spacelike line, so that NAdS
1 (W )p comprises two points. For any ξ ∈

NAdS
1 (W )p, we have −ξ ∈ NAdS

1 (W )p. We define a pseudo normal section
nS(u, t) ∈ NAdS

1 (W )p for p = X(u, t) by

nS(u, t) =
X(u, t) ∧Xu1

(u, t) ∧ · · · ∧Xun−1
(u, t) ∧Xt(u, t)

‖X(u, t) ∧Xu1
(u, t) ∧ · · · ∧Xun−1

(u, t) ∧Xt(u, t)‖
.

Therefore the momentary nullcone Gauss images

NG(St0 ,±nS) : U −→ Λ∗

are given by NG(St0 ,±nS)(u) = nT (u, t0)± nS(u, t0). Therefore we have
the momentary nullcone shape operators

S±N (St0)p = Sp(St0 ;±nS) = −πt ◦ dpNG(St0 ,±nS) : TpSt0 −→ TpSt0 .

It follows that we have momentary nullcone principal curvatures

κ±N (St0)i(p) = κN (St0)(p,±nS(u, t0)), (i = 1, . . . , n− 1).
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Then the momentary lightlike hypersrufaces LH±St : U × R −→ AdSn+1 are
given by

LH±St(u, µ) = X(u, t) + µ(nT (u, t)± nS(u, t))

= X(u, t) + µNG(St,±nS)(u).

Moreover, the unfolded lightlike hypersrufaces LH± : U × R −→ AdSn+1 ×
I are given by

LH±(u, µ) = (LH±St(u, µ), t) = (X(u, t) + µNG(St,±nS)(u), t).

For the AdS-height functionH : U × I ×AdSn+1 −→ R on (W,S), Σ∗(H) =
Σ+
∗ (H) ∪ Σ−∗ (H), where

Σ±∗ (H) = {((u, t),λ) | λ = LH±St(u, t, µ), µ ∈ R}.

Then the image of unfolded lightlike hypersrufaces is

LHW = LH+(U × R) ∪ LH−(U × R) = W (LH(Σ∗(H))),

which is the graph-like big front set of LH(Σ∗(H)). The momentary lightlike
focal sets along St are

LF±St =

n−1⋃
i=1

{
LF±

κ±N (St)i
(u, t)

∣∣ (u, t) ∈ U × I s.t. κ±N (St)i(X(u, t)) 6= 0
}
,

where

LF±
κ±N (St)i

(u, t) = X(u, t) +
1

κ±N (St)i(X(u, t))
NG(St0 ,±nS)(u).

The unfolded lightcone focal set is

LF(W,S) =
⋃
t∈I

LF+
St × {t} ∪

⋃
t∈I

LF−St × {t} ⊂ AdS
n+1 × I.

In this case the BR-caustic is

C(W,S) = π1(LF(W,S)) =
⋃
t∈I

LF+
St ∪

⋃
t∈I

LF−St .

Moreover, the BR-Maxwell set is

M(W,S) = MLH(Σ∗(H)) = MLH(Σ+
∗ (H)) ∪MLH(Σ−∗ (H)).
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10. World sheets in AdS3

In this section we consider world sheets in the 3-dimensional anti de Sit-
ter space as an example. Let (W,S) be a world sheet in AdS3, which
is parameterized by a timelike embedding Γ : J × I −→ AdS3 such that
St = Γ(J × {t}) for t ∈ I. In this case we call St a momentary curve. We
assume that s ∈ J is the arc-length parameter. Then t(s, t) = γ ′t(s) is the
unit spacelike tangent vector of St, where γt(s) = Γ(s, t). We have the unit
pseudo-normal vector field n(s, t) of W in AdS3 defined by

n(s, t) =
Γ(s, t) ∧ t(s, t) ∧ Γt(s, t)

‖Γ(s, t) ∧ t(s, t) ∧ Γt(s, t)‖
.

