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One of the many remarkable properties of conformal field theory in
two dimensions is its connection to algebraic geometry. Since ev-
ery compact Riemann surface is a projective algebraic curve, many
constructions of interest in physics (which a priori depend on the
analytic structure of the spacetime) can be formulated in purely
algebraic language. This opens the door to interesting generaliza-
tions, obtained by taking another choice of field: for instance, the
p-adics. We generalize the AdS/CFT correspondence according to
this principle; the result is a formulation of holography in which the
bulk geometry is discrete — the Bruhat–Tits tree for PGL(2,Qp)
— but the group of bulk isometries nonetheless agrees with that
of boundary conformal transformations and is not broken by dis-
cretization. We suggest that this forms the natural geometric set-
ting for tensor networks that have been proposed as models of bulk
reconstruction via quantum error correcting codes; in certain cases,
geodesics in the Bruhat–Tits tree reproduce those constructed us-
ing quantum error correction. Other aspects of holography also
hold: Standard holographic results for massive free scalar fields in
a fixed background carry over to the tree, whose vertical direction
can be interpreted as a renormalization-group scale for modes in
the boundary CFT. Higher-genus bulk geometries (the BTZ black
hole and its generalizations) can be understood straightforwardly
in our setting, and the Ryu-Takayanagi formula for the entangle-
ment entropy appears naturally.
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1. Introduction

Much attention has been paid of late to ideas that allow certain features of
conformal field theory, such as long-range correlations, to be reproduced in
lattice systems or other finitary models. As an example, the multiscale en-
tanglement renormalization ansatz (or MERA), formulated by Vidal in [58],
provides an algorithm to compute many-qubit quantum states whose entan-
glement properties are similar to those of the vacuum state in a conformal
field theory. In Vidal’s method, the states of progressively more distant
qubits are entangled using successive layers of a self-similar network of finite
tensors.

These proposals can typically be thought of as constructing analogues of
the CFT vacuum state using a quantum circuit with an additional “spatial
direction,” consisting of the successive computational layers of the circuit,
and corresponding roughly to the distance scale up to which long-range en-
tanglement has been introduced. As such, they are strongly suggestive of
the AdS/CFT correspondence [30, 36, 61], in which a d-dimensional con-
formal field theory is related to a gravitational theory in d+ 1-dimensional
negatively curved spacetime, and the extra direction can be interpreted as
a renormalization scale (or equivalently a length scale) from the perspec-
tive of the boundary theory. Furthermore, the construction of the layers (in
which the number of tensors scales exponentially with the number of layers)
bears comparison with the geometry of hyperbolic space. It was thus nat-
ural to search for a connection with holography. In [56], Swingle proposed
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that MERA might be a natural discretization of AdS/CFT, in which the
holographic direction (or renormalization scale) corresponds to the succes-
sive layers of the tensor network, and individual tensors are associated to
“primitive cells” of the bulk geometry. However, successive work [3] identi-
fied constraints that prevent such an AdS/MERA correspondence from fully
reproducing all features of the bulk physics.

Motivated by this similarity, further new connections between quantum
information theory and holography were made in [1], which pointed out
that bulk reconstruction and bulk locality in the AdS/CFT correspondence
bear strong similarities to the properties of quantum error-correcting codes.
This intuition was used in [49] to construct a family of “holographic” quan-
tum codes, associated to hyperbolic tilings. In these codes, bulk qubits are
thought of as the logical inputs, the boundary qubits at the periphery of the
tiling constitute the encoded state, and the error-correcting properties of the
code mimic features of holography such as the Ryu-Takayanagi formula [52].

In this paper, we propose that discrete holographic models should be
understood as approximating bulk geometry in a fundamentally different
way. We are guided by considering a new and orthogonal direction in which
the AdS3/CFT2 correspondence can be generalized, and construct a fam-
ily of lattice field theories along these lines. Unlike tensor network models,
our models are fully dynamical theories, with path integral descriptions.
Discrete bulk geometries (based on the p-adic numbers) appear naturally.
Despite this, essential and basic features of AdS/CFT, such as bulk isome-
tries and boundary conformal symmetry (which are destroyed by a naive
discretization), have analogues and can be fully understood in the discrete
setting.

The bulk geometries relevant to the AdS3/CFT2 correspondence are well
understood. The most well-known black hole solution is that of Bañados,
Teitelboim, and Zanelli [2]; this solution was generalized to a family of
higher-genus Euclidean black holes by Krasnov [33]. These solutions can
be understood in general using the technique of Schottky uniformization,
which presents a higher-genus black hole as the quotient of empty AdS3 by
a particular discrete subgroup of its isometries.

In [44], a holographic correspondence was established for these three-
dimensional geometries. This correspondence expresses the conformal two
point correlation function on the conformal boundary at infinity (a Riemann
surface XΓ of genus g) in terms of geodesic lengths in the bulk space (a
hyperbolic handlebody HΓ of genus g). The formula relating the boundary
theory to gravity in the bulk is based on Manin’s result [40] on the Arakelov
Green’s function.
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However, we consider AdS3/CFT2 not merely because it is a simple set-
ting for holography. For us, the crucial property of conformal field theory
in two dimensions is its strong ties to algebraic geometry. These occur be-
cause every compact Riemann surface is a projective algebraic curve, so that
many of the analytic concepts that arise in physics can (in two-dimensional
contexts) be reformulated in purely algebraic terms. Once a concept can
be formulated algebraically, it has many natural generalizations, obtained
by changing the field of numbers one is considering. For instance, given a
Riemann surface as the zero locus of a polynomial equation with rational
coefficients, one can ask for the set of solutions over C, over R, over more
exotic fields like the p-adics, or even over the integers.

The aforementioned holographic formula — and the whole geometric
setting of the correspondence, consisting of the Euclidean hyperbolic space
AdS3, its conformal boundary P1(C), and quotients by actions of Schottky
groups Γ ⊂ PSL(2,C) — has a natural analogue in which the field is the
p-adic numbers Qp. The bulk space becomes the Bruhat–Tits tree of Qp,
which is a manifestly discrete infinite graph of uniform valence. Its conformal
boundary at infinity is P1(Qp), which can be thought of as the spacetime
for an unusual class of CFTs. Black hole solutions are understood to be
quotients of this geometry by p-adic Schottky groups Γ ⊂ PGL(2,Qp); these
are known as Mumford curves in the mathematics literature. The results of
Drinfeld and Manin [39] on periods of p-adic Schottky groups provide the
corresponding holographic formula in this non-archimedean setting. We will
give what we hope are intuitive introductions to these possibly unfamiliar
concepts in the bulk of the paper.

Conformal field theory on p-adic spacetime has previously been devel-
oped, for the most part, in the context of the p-adic string theory (see,
for instance, [10] and references therein), but has also been considered ab-
stractly [46]. However, our perspective on the subject will be somewhat
different: rather than using the p-adics as a worldsheet to construct real-
space string amplitudes, our goal in this paper is to further develop the
original holographic correspondence of [44] for the higher-genus black holes,
informed by recent developments in the understanding of the AdS/CFT cor-
respondence. We will emphasize the large extent to which algebraic structure
allows familiar ideas, concepts, and arguments from ordinary AdS3/CFT2

can be carried over — in many cases line by line — to the p-adic setting.
In addition to the holographic formulas of Manin and Marcolli, the stan-
dard semiclassical holographic analysis of scalar fields propagating without
backreaction in anti-de Sitter space applies almost without alteration to the
Bruhat–Tits tree. We discuss this in detail in §4.
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In some cases, intuitions about how holography works in the archimedean
case are supported even more sharply over the p-adics. For example,
one normally thinks of the holographic direction as corresponding to a
renormalization-group scale. Over the p-adics, as shown in §4.4, boundary
modes contribute to the reconstruction of bulk functions only up to a height
determined by their wavelength, and reconstruct precisely to zero above this
height in the tree. This result is foreshadowed in the literature by the ob-
servation that renormalization-group methods become exact in the context
of hierarchical models (see, for instance, [35, 63]).

One of the most important new ideas in the AdS/CFT correspondence
is the study of entanglement entropy in boundary states and its connection
(via the Ryu-Takayanagi formula) to the geometry of the bulk. While there
is no definitive calculation at this point, we argue that, at least for the p-
adic free boson CFT, an analogue of the familiar logarithmic scaling of the
ground-state entanglement entropy is likely to hold. Given such a formula,
the Ryu-Takayanagi formula follows immediately from simple considerations
of the geometry of the tree.

Tensor network models are often of interest because they reproduce our
expectations about ground-state entanglement entropy, and in some cases
(like the holographic quantum code of Pastawski et al. [49]) also satisfy
formulas similar to Ryu-Takayanagi that relate the entanglement entropy to
the size of paths or surfaces in the interior of the network. Given that our
models exhibit a discrete bulk spacetime, a Ryu-Takayanagi formula, and
a meaningful (and unbroken) group of bulk isometries/boundary conformal
mappings, we suggest that the p-adic geometry is the natural one to consider
in attempting to link tensor network models to spacetimes. We offer some
ideas in this direction in §3.

Finally, on an even more speculative note, it is natural to wonder if the
study of p-adic models of holography can be used to learn about the real
case. So-called “adelic formulas” relate quantities defined over the various
places (finite and infinite) of Q; it was suggested in [42] that fundamen-
tal physics should be adelic in nature, with product formulae that relate
the archimedean side of physics to a product of the contributions of all the
p-adic counterparts. We briefly speculate about adelic formulas for the en-
tanglement entropy in §5; one might hope that such formulas could be used
to prove inequalities for entanglement entropy like those considered in [5],
using ultrametric properties of the p-adics. We hope to further develop the
adelic perspective, and return to these questions, in future work.
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2. Review of necessary ideas

2.1. Basics of p-adic numbers

We begin with a lightning review of elementary properties of the p-adic
fields. Our treatment here is far from complete; for a more comprehensive
exposition, the reader is referred to [34], or to another of the many books
that treat p-adic techniques.

When one constructs the continuum of the real numbers from the ra-
tionals, one completes with respect to a metric: the distance between two
points x, y ∈ Q is

(2.1) d(x, y) = |x− y|∞,

where |·|∞ is the usual absolute value. There are Cauchy sequences of ratio-
nal numbers for which successive terms become arbitrarily close together,
but the sequences do not approach any limiting rational numbers. The real
numbers “fill in the gaps,” such that every Cauchy sequence of rational
numbers converges to a real limit by construction. This property is known
as metric completeness.

The p-adic fields Qp are completions of Q with respect to its other norms;
there is one such norm for every prime p. These p-adic norms are defined by

|x|p = p− ordp(x);(2.2)

ordp(x) = n when x = pn(a/b) with a, b ⊥ p.(2.3)

Every rational number x has a unique prime factorization, and the (possibly
negative) integer n labels the power of p which divides x. Two norms denoted
a, b are considered equivalent if |x|a = |x|γb for some positive real constant γ;
by a theorem of Ostrowski, every possible norm on Q is equivalent either to
one of the p-adic norms, the usual (∞-adic) norm, or to the trivial norm for
which |x|0 = 1 ∀x 6= 0. Thus, the nontrivial norms (or possible completions)
are labeled by the primes together with ∞. It is common to refer to the
different possible completions as the different “places” of Q.

A number is p-adically small when it is divisible by a large power of p; one
can think of the elements of Qp as consisting of decimal numbers written
in base p, which can extend infinitely far left (just as real numbers can
be thought of as ordinary decimals extending infinitely far right). Qp is
uncountable and locally compact with respect to the topology defined by its
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metric; as usual, a basis for this topology is the set of open balls,

(2.4) Bε(x) = {y ∈ Qp : |x− y|p < ε}.

The ring of integers Zp of Qp is also the unit ball about the origin:

(2.5) Zp = {x ∈ Qp : |x|p ≤ 1}.

It can be described as the inverse limit of the system of base-p decimals with
no fractional part and finite (but increasingly many) digits:

(2.6) Zp = lim←−
(
· · · → Z/pn+1Z→ Z/pnZ→ Z/pn−1Z→ · · ·

)
.

Zp is a discrete valuation ring; its unique maximal ideal is m = pZp, and the
quotient of Zp by m is the finite field Fp. In general, for any finite extension
of Qp, the quotient of its ring of integers by its maximal ideal is a finite
field Fpn ; we give more detail about this case in §6.1.

2.2. The Bruhat–Tits tree and its symmetries

In this section, we will describe the Bruhat–Tits Tree Tp and its symmetries.
It should be thought of as a hyperbolic (though discrete) bulk space with
conformal boundary P1(Qp). Since these trees are a crucial part of the paper
and may be unfamiliar to the reader, our treatment is informal, and aims
to build intuition. Out of necessity, our discussion is also brief; for a more
complete treatment, the reader may consult notes by Casselman [17] for
constructions and properties related to the tree, or [62] for analysis on the
tree and connections to the p-adic string.

