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We develop techniques for describing the derived moduli spaces of
solutions to the equations of motion in twists of supersymmetric
gauge theories as derived algebraic stacks. We introduce a holomor-
phic twist of N = 4 supersymmetric gauge theory and compute the
derived moduli space. We then compute the moduli spaces for the
Kapustin–Witten topological twists as its further twists. The re-
sulting spaces for the A- and B-twist are closely related to the
de Rham stack of the moduli space of algebraic bundles and the
de Rham moduli space of flat bundles, respectively. In particular,
we find the unexpected result that the moduli spaces following a
topological twist need not be entirely topological, but can continue
to capture subtle algebraic structures of interest for the geometric
Langlands program.
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1. Introduction

In this work we will attempt to make precise, using derived algebraic geom-
etry and the classical BV formalism, the relationship between certain topo-
logical twists of N = 4 gauge theories and the moduli stacks that occur in
the geometric Langlands program as pioneered in [KW07]. In this paper we’ll
construct the moduli spaces of solutions to the equations of motion in the
Kapustin–Witten twists of N = 4 gauge theory as shifted symplectic derived
stacks, and note the appearance of interesting representation theoretic moduli
spaces, with appropriate algebraic structures.

1.1. Statement of geometric Langlands

Historically, the original motivation for the geometric Langlands conjecture
comes from number theory: from trying to find the right analogue of the
Langlands reciprocity conjecture in the realm of complex geometry. Because
the objects of interest behave better in a geometric setting, one can prove
stronger results in a cleaner way and hope to eventually transport some ideas
from geometry to number theory. Ngô’s proof [Ngô10] of the fundamental
lemma using the geometry of the Hitchin system is an example of a striking
success of this program (explained in an expository article of Nadler [Nad12]).

In this subsection, we will briefly recall the heuristic categorical state-
ment of geometric Langlands conjecture due to Beilinson and Drinfeld. For
an introduction following the historical path with more detail, one can refer
to Frenkel’s series of lectures on the Langlands program [Fre07].

Let G be a complex reductive algebraic group. The Langlands dual group
G∨ to G is the unique reductive algebraic group with dual root data: the roots
and coroots are interchanged, as are the weights and coweights. Let Σ be a
smooth projective algebraic curve over the complex numbers. The geometric
Langlands conjecture alleges an equivalence of two categories related to the
geometric representation theory of G and G∨ respectively on Σ.

Conjecture 1.1 (“The best hope”).There is an equivalence of dg-categories
D(BunG(Σ)) ' QC(FlatG∨(Σ)) intertwining the natural symmetries on both
sides.

For the category on the left-hand side (the geometric, automorphic or ‘A’-
side), we take the moduli stack BunG(Σ) of algebraic principal G-bundles on
Σ, and consider the dg-category of D-modules on BunG(Σ), which we’ll denote
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Geometric Langlands twists of N = 4 gauge theory 617

by D(BunG(Σ)). This category has been well studied in work of Drinfeld and
Gaitsgory [DG15].

For the category on the other side (the spectral, Galois or ‘B’-side), we
consider the moduli stack FlatG∨(Σ) of G∨-flat connections on Σ. We should
be careful about what exactly we mean by this category — we’ll mean the
stack parameterizing algebraic G∨-bundles with flat connection (as opposed
to the character stack, say, which in particular does not depend on the com-
plex structure of Σ). The “best hope” version of the geometric Langlands
conjecture uses the dg-category QC(FlatG∨(Σ)) of quasi-coherent sheaves on
FlatG∨(Σ).

Remarks 1.2. 1) The conjecture also includes a compatibility of the
equivalence with natural symmetries on the two sides. We’re omitting
the details of these symmetries for now, but they are crucial aspects of
the correspondence that one must address.

2) As written above, the conjecture is known to be false as soon as G
is not a torus: there are objects on the A-side which are “too large”
to correspond to anything on the B-side. This phenomenon is already
visible on the curve CP1 [Laf09]. Arinkin–Gaitsgory [AG15] formulated
a form of the conjecture which is intended to correct this incompatibility
by suitably enlarging the category on the B-side.

We address the second remark in a follow-up to this paper [EY17].

1.2. Kapustin–Witten and geometric Langlands

The observation that the magnetic dual group in the S-duality of Goddard,
Nuyts, and Olive [GNO77] and Montonen and Olive [MO77] recovers the
notion of the Langlands dual group prompts the natural question “is there
any further relationship between S-duality and Langlands duality?” Kapustin
and Witten argue that the answer is yes: the geometric Langlands equivalence
of categories is recovered as an equivalence of categories of branes along a
Riemann surface in certain twists of N = 4 gauge theories. This paper and
its sequel will attempt to mathematically understand part of this claim, so
we begin by recalling the arguments of Kapustin and Witten.

We’ll review some of Kapustin–Witten’s main ideas here in a rather
heuristic way that aims to reveal its relationship with the geometric Lang-
lands correspondence. The first idea is to construct a family of 4-dimensional
topological field theories parametrized by Ψ ∈ CP1 as topological twists of
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N = 4 supersymmetric gauge theory with gauge group G. S-duality inter-
changes the theory with gauge group G and parameter Ψ with the theory
with gauge group G∨ and parameter − 1

Ψ
1, identifying two manifestly differ-

ent theories. The relevant parameters for the geometric Langlands conjecture
are Ψ = 0 and Ψ =∞.

The second idea is to consider the compactification of the theories along
a compact Riemann surface Σ, and identify them as a family of topological
sigma-models with targetMG(Σ) — the Hitchin moduli space — whose com-
plex structures (and hence corresponding symplectic structures) are parame-
trized by Ψ ∈ CP1. Furthermore, at those special points (G, 0) and (G∨,∞),
upon compactification, S-duality becomes mirror symmetry between the A-
model with targetMK

G (Σ) in the complex structure K and the B-model with
target MJ

G∨(Σ) in the complex structure J . Since the A-model is known to
only depend on the symplectic structure of the target manifold, one can iden-
tifyMK

G (Σ) with the moduli space of Higgs bundles, or T ∗ BunG(Σ). On the
other hand, one can identify MJ

G∨(Σ) with the moduli space FlatG∨(Σ) of
principal G∨ bundles with flat connection.

Already from these two ideas one can obtain a version of the geomet-
ric Langlands correspondence. Kapustin and Witten argued at the physics
level of rigor that the relevant A-branes on T ∗ BunG can be identified with
D-modules on BunG, and hence a version of homological mirror symmetry
would give D(BunG(Σ)) ' QC(FlatG∨(Σ)). A mathematical theorem about
the relationship between the Fukaya category and D-modules for real analytic
manifolds is provided by Nadler–Zaslow [NZ09] and Nadler [Nad09]. This ar-
gument yields a statement that seems exactly of the form of the best hope
conjecture.

Although Kapustin and Witten’s argument is both beautiful and influen-
tial, it has a few mathematical defects. First of all, the geometric Langlands
conjecture is an algebraic statement, whereas all the above discussion is at
best analytic, for example involving A-branes and complex flat connections.
An additional argument is therefore needed to recover the actual categories
studied in the geometric Langlands program. We study the classical twisted
N = 4 theories in a more rigorous way to identify things in an algebraic cate-
gory, providing a stronger algebraic version of the statement of Kapustin and
Witten. What’s more, Kapustin and Witten’s argument does not (immedi-
ately) provide a way to remedy the deficiencies of the best hope conjecture.

1Strictly speaking this is only correct when G is simply laced. For general groups
S-duality is expected to exchange parameters Ψ and − 1

ngΨ where ng is the lacing
number: the ratio of the lengths of a longest and shortest root.
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Geometric Langlands twists of N = 4 gauge theory 619

In future work we will argue that a careful study of the theory incorporat-
ing a choice of quantum vacuum naturally leads to Arinkin and Gaitsgory’s
modified version of the conjecture.

We should say a little more about the significance of the determination
of the algebraic structure on our moduli spaces. There will, in general, be
several analytically equivalent possible versions of the moduli space of solu-
tions to the equations of motion. The choices that appear in the geometric
Langlands conjecture involve a two (real) directions in which the theory is
truly topological — we might call these Betti directions — and two direc-
tions in which the theory depends on a complex algebraic structure — de
Rham directions. For example, on the B-side geometric Langlands discusses
the moduli space of flat connections on a curve as opposed to the character
stack. In the physical story we’ll discuss all four directions will most naturally
be de Rham, and we’ll have to describe a version of the story in which two
of the de Rham directions are replaced by Betti directions (as yet without a
strong physical motivation) in order to obtain the moduli spaces of interest
for geometric Langlands.

1.3. Outline of the paper

We begin in Section 2 by setting up the formalism for twists of supersymmet-
ric field theories that we’ll use in the rest of the paper. We describe the N = 4
supersymmetry algebra in four dimensions and its square-zero supercharges:
the holomorphic supercharges for which half of the translations are exact, and
the topological supercharges for which all the translations are exact. In partic-
ular, we’ll describe the A and B topological supercharges whose corresponding
twists are discussed by Kapustin and Witten. The A supercharge is approx-
imated by a C× family built from holomorphic-topological supercharges for
which three translation directions are exact. After performing a holomorphic
twist all of these supercharges admit descriptions as vector fields on a super-
space of form C2|3, which we’ll describe, allowing us to generalize the twisted
theories to classical field theories on curved manifolds. The background on
supersymmetry algebras which we refer to is reviewed in Appendix A.

We proceed by defining classical field theories, both locally and globally,
in the language of derived algebraic geometry: in particular it will make sense
to talk about theories that depend on an algebraic structure on spacetime.
We discuss what it means to twist a classical field theory by an action of the
supergroup C× n ΠC: examples of such twisting data arise naturally from
square-zero supercharges in a supersymmetric field theory. Twists of non-
perturbative field theories are defined as one-parameter deformations that
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are compatible with the perturbative twists described by Costello [Cos13]
when we restrict to the tangent complex. There are natural constructions of
twists using results of Gaitsgory and Rozenblyum that identify derived stacks
with formal maps from a base derived stack X with Lie algebroids on X .

In Section 3 we review the main constructions of N = 4 supersymmet-
ric gauge theories. We begin by introducing the language of compactifica-
tion and (informally) dimensional reduction for classical field theories. The
first construction is sketched at a lower level of rigor: dimensional reduction
from N = 1 super Yang–Mills theory on R10. More rigorous is the construc-
tion by compactification from holomorphic Chern–Simons theory on N = 4
twistor space, although there are still subtleties stemming from the non-
holomorphicity of the relevant twistor map. We review some background from
twistor theory, and then prove that the linearised BV complex in holomorphic
Chern–Simons yields the linearised BV complex of N = 4 anti-self-dual super
Yang–Mills theory under compactification.

Our main results appear in Section 4, where we compute the holomorphic,
B- and A-twists of N = 4 super Yang–Mills theory as an assignment of de-
rived stacks, beginning from the twistor space perspective. Here we compute
the holomorphic twist first, because it is the minimal twist which admits an
algebraic description, and realize the B- and A-twists as further twists. We
find the following:

Theorem 1.3. The moduli space of solutions to the equations of motion in
the holomorphic twist of N = 4 super Yang–Mills on a smooth proper complex
algebraic surface X is equivalent to

EOMhol(X) ∼= T ∗form[−1] Higgsfer
G (X)

as a (−1)-shifted symplectic derived stack.

Theorem 1.4. • The moduli space of solutions to the equations of mo-
tion in the A-twist of N = 4 super Yang–Mills on a smooth proper com-
plex algebraic surface X is equivalent to

EOMA(X) ∼= HiggsG(X)dR

as a (−1)-shifted symplectic derived stack.

• The moduli space of solutions to the equations of motion in the B-twist of
N = 4 super Yang–Mills on a smooth proper complex algebraic surface
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Geometric Langlands twists of N = 4 gauge theory 621

X is equivalent to

EOMB(X) ∼= T ∗form[−1] FlatG(X)

as a (−1)-shifted symplectic derived stack.

We further proceed to identify the moduli spaces of solutions for a surface
of the form X = C × Σ for smooth proper curves C,Σ which exhibits the
relevance to the geometric Langlands correspondence. On the other hand,
even from this description from a 4-dimensional perspective, one can make the
following observation. Since it is realized as a deformation of the Higgs moduli
space, it is clear that the B-twist sees the algebraic structure of the de Rham
moduli space FlatG(Σ) of flat G-bundles, as opposed to the Betti moduli space
of locally constant sheaves. Also, on the A-side, we have the appearance of the
de Rham stack, which explains the appearance of D-modules: in particular,
one doesn’t have to deal with a Fukaya-type category to see the categorical
geometric Langlands correspondence from this perspective.

These two aspects are the results that Kapustin and Witten don’t find
from their analysis but which play a crucial role for us to recover the refined
conjecture of Arinkin and Gaitsgory in our subsequent work [EY17]. That
physics can capture subtle algebraic dependence on a spacetime after a twist
was not at all expected: first of all, supersymmetric gauge theory is defined
purely in the realm of the smooth category. Moreover, a topological twist
was expected to yield a topological field theory in the sense of Atiyah and
Segal. Indeed, this was one of the crucial reasons why many experts in the
geometric Langlands program were skeptical of how much new insight the
work of Kapustin and Witten could bring in to the original program. Our
research makes the first explicit bridge between these two different ways of
thinking, by setting up a framework based on the recent rigorous development
of derived algebraic geometry (as in, for instance the work of Toën–Vezzosi
[TV05, TV08], Lurie [Lur14], Pantev–Toën–Vaquié–Vezzosi [PTVV13] and
Gaitsgory–Rozenblyum [GR17]).

1.4. Conventions

Throughout this paper we’ll work with (∞, 1)-categories, where between two
objects one has a topological space — or a simplicial set — of morphisms. We
won’t use any model-dependent arguments, but to be concrete one may con-
sider the formulation in terms of quasi-categories, which is most extensively
developed by Lurie [Lur09]. Henceforth, we will usually just say category
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when we mean an (∞, 1)-category, use the word functor to mean a functor
of (∞, 1)-categories, and a limit for a limit in (∞, 1)-categories, and so on,
unless otherwise specified. As is usual in the subject, there are a lot of tech-
nicalities which must be stated in order to make subtle arguments, most of
which we will omit when possible for simplicity.

Also throughout the paper we’ll work over the complex number field C,
although most of the formal arguments would proceed under more relaxed
hypotheses.

Our main background language is derived algebraic geometry for which
we don’t offer an extensive exposition. This is justified partially because our
arguments are mainly formal, not using any deep result of algebro-geometric
content, and also because there are a few great references, for instance due
to Gaitsgory [Gai11a] [Gai11b] and Toën [Toë05] [Toë14]. For the reader’s
convenience, in the appendix we provide a summary of aspects of formal
derived algebraic geometry that we take advantage of throughout.

• By a (super) cdga R we’ll always mean a (super) commutative differen-
tial graded algebra over C. We denote the category of such by cdga. We
also consider the functor (of ordinary categories) (−)\ : cdga→ cdga by
R 7→ R\, where R\ is the underlying graded commutative algebra ob-
tained after forgetting the differential. We use cohomological grading
with respect to which we introduce the full subcategory cdga≤0 ⊂ cdga
of cdgas whose cohomology is concentrated in non-positive degrees. We
denote the opposite category to cdga≤0 by dAff, the category of affine
derived schemes, considering an object R ∈ cdga≤0 as the ring of func-
tions on the space SpecR. In particular, a classical affine scheme is an
affine derived scheme.

• By a derived scheme, we mean a ringed space (X,OX) where OX is
a sheaf valued in cdga≤0 such that (X,H0(OX)) is a classical scheme
and H i(OX) is a quasi-coherent sheaf over the scheme (X,H0(OX)). By
definition, a scheme or an affine derived scheme forms a derived scheme
in an obvious manner and a derived scheme yields a classical scheme as
its classical truncation Xcl := (X,H0(OX)). Note that an affine derived
scheme could have been defined to be a derived scheme whose classical
truncation is an affine scheme. We call the category of derived schemes
dSch.

• A prestack X is a functor

X : cdga≤0 → sSet,
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where sSet is the category of simplicial sets. A derived stack is a prestack
satisfying a descent condition with respect to the étale topology and we
denote the category of derived stacks by dSt. In particular, any sim-
plicial set provides a constant derived stack, and any derived scheme
defines a derived stack by its functor of points. That is, if X is a
derived scheme we define the corresponding derived stack whose R-
points are the simplicial set whose i-simplices are HomdSch(Spec(R⊗
Ω•alg(∆i)), X), where Ω•alg(∆i) is the ring of algebraic de Rham forms
on the standard i-simplex ∆i. The reduced part X red of a prestack X is
the functor cRingred → sSet from reduced commutative rings obtained
by the restriction along the functor cRingred → cdga≤0.

• A derived stack is a derived 0-Artin stack if it is an affine derived scheme.
A derived stack is a derived n-Artin stack if it is realized as a colimit over
a smooth groupoid of derived (n− 1)-Artin stacks. A derived stack is
called a derived Artin stack if it is a derived n-Artin stack for some n. For
arguments involving shifted symplectic structures we’ll need to restrict
attention to derived Artin stacks which are locally of finite presentation.
This ensures that the cotangent complex is perfect, hence dualizable.

• For any two derived stacks X , Y , one can define the mapping stack
Map(X ,Y) : dAffop → sSet by U 7→ MapdSt(X × U, Y ). As an example
of a mapping stack, one defines the k-shifted tangent space T [k]X of X
to be T [k]X := Map(SpecC[ε],X ), where ε is a parameter of cohomo-
logical degree −k with ε2 = 0. As another example, we define the loop
space LX := Map(S1

B, X), where the Betti circle S1
B is the simplicial

set S1 understood as a derived stack.

• For a derived stack X , one defines its category QC(X ) of quasi-coherent
sheaves as the limit

QC(X ) := lim
U∈(dAff/X )op

QC(U)

over the opposite category (dAff/X )op of the category of affine derived
schemes over X , where QC(SpecR) is defined to be the category R-mod
of dg modules over R. Similarly, one defines the category Perf(X ) of
perfect complexes using finitely generated dg-modules, and the category
Coh(X ) of coherent sheaves using bounded complexes with coherent co-
homology. Finally, one defines the category IndCoh(X ) of ind-coherent
sheaves on X as the ind-completion of the category Coh(X ).
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• Every derived Artin stack X admits a cotangent complex LX ∈ QC(X )
[TV08][2.2.3.3]. Since X is assumed to be of locally finite presenta-
tion, LX is a perfect complex and hence dualizable, allowing one to de-
fine the tangent complex TX := L∗X . We can recover this tangent com-
plex from the previously defined notion of the tangent space T [k]X
[TV08][1.4.1.9]. The shifted tangent complex TX [k] is obtained as the
limit of the objects T [k]X ×X U over all U ∈ dAff/X , each of which is
affine and finitely generated over U so lies in Perf(U), and therefore the
limit defines an object in Perf(X ). One can then define the k-shifted
cotangent stack as the relative spectrum

T ∗[k]X := SpecX (Sym(TX [−k])).

• For a prestack X , we define its de Rham prestack XdR to be the functor
R 7→ X (Rred). For a map X → Y of prestacks, we introduce the formal
completion Y∧X of Y along X defined by Y∧X := XdR ×YdR Y . Note that
one recovers the usual notion when X → Y is a closed immersion of
ordinary schemes, justifying the name. If Y = pt, then one obtains the
de Rham prestack XdR. If Y = T ∗[k]X is the k-shifted cotangent stack,
then we set T ∗form[k]X := (T ∗[k]X )∧X for the formal neighborhood of X
inside T ∗[k]X .

• A inf-scheme [GR17, Chapter 2.3] is a prestack X whose reduced part
X red is a reduced scheme, and which admits deformation theory in the
sense of [GR17, Chapter 1.7] (in particular derived Artin stacks locally
of finite presentation admit deformation theory). A morphism X → Y of
prestacks is inf-schematic if the base change X ×Y SpecR by any affine
derived scheme is an inf-scheme. For instance, any map of prestacks
X → Y induces an inf-schematic map X → Y∧X .
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2. Classical N = 4 theories and their twists

In this section we’ll discuss the foundational constructions of supersymmet-
ric gauge theories, and the general formalism of “twisting” supersymmetric
theories. For simplicity, from Section 2.1.1 onwards we’ll stick to considering
4-dimensional theories in Riemannian signature, but many of the construc-
tions we discuss (particularly those purely algebraic constructions involving
supersymmetry algebras) have natural analogues in other dimensions. For
instance, the construction of N = 4 supersymmetric gauge theories in four-
dimensions by dimensional reduction fits into a natural family of constructions
using the theory of normed division algebras. This is beautifully explained by
Anastasiou, Borsten et al [ABD+14]. Throughout this section we’ll refer to
Appendix A for general constructions with supersymmetry algebras.

2.1. Holomorphic and topological twists

The idea of a twist of a supersymmetry algebra, or of a supersymmetric
field theory, originated in [Wit88] as a procedure for constructing topological
“sectors” of general supersymmetric field theories, but one can make sense of
twists in much greater generality. One can form a twist of a supersymmetry
algebra A— and a twist of a theory on which it acts — from any supercharge
Q (i.e. fermionic element of the supersymmetry algebra) such that [Q,Q] = 0.
The definition of the twisted supersymmetry algebra is straightforward.

Let A be the complexified supersymmetry algebra in dimension n asso-
ciated to a spinorial complex representation Σ of Spin(n), a non-degenerate
pairing Γ: Σ⊗ Σ→ VC where VC is the n-dimensional vector representation,
and a subalgebra gR of R-symmetries. The example that we’ll be most con-
cerned with is the 4d supersymmetry algebra associated to a finite-dimensional
complex vector space W , given by

AW = (so(4;C) nC4)⊕ gR ⊕ Π((S+ ⊗W )⊕ (S− ⊗W ∗))

where gR = sl(4;C), as described in Appendix A.
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Definition 2.1. The twisted supersymmetry algebra associated to a fermionic
element Q ∈ A with [Q,Q] = 0 is the cohomology of A with respect to the
differential [Q,−].

A more subtle notion is that of a twist of a supersymmetric field theory,
which should be thought of as the derived Q-invariants of the original the-
ory, admitting an action of the twisted supersymmetry algebra. Such twisted
theories inherit properties (invariance under certain natural symmetries) from
properties of the supercharge Q. We’ll discuss two such properties: topological
and holomorphic invariance.

Perhaps the most important types of twist are topological twists. In the
literature, these are defined as coming from supercharges Q ∈ Π(Σ) which are
Spin(n)-invariant. Of course, there are generally no such Q; for instance in 4
dimensions the odd part of the N = 1 supersymmetry algebra decomposes as
a sum of irreducible two-complex dimensional Spin(4)-representations. How-
ever, it suffices to find Q that is Spin(n)-invariant after modifying the action
of the complexified rotations so(n;C) on the space of supercharges. Let’s make
this more precise by first giving a more natural definition, then showing why
the above notion implies the more natural condition.

Definition 2.2. A supercharge Q with [Q,Q] = 0 is called topological if the
map

[Q,−] : Σ→ VC

is surjective.

Remark 2.3. The above definition also makes sense for theories with an
action of an uncomplexified supersymmetry algebra. A real supercharge Q is
likewise called topological if the map [Q,−] is surjective onto the space VR of
real translations.

We’ll see shortly that this implies that all translations act trivially on
Q-twisted theories for a topological supercharge Q. Now, let’s recover the
classical notion of a topological twist. If φ : so(n;C)→ gR is a Lie algebra
homomorphism, we can define a φ-twisted action of so(n;C) on Σ. Indeed, Σ
always takes the form S ⊗W (in odd dimensions), or S+ ⊗W1 ⊕ S− ⊗W2 (in
even dimensions) where W,W1 and W2 are finite-dimensional vector spaces
acted on by the R-symmetries. With this in mind we define the twisted action
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of X ∈ so(n;C) by

X(s⊗ w) = X(s)⊗ φ(X)(w)
or X(s+ ⊗ w1 + s− ⊗ w2) = X(s+)⊗ φ(X)(w1) +X(s−)⊗ φ(X)∗(w2)

depending on the dimension.