The unit timelike normal vector of St in TW is defined to be b(s, t) =
Γ(s, t) ∧ n(s, t) ∧ t(s, t). We choose the orientation of St such that b(s, t) is
adapted (i.e. det (Γ(s, t), b(s, t), e1, e2) > 0). Therefore,

{Γ(s, t), b(s, t),n(s, t), t(s, t)}

is a pseudo-orthonormal frame along W. On this moving frame, we can show
the following Frenet-Serret type formulae for St:

∂Γ

∂s
(s, t) = t(s, t),

∂b

∂s
(s, t) = τg(s, t)n(s, t)− κg(s, t)t(s, t),

∂n

∂s
(s, t) = τg(s, t)b(s, t)− κn(s, t)t(s, t),

∂t

∂s
(s, t) = Γ(s, t)− κg(s, t)b(s, t) + κn(s, t)n(s, t),

where κg(s, t) = 〈 ∂t∂s(s, t), b(s, t)〉, κn(s, t) = 〈 ∂t∂s(s, t),n(s, t)〉, τg(s, t) =
〈∂b∂s (s, t),n(s, t)〉. We call κg(s, t) a geodesic curvature, κn(s, t) a normal
curvature and τg(s, t) a geodesic torsion of St respectively. Then b(s, t0)±
n(s, t0) are lightlike. We have the momentary lightlike hypersrufaces LS±St0 :

J × {t0} × R −→ AdS3 along St0 defined by

LS±St0 ((s, t0), u) = Γ(s, t0) + u(b(s, t0)± n(s, t0)).

Here, we use the notation LS±St0 instead of LH±St0 because the images of

these mappings are lightlike surfaces. We adopt nT = b and nS = n. By the
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Frenet-Serret type formulae, we have

∂(nT ± nS)

∂s
(s, t) =

∂(b± n)

∂s
(s, t)

= τg(s, t)(n± b)(s, t)− (κg(s, t)± κn(s, t))t(s, t).

Therefore, we have κ±(St)(s, t) = κg(s, t)± κn(s, t). It follows that

LF±St0 =

{
Γ(s, t0) +

1

κg(s, t0)± κn(s, t0)
(b± t)(s, t0)

∣∣∣
s ∈ J, κg(s, t0)± κn(s, t0) 6= 0

}
.

We consider the AdS-height function H : J × I ×AdS3 −→ R. Then we
have

∂H

∂s
(s, t,λ) = 〈t(s, t),λ〉,

∂2H

∂s2
(s, t,λ) = 〈(Γ− κgb+ κnn)(s, t),λ〉,

∂3H

∂s3
(s, t,λ) = 〈((1 + κ2

g + κ2
n)t+ (κnτg − κ′g)b+ (κ′n − κgτg)n)(s, t),λ〉.

It follows that the following proposition holds. We writeHt0(s,λ)=H(s, t0,λ).

Proposition 10.1. (1) Ht0(s,λ) = ∂Ht0/∂s(s,λ) = 0 if and only if there
exists u ∈ R such that λ = Γ(s, t0) + u(b(s, t0)± n(s, t0))

(2) Ht0(s,λ)=∂Ht0/∂s(s,λ)=∂2Ht0/∂s
2(s,λ)=0 if and only if κg(s, t0)±

κn(s, t0) 6= 0 and

λ = Γ(s, t0) +
1

κg(s, t0)± κn(s, t0)
(b(s, t0)± n(s, t0)).

(3) Ht0(s,λ) = ∂Ht0/∂s(s,λ) = ∂2Ht0/∂s
2(s,λ) = ∂3Ht0/∂s

3(s,λ) = 0 if
and only if κg(s, t0)± κn(s, t0) 6= 0, ((κn ± κg)τg ∓ (κ′n ± κ′g))(s0, t0) =
0 and

λ = Γ(s, t0) +
1

κg(s, t0)± κn(s, t0)
(b(s, t0)± n(s, t0)).