We begin with a description of the boundary and its symmetries, which
are completely analogous to the global conformal transformations of P1(C).
We then turn our attention to the bulk space Tp, focusing on its construction
as a coset space and the action of PGL(2,Qp) on the vertices. Despite the
fractal topology of the p-adic numbers, we will find (perhaps surprisingly)
that many formulas from the real or complex cases are related to their p-adic
counterparts by the rule |·|∞ → |·|p.

2.2.1. Conformal group of P1(Qp). The global conformal group on the
boundary is SL(2,Qp), which consists of matrices of the form

A =

(
a b
c d

)
, with a, b, c, d ∈ Qp, ad− bc = 1.(2.7)
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Figure 1. The standard representation of the Bruhat–Tits tree. The point at
infinity and the center are arbitrary as the tree is homogeneous. Geodesics
such as the highlighted one are infinite paths through the tree from ∞ to
the boundary which uniquely specify elements of Qp. This path as a series
specifies the digits of the decimal expansion of x ∈ Q2 in this example. At
the nth vertex, we choose either 0 or 1 corresponding to the value of xn in
the pnth term of x. Negative powers of p correspond to larger p-adic norms
as we move towards the point ∞.

This acts on points x ∈ P1(Qp) by fractional linear transformations,

x→ ax+ b

cx+ d
.(2.8)
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It can be checked that matrix multiplication corresponds to composition of
such maps, so that the group action is well-defined. This is analogous to the
SL(2,C) action on the Riemann sphere P1(C). (We will sometimes also refer
to PGL(2,Qp); the two differ only in minor details.)

The existence of a local conformal algebra for Qp, in analogy with the
Virasoro symmetry in two-dimensional conformal field theory or general
holomorphic mappings of P1(C), is a subtle question. It is difficult to find
definitions of a p-adic derivative or an infinitesimal transformation that
are satisfactory for this purpose. In particular, since the “well-behaved”
complex-valued functions on Qp are in some sense locally constant, there
are no interesting derivations that act on the space of fields [46]. In this pa-
per, we will concern ourselves only with global symmetries, which can still
be used to constrain the properties of p-adic conformal field theories. We
speculate about the possibility of enhanced conformal symmetry in §6.2.

The determinant condition implies that there are three free p-adic num-
bers which specify an element of SL(2,Qp). A convenient way to decompose
a general SL(2,Qp) transformation is to view it as the product of a special
conformal transformation, a rotation, a dilatation, and a translation:

(
1 0

cp−ma−1 1

)(
a 0
0 a−1

)(
pm 0
0 p−m

)(
1 bp−ma−1

0 1

)
(2.9)

=

(
pma b
c p−ma−1(1 + bc)

)
,

where a, b, c ∈ Qp and |a|p = 1. One can verify that the product is an arbi-
trary element of SL(2,Qp), where the determinant condition has been used
to eliminate the d parameter. This represents a translation by bp−ma−1, a
dilatation by p2m, a rotation by a2, and a special conformal translation by
cp−ma−1. We have separated the diagonal subgroup into multiplication by
elements of the unit circle, a ∈ Up ⊂ Zp, which do not change the p-adic
norm (and thus are “rotations” in a p-adic sense), and multiplication by
powers of p which scale the p-adic norm (and so correspond to dilatations).
Representations of the multiplicative group of unit p-adics provide an ana-
logue of the spin quantum number; we discuss this further in §4.5. It is worth
stressing that these transformations are finite, and so we are characterizing
the symmetry group rather than the algebra.

As is often the case in real conformal field theories, we can focus on
the dilation subgroup. A diagonal matrix in SL(2,Qp) and its action on the
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coordinate is (
α 0
0 α−1

)
, x→ x′ = α2x.(2.10)

This has the effect of changing the p-adic norm by

|x′|p = |α|2p|x|p.(2.11)

So if |α|p 6= 1, this will scale the size of coordinate. This parallels the complex
case in which a dilatation changes the complex norm by |z′| = |α|2|z|. It
will turn out to be the case that 2-point functions of spinless operators of
dimension ∆ in p-adic conformal field theory will depend only on the p-adic
norm of their separation. Schematically,

(2.12) 〈φ(x)φ(y)〉 ≈ 1

|x− y|2∆
p

.

Dilations will thus affect correlation functions of the p-adic conformal field
theory exactly as in the complex case.

2.2.2. PGL(2,Qp) action on the tree Tp. We have seen that fractional
linear transformations of the boundary coordinate work as in the real case.
The action of the symmetry on the bulk space Tp is slightly more complicated
to describe. Were we working in the archimedean theory, we would identify
PSL(2,R) as the isometry group of the hyperbolic upper half space H =
SL(2,R)/ SO(2). Here SO(2) is a maximal compact subgroup. Similarly, in
the context of AdS2+1/CFT2, we can think of the hyperbolic upper-half 3-
space as a quotient space of the isometry group by its maximal compact
subgroup: H3 = SL(2,C)/ SU(2).

Following this intuition, we define the Bruhat–Tits tree to be the quo-
tient of the p-adic conformal group by its maximal compact subgroup:

(2.13) Tp = PGL(2,Qp)/PGL(2,Zp).

In contrast with the archimedean examples, Tp is a discrete space: it is a
homogeneous infinite tree, with vertices of valence p+ 1, whose boundary
can be identified with the p-adic projective line. We expect isometries to
correspond to rigid transformations of the vertices. Formally, the tree rep-
resents the incidence relations of equivalence classes of lattices in Qp ×Qp.
As outlined in the appendix of [10], the group PGL(2,Qp) acts by matrix
multiplication on the lattice basis vectors and takes one between equivalence
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classes. These transformations are translations and rotations of the points
in the tree; they preserve distances, which are measured in the tree by just
counting the number of edges along a given path. Since any two vertices in a
connected tree are joined by exactly one path, this is well-defined; all paths
are geodesics.

A standard way of representing Tp is depicted in Fig. 1 for the case
p = 2. This is a regular tree with p+ 1 legs at each vertex; the exponential
growth in the number of vertices with distance from a base point reflects the
“hyperbolic” nature of distance in the tree. Since paths are unique, there is
a one-to-one correspondence between infinite paths in the tree starting at∞
and elements of Qp. (This can be viewed like a p-adic version of stereographic
projection.)

The choice of the apparent center and geodesic corresponding to infinity
are arbitrary. Just as in the archimedean case, we must fix three boundary
points to identify a p-adic coordinate on the projective line, corresponding
to 0, 1, and∞. Once these arbitrary choices are made, the geodesics joining
them form a Y in the bulk, whose center is taken to be the centerpoint of the
tree. We can then understand the geodesic connecting∞ to x as labeling the
unique p-adic decimal expansion for x = pγ(x0 + x1p+ x2p

2 + · · · ), where
each of the xn take values in 0, 1, . . . , p− 1 corresponding to the p possible
choices to make at each vertex. Each vertex of the tree is naturally marked
with a copy of the finite field Fp, identified with one “digit” of a p-adic
number.

Viewing the tree as the space of p-adic decimal expansions may in some
ways be more useful than the definition in terms of equivalence classes of lat-
tices. Geometrically moving closer or further from the boundary corresponds
to higher or lower precision of p-adic decimal expansions. Even with no ref-
erence to quantum mechanics or gravity, we see some hint of holography
and renormalization in the tree- a spatial direction in the bulk parameter-
izes a scale or precision of boundary quantities. This is explored more fully
in §4.2.1.

It is worth strongly emphasizing that the notion of dimension is quite
confusing in the context of the tree. Many familiar intuitions go awry.
For example, one might expect the unit circle {x ∈ Qp : |x|p = 1} to be
a codimension-one object; open subsets of the unit circle in the subspace
topology would then play the role of the intervals on which entanglement
entropy is defined in two-dimensional CFT. However, following these steps
for the tree quickly reveals that there is no difference between such a bound-
ary “interval” and any other boundary open set! Indeed, the unit circle is
an open set of positive measure.
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One might reasonably therefore ask why we choose to emphasize the
connection of our model with holomorphic AdS3/CFT2, rather than e.g.
with AdS2/CFT1. One answer is that, from our algebraic perspective, these
two instances are not very different: after all, they differ only by a choice of
number field (respectively C or R). So either comparison to the archimedean
case is warranted. Another answer we might give is that a key difference be-
tween the two cases has to do with the structure of the multiplicative group
of units of the field: in R, this consists only of scale transformations (together
with a Z2 reflection), whereas in C it is the product of the scale transforma-
tions with a U(1) factor, the complex numbers of unit modulus, that gives
rise to spin. In this sense, Qp is more analogous to C: the unit circle (as
a multiplicative group) is a nontrivial infinite group, whose representations
are likely to play a role in the extension of our considerations here to fields
of higher spin. (We remark on this possibility further in §4.5). Yet a third
answer would be that the free boson gives a conformally invariant theory
only in two Euclidean dimensions, and it does in our setting as well.

We now illustrate some examples of PGL(2,Qp) transformations on the
tree. First note that the choice of the center node is arbitrary. We can take
this point to be the equivalence class of unit lattices modulo scalar multipli-
cation. One can show that this equivalence class (or the node it corresponds
to) is invariant under the PGL(2,Zp) subgroup, so these transformations
leave the center fixed and rotate the branches of the tree about this point.

More interesting is a generator such as

(2.14) g =

(
p 0
0 1

)
∈ PGL(2,Qp).

This transformation (and others in PGL(2,Qp)) act by translating the entire
tree along a given geodesic (one can see this either from the lattice incidence
relations, or from translating or shifting the p-adic decimal series expansion).
This is illustrated in Fig. 2. We can think of these transformations as the
lattice analogs of translations and dilatations of the real hyperbolic plane.

2.2.3. Integration measures on p-adic spaces. Just as is the case
for C, there are two natural measures on Qp (or more properly, on the
projective line over Qp); they can be understood intuitively by thinking
of Qp as the boundary of Tp. The first is the Haar measure dµ, which exists
for all locally compact topological groups. With respect to either measure,
the size of the set of p-adic integers is taken to be 1:

(2.15) µ(Zp) = 1.
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Figure 2. An alternative representation of the Bruhat–Tits Tree (for p = 3)
in which we have unfolded the tree along the 0 geodesic. The action of
elements of PGL(2,Qp) acts by translating the entire tree along different
possible geodesics. In this example we translate along the 0 geodesic, which
can be thought of as multiplication of each term in a p-adic decimal expan-
sion by p. This map has two fixed points at 0 and ∞. In this “unfolded”
form, a point in P1(Qp) is specified by a geodesic that runs from ∞ and fol-
lows the 0 geodesic until some level in the tree where it leaves the 0 geodesic
towards the boundary. The p-adic norm is simply p to the inverse power of
the point where it leaves the 0 geodesic (so leaving “sooner” leads to a larger
norm, and later to a smaller norm).

The Haar measure is then fixed by multiplicativity and translation invari-
ance; any open ball has measure equal to the p-adic norm of its radius. It is
helpful to think of Qp as being “flat” when considered with this measure.

The other measure, the Patterson-Sullivan measure, is the p-adic ana-
logue of the Fubini-Study metric on P1(C). It is most easily defined with
reference to the tree, in which we fix a basepoint C (to be thought of as the
unique meeting point of the geodesics joining 0, 1, and∞ when a coordinate
is chosen on the boundary). Recall that the open balls in Qp correspond to
the endpoints of branches of the tree below a vertex v. In the Patterson-
Sullivan measure,

(2.16) dµ0(Bv) = p−d(C,v).

The two measures are related by

dµ0(x) = dµ(x), |x|p ≤ 1;

dµ0(x) =
dµ(x)

|x|2p
, |x|p > 1.(2.17)
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(Later on, we will at times use the familiar notation dx to refer to the Haar
measure.) The most intuitive way to picture the Patterson-Sullivan measure
is to imagine the tree pointing “radially outward” from its centerpoint, as
in Fig. 1. This should be contrasted with a picture such as Fig. 10, which
is drawn in a natural way from the standpoint of the Haar measure. It is
then easy to understand the transformation rule (2.17); it says that when
all geodesics point downward from infinity and the boundary is “flat” at
the lower end of the picture, points far from zero (outside Zp) can only be
reached by geodesics that travel upward from C before turning back down
towards the boundary.

2.2.4. Finite extensions of p-adic fields. Some basic facts regarding
the geometry of the Bruhat–Tits tree Tp of Qp have been recalled through-
out §2.2. More generally, though, the geometry we consider here applies to
any finite extension k of the p-adic field Qp without any essential changes.
We recall a couple of standard facts about finite extensions of local fields; the
reader is referred e.g. to [34] for details. Let n = [k : Qp] denote the degree
of the extension. Firstly, there exists a unique norm on k as a vector space
over Qp, extending the standard p-adic norm. This is not identical with the
usual “norm map” of a field extension! Rather,

(2.18) |α| = |Nk/Qp(α)|1/np .

(Remember that the field norm on C is the square of the absolute value.)
By analogy with the ordinary p-adic field, we can define an extension of the
“order” to all of k:

(2.19) ordp(α) = − log |α| ∈ 1

n
Z.