Proposition 2.4. Let Q be a non-zero supercharge in n dimensions such
that [Q,Q] = 0, and such that there exists a homomorphism φ : so(n;C)→
gR making Q invariant under the φ-twisted action of so(n;C). Then Q is
topological.

Proof. We can replace the supersymmetry algebra with the supersymmetry
algebra twisted by φ, with brackets modified as follows:

• The rotations so(n;C) act on Σ according to the φ-twisted action.

• Rotations bracket with elements of gR as their image under the embed-
ding φ.

The bracket of two odd elements is unchanged, so it suffices to check that
Q is topological in this twisted algebra. In this algebra, since Q spans an
irreducible so(n;C) representation, the image of [Q,−] in VC should be itself
an irreducible subrepresentation, so either 0 or VC itself. Since the pairing Γ
is non-degenerate, the map [Q,−] is never 0 when Q 6= 0, so its image is all
of VC as required. �

Remark 2.5. The converse to this proposition is false in general. For a
counterexample, we consider the case of the N = 1 supersymmetry algebra in
dimension n = 8, where the positive helicity Weyl spinor representation is re-
lated to the vector representation by triality (i.e. by precomposing by an outer
automorphism of so(8;C)). The R-symmetry group is just C×, so twisting ho-
momorphisms are just characters, and we observe that there are no non-zero
invariant vectors for the vector representation of so(8;C) twisted by a charac-
ter, and similarly for the twisted Weyl spinor representation. However, there
are topological supercharges in the positive Weyl spinor representation in di-
mension 8. In dimension 8 any Weyl spinor Q+ pairs with itself to 0 under
the Γ-pairing, and if Q+ is not pure — i.e. if its nullspace in C8 under Clifford
multiplication is not of dimension 4 — then the map Γ(Q+,−) : S8− → C8 is
surjective.
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Remark 2.6. In dimension 4 — the case we’ll principally be interested in in
this paper — there is a classification of twisting homomorphisms φ that yield
topological twists by this procedure [Loz99]. We’ll investigate twists coming
from the so-called “Kapustin–Witten” twisting homomorphism, which we’ll
define at the beginning of the next subsection.

The notion of a topological twist suggests a natural definition for a holo-
morphic twist. We should ask the image of the map [Q,−] from the odd to
the even part of the supersymmetry algebra to contain exactly half of all
translations. In order for this to make sense, suppose n is even.

Definition 2.7. A supercharge Q with [Q,Q] = 0 is called holomorphic if
there exists a C-linear isomorphism between VC and Cn/2 ⊗R C such that the
image of [Q,−] in VC spans the holomorphic subspace Rn/2 ⊗R C.

To put it another way, Q is holomorphic if we can choose a splitting
of the algebra of translations into holomorphic and anti-holomorphic direc-
tions such that the image of [Q,−] is precisely the anti-holomorphic piece.
There’s a natural procedure for constructing holomorphic twists analogous
to the procedure for topological twists above, which is straightforward to
describe in four dimensions. The procedure depends on a choice of embed-
ding SU(2)→ SU(2)+ × SU(2)−, or on the level of complexified Lie algebras
so(3;C)→ so(4;C). This defines an action of SU(2) on VC by restricting the
tensor product action on S+ ⊗ S−, and thus a subspace of VC by taking in-
variant vectors. We want this to give a real subspace (i.e. a half-dimensional
subspace), so we must restrict attention to the inclusions ι1 and ι2 of the two
factors.

Proposition 2.8. Let Q be a non-zero supercharge Q with [Q,Q] = 0, and
suppose there exists a homomorphism φ : so(4;C)→ gR making Q invariant
under the φ-twisted action of ιi(so(3;C)), where i = 1 or 2. Then Q is either
a holomorphic or a topological twist.

Proof. This is very similar to the proof of Proposition 2.4 above. Again we
can replace the supersymmetry algebra by its φ-twisted version, but now the
image of [Q,−] in the translations is a ιi(so(3;C))-subrepresentation of VC. As
a module for this algebra VC decomposes as the sum of two two-dimensional
irreducible representations. Thus the image of [Q,−] is zero, half-dimensional,
or full-dimensional. As before, non-degeneracy of Γ ensures that it’s non-zero,
so Q is either holomorphic or topological. �
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2.1.1. Twists of the N = 4 supersymmetry algebra. For most of the
rest of this paper, we’ll specialize to the 4-dimensional setting and the case
where W = C4, i.e. to N = 4 supersymmetry. We’ll take the R-symmetry al-
gebra to be gR = sl(4;C) ⊆ gl(4;C); this is the R-symmetry algebra that’ll
act on supersymmetric gauge theories, since the theories we’ll define will
require fixing a choice of trivialization of detC4. We’ll consider several holo-
morphic and topological twists of an N = 4 supersymmetric gauge theory, so
let’s discuss these twists at the level of the supersymmetry algebra

AN=4 = (so(4;C)⊕ gR ⊕ VC)⊕ Π (S+ ⊗W ⊕ S− ⊗W ∗)

where W = C4, and where gR acts on W by its fundamental representation.
We’ll first analyse a family of holomorphic twists of this supersymmetry

algebra. We’ll fix a particular twisting homomorphism φ, the Kapustin–Witten
twist, defined to be the composite

φKW : so(4;C) ∼= sl(2;C)⊕ sl(2;C)→ sl(4;C)

where the first map is the exceptional isomorphism in dimension 4, and the
second map is the block diagonal embedding. We’ll get a space of holomor-
phic supercharges for each factor of SU(2)+ × SU(2)−, which we’ll describe
concretely. Choose a C-basis for the space of supercharges by choosing bases
for its constituent pieces as follows:

S+ = 〈α1, α2〉
S− = 〈α∨1 , α∨2 〉
W = 〈e1, e2, f1, f2〉
W ∗ = 〈e∗1, e∗2, f∗1 , f∗2 〉

where so(4;C) acts on W via the φKW -twist so that {ei} and {fi} are bases
for the two semispin factors (i.e. the summands on which SU(2)+ and SU(2)−
act), and where the basis given for W ∗ is the dual basis to the one for W . Ten-
sor products of basis elements yield a basis for S+ ⊗W ⊕ S− ⊗W ∗. Consider
the embedding ι2 : SU(2)→ SU(2)+ × SU(2)− by inclusion of the second fac-
tor. The resulting invariant supercharges are those in S+ ⊗ 〈e1, e2〉. From now
on we’ll fix a reference holomorphic supercharge

Qhol = α1 ⊗ e1.
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Now, let’s compute the Qhol-cohomology of the N = 4 supersymmetry
algebra; that is, the cohomology of the cochain complex

so(4;C)⊕ gR
[Qhol,−]

// Π(S+ ⊗W ⊕ S− ⊗W ∗)
[Qhol,−]

// VC .

Consider the terms sequentially.

• In the translation term we expect to find a half-dimensional family of
“anti-holomorphic” translations as the cokernel of [Qhol,−]. Indeed, the
image in the translations is the span of Γ(α1, α

∨
1 ) and Γ(α1, α

∨
2 ), which

are linearly independent. From now on we’ll work in coordinates on VC
defined by

∂

∂zi
= Γ(α1, α

∨
i ), ∂

∂zi
= Γ(α2, α

∨
i ).

• In the remaining bosonic term, the kernel of [Qhol,−] is spanned by
the subgroup of elements (A,R) ∈ so(4;C)⊕ sl(4;C) such that A(α1) =
cα1 and R(e1) = −ce1 for some c ∈ C. This subgroup is isomorphic to
sl(2;C)− ⊕ p where p is isomorphic to a parabolic subalgebra of sl(4;C)
with Levi subalgebra sl(3;C).

• In the fermionic term, consider the two summands separately. First
look at S+ ⊗W . These elements are all [Qhol,−]-closed, and the exact
elements are just the five-dimensional subspace generated by S+ ⊗ 〈e1〉
and 〈α1〉 ⊗W , leaving

〈α2 ⊗ e2, α2 ⊗ f1, α2 ⊗ f2〉

as the cohomology. Finally, look at S− ⊗W ∗. There are no exact ele-
ments in this subspace, and the closed elements are given by

S− ⊗ 〈e∗2, f∗1 , f∗2 〉.

So overall, the twisted supersymmetry algebra has form(
so(3;C)⊕ p⊕

〈
∂

∂z1
,
∂

∂z2

〉)
⊕ Π

(
〈α2 ⊗ e2, α2 ⊗ f1, α2 ⊗ f2〉 ⊕ S− ⊗ 〈e∗2, f∗1 , f∗2 〉

)
where so(3;C) acts on S− by its spin representation, and sl(3;C) ⊆ p acts
on 〈e2, f1, f2〉 and its dual space by the fundamental and anti-fundamental
representations respectively.
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Now, the twists we’ll really be concerned with will all be further twists of
such a holomorphic twist. That is, they’ll be determined by supercharges Q =
Qhol +Q′ where Q′ commutes with Qhol but is not obtained from Qhol by the
action of some symmetry, so survives in the Qhol twist. All such supercharges
are holomorphic or stronger (i.e. at least half the translations are Q-exact);
indeed, the image of [Q,−] in VC contains the image of [Qhol,−].

Remark 2.9. For our further twists, we have an isomorphism H•(AN=4;
Qhol +Q′) ∼= H•(H•(AN=4;Qhol);Q′). This is clear for Q′ contained entirely
in the S− summand of space of supersymmetries, this follows from the degen-
eration of the spectral sequence of the double complex for AN=4 where S+ is
placed in bidegree (1, 0) and S− is placed in bidegree (0, 1). If instead Q′ is
contained entirely in the S+ summand, the complexes (AN=4, Qhol +Q′) and
(H•(AN=4, Qhol), Q′) in degrees 0, 1 and 2 split as the sum of two two-step
complexes. The claim follows for further twists of form Q′ = α2 ⊗ w where
w ∈ W by examining the cohomology of each of these two-step complexes.

We’ll investigate which such supercharges Q are topological. First let’s
describe those supercharges which are compatible with the twisting homo-
morphism φKW above independently of the holomorphic twist. After turning
on the twisting homomorphism we can identify S+ ⊗W ⊕ S− ⊗W ∗ with

S+ ⊗ (S+R ⊕ S−R)⊕ S− ⊗ (S+R ⊕ S−R)

where S+R is spanned by ei in the first summand and e∗i in the second sum-
mand and likewise S−R is spanned by fi and f∗i . The compatible topological
supercharges, i.e. those elements that are invariant for the twisted SO(4) ac-
tion, have the form

α(α1 ⊗ e1 − α2 ⊗ e2) + β(α∨1 ⊗ f∗1 − α∨2 ⊗ f∗2 )

for any pair (α, β) of complex numbers. These supercharges are further twists
of Qhol exactly when α = 1.

This C-family extends to a natural CP1-family of topological further
twists of the holomorphic twist, with a special point at infinity which is no
longer compatible with the full Kapustin–Witten twisting homomorphism.
Consider the CP1-family of supercharges

Q(µ:ν) = Qhol + (µ(α∨1 ⊗ f∗1 − α∨2 ⊗ f∗2 ) + ν(α2 ⊗ e2)), for (µ : ν) ∈ CP1.
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Here simultaneous rescaling of the two-parameter family over (µ, ν) ∈ C2 does
not change the affect the further twist obtained from an element of the Qhol-
cohomology of the supersymmetry algebra. These twists are all compatible
with the twisting homomorphism φKW with the exception of the special point
(1 : 0). One can verify that this twist is compatible not with a twisting homo-
morphism from the full group Spin(4) of rotations, but only with subgroups
thereof, for example with twisting homomorphisms from the group U(2). It
is therefore only natural to describe the associated twisted theory on ori-
ented 4-manifolds that admit a complex structure. We call this family the
Kapustin–Witten family of topological twists. We’ll be most interested in the
cases where (µ : ν) = (0 : 1) and (1 : 0). We call these twists the A-twist QA

and the B-twist QB respectively.
We note that as a result of considering only further twists of Qhol this

CP1-family does not coincide (specifically at∞) with the family of twists con-
sidered in [KW07]. However we’ll show that this family does indeed produce
the expected B-model after twisting at the point QB.

One can alternatively fit QB into a larger family of twists that is closed
under S-duality. First, we introduce a family of holomorphic-topological su-
percharges Qhol − λ(α∨2 ⊗ f∗2 ), so called because we think of them as being
holomorphic in two real dimensions — i.e. one complex dimension — and
topological in the remaining two. In other words a three-dimensional family
of translations will be exact for the action of these supercharges. Holomorphic-
topological twists of this form were originally studied by Kapustin [Kap06].
We can then define a family of topological supercharges approximating QA

by
Qλ = Qhol − λ(α∨2 ⊗ f∗2 ) + (α2 ⊗ e2)

for each λ ∈ C. These are A-type deformations of the holomorphic-topological
twists Qhol − λ(α∨2 ⊗ f∗2 ) which converge to QA as λ→ 0. Note that QB can
also be realized as a deformation of Qhol − λ(α∨2 ⊗ f∗2 ). The task of inves-
tigating the family of quantum field theories obtained by twisting by these
supercharges remains to be addressed in future work.

2.1.2. Superspace formalism. The above formalism will allow us to de-
fine the action of a supersymmetry algebra on certain theories over R4, and
to produce topologically and holomorphically twisted versions with desirable
symmetry properties. However, it’ll be important for us to generalize these
theories to theories defined on more general manifolds than R4. We’ll do
this by globalizing the twisted supersymmetry algebras, i.e. realizing them
as acting locally on the total spaces of certain super vector bundles over our
manifolds by infinitesimal symmetries. To set up this so-called “superspace
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formalism” we’ll need some language from supergeometry. By a super-ring,
we’ll just mean a Z/2Z-graded commutative ring. We’ll consider suitable “su-
perspaces” whose local functions form such a super-ring.

Definition 2.10. A supermanifold of dimension n|m is a ringed space (M,C∞M )
which is locally isomorphic to (Rn, C∞(Rn;C)[ε1, . . . , εm]), where the εi are
odd variables.

Remark 2.11. Note that we’re defining a supermanifold to have a struc-
ture sheaf consisting of complex valued functions. Such an object is sometimes
called a complex supersymmetric (or cs) supermanifold, for instance by Wit-
ten [Wit12].

A typical example of the kind of supermanifold we are going to consider
is the total space of an odd vector bundle. We can define this as follows.

Example 2.12. Let M be a real manifold, and let E be a complex vec-
tor bundle on M . Then we define a supermanifold (ΠE,C∞ΠE) by setting
C∞ΠE(U) = C∞(U,∧•E∗) for each open set U ⊂M . In particular, if E = TM
is the tangent bundle of M , then the sheaf of smooth functions on U ⊂ ΠE
is the space Ω•(U) of smooth differential forms on U . Supermanifolds diffeo-
morphic to a supermanifold of this form are called split.

We can also define an algebraic analogue.

Definition 2.13. A supervariety of dimension n|m is a ringed space (X,OX)
which is locally isomorphic to (SpecR,R[ε1, . . . , εm]) for a reduced C-algebra
R of Krull dimension n.

Note that every smooth supervariety naturally yields a supermanifold.
Our vector bundle example still makes sense in an algebraic sense.

Example 2.14. Let X be a smooth complex algebraic variety and E be an
algebraic vector bundle on X. Then we define a supervariety (ΠE,OΠE) by
setting OΠE(U) = O(U,∧•E∗). Supervarieties isomorphic to the ones of this
form are called split supervarieties.

Remark 2.15. There is a fundamental difference between the smooth and
algebraic settings. In the smooth setting, a theorem of Batchelor [Bat79] says
that all supermanifolds are split. In the complex algebraic setting this is very
much not true, and there are many non-split supervarieties. Luckily, all the
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examples we’ll need to deal with in what follows will be split, so this subtlety
will not play a role.

Example 2.16. An example of a natural supervariety of this form is the
complex super projective space CPn|m, modelling the quotient of the super-
manifold Cn+1|m \ {0} under the action of C× by rescaling. Concretely, CPn|m
is the total space of the odd algebraic vector bundle Π(O(1)⊗ Cm) over CPn,
as one can readily check by analysing the transition functions for the odd
coordinates between affine charts.

If we want to do calculus on supermanifolds, we need an analogue of the
canonical bundle for a supermanifold.

Definition 2.17. For a split supermanifold ΠE for E →M , we define the
Berezinian to be the super vector bundle BerΠE = det(T ∗M ⊕ E∗) over ΠE.
Similarly, for a split supervariety ΠE for E → X, we define the Berezinian to
be the algebraic super vector bundle BerΠE = det(T ∗X ⊕ E∗) over ΠE, where
TX denotes the algebraic tangent bundle of X.

Example 2.18. Let Σ be a smooth curve and L be a line bundle over Σ. For
the supervariety ΠL over Σ with projection map p : ΠL→ Σ, its Berezinian
is the bundle BerΠL = p∗(KΣ ⊗ L∗) on ΠL.

Definition 2.19. A Calabi–Yau structure on a supervariety X is a trivi-
alization of the Berezinian, i.e. a complex vector bundle isomorphism from
BerX to the trivial bundle.

Now let us globalize the Kapustin–Witten family of topological twists in
the language of supergeometry. To do this, we’ll find an odd vector bundle ΠE
over C2 and an action of the Qhol-cohomology of the supersymmetry algebra
on ΠE extending the natural action of the bosonic symmetries so(3;C)⊕〈

∂
∂z1
, ∂
∂z2

〉
. Since the space of odd symmetries is 9-dimensional, a natural

choice for ΠE is the superspace C2|3 → C2 (which has a 9-dimensional space
of odd vector fields). Choose coordinates (z1, z2, ε, ε1, ε2) for this superspace,
where the complexified rotations so(3;C) act on the bosonic coordinates by
its spin representation, and the R-symmetries sl(3;C) act on the fermionic
coordinates. In these coordinates, we define the action of the supersymmetries
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by the following odd vector fields.

α2 ⊗ e2 = ∂

∂ε

α2 ⊗ fi = (−1)i+1 ∂

∂εi

α∨j ⊗ e∗2 = ε
∂

∂zj

and α∨j ⊗ f∗i = (−1)i+1εi
∂

∂zj

for i, j ∈ {1, 2}. This does indeed define an action of the super Lie algebra, i.e.
the vector fields satisfy the correct commutation relations. In this notation,
the topological supercharges act by the vector fields

Q(µ:ν) =
(
µ

(
ε1

∂

∂z1
+ ε2

∂

∂z2

)
+ ν

∂

∂ε

)
.

Note that we abuse the notation Q(µ:ν) to mean the one in the previous
subsection after taking Qhol-cohomology.

It remains to extend these local vector fields to global vector fields on a
4-manifold X. We’ll be able to do this if X has the structure of a complex
surface. Since SU(2)− acts on S− as the fundamental representation, one
can identify εi = dzi and hence simply write ε1

∂
∂z1

+ ε2
∂
∂z2

= ∂. On the other
hand, ε belongs to the trivial representation, and hence should be a trivial odd
line bundle. Namely, for a given complex surface X, the global superspace we
end up with after the holomorphic twist is Y = ΠTX × C0|1, where further
twists are described by the algebraic vector fields λ∂ + µ ∂

∂ε .
If, furthermore, X splits as the product of two smooth algebraic curves

X = Σ1 × Σ2, we can globalize the action of the topological twists Qλ. In the
coordinates above, these twists act locally by

Qλ = λε2
∂

∂z2
+ ∂

∂ε

which, by the argument above, describes the local action of the odd vector
field λ∂2 + ∂

∂ε where ∂2 is the algebraic de Rham operator on Σ2 only.

2.2. Twisted supersymmetric field theories

Now, let’s discuss what we’ll mean by a classical field theory, and what it
means to twist such an object. The definitions in this section will build on the
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perturbative definitions given by Costello in [Cos13], but extended to a global,
non-perturbative setting. In doing so we’ll find that, indeed, topological and
holomorphic twists give rise to topological and holomorphic field theories
respectively, justifying their names (by holomorphic field theories, we mean
those where observables depend only on a choice of complex structure on
spacetime, not on a choice of metric. In two dimensions this will coincide
with the notion of a (chiral) conformal field theory). The supercharge Q with
which we wish to twist generates a one-odd-dimensional abelian superalgebra
CQ, and the twisted theory will be — perturbatively — defined as something
very close to the derived CQ-invariants of the untwisted theory.

Globally, we can define a twist with respect Q as a family of derived
stacks over A1 so that, on the relative tangent bundle to a section, we recover
a perturbative twist of the fiber at 0 by Q. In general there is no reason that
such global twists should be unique, but in many examples we’ll see that there
exists a natural choice provided by theorems of Gaitsgory and Rozenblyum.

2.2.1. Classical field theories. Costello and Gwilliam [CG16, CG17] give
a beautiful axiomatisation of the notion of a perturbative classical field theory
amenable to quantization and explicit calculation. The definition we’ll give
will be a global extension of this definition, but to perform any calculations
(especially for quantization) we’ll restrict to the world of perturbation theory,
and to their language. One should view our definition as encoding the moduli
space of solutions to the equations of motion in a theory, and Costello and
Gwilliam’s definition as describing the formal neighborhood of a point in this
moduli space. We’ll begin by briefly recalling the definition of a perturbative
classical field theory.

Remark 2.20. In this section, by “vector spaces” we’ll mean cochain com-
plexes of nuclear Fréchet spaces. We’ll use E∨ to denote the strong dual of
a vector space, and E ⊗ F will denote the completed projective tensor prod-
uct. We’ll write Ŝym(E) for the completed symmetric algebra built using this
tensor product.

For a vector bundle E on a space X, we’ll use the calligraphic letter
E for its sheaf of sections, and we’ll denote by Ec the corresponding sheaf
of compactly supported sections. We’ll write E! for the twisted dual bundle
E∨ ⊗DensX where DensX is the bundle of densities, so there’s a natural
pairing E ⊗ E! → DensX of vector bundles.

Definition 2.21. An elliptic L∞ algebra E on a topological space X is a
local L∞ algebra (as in Appendix B) over X which is elliptic as a cochain com-
plex. A perturbative classical field theory is an elliptic L∞ algebra E equipped
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with a non-degenerate, invariant, symmetric bilinear pairing

〈−,−〉 : E ⊗ E[3]→ DensX

where DensX denotes the bundle of densities on X. Here invariant means
that the induced pairing on the sheaf of compactly supported sections∫

X
〈−,−〉 : Ec ⊗ Ec[3]→ C

is invariant.

From a perturbative classical field theory in this sense, we can produce a
more geometric object. Indeed, the fundamental theorem of deformation the-
ory (as described in Appendix B) allows us to associate to a local L∞ algebra
E a sheaf of formal moduli problems BE, and this correspondence provides
an equivalence of categories. If the L∞ algebra E is equipped with a degree
k pairing then we say the formal moduli problem BE inherits a presymplec-
tic form of degree k + 2. We use this to motivate a general definition in the
language of derived algebraic geometry, using a theory of shifted symplectic
structures that is applicable in great generality.

In their 2013 paper [PTVV13], Pantev, Toën, Vaquié, and Vezzosi define
the notion of a shifted symplectic structure on a derived Artin stack. We refer
to their paper and the paper [Cal15] of Calaque for details, but we should note
that a k-symplectic structure onM induces a non-degenerate degree k pairing
on the tangent complex TM, and thus a degree k − 2 pairing on the shifted
tangent complex TM[−1]. In the recent sequel [CPT+17], Calaque, Pantev,
Toën, Vaquié, and Vezzosi generalize this notion to that of a shifted Poisson
structure, and prove that this recovers the notion of a shifted symplectic
structure when a non-degeneracy condition is imposed (a different proof for
Deligne–Mumford stacks only also appeared in an earlier preprint of Pridham
[Pri17]).