(4) Ht0(s,λ) = ∂Ht0/∂s(s,λ) = ∂2Ht0/∂s
2(s,λ) = ∂3Ht0/∂s

3(s,λ) =
∂4Ht0/∂s

4(s,λ) = 0 if and only if κg(s, t0)± κn(s, t0) 6= 0,
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((κn ± κg)τg ∓ (κ′n ± κ′g))(s0, t0) = ((κn ± κg)τg ∓ (κ′n ± κ′g))′(s, t0)
= 0 and

λ = Γ(s, t0) +
1

κg(s, t0)± κn(s, t0)
(b(s, t0)± n(s, t0)).

Proof. Since we have the pseudo-orthonormal frame

{Γ(s, t), b(s, t),n(s, t), t(s, t)},

there exist real numbers λ, µ, ν ∈ R such that

λ = ξΓ(s, t) + λb(s, t0) + µn(s, t0) + νt(s, t0).

(1) The condition ∂Ht0/∂s(s,λ) = 0 means that ν = 0. Moreover, the
condition Ht0(s,x) = 0 means that ξ = 1. Since 〈λ,λ〉 = −1, we have λ2 −
µ2 = 0. It follows that

λ = Γ(s, t0) + µ(b(s, t0)± n(s, t0)).

We put u = µ. This completes the proof of (1).
(2) With the assumption that (1) holds, the condition ∂2Ht0/∂s

2(s,λ) =
0 means that

0 = 〈Γ− κgb+ κnn,λ〉 = (κg ± κn)u− 1.

Therefore, we have κg(s, t0)± κn(s, t0) 6= 0 and

λ = Γ(s, t0) +
1

κg(s, t0)± κn(s, t0)
(b(s, t0)± n(s, t0)).

This completes the proof of (2).
(3) By the similar arguments to the above cases, we have the assertion

(3).

Moreover, if we calculate the 4th derivative
∂4Ht0

∂s4
, then we have the

assertion (4). Since those arguments are tedious, we omit the detail here. �

According to the above proposition, we introduce an invariant defined
by

σ±(s, t) = ((κn ± κg)τg ∓ (κ′n ± κ′g))(s, t).

Proposition 10.2. Suppose that κg(s, t0)± κn(s, t0) 6= 0 and we denote
τ = + or − . Then the following conditions are equivalent:
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(1) στ (s, t0) ≡ 0,

(2) {λτ0} = LFτSt0 ,

(3) There exists λ0 ∈ AdS3 such that St0 ⊂ LCAdS(λ0).

Proof. We define `± : I −→ AdS3 by

`±(s) = Γ(s, t0) +
1

κg(s, t0)± κn(s, t0)
(b(s, t0)± n(s, t0)).

Then `±(I) = LF±St0 . By a straightforward calculation, we have

`′±(s) = − σ±(s, t0)

(κg(s, t0)± κn(s, t0))2
(n(s, t0)± b(s, t0)).

Therefore conditions (1) and (2) are equivalent. Suppose that (2) holds. Then
we have λτ0 = `τ (s) for any s ∈ I. Thus, we have Γ(s, t0) ∈ Λλτ0 ∩AdS

3 =
LCAdS(λτ0) for any s ∈ I, so that (3) holds. Suppose that (3) holds. Then
there exists a point λ0 ∈ AdS3 such that St0 ⊂ LCAdS(λ0) = HP (λ0,−1) ∩
AdS3. This condition is equivalent to the condition that 〈Γ(s, t0),λ0〉 = −1
at any s ∈ I. Then Ht0(s,λ0) is constantly equal to zero. By the previous
calculations, this is equivalent to the condition that {λ0} = `τ (I) and (1)
holds. This completes the proof. �

We also have a classification of singularities of momentary lightlike hy-
persrufaces.