The image of k under the map ordp is an additive subgroup (1/ek)Z ⊂
(1/n)Z, for some integer ek | n; this number is called the ramification index
of k.

The ring of integers of k is a discrete valuation ring, with a unique
maximal ideal that is easy to describe using this norm:

(2.20) Ok = {α ∈ k : |α| ≤ 1}; m = {α ∈ k : |α| < 1}.

(For Qp, O = Zp and m = pZp.) Furthermore, the residue field Ok is a finite
extension field of Fp = Zp/pZp, of degree f between 1 and n. In fact, one
can prove that n = ekf , and further that there always exists an intermediate
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subfield L of k, fitting into the diagram

(2.21)

k

L

Qp

n

ek

f

,

such that L is unramified over Qp and k is totally ramified over L.
By identifying (OQp/m

r)⊗Ok = Ok/m
rek , for any positive r, we see

that the Bruhat–Tits tree Tk for a finite extension k of Qp is obtained from
the Bruhat–Tits tree of Qp by adding ek − 1 new vertices in each edge of
TQp (expressing the difference in the set of values of the ordp map on k)
and increasing the valence of all vertices to pf + 1 (so that the neighbor-
hood of each vertex can still be identified with the projective line over the
finite residue field Ok/m). We illustrate these processes in Figure 3; for
more details, the reader is referred to [43]. The set of vertices V (Tk) of the
Bruhat–Tits tree Tk of k is the set of equivalence classes of free rank two
Ok-modules, under the equivalence M1 ∼M2 if M1 = λM2, for some λ ∈ k∗.
For a pair of such modules with M2 ⊂M1, one can define a distance function
d(M1,M2) = |l − k|, where M1/M2 = Ok/m

l ⊕Ok/m
k. This distance is in-

dependent of representatives in the equivalence relation. There is an edge in
E(Tk) connecting two vertices in V (Tk) whenever the corresponding classes
of modules have distance one. The resulting tree Tk is an infinite homo-
geneous tree with vertices of valence q + 1, where q = #Ok/m = pf is the
cardinality of the residue field. The boundary at infinity of the Bruhat–Tits
tree is identified with P1(k). One can think of the Bruhat–Tits tree as a
network, with a copy of the finite field Fq (or better of the projective line
P1(Fq)) associated to each vertex; this will be the guiding viewpoint in our
approach to non-archimedean tensor networks.

2.3. Schottky uniformization of Riemann surfaces

In this section, we review Schottky uniformization, which allows one to think
of a higher-genus Riemann surface as a quotient of the projective line by a
particular discrete subgroup of its Möbius transformations.

A Schottky group of rank g ≥ 1 is a discrete subgroup of PSL(2,C) which
is purely loxodromic and isomorphic to a free group on g generators. The
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e = 1; f = 2 e = 2; f = 1

unram. ram.

Q2

Figure 3. Obtaining trees for ramified and unramified quadratic extensions
from the Bruhat–Tits tree of Qp.

group PSL(2,C) acts on P1(C) by fractional linear transformations,

γ =

(
a b
c d

)
: z 7→ az + b

cz + d
.

The loxodromic condition means that each nontrivial element γ ∈ Γ \
{1} has two distinct fixed points z±γ (one attractive and one repelling) in
P1(C). The closure in P1(C) of the set of all fixed points of elements in Γ
is the limit set ΛΓ of Γ, the set of all limit points of the action of Γ on
P1(C). In the case g = 1 the limit set consists of two points, which we can
choose to identify with {0,∞}, while for g > 1 the set ΛΓ is a Cantor set
of Hausdorff dimension 0 ≤ dimH(ΛΓ) < 2. The Hausdorff dimension is also
the exponent of convergence of the Poincaré series of the Schottky group:∑

γ∈Γ |γ′|s converges for s > dimH(ΛΓ) [8].
It is well known that any compact smooth Riemann surface X admits

a Schottky uniformization, namely X = ΩΓ/Γ, where Γ ⊂ PSL(2,C) is a
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Schottky group of rank equal to the genus g = g(X) of the Riemann sur-
face, and ΩΓ = P1(C) \ ΛΓ is the domain of discontinuity of the action of Γ
on P1(C). There is a well known relation between Schottky and Fuchsian
uniformizations of compact Riemann surfaces of genus g ≥ 2; see [57].

A marking of a rank g Schottky group Γ ⊂ PSL(2,C) is a choice of a set
of generators {γ1, . . . , γg} of Γ and a set of 2g open connected regions Di

in P1(C), with Ci = ∂Di the boundary Jordan curves homeomorphic to S1,
with the following properties:

1) the closures of the Di are pairwise disjoint

2) γi(Ci) ⊂ Cg+i
3) γi(Di) ⊂ P1(C) \Dg+i.

The marking is classical if all the Ci are circles. (All Schottky groups admit
a marking, but not all admit a classical marking.) A fundamental domain
FΓ for the action of the Schottky group Γ on the domain of discontinuity
ΩΓ ⊂ P1(C) can be constructed by taking

FΓ = P1(C) \ ∪gi=1(Di ∪ D̄g+i).

This satisfies ∪γ∈Γγ(FΓ) = ΩΓ. In the case of genus g = 1, with Γ = qZ,
for some q ∈ C with |q| > 1, the region FΓ constructed in this way is an
annulus Aq, with D1 the unit disk in C and D2 the disk around ∞ given
by complement in P1(C) of the disk centered at zero of radius |q|, so that
qZAq = C∗ = P1(C) \ {0,∞} = ΩqZ . The resulting quotient Eq = C∗/qZ is
the Tate uniformization of elliptic curves.

2.4. Hyperbolic handlebodies and higher genus black holes

The action of PSL(2,C) by fractional linear transformations on P1(C) ex-
tends to an action by isometries on the real 3-dimensional hyperbolic space
H3, with P1(C) its conformal boundary at infinity. In coordinates (z, y) ∈
C× R∗+ in H3, the action of PSL(2,C) by isometries of the hyperbolic metric
is given by

γ =

(
a b
c d

)
: (z, y) 7→

(
(az + b)(cz + d) + ac̄y2

|cz + d|2 + |c|2y2
,

y

|cz + d|2 + |c|2y2

)
.

Given a rank g Schottky group Γ ⊂ PSL(2,C), we can consider its action
on the conformally compactified hyperbolic 3-space H3 = H3 ∪ P1(C). The
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only limit points of the action are on the limit set ΛΓ that is contained in the
conformal boundary P1(C), hence a domain of discontinuity for this action
is given by

H3 ∪ ΩΓ ⊂ H3 = H3 ∪ P1(C).

The quotient of H3 by this action is a 3-dimensional hyperbolic handlebody
of genus g

HΓ = H3/Γ,

with conformal boundary at infinity given by the Riemann surface XΓ =
ΩΓ/Γ,

HΓ = HΓ ∪XΓ = (H3 ∪ ΩΓ)/Γ.

Given a marking of a rank g Schottky group Γ (for simplicity we will
assume the marking is classical), let Di be the discs in P1(C) of the marking,
and letDi denote the geodesic domes in H3 with boundary Ci = ∂Di, namely
the Di are the open regions of H3 with boundary Si ∪Di, where the Si are
totally geodesic surfaces in H3 with boundary Ci that project to Di on the
conformal boundary. Then a fundamental domain for the action of Γ on
H3 ∪ ΩΓ is given by

FΓ = FΓ ∪ (H3 \ ∪gi=1(Di ∪ D̄g+i).

The boundary curves Ci for i = 1, . . . , g provide a collections of A-cycles,
that give half of the generators of the homology of the Riemann surface XΓ:
the generators that become trivial in the homology of the handlebody H̄Γ.
The union of fundamental domains γ(FΓ) for γ ∈ Γ can be visualized as in
Fig. 5.

In the case of genus g = 1 with Γ = qZ, acting on H3 by(
q1/2 0

0 q−1/2

)
(z, y) = (qz, |q|y),

with limit set {0,∞} the fundamental domain FΓ consists of the space in
the upper half space H3 contained in between the two spherical domes of
radius 1 and |q| > 1. The generator q of the group acts on the geodesic
with endpoints 0 and ∞ as a translation by log |q|. The quotient H3/qZ is a
hyperbolic solid torus, with the Tate uniformized elliptic curve Eq = C∗/qZ
as its conformal boundary at infinity, and with a unique closed geodesic
of length log q. It is well known (see [6], [37], and §2.3 of [44]) that the
genus one handlebodies HqZ are the Euclidean BTZ black holes [2], where
the cases with q ∈ C \ R correspond to spinning black holes. The geodesic
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Figure 4. Fundamental domain and quotient for the Euclidean BTZ black
hole. Compare with the p-adic BTZ geometry, shown in Fig. 11.

length log |q| is the area of the event horizon, hence proportional to the black
hole entropy.

The case of higher genus hyperbolic handlebodies correspond to gener-
alizations of the BTZ black hole to the higher genus asymptotically AdS3

black holes considered in [33] and [44].
In these more general higher genus black hole, because of the very dif-

ferent nature of the limit set (a fractal Cantor set instead of two points) the
structure of the black hole event horizon is significantly more complicated.
In the Euclidean BTZ black hole, the only infinite geodesic that remains
confined into a compact region inside the hyperbolic solid torus HqZ for
both t→ ±∞ is the unique closed geodesic (the image in the quotient of
the geodesic in H3 given by the vertical line with endpoints 0 and ∞. On
the other hand, in the higher genus cases, the geodesics in the hyperbolic
handlebody HΓ = H3/Γ can be classified as:

1) Closed geodesics: these are the images in the quotient HΓ of geodesics
in H3 with endpoints {z+

γ , z
−
γ }, the attractive and repelling fixed points

of some element γ ∈ Γ.

2) Bounded geodesics: these images in the quotient HΓ of geodesics in H3

with endpoints on ΛΓ. If the endpoints are not a pair of fixed points
of the same element of Γ the geodesic in the quotient is not closed,
but it remains forever confined within a compact region inside HΓ, the
convex core CΓ.

3) Unbounded geodesics: these are images in the quotient HΓ of geodesics
in H3 with at least one of the two endpoints in ΩΓ. These are geodesics
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in HΓ that wander off (in at least one time direction t→∞ or t→
−∞) towards the conformal boundary XΓ at infinity and eventually
leave every compact region in HΓ.

The convex core CΓ ⊂ HΓ is the quotient by Γ of the geodesic hull in H3 of
the limit set ΛΓ. It is a compact region of finite hyperbolic volume in HΓ,
and it is a deformation retract of HΓ. A natural replacement for the event
horizon of the BTZ black hole in these higher genus cases can be identified
in terms of the convex core CΓ, where we think of CΓ as the region from
which geodesic trajectories cannot escape and must remain forever confined.
The complement HΓ \ CΓ is homeomorphic to ∂CΓ × R+ (see [14] for a more
general treatment of convex cores of Kleinian groups and ends of hyperbolic
3-manifolds). The boundary ∂CΓ is the event horizon of the higher genus
black hole, with the black hole entropy proportional to the area of ∂CΓ.

In [41] and [40], Manin proposed to interpret the tangle of bounded
geodesics inside the hyperbolic handlebody HΓ as a model for the missing
“closed fiber at infinity” in Arakelov geometry. This interpretation was based
on the calculation of the Arakelov Green function [40], and the analogy with
the theory of Mumford curves [47] and the computations of [39] for p-adic
Schottky groups. The results of [40] and their holographic interpretation
in [44], as well as the parallel theory of Mumford curves and periods of p-
adic Schottky groups, will form the basis for our development of a p-adic
and adelic form of the AdS/CFT correspondence. The interpretation of the
tangle of bounded geodesics in HΓ as “closed fiber at infinity” of Arakelov
geometry was further enriched with a cohomological interpretation in [19]
(see also [20], [21] for the p-adic counterpart).

2.5. Bruhat–Tits trees, p-adic Schottky groups,
and Mumford curves

The theory of Schottky uniformization of Riemann surfaces as conformal
boundaries of hyperbolic handlebodies has a non-archimedean parallel in the
theory of Mumford curves, uniformized by p-adic Schottky groups, seen as
the boundary at infinity of a quotient of a Bruhat–Tits tree. In the context of
the p-adic string theory, such geometries were studied by Chekhov, Mironov,
and Zabrodin [18] in order to compute multiloop scattering amplitudes.

The reader should beware that there is an unavoidable clash of notation:
q is the standard notation for the modular parameter of an elliptic curve,
but is also used to denote a prime power q = pr in the context of finite
fields or extensions of the p-adics. While both uses will be made in this
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Figure 5. Fundamental domains for the action of Γ on H3.

paper, particularly in this section and in §6.2, we prefer not to deviate from
standard usage; it should be apparent from context which is intended, and
hopefully no confusion should arise.