We’ll begin by giving an ideal definition of a non-perturbative classical
field theory that we believe best captures the structure of local classical so-
lutions to the equations of motion.

Definition 2.22. A classical field theory on a smooth manifold X is a sheaf
M of (−1)-shifted Poisson derived stacks such that for each open set U ⊂ X,
the shifted tangent complex Tp[−1]M(U) for a closed point p ∈M(U) is
homotopy equivalent to a perturbative classical field theory when equipped
with the degree −3 pairing induced from the shifted Poisson bracket.
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Remark 2.23. We assume that Costello’s assumption of ellipticity is always
satisfied in an algebraic setting, in view of the main example of de Rham forms
Ω•alg(X) becoming elliptic in the analytic topology by the Dolbeault resolu-
tion. It is possible that one needs a more careful definition of ellipticity in an
algebraic setting for a treatment of the quantization of algebraic perturbative
theories, but this is beyond the scope of the present paper.

In practice, in this paper we’ll need to use a modified, algebraic version
of this definition. There are several reasons for this.

1) Since we hope to eventually describe the moduli spaces of interest in
the geometric Langlands program as local solutions in a classical field
theory, we’ll need a model that depends on an algebraic structure on the
spacetime manifold. As such we won’t be able to make sense of classical
solutions on a general analytic open set. Instead we’ll need to work with
a topology whose open embeddings are algebraic maps.

2) The theories we’ll construct will be built using mapping spaces out
of spacetime. In general, if a spacetime patch U is not proper, these
mapping spaces will be of infinite type, and so it will be technically
difficult to describe shifted Poisson structures on them. Rather than
getting bogged down in these functional analysis issues we’ll simply ask
for a shifted symplectic structure on the global sections (with the under-
standing that a more sophisticated analysis should also recover a global
version of the local Poisson bracket used by Costello and Gwilliam).

Remark 2.24. We expect that an alternative version of the theory should
exist in the analytic topology, using a suitable notion of analytic derived
stacks, for example the formalism introduced by Porta and Yu [PY16] or a
model based on the C∞ dg-manifolds of Carchedi and Roytenberg [CR12] or
the d-manifolds of Joyce [Joy11].

Definition 2.25. An algebraic classical field theory on a smooth proper
algebraic variety X is an assignment of a derived stackM(U) to each Zariski
open set U ⊆ X, with a (−1)-shifted symplectic structure on the spaceM(X)
of global sections whose shifted tangent complex TM(X)[−1] is homotopy
equivalent to the global sections of a perturbative classical field theory when
equipped with the degree −3 pairing induced from the shifted symplectic
pairing.
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Remarks 2.26. 1) We’ve deliberately left the nature of the “assignment”
in the definition imprecise, although we expect that the correct defini-
tion is a sheaf of derived stacks. Constructing the restriction maps and
finding a symplectic structure — much like investigating the shifted
Poisson structure on open sets — will involve subtle functional analytic
issues involving Verdier duality on infinite-dimensional stacks which is
beyond the scope of the present work. The main theorems of this paper
involve a determination of the global sections of a classical field the-
ory on a smooth proper variety, and are expected to need adjustment
to extend to sheaves of derived stacks. We hope to discuss this issue
elsewhere.

2) In what follows, we sometimes consider theories defined on not nec-
essarily proper varieties, for instance Cn. We will informally refer to
assignments of derived stacks in this general setting also as algebraic
classical field theories, even without an analysis of shifted Poisson struc-
tures.

3) We could just as readily have made this definition using a finer topology,
the étale topology for instance, but Zariski sheaves will be sufficiently
general for the examples in the present paper.

The intuition behind this definition is — as we already stated — to en-
code the idea of the derived moduli spaces of solutions to the equations of
motion. Globally, given a space of fields and an action functional we can pro-
duce a shifted symplectic derived stack by taking the derived critical locus
of the action functional. Locally there are subtleties due to the existence of
a boundary (as discussed for instance by Deligne and Freed in their notes
on classical field theories [DF99]): one can still determine the equations of
motion but the space of derived solutions will at best have a shifted Poisson
structure.

In what follows we’ll single out a special family of algebraic classical field
theories which is adapted for discussion of twists of supersymmetric Yang–
Mills theories. These will model theories whose classical fields include a 1-form
field, which is constrained to describe an algebraic structure on a G-bundle
on-shell, and where the rest of the fields are all determined by formal data.

Definition 2.27. A formal algebraic gauge theory on a smooth variety X
is an algebraic classical field theory M on X with a map σ : BunG(U)→
M(U) for each Zariski open set U ⊆ X, such that σ is inf-schematic and
induces an equivalence BunG(U)red →M(U)red of their reduced parts. If a
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formal algebraic gauge theoryM additionally admits such a map π : M(U)→
BunG(U) for each U such that σ is a section of π, then we call M fiberwise
formal.

Remark 2.28. We’ll see in our examples that there are natural twists of su-
persymmetric gauge theories that are not of this formal nature, for instance
twists that form the total space of a (dg) vector bundle over BunG. We’ll
motivate the appearance of such example by viewing them as natural exten-
sions of formal algebraic gauge theories, but they do not intrinsically fit into
the above definition. We think of the definition as a tool that allows us to
compute twists of supersymmetric gauge theories.

Example 2.29. Given any sheaf M of derived stacks with elliptic tangent
complex and whereM(X) is finitely presented we obtain an algebraic classical
field theory by taking the formal shifted cotangent space T ∗form[−1]M. At the
perturbative level, if E is an elliptic L∞ algebra this corresponds to taking the
direct sum of L∞-algebras E ⊕ E![−3], with invariant pairing induced from
the evaluation pairing E ⊗ E! → DensX . IfM admits a map σ : BunG →M
satisfying the hypotheses of Definition 2.27, then T ∗form[−1]M defines a formal
algebraic gauge theory, using the zero section map associated to the formal
shifted cotangent space. Likewise, if M also admits a map π : M→ BunG,
so that σ is a section as in Definition 2.27 then the projection map makes
T ∗form[−1]M into a fiberwise formal algebraic gauge theory.

Having given a definition of a classical field theory, let’s investigate what it
means to twist such objects. We’ll begin by explaining what it means to twist
a perturbative classical field theory, then use this to give a non-perturbative
definition of a twist of a formal algebraic gauge theory which will suffice for
our examples.

2.2.2. Perturbative twisting.

Definition 2.30. A classical field theory E on a space X with an action
of the super Poincaré algebra (such as Rn) is called supersymmetric if it
admits an action by the super Lie algebra so(n,C) nC4 ⊕ Π((S+ ⊗W )⊕
(S− ⊗W ∗)) extending the natural action of the Poincaré algebra for some
vector spaceW (for a definition of a superalgebra action on a local L∞ algebra,
see the appendix, Definition B.2).
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We’ll be interested in supersymmetric field theories where the action ex-
tends to an action of the full supersymmetry algebra for some choice of R-
symmetries. In our examples for N = 4, this will be the case with the subal-
gebra sl(4;C) ⊆ gl(4;C) of (complexified) R-symmetries preserving a trivial-
ization of the determinant bundle.

The data required to twist a classical field theory is the action of a certain
supergroup. Define a supergroup

H = C× n ΠC

where C× acts with weight 1. This group arises as the group of automorphisms
of the odd complex line.

Definition 2.31. Twisting data for a classical field theory Φ on a space X
is a local action (α,Q) of H on Φ(U) for all U . That is, in the perturba-
tive case Φ is a sheaf of L∞ algebras with H-module structure, and in the
non-perturbative case Φ is a family of derived stacks with H-action. In our
notation, α is a C× action, and Q is an odd infinitesimal symmetry with
α-weight 1.

An important source of twisting data is a supersymmetry action. Let Q
be a supercharge such that [Q,Q] = 0, and let α be a C× action such that
Q has weight one (we can always find such an action by choosing a suitable
C× in the group of R-symmetries, after choosing an exponentiation of the
action of the R-symmetry algebra to an action of an R-symmetry group.)
Since [Q,Q] = 0, the supercharge Q generates a subalgebra isomorphic to
ΠC acting on any theory with the appropriate supersymmetry action, and
along with α this defines an action of the supergroup H.

Lemma 2.32. There is an equivalence of categories

{super vector spaces with an H-action} ∼= {super cochain complexes}.

Here the grading is given by the weight under the action of C× and the
differential is given by the action of ΠC. We use this fact to define a twisted
theory for the data (α,Q).

Definition 2.33. Let E be a perturbative classical field theory with an
action of the supergroup H. The twisted theory EQ (where Q is a generator of
ΠC) is the theory obtained by introducing a new differential graded structure
on E in accordance with the previous lemma and taking the total complex
with respect to this new grading and the cohomological grading.
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Remark 2.34. The twisted theory EQ fits into a family of classical field
theories deforming E — i.e. a sheaf of perturbative field theories over the
line A1 — whose fiber at λ is the theory obtained by applying the twisting
construction with respect to the dilated twisting data (λQ, α).

Remarks 2.35. This definition needs some unpacking. We should explain
what we want to do intuitively, in particular the role of the action α.

• On the level of functions — that is, observables — our first idea is
to take the Q-coinvariants. By identifying observables with their orbits
under Q we force all Q-exact symmetries to act trivially, so if we choose
a holomorphic or topological supercharge we impose strong symmetry
conditions on the observables in the twisted theory. The näıve thing to
do to implement this procedure would be to take the derived invariants
of our classical field theory with respect to the group ΠC generated
by Q.

• This is all well and good, but recall what a ΠC-action actually means:
the data of a family of classical field theories over the space B(ΠC)
whose fiber over zero is E. That is, a module over C[[t]], where t is a
fermionic degree 1 parameter. One really wants to restrict interest to a
generic fiber of this family.

• To do this we restrict to the odd formal punctured disc, or equivalently
invert the parameter t, then take invariants for an action α of C× for
which t has weight 1, thus extracting a “generic” fiber instead of the
special fiber at 0. This is an instance of the Tate construction for the
homotopy ΠC action Q. It’s important to restrict to the formal punc-
tured disc, since not all these invariant fields extend across zero: if we
just took C× invariants in E [[t]] we’d obtain elements of E of the form
φtk where φ had weight −k. In particular we’d find ourselves throwing
away everything of positive C× weight in E .

• Now, this procedure is exactly the same as the definition we gave above.
Taking derived Q invariants corresponds to taking the complex E [[t]]
with differential dE + tQ. Inverting t and taking invariants under the
action α is then the same as adding the α weight to the original grading,
and adding the operator Q to the original differential dE , just as in our
definition.

Proposition 2.36. The twisted theory EQ is still a classical field theory
when equipped with a pairing inherited from E.
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Proof. First note that EQ is still an elliptic L∞ algebra. The complex obtained
as the ΠC invariants of the theory — the complex (E [[t]], dE + tQ) — is
required to have the structure of an elliptic L∞ algebra by the definition of
a group action on a field theory. Inverting t preserves this structure, as does
taking C×-invariants, again because α is a local L∞-action.

It remains to construct an invariant pairing on EQ of the correct degree
(we’ll follow Costello [Cos13, 13.1]). The pairing on E induces a degree -3
pairing of form

〈−,−〉Q : E[[t]]⊗ E[[t]][3]→ DensX [[t]]

by 〈e1t
k1 , e2t

k2〉Q = 〈e1, e2〉tk1+k2 . We only need to check that this is compati-
ble with the differential dE + tQ, i.e. that exact terms on the left vanish under
the pairing map, or more precisely that

(〈dEf1, f2〉+ 〈f1, dEf2〉) tk1+k2 + (〈Qf1, f2〉+ 〈f1, Qf2〉) tk1+k2+1 = 0.

The first term vanishes because of compatibility of dE with the pairing, and
the second term vanishes because Q is a symmetry of the classical field theory.
This pairing yields an invariant DensX((t)) valued pairing after inverting t.
By construction these pairings are equivariant with respect to the action of
C× by rescaling t, so descends to a pairing

〈−,−〉Q : (E((t))⊗ E((t))[3])C
×
→ DensX((t))C× = DensX .

This pairing is still invariant, so gives EQ the structure of a classical field
theory. �

2.2.3. Global twisting. Now, letM be a non-perturbative algebraic clas-
sical field theory on Cn, and supposeM admits an action of a supersymmetry
algebra extending the action of the translations. As above, choose a super-
charge Q satisfying [Q,Q] = 0, and an action α of C× on M so that Q has
α-weight one.

Definition 2.37. A deformation of a derived stack X is a derived stack
π : X ′ → A1 flat over the affine line along with an immersion X ↪→ X ′0, and
an equivalence X ′|Gm ∼= X ′1 ×Gm, where X ′t is the fiber over the point t.

We’ll begin with a prototypical example of a deformation, presented some-
what informally for motivation. We’ll provide a more conceptual and general
treatment of this example later in Example 2.47.
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Example 2.38. Consider a smooth proper variety X. We define a ringed
space XDol by XDol := (X,OT [1]X), where the structure sheaf OT [1]X is equiv-
alent to SymX(LX [−1]) = Ω•alg,X . As one has a quasi-isomorphism Ωp

alg,X '
(Ap,•X , ∂) in the analytic topology, XDol is justifiably called the Dolbeault stack
of X. Similarly, one defines Xλ-dR to be the ringed space (X, (Ω•alg,X , λ∂)).
Of course, XdR := X1-dR is called the de Rham stack of X because one has
(Ω•alg,X , ∂) ' (A•,•X , ∂ + ∂) ' (A•X , d) in the analytic topology. It will some-
times be convenient to write X0-dR for XDol.

There exists a ringed space XHod and a map XHod → A1 such that the
fiber over λ is (X, (Ω•alg,X , λ∂)). That is, both squares in the following diagram
are fiber product squares.

XDol

��

// XHod

��

Xλ-dR

��

oo

{0} // A1 {λ}oo

In particular, XHod is a deformation of XDol.
Now we would like to write down this information in a way that can be

easily generalized to other situations. First, observe that as XDol and Xλ-dR
have the same closed points, they differ only by an infinitesimal thickening
from the original space X. In order to write this more carefully, let us in-
troduce the canonical map σλ : X → Xλ-dR. Then we would like to compare
Tσ0(x)XDol and Tσλ(x)Xλ-dR for every x ∈ X. A way to compare them is to
find a section s : A1 → XHod so that both of them are realized as fibers of
s∗TXHod/A1 . If that is the case, then one declares XdR to be a twist of XDol.

On the other hand, in general, one might not have a map playing the role
of σλ, even if we started with a map σ0 which is an equivalence at the level of
closed points. Then it would be reasonable to ask for compatibility for every
point x1 ∈ XdR. Namely, for a closed point x1 ∈ XdR, we ask the existence of
a section s : A1 → XHod such that

1) s(0) = σ0(x) for some x ∈ X,

2) s(λ) = xλ for some xλ ∈ Xλ-dR, and

3) s∗TXHod/A1 is a deformation of Tσ0(x)XDol.

Even only with this weaker requirement, we think of XdR as a twist of XDol.

When we define a twist of a formal algebraic gauge theory, there are two
additional small complications to be introduced. Firstly, given twisting data
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(α,Q), before twisting by Q we need to deal with modifying the gradings by
the C×-weight under α.

Definition 2.39. A regrading of a formal algebraic gauge theory M with
respect to a C× action α such that σ : BunG →M is equivariant for the
trivial action on BunG is a formal algebraic gauge theory σα : BunG →Mα

such that the restricted tangent complex σ∗αTMα [−1] is equivalent to the
restricted tangent complex of M with degrees modified by adding the α-
weight to the cohomological degree and the α-weight mod 2 to the fermionic
degree, as a sheaf of Lie algebras.

The second complication is that a perturbative classical field theory con-
sists of more data than just a cochain complex, and our twist must preserve
this additional information on the level of each tangent complex, in the sense
discussed in the previous section on twists of perturbative field theories.

Bearing these two points in mind, by mimicking the motivating example
with X replaced by BunG, we obtain the following definition.

Definition 2.40. A classical non-perturbative field theoryMQ is a twist of
a formal algebraic gauge theory M with respect to twisting data (α,Q) if
there is a deformation π : M′ → A1 of the regradingMα, whose generic fiber
is equivalent to MQ, such that for every closed point x1 ∈MQ, there is a
section s : A1 →M′ of the map π such that

1) s(0) = σα(x) for some x ∈ BunG,

2) s(λ) = xλ for some xλ ∈MλQ, and

3) s∗TM′/A1 is a perturbative twist of Tσ(x)M with respect to the given
twisting data as in Remark 2.34.

Remark 2.41. One could define twists of more general classical field theories
as long as they could be viewed as formal extensions of some fixed base stack
(playing the role of BunG in the above definition). For example, one could
replace BunG by maps into a target other than BG to describe twists of
supersymmetric sigma models, or if MQ = T ∗[−1]B was a cotangent theory
one might use the base space B.

Remark 2.42. One ought to be able to produce twisted field theories ex-
plicitly from a functor-of-points perspective, along the lines of a construction
explained by Grady and Gwilliam [GG15]. Let L be an L∞ space (we refer
the reader to Grady–Gwilliam or Costello [Cos13] for details concerning the
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theory of L∞ spaces) over a scheme M whose fibers are finitely generated and
concentrated in non-negative degrees, and let L be equipped with a degree −3
invariant pairing on its fibers making it into a sheaf of perturbative classical
field theories. Then we can attempt to build a non-perturbative classical field
theory out of L as follows. Let L>0 be the truncation in positive degrees: a
nilpotent L∞ space, and let L0 be the degree 0 piece: a sheaf of Lie alge-
bras. We can attempt to construct a sheaf M of derived stacks over M by
a Maurer–Cartan procedure. To do so, choose an exponentiation of L0 to a
sheaf of algebraic groups G. Define, for a cdga R concentrated in non-positive
degrees, the R-points of M over U by

M(U)(R) = MC(L>0(U)⊗R)/G(U)(R).

We can easily compute the shifted tangent complex at a point p ∈M, since

Tp[−1]M = Tp[−1](MC(L>0)/G)
∼= (L0)p → (L>0)p
= Lp,

so we recover the perturbative theory. Grady and Gwilliam [GG15] prove
that this construction satisfies a descent condition, albeit a weaker condition
than the condition we’ve demanded for derived stacks. We anticipate that
applying this construction to the twist of a perturbative classical field theory
will yield a non-perturbative twisted theory, compatibly with the examples
we construct elsewhere in the paper.

We’ll construct twists of the N = 4 theories of interest to us in Section 3
below, but why should the twisted theory with respect to specified twisting
data be well-defined? Well, for many theories of the type we’re considering
it is possible to recover the full non-perturbative theory from a family of
perturbative theories parametrized by BunG. This follows from a theorem of
Gaitsgory and Rozenblyum [GR17]. Even when this formal procedure fails
we’ll see that the Gaitsgory–Rozenblyum correspondence often provides a
natural choice of twist.

The following definition, also due to Gaitsgory and Rozenblyum, models
in derived algebraic geometry a family of formal moduli problems as described
in Appendix B over a base derived stack X , coherently equipped with base
points.

Definition 2.43. A pointed formal moduli problem Y over a derived stack X
is an inf-schematic morphism π : Y → X of prestacks with an inf-schematic
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section σ : X → Y such that the induced map πred : Yred → X red is an iso-
morphism. We’ll denote the category of pointed formal moduli problems over
X by Ptd(FormMod/X ).

Theorem 2.44 (Gaitsgory–Rozenblyum [GR17, 5.1.6.4, 7.3.6.2]). For
a derived stack X which is locally almost of finite type there is an equivalence

F : Ptd(FormMod/X )→ LieAlg(IndCoh(X )),

where LieAlg(IndCoh(X )) is the category of Lie algebra objects in ind-coherent
sheaves on X .

We can now more succinctly say that a fiberwise formal algebraic gauge
theory is an assignment to open sets in X of pointed formal moduli problems
over BunG, with the structure of an algebraic classical field theory on its
total space. Theorem 2.44 therefore says that fiberwise formal algebraic gauge
theories are completely determined by Lie algebra objects in sheaves over
BunG. We’ll take advantage of this, and define the twist of a fiberwise formal
algebraic gauge theory using this sheaf of Lie algebras.

It will be useful to unpack what exactly the functor in the theorem is. It
is constructed as a composition of two equivalences

Ptd(FormMod/X ) ΩX // Grp(FormMod/X ) Lie // LieAlg(IndCoh(X )),

where Grp(FormMod/X ) stands for the category of group objects in
FormMod/X . Here ΩX is the based loop space functor Y 7→ ΩXY = X ×Y X
and Lie is the functor given by H 7→ TH/X |X , so that the composition in
terms of the underlying ind-coherent sheaf is simply Y 7→ TY/X |X [−1]. In
other words, one can write F = σ∗T/X [−1], the restricted relative shifted
tangent complex.

Now, we’ll discuss a construction of twists of fiberwise formal algebraic
gauge theories. In order to give as general a construction as possible we’ll need
to consider a stronger form of the Gaitsgory–Rozenblyum correspondence
than Theorem 2.44, also due to Gaitsgory–Rozenblyum. This is because a
fiberwise formal algebraic gauge theory does not necessarily remain fiberwise
formal when we twist: in general the twisting data will not preserve the fibers
of the projection map π, so this structure is lost upon twisting.
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Consider the commutative diagram:

Ptd(FormMod/X ) ΩX //

forget
��

Grp(FormMod/X ) Lie //

forget
��

LieAlg(IndCoh(X ))

��

FormModX/
ΩX // FormGrpoid(X ) Lie // LieAlgebroid(X ).

Here FormModX/ stands for the category of formal moduli problems under X ,
so that a formal algebraic gauge theory is exactly an algebraic classical field
theory — given by a family of formal moduli problems — under X = BunG.
The other categories are also defined in Gaitsgory–Rozenblyum, but for our
purposes it will suffice to note that the abusive notations ΩX and Lie still
realize equivalences and that the forgetful functor from Ptd(FormMod/X )
to FormModX/ is given by the natural identification Ptd(FormMod/X ) =
(FormModX/)/X . We’ll now state the necessary generalization of Theorem 2.44.

Theorem 2.45 (Gaitsgory–Rozenblyum [GR17, 5.2.3.2, 8.2.1]). The
functor

Lie ◦ ΩX : FormModX/ → LieAlgebroid(X )

is an equivalence for any derived stack X locally almost of finite type.

We don’t define the general notion of Lie algebroids here, referring the
reader instead to Gaitsgory–Rozenblyum for details. In the present paper
essentially only two types of examples of Lie algebroids will appear, the initial
object and the terminal object in the category LieAlgebroid(X ), so we’ll use
a more concrete way to think about them in terms of an anchor map. Namely,
we use the forgetful functor

Anch: LieAlgebroid(X )→ IndCoh(X )/TX

defined by sending the formal moduli problem X → Y , which we identify with
a Lie algebroid by Theorem 2.45, to TX/Y → TX , where the map is induced
from the identity TX → TX . In particular we have Anch(X → X ) = (0→
TX ), which we call the zero Lie algebroid, and Anch(X → XdR) = (id : TX →
TX ), which we call the tangent Lie algebroid.

At this point we’ll introduce our main example: the de Rham prestack
arising as a deformation of the formal 1-shifted tangent bundle. Before we do
so we’ll introduce some relevant geometric objects originally constructed by
Simpson [Sim97, Sim98, Sim09].
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Definition 2.46. A λ-connection on an algebraic G-bundle P over a smooth
complex variety X is a map

∂λ : Ω0
alg(X; gP )→ Ω1

alg(X; gP )

such that ∂λ(f · s) = λ(∂f)s+ f∂λs for f ∈ OX and s ∈ Ω1
alg(X; gP ). A λ-

connection ∂λ is called flat if ∂2
λ = 0, where ∂λ naturally extends to a map

Ωi
alg(X; gP )→ Ωi+1

alg (X; gP ) for all i.