Theorem 10.3. (1) The lightlike hypersruface LS±St0 (I × {t0} × R) at λ0 =

`±(s0) ∈ LF±St0 is local diffeomorphic to the cuspidaledge CE if σ±(s0, t0) 6=
0,

(1) The lightlike hypersruface LS±St0 (I × {t0} × R) at λ0 = `±(s0) ∈
LF±St0 is local diffeomorphic to the swallowtail SW if σ±(s0, t0) = 0 and

∂σ±/∂s(s0, t0) 6= 0.
Here, CE = {(u, v2, v3) ∈ (R3, 0) | (u, v) ∈ (R2, 0) } and SW = {(3u4 +

vu2, 4u2 + 2uv, v) ∈ (R3, 0) | (u, v) ∈ (R2, 0) }.

In order to prove Theorem 10.3, we use some general results on the
singularity theory for unfoldings of function germs. Detailed descriptions
are found in the book [6]. Let F : (R× Rr, (s0, x0))→ R be a function germ.
We call F an r-parameter unfolding of f , where f(s) = Fx0

(s, x0). We say
that f has an Ak-singularity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k, and
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f (k+1)(s0) 6= 0. Let F be an unfolding of f and f(s) has an Ak-singularity
(k ≥ 1) at s0. We denote the (k − 1)-jet of the partial derivative ∂F

∂xi
at s0 by

j(k−1)( ∂F∂xi (s, x0))(s0) =
∑k−1

j=0 αji(s− s0)j for i = 1, . . . , r. Then F is called
anR-versal unfolding if the k × r matrix of coefficients (αji)j=0,...,k−1;i=1,...,r

has rank k (k ≤ r). We introduce an important set concerning the unfoldings
relative to the above notions. A `th-discriminant set of F is

D`F =

{
x ∈ Rr

∣∣∣ ∃s with F =
∂F

∂s
= · · · = ∂`F

∂s`
= 0 at (s, x)

}
.

For ` = 1, it is simply denoted by DF , which is called a discriminant set of
F. Then we have the following classification (cf., [6]).

Theorem 10.4. Let F : (R× Rr, (s0, x0))→ R be an r-parameter unfold-
ing of f(s) which has an Ak singularity at s0. Suppose that F is an R-versal
unfolding.

(1) If k = 2, then DF is locally diffeomorphic to CE × Rr−2.
(2) If k = 3, then DF is locally diffeomorphic to SW × Rr−2.

For the proof of Proposition 10.3, we have the following propositions.
Let Γ : I × J −→W ⊂ R3

1 be a world sheet with κn(s, t)± κg(s, t) 6= 0 and
H : I × J × R3 −→ R the AdS-height function on Γ. We define ht0,λ0

(s) =
Ht0(s,λ0) = H(s, t0,λ0) and consider that Ht0 is a 3-parameter unfolding
of ht0,λ0

.

Proposition 10.5. If ht0,λ0
has an Ak-singularity (k = 2, 3) at s0, then

Ht0 is an R-versal unfolding of ht0,λ0
.

Proof. We write that Γ(s, t) = (X0(s, t), X1(s, t), X2(s, t)) and λ = (λ−1, λ0,
λ1, λ2). Then we have

Ht0(s,λ0) = −X−1(s, t0)λ−1 −X0(s, t0)λ0 +X1(s, t0)λ1 +X2(s, t0)λ2 + 1.

Since λ ∈ AdS3, we have −λ2
−1 − λ2

0 + λ2
1 + λ2

2 = −1. Then we consider the

local coordinates (λ0, λ1, λ2) of AdS3 given by λ−1 =
√

1− λ2
0 + λ2

1 + λ2
2 >

0. Therefore, we have

∂Ht0

∂λ0
(s,λ0) = −X0(s, t0) +X−1(s, t0)

λ0

λ−1
,

∂Ht0

∂λi
(s,λ0) = Xi(s, t0)−X−1(s, t0)

λi
λ−1

, i = 1, 2.
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Thus we obtain

j2

(
∂Ht0

∂λ0
(s0,λ0)

)
= −X0(s0, t0) +X−1(s0, t0)