There is an action of PGL(2,k) on the set of vertices V (Tk) that pre-
serves the distance, hence it acts as isometries of the tree Tk. A p-adic
Schottky group is a purely loxodromic finitely generated torsion free sub-
group of PGL(2,k). The Schottky group Γ is isomorphic to a free group on
g-generators, with g the rank of Γ.

In this p-adic setting the loxodromic condition means that every nontriv-
ial element γ in Γ has two fixed points z±γ on the boundary P1(k). Equiva-
lently, an element γ is loxodromic if the two eigenvalues have different p-adic
valuation. The closure of the set of fixed points z±γ , or equivalently the set
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of accumulation points of the action of Γ on Tk ∪ P1(k) is the limit set ΛΓ of
the Schottky group Γ. The complement P1(k) \ ΛΓ = ΩΓ(k) is the domain
of discontinuity of the action of Γ on the boundary.

There is a unique geodesic `γ in Tk with endpoints {z−γ , z+
γ }, the axis of

a loxodromic element γ. The subgroup γZ acts on Tk by translations along
`γ . There is a smallest subtree TΓ ⊂ Tk that contains all the axes `γ of all
the nontrivial elements γ ∈ Γ. The boundary at infinity of the subtree TΓ is
the limit set ΛΓ. TΓ is the non-archimedean analog of the geodesic hull of
the limit set of a Schottky group in H3.

The quotient XΓ(k) = ΩΓ(k)/Γ is a Mumford curve with its p-adic
Schottky uniformization, [47]. The quotient Tk/Γ consists of a finite graph
TΓ/Γ with infinite trees appended at the vertices of TΓ/Γ, so that the bound-
ary at infinity of the graph Tk/Γ is the Mumford curve XΓ(k). The finite
graph Gk = TΓ/Γ is the dual graph of the special fiber Xq (a curve over
Fq which consists of a collection of P1(Fq) at each vertex of Gk, connected
along the edges). A family of finite graphs Gk,n, for n ∈ N, is obtained by
considering neighborhoods TΓ,n of TΓ inside Tk consisting of TΓ together
with all vertices in Tk that are at a distance at most n from some vertex
in TΓ and the edges between them (these trees are preserved by the action
of Γ), and taking the quotients Gk,n = TΓ,n/Γ. The endpoints (valence one
vertices) in Gk,n correspond to reduction mod mn and the set of points
X(Ok/m

n), see Section 1.3 of [41]. One sees in this way, geometrically, how
the k-points in the Mumford curve XΓ(k) are obtained as limits, going along
the infinite ends of the graph Tk/Γ, which correspond to successively con-
sidering reduction mod mn. Conversely, one can view the process of going
into the tree from its boundary XΓ(k) towards the graph Gk in the middle
of Tk/Γ as applying reductions mod mn. We will see later in the paper how
this process should be thought of physically as a form of renormalization.
The finite graph Gk = TΓ/Γ is the non-archimedean analog of the convex
core CΓ of the hyperbolic handlebody HΓ, while the infinite graph Tk/Γ is
the non-archimedean analog of HΓ itself, with the Mumford curve XΓ(k)
replacing the Riemann surface XΓ = XΓ(C) as the conformal boundary at
infinity of Tk/Γ.

Geodesics in the bulk space Tk/Γ correspond to images in the quotient
of infinite paths without backtracking in the tree Tk, with endpoints at
infinity on P1(k). Again, one can subdivide these in several cases. When the
endpoints are the attractive and repelling fixed points z±γ of some element
γ ∈ Γ, the path in Tk/Γ is a closed loop in the finite graph Gk. If the
endpoints are both in ΛΓ but not the fixed points of the same group element,
then the geodesic is a finite path in Gk that is not a closed loop (but which
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winds around several closed loops in Gk without a fixed periodicity). If at
least one of the endpoints is in ΩΓ(k), then the path in Tk/Γ eventually (for
either t→ +∞ or t→ −∞) leaves the finite graph Gk and wonders off along
one of the attached infinite trees towards the boundary XΓ(k) at infinity.
We still refer to these cases as closed, bounded, and unbounded geodesics,
as in the archimedean case. We refer the reader to [26], [43], [47], [51] for a
more detailed account of the geometry of Mumford curves.

3. Tensor networks

Motivated by the idea that the Bruhat–Tits tree Tp is a discrete (while
still geometric) analogue of anti-de Sitter space, we will use this section to
consider some relations between tensor networks that have been considered
in the literature and the tree. One might imagine that many such relations
can be drawn, and we have made no effort to be exhaustive; indeed, there are
several distinct proposals connecting tensor networks to discrete analogues
of holography in the literature. Our purpose in this section is to propose one
such model based on p-adic geometry, in which the bulk is naturally discrete
from the outset.

In this section the basic Hilbert spaces in the bulk and the boundary will
be those of finite dimensional qudits and the primary object of study will
be the entanglement structure. In §4, the finite dimensional Hilbert spaces
are replaced with those of a field theory valued in R or C. We will find many
aspects of holography hold in this field theoretic model and provide evidence
for an exact correspondence. This connection puts the tensor network models
of holography on a more equal footing with dynamical models, since both
are defined from the same discrete spacetime.1

Throughout this paper, we will remain agnostic as to whether the tree
and its boundary should be thought of as a stand-alone quantum system,
or as a kind of “section” inside some more complicated object, such as a
Bruhat-Tits building of higher rank. We hope to return to this latter point
of view in future work.

We will focus our attention on the networks used by Pastawski, Yoshida,
Harlow, and Preskill [49], (or “HaPPY”), in their construction of holographic
quantum error-correcting codes. Such codes are easy to describe and admit

1We should also note that, in certain aspects, tensor networks from the tree
are very different from their archimedean counterparts. For example, the Ryu-
Takayanagi area, the tensor network, and the action all live in the same (non-
integer) ‘dimension’. This is likely an idiosyncrasy of the tree, that could potentially
be alleviated by going to Drinfeld’s p-adic upper half-plane (see Sec. 6.2).
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many variations; in the simplest case, they are associated to a regular hy-
perbolic tiling of the plane. We will refer to such tilings by their Schläfli
symbol; the notation {s, n} refers to a tiling in which n regular polygons,
each with s sides, meet at every vertex. A simple calculation shows that the
tiling is hyperbolic whenever

(3.1) n >
2s

s− 2
.

For instance, if pentagons are used, n = 4 is the smallest possible choice
(n = 3 would give the dodecahedron). If the tiles are heptagons or larger,
any n ≥ 3 gives a hyperbolic tiling.

Due to constraints of space, we will not fully review the HaPPY con-
struction here; for details, the reader is referred to the original paper. The
key point is that each tile carries a perfect tensor, which has an even number
of indices, each of which refers to a qudit Hilbert space of fixed size. Such
tensors are characterized by the property that any partition of the indices
into two equal sets yields a maximally entangled state; we review perfect
tensors in more detail, and construct a family of them associated to finite
fields, in §3.1. Due to the appearance of finite fields in the construction of
the tree, we feel this is the most natural family of tensors to consider.

The gist of our argument is that the natural “geometric” setting of a
HaPPY tensor network (for certain uniform tilings) is the Bruhat–Tits tree
corresponding to a prime power q = pn. This means considering an exten-
sion k of Qp, of finite degree [k : Qp] <∞, with n = [k : Qp]/ek where ek is
the ramification index of the extension k of Qp. Passing to the extension k
corresponds to modifying the Bruhat–Tits tree of Qp by adding new edges
at each vertex, so that the valence of all vertices is pn + 1, and inserting
ek − 1 new vertices along each edge. The latter property accounts for how
the geodesic lengths in the tree change when passing to a field extension. It
is customary to normalize the distance in the Bruhat–Tits tree of k accord-
ingly, by dividing by a factor ek. We are motivated in this argument not
only by the algebraic similarity between the constructions of Tp and AdS3,
but also by the fact that field-theoretic models of holography can be defined
on the tree which exhibit it as the natural discrete setting for the AdS/CFT
correspondence. In particular, the Bruhat–Tits tree with all edges of equal
length can be thought of as a discrete analog of (empty) Euclidean AdS3,
and we conjecture that it is dual to the vacuum of the CFT living on Qp. It
is therefore logical to guess that HaPPY tensor networks naturally encode
information about the entanglement structure of the conformal field theories
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living at the finite places, and not about the CFT living at the archimedean
place.

The precise connection we identify is that, at least for certain choices,
the tiling used in HaPPY’s code (when thought of as a graph) has a spanning
tree that is a Bruhat–Tits tree. In some sense, therefore, the tree represents
the union of as many geodesics as can be marked on the tiling without
creating closed paths in the bulk.

In HaPPY’s original paper, a “greedy algorithm” (related to reconstruc-
tion of the quantum state input at the bulk or “logical” qubits of the code)
is used to define a region of the bulk, the perimeter of which is then called
a “geodesic.” We will show in §3.4 that tree geodesics can be understood to
correspond to these “greedy” geodesics for the {5, q + 2} tilings.

An analogue of the Ryu-Takayanagi formula holds for these codes, es-
sentially because the length of the geodesic counts the number of bonds
(contracted tensor indices) that cut across it, and — due to the properties
of perfect tensors — each contributes a constant amount (the logarithm of
the qudit dimension) to the entanglement entropy. For us, it will be crucial
to note that the length of a (unique boundary anchored) tree geodesic is
related to the p-adic size of the boundary region it defines. We will elabo-
rate on this in §5; for now, we will simply remark on a few features of the
formula that we will need in this section.

At the archimedean place, entanglement entropy measures the entan-
glement between the degrees of freedom living on a spatial domain A of a
QFT and those living on the complement Ac. In AdS3, the domain A is
usually taken to be an interval, or a collection of intervals. The finite place
analogue of an interval is just an open ball (as defined in §2.1); the notion
of “codimension” is counterintuitive in the p-adic setting! One can see that
there is no topological difference between (for instance) an open subset of
the unit circle, which would be an interval in the normal case, and a generic
open subset.

If the Ryu-Takayanagi formula holds, the entanglement entropy between
an open ball A ⊂ Qp and its complement Ac is given by the length of a
geodesic γ (xA, yA) in the Bruhat–Tits tree connecting boundary points xA
and yA:

(3.2) SEE(A) = # · length (γ (xA, yA)) .

It should be emphasized that the p-adics are not an ordered field, and so
there are no two unique points at the “edges” of A. Our definition of the
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required pair of boundary points is simply a choice of xA, yA ∈ A such that

(3.3) |xA − yA|p = ε, A = Bε(xA) = Bε(yA).

Conversely, to any pair xA 6= yA ∈ Qp, we can associate a unique open set
A such that (3.3) is satisfied. The length of the geodesic in (3.2) depends
only on the set A and not on the choice of xA and yA; this is easy to see,
since A is the boundary of a cone in the tree below a particular vertex v,
and the requirements on the pair (xA, yA) are equivalent to the condition
that γ(xA, yA) pass through v. The entanglement entropy (considered as a
function of a pair of points) thus depends on the points only though the
quantity |xA − yA|p, just like a two-point function of operator insertions in
the CFT. We will return to this point later.

Just as in the case of AdS3, entanglement entropy is a logarithmically
divergent quantity. The divergence arises because if xA and yA are in P1(Qp),
the number of legs on the geodesic is infinite. To regularize this divergence,
we introduce a cutoff εp such that the length of the geodesic is

(3.4) length (γ (xA, yA)) = 2 logp

∣∣∣∣xA − yAεp

∣∣∣∣
p

,

with | · |p the p-adic norm. (For details about this, see §5.1.) This gives the
entanglement entropy between A and its complement in Qp as2

(3.5) SEE(A) = # logp

∣∣∣∣xA − yAεp

∣∣∣∣
p

.

The proportionality constant will be left undetermined for now.

3.1. Perfect tensors and quantum error-correcting codes from
finite fields

Our goal in this subsection is to recall some features of quantum error-
correcting codes associated to 2n-index perfect tensors, as used by Pastawski,
Yoshida, Harlow, and Preskill [49]. We will review the three-qutrit code and
associated four-index perfect tensor that they construct, and then show how

2For the length of the geodesic between xA and yA to warrant the interpretation
of entanglement entropy, it must be the case that the tensor network bonds cutting
across it, when extended all the way to the boundary, connect between A and Ac.
This can be done and is explained in §3.4.



i
i

“4-Marcolli” — 2018/9/3 — 17:59 — page 119 — #27 i
i

i
i

i
i

Tensor networks, p-adic fields, and algebraic curves 119

this is the case q = 3 of a family of perfect tensors associated to powers
q = pm of odd primes. While the corresponding quantum error-correcting
codes are not new [29], our goal is to highlight the properties of these par-
ticular codes that make them relevant to p-adic holography. In particular,
as we recalled in §2.5, each vertex of the Bruhat–Tits tree for a degree-n un-
ramified extension k of Qp is marked with a copy of the residue field Fpn . As
such, finite fields appear as important ingredients both in the construction
of holographic tensor networks and in the algebraic setting of the Bruhat–
Tits tree. We feel that the codes discussed here are natural candidates to
consider in connecting p-adic geometry to tensor network models, although
of course this choice is not inevitable and any code with the right properties
will define a holographic code.