In particular, if λ 6= 0 and ∂λ is a flat λ-connection, then λ−1∂λ is an
algebraic flat connection on an algebraic G-bundle. If λ = 0 then a flat λ-
connection is a section φ of Ω1

alg(X; gP ) satisfying [φ, φ] = 0: a Higgs field.

Example 2.47. Let X be a derived Artin stack. We can define a prestack
XHod, the Hodge prestack of X , as a deformation of the formal 1-shifted
tangent bundle Tform[1]X . Such a deformation is — by definition — a flat
morphism π : Y → A1 with Y0 = Tform[1]X and Y|Gm ∼= Y1 ×Gm. We first
construct a formal moduli under X × A1. Having Tform[1]X as an object of
FormModX/ using Theorem 2.45, whose associated Lie algebroid is 0 : TX →
TX , one can easily think of its deformation λQ parametrized by λ ∈ A1 with
Q = id: TX → TX in the category of Lie algebroids: this gives rise to a formal
moduli problem under X × A1. It remains to construct a map down to A1

for which we refer to Gaitsgory–Rozenblyum [GR17, Chapter 9], where this
map is constructed as an example of a more general “scaling” construction,
applied to the prestack XdR.

We denote the fiber of XHod over a point λ ∈ C by Xλ-dR. The fiber over
λ = 1 is the usual de Rham prestack XdR — since the formal moduli problem
XdR under X corresponds to the tangent Lie algebroid id : TX → TX — and
the fiber over λ = 0 is also called the Dolbeault stack, and denoted XDol. We
denote the mapping stack into BG by

Map(Xλ-dR, BG) = FlatλG(X).

It represents flat λ-connections on X when X is a smooth variety. When λ = 0
we recover the moduli stack of Higgs bundles on X for the group G.

Remark 2.48. Simpson [Sim09] originally gave a different definition in the
case where X is a scheme, modelling XHod as a groupoid in schemes living
over A1. First form the deformation to the normal cone of the diagonal map
∆: X ↪→ X ×X. This is a Gm-equivariant scheme living over A1 whose fiber
over λ 6= 0 is just X ×X with X included diagonally, and whose fiber over
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0 is the tangent space TX with X included as the zero section. Form the
formal completion of X × A1 inside this total space. This admits two maps
to X × A1 inherited from the two projections X ×X → X,

Def(∆)∧X×A1 ⇒ X × A1.

The Hodge prestack XHod is equivalent to the coequalizer of these arrows in
the category of stacks. For λ = 1, it coincides with the usual definition of
the de Rham prestack XdR. For λ = 0, the coequalizer of the trivial action
TformX ⇒ X is the relative classifying space BXTformX of the sheaf TformX of
formal groups over X, which in turn is the same as Tform[1]X by the discussion
below the Theorem 2.44: the two prestacks arise from the same Lie algebra.

With this apparatus in hand, one can construct twists of fiberwise formal
algebraic gauge theories, as long as the twisting data is compatible with the
structure map σ : BunG →M, so that a twist exists within the category of
formal algebraic gauge theories. LetM be a fiberwise formal algebraic gauge
theory acted on by twisting data (α,Q) preserving the fibers of the map σ.
This condition will be necessary for a natural twist to exist within formal
algebraic gauge theories. Let’s be clear about precisely what compatibility
we require between the structure maps of out formal algebraic gauge theories
and the H-action.

Definition 2.49. Let f : X → Y be a morphism of derived stacks, and sup-
pose that the supergroup H acts on Y . We say that the H-action preserves
the fibers of the map f if the image of the map df : TX → f∗TY is invariant
under the H-action. In particular this makes the relative tangent complex
TX/Y into a sheaf of H-representations.

We will proceed by defining the canonical twist for the case of σ and π both
being preserved by the twisting data and of σ being preserved independently
first and show that these two are compatible.

Definition 2.50 (Twisting a fiberwise formal algebraic gauge theory).
LetM be a fiberwise formal algebraic gauge theory with σ : BunG →M and
π : M→ BunG. We always assume that the action of H on BunG is trivial.

1) Suppose that the twisting data (α,Q) preserves the fibers of both σ and
π. ThenM— as a Lie algebra object in IndCoh(BunG) by Theorem 2.44
— has a twist MQ in the same category by Proposition 2.36, which in
turn can be identified with a fiberwise formal algebraic gauge theory by
Theorem 2.44.
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2) Suppose that the twisting data (α,Q) preserves the fibers of σ. An H-
equivariant map σ : BunG →M gives an ind-coherent sheaf TBunG/M
withH-action, while anH-equivariant mapM→(BunG)dR under BunG
gives a map TBunG/M → TBunG of ind-coherent sheaves with H-action
by Theorem 2.45. Hence we can define the twisted anchor map as the
twist of anch(TBunG/M) which is still an object of IndCoh(BunG)/TBunG

.

Note that in the first case, one retains a Lie algebra structure, which by
Theorem 2.44 gives rise to a pointed formal moduli over BunG×A1. Note
that the projection down to A1 supplies the structure of a twist in the sense
of 2.40; the necessary section is given by composing the pointing with the map
A1 → A1 × BunG associated to a closed point of BunG. In the second case we
only obtain an ind-coherent sheaf with an anchor map to TBunG . These two
definitions of twist are compatible.

Proposition 2.51. Given a fiberwise formal algebraic gauge theory M with
twisting data preserving the fibers of both σ and π, the anchor map of the
twisted theory anch(TBunG /MQ) is equivalent to the twist of the anchor
anch(TBunG /M).

Proof. Because the twistMQ is still a fiberwise formal algebraic gauge theory,
its anchor map is zero. The underlying ind-coherent sheaves of both the theory
obtained by applying the functor anch to the twisted theory MQ, and the
theory obtained by twisting anch(TBunG /M) coincide, and hence we must
only check that if our twisting data is equivariant for π then the twisted
anchor map defined above is zero. In this case we can factor the anchor map
TBunG /M → TBunG through zero as maps of H-representations, by applying
the functor of Theorem 2.45 to the diagram

M π // BunG // (BunG)dR

BunG

σ

OO 44

in formal moduli problems under BunG. Because these maps areH-equivariant
the twisted anchor map from the twist of TBunG /M still factors through the
zero bundle, so is the zero map. �

With this proposition in mind, we’ll abuse notation and always refer to
the twisted anchor map as TBunG /MQ , even if the twisting data does not
preserve the fibers of π. In some examples we can promote this anchor map
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to a unique Lie algebroid, and therefore to a unique formal algebraic gauge
theory.

Definition 2.52. A deformation L′ of a Lie algebroid L on a derived stack
X is a Lie algebroid on X × A1 such that the moduli problem under X corre-
sponding to L via Theorem 2.45 and the moduli problem under X obtained
by restricting the moduli problem associated to L′ to X × {0} coincide.

Lemma 2.53. If the twisted family TBunG /MλQ ∈ IndCoh(BunG)/TBunG
for λ ∈ A1 is the image under the functor Anch of a deformation in
LieAlgebroid(BunG), deforming the Lie algebroid corresponding to M then
there exists a formal moduli problem M′ under M× A1, corresponding to a
deformation of a Lie algebroid, with respect to the twisting data (α,Q). If this
object Anch−1(TBunG /MQ) is unique up to equivalence then so is the twisted
derived stack MQ, among formal algebraic gauge theories.

Proof. This is a direct application of Theorem 2.45. �

Remark 2.54. If, in addition, one can find a map M′ → A1 so that the
composite A1 → A1 × BunG →M′ → A1 is the identity for every closed point
P of BunG, then M′ has the structure of a twist as in Definition 2.40. We
observed, following Definition 2.50 that there is automatically such a map
when M is fiberwise formal and the twisting data preserves the fibers of σ.
There will also naturally be such a map for examples built from the Hodge
stack. We will call such twists — when they exist and are essentially unique
— canonical twists.

For reference later, we should spell out exactly what we’ve shown for
fiberwise formal theories — i.e. in situations where we twist a Lie algebra
object, and the twisted theory does not develop a non-trivial anchor map.

Corollary 2.55. If M is a fiberwise formal algebraic gauge theory acted on
by twisting data (α,Q) preserving the fibers of the map π : M→ BunG, then
there exists a canonical twist MQ, which is itself a fiberwise formal algebraic
gauge theory.

As well as fiberwise formal theories and twisting data preserving the fibers
of π, we’ll use Lemma 2.53 for the following simple example. A deeper under-
standing of the anchor map functor would allow for a more general theorem
ensuring the existence of canonical twists of fiberwise formal algebraic gauge
theories: i.e. twists of sheaves of Lie algebras into Lie algebroids.
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Example 2.56. If M = T [1] BunG and the twisting data acts as a non-
vanishing degree 1 vector field, then MQ is (BunG)dR. This follows because
the vector field amounts to id : TBunG → TBunG as ind-coherent sheaves over
BunG. Note that this object is the terminal object in IndCoh(BunG)/TBunG
so is the image under the functor Anch of a unique Lie algebroid. In this
case there is a natural map (BunG)Hod → A1, realizing (BunG)dR as a twist
of T [1] BunG.

Having defined a twisting procedure for fiberwise formal algebraic gauge
theories, let’s investigate the properties enjoyed by these twisted theories.
The twisted theory MQ retains only a limited amount of supersymmetry: it
is acted on by the Q-cohomology of the full supersymmetry algebra. More
precisely, we have the following statement at the perturbative level, which
immediately implies an analogous result non-perturbatively.

Proposition 2.57. Suppose twisting data (α,Q) comes from the action of
a supersymmetry algebra A. The action of the Chevalley–Eilenberg cochains
C•(A) on the theory E defines an action of C•(H•(A, Q)) on the twisted
theory EQ, where we think of Q as a fermionic endomorphism of cohomological
degree 0 acting on A, and hence on C•(A). Furthermore the action of the
translation algebra factors through the action of this algebra.

Remark 2.58. In particular, this tells us that Q-exact translations act triv-
ially in the twisted theory.

Proof. We use the fact that, since A acts by symmetries, [A,B](φ) =
A(B(φ))−B(A(φ)). First we’ll show that the A action on E induces an A-
action on EQ which is well-defined up to Q-exact symmetries. Let φ and
φ+Qψ be equivalent fields in EQ, and let A ∈ C1(A) be a symmetry. The
action of A on φ+Qψ is by

A(φ+Qψ) = Aφ+ AQψ

= Aφ+QAψ − [Q,A]ψ
= Aφ− [Q,A]ψ

since QAψ = 0 in EQ. This expression in turn equals Aφ up to Q-exact el-
ements of the supersymmetry algebra, so this yields a well-defined action of
the Q-closed symmetries in A.
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Now, let A = [Q, λ] ∈ C1(A) be a Q-exact symmetry. The action of A on
a field [φ] in EQ is by

Aφ = [Q, λ][φ]
= Qλ[φ]− λQ[φ]
= 0− λ(0) = 0

since Qλφ and Qφ vanish in EQ. Note that here we’re using the well-defined
action of Q-closed symmetries on EQ from the previous paragraph, so if φ ∈ E
hasQ-cohomology class [φ] then [λ[φ]] = λ[φ]. In particularQ[φ] = [Qφ] = [0].
Thus we’ve shown that Q-exact symmetries act trivially, which means we have
a well-defined action of H•(A, Q) on EQ as required.

For the last statement we only need to note that the action of translations
on EQ by pushing forward along infinitesimal symmetries of spacetime agrees
with the action of translations given here (which is well-defined since all
translations are Q-closed) by construction of the twist. �

We focus now on the two types of twist that we’re principally interested
in: holomorphic and topological twists.

Definition 2.59. A classical perturbative field theory E on Rn is called
topological if it is translation invariant; That is if the action of the Lie algebra
Rn on the sheaf E by translations is homotopically trivial. The theory E is
called holomorphic if the analogous condition holds for the Lie algebra of
holomorphic vector fields for a specified complex structure on Rn.

Proposition 2.60. If Q is a topological (resp. holomorphic) supercharge,
then the twisted perturbative theory EQ is topological (resp. holomorphic).

Proof. If Q is topological, then by definition all translations are Q-exact, so
vanish in the Q-cohomology. The action of translations is given by a cochain
map from the Chevalley–Eilenberg cohomology

a : C•(Cn)→ End(EQ(Rn)).

This action factors through the action of the full supersymmetry algebra, i.e.
through the map C•(Cn)→ C•(A) induced by projection onto the transla-
tions in the supersymmetry algebra. Now apply Proposition 2.57, and note
that all translations must act trivially.

The holomorphic case proceeds identically. �
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3. Constructing supersymmetric gauge theories

We’ll discuss two procedures for constructing supersymmetric gauge theories
in four dimensions: dimensional reduction from 10 dimensions and compacti-
fication from a supertwistor space. In this section we’ll review both construc-
tions for N = 4 theories (though analogous constructions also give rise to
theories in dimensions other than 4, and theories with less supersymmetry).
The idea of dimensional reduction was developed by Cremmer and Scherk
[CS76] and by Scherk and Schwarz [SS79] in the 1970’s, and the applica-
tion we’re most concerned with is the construction of N = 4 supersymmetric
gauge theory in four dimensions from N = 1 gauge theory in ten dimensions
by Brink, Schwarz, and Scherk [BSS77]. We currently don’t have a fully rigor-
ous definition of dimensional reduction for our notion of classical field theories,
so the construction via dimensional reduction from 10 dimensions should be
thought of as motivational, while the construction via compatification from
twistor space should be thought of as a true definition.

Before getting into the specifics we’ll recall the general ideas behind com-
pactification and dimensional reduction for classical field theories. Through-
out this section a classical field theory M will be a family of derived stacks
with a shifted symplectic structure on the global section as in Definition 2.25.

Definition 3.1. If p : X → Y is a smooth and proper map of smooth com-
plex varieties, then the compactification of the theory along p of a classical
field theory M on X is the pushforward assignment p∗M.

Proposition 3.2. The compactification of a classical field theory M is still
a classical field theory.

Proof. We just have to note that the global sections of compactified theories
still carry shifted symplectic structures compatibly with the structure maps,
and that the shifted tangent complex at a point is still a perturbative clas-
sical field theory. The survival of the shifted symplectic structure under the
compactification along p : X → Y is obvious, since p∗M(Y ) =M(p−1Y ) =
M(X) by definition. The shifted tangent complex certainly retains its invari-
ant pairing coming from this symplectic pairing, and it retains the structure
of an elliptic L∞ algebra, so it forms a perturbative field theory. �

Definition 3.3 (Definition sketch). The dimensional reduction of a clas-
sical field theory M on a smooth variety X along a fiber bundle p : X → Y
whose fiber is a homogeneous space for an algebraic group G is the classical
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field theory on Y whose sections on an open set U ⊆ Y are the G-invariants
in M(p−1U) under the action induced from the G-action on the fibers of p.

This definition is currently unsatisfactory; we expect to have to impose
additional conditions on the theory and the fibration for the theory obtained
by taking invariants to remain a classical theory. As such, we’ll refer to di-
mensional reduction purely in an informal sense.

Remark 3.4. Costello [Cos13, 19.2.1] uses the term “dimensional reduc-
tion” for what we call “compactification”, and he requires an additional piece
of structure. He requires perturbative classical field theories to arise as the
sections of a finitely generated complex of vector bundles, which is broken by
the pushforward. Thus he defines the compactification to consist of a finitely
generated complex of vector bundles whose sections carry the structure of
a perturbative classical field theory as we define it, along with a homotopy
equivalence to the pushforward of a perturbative classical field theory on X.
For our purposes we won’t need this finiteness condition, so this subtlety
won’t arise.

It’ll also be important to understand how compactification and twisting
relate to one another. If the compactified theory p∗M is locally supersym-
metric as in Section 2.1.2 then the original theory M also admits an action
of the supersymmetry algebra by four-dimensional local isometries fixing the
fibers. If the theoryM was a fiberwise formal algebraic gauge theory then the
compactification p∗M still defines a family of pointed formal moduli problems
over BunG, i.e. there are a pair of maps p∗M(U) � BunG(p−1U) satisfying
the hypotheses of Definition 2.27.

Therefore if we have twisting data (α,Q) for M then it makes sense
to twist either the original theory or the compactified theory. Denote these
twisted theories byMQ and (p∗M)Q respectively. We’ll describe the relation-
ship perturbatively.

Lemma 3.5. If σ : BunG �M : π is a fiberwise formal algebraic gauge the-
ory and MQ is a twist of M with respect to twisting data that preserves the
fibers of π and σ, then there exists a quasi-isomorphism of classical field the-
ories

p∗(MQ) ∼= (p∗M)Q.

Proof. By Corollary 2.55 it suffices to check this at the level of perturbative
field theories on Y , i.e. taking the shifted relative tangent complexes as sheaves
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of dg Lie algebras on BunG over Y . Write p∗(EQ) and (p∗E)Q for these two
sheaves. Fixing an open set U ⊆ Y in the base, by definition p∗(EQ)(U) is
obtained as the local sections EQ(p−1U). Likewise, (p∗E)Q(U) is obtained by
taking the space of local sections E(p−1U) and applying the twisting procedure
with respect to the specified twisting data, which also recovers the space of
local sections EQ(p−1U), so the two sheaves coincide, thus so do the global
derived stacks. �

3.1. N = 1 Super-Yang–Mills in ten dimensions

We’ll now give an informal description of a supersymmetric ten-dimensional
field theory in terms of fields and an action functional, while explaining the
action of the supersymmetry algebra (as described in Appendix A) as clearly
as possible. Let G be a complex reductive group with Lie algebra g (we’ll
describe a complexification of the usual super Yang–Mills theory). There are
two fields A and Ψ, where A is identified with a g-valued 1-form and Ψ is a
Weyl fermion: a section of the bundle S10+ ⊗ g. The Lagrangian density can
be identified with

L(A,Ψ) = Tr
(1

2FA ∧ ∗FA + Ψ ∧ ∗ /DAΨ
)

where FA = dA+ 1
2 [A,A],DAΨ = dΨ + [A,Ψ], and where we define the Dirac

operator /DA using Clifford multiplication. Here the trace is defined by means
of a specified faithful finite-dimensional representation of G. Define ρ to be the
Clifford multiplication map thought of as a map of vector bundles T ∗C10 ⊗
S10+ ⊗ g→ S10− ⊗ g, using the metric to identify the tangent and cotangent
bundles. We define /DA = ρ ◦DA. The trace pairing here implicitly includes
both the invariant pairing on the Lie algebra and the ten-dimensional spinor
pairing S10− ⊗ S10+ → C.

One can describe N = 1 super Yang–Mills in the homological formalism
of Section 2.2, expanding a more familiar definition for Yang–Mills in the
second order formalism to an N = 1 vector multiplet. Consider the elliptic
complex

Ω0
C(R10; gP ) d // Ω1

C(R10; gP ) d∗d // Ω9
C(R10; gP ) d // Ω10

C (R10; gP )

Ω0
C(R10;S10+ ⊗ gP ) ∗/d

// Ω10
C (R10;S10− ⊗ gP )
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in degrees 0, 1, 2 and 3, where we write Ωi
C(R10) for the complexification

Ωi(R10)⊗R C. This complex admits an invariant pairing built from the wedge-
and-integrate pairing on forms and the ten-dimensional spinor pairing be-
tween S10+ and S10−. There is a natural L∞-structure coming from the ac-
tion, for which the pairing is invariant. The only non-trivial brackets are given
by the action of Ω0(C10; gP ) on everything, the degree two brackets

`Bos
2 : Ω1

C(R10; gP )⊗ Ω1
C(R10; gP )→ Ω9

C(R10; gP )
(A⊗B) 7→ [A ∧ ∗dB] + [∗dA ∧B] + d ∗ [A ∧B]

`Fer
2 : Ω1

C(R10; gP )⊗ Ω0
C(R10;S10+ ⊗ gP )→ Ω10

C (R10;S10− ⊗ gP )
(A⊗Ψ) 7→ ∗ /AΨ

and the degree three bracket

`3 : Ω1
C(R10; gP )⊗ Ω1

C(R10; gP )⊗ Ω1
C(R10; gP )→ Ω9

C(R10; gP )
(A⊗B ⊗ C) 7→ [A ∧ ∗[B ∧ C]] + [B ∧ ∗[C ∧ A]] + [C ∧ ∗[A ∧B]].

Now, we must define the action of the supersymmetry algebra. The bosonic
piece acts by isometries on C10 itself, and on the fields by pullback. The
fermions S10+ act by supersymmetries; we choose ε ∈ S10+ and consider the
infinitesimal symmetry coming from ε, (A,Ψ) 7→ (A+ δA,Ψ + δΨ). We let

δA = Γ(Ψ, ε)
δΨ = ρ2(FA ⊗ ε)

where Γ is the usual pairing S10+ ⊗ S10+ → C10, fiberwise (and again using
the metric to identify vector fields and 1-forms), and where ρ2 denotes the
composite map

Ω2
C(R10)⊗ S10+ → Ω1

C(R10)⊗2 ⊗ S10+ → Ω1
C(R10)⊗ S10− → S10+

where the first map is the natural inclusion, and the latter maps are Clifford
multiplication. That this gives a well-defined action of the supersymmetry
algebra, at least on-shell, and that the Lagrangian is supersymmetric are
proven in [ABD+14].

Remark 3.6. The on-shell condition here will require some care to treat
rigorously. Rather than giving a well-defined Lie algebra action on the space
of fields, the supersymmetry relations only hold up to terms that vanish after
imposing the equations of motion. A priori this should give a well-defined
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homotopy action on the derived space of solutions to the equations of motion.
A careful analysis of this action is beyond the scope of this paper.

Now, by the calculations above, considering the subspace of fields con-
stant along the leaves of a foliation by six-dimensional affine subspaces pro-
duces a four-dimensional theory with N = 4 supersymmetry. This theory is
called (pure) N = 4 super Yang–Mills in four dimensions. One can explicitly
describe the fields and the action functional [BSS77] in this dimensionally
reduced theory. The gauge field A breaks into a four-dimensional gauge field
(which we’ll also call A) and six scalar fields φ1, . . . , φ6. The Weyl spinor
Φ breaks into four four-dimensional Dirac spinors χ1, . . . , χ4. When we con-
struct an N = 4 from the twistor space perspective we’ll observe that the
field content is the same (one can also define an action on super twistor space
which recovers the dimensionally reduced action functional here. This was
done by Boels, Mason, and Skinner [BMS07]).

3.2. Twistor space formalism

Twistor space is a complex manifold whose geometry is closely related to that
of (compactified) Minkowski space. At its root, twistor space PT is just the
complex manifold CP3, but we can describe it in a way that explains why it
might be related to the geometry of R1,3. Write T for the Dirac spinor rep-
resentation S = S− ⊕ S+ in signature (1, 3), a 4-complex-dimensional vector
space. This new notation is chosen for compatibility with the twistor litera-
ture. The twistor space PT is then the space of complex lines in T.

Remark 3.7. Elsewhere when discussing four-dimensional spinors we’ve
used Euclidean signature, and indeed since we’re only discussing complex
spinor representations here our classical field theories don’t depend on a choice
of signature. We’ve used the language of Lorentzian signature in the above
construction of twistor space because of certain other aspects of twistor theory
that appear in the literature, for instance the existence of the Penrose cor-
respondence between the space of null twistors and complexified Minkowski
space, that suggest that twistors are really most naturally related to Loren-
tzian geometry.