λ0

λ−1

+

(
−∂X0

∂s
(s0, t0) +

∂X−1

∂s
(s0, t0)

λ0

λ−1

)
(s− s0)

+
1

2

(
−∂

2X0

∂s2
(s0, t0) +

∂2X−1

∂s2
(s0, t0)

λ0

λ−1

)
(s− s0)2,

j2

(
∂Ht0

∂λi
(s0,λ0)

)
= Xi(s0, t0)−X−1(s0, t0)

λi
λ−1

+

(
∂Xi

∂s
(s0, t0)− ∂X−1

∂s
(s0, t0)

λi
λ−1

)
(s− s0)

+
1

2

(
∂2Xi

∂s2
− ∂2X−1

∂s2
(s0, t0)

λi
λ−1

)
(s− s0)2,

i = 1, 2. We consider a matrix

A =

 −X0 +X−1
λ0

λ−1
X1 −X−1

λ0

λ−1
X2 −X−1

λ0

λ−1

−∂X0

∂s + ∂X−1

∂s
λ0

λ−1

∂X1

∂s −
∂X−1

∂s
λ0

λ−1

∂X2

∂s −
∂X−1

∂s
λ0

λ−1

−∂2X0

∂s2 + ∂2X−1

∂s2
λ0

λ−1

∂2X1

∂s2 −
∂2X−1

∂s2
λ1

λ−1

∂2X2

∂s2 −
∂2X−1

∂s2
λ2

λ−1


at (s0, t0). Then we have

detA =
1

λ−1

〈
λ0,Γ(s0, t0) ∧ ∂Γ

∂s
(s0, t0) ∧ ∂

2Γ

∂s2
(s0, t0)

〉
We also have

∂Γ

∂s
(s0, t0) = t(s0, t0),

∂2Γ

∂s2
(s0, t0) = −κg(s0, t0)b(s0, t0) + κn(s0, t0)n(s0, t0).

By Proposition 10.1, we have λ0 = (Γ + (b± n)/(κg ± κn))(s0, t0), so that

detA =
1

λ−1
〈λ0, κg(s0, t0)n(s0, t0)− κnb(s0, t0)〉 = ± 1

λ−1
6= 0.

This means that Ht0 is an R-versal unfolding of ht0,λ0
.

For other local coordinates of AdS3, we have the similar calculations to
the above case. �



i
i

“5-Izumiya” — 2018/10/20 — 23:56 — page 796 — #38 i
i

i
i

i
i

796 Shyuichi Izumiya

Proof of Theorem 10.3. By (1) of Proposition 10.1, the discriminant set
DHt0

of the AdS-height function on St0 is the lightlike hypersruface along
St0 . It also follows (3) and (4) of Proposition 10.1 that ht0,λ0

has an A2-
singularity (respectively, A3-singularity) at s0 if σ±(s0, t0) 6= 0 (respectively,
σ±(s0, t0) = 0 and (σ±)′(s0, t0) 6= 0). By Proposition 10.5, Ht0 is anR-versal
unfolding of ht0,λ0

for each case. Then we can apply the classification theo-
rem (Theorem 10.4) to our situation. This completes the proof. �

We remark that D2
Ht0

is the lightlike focal curve LF±St0 . Since the critical

value set of the swallowtail is locally diffeomorphic to a (2, 3, 4)-cusp which
is defined by C = {(t2, t3, t4) | t ∈ R}, we have the following corollary.

Corollary 10.6. The lightlike focal curve LF±St0 is locally diffeomorphic

to a line if σ±(s0, t0) 6= 0. It is locally diffeomorphic to the (2, 3, 4)-cusp if
σ±(s0, t0) = 0 and (σ±)′(s0, t0) 6= 0.

On the other hand, we now classify S.P+-Legendrian stable graph-
like Legendrian unfoldings LH(Σ∗(H)) by S.P+-Legendrian equivalence. By
Theorems 5.5 and 5.6, it is enough to classify f by S.P -K-equivalence under
the condition that

dimR
E1+1〈

∂f
∂q , f

〉
E1+1

+
〈
∂f
∂t

〉
R

≤ 3.