3.1.1. The three-qutrit code. In their paper, Pastawski et al consider
the following quantum error-correcting code, which encodes a one-qutrit
logical Hilbert space in a three-qutrit physical Hilbert space:

|0〉 7→ |000〉+ |111〉+ |222〉
|1〉 7→ |012〉+ |120〉+ |201〉
|2〉 7→ |021〉+ |102〉+ |210〉 .

The encoded data is protected against erasure of any single qutrit. If we
represent the state by a tensor,

|a〉 7→ Tabcd |bcd〉 ,

then Tabcd is perfect in the sense of Pastawski et al, and defines a perfect
state:

|ψ〉 = Tabcd |abcd〉 .

(Throughout, we use Einstein’s summation convention.) To recall, a tensor
with 2n indices, each representing a qudit Hilbert space of any chosen fixed
size, is perfect when it satisfies any of the following equivalent conditions:

• Given any partition of the indices into two disjoint collections A t
B, where |A| ≤ |B|, the tensor defines an injection of Hilbert spaces
HA ↪→HB: a linear map that is a unitary isomorphism of its domain
with its image (carrying the subspace norm).

• The corresponding perfect state is maximally entangled between any
tensor factors HA,B of equal size (each consisting of n qudits). That
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is, after tracing out n of the 2n qudits, the remaining n-qudit density
matrix is proportional to the identity operator.

It is straightforward to check that the above tensor Tabcd is an n = 2 perfect
tensor on qutrits. To rephrase the way it is constructed so as to make its
generalization to larger codes more apparent, we notice that the particular
states that appear in the encoding of a basis state |a〉 are lines of slope a
in F2

3: if the three qudits are labeled by an element x of F3, then the states
are of the form ⊗x |f(x)〉, where f(x) = ax+ b, and we sum over the three
possible choices of b ∈ F3. The result is a perfect tensor because a line is
determined either by two of its points, or by one point and knowledge of
the slope; conversely, given any two points, or any one point and one slope,
exactly one corresponding line exists.

3.1.2. Perfect polynomial codes. We would like to generalize this to a
family of perfect tensors in which the qudit Hilbert spaces are of size q = pm,
so that a basis can be labeled by the elements of Fq. An obvious guess is
to associate a function or collection of functions fa : Fq → Fq to each log-
ical basis state |a〉, generalizing the collection of lines fa(x) = ax+ b that
were used when q = 3. These functions should have the property that knowl-
edge of some number of evaluations of fa will uniquely specify a, whereas
knowing any smaller number of evaluations will give no information about a
whatsoever. The encoded states will then take the form

∑
b (⊗x |fa(x)〉),

for some collection of x’s in Fq. Here b stands for a collection of numbers
parameterizing the set of functions fa.

The simplest choice of such a class of functions are polynomials of fixed
degree d:

fa(x) = axd + bd−1x
d−1 + · · ·+ b1x+ b0.

Over the real numbers, d+ 1 points determine such a polynomial. Over finite
fields, one must be a little careful — by Fermat’s little theorem,

xq − x = 0, ∀x ∈ Fq.

As such, if d ≥ q, we can’t determine a polynomial uniquely by its eval-
uations — after all, there are at most q possible evaluations over a finite
field! However, polynomials of degree d < q can be recovered uniquely; in
fact, every function from Fq to Fq is a polynomial function, uniquely rep-
resented by a polynomial of degree d < q (there are exactly q2 elements of
each collection).
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However, if we choose d too large, the resulting code will not have error-
correcting properties: we will need almost all of the physical qudits to re-
cover the logical one. We know that for codes obtained from 2n-index perfect
tensors, one logical qudit is encoded in 2n− 1 physical qudits, and is recov-
erable from any n of them. This is sometimes called a [[2n− 1, 1, n]]q code.
For polynomial codes, we must have 2n− 1 ≤ q (since there are at most q
possible evaluations of the code function), and furthermore n = d+ 1. Thus,
the largest possible perfect tensor we can obtain from this class of codes has
q + 1 indices, corresponding to the [[q, 1, (q + 1)/2]]q code; the polynomials
used in making this code are of degree d = (q − 1)/2.3 q = 3 recovers the
linear qutrit code that we discussed above.

To be concrete, when q = 5, the code takes the following form:

|a〉 7→
∑

b0,b1∈F5

|b0, b0 + b1 + a, b0 + 2b1 + 4a, b0 + 3b1 + 4a, b0 + 4b1 + a〉 .

The numbers that appear are just x as the coefficient of b1 and x2 as the
coefficient of a. This encoded state already contains 25 basis states, and the
perfect state |ψ5〉 constructed from this tensor is a combination of 53 = 125
basis states.

These (q + 1)-index perfect tensors seem like logical candidates to use
in constructing a family of quantum codes associated to Bruhat–Tits trees.
In particular, they are naturally associated to the data of a finite field Fq,
which appears at each vertex of the tree; moreover, they have q + 1 qudit
indices, which agrees with the valence of the tree.

However, the exact way to combine these ingredients remains a little
unclear. In particular, since paths in the tree correspond to geodesics in the
p-adic hyperbolic space, it seems more natural to think of the legs of the
tree as cutting across contractions of tensor indices, rather than representing
them. We expand on this idea in the section that follows.

3.2. Bruhat–Tits trees and tensor networks

We now investigate the connection between Bruhat–Tits trees and tensor
networks. The gist of this section is that, while the tree corresponds to
“geometry,” the tree alone cannot define a tensor-network topology in the
most naive way (tensors at vertices with indices contracted along edges).

3Recall that codes with p = 2 are not a part of this family. Rather, a p = 2 code
can be realized e.g. as [[5, 1, 3]]2.



i
i

“4-Marcolli” — 2018/9/3 — 17:59 — page 122 — #30 i
i

i
i

i
i

122 M. Heydeman, et al.

This is because, in typical tensor-network models of holography, the Ryu-
Takayanagi formula holds because each unit distance along a geodesic cor-
responds to a bond (i.e. contracted tensor index) which is “cut” by the path
and contributes a fixed amount (the logarithm of the dimension of the qu-
dit Hilbert space) to the entanglement entropy. Since the paths in the tree
correspond to geodesics in the bulk, one cannot hope to connect the tree to
HaPPY’s holographic code without adding tensors in such a way that their
indices are contracted across the edges of the tree.

The extra structure we need to account for the network can be as simple
as grouping the vertices of the tree in some fashion, associating bulk indices
to the groups, and demanding perfect tensor structure, as we now explain.

A basic set of rules for constructing entanglement: Group
the vertices in the tree in some way; to each grouping we asso-
ciate one or more bulk vertices. If two groupings share two tree
vertices, then there is a tensor network bond connecting the bulk
vertices of the groupings. The resulting tensor network should be
composed of perfect tensors. This constructs a tensor network
mapping between the boundary and the bulk.

It is not clear what the most general rules for associating the tensor
vertices to the tree vertices should be. In particular, we are not demanding
planarity (the Bruhat–Tits tree has no intrinsic planar structure), so the
resulting network could be quite complicated, or even pathological. In order
for the nice properties of a bulk-boundary tensor network to hold additional
criteria should likely be imposed. We leave the general form of these criteria
for future work; in the following, we focus on one specific set of rules that
works.

3.3. Bruhat–Tits spanning trees of regular HaPPY tilings

Although the most general set of rules for assigning tensors is unclear,
HaPPY tensor networks of uniform tiling can easily be constructed from
the minimal proposal above with the addition of a few simple rules. These
extra rules introduce planarity, so that the Bruhat–Tits tree becomes the
spanning tree of the graph consisting of the edges of the HaPPY tensor net-
work tiles. For q > 3, we can construct a HaPPY tensor network associated
to a [[q, 1, (q + 1)/2]]q code by grouping the vertices of the tree into sets of q,
corresponding to tessellation tiles, and adding one bulk vertex to each tile.
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These tiles are organized into “alleyways;” each tile consists of vertices con-
nected by a geodesic for tiles that are the starting points of alleyways, or of
vertices living on two geodesics for tiles along the alleyway (see Fig. 6). The
edges of each tile consist of either q − 1 or q − 2 segments coming from the
geodesics, and one or two fictitious segments (the dotted lines in Fig. 6) re-
spectively, that we draw only to keep track of which tree vertices have been
grouped. Furthermore, each vertex connects to exactly one dashed edge.
Since the tree has valence q + 1, the HaPPY tensor network tiling has q + 2
tiles meeting at each vertex.

The description above works for q > 3. The case q = 2 is special and can
be obtained from the [[5, 1, 3]]2 code; this is the case depicted in Fig. 6. In
fact, any size polygon could be used; the only real constraint is that the tiling
be hyperbolic of the form {n, q + 2}, with q a prime power. The pathologies
of low primes come from the difficulty in demanding the tiling be hyperbolic
and requiring perfect tensors; for instance, the p = 2 case would require a 3
index perfect tensor, but all perfect tensors have an even number of indices
by construction.

In this picture of tiles, the tensor network bonds can be thought of as
cutting across the edges of the tiles. Indeed, because of planarity, each edge
can be associated with the tensor network bond of its vertices, precisely
reproducing the HaPPY construction for uniform tilings of the hyperbolic
plane.4

An interesting feature of our construction is that it introduces a peculiar
notion of distance on the boundary, in that points x, y,∈ Qp that are that
are far apart (in terms of the norm |x− y|p) can belong to the same tile, or
to neighboring tiles, so they can be “close in entanglement”; this is a con-
crete manifestation of the dissociation between entanglement and geometry
inherently present in our model.

3.3.1. Explicit tree-to-tessellation mapping. We now explicitly con-
struct an identification between Bruhat–Tits trees and a HaPPY tensor
network of uniform tiling. The end goal is to show that a planar graph of
uniform vertex degree v admits a spanning tree of uniform vertex degree
v − 1. Although both the degree of the tree and the size of the tile are con-
strained by the quantum error correcting code, for the sake of generality
we will work with n-gonal tiles, n ≥ 5, and trees of valence k, k ≥ 3. The
algorithm constructing the mapping proceeds by starting with one n-gonal

4We should always remember, however, that in our construction, unlike in [49],
bulk indices and tensor network connections are fundamentally associated to groups
of tree vertices, and not to the geometric elements of a tile.
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Figure 6. Mapping between a p = 2 Bruhat–Tits tree and the regular hy-
perbolic tiling {5, 4}. The first three regions constructed by the algorithm
are shown. The red geodesic separates the causal wedge for the boundary
region on which the geodesic ends from its complement in the tree. Since
this is p = 2, the number of edges in a tile is different than our standard
choice in the arbitrary q case.

tile, then builds regions of tiles moving radially outward. Each region is built
counterclockwise.5

The purpose of this algorithm is to build a graph of dashed and solid
edges such that every vertex has degree k + 1 and exactly one dashed edge
connecting to it. The HaPPY tensor network tiling is given by the solid and
dashed edges, and the tree is given by the solid edges, as in Fig. 6. The steps
of the algorithm are as follows (see also Fig. 7 for a pictorial representation):

5There are, of course, many variations of this algorithm that work; here we only
exhibit one of them. For the purposes of constructing the mapping it does not
matter which variation we use.
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1) Start with an n-gonal tile with one edge dashed and n− 1 solid edges.
This is region r = 1. The left vertex of the dashed line is the current
vertex.

2) To construct region r + 1, for the current vertex, add an edge ef ex-
tending outward, then go counterclockwise around the tile being cre-
ated, breaking off the edges shared with region r as soon as a vertex
with degree less than k + 1 is encountered. Call the first new edge af-
ter breaking off en. If either ef or en are constrained (by the condition
that in the graph we want to obtain each vertex has degree k + 1 and
precisely one dashed edge connecting to it) to be dashed, make them
dashed, otherwise they are solid. If neither ef nor en are dashed, make
the “farthest” edge (call it el) dashed; otherwise, leave it as a solid
edge. el is chosen so that its distance to the existing graph is as large
as possible, and so equal on both sides if possible; if the number of
new edges is even, so that this prescription is ambiguous, the choice
closer to ef is taken.

3) Move counterclockwise to the next vertex on the boundary of the cur-
rent region, skipping any vertices of degree k + 1. This new vertex
becomes the current vertex.

4) Repeat the step above until we have built an edge ef on all vertices of
region r that have degree less than k + 1. This completes region r + 1.

5) To start on the next region, set the current vertex to be the left vertex
of the dashed line on the first r + 1 tile that we built, then go to step 2
above.