Fix a Hermitian inner product on the space S+ of Weyl spinors. The space
T = S− ⊕ S+ therefore admits a pseudo-Hermitian structure by

((α1, β1), (α2, β2)) 7→ 〈α1, β2〉+ 〈β1, α2〉
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using the canonical isomorphism S− ∼= S+, which we observe has signature
(2, 2). This is called the twistor norm. The space of twistors with vanishing
twistor norm is denoted N ⊆ T and forms a seven-real-dimensional subman-
ifold. Looking at complex lines contained in N defines PN ⊆ PT, a five-real-
dimensional compact submanifold. Removing this submanifold splits PT into
two components, PT+ and PT− corresponding to twistors with positive and
negative twistor norm respectively.

There are two natural maps associated to twistor space which we should
describe. First define the Penrose map associated to an identification S+ ∼= H
with the quaternions to be the map

p : PT ∼= CP3 → HP1 ∼= S4

with fibers isomorphic to CP1 (the twistor lines). The space of null twistors
PN maps to an equator S3 ⊆ S4. We choose a point in p(PN) as a “point
at infinity”. The preimage PT \ CP1 of the complement is isomorphic to
CP1 × R4 as a smooth manifold.

For concreteness, choose homogeneous coordinates Z0, Z1, Z2, Z3 on T.
The Penrose map is then given by

(Z0 : Z1 : Z2 : Z3) 7→ (Z0 + jZ1 : Z2 + jZ3).

Say the point at infinity is (1 : 0) ∈ HP1. The complement of the twistor line at
infinity is the set {(Z0 : Z1 : Z2 : Z3) | Z2 and Z3 are not both 0}. This allows
us to define a holomorphic map

π : PT \ CP1 → CP1

(Z0 : Z1 : Z2 : Z3) 7→ (Z2 : Z3).

In more coordinate-free language we can identify PT \ CP1 with the total
space of the rank 2 holomorphic vector bundle O(1)⊕O(1)→ P(S+). The
map π is the bundle map.

Remark 3.8. This is an instance of a more general construction due to
Atiyah, Hitchin, and Segal [AHS78] that makes sense starting from any
pseudo-Riemannian 4-manifold X satisfying a certain curvature condition.
In short, one can take the total space of the projectivized negative Weyl
spinor bundle P(S+) over X, and produce a canonical almost complex struc-
ture on this total space using the Clifford multiplication. This almost complex
structure is integrable if one imposes the appropriate curvature condition. In
the case where X = R1,3 is Minkowski space we obtain the total space of the
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trivial P(S+) bundle, and the complex structure one defines is precisely the
complex structure on PT \ CP1 defined above.

The twistor space itself admits a supersymmetric extension.

Definition 3.9. The super twistor space associated to a complex vector
space W is the total space of the odd vector bundle

PTW = Π(O(1)⊗W )→ PT .

If we restrict to the preimage of R4 under the Penrose map p, we find a
superspace which admits a natural action of the supersymmetry algebra AW
(where the R-symmetries act trivially). We’ll construct supersymmetric field
theories on R4 by compactification from theories on twistor space admitting
manifest supersymmetry actions.

3.3. Holomorphic Chern–Simons theory on super twistor space

The power of the twistor space formalism lies in its ability to relate theories
involving the holomorphic or algebraic geometry of (super) twistor spaces, and
the metric geometry of 4-manifolds. We’ll recall two types of theory modelling
the theory of holomorphic principal bundles. First, let X = (ΠE → Xeven) be
a split algebraic supermanifold of complex dimension n, let G be a complex
reductive group, and let P be a principal G-bundle on Xeven.

The following theory of BG valued holomorphic maps was discussed in
[Cos13, Section 11.2] (as an instance of a more general theory of holomorphic
maps into a complex target stack). It will be an analytic perturbative field
theory, i.e. a sheaf of complexes over a complex manifold X with respect to
its analytic topology. Lacking a good theory of derived analytic geometry we
won’t be able to literally promote this to a non-perturbative field theory, we’ll
only be able to describe an analogous theory using algebraic bundles and the
Zariski topology.

Definition 3.10. The curved βγ system on X (with target BG) near a
holomorphic G-bundle P is the cotangent theory, as in Definition 2.29, whose
base is the elliptic L∞ algebra

Ω0,•(Xeven;OΠE ⊗ gP ), ∂).

Hence the underlying elliptic complex is

(Ω0,•(Xeven;OΠE ⊗ gP )⊕ Ωn,•(Xeven;OΠE∨ ⊗ g∗P [n− 3]), (∂, ∂)),
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and the invariant pairing is given by the canonical pairings between g and g∗

and between E and E∨, and the wedge pairing on forms.

This perturbative description ought to arise as a description of the cotan-
gent theory to the moduli space of holomorphic G-bundles on X, because the
Dolbeault complex with coefficients in gP controls deformations of holomor-
phic G-bundles on X. This suggests an analogous algebraic, non-perturbative
version of the classical field theory.

Definition 3.11. The (algebraic) curved βγ system on X (with target BG)
is the cotangent theory whose local sections on U ⊆ X are given by the derived
stack

T ∗[−1] BunG(U).

If X is smooth and proper — so BunG(U) is finitely presented — the global
sections admit a natural shifted symplectic structure.

Remark 3.12. Since BunG(U) is not locally of finite presentation for gen-
eral U , its cotangent complex is generally not perfect and hence one cannot
define the (shifted) cotangent bundle as in the conventions section. On the
other hand, one can always define the total space of a given quasi-coherent
sheaf F on X in terms of the moduli problem whose R-points consists of maps
f : SpecR→ X together with sections Γ(SpecR, f∗F). We won’t make this
technical definition precise here; we’re most interested in describing the global
sections of classical field theories on smooth projective varieties X. This re-
mark should also be applied for later appearances of a cotangent space of a
derived stack which is not locally of finite presentation.

In either the analytic or the algebraic setting we could instead consider a
more general theory of holomorphic or algebraic maps into any target — this
would define a more general curved βγ-system.

Starting from N = 1 and N = 2 super twistor space, one constructs super-
symmetric gauge theories by taking the curved βγ system on the complement
of a twistor line in the super twistor spaces PTN=1 or PTN=2. For N = 4 su-
per Yang–Mills however we’ll do something different: we observe that the
complex Ω0,•(X; gP ) where X is the complement of the line in N = 4 su-
per twistor space (i.e. the restriction of the odd vector bundle defining super
twistor space to PT \ CP1 ⊆ PT) already admits a degree −3 invariant pair-
ing, and so defines a field theory. This is an instance of a more general family
of theories.
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Example 3.13. Let X be a compact super Calabi–Yau variety of complex
dimension n|m, as in Definition 2.19. Then the complex Ω0,•(X; gP ) admits
a degree −n invariant pairing by the invariant pairing on g and the wedge
pairing on forms. This pairing naturally lands in the Berezinian, which yields
a density by applying the Calabi–Yau structure, an isomorphism of vector
bundles Ber(X)→ C. If n = 3, this defines a perturbative field theory on X
which we call holomorphic Chern–Simons theory. This perturbative theory ad-
mits an algebraic non-perturbative analogue, as above. One can consider the
non-perturbative algebraic classical field theory EOM(U) = BunG(U), with
(−1)-shifted symplectic structure arising via the derived AKSZ formalism
[PTVV13, Theorem 2.5] from the 2-shifted symplectic structure on BG and
the Calabi–Yau structure on X.

Remark 3.14. There’s a certain amount of ambiguity in the terminology
for these classical field theories. The theory we call the curved βγ system
with target BG is itself called holomorphic Chern–Simons theory in [Cos10].
In the case where X is a super Calabi–Yau 3-fold then the two theories are
closely related: the holomorphic Chern–Simons theory (in our terminology)
has the curved βγ system as its cotangent theory, as in the book of Costello
and Gwilliam [CG17].

Now, let X = PTN=4 \ CP1, the complement of a line in N = 4 super
twistor space. One observes (as noted by Witten [Wit04]) that this space is su-
per Calabi–Yau by computing the Berezinian. More generally, the Berezinian
of the super projective space CPn|m is computed to be

BerCPn|m ∼= KCPn ⊗O ∧m(O(1)⊗ Cm)
∼= O(−n− 1)⊗O(m) ∼= O(m− n− 1)

(using a choice of trivialization of ∧mCm) which is trivial if and only if m =
n+ 1, for instance in the case n = 3,m = 4.

Remark 3.15. We should note that while CP3|4 \ CP1 is super Calabi–
Yau, it is not compact super Calabi–Yau. While holomorphic Chern–Simons
on PTN=4 is a genuine classical field theory as in Definition 2.25 with shifted
symplectic structure on the space BunG(PTN=4) of global solutions to the
equations of motion given by the derived AKSZ formalism, the shifted sym-
plectic form fails to be well-defined on the complement of a line. We expect
at least a shifted Poisson structure to survive here, but since we won’t need
this shifted symplectic structure for the untwisted N = 4 moduli space in
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what follows — we’ll construct the twisted theories of interest on R4, then
generalize to arbitrary smooth algebraic surfaces by analogy — we’ll ignore
this subtlety in the present work.

Let’s try to understand the theory we get when we perform compactifi-
cation along the map p : PTN=4 \ CP1 → R4. Specifically let’s verify that
the field content agrees with the fields we described at the end of Section 3.1.
Our argument will follow the argument for the ordinary Penrose–Ward cor-
respondence given by Movshev [Mov08], and cohomology calculations given
in Section 7.2 of the book of Ward and Wells [WW91]. We’ll use the phrase
linearised holomorphic Chern–Simons and N = 4 super Yang–Mills to mean
the perturbative field theories obtained by forgetting the brackets in the L∞
structure, leaving only a cochain complex. We’ll do this calculation for the
analytic, perturbative theory.

Remark 3.16. Note that we needed to trivialize ∧4C4 in order to define
the super Calabi–Yau structure. This choice breaks the full gl(4;C) of R-
symmetries to sl(4;C), as we remarked in Section 2.1.1.

Proposition 3.17. The compactification of linearised holomorphic Chern–
Simons theory along the Penrose map p is equivalent to the linearised anti-
self-dual N = 4 super Yang–Mills theory.

Proof. To show this, we need to pushforward the sheaf of solutions to the
classical equations of motion in the holomorphic Chern–Simons theory along
p. This sheaf is just the complex Ω0,•(X; gP ) where X is the complement of
the line in N = 4 super twistor space. That is, the complex⊕

i≥0

(
Ω0,•(PT \ CP1; Symi(ΠO(−1)4)⊗O gP )

)
∼=
⊕
i≥0

(
Ω0,•(PT \ CP1;∧i(O(−1)4)⊗O gP )

)
∼= Ω0,•(PT \ CP1; (O ⊕O(−4))⊗O gP )
⊕ Ω0,•(PT \ CP1; (O(−1)⊕O(−3))⊗O gP )4

⊕ Ω0,•(PT \ CP1;O(−2)⊗O gP )6.

We’ve grouped the terms here judiciously — they’ll yield the gauge field, four
spinor fields and six scalar fields we saw in Section 3.1 respectively (with their
corresponding antifields). To check this, we must compute the hypercohomol-
ogy of these terms, complete with their actions of the algebra so(4;C). This
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becomes a little simpler after identifying PT \ CP1 with the total space of
the rank two holomorphic vector bundle O(1)⊗ S− → P(S+). What’s more,
the pullback of the bundle O(k) on P(S+) under the map π is precisely the
vector bundle O(k) given by restriction from PT = CP3. From this point of
view we can identify

Ω0,•(PT \ CP1;O(k)⊗ gP )

∼= π∗

 ⊕
i+j=•

Ω0,i(P(S+);O(k)⊗ gP ⊗ ∧j(O(1)⊗ S−))

 ,
so p∗(Ω0,•(PT \ CP1;O(k)⊗ gP ))

∼= Ω0(R4)⊗

 ⊕
i+j=•

Ω0,i(P(S+);O(k)⊗ gP ⊗ ∧j(O(1)⊗ S−))



as a sheaf on R4. We then compute the hypercohomology of the right hand
side, which is just the cohomology of the coefficient coherent sheaf with an
additional differential. Indeed, we can think of the complex as bigraded by
the i and j gradings, and the cohomology of the coefficient coherent sheaf is
precisely the E1 page of the spectral sequence of the double complex. This
page has form

C∞(R4)⊗

 H0(P(S+);O(k)⊗ gP ) // H0(P(S+);O(k + 1)⊗ S− ⊗ gP ) // H0(P(S+);O(k + 2)⊗ gP )

H1(P(S+);O(k)⊗ gP ) // H1(P(S+);O(k + 1)⊗ S− ⊗ gP ) // H1(P(S+);O(k + 2)⊗ gP ).



The page is concentrated in a single row and therefore the spectral sequence
converges at the E2 page unless k = −2, in which case there’s one additional
differential (from (i, j) = (1, 0) to (0, 2)) and the complex converges at the E3
page.

We begin with the first line (the term of interest in the ordinary, non-
supersymmetric Penrose–Ward correspondence, and the term considered by
Movshev [Mov08]). The coefficient sheaf is isomorphic to

((O ⊕ (O(1)⊗ S−)[−1]⊕O(2)[−2])
⊕ (O(−4)⊕ (O(−3)⊗ S−)[−1]⊕O(−2)[−2]))⊗ gP
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whose cohomology is

gP ⊕ gP [−1]⊗ (S− ⊗ S+ ⊕ Sym2 S+)
⊕ gP [−2]⊗ (Sym2 S+ ⊕ S− ⊗ S+)⊕ gP [−3].

Thus the corresponding term in the pushforward sheaf is

Ω0(R4; gP ⊗ (C⊕ (V ⊕ Sym2 S+)[−1]⊕ (V ⊕ Sym2 S+)[−2]⊕ C[−3]))

where V ∼= S+ ⊗ S− is the vector representation of so(4;C). To compute
the differential, we start with the first summand in the pushforward sheaf,
Ω0(R4)⊗H0(O ⊕ (O(1)⊗ S−)[−1]⊕O(2)[−2]). This is the E1 page of the
spectral sequence of the double complex described above, and the differential
is the image of the ∂ operator. Concretely, in coordinates this operator has
form ∂ie

i, where xi is a basis for R4, ∂i = ∂
∂xi , and ei is a degree 1 opera-

tor on H0(O ⊕ (O(1)⊗ S−)[−1]⊕O(2)[−2]) associated to xi. This operator
arises by canonically identifying H0(O(1)⊗ S−) with V = R4 ⊗R C so that
every global section of O(1)⊗ S− yields a degree 1 operator on H0(∧•(O(1)⊗
S−)) via the natural map ∧•(H0(O(1)⊗ S−))→ H0(∧•(O(1)⊗ S−)). Un-
packing this calculation, we find exactly the differential in the Atiyah–Singer–
Donaldson complex

Ω0(R4) d→ Ω1(R4) d+→ Ω2
+(R4).

controlling an anti-self-dual connection. The remaining summand is Serre
dual to the first summand, so the overall complex is the complex controlling
an anti-self-dual Yang–Mills field as required.

Similarly, we analyse the second line. Now, the coefficient sheaf is isomor-
phic to

((O(−1)⊕ (O ⊗ S−)[−1]⊕O(1)[−2])
⊕ (O(−3)⊕ (O(−2)⊗ S−)[−1]⊕O(−1)[−2]))⊗ gP ,

whose cohomology is gP [−1]⊗ (S− ⊕ S+)⊕ gP [−2]⊗ (S− ⊕ S+) with the
so(4;C) action indicated by the notation. Thus the corresponding term in
the pushforward sheaf is

(Ω0(R4; gP ⊗ (S[−1]⊕ S[−2])))4

where S = S+ ⊕ S−. We analyse the differential in a similar way to the above,
focusing on the first summand Ω0(R4)⊗H0(S−[−1]⊕O(1)[−2]) (the other
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term is Serre dual to this one). Again, in a specified basis, the differential
is of the form ∂ie

i, where now the ei act according to the action of xi ∈
H0(O(1)⊗ S−) on the complex H0(Sym•(O(1)⊗ S−)⊗O(−1)). Unpacking,
this action map (from Sym1 to Sym2) is given by the composite

S−
xi⊗1→ V ⊗ S− ∼= S+ ⊗ S− ⊗ S− � S+ ⊗ ∧2S− ∼= S+.

This composite is exactly the Clifford multiplication ρ(xi) by the vector xi, so
our overall differential is ∂iρ(xi). This is the Dirac operator /d, so combining
this term with its Serre dual we obtain the complex(

Ω0(R4;S) /d→ Ω0(R4;S)
)4

in degrees one and two, which is the linearised BV complex controlling four
Dirac spinors.

Finally, we analyse the last line, which is the simplest algebraically, but
whose differential is a little more subtle than the others. The coefficient sheaf
is isomorphic to (O(−2)⊕ (O(−1)⊗ S−)[−1]⊕O[−2])⊗ gP , whose coho-
mology is gP [−1]⊕ gP [−2] with the trivial so(4;C) action. Thus the cor-
responding term in the pushforward sheaf is

(Ω0(R4; gP [−1]⊕ gP [−2]))6.

To compute the differential we have to do a little more than we did for the
earlier terms, because now the E1 and E2 pages of the spectral sequence
coincide, but there’s a differential on the E2 page increasing the j degree by
two. This differential is of the form D = ∂i∂j(ei∂

−1
ej), where the operator

ei∂
−1
ej is obtained from the composite

H0(S− ⊗O(1))⊗ Γ(Ω0,0
CP1(−1)⊗ S−) // Γ(Ω0,0 ⊗ ∧2S−) ∼= H0(Ω0,0

CP1)

H0(S− ⊗O(1))⊗2 ⊗ Γ(Ω0,1
CP1(−2)) // H0(S− ⊗O(1))⊗ Γ(Ω0,1

CP1(−1)⊗ S−)

1⊗∂−1

OO

(where we’ve used Γ for the global sections of the infinite-type vector bundles
Ωi,j to emphasise that we’re considering all forms, not just the Dolbeault
cohomology) applied to xi ⊗ xj ∈ H0(S− ⊗O(1))⊗2 and a representative for a
cohomology class in H0,1(CP1;O(−2)). Here we use the fact that the operator
∂ : Ω0,0

CP1(−1)→ Ω0,1
CP1(−1) induces an isomorphism on H0. To compute the

operator ei∂−1
ej we follow the method of [WW91, Theorem 7.2.5]. There is
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a map of complexes

0 // O(−2) ei // O(−1)⊗ S− ei // O ⊗ ∧2S−

δij

��

// 0

O(−2) ei // O(−1)⊗ S− ej // O ⊗ ∧2S−

where the top row is exact, which yields a map between the spectral sequences
computing the hypercohomology of the two rows. On the E2 page of these
spectral sequences, this map just yields a commutative square

H0(Ω0,1
CP1(−2)) //

id
��

H0(Ω0,0 ∧2 S−)

δij

��

H0(Ω0,1
CP1(−2)) e

i∂
−1
ej// H0(Ω0,0 ∧2 S−),

and the top arrow is an isomorphism because the corresponding sequence of
complexes was exact, so the operator ei∂−1

ej is obtained from δij by a change
of coordinates, and the second order operator D is conjugate to the Laplacian,
as required. �

Remark 3.18. In the above calculation we’ve computed the BV complex for
a perturbative classical field theory on R4 as a cochain complex with a pairing
only. We haven’t described the pushforward of the L∞ structure. In other
words we’ve shown that we obtain the expected quadratic terms in the action
for an anti-self-dual N = 4 gauge theory, but we haven’t checked that the
correct interaction terms appear. In what follows we take the compactification
of holomorphic Chern–Simons on twistor space as the definition of untwisted
N = 4 anti-self-dual super Yang–Mills.

We won’t investigate the action in detail, but the holomorphic Chern–
Simons action functional yields an anti-self-dual super Yang–Mills theory
after compactifying the twistor lines. There’s an extra term that we can in-
troduce into the action, of form

S2(A) =
∫
R4|8

dµ log det(∂|p−1(µ)).
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Boels, Mason, and Skinner [BMS07] prove that the holomorphic Chern–
Simons theory on N = 4 super twistor space with this additional term incor-
porated into the action recovers N = 4 super Yang–Mills after compactifying
along the twistor lines.

Remark 3.19. We run into trouble when we try to define untwisted N = 4
super Yang–Mills theory non-perturbatively via compactification along the
twistor fibers, because the Penrose map p is not holomorphic for any complex
structure on R4. As such, a Zariski open set U ⊆ C2 does not lift to a Zariski
set p−1(U) ⊆ PT \ CP1. This is not a problem in the analytic setting; any
open set in a complex manifold admits a canonical complex structure, but
generally not an algebraic structure. It is not particularly surprising that we
encounter such problems: there’s no reason that a metric-dependent theory
like untwisted N = 4 gauge theory should admit a description purely in terms
of algebraic geometry.

4. Equations of motion in the twisted theories

We’ll now investigate the form of the classical field theories obtained from
applying our holomorphic and topological twists to this N = 4 theory. The
holomorphic twist will be the simplest, conceptually: the holomorphic twisting
data is compatible with the structure of BunG(PTN=4) as a fiberwise formal
algebraic gauge theory over PT \ CP1, so a canonical holomorphic twist exists
by Corollary 2.55, which can naturally be thought of as a fiberwise formal
algebraic gauge theory over C2, and which generalizes to describe a fiberwise
formal algebraic gauge theory over a compact complex algebraic surface X
whose global sections are given by

EOMhol(X) ∼= Tform[1]Map(ΠTX,BG).

The A and B topological twists are more subtle, because they each break
structures that survive the holomorphic twist: the B-twist breaks the sec-
tion BunG(U)→ EOMhol(U), while the A-twist breaks the projection map
EOMhol(U)→ BunG(U). However, we’ll construct natural twists using Ex-
ample 2.47: the A-twist deforms the outer shifted tangent bundle to the de
Rham prestack, while the B-twist deforms the source of the mapping stack
to XdR, yielding the cotangent theory to the moduli of G-local systems.
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4.1. The holomorphic twist

First, recall that according to the superspace formalism, to define the holo-
morphically twisted theory we need to specify a complex structure on a 4-
manifold. The perturbative piece of this calculation is contained in Costello’s
2011 paper [Cos13], but is included here for the reader’s convenience. Recall
that a G-Higgs bundle on a complex variety X is an algebraic G-bundle P
equipped with a section φ ∈ H0(X,T ∗X ⊗ gP ) such that [φ, φ] = 0. We’ll write
HiggsG(X) for the moduli stack of G-Higgs bundles, and Higgsfer

G (X) for the
moduli stack of G-Higgs bundles where the Higgs field is placed in fermionic
degree (so the underlying bosonic piece is just BunG(X)). This moduli space
is described by the mapping stack Map(ΠTX,BG).

The Penrose–Ward correspondence tells us that N = 4 anti-self-dual su-
per Yang–Mills corresponds to the compactification of holomorphic Chern–
Simons on super twistor space along the Penrose map p, where the bundles
are constrained to be trivializable along the twistor lines. As we remarked
in 3.19 this is problematic when working algebraically, because the map p is
not holomorphic, so the compactification is not well-defined. We’ll motivate
a definition of holomorphically twisted N = 4 theory by computing the twist
of the holomorphic Chern–Simons theory (since, by Lemma 3.5 the compact-
ification of this twist is the desired twist of N = 4 theory).

We use the following trick: find a closed embedding ι : Z ⊆ PT \ CP1

such that the Penrose map p maps Z diffeomorphically onto R4. We define
the compactification of an algebraic gauge theory along p to be the restriction
of the theory to Z.

First, we’ll check that the twisting data we’ve been discussing preserves
the fibers of the maps σ from BunG and π to BunG as in Corollary 2.55, so
the twist remains fiberwise formal.

Proposition 4.1. The twisting data associated to the holomorphic twist pre-
serve the fibers of the zero section map σ : BunG(U)→ EOM(U) and the
projection map π : EOM(U)→ BunG(U) for an open set U ⊆ C2, as in Def-
inition 2.49.