In [10, 12] we have the following proposition.

Proposition 10.7. With the above condition, f : (R× R, 0) −→ (R, 0) with
∂f/∂t(0) 6= 0 is S.P -K-equivalent to one of the following germs:

(1) q,

(2) ±t± q2,

(3) ±t+ q3,

(4) ±t± q4,

(5) ±t+ q5.

The infinitesimally S.P+-K-versal unfolding F : (R× (R3 × R), 0) −→
(R, 0) of each germ in the above list is given as follows (cf. [12, Theorem
4.2]):

(1) q
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(2) ±t± q2,

(3) ±t+ q3 + x0q,

(4) ±t± q4 + x0q + x1q
2,

(5) ±t+ q5 + x0q + x1q
2 + x2q

3.

By Theorem 5.6, we have the following classification.

Theorem 10.8. Let (W,S) be a world sheet in AdS3 parametrized by
a timelike embedding Γ : J × I −→ AdS3 and H : J × I ×AdS3 −→ R be
the AdS-height squared function of (W,S). Suppose that the corresponding
graph-like Legendrian unfolding LH(Σ∗(H)) ⊂ J1(AdS3, I) is S.P+-Legen-
drian stable. Then the germ of the image of the unfolded lightlike hypersr-
ufaces LHW at any point is S.P+-diffeomorphic to one of the following set
germs in (R3 × R, 0):

(1) {(u, v, w), 0) | (u, v, w) ∈ (R3, 0) },

(2) {(−u2, v, w),±2u3) | (u, v, w) ∈ (R3, 0) },

(3) {(∓4u3 − 2vu, v, w), 3u3 ± vu2) | (u, v, w) ∈ (R3, 0) },

(4) {((5u4 + 2vu+ 3wu2, v, w),±(4u4 + vu2 + 2wu3)) | (u, v, w) ∈ (R3, 0)}.

Proof. For any (s0, t0,λ0) ∈ J × I ×AdS3, the germ of LH(Σ∗(GH) ⊂
J1(AdS3, I) at z0 = LH(s0, t0,λ0) is S.P+-Legendrian stable. It follows that
the germ of hλ0

at (s0, t0) is S.P -K-equivalent to one of the germs in the
list of Proposition 10.7. By Theorem 5.6, the graph-like Legendrian unfold-
ing LH(Σ∗(H)) is S.P+-Legendrian equivalent to the graph-like Legendrian
unfolding LF (Σ∗(F)) where F is the infinitesimally S.P -K-versal unfold-
ing of one of the germs in the list of Proposition 10.7. It is also equivalent
to the condition that the germ of the graph-like big front W (LF (Σ∗(F)))
is S.P+-diffeomorphic to the corresponding graph-like big front of one of
the normal forms. For each normal form, we can obtain the graph-like big
front. We only show that (5) in Proposition 10.7. In this case we consider
F(q, x0, x1, x2, t) = ±t+ q5 + x0q + x1q

2 + x2q
3. Then we have

∂F
∂q

= 5q4 + x0 + 2x1q + 3x1q
2,

so that the condition F = ∂F/∂q = 0 is equivalent to the condition that

x0 = −(5q4 + x0 + 2x1q + 3x1q
2), t0 = ±(4q5 + x1q

2 + 2x2q
3).
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If we put u = q, v = x0, w = x1, then we have

W (LF (Σ∗(F))) = {((−(5u4 + 2vu+ 3wu2), v, w),

± (4u4 + vu2 + 2wu3)) | (u, v, w) ∈ (R3, 0)}.

It is S.P+-diffeomorphic to the set germ of (4). We have similar calculations
for other cases. We only remark here that we obtain the germ of (1) for both
the germs of (1) and (2) in Proposition 10.7. Since W (LH(Σ∗(H))) = LHW ,
this completes the proof. �

As a corollary, we have a local classification of BR-caustics in this case.