We now show why the algorithm works:

• By induction, there can be no neighboring vertices of degree greater
than two on the boundary at any step, except when building a tile on
the next-to-last edge of a tile from the previous region, in which case
a vertex of degree 3 neighbors a vertex of some degree. This is because
if the boundary has no neighboring vertices of degree k + 1, any tile
we add shares with the boundary of the previously constructed tiles at
most two edges, so (since n ≥ 5) it will have at least three free edges,
adding at least two vertices of degree 2 between the vertices to which
it connects.
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en

el ef

Figure 7. Mapping between a p = 2 Bruhat–Tits tree and a pentagonal
HaPPY tiling, after the third tile of the second region has been built. Edge
en is constrained to be dashed, so edges ef and el are solid. The arrows
represent the direction in which the algorithm constructs regions and tiles.

• From the previous point, when constructing any tile, the vertices to
which ef and en connect cannot both have degree k before adding ef
and en, so either ef or en can be made solid.

• If ef and en are not dashed, then el only connects to two solid edges,
so it can be made dashed.

• By the above, each new tile we add introduces exactly one dashed
edge, so the graph of solid edges remains a tree at all steps.

This completes the proof.

3.4. Bulk wedge reconstruction

In this subsection we discuss how bulk reconstruction, in the sense of [49],
functions for our proposal. Although the construction in §3.3 replicates the
tensor network tiling of [49], there are some differences of interpretation.
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The algorithm outlined in Pastawski et al.’s paper prescribes that, start-
ing with a given boundary region, one should add tiles one by one if the
bulk qubits they carry can be reconstructed from the known data; i.e., if
one knows (or can reconstruct) a majority of the edge qubits on the tile.
When no further tiles can be added in this manner, the reconstruction is
complete, and the boundary of the region is the “greedy geodesic.”

In our case, for a given drawing of the tree, the first step to reconstructing
a boundary open set |xA − yA|p is to identify a geodesic G that separates the
causal wedge for the boundary region on which G ends from its complement
in the tree. This is nontrivial, because due to the non-planarity of the tree,
paths that end on the ball corresponding to the endpoints of the geodesic
can be drawn outside the wedge. A G with the desired property is a geodesic
from which only one path leaves into the complement of the wedge; such
an example is drawn in Fig. 6 in red. Given a choice of planar structure,
there is a unique “outermost” separating geodesic associated to each open
set. Once a separating geodesic has been identified, we can assign xA and
yA to its endpoints, the inside of the ball to the tree inside the wedge, and
the complement of the ball to the complement of the wedge in the tree.

For the tilings {5, n}, it is straightforward to see that the greedy geodesic
for a boundary open ball coincides with the tree geodesic G that forms the
“boundary” of that open ball in the chosen planar structure. The alleyways
in the diagram are sequences of tiles joined along dashed lines, such that
fewer than half of the edges on each tile are exposed to either side; there-
fore, each alleyway forms a “firebreak,” which the greedy algorithm cannot
jump across. If none of the dashed edges are known, none of the tiles in the
alleyway can be reconstructed. Therefore, starting at a boundary open set,
the greedy algorithm propagates up the alleyways whose ends lie inside the
region, and fills out the region marked off by the tree geodesic. It cannot
stop before the region is filled, since by construction each tile neighbors at
least three tiles that are further away from the center than the tile itself is.

The only place where subtleties arise in this argument is at the two
uppermost tiles in the boundary alleyways. Since these tiles form the tops
of alleyways, they have one dashed edge and four contiguous solid edges;
it is possible (as one can check by drawing a large enough picture) for the
outermost geodesic to loop around three or more or of these solid edges
before moving off down the boundary alleyway. If this happens, the greedy
algorithm will jump over the separating geodesic at the top tile. One can
remedy this problem by adopting a different choice of separating geodesic
in these cases. For instance, instead of always turning left, one can turn
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right after going around two edges of the top tile if going left would create
a problem. After this modification, one can resume turning left.

When the tiles are larger than pentagons, a difficulty arises when one is
building tiles for which two edges touch the previous part of the picture: one
may be forced (by valence requirements) to build a dashed edge at en or ef ,
while another dashed edge exists in the previously built part, a distance of
only one away. An instance where this occurs (although, of course, it causes
no problems for pentagonal tiles) can be seen at the bottom right corner
of Fig. 6. This constructs an alley that could be jumped by the greedy
algorithm.

A simple fix for this problem would be to simply use a pentagon whenever
this situation arises, resulting in a nonuniform tiling where the alleyways still
function as firebreaks. While this will produce a valid holographic code, it
is not immediate that the tiling is even regular in this case.

Another option, if we are willing, is to use a different algorithm that
alters the tiling near a specifically chosen geodesic, so that the problem does
not arise for that particular wedge. We explain how to construct the tiling
in this case. The idea is to construct two alleyways, with the sides with
one edge per tile pointing towards the wedge. This separates the plane into
two regions, that for the purposes of tile building don’t talk to each other.
Since the rules for building a tile from §3.3 are (almost) local, they have
no information about the global structure of the row being built. It is thus
possible to use them to cover the two regions, moving “left” and “right” to
create rows, and “up” and “down” to stack the rows. We give the explicit
steps of the algorithm (see Fig. 8):

1) Build an alley of k-gons, by starting with a k-gon with one dashed
edge (call this the root tile) and building the successive gons always
on the dashed edges. For each k-gon except for the starting one, the
number of solid edges on the two sides of the dashed edges should be
1 and k − 3 respectively, with all 1’s occurring on one side, and all
(k − 3)’s on the other.

2) Build a second alley of k-gons, starting on the solid edge of the root
tile that neighbors the root’s dashed edge on the side of 1’s. For each
k-gon except the starting one, the number of solid edges on the two
sides of the dashed edges should be 1 and k − 3 respectively, with all
1’s facing the 1’s of the first alley. The plane has now been split into
two regions: wedge and complement.
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3) To construct the tiling inside the wedge, start on some edge of the two
central alleyways, and construct a tile using the rules from point 2 in
the algorithm in §3.3. Then move to the right, and construct new tiles
rotating clockwise in the construction of each tile. To do the other side,
start from the initial tile and move left, constructing tiles using the
rules from point 2 in the algorithm while rotating counterclockwise.
This fills a “row”.

4) Once the “row” is complete, move to the row “above” it and repeat.

5) To construct the tiling of the complement of the wedge, run the two
bullet points above, but having the clockwise and counter-clockwise
rotations swapped, and moving “below” instead of “above”.

This algorithm works because locally the construction is the same as
the one in the algorithm of Sec 3.3. The individual tile building procedure
does not depend on whether it is going around a finite region (as in §3.3),
or along an infinite “row”. And since inside the wedge more than half of
each tile’s neighbors are further away from the center than the tile is, the
reconstruction covers the entire wedge.

While in the original HaPPY construction [49] one tensor network suf-
fices to reconstruct the causal wedge associated to any boundary interval, in
our case the tree identifies a certain collection of open sets on the boundary
when pentagonal tiles are used (and, in one possible generalization to larger
tiles, may even treat one boundary region as special). Even for pentagons,
there may be many ways to draw the spanning tree on the same tiling.
Moreover, the boundary tiles are not treated on an equal footing: they form
the ends of shorter and longer alleyways. The longer the alleyway in which
a boundary tile appears, the larger the first open set that includes it. One
can think of these extra choices as follows: If one were to draw all possible
greedy geodesics on the tiling, all edges would be marked, and there would
be no information. Marking the geodesics with a subgraph is only useful
when there is a unique path between pairs of boundary points, so that one
knows “which way” to turn in order to recover the geodesic. This means
that the marked subgraph should have no closed loops: that is, it should be
a tree, and the spanning tree is (by definition) a largest possible subtree.

3.5. Discussion

By choosing a planar assignment of tensors, we have found a way to think
of the Bruhat-Tits tree as the spanning tree of a tensor network built from
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Figure 8. Mapping between the tree and tiling for reconstructing a chosen
causal wedge, for the tiling {6, 4}. The two central alleys partition the plane
into two regions: the causal wedge of the red geodesic and its complement.
Tilings can be constructed to either side of the shown alley by building tiles
via step 2 of the algorithm of §3.2. The departure from the general algorithm
at the turning point of the red geodesic is necessitated by the small value
of n.

a tiling of the plane. Although this choice gives an example of a connection
between these two constructions, it is also somewhat arbitrary. Moreover,
the rules we have identified here still break symmetries of the tree, since a
PGL(2,Qp) transformation need not preserve the grouping of vertices or the
planar structure. One might hope to construct a tensor network associated
to the tree with more minimal auxiliary structure, so that the full symme-
try group of the p-adic bulk spacetime is manifest for the network as well;
however, for the reasons outlined above, it is difficult to understand how to
do this while making contact with tensor network proposals existing in the
current literature. But it is at any rate reasonable to ask for a more exotic
way of connecting the tree with tensors, that either weakens the require-
ments on the chosen planar embedding, or makes no reference to the choice
of an embedding at all.

The former idea (indeed, either of these) might obscure the geometric
interpretation that is typical in familiar tensor networks, but it is expected
that quantum gravity contains non-geometric states, so there is a sense in
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which at least small deviations from planarity should be physically accept-
able. One simple example might be to connect two distant parts of the tree
together through a non-planar tensor. If this can be done in a consistent
way, one might interpret this non-planar defect as a bridge of entanglement
between two points of the tree. It would be interesting to investigate whether
a configuration with defects or more complicated non-planar structures can
be understood in terms of the ER = EPR proposal [38].

To turn to the second of these suggestions, as we have already indicated,
it would make sense from the point of view of p-adic AdS/CFT (where no
planar structure is required at all, and the tree is viewed intrinsically as a
geometric space) to arrive at a construction of a tensor network that doesn’t
require any planar data whatsoever. One such different possible approach
to the construction of holographic codes on Bruhat–Tits trees along these
lines can be developed using its algebro-geometric properties, in particular
the fact that the link of each vertex is a copy of the projective line over a
finite field. Indeed, this was part of our motivation for discussing an algebro-
geometric construction of perfect tensors. Using constructions of (classical)
algebro-geometric codes associated to curves over finite fields, and an al-
gorithm that associates quantum codes to self-orthogonal classical codes,
one can obtain holographic codes intrinsically associated to the geometry of
Bruhat–Tits trees. We will develop this additional viewpoints, and discuss
its relation to usual tensor networks, in a separate paper.

4. p-adic conformal field theories and holography for
scalar fields

In this section, we turn from tensor networks to genuine field theories defined
on p-adic spacetimes: either in the bulk of the tree Tp (or possibly a quotient
by a Schottky group) or on a p-adic algebraic curve at the boundary. We
will find evidence for a rich holographic structure strongly reminiscent of
ordinary AdS/CFT. The conformal theory on the fractal p-adic boundary
is analogous to 1+1 dimensional field theory with a p-adic global conformal
group; our main example is the p-adic free boson which permits a Lagrangian
description. In the bulk, semi-classical massive scalar fields defined on the
lattice model naturally couple to operators on the conformal boundary in
a way that allows for precise holographic reconstruction. One can also in-
terpret the radial direction in the tree as a renormalization scale. These
observations unite discrete analogs of AdS geometry, conformal symmetry,
and renormalization in a holographic way.
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4.1. Generalities of p-adic CFT, free bosons, and mode
expansions

While non-archimedean conformal field theory has been considered in the
literature from several different perspectives [10, 18, 46], it remains much
less well-studied than ordinary two-dimensional CFT. Melzer [46] defines
these theories in general by the existence of an operator product algebra,
where all operators in the theory are primaries with the familiar transfor-
mation law under the global conformal group SL(2,Qp). Descendants are
absent in Melzer’s formulation because there is no analogue of the deriva-
tive operators ∂ and ∂̄ acting on complex-valued functions over Qp [46], and
(correspondingly) no local conformal algebra.

In this formulation, the correlation function between two primary fields
φm(x) and φn(y) inserted at points x and y and having scaling dimensions
∆n is given (after normalization) by

(4.1) 〈φm(x)φn(y)〉 =
δm,n

|x− y|2∆n
p

.

(We will understand this formula holographically in what follows.) As in
the archimedean case, as we take the points x and y to be close together (p-
adically), we wish to expand the product as a sum of local field insertions: the
operator product expansion. For two such primaries φm(x) and φn(y), there
exists an ε > 0 such that for |x− y|p < ε, the correlation function (perhaps
with other primaries φni(xi) inserted) is given by the expansion

〈φm(x)φn(y)φn1
(x1) · · ·φni(xi)〉(4.2)

=
∑
r

C̃rmn(x, y)〈φr(y)φn1
(x1) · · ·φni(xi)〉,

where the sum runs over all primaries in the theory, and C̃rmn(x, y) are
real valued. This relation should hold whenever |x− y|p is smaller than the
distances to the xi’s. Invariance under SL(2,Qp) implies

(4.3) C̃rmn(x, y) = Crmn|x− y|∆r−∆m−∆m
p

with constant OPE coefficients Crmn.
Theories defined in this way enjoy a number of special properties not

true of their archimedean counterparts. They are automatically unitary since
they possess no descendant fields. Additionally, because Qp is an ultrametric
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field, all triangles are isosceles: for x, y, z ∈ Qp, from the p-adic norm we have

(4.4) If |x− y|p 6= |y − z|p , then |x− z|p = max {|x− y|p, |y − z|p} .