Proof. We can check the holomorphic twist preserves the fibers at the super
twistor space level. For holomorphic Chern–Simons theory on super-twistor
space the relevant map π : BunG(PTN=4 \ CP1)→ BunG(PT \ CP1) is given
by pulling back under the zero section of the super vector bundle ΠO(−1)4.
The twisting data acts by pairing with a section of O(1) ↪→ (O(−1)4)∗, the
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dual to the first factor, which acts on the fibers by multiplication by that sec-
tion in the coefficient Sym(Π(O(1)4)). In particular, the fibers are preserved,
so the twisting data acts trivially on the image of dπ. Also pairing with such
a section preserves the zero-section of the bundle over PT, thus the image of
the section σ and therefore the twisting data acts trivially on the image of
dσ. �

As such, we can compute the holomorphic twist by computing the re-
stricted relative shifted tangent complex as a sheaf over BunG, twisting the
fibers, and applying Gaitsgory–Rozenblyum’s theorem as in Corollary 2.55.

Theorem 4.2. The solutions to the equations of motion in the holomorphi-
cally twisted N = 4 SYM theory on C2 near an open set U are given by

EOMhol(U) ∼= T ∗form[−1] Higgsfer
G (U).

Note that Remark 3.12 applies for this theorem for general open sets U .
The choice of holomorphic supercharge we made corresponds to a choice of
complex structure on the base space R4 of the Penrose map. For concreteness,
let us note that for a holomorphic G-bundle P on U ⊂ C2, thought of as a
Higgs bundle with trivial Higgs field, one has

TP [−1] Higgsfer
G (U) ∼= O(U ; gP )⊕ Ω≥1

alg(U ; gP ) ∼= Ω\
alg(U ; gP ),

with zero differential, where Ωp
alg is naturally in fermionic degree p mod 2

and cohomological degree 0. Here the first summand of the complex describes
deformations of the holomorphic bundle P and the second summand describes
deformations of the Higgs field 0 ∈ ΠΩ1

alg(U ; gP ). We will see in the proof that
the homomorphically twisted theory is the cotangent theory with the base
Higgsfer

G (U), namely,

TP [−1] EOMhol(U) = Ω\
alg(U ; gP )⊕ Ω\

alg(U ; gP )∨[−3]

with the Lie algebra structure being the base acting on the shifted cotangent
fiber in a canonical way.

Remark 4.3. A priori, the twists of the full N = 4 super Yang–Mills theory
and its anti-self-dual piece might differ. However, this is actually not the case.
In the appendix of Costello’s paper on supersymmetric field theories [Cos13]
it is shown that the Qhol twist of perturbative N = 4 anti-self-dual Yang–
Mills doesn’t admit any deformations as a perturbative field theory. If the
twist of the full theory differed from the twist of the anti-self-dual theory,
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then there would be a path of twisted theories deforming one into the other
(by sending the additional term in the action for the full theory to zero), thus
a non-trivial deformation of the perturbative theory. Hence we can compute
our twist using twistor space without worrying about the additional Boels–
Mason–Skinner term in the action: this is guaranteed to be Qhol-exact.

Proof. We’ll begin with a summary of the global structure of the proof. First,
in view of Lemma 3.5 we’ll compute the twist of holomorphic Chern–Simons
theory on super twistor space. This amounts to computing the shifted tangent
complex and performing the twisting construction to get a new family over
PT \ CP1, with the structure of a family of pointed formal moduli problems
over BunG. In order to obtain the compactified theory on C2, we will use
the trick described above: we’ll find a closed embedding ι : Z ⊆ PT \ CP1

such that the Penrose map p induces a diffeomorphism Z ∼= R4 (and hence
defines a complex structure on R4) and define the compactification to be the
restriction of the family from PT \ CP1 to Z. Since the result is a family over
Z ∼= C2 of pointed formal moduli problems over BunG, the above computation
determines the moduli space of solutions in the twisted, compactified theory,
using Theorem 2.44.

We will compute the twisted theory at the level of twistor space. Choose
an open set U ⊆ PT \ CP1, an affine derived scheme V , and a smooth map
f : V → BunG(U). The shifted tangent complex at the map f to the N = 4
super twistor space theory was canonically quasi-isomorphic to

Γ(p−1(U)× V ; f∗g) ∼= Γ(U × V ; π∗1 Sym(ΠO(−1)|4U )⊗ f∗g),

where we write f∗g to denote the sheaf of Lie algebras on U × V obtained
by pulling back g = T[−1]BG under a closed point f of Map(V,BunG(U)) ∼=
Map(U × V,BG), and where π1 : U × V → U is the projection. From now
on we’ll just write O(k) for the restriction O(k)|U when our arguments are
independent of U . Recall that when we twist we modify the sections of our
theory over U by adding a C× weight to the cohomological grading then
introducing a new differential coming from the supercharge. We’ll choose a
C×-action such that the first copy of O(−1) (corresponding to e∗1 ∈ W ∗) has
weight −1, the third copy of O(−1) (corresponding to f∗1 ∈ W ∗) has weight
1, and the remaining two copies (corresponding to e∗2 and f∗2 ∈ W ∗) have
weight 0.
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The holomorphic supercharge Qhol = α1 ⊗ e1 can be thought of as a sec-
tion of ΠO(1) which pairs non-trivially with the first factor of O(−1)4 (gen-
erated by e∗1 ∈ W ∗) to define a map O(−1)4 → O, which extends to a sym-
degree −1 derivation of Sym(ΠO(−1)4). The section of ΠO(1) in question,
corresponding to α1 ∈ S+, is given on the open set U by the homogeneous
polynomial Z2 in twistor coordinates, so the differential given by Qhol is gen-
erated by the map that multiplies a section of O(−1) on the set U by Z2.
This preserves the cohomological grading, but increases the weight by 1, since
it reduces the number of e∗1 factors by 1. The map “multiply by Z2” from
O(k) to O(k + 1) is injective, and has cokernel isomorphic to OZ(k + 1) =
ι∗O{Z2=0}(k + 1) where OZ is the structure sheaf of the zero locus of Z2.
Thus we compute the Qhol-twisted shifted tangent complex to be the space
of global sections of the sheaf

π∗1

(
OZ ⊕OZ(−2)⊕ ΠOZ(−1)2

)
⊗ f∗g

⊕ π∗1
(
OZ(−3)⊕OZ(−1)⊕ ΠOZ(−2)2

)
⊗ f∗g[−1],

arising from the cohomology of the operator

−1 O(−1)1

zz

ΠO(−2)2
12,14

vv

O(−3)124

uu
0 O ΠO(−1)2

2,4 O(−2)13 ⊕O(−2)24

vv

ΠO(−3)2
123,134

uu

O(−4)1234

ww
1 O(−1)3 ΠO(−2)2

23,34 O(−3)234

where in the diagram cohomological degree runs vertically, and the subscripts
represent symmetric products of the four factors of ΠO(−1)4. This result
actually defines the BV complex of a cotangent theory whose base is the
first factor — π∗1

(
OZ ⊕OZ(−2)⊕ ΠOZ(−1)2)⊗ f∗g — alone, since there is

a canonical quasi-isomorphism of complexes

(O(k − 1)[1]→ O(k))! ∼= (O(−k − 4)→ O(−k − 3)[−1]) [3]

for each k by identifying the sheaf of densities with O(−4)[3] (the canoni-
cal sheaf shifted so that its cohomology is concentrated in degree zero) —
where the morphisms are given by pairing with the section α1 of O(1) —
and therefore an invariant pairing on g provides an isomorphism of coherent
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sheaves

π∗1

(
OZ(−3)⊕OZ(−1)⊕ ΠOZ(−2)2

)
⊗ f∗g

∼= π∗1

((
OZ ⊕OZ(−2)⊕ ΠOZ(−1)2

)
⊗ f∗g

)!
[−2].

Since the original Lie algebra structure comes from the tensor product of
sheaves and the Lie algebra structure on f∗g (in the diagram, this pairs objects
with their reflection through the center, with complementary subscripts), the
induced Lie structure is that of a cotangent theory, using the nondegenerate
invariant pairing.

After identifying OZ(−1)2 ∼= Ω1
Z,alg by choosing a trivialization, we obtain

an isomorphism of coherent sheaves of graded Lie algebras

π∗1

(
OZ ⊕OZ(−2)⊕ ΠOZ(−1)2

)
⊗ f∗g ∼= (π′1)∗Ω\

Z,alg ⊗ f
∗g

over Z, where Ω1 is fermionic but in cohomological degree 0 and π′1 is the pro-
jection Z × V → Z. With this, the holomorphically twisted shifted tangent
complex becomes

Γ(U × V ; (π′1)∗Ω\
Z,alg ⊗ f

∗g) = Ω\
alg((U ∩ Z)× V ; f∗g)

where we abuse notation to write f∗g both for the sheaf on U × V and for
its restriction to (U ∩ Z)× V .

Now, we have to compactify the twisted complex along the Penrose map.
We might worry that this is undefined since p is not holomorphic, but we
note that p maps {Z2 = 0} diffeomorphically onto R4 and henceforth identify
Z as R4 (thus in particular defining a complex structure on R4). Then for
U ⊂ C2, and a smooth map f : V → BunG(U), one obtains the shifted tan-
gent complex of the cotangent theory whose base is perturbatively given by
Ω\

alg(U × V ; f∗g) with zero differential, and where Ωi is placed in fermionic
degree i mod 2.

It remains to globalize our computation using Theorem 2.44. By definition
of the tangent complex as a quasi-coherent sheaf, it is enough to check that for
any affine derived scheme V over BunG(U), the local sections on V of the re-
stricted shifted tangent complexes to EOMhol(U) and T ∗[−1] Higgsfer

G (U) are
equivalent as dg Lie algebras. This is exactly what we checked above: the local
sections on V of the restricted tangent complex to Higgsfer

G (U) are precisely
given by Ω\

alg(U × V ; f∗g) with zero differential, and with Ωi in fermionic
degree i mod 2, so the calculation above of the restricted shifted tangent
complex to the holomorphically twist moduli space provides the desired dg
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Lie algebra equivalence for each f . Thus we obtain an equivalence

TEOMhol(U)[−1] ∼= TT ∗form[−1] Higgsfer
G (U)[−1]

of sheaves of dg Lie algebras, and therefore by Theorem 2.44 an equivalence
of derived stacks as required. �

Remark 4.4. If we were working in an analytic framework, we could do this
calculation by literally compactifying along the twistor lines. If U ⊆ C2 is an
analytic open set then its pullback p−1U to twistor space admits a canonical
complex structure despite p not being holomorphic.

Given the above calculation, we can define the holomorphic twist of N =
4 theory on any complex proper algebraic surface X using the superspace
formalism of Section 2.1.2.

Definition 4.5. The holomorphically twisted N = 4 theory on a complex
proper algebraic surface X is the assignment of derived stacks with

EOMhol(U) = T ∗form[−1] Higgsfer
G (U)

where U ⊆ X is a Zariski open set, with the canonical (−1)-shifted symplectic
structure on the global sections.

4.2. The B-twist

We’ll now proceed to compute the B-twist of N = 4 super Yang–Mills on a
complex proper algebraic surface X. This will again be a cotangent theory,
but now to the moduli space FlatG(X) of G-bundles with flat connection. As
before, we’ll compute the B-twist on flat space first — computing the twist
of the holomorphically twisted theory on C2 with respect to the further B
supercharge — then note that the superspace formalism allows us to extend
the theory to one on general complex (proper) algebraic surfaces.

Unlike the example of the holomorphic twist in the previous section, the B
supercharge will preserve the fibers of the projection map π : EOMhol(U)→
BunG(U), but not of the section σ : BunG(U)→ EOMhol(U). As such we
will not be able to directly apply Theorem 2.45 to describe a canonical twist.
Instead, we’ll observe that the moduli space EOMhol(U) has the structure of a
mapping space, and the twisting data acts on the source of the mapping space
alone, which does admit a natural deformation describable by Theorem 2.45,
yielding a natural B-twist.
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We begin by describing EOMhol(U) in a slightly different way. Using the
language of the Hodge prestack, as in Example 2.47, we can rewrite the moduli
space of solutions to the equations of motion in the holomorphic twist in a way
natural for constructing our further A- and B-twists. There is a C× action α on
EOMhol(U), which acts on the base space Higgsfer

G (U) of the shifted cotangent
bundle in a way that on the fibers of the projection Higgsfer

G (U)→ BunG(U)
it does with weight minus one by rescaling the Higgs field.

Definition 4.6. We’ll write Higgsbos
G (U) for the formal completion

Higgsbos
G (U) = HiggsG(U)∧BunG(U) = Map(T [1]U,BG)∧Map(U,BG).

The superscript “bos” (for bosonic) is intended to contrast with the
fermionic Higgs moduli space of the previous section, and to remind the reader
that this formal Higgs moduli space differs slightly from the definition that
more normally appears in the literature.

Lemma 4.7. The regrading of the moduli space EOMhol(U) for a smooth
surface U with respect to this C×-action α is equivalent to the mapping stack

T ∗form[−1]Map(UDol, BG)∧BunG(U)
∼= T ∗form[−1] Higgsbos

G (U).

Proof. We saw in Theorem 4.2 for the surface C2, which we used as a definition
for more general surfaces, that

EOMhol(U) ∼= T ∗form[−1] Higgsfer
G (U)

∼= T ∗form[−1]Map(ΠTU,BG)
∼= T ∗form[−1](Map(ΠTU,BG)∧BunG(U)).

The C×-action we’ve described acts on the fiber of ΠTU with weight one, so
the regraded space is equivalent to

EOMα
hol(U) ∼= T ∗form[−1](Map(T [1]U,BG)∧BunG(U)).

In turn, the shifted tangent bundle T [1]U is equivalent to UDol (because U is a
smooth scheme, so T [1]U∼=Tform[1]U), so EOMα

hol(U)∼=T ∗form[−1] Higgsbos
G (U)

as required. �

Remark 4.8. The formal completion at BunG(U) is necessary for the bosonic
but not the fermionic Higgs moduli space because, while the fibers of the
map Higgsfer

G (U)→ BunG(U) are purely fermionic, and therefore formal, the
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map HiggsG(U)→ BunG(U) has non-formal fibers, so the map is not a nil-
isomorphism. Taking the completion while we regrade is necessary for the
regraded theory to still be a formal algebraic gauge theory.

Now, let’s describe a twist of the holomorphic theory with respect to
the B-supercharge. The idea is that, viewing EOMhol(U) as a mapping space
as in Lemma 4.7 we can canonically deform the source from UDol to UdR,
for instance by applying Theorem 2.45 to the symmetry generated by a non-
vanishing degree one vector field on T [1]U . This will contrast with the A-twist
in the next section, where we’ll deform the global shifted cotangent bundle
construction in a similar way.

Theorem 4.9. The algebraic classical field theory EOMB which assigns to
a complex algebraic surface U the derived stack

EOMB(U) = T ∗form[−1] FlatG(U)

arises as a natural deformation of EOMhol(U) which, if U = C2, defines a
twist of N = 4 super Yang–Mills theory with respect to the topological super-
charge QB.

Remark 4.10. As we noted in Remark 3.15, this theory is only a true
algebraic classical field theory according to Definition 2.25 if U is proper,
ensuring that FlatG(U) is finitely presented, so has a perfect tangent complex.
In general the theory exists as an assignment of (possibly infinite type) derived
stacks, but the presymplectic form on the shifted cotangent complex may be
degenerate.

Proof. We’ll build a canonical twist as discussed in Remark 2.54. More specif-
ically, we’ll describe a deformation of the regrading EOMα

hol(U) for a general
surface U , then observe that if U is a Zariski open subset of C2 then it satisfies
the conditions of Definition 2.40.

For a fixed complex algebraic surface U , we consider the derived stack
M′(U) = T ∗form[−1]MapA1(UHod, BG× A1): the formal shifted cotangent to
the mapping stack relative to A1. This admits a flat map to A1 whose fiber
over t is canonically equivalent to T ∗form[−1]Map(Ut-dR, BG) — as in Exam-
ple 2.47 — so the general fiber is equivalent toMQB (U) = T ∗form[−1] FlatG(U),
and whose fiber over zero is equivalent to T ∗form[−1] HiggsG(U). We’ve there-
fore defined a deformation of the regradingMα(U) = EOMα

hol(U), via the em-
bedding EOMα

hol(U)→ HiggsG(U), whose general fiber is the desired twisted
moduli space.
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Now, we must check the hypotheses of Definition 2.40; that is, that for
every closed point P ∈ BunG(U) we can find a section s such that s(0) =
σα(P ) and such that the relative shifted tangent complex agrees with the
twist of the zero fiber as a perturbative field theory. For every closed point
of MQB (U) — just a closed point A = (P,∇) of the base space FlatG(U)
— there’s a natural section s : A1 →M′ given by rescaling the connection,
such that the shifted tangent complex restricted to s is equivalent to the
C[t]-module

s∗TM′ [−1] =
(
(Ω•alg(U ; gP )⊕ Ω•alg(U ; gP )∨[−3])⊗ C[t]), (tdA, tdA)

)
where dA is the algebraic covariant derivative associated to the flat connection
∇ on U . This defines a twist of the perturbative field theory

TP [−1] EOMhol(U) = Ω\
alg(U ; gP )⊕ Ω\

alg(U ; gP )∨[−3]

by the B-twisting data. �

It is immediate to identify compactification of the twisted theory along
an algebraic curve.

Corollary 4.11. For a product Σ1 × Σ2 of algebraic curves, the B-twist of
N = 4 super Yang–Mills theory satisfies

EOMB(Σ1 × Σ2) = T ∗form[−1]Map((Σ1)dR,FlatG(Σ2)).

Proof. This follows from the definition FlatG(X) = Map(XdR, BG) and the
adjunction

Map(X × Y, Z) = Map(X,Map(Y, Z)).

�

Remark 4.12. One can read this corollary as saying that the B-twisted
theory compactifies to the B-model with target FlatG(Σ2). A completely per-
turbative description was given by Costello [Cos13], which was not enough
to identify FlatG(Σ2) as an algebraic stack. One should note that here we
identify the target as the moduli stack of de Rham local systems, as opposed
to Betti local systems, which is more aligned with the usual formulation of
the geometric Langlands correspondence. This result is somewhat surprising,
because it has been widely believed that the Kapustin–Witten story can only
capture the topological aspects of the correspondence.
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One might worry that one shouldn’t expect the twist by a topological
supercharge to depend on a choice of complex structure on spacetime, which
our examples clearly do. Because this theory on X didn’t necessarily arise
from twisting a theory with respect to global topological twisting data, there’s
no reason that the moduli space EOMB(U) shouldn’t depend on a complex
algebraic structure on U , and in general it does depend on this choice.

A more familiar example of this phenomenon is provided by Donaldson–
Witten theory as a topological twist of N = 2 super Yang–Mills. While the
theory on a flat space is truly topological, if one uses the superspace formal-
ism to extend this theory to a general 4-manifold one finds that the moduli
space of solutions to the equations of motion is built from the moduli space of
instantons, which — if b+2 = 1 — may depend on the metric of the underly-
ing 4-manifold, not just its diffeomorphism type. A discussion in the physics
literature can be found in the 1998 paper of Moore and Witten [MW98].

From the point of view of the current work, this subtlety is necessary if we
intend to recover a statement as the geometric Langlands conjecture, which
is dependent on changes in the algebraic/holomorphic structure on a curve
from a topologically twisted theory. We will return to this in future work.

Remark 4.13. In theories like the B-twist, we would like to be able to talk
about the germs of solutions to the equations of motion near some (smooth)
submanifold of positive real codimension, especially codimension 1 submani-
folds of form Σ× S1, where Σ is an algebraic curve: these germs of solutions
correspond to the classical phase space in the 2d theory obtained by com-
pactification along Σ. With the ideal, analytic Definition 2.22 of a classical
field theory this would be possible: one could define the space of germs of
solutions to the equations of motion along a submanifold Y ⊆ X to be the
inverse image ι−1M, where ι : Y ↪→ X was the inclusion map. As we’ll see,
this would give very natural examples for an analytic version of the B-twisted
classical field theory, but using our algebraic definition we’ll need to use a
slightly different construction.

Suppose we indeed had an algebraic model for the holomorphically
twisted N = 4 theory with open sections on an analytic open set U given
by T ∗[−1] Higgsfer

G (U), interpreted in some natural way. Then we could make
a claim of the following sort.

Claim. If Y ⊆ X is a compact oriented codimension k submanifold, then the
germs of solutions to the equations of motion near Y in a B-twisted N = 4
theory are given by

EOMB(Y ) = T ∗form[k − 1] FlatG(Y )
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where FlatG(Y ) is the space of germs of flat connections near Y ⊆ X.

Proof. To identify the moduli space of germs along Y we choose a tubular
neighborhood U of Y in X, and use Poincaré duality to identify the compactly
supported sections of the shifted tangent complex on Y with the compactly
supported sections of the complex Ω•(U ; gP )[1] of FlatG(U) plus a shift of
its dual. Indeed, global sections of the inverse image ι−1 EOMB(Y ) are just
compactly supported sections of EOMB on a tubular neighborhood U of Y .
We have quasi-isomorphisms

(Ω•c(U ; gP )[1])∨ ∼= (Ω•(Y ; gP )[1])∨
∼= Ω•(Y ; g∗P )[dim Y − 1]
∼= Ω•(Y ; g∗P )[3− k]
∼= (Ω•(Y ; g∗P [1])[1]) [1− k]

which gives the total compactly supported tangent complex

Ω•c(U ; gP ⊕ g∗P [1])[1]

a (k − 1)-symplectic structure which splits globally as the sum of a sheaf of
complexes and a shift of its dual. Thus, after an application of a version of
Theorem 2.44 in analytic derived geometry we identify the moduli space of
solutions with the appropriate shifted cotangent bundle. �

We’ll give an algebraic version of this claim for manifolds of form Σ× U for
U = S1 or U = pt below.

As discussed in the remark, we would like to make sense of what a theory
assigns to a submanifold of nonzero codimension. Because our framework
uses an algebraic structure of a submanifold in an essential way — we defined
the B-twist by twisting theories only naturally defined for algebraic varieties
— we’ll need to extend our formalism. One observes that the base of the
cotangent sheaf defining the B-twist can be described by U 7→ FlatG(U) =
Map(UdR, BG) for U ⊂ X and that this assignment makes sense for a more
general class of derived stacks than just algebraic varieties.

Specifically, let’s consider compact connected manifolds U so that U × Σ
has dimension less than four (formally, we’re considering spaces of positive
codimension for the 2-dimensional theory obtained by compactification along
Σ): the only possibilities are the circle and the point. These are modelled
by derived stacks S1

B and pt, so we will simply consider Σ× U 7→ Map((Σ×
U)dR, BG) for U = S1

B or U = pt.
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While it is natural to consider the assignment V 7→ FlatG(V ) to such
extended objects, the (−1)-shifted cotangent bundle is not: the degree of the
shift must change depending on the dimension of V . In order to understand
what this means, let us view EOMB(X) = T ∗form[−1] FlatG(X), where X is a
smooth and proper algebraic surface, as arising by applying Theorem 2.44 to a
sheaf of dg Lie algebras over FlatG(X) given by the dg Lie algebra equivalence

TT ∗form[−1] FlatG(X)[−1] = TFlatG(X)[−1]⊕ (TFlatG(X)[−1])∨[−3]
= TFlatG(X)[−1]⊕ LFlatG(X)[−2]
= TFlatG(X)[−1]⊕ TFlatG(X),

where we use the (−2)-shifted symplectic structure of

FlatG(X) = Map(XdR, BG)

obtained from the AKSZ construction using the 4-orientation on XdR to iden-
tify the (−2)-shifted cotangent complex with the tangent complex [PTVV13,
Theorem 2.5]. This is an equivalence of dg Lie algebras, where the second
summand is treated as a module for the first summand. We’ll extend this
description of the moduli space of solutions to the equations of motion, to
define the moduli space for spaces of form Σ× U .