Corollary 10.9. With the same assumption for the world sheet (W,S) as
Theorem 10.8, the BR-caustic C(W,S) of (W,S) at a singular point is locally
diffeomorphic to the cuspidaledge CE or the swallowtail SW .

Proof. The BR-caustic C(W,S) of (W,S) is the set of the critical values of
π1 ◦ π|LH(Σ∗(H)). Therefore, it is enough to calculate the set of critical values
of π1 ◦ π|LF (Σ∗(F)) for each normal form F in Proposition 10.7. For (5) in
Proposition 10.7, by the proof of Theorem 10.8 we have

Σ∗(F) = {(u, 5u4 + 2vu+ 3wu2, v, w) ∈ (R× (R3 × R), 0)

| (u, v, w) ∈ (R3, 0)}.

It follows that

π1 ◦ π ◦LF (u, 5u4 + 2vu+ 3wu2, v, w) = (5u4 + 2vu+ 3wu2, v, w).

Then the Jacobi matrix of f(u, v, w) = (5u4 + 2vu+ 3wu2, v, w) is

Jf =

20u3 + 2v + 6wu 0 0
2u 1 0
3u2 0 1

 ,

so that the set of critical values of f is given by

{(−(15u4 + 3wu2),−10u3 − 3wu,w) ∈ (R3, 0) | (u,w) ∈ (R2, 0)}.

For a linear isomorphism ψ : (R3, 0) −→ R3, 0) defined by ψ(x0, x1, x2) =
(−1

5x0,−2
5x1,

3
5x2), we have ψ(−(15u4 + 3wu2),−10u3 − 3uw,w) = (3u4 +

3
5wu

2, 4u3 + 6
5wu,

3
5w). If we put U = u, V = 3

5w, then we have (3U4 + V U2,
4U3 + 2V U, V ), which is the parametrization of SW . By the arguments
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similar to the above, we can show that the set of critical values of π1 ◦
π|LF (Σ∗(F)) is a regular surface for (3) and is diffeomorphic to CE for (4)
in Proposition 10.7, respectively. This completes the proof. �

Remark 10.10. Since a world sheet (W,S) is a timelike surface in AdS3,
we can define the AdS-evolute of (W,S) by

EvAdS(W,S) =

2⋃
i=1

{
±1√

κ2
i (u, t)− 1

(κi(u, t)X(u, t) + nS(u, t))

∣∣∣∣
(u, t) ∈ U × I, κ2

i (u, t) > 1

}
,

where κi(s, t) (i = 1, 2) are the principal curvatures of W at p = X(u, t) with
respect to nS (cf. [8]). The AdS-evolute of a timelike surface has singularities
in general. Actually, it is a caustic in the the theory of Lagrangian singular-
ities. Similar to the notion of evolutes of surfaces in Euclidean space R3 (cf.
[30]), the corank two singularities of the AdS-evolute appear at the umbil-
ical points (i.e. κ1(u, t) = κ2(u, t)). The singularities of the AdS-evolute of
a generic surface in AdS3 are classified into CE, SW , PY or PU , where
PY = {(u2 − v2 + 2uv,−2uv + 2uw,w)|w2 = u2 + v2} is the pyramid and
PU = {(3u2 + wv, 3v2 + wu,w)|w2 = 36uv} is the purse. The pyramid and
the purse of the AdS-evolute correspond to the umbilical points of the time-
like surface in AdS3. So the singularities of BR-caustics of world sheets are
different from those of the AdS-evolutes of surfaces. Since the singularities
of BR-caustics are only corank one singularities, the pyramid and the purse
never appeared in general. Moreover, the normal geodesic of a timelike sur-
face is a spacelike curve, so that it is not a ray in the sense of the relativity
theory. Therefore, the AdS-evolute of a timelike surface in anti-de Sitter
space-time is not a caustic in the sense of physics.
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