This fundamental property of the p-adic numbers implies that the three- and
four-point functions are exactly determined by the conformal weights and
OPE coefficients. In the case of the four-point function, after an SL(2,Qp)
transformation which maps three points to 0, 1, and ∞, the only free pa-
rameter (the cross ratio of the original points) must be contained in a ball
in the neighborhood of one of the other points. Since the OPE is exact in
each neighborhood, one can compute the three possible cases and determine
the full four-point function.

In fact, all higher-point functions are constrained by global conformal
symmetry alone; by contrast, the spectrum of OPE coefficients is less con-
strained than in familiar CFTs. A consistent model can be constructed using
the structure constants of any unital commutative algebra, subject to one
simple condition. These features may be of interest in the study of conformal
field theory and conformal blocks, but we do not pursue that direction here;
the interested reader is referred to [46].

Let us now step back and consider the p-adic theory from the perspec-
tive of quantizing a classical field theory described by a Lagrangian. Many
familiar objects from the study of quantum fields over normal (archimedean)
spacetime have direct analogues in the p-adic setting. For example, one fre-
quently makes use of the idea of a mode expansion of a field on flat spacetime
in terms of a special class of basis functions, the plane waves:

(4.5) φ(x) =

∫
R
dx eikxφ̃(k).

The functions eikx are eigenfunctions of momentum, or equivalently of trans-
lations. Mathematically, we can think of these as additive characters of R:
they are group homomorphisms χ : R→ C, such that χ(x+ y) = χ(x)χ(y).

The additive characters of the fields Qp are also known: they take the
form [60]

(4.6) χk(x) = e2πi{kx}.

Here k, x ∈ Qp, and the normalization factor 2π is included for convenience
(in keeping with the typical math conventions for Fourier transforms). The
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symbol {·} : Qp → Q denotes the fractional part of the p-adic number.6 It
is defined by truncating the decimal expansion to negative powers of the
prime,

(4.7)

{ ∞∑
k=m

akp
k

}
=

−1∑
k=m

akp
k,

where the right-hand side is interpreted as an ordinary rational number, un-
derstood to be zero when the range of the sum is empty (m is non-negative).
Since a p-adic number and its fractional part differ (at least in a formal sense)
by an integer, it makes sense that the complex exponential (4.6) should de-
pend only on the fractional part of kx. (However, care should be taken:
in general, it is not true for rational x that e2πix = e2πi{x}p . For instance,
0.1 = 1/10 is a 3-adic integer.)

A wide class of scalar fields on Qp can be expanded in a basis of the
additive characters, just like a mode expansion in the archimedean setting:

(4.8) φ(x) =

∫
dµ(k) e2πi{kx} φ̃(k).

Here dµ(k) is the Haar measure on Qp. The theory of the p-adic Fourier
transform is developed in more detail in Appendix A.

Our principal example (and also by far the most well-studied instance)
of a p-adic conformal field theory is the free boson: a single (real or complex)
scalar field on P1(Qp) or another p-adic Riemann surface, with a massless
quadratic action. This theory was of interest in the context of p-adic string
theory, in which the worldsheet is a p-adic space, but the target space (and
hence all physically observable quantities) are ordinary. Many results were
derived in that literature, including the well-known Freund–Olson–Witten
tachyon scattering amplitudes [11, 24, 25].

Our interpretation of the system in question will be somewhat different,
as we will emphasize the holographic nature of the interplay between field
theory defined on a Riemann surface (algebraic curve) and the study of its
hyperbolic filling, a quotient of the Bruhat–Tits tree. (In the p-adic string
literature, it was common to view the tree as playing the role of the “in-
terior” of the worldsheet.) Many of our results will parallel aspects of the

6As with other notations referring to the p-adics, we will sometimes use the
subscript {·}p when it is necessary for emphasis or to make reference to a specific
choice of prime.
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p-adic string, but we will view this theory as a CFT on P1(Qp) without any
reference to a target space.

The p-adic free boson is considered here because it permits a Lagrangian
description in terms of the nonlocal Vladimirov derivative, ∂(p), which acts
on complex- or real-valued fields of a p-adic coordinate. This derivative is
defined by

(4.9) ∂n(p)f(x) =

∫
Qp

f(x′)− f(x)

|x′ − x|n+1
p

dx′.

In the p-adic string literature, ∂(p) is also known as a normal derivative,
for reasons that will become clear in the following sections. Intuitively, the
formula is similar to Cauchy’s representation of the n-th derivative of a
function by a contour integral. A more detailed explanation of its properties
is given in Appendix B. While the parameter n is often taken to be an
integer, it may in principle assume any real value.

One can arrive at the following action either by “integrating out” the
interior of the string worldsheet Tp as done in [62], or by hypothesis as the
minimal “quadratic” action of a scalar over a p-adic coordinate [22]. The
action for a single scalar is (setting the overall coupling to 1) [28, 54, 64]:

(4.10) Sp[φ] = −
∫
Qp
φ(x)∂(p)φ(x)dx.

where ∂(p)φ(x) is the first Vladimirov derivative of the field φ. We take φ(x)
to be a scalar representation of the conformal group (see [53] for discussion
of representations of SL(2,Qp) in general). Under an element

g =

(
a b
c d

)
of the conformal group, where a, b, c, d ∈ Qp and ad− bc = 1, quantities in
the above expression transform as

x→ ax+ b

cx+ d
, x′ → ax′ + b

cx′ + d
,

dx→ dx

|cx+ d|2p
, dx′ → dx′

|cx′ + d|2p
,

|x′ − x|−2
p → |(cx′ + d)(cx+ d)|2p|x′ − x|−2

p .
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As in [46], a field φn(x) having conformal dimension ∆n transforms as

(4.11) φn(x)→ φ′n

(
ax+ b

cx+ d

)
= |cx+ d|2∆n

p φn(x)

under the p-adic conformal group. For the free boson φ(x), we claim ∆ = 0.
With this one can see the derivative ∂(p)φ(x) carries a weight |cx+ d|2p and
thus is a field of dimension 1. It should now be clear that the action Sp[φ]
is invariant under the global conformal group.

Given the action Sp[φ], we can define the partition function in the usual
way by integrating over configurations with measure Dφ. As in the case of
the p-adic string, because φ is a complex (and not p-adic) valued field, this
integration measure is exactly the one that appears in ordinary field theory:

(4.12) Zp =

∫
Dφ e−Sp[φ].

As many authors have noted [50, 54, 64], this action and the partition
function actually describe a free theory. This means the saddle point ap-
proximation to the partition function is exact, and it can be computed by
Gaussian integration exactly as in the case of a real free field. Of more in-
terest in the present discussion is the two point function. To do this we
introduce sources J(x) to define the generating function:

(4.13) Zp[J ] =

∫
Dφ exp

(
−Sp[φ] +

∫
Qp
J(x′)φ(x′)dx′

)
.

The sources for the 2-point function or propagator take the form of p-adic
delta functions at the insertion points x, y are J(x) = δ(x′ − x) + δ(x′ − y).
Just as in the real case, we vary with respect to φ(x) and find the classical
solution which extremizes the above action. This is the Green’s function for
the Vladimirov derivative G(x− y), satisfying

(4.14) ∂(p)G(x− y) = −δ(x− y).

(Just as it is on the real line, the Dirac distribution on the p-adics is the
integral kernel representing the linear functional evx : f 7→ f(x).)

To solve forG(x− y) = 〈0|φ(x)φ(y)|0〉, we apply the p-adic Fourier trans-
form to both sides using techniques from Appendix A. In Fourier space the
derivative brings down one power of the momentum and the delta function
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becomes an additive character:

(4.15) G̃(k) = −χ(ky)

|k|p
.

The 2-point function in position space can be obtained by inverse Fourier
transform (with u = x− y):

G(x− y) = −
∫
Qp

χ(k(y − x))

|k|p
dk(4.16)

= −
∫
Qp

χ(ku)

|k|p
dk.(4.17)

This integral is divergent as k → 0. We compute two similar integrals in
Appendix B, where the apparent divergence is canceled by the numerator.
Unlike in those examples, this integral really does diverge logarithmically,
just as the two-point function of a dimension-zero operator in 2d conformal
field theory has a logarithmic divergence. Proceeding as in that case, we
introduce a regulator to extract the finite part by computing

(4.18) lim
α→0

∫
Qp
χ(ku)|k|α−1

p dk.

This appears in the second integral computed in the appendix; in terms of
the p-adic gamma function Γp(x) it is:

(4.19) lim
α→0

∫
Qp
χ(ku)|k|α−1

p dk = lim
α→0

Γp(α)|u|−αp .

As α→ 0 the gamma function has a simple pole and the norm has a log
piece:

lim
α→0

Γp(α) ≈ p− 1

p ln p

1

α
,(4.20)

lim
α→0
|u|−αp ≈ 1− α ln |u|p.(4.21)

Finally we restore u = x− y and find the 2-point function up to normaliza-
tion is:

(4.22) 〈0|φ(x)φ(y)|0〉 ∼ ln

∣∣∣∣x− ya
∣∣∣∣
p

, a→ 0.

This is exactly analogous to the correlator for the ordinary free boson in two
dimensions.
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4.2. The Laplacian and harmonic functions on Tp

In addition to boundary scalar fields, we will be interested in scalar fields
in the “bulk,” i.e., defined on the Bruhat–Tits tree. Such a field is a real-
or complex-valued function on the set of vertices. We will also consider
fields that are functions on the set of edges; as we will discuss later, such
functions will be analogous to higher-form fields or metric degrees of freedom
in the bulk. For now we mention them for completeness and to fix some
standard notation. For more information about fields in the tree, the reader
can consult [62] and references given therein.

We think of the tree as the 1-skeleton of a simplicial complex, and make
use of standard notations and ideas from algebraic topology. The two types
of fields mentioned above are just 0- and 1-cochains; we will refer to the
space of such objects as C∗(Tp), where ∗ = 0 or 1.

If an orientation is chosen on the edges of the tree, the boundary operator
acts on its edges by ∂e = te − se, where s and t are the source and target
maps. The corresponding coboundary operator acts on fields according to
the rule

(4.23) d : C0(Tp)→ C1(Tp), (dφ)(e) = φ(te)− φ(se).

The formal adjoint of this operator is

(4.24) d† : C1(Tp)→ C0(Tp), (d†ψ)(v) =
∑
e

±ψ(e),

where the sum is over the p+ 1 edges adjacent to vertex v, with positive
sign when v is the source and negative sign when it is the target of e.
Whether or not d† is actually an adjoint to d depends on the class of functions
being considered; the L2 inner product must be well-defined, and boundary
conditions at infinity must be chosen to avoid the appearance of a boundary
term.

Upon taking the anticommutator {d, d†}, we obtain an operator of degree
zero, which is the proper analogue of the Laplacian. We will most often use
its action on the 0-cochains, which can be represented by the formula

(4.25) 4 φ(v) =
∑

d(v,v′)=1

φ(v′)− (p+ 1)φ(v).
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This is sometimes written using the notation 4p = tp − (p+ 1), where tp is
the Hecke operator on the tree. The analogous formula for 1-cochains is

(4.26) 4 ψ(e) =
∑
e′

±ψ(e′)− 2ψ(e),

where the sum goes over the 2p edges adjacent to e at either side. Unlike
for the vertices, there is a dependence on the choice of orientation here: an
edge in the sum (4.26) enters with positive sign when it points in the “same
direction” as e, i.e., points out from te or into se. Edges enter with negative
sign when the opposite is true. In the standard picture of the tree with ∞
at the top and all finite points of Qp at the bottom (e.g. Fig. 10), oriented
with all edges pointing downward, we therefore have (p− 1) negative and
(p+ 1) positive terms in (4.26); however, there is no obstruction to a choice
of orientation for which any desired collection of signs appears. Notice that,
for general p, the Laplacian acting on edges (unlike on vertices) will not
have a zero mode; this makes sense, since the tree is a contractible space.
The exception is p = 2, for which the standard choice of vertical orientations
defines a Laplacian which annihilates constant functions of the edges. (Of
course, the p = 2 tree is still contractible.)

We should remark on one important point: the entire analysis of this
paper treats the case where the edges of the tree have uniform lengths, and
argues that this is analogous to a maximally symmetric vacuum solution
in ordinary gravity. It is natural to wonder what the correct analogues of
the metric degrees of freedom actually are. One might speculate that allow-
ing the edge lengths to be dynamical (breaking the PGL(2,Qp) symmetry)
should correspond to allowing the metric to vary; after all, this would vary
the lengths of paths in the tree, which are the only data that seem logically
connected to the metric. By analogy with the archimedean case, it would
then make sense to assume that the edge Laplacian (4.26) will play a role
in the linearized bulk equations of motion for edge lengths around a back-
ground solution. However, we will relegate further investigation of this idea
to future work.