Definition 4.14. For U = S1
B or U = pt, we define EOMB(Σ× U) on X

to be the derived stack obtained by applying the Theorem 2.44 to the sheaf
TFlatG(Σ×U)[−1]⊕ TFlatG(Σ×U) of Lie algebras over FlatG(Σ× U).

Corollary 4.15. There is an equivalence of derived stacks

EOMB(Σ× S1
B) = T ∗form(LFlatG(Σ)).

Proof. By definition, it is enough to compare the shifted tangent complexes
of EOMB(Σ× S1

B) and T ∗form(LFlatG(Σ)) as sheaves of Lie algebras over
LFlatG(Σ). There are Lie algebra equivalences

TEOMB(Σ×S1
B)[−1] = TFlatG(Σ×S1

B)[−1]⊕ TFlatG(Σ×S1
B)

= TFlatG(Σ×S1
B)[−1]⊕ LFlatG(Σ×S1

B)[−1]
= TLFlatG(Σ)[−1]⊕ (TLFlatG(Σ))[−1])∨[−2]
= TT ∗form(LFlatG(Σ))[−1]
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where we use the (−1)-shifted symplectic structure of

FlatG(Σ× S1
B) = Map((Σ× S1

B)dR, BG) ∼= Map(ΣdR × S1
B, BG)

provided by the AKSZ construction, using the 2-orientation on ΣdR and the
1-orientation on S1

B. �

Note that the result is a 0-shifted symplectic derived stack. This is an
expected property of a phase space in a classical field theory, i.e. the space
the theory assigns to a proper codimension 1 submanifold. According the
Kapustin–Witten program, this space should — under geometric quantization
— yield the Hochschild homology of the category the relevant extended 2d
topological quantum field theory assigns to the point, expected to be the
category on the B-side of the geometric Langlands correspondence. We intend
to address this in the sequel to this work.

Finally, we can similarly understand what the B-twisted theory assigns
to spaces of codimension 2.

Corollary 4.16. For a smooth projective curve Σ, the moduli space of germs
of solutions to the equations of motion on Σ× pt is given by

EOMB(Σ× pt) ∼= T ∗form[1] FlatG(Σ).

Proof. The argument here is very similar to the computation of the phase
space in corollary 4.15. We apply Theorem 2.44 to the sheaf

TFlatG(Σ)[−1]⊕ TFlatG(Σ)

on FlatG(Σ). There are dg Lie algebra equivalences

TFlatG(Σ)[−1]⊕ TFlatG(Σ) ∼= TFlatG(Σ)[−1]⊕ LFlatG(Σ)
∼= TT ∗form[1] FlatG(Σ)

using the 0-shifted symplectic structure on FlatG(Σ). Again, applying Theo-
rem 2.44 completes the proof. �

Remark 4.17. In order to perform this calculation, we were forced to extend
a natural calculation of EOMB for algebraic varieties to spaces of form Σ× UB
by hand. In order to obtain a theory compatible with geometric Langlands, as
proposed by Kapustin and Witten, we are forced to perform this procedure,
where we replace a theory which is “de Rham” in all four directions with a
theory that is de Rham in two directions and Betti (purely topological) in
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the remaining two. It is worth noting that these theories are very different:
the purely de Rham theory is determined entirely by its local operators,
whereas the de Rham-Betti theory admits non-trivial line operators (indeed,
these are critical for the geometric Langlands program). Having made this
modification, one can go further to investigate a theory in which all four
directions are topological; an understanding of such a theory should lead to a
physical description of the “Betti Langlands correspondence” of Ben-Zvi and
Nadler [BZN16].

4.3. The A-twist as a limit of holomorphic-topological
twists of A-type

Understanding the A-twisted theory will be slightly different to our calcula-
tion for the B-twist, because the A-twisted theory is no longer a cotangent
theory. However, it will be a cotangent theory upon a certain compactifi-
cation. In fact, we will realize that the A-twist arose as a limit of A-type
deformations of holomorphic-topological twists, all of which yield cotangent
theories upon such a compactification.

We’ll begin by calculating the solutions to the equations of motion in
the A-type deformations of holomorphic-topological twists by an analogous
procedure to the one we used for the B-twist. A crucial difference from the
previous twists is that the relevant twisting data fails to preserve the fibers
of the morphism π : EOMα

hol(X)→ BunG(X) defining the fiberwise formal
algebraic gauge theory. However, for the A-twist, the fibers of the morphism
σ : BunG(X)→ EOMα

hol(X) are preserved from the twisting data, so it’s
possible to define a canonical twist by applying the general construction in
Lemma 2.53 based on the general Gaitsgory–Rozenblyum correspondence in
Theorem 2.45.

Let Qλ = Qhol − λ(α∨2 ⊗ f∗2 ) + (α2 ⊗ e2) be an A-type deformation of a
holomorphic-topological supercharge as described at the end of Section 2.1.1
(so Qλ → QA as λ→ 0). We’ll first consider a twisted theory with respect
to these supercharges where λ ∈ C× on a space of form X = Σ1 × Σ2, where
Σi are smooth algebraic curves. We’ll have to be careful: if λ 6= 0 then the
twisting data is equivariant neither for the projection π, nor for the section
σ, so there is no chance of constructing the twist canonically from formal,
linear algebraic data. We will however describe a natural deformation of the
holomorphically twisted theory, for each λ, including λ = 0 that yields a twist
as defined in Section 2.2, guided by the superspace description of the super-
symmetry action.
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Recall that the twist Qλ for λ ∈ C× corresponds — in the superspace
formalism — to the vector field ∂Σ1 + dΣ2 + ∂

∂ε on Σ1 × Σ2. The Qλ-twisted
theory admits a description in terms of moduli space of λ-connections, as
in Definition 2.46; let’s describe this. Let U1 and U2 be smooth complex
curves; we’ll describe EOMλ(U1 × U2), where the supercharge Qλ acts holo-
morphically in the first complex direction and topologically in the second
direction. Since the twisting procedure for a supercharge Q that splits as
Q′ +Q′′ with Q′ purely of positive helicity and Q′′ purely of negative helicity
can be performed in steps without changing the result, as in Remark 2.9, or
more concretely by performing two deformations, then obtaining a composite
deformation by restricting to the diagonal A1 ⊆ A1 × A1, we first consider
the twist by the vector field ∂Σ1 + dΣ2 and then by ∂

∂ε .
When we twist with respect to the holomorphic-topological supercharge

∂Σ1 + dΣ2 , it is clear from a similar line of reasoning to the one employed in
Theorem 4.9 that there is a natural twisted moduli space of solutions to the
equations of motion on U1 × U2 given by the (−1)-shifted formal cotangent
space to the moduli stack of principal G-bundles on U1 × U2 together with a
formal Higgs field on U1 and a flat λ-connection on Σ2, that is, the mapping
space

T ∗form[−1]
(
Map ((U1)Dol × (U2)λ-dR, BG)∧Map(U1×(U2)λ-dR,BG)

)
.

More precisely, there is a deformation of the holomorphically twisted moduli
space given by the relative mapping space

T ∗form[−1]
(

MapA1

(
(U1)Dol × (U2)Hod, BG× A1

)∧
Map

A1 (U1×(U2)Hod,BG×A1)

)
,

whose fiber over λ is given by the mapping space above, and when U1 and
U2 are both Zariski open subsets of C this defines a twist in the sense of
Definition 2.40.

As for the second summand, ∂
∂ε , this supercharge has a very natural de-

scription when U = X is proper, in which case it becomes the non-vanishing
vector field of degree 1, because

T ∗form[−1]Map(XDol, BG) = Tform[1]Map(XDol, BG)

using the (−2)-shifted symplectic structure of the mapping stack from the
AKSZ construction [PTVV13, Theorem 2.5].

The following proposition describes what happens when we perform the
two supercharges successively.
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Proposition 4.18. If Σ1 and Σ2 are proper smooth curves, the moduli space
of solutions to the equations of motion in the Qλ twist of N = 4 gauge theory
is equivalent to the de Rham prestack

EOMλ(Σ1 × Σ2) ∼=
(
Map ((Σ1)Dol × (Σ2)λ-dR, BG)∧Map(Σ1×(Σ2)λ-dR,BG)

)
dR
.

Proof. Since Σ1 and Σ2 are proper, the mapping space

X = Map ((Σ1)Dol × (Σ2)λ-dR, BG)

and its formal completion are (−2)-shifted symplectic by the AKSZ construc-
tion. Indeed, BG is naturally 2-shifted symplectic and (Σ1)Dol and (Σ2)λ-dR
are both O-compact and O-2-oriented by their fundamental classes. Using
this shifted symplectic form, we can identify T ∗[−1]X with T [1]X . The result
then follows by Example 2.47. �

This Qλ-twisted moduli space has another description, which realizes the
compactified theory as a cotangent field theory on Σ1. For a convenient fu-
ture reference, we first note the following lemma on some useful canonical
equivalences of derived stacks.

Lemma 4.19. 1) For a reduced scheme Y and any prestack X , there is
an equivalence

Map(Y,XdR) ∼= Map(Y,X )dR.

2) For a smooth projective curve Σ and a k-shifted symplectic derived stack
X , there is an equivalence

T ∗form[k − 2]Map(Σ,X ) ∼= Map(T [1]Σ,X )∧Map(Σ,X ).

3) For a derived Artin stack X locally of finite presentation, there is an
equivalence

T ∗form[k]Tform[`]X ∼= Tform[`]T ∗form[k − `]X

for all integers k and `.
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Proof. 1) We analyse the S-points for an arbitrary cdga S. There are equiv-
alences

Map(Y,X )dR(S) ∼= Map(Y,X )(Sred)
∼= Map(Y × SpecSred,X )
∼= Map(Y red × SpecSred,X )
∼= Map(Y × SpecS,XdR)
∼= Map(Y,XdR)(S).

2) Note that both the left-hand and right-hand sides are pointed for-
mal moduli problems over the mapping space Map(Σ,X ), so by The-
orem 2.44 it suffices to provide an equivalence of their shifted relative
tangent bundles as sheaves of dg Lie algebras. We observe that

TT ∗[k−2]Map(Σ,X )/Map(Σ,X )[−1] ∼= LMap(Σ,X )[k − 2][−1]
and TMap(T [1]Σ,X )/Map(Σ,X )[−1] ∼= (TMap(Σ,X ) → σ∗TMap(T [1]Σ,X ))[−1]

∼= (TMap(Σ,X ) → σ∗LMap(T [1]Σ,X )[k − 2])[−1]

where σ is the morphism of mapping stacks obtained by precomposition
with the projection T [1]Σ→ Σ, and where on the last line we used the
(k − 2)-shifted symplectic structure on Map(T [1]Σ,X ) ∼= Map(ΣDol,X )
obtained by the AKSZ construction. Note that the Lie algebra structure
is trivial on both sides. The two-step complexes on the right-hand side
just spell out the definition of the relative tangent complex, as an object
of the derived category of sheaves.

The map σ induces a map of sheaves

TMap(Σ,X )[−1]→ σ∗TMap(T [1]Σ,X )[−1]

or dually, with a shift, a map

σ∗LMap(T [1]Σ,X )[k − 3]→ LMap(Σ,X )[k − 3].

We’ll show that the kernel of this map is equivalent to TMap(Σ,X ), and
therefore the induced map between relative tangent complexes is an
equivalence. It suffices to check this claim for the fiber at each map
f : Σ→ X . At such a fiber, the map of sheaves induced by σ is given
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by the projection

Γ(Σ;LX ⊗ (OΣ[2]⊕KΣ[1]))[k − 3]→ Γ(Σ;LX ⊗KΣ)[k − 2].

On the other hand, the inclusion of a fiber of TMap(Σ,X )[−1] is given by
the composite

Γ(Σ;TX )[−1]→ Γ(Σ;TX ⊗ (OΣ ⊕KΣ[−1])[−1]
∼= Γ(Σ;LX [k]⊗ (OΣ ⊕KΣ[−1])[−1],

whose image is precisely the kernel of the projection, as required. There-
fore the relative tangent complexes to our two derived stacks are equiv-
alent, so the derived stacks themselves are equivalent, as required.

3) Since both T ∗form[k]Tform[`]X and Tform[`]T ∗form[k − `]X define pointed
formal moduli problems over X , it suffices by Theorem 2.44 to prove
an equivalence for the restricted shifted tangent complexes as sheaves
of Lie algebras over X . We realize such an equivalence as the composite

σ∗TT ∗form[k]Tform[`]X [−1] ∼= ((TX ⊕ TX [`])⊕ (LX ⊕ LX [−`])[k])[−1]
∼= (TX ⊕ TX [`]⊕ LX [k]⊕ LX [k − `])[−1]
∼= ((TX ⊕ LX [k − `])⊕ (TX ⊕ LX [k − `])[`])[−1]
∼= σ∗TTform[`]T ∗form[k−`]X [−1]

of dg Lie algebra equivalences, where the Lie structure on the second
line is given by the bracket on the first factor, the action of the first
factor on each of the others, and the pairing between the second and
fourth factors, taking values in the third factor.

�

Remark 4.20. 1) The equivalence Map(Y,XdR) ∼= Map(Y,X )dR arises as
an equivalence of the full Hodge stack. For this, it is enough to ob-
serve that Map(Y, Tform[1]X ) ∼= Tform[1]Map(Y,X ) has the same relative
shifted tangent complex over Map(Y,X ), which is immediate.

2) The third equivalence for ` = 1 is also compatible with its de Rham de-
formation. More precisely, under the equivalence Tform[1]T ∗form[−k]X ∼=
T ∗form[1− k]Tform[1]X , we can transfer the natural deformation of the
shifted tangent complex on the left-hand side corresponding to the
family of sheaves t · id : π∗TT ∗form[−k]X → π∗TT ∗form[−k]X over A1, where
π is the projection Tform[1]T ∗form[−k]X → T ∗form[−k]X , to the right-hand
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side. The result is the pullback under the map T ∗form[1− k]Tform[1]X →
Tform[1]X of the deformation t · id : π′∗TX → π′∗TX , where now π′ is the
projection Tform[1]X → X . Now, we can consider the formal completions
of both sides of our equivalence with respect to T ∗form[−k]X to obtain a
pair of equivalent pointed formal moduli problems over T ∗form[−k]X . By
Theorem 2.44 these are determined by (equivalent) sheaves of dg Lie al-
gebras over T ∗form[−k]X , and we’ve described equivalent 1-parameter de-
formations of these sheaves, and therefore of the resulting formal moduli
problems under T ∗form[−k]X . The fibers over 1 of these deformed moduli
problems are given by

(T ∗form[−k]X )dR ∼= T ∗form[1− k](XdR)

where the latter is a formal moduli problem under T ∗[−k]X by the
composite

T ∗form[−k]X → (T ∗form[−k]X )dR → XdR ∼= T ∗form[1− k](XdR).

Theorem 4.21. The moduli space of solutions to the equations of motion
on the product Σ1 × Σ2 of two smooth projective curves after applying the
Qλ-twist is equivalent to

EOMλ(Σ1 × Σ2) ∼= T ∗form[−1]Map
(
Σ1,FlatλG(Σ2)dR

)
in a canonical way.

Remark 4.22. This statement is not contentless, despite the fact that it
involves the cotangent bundle of a de Rham stack, which is necessarily triv-
ial. Indeed, the equivalence is compatible with the deformation to the whole
Hodge stack. All such statements appearing in the paper arise as specializa-
tions of equivalences of Hodge stacks.

Proof. We begin with the derived stack on the right-hand side. Since

FlatλG(Σ2) = Map(Σλ-dR, BG)

is 0-shifted symplectic by the AKSZ construction, there is an equivalence
T [1] FlatλG(Σ2) ∼= T ∗[1] FlatλG(Σ2), so in particular

FlatλG(Σ2)Dol = Tform[1] FlatλG(Σ2)
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is 1-shifted symplectic. We have equivalences

T ∗form[−1]Map
(
Σ1,FlatλG(Σ2)dR

)
∼= T ∗form[−1]

(
Map(Σ1,FlatλG(Σ2))dR

)
∼=
(
T ∗form[−2]Map(Σ1,FlatλG(Σ2))

)
dR

∼=
(

Map(T [1]Σ1,FlatλG(Σ2))∧Map(Σ1,FlatλG(Σ2))

)
dR

∼=
((

Map
(
(Σ1)Dol,FlatλG(Σ2)

))∧
Map(Σ1,FlatλG(Σ2))

)
dR

∼=
((

Map ((Σ1)Dol × (Σ2)λ-dR, BG)
)∧

Map(Σ1,FlatλG(Σ2))

)
dR

= EOMλ(Σ1 × Σ2),

where on the first line we used Lemma 4.19 part 1, on the second line
we used Remark 4.20 part 2, and on the fifth line we used the adjunc-
tion Map((Σ1)Dol × (Σ2)λ-dR, BG) = Map((Σ1)Dol,Map((Σ2)λ-dR, BG)). Now
in view of Remark 4.20, one can note that the whole equivalences work at the
level of Hodge stacks. �

Remark 4.23. We have two apparently different-looking descriptions of our
moduli space, but the point is that one can use either one. For the rest of the
paper, we won’t use this latter description. On the other hand, when λ = 0,
this theorem amounts to identifying the compactification of the A-twisted the-
ory along Σ2 with the A-model with target HiggsG(Σ2), as expected from the
physics literature. This can also be understood as an algebraization and glob-
alization of Costello’s perturbative description of the A-model in the smooth
category [Cos13].

Let’s now discuss what this assigns to objects of nonzero codimension as
we did in Section 4.2:

EOMλ(Σ× U) ∼=
(
Map (ΣDol × Uλ-dR, BG)∧Map(Σ×Uλ-dR,BG)

)
dR

as in Proposition 4.18 the assignment naturally extends to U = S1
B or U = pt.

We’ll describe it in a way designed to illustrate the connection with geo-
metric Langlands. However, the argument we gave for Theorem 4.21 no longer
applies. Instead of a (−1)-shifted cotangent space, we’ll produce a 0-shifted
cotangent space. In the A-twist, the degree of shifting comes naturally so we
don’t need any auxiliary step: de Rham stack can be regarded as k-shifted
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symplectic for any k, but that being realized as a Hodge stack over A1 deter-
mines the unique number k in such a way that ensures compatibility for any
t ∈ A1.

Proposition 4.24. The phase space EOMλ(Σ× S1
B) in the Qλ-twisted the-

ory is equivalent to

T ∗form(Map(S1
B,BunG(Σ))dR).

In particular the result is independent of the value of λ. The equivalence arises
by taking the fiber at 1 of an equivalence of deformations, whose fiber at 0 is
an equivalence

Map
(
ΣDol × (S1

B)λ-dR, BG
)

Dol
∼= T ∗formTform[1]Map(S1

B,BunG(Σ)).

Proof. First, observe that (S1
B)λ-dR ∼= S1

B for all λ ∈ C. Indeed, any topo-
logical space Y viewed as a derived stack has trivial tangent complex, so
(YB)Hod ∼= YB × A1. According to Proposition 4.18 and Lemma 4.19 part 2
we have

EOMλ(Σ× S1
B) ∼=

(
Map

(
ΣDol × (S1

B)λ-dR, BG
)∧

Map(Σ×(S1
B)λ-dR,BG)

)
dR

∼=
(

Map(T [1]Σ,FlatG(S1))∧Map(Σ×(S1
B)λ-dR,BG)

)
dR

∼= (T ∗form[−1]Map(Σ,FlatG(S1)))dR.

This falls into a family of equivalences, by replacing the de Rham prestack
with the Hodge prestack, whose central fiber is given by the formal completion

Tform[1]Map
(
ΣDol × (S1

B)λ-dR, BG
)
∼= Tform[1]T ∗form[−1]Map(Σ,FlatG(S1))
∼= T ∗formTform[1]Map(Σ,FlatG(S1)),

by Lemma 4.19 part 3. To conclude the proof we observe that the degree 1
symmetry of the tangent complex generating the de Rham deformation via
Example 2.47 corresponds — under the equivalence — to the symmetry on
the right-hand side deforming

T ∗formTform[1]Map(Σ,FlatG(S1))

to T ∗form(Map(Σ,FlatG(S1))dR) by Remark 4.20 part 2. �
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Given that the A-twist is computed by an identical procedure to the more
general λ-twist, one might ask what the point is of considering the λ family
of twists at all. The claim, which we hope to return to in future work, is that
in order to see more refined structures in the geometric Langlands program,
it is necessary to consider such twists. The following remark provides a hint
of this structure.

Remark 4.25. The curve Σ = CP1 deserves a little more attention; we’ll
describe an infinitesimal version of the above calculation, explicitly using the
family of theories obtained by varying λ. Instead of describing the solutions to
the equations of motion on the derived stack CP1 × S1

B, we’ll instead consider
a different complex structure on a complex neighborhood of S2 × S1. The
following construction should be thought of as informal and motivational,
since we’ll use complex analytic constructions that don’t make sense in derived
algebraic geometry. Consider the complex manifold

(C× C×) \ ({0} × S1).

Note that there are diffeomorphisms C× C× ∼= C× (0,∞)× S1 ' B3 × S1

for an open three-ball B3 around 0. Removing {0} × S1 from C× C× corre-
sponds to removing {0} × S1 from B3 × S1 on the right-hand side, yielding
a diffeomorphism (B3 \ {0})× S1 ' (S2 × (−1, 1))× S1. Thus we can think
of (C× C×) \ ({0} × S1) as a complex manifold thickening S2 × S1.

From Proposition 4.18, the space of solutions to the equations of motion
is obtained by applying the de Rham space construction to the moduli space
of G-bundles on (C× C×) \ ({0} × S1) with a Higgs field on C and a flat λ-
connection on C×. Let us denote the two connected components of C× \ S1 by
Ain and Aout. Note that a G-bundle P on (C× C×) \ ({0} × S1) is equivalent
to the data of a triple (P ′, φin, φout), where P ′ is the restriction of P to C× ×
C×, φin is the extension of P ′|C××Ain to C× Ain, and φout is the extension
of P ′|C××Aout to C× Aout. Note that ignoring the annular factor we would
obtain a G-bundle on a “bubbled” plane B := CqC× C made by gluing the
two planes along C×.

Then we can describe the moduli space of solutions to the equations of
motion on (C× C×) \ ({0} × S1) as a datum (P ′, φin, φout) of this form,
together with a Higgs field and a flat λ-connection in the two complex direc-
tions. Since we have a flat λ-connection in the C×-direction throughout, we
can understand the space of germs of solutions to the equations of motion
near S2 × S1 as the de Rham stack of Map(S1

B,Higgsbos
G (B)). It is essential
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here to have λ 6= 0: otherwise we cannot simply describe the moduli spaces in
a way that depend only on the topology of C×, and not its algebraic structure.

Finally, we can replace C by the formal disk D. One then obtains as the
space of solutions to the equations of motion

EOM(B× S1
B) ∼= T ∗form(Map(S1

B,BunG(B))dR)

where B is the “formal bubble” B := DqD× D. The space of G-bundles on the
formal bubble B is a familiar space in geometric representation theory: the
quotient of the affine Grassmannian GrG by the arc group G(C[[t]]). We’ll
investigate the action of a quantization of this moduli space EOM(B× S1

B)
on a quantization of EOM(Σ× S1) for general surfaces Σ, inherited from the
geometric structure of the bases of these cotangent spaces in future work.

To conclude this section, we’d also like to understand germs of solutions
to the equations of motion near manifolds of codimension 2.

Proposition 4.26. EOMλ(Σ× C) ∼= T ∗form[1](BunG(Σ)dR). The equivalence
arises as the fiber at 1 of an equivalence of deformations, whose fiber over 0
is

Map(ΣDol × ptλ-dR, BG)Dol ∼= T ∗form[1]Tform[1] BunG(Σ)∧T ∗form BunG(Σ).

Proof. Lemma 4.19 provides an equivalence

EOMλ(Σ) ∼=
(
Map(ΣDol × ptλ-dR, BG)∧Map(Σ×ptλ-dR,BG)

)
dR

∼=
(
Map(T [1]Σ, BG)∧Map(Σ×ptλ-dR,BG)

)
dR

∼= (T ∗formMap(Σ, BG))dR

using the 2-shifted symplectic structure on BG. As in the proof of Proposi-
tion 4.24, this equivalence arises as the generic fiber of a natural deformation,
whose fiber over zero is

Tform[1]Map(ΣDol × ptλ-dR, BG) ∼= Tform[1]T ∗formMap(Σ, BG))
∼= T ∗form[1]Tform[1]Map(Σ, BG))
∼= T ∗form[1]Tform[1] BunG(Σ).

Again, as in Lemma 4.19 we observe by Remark 4.20 part 2 that the degree
1 symmetry of the tangent complex generating the de Rham deformation
corresponds to the symmetry on the right-hand side deforming the Dolbeault
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stack to the Hodge prestack, thus providing an equivalence of deformations,
as required. �

Remark 4.27. As above, if Σ = CP1 we have the option to perform an
infinitesimal construction. By the same reasoning as in Remark 4.25 one can
choose as a thickening (C× C) \ ({0} × I), where I is the imaginary axis in
the second factor: there is a diffeomorphism

S2 × (−1, 1)× I ' (B3 \ {0})× I ' (C× C) \ ({0} × I)

which we again think of as a choice of complex thickening of S2. Running
through the same calculation as in Remark 4.25 we end up with the moduli
space of germs of solutions to the equations of motion T ∗form[1](BunG(B)dR).
This will naturally appear in an interpretation of geometric Satake as arising
from line operators.

Appendix A. Supersymmetry algebras

We’ll begin by setting up some general language for describing supersymmetry
algebras before describing the particular cases we’re interested in (supersym-
metry in 2, 4 and 10 dimensions). The notion of twisting supersymmetry
algebras and supersymmetric field theories makes sense in any dimension and
signature. The material in this section is standard. Proofs can be found for
instance in [Del99] or [Var04].

Let p and q be non-negative integers, and let n = p+ q. We’ll describe
supersymmetry algebras in pseudo-Riemannian signature (p, q). The main
pieces of data that we’ll need to specify are a spin representation and a spin-
invariant vector-valued pairing on this representation.

Definition A.1. A (real or complex) representation of the Lie algebra so(p, q)
is spinorial if it extends to a module for the even (real or complex) Clifford
algebra Cl+(p, q).

There is a complete classification of spinorial so(p, q) representations.

Proposition A.2. Over C, so(p, q) either has a unique non-trivial irre-
ducible representation S of dimension 2n−1

2 if p+ q is odd, or has two distinct
non-trivial irreducible representations S± each of dimension 2n

2−1 if p+ q is
even. In the latter case we write S for S+ ⊕ S−. We call S the space of Dirac
spinors and S± the spaces of positive and negative helicity Weyl spinors.
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Over R, the representation S is the complexification of a real representa-
tion SR when p− q ≡ 0, 1 or 7 mod 8. The representations S± are the com-
plexifications of real representations SR± when p− q ≡ 0 mod 8. We call SR
the space of Majorana spinors and SR± spaces of Majorana–Weyl spinors.
When instead p− q ≡ 2 or 6 mod 8 the representation S+ ⊕ S∗+ 2 is the com-
plexification of a real representation, which we also denote by SR and refer to
as the space of Majorana spinors.

We write VR for the n-dimensional vector representation Rp,q of so(p, q),
and VC for its complexification. The second component necessary to define
supersymmetry algebras is the following.

Definition A.3. A pairing on a spin representation Σ is a symmetric so(p, q)-
equivariant linear map

Γ: Σ⊗ Σ→ Vk

where k = R or C.

Again, we have a good control over the existence and uniqueness of such
pairings. We can construct them using the Clifford multiplication, and duality
properties of the spinors.

Proposition A.4. Over C there exist unique pairings (up to rescaling)

Γ: S ⊗ S → VC if n ≡ 1, 3, 5, or 7 mod 8
Γ: S± ⊗ S± → VC if n ≡ 2 or 6 mod 8
Γ: S± ⊗ S∓ → VC if n ≡ 0 or 4 mod 8.

These pairings descend to give unique VR-valued pairings on the Majorana or
Majorana–Weyl spinors whenever they exist.

We can use this to describe pairings on more general spinorial represen-
tations. There are pairings on the representation S ⊗W — where W is a
finite-dimensional vector space — for each element of gl(W ). If we also re-
quire our pairings to be non-degenerate then there is a unique pairing up to
so(p, q)-equivariant isomorphism.

Now, we can define the supersymmetry algebra associated to this data.

2A real form for S− ⊕ S∗
− would also work; the two agree up to complex conju-

gation.
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Definition A.5. The (real) supertranslation algebra associated to a spinorial
representation Σ of so(p, q) is the super Lie algebra

T = VR ⊕ Π(Σ)

where the only bracket is the pairing Γ: Σ⊗Σ→VR. The (real) super Poincaré
algebra is the super Lie algebra

P = (so(p, q) n VR)⊕ Π(Σ)

where there are brackets given by Γ, by the internal bracket on the even piece
and by the action of so(p, q) on Σ. We define complex supertranslation and
super Poincaré algebras analogously, with VR replaced by VC, and with Σ a
complex spinorial representation.

To complete the definition, we need one more piece of data, namely a
subalgebra of the R-symmetry algebra.

Definition A.6. The R-symmetry algebra associated to a supertranslation
algebra is the algebra of outer automorphisms acting trivially on the bosonic
piece. Given a subalgebra gR of the R-symmetry algebra, the (real) super-
symmetry algebra is the super Lie algebra

A = (so(p, q) n VR)⊕ gR ⊕ Π(Σ)

with brackets as before, plus the action of gR on Σ. The complexified super-
symmetry algebra is defined analogously.

When Σ = SN , we say there are N supersymmetries. When Σ = SN1
+ ⊕

SN2
− we say there are (N1, N2) supersymmetries. If we impose the condition

that the pairing Γ is non-degenerate then we can only have N1 6= N2 when
n ≡ 2 or 6 mod 8 in the complex case, or when n ≡ 2 or 6 mod 8 and p ≡ q
mod 8 in the real case.

Definition A.7. A supersymmetric field theory on Rp,q is a field theory
on Rp,q equipped with an action of the complexified supersymmetry algebra
extending the natural action of the complexified Poincaré algebra so(p, q) n
VC.

Example A.8 (Dimension 4). The principal theories that we’re inter-
ested in this paper are supersymmetric theories in dimension 4. In this and
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the subsequent examples we’ll be most interested in the complexified super-
symmetry algebra, so the choice of signature won’t be too important. For
specificity we’ll work in Euclidean signature (4, 0). Recall that we have an
isomorphism of groups, Spin(4) ∼= SU(2)+ × SU(2)−. Let S+ and S− be the
complex 2-dimensional defining representations of the two copies of SU(2), re-
spectively. Let VR be the real 4-dimensional vector representation of Spin(4).
If we define VC := VR ⊗R C, then there is an isomorphism Γ: S+ ⊗ S−

∼=−→ VC
as complex Spin(4)-representations.

Let W be a finite-dimensional complex vector space. There is a natu-
ral non-degenerate pairing on the spinorial representation (S+ ⊗W )⊕ (S− ⊗
W ∗), given by the isomorphism Γ and the canonical pairing W ⊗W ∗ → C.
The super-translation algebra associated to W is the super Lie algebra

TW = VC ⊕ Π (S+ ⊗W ⊕ S− ⊗W ∗) ,

with Lie bracket given by this pairing.
One can compute that the R-symmetry algebra for this representation

and pairing is the algebra gl(W ) acting on W and W ∗ by the fundamental
and anti-fundamental representations respectively. Given a subalgebra gR ⊆
gl(W ), there is an associated supersymmetry algebra

AW = (so(4;C)⊕ gR) n TW .

If dimW = k, we also denote this algebra by AN=k. We’ll be particularly
interested in the case where dimW = 4 and gR = sl(4). As we’ll see, this
is the supersymmetry algebra that will act on N = 4 supersymmetric gauge
theories.

Example A.9 (Dimension 2). Two-dimensional theories will arise for us
as dimensional reductions of 4d theories along a Riemann surface. Again,
since we’re most interested in the complexified supersymmetry algebra we’ll
not be too concerned about the choice of signature, but it is worth remark-
ing that the case of Lorentzian signature is special due to the existence of
Majorana–Weyl spinors. We have an isomorphism Spin(2) ∼= U(1). Let S± be
the complex 1-dimensional representations of the circle of weight ±1. The
vector representation of Spin(2) corresponds to the weight two representation
of U(1), so there are natural pairings Γ: S± ⊗ S± → VC (using a canonical
isomorphism between VC and its dual).

Let W+ and W− be finite-dimensional complex vector spaces, and choose
inner products W± ⊗W± → C. Combining this with the pairing above yields
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a pairing Γ on the spinorial representation (S+ ⊗W+)⊕ (S− ⊗W−), and thus
a super Poincaré algebra

P
(W+,W−)
2 = (so(2;C) n VC)⊕ Π ((S+ ⊗W+)⊕ (S− ⊗W−)) .

The R-symmetry algebra associated to this super Poincaré algebra is gl(W+)⊕
gl(W−), and associated to a subalgebra gR of this algebra we produce a su-
persymmetry algebra

A(W+,W−)
2 = (so(2;C) n VC)⊕ gR ⊕ Π ((S+ ⊗W+)⊕ (S− ⊗W−)) .

If dimW+ = N1 and dimW− = N2, we say we have (N1, N2) supersymme-
tries, and write A(N1,N2)

2 .
Let’s describe dimensional reduction from 4 to 2 dimensions (for the com-

plexified algebra, though we could also investigate the real case in Riemannian
or Lorentzian signature). That is, take C2 ⊆ C4, and consider the subalgebra
of the complex infinitesimal isometries so(4;C) nC4 mapping this subspace to
itself, which has form (so(2;C) nC2)⊕ so(2;C). Let S+ and S− be the spaces
of 4d Weyl spinors. As modules for this subalgebra, the first so(2;C) acts with
weights (±1,∓1) on S± respectively, and the second so(2;C) acts with weight
(±1,±1) on S±. Thus the N = k super Poincaré algebra in dimension 4 nat-
urally dimensionally reduces to the N = (2k, 2k) supersymmetry algebra in
dimension 2, with R-symmetry group so(2;C) ∼= gl(1;C).

Example A.10 (Dimension 10). There is a supersymmetric gauge theory
in dimension 10 which is “universal” in the sense that a range of supersym-
metric gauge theories that are studied in lower dimensions arise from it by
a combination of dimensional reduction and restriction of scalars [ABD+14].
We’ll focus on the case of minimal supersymmetry, i.e. N = (1, 0), describe
the Majorana–Weyl spinor representations in signature (1, 9), then describe
the complexification.

Abstractly, the classification A.2 tells us to expect a pair of mutually dual
irreducible spinorial representations of so(1, 9) over the real numbers, each of
dimension 16. We can actually describe these representations very concretely;
the details are described by Deligne in [Del99, Chapter 6].

It suffices to construct a non-trivial 32-dimensional module for the algebra
Cl(V,Q), where V is 10-dimensional, and Q is a quadratic form of signature
(1,9). Concretely, we’ll set V = O⊕H with O 8-dimensional and H = 〈e, f〉
2-dimensional, and we set

Q(ω + ae+ bf) = ω · ω − ab
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where ω · ω is the octonion norm-squared. Let SR
10 = (O2)⊕ (O2) be a 32-

dimensional real vector space. We must describe a Clifford multiplication
ρ : V ⊗ SR

10 → SR
10 making SR

10 into a module for Cl(V,Q). This is concretely
given by

ρ : O⊕H → End(SR
10)

where

ρ(ω) =


(

0 mω

mω 0

)
0

0
(

0 mω

mω 0

)
 for ω ∈ O, mω(α) = ω · α

ρ(e) =


(

0 1
0 0

)
0

0
(

0 1
0 0

)
 and ρ(f) =


(

0 0
−1 0

)
0

0
(

0 0
−1 0

)
 .

One can check that this gives a well-defined Clifford multiplication, and thus
defines a 32-dimensional real spin representation which splits as a sum of
two 16-dimensional representations of the even part of the Clifford algebra:
call them SR

10+, spanned by the first and third components of O4, and SR
10−

spanned by the second and forth. There is also the induced pairing Γ: SR
10± ⊗

SR
10± → V , which one checks is given on SR

10+ and SR
10− respectively by

Γ((α1, α2), (β1, β2)) = α1 · β1 + α2 · β2 − Tr(α1 · β1 + α2 · β2)f
and Γ((α1, α2), (β1, β2)) = α1 · β1 + α2 · β2 + Tr(α1 · β1 + α2 · β2)e

where Tr(α) = α + α is the octonionic reduced trace, and where the calcu-
lation is done using the identity 〈Γ(s, t), v〉 = (ρ(v)s, t) for spinors s, t and
vectors v. This now gives us a complete description of the supersymmetry
algebra in 10-dimensions: it is given by

(so(1, 9) nR1,9)⊕ Π(SR
10+)

with brackets given by the internal bracket on so(1, 9), the action of so(1, 9)
on the translations, the action of so(1, 9) on the supersymmetries, and the
pairing Γ: SR

10+ ⊗ SR
10+ → R1,9.
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Finally, we can complexify the supersymmetry algebra to obtain a super-
algebra of form

(so(10;C) nC10)⊕ Π(S10+).

The complexification S10+ = SR
10+ ⊗ C is a 16-complex dimensional Weyl

spinor representation of so(10;C). Clifford theory says that the complexi-
fication so(10;C) embeds in the (even part of the) Clifford algebra Cl+10

∼=
Mat16(C)⊕Mat16(C) as the elements of spinor norm one. The Weyl spinors
are the fundamental representation of the first matrix algebra factor.

More concretely, we write S10+ as O2 ⊕ iO2 where O is a 4-complex di-
mensional vector space. We write C10 as O⊕ iO⊕ C〈e, f〉. The Clifford mul-
tiplication is then given by

ρ(ω) =


(

0 mω

mω 0

)
0

0
(

0 mω

mω 0

)
 ,

ρ(iω) =


0

(
0 mω

mω 0

)
(

0 mω

mω 0

)
0

 for ω ∈ O

ρ(e) =


(

0 1
0 0

)
0

0
(

0 1
0 0

)
 and ρ(f) =


(

0 0
−1 0

)
0

0
(

0 0
−1 0

)
 .

This complexified algebra dimensionally reduces to recover the N = 4 su-
persymmetry algebra discussed above in four-dimensions. We choose an em-
bedding C4 ↪→ C10 and consider the subalgebra of the supersymmetry algebra
fixing this subspace. The bosonic piece has the form so(4;C) n VC ⊕ sl(4;C),
where the sl(4;C) fixes the subspace pointwise (and arises from complexifi-
cation of so(6) ∼= su(4)). We must check that the action of so(6;C)⊕ sl(4;C)
on the 16-complex-dimensional space of spinors recovers the space S+ ⊗W ⊕
S− ⊗W ∗ that we expect. We can do this by looking at the actions of the
two summands separately, using that the action is still spinorial, and the fact
that it arose as complexification of a representation for the (Lorentzian) real
form.

Firstly, sl(4;C) has two Weyl spinor representations, the fundamental
W and the anti-fundamental W ∗, and we must have equal numbers of each
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(since the complexification of the Majorana spin representation is their sum).
The modules S10+ has no so(6;C)-fixed points, so there are no trivial factors
and S10+ ⊗R C ∼= (W ⊕W ∗)⊗C C2. Secondly, so(4;C) has two Weyl spinor
representations S+ and S−. By the same argument we have equal numbers of
each and there are no trivial summands, so S10+ ⊗R C ∼= (S+ ⊕ S−)⊗C C4.
Finally, to describe the relationship between these two actions we observe
that the actions commute and complexify a real Lie algebra action.

Appendix B. Lie algebras and deformation theory

For motivation and reference, we’ve included the fundamental definitions and
results on sheaves of Lie algebras and deformation theory. None of this ma-
terial is original, and most of the results in the smooth category context be
found in [Cos13], [GG15] and appendix A of [CG16]. The derived deformation
theoretic results we reference are due to Hinich [Hin01] and Getzler [Get09],
or in a more homotopical setting to Lurie [Lur11] and Hennion [Hen15].

As we work in the setting of ∞-categories and the two operads Lie and
L∞ are homotopy equivalent we are free to use the languages of Lie and
L∞-algebras interchangeably, mainly choosing our terminology in order to be
more compatible with the literature for the appropriate context.

Definition B.1. A curved L∞ algebra over a cdga R with respect to an ideal
I is a locally free graded R\ module L equipped with a degree 1 differential

d : ŜymR\(L∨[−1])→ ŜymR\(L∨[−1])

making ŜymR\(L∨[−1]) into a dg-module over R, such that d vanishes on
Sym0 modulo the ideal I. We denote ŜymR\(L∨[−1]) by C•(L) and call it the
Chevalley–Eilenberg algebra of L.

By taking the Taylor coefficients of the differential d we obtain a sequence
of degree 0 graded anti-symmetric operations `n : (∧nL)[n− 2]→ L, dual to
the composite

L∨[−1] ↪→ C•(L) d→ C•(L) � Symn(L∨[−1])

which satisfy higher analogues of the Jacobi identities, recovering a more
classical definition of a (curved) L∞ algebra. One way of thinking about our
definition is that Lie algebras are Koszul dual to commutative algebras, so
defining the Lie algebra structure on L is equivalent to defining a commutative
dga structure on its Koszul dual C•(L).
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We’ll want to study versions of L∞ algebras varying over a topological
space. This will be useful for perturbative field theory, where an L∞ algebra
describes the deformations of a particular solution to the equations of motion
on an open set U in spacetime, in order to describe the relationship between
these solutions on different open sets.

Definition B.2. A local L∞ algebra over a manifold M is a cochain complex
of vector bundles L over M such that the sheaf of sections is given the struc-
ture of a sheaf of L∞ algebras where the operations `n are polydifferential
operators.

If G is an algebraic supergroup, a G-action on a local L∞ algebra L is
a C•(G)-module structure on L(U) for each open set U ⊆ X making L into
a sheaf of curved L∞ algebra over C•(G) relative to the ideal C>0(G). Here
C•(G) denotes the complex where Ci(G) = O(Gi), with the usual differential
using the group structure. One similarly defines a g-action for a super Lie
algebra g to be a local module structure on each open set for the Chevalley–
Eilenberg complex C•(g).

The perturbative definition of a classical field theory used by Costello in
[Cos13] builds on the following definition capturing local geometry of a given
space. The idea is that in algebraic geometry, one is able to investigate formal
neighborhoods of a point by only considering local Artinian algebras.

Definition B.3. A formal derived moduli problem is a functor F from the
category Art≤0

dg of differential graded Artinian algebras cohomologically in
degrees ≤ 0 to the category sSet of simplicial sets satisfying the following
conditions:

• the space F (C) is contractible.

• If A→ B and A′ → B are morphisms in Art≤0
dg which are surjections

on H0, then the induced map F (A×B A′)→ F (A)×F (B) F (A′) is a
homotopy equivalence.

Note that the second condition ensures the ability to glue SpecA and
SpecA′ along SpecB whenever we have closed embeddings at the classical
level.

For example, given a point p ∈ X = SpecR for R ∈ cdga≤0, or a maximal
ideal m ⊂ R, the functor Xp : Art≤0

dg → sSet defined by

(A,mA) 7→ ({φ : R→ A⊗ Ω•(∆n) | φ(m) = mA ⊗ Ω•(∆n)})n∈∆
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is a formal moduli problem. Geometrically Xp(A) encodes the data of in-
finitesimal extension of p via A.

The most important tool we are going to take advantage of in order to
understand formal moduli problems is the Maurer–Cartan functor.

Definition B.4. Let L be an L∞ algebra. The Maurer–Cartan functor
MCL : Art≤0

dg → sSet is defined to be the functor given by (R,m) 7→ MCL(R),
where the simplicial set MCL(R) has as n-simplices elements α ∈ L⊗m⊗
Ω•(∆n) of cohomological degree 1, which satisfy the Maurer–Cartan equa-
tion ∑

n≥0

1
n!`n(α⊗n) = 0.

This is not manifestly a homotopy invariant notion, and thus not mani-
festly well-defined. However, there is an equivalent rephrasing of the Maurer–
Cartan functor that is manifestly homotopy invariant.

Proposition B.5. Homcdga∗(C•(L), R) = MCL(R) for R ∈ Art≤0
dg .

A proof of this fact appears in Section 2.3 of Lurie [Lur11]; as we’ve
phrased it it’s implied by his Theorem 2.3.1.

Theorem B.6 ([Lur11, 2.0.2]). The Maurer–Cartan functor provides an
equivalence of categories

MC: {L∞ algebras} → {formal derived moduli problems}

with quasi-inverse given by taking the (−1)-shifted tangent complex equipped
with a canonical L∞ structure.

We sometimes write BL for the formal moduli problem MCL. Then the
theorem in particular says the following

• There is an equivalence T0[−1]BL ∼= L.

• Every formal derived pointed moduli problem X can be realized as BLX
for some L∞ algebra LX , in the sense that the formal derived moduli
problem describing maps into X is equivalent to the formal moduli
problem MCLX .

The proposition allows one to think of C•(L) as the structure sheaf of the
formal moduli problem BL. Note that C•(L) is in general not an object of
the category cdga≤0, having stacky nature.
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For our purpose, it is important to understand mapping stacks in terms
of an L∞-algebra.

Lemma B.7. Let L be an L∞-algebra and A be an object of Art≤0
dg . Then

L⊗ A is the L∞-algebra governing the deformations of the constant map
SpecA→ BL.

We only sketch the proof for the 0-simplex to give an idea.

Proof sketch. If B is another Artinian algebra, then α ∈MCL⊗A(B)[0] is an
element α ∈ (L⊗ A⊗mB)1 satisfying Maurer–Cartan equation. Since the
maximal ideal of A⊗B is mA ⊗B + A⊗mB, from MCL⊗A(B) ⊂MCL(A⊗
B), an element α ∈MCL⊗A(B) can be characterized as an element of
MCL(A⊗B) which vanishes modulo mA. Hence, geometrically, MCL⊗A(B)
represents families of maps SpecA→ BL parametrized by SpecB which are
constant at the unique geometric point SpecC ∈ SpecA. �

In other words, for the mapping stack Map(X, Y ), its formal derived
moduli problem at f is controlled by the L∞-algebra Γ(X, f∗LY ).

The main construction we are using in the paper is in an algebraic setting.

Theorem B.8 ([Hen15, 4.2.0.1]). If X is a derived Artin stack locally of
finite presentation, then its shifted tangent complex TX [−1] is a Lie algebra
object of QCoh(X ).
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[NZ09] David Nadler and Eric Zaslow, Constructible sheaves and the
Fukaya category, Journal of the American Mathematical Society
22 (2009), no. 1, 233–286.

[Pri17] J. P. Pridham, Shifted Poisson and symplectic structures on de-
rived N-stacks, J. Topol. 10 (2017), no. 1, 178–210.

[PTVV13] Tony Pantev, Bertrand Toën, Michel Vaquié, and Gabriele Vez-
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