4.2.1. Action functional and equation of motion for scalar fields.
Equipped with these ingredients, it is now straightforward to write down
action functionals and equations of motion for free scalar fields. The massless
quadratic action is

(4.27) S[φ] =
∑
e

|dφ(e)|2 .
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In what follows, we will study properties of solutions to the “wave equation”
4φ = 0, and its massive generalization (4−m2)φ = 0, on the tree. These
have been considered in [62].

There is a family of basic solutions to the Laplace equation, labeled by a
choice of a boundary point x and an arbitrary complex number κ. The idea
is as follows: Given an arbitrary vertex v in the bulk of the tree, a unique
geodesic (indeed, a unique path) connects it to x. As such, exactly one of
its p+ 1 neighbors will be closer (by one step) to x, and the other p will be
farther by one step. Therefore, the function

(4.28) εκ,x(v) = p−κ d(x,v)

will be an eigenfunction of the Hecke operator, with eigenvalue (pκ + p1−κ).
The catch in this is that the distance d(x, v) is infinite everywhere in

the bulk. We need to regularize it by choosing a centerpoint C in the tree,
and declaring that d(x,C) = 0. (This just scales the eigenfunction (4.28) by
an infinite constant factor). Then d(x, v)→ −∞ as v → x, but we have a
well-defined solution to the Laplace equation everywhere in the tree. These
solutions are analogous to plane waves; the solution varies as the expo-
nent of the (regularized) distance to a boundary point, which in the normal
archimedean case is just the quantity k · r.

The corresponding eigenvalue of the Laplacian is

(4.29) 4 εκ,x = m2
κεκ,x =

[
(pκ + p1−κ)− (p+ 1)

]
εκ,x.

It is therefore immediate that the harmonic functions on the tree (solutions
to the massless wave equation) are those with κ = 0 or 1; κ = 0 is the zero
mode consisting of constant functions, whereas κ = 1 is the nontrivial zero
mode. The eigenvalues (4.29) are invariant under the replacement κ→ 1− κ,
due to the inversion symmetry of the boundary theory.

If we are considering a real scalar field, we must be able to write a basis
of real solutions. Of course, when κ is real, we will always be able to do this.
More generally, if κ = κ0 + iγ, our solutions look like

(4.30) ε ∼ p−κ0 de−iγ ln(p) d, p(κ0−1)deiγ ln(p) d.

Thus, to construct a basis of real solutions, the following possibilities can
occur:

• κ = 1/2. In this case, there is no restriction on γ, and the solutions
look like cosines and sines of γ ln(p) d(x, v), modulated by pd(x,v)/2.
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• κ > 1/2.7 In this case, the amplitude parts of the two solutions are
linearly independent, and so exp(iγ ln(p) d) must be real. Since d is an
integer, the choices are γ ln(p) = 0 or π (mod 2π).

While it would be interesting to consider solutions with nonzero γ, we will
consider only the one-parameter family of solutions with real κ in the sequel.
The parameter m2

κ then attains its minimum value for κ = 1/2. Considering
only solutions of this plane-wave form, we therefore have a bound

(4.31) m2
κ ≥ −(

√
p− 1)2,

in perfect analogy with the BF bound on the mass of fields in ordinary AdS.
Note that we could also rewrite (4.29) in the form

(4.32) m2
κ = −(p+ 1) + 2

√
p cosh

[(
κ− 1

2

)
ln p

]
.

4.3. Bulk reconstruction and holography

It is clear from the definition that, when the real part of κ is positive,
the plane wave solution (4.28) tends to zero everywhere on the boundary,
except at the point x (where it tends to infinity). So we can think of it
as representing the solution to the Laplace equation (taking κ = 1) in the
bulk, with specified Dirichlet-type boundary conditions that look like a delta
function centered at x. By linearity, we can therefore reconstruct the solution
to more general Dirichlet problems by superposition: if the boundary value
is to be a certain function φ0(x) on ∂Tp = P1(Qp), then the required bulk
harmonic function is

(4.33) φ(v) =
p

p+ 1

∫
dµ0(x)φ0(x) ε1,x(v).

Here dµ0(x) is the Patterson-Sullivan measure on P1(Qp). The normalization
factor can be fixed by taking the boundary value to be the characteristic
function of any p-adic open ball in the boundary.

We can perform the analogous calculation for massive fields as well, but
the sense in which φ(v) will approach φ0(x) as x→ v will be more subtle
(since the equation of motion will have no constant mode). Using notation
from [62], let δ(a→ b, c→ d) be the overlap (with sign) of the two indicated

7Due to the κ 7→ 1− κ symmetry, such a choice is always possible.
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oriented paths in the tree, and let

(4.34) 〈v, x〉 = δ(C → v, C → x) + δ(v → x,C → v).

This expression makes sense for any bulk vertex v; x may be either a bound-
ary or a bulk point. Note that 〈z, x〉 is just the negative of the “regularized
distance” occurring in our previous discussion.

We would like to compute the bulk solution to the massive equation
of motion obtained by integrating our primitive solution (4.28) over its
boundary argument, weighted by a boundary function. As a simple choice of
boundary function, pick the characteristic function of the p-adic open ball
on the boundary consisting of points below a chosen vertex w in the tree:8

(4.35) φw(v) =

∫
∂Bw

dµ0(x) pκ〈v,x〉.

The integral is straightforward to calculate. There are two cases:

v 6∈ Bw Here, the integrand is constant, and is just equal to pκ〈v,w〉. The
measure of the set over which the integral is performed is µ0(∂Bw)
= p−d(C,w), so that the final result is

(4.36) φw(v) = pκ〈v,w〉−d(C,w).

Note that, if v moves towards the boundary along a branch of
the tree, 〈v, w〉 differs from −d(C, v) by a constant, so that the
solution scales as p−κ d(C,v).

v ∈ Bw There are now two cases to consider: x ∈ Bv or x 6∈ Bv. In the first
scenario, the integrand is again constant; its value is pκ d(C,v), and
the measure is µ0(Bv) = p−d(C,v).

In the second scenario, the geodesic x→ C will meet the geo-
desic v → C at a distance h above v; by assumption, 1 ≤ h ≤

8The notion of “below” of course depends on the data of a centerpoint C ∈ Tp
having been fixed. Then any open ball that is sufficiently small in the Patterson–
Sullivan measure (again defined with respect to C) corresponds to a unique bulk
vertex w, and C is above w by definition. But the requirement that the sets are
small presents no problem. One can see this either by noting that any open ball
can be carried to any other by a Möbius transformation, or by recalling that the
expressions are linear, so that a big open set can be thought of as built out of
smaller ones.
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d(v, w). For each value of h, the integrand takes the constant
value pκ(d(C,v)−2h), and the measure of the corresponding set is

(4.37) µ(h) =
p− 1

p
p−d(C,v)+h.

The factor (p− 1)/p enters because p− 1 of the p vertices one step
below the meeting vertex correspond to meeting height h (one of
them is closer to v). Putting the pieces together, the result is

φw(v) = p(κ−1)d(C,v)

1 +
p− 1

p

d(w,v)∑
h=1

(
p1−2κ

)h
=

(
p−2κ − 1

p1−2κ − 1

)
p(κ−1)d(C,v) +

p− 1

p

(
p(2κ−1)d(C,w)

p2κ−1 − 1

)
p−κ d(C,v).(4.38)

The reader can check that we recover the correct answer in the massless
case, κ→ 1. Furthermore, our result is a superposition of the asymptotic
behavior of the two eigenfunctions corresponding to the mass determined by
our original choice of κ. To resolve the ambiguity, we will choose κ > 1/2.

At this point, we have accumulated enough understanding of scalar fields
on the tree to point out how the simplest version of holography will work:
namely, classical scalar fields in a non-dynamical AdS background, neglect-
ing backreaction and metric degrees of freedom. In the archimedean case,
this version of holography was neatly formulated by Witten [61] in terms of
a few simple key facts. Firstly, the coupling between bulk scalar fields and
boundary operators must relate the asymptotics (and hence the mass) of
the bulk fields to the conformal dimension of the corresponding boundary
operators; massless bulk scalars should couple to marginal operators in the
boundary CFT. Secondly, the crucial fact that allows the correspondence to
work is the existence of a unique solution to the generalized Dirichlet prob-
lem for the bulk equations of motion with specified boundary conditions.

Luckily, as we have now shown, all of the important features of the
problem persist in the p-adic setting, and Witten’s analysis can be carried
over kit and caboodle to the tree. In particular, we make his holographic
ansatz:

(4.39)

〈
exp

∫
P1(Qp)

dµ0 φ0O

〉
CFT

= e−Ibulk[φ],

where the bulk field φ is the unique classical solution extending the boundary
condition φ0, and O is a boundary operator to which the bulk field couples.



i
i

“4-Marcolli” — 2018/9/3 — 17:59 — page 144 — #52 i
i

i
i

i
i

144 M. Heydeman, et al.

In the massless case, where one literally has φ0(x) = limv→x φ(v), O is an
exactly marginal operator in the CFT.

Given our result (4.38), it is simple to write down the correctly normal-
ized bulk-reconstruction formula for massive fields:

φ(v) =
p1−2κ − 1

p−2κ − 1

∫
dµ0(x)φ0(x)pκ〈v,x〉,(4.40)

φ(v) ∼ p(κ−1)d(C,v)φ0(x) as v → x.

When the point v approaches the boundary, the exponent in the kernel
becomes

(4.41) 〈v, x〉 = −d(C, v) + 2 ordp(x− y),

where y is any boundary point below v. (To see why this is true, the reader
may again find it useful to look ahead to Fig. 10.) (4.40) then becomes

(4.42) φ(v) =

(
p1−2κ − 1

p−2κ − 1

)
p−κ d(C,v)

∫
dµ(x)

φ0(x)

|x− y|2κp
.

We can now understand why the Vladimirov derivative is a “normal” deriva-
tive on the boundary; it measures the rate of change in the holographic
direction of the reconstructed bulk function. In particular, we have that

lim
v→y

(φ(v)− φ(y))pκd(C,v) =

(
p1−2κ − 1

p−2κ − 1

)∫
dµ(x)

φ0(x)− φ0(y)

|x− y|2κp

=

(
p1−2κ − 1

p−2κ − 1

)
∂2κ−1

(p) φ0(y).(4.43)

An argument precisely akin to Zabrodin’s demonstration [62] that the bulk
action may be written (upon integrating out the interior) as a boundary
integral of the nonlocal Vladimirov action shows that we can write Ibulk[φ]
in exactly this form. This demonstrates, exactly as in Witten’s archimedean
analysis, that a massive field φ corresponds to a boundary operator of con-
formal dimension κ, where κ > 1/2 is the larger of the two values that corre-
spond to the correct bulk mass. Moreover, the boundary two-point function
is proportional to |x− y|−2κ

p , as expected.

4.4. Scale dependence in bulk reconstruction of boundary modes

Let us consider how the mode expansion of a boundary scalar field interacts
with the reconstruction of the corresponding bulk harmonic function. We
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will be interested in developing the interpretation of the extra, holographic
direction as a renormalization scale in our p-adic context. The idea that
moving upward in the tree corresponds to destroying information or coarse-
graining is already suggested by the identification of the cone above Zp (or
more generally any branch of the tree) with the inverse limit

(4.44) Zp = lim←−Z/pnZ,

where the set of vertices at depth n corresponds to the elements of Z/pnZ,
and the maps of the inverse system are the obvious quotient maps corre-
sponding to the unique way to move upwards in the tree. A nice intuitive
picture to keep in mind is that p-adic integers can be thought of as repre-
sented on an odometer with infinitely many Fp-valued digits extending to
the left. Z/pnZ is then the quotient ring obtained by forgetting all but n
digits, so that there is integer overflow; the maps of the inverse system just
forget successively more odometer rings. Since digits farther left are smaller
in the p-adic sense, we can think of this as doing arithmetic with finite
(but increasing) precision. The parallel to the operation of coarse-graining
is apparent; however, we will be able to make it more precise in what follows.

Let’s consider a boundary field that is just given by an additive character
(plane wave), φ0(x) ∼ exp(2πi{kx}p). Just as in the complex case, a plane
wave in a given coordinate system won’t define a solution of fixed wave-
length everywhere on P1(C); the coordinate transformation (stereographic
projection) will mean that the wavelength tends to zero as one moves away
from the origin, and the function will become singular at infinity. Therefore,
we should instead consider a boundary function of wavepacket type, that
looks like a plane wave, but supported only in a neighborhood of the origin.

A nice choice to make in the p-adic setting is to take the boundary
function to be

(4.45) φ0(x) = e2πi{kx} ·Θ(x,Zp),

where Θ(x, S) is the characteristic function of the set S ⊂ Qp. The transfor-
mation (2.17) is actually trivial inside Zp, so no distortion of the wavepacket
occurs at all (unlike for a similar setup in C). Of course, we ought to take
|k|p > 1, so that {kx} is not constant over the whole of Zp.
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∞

0

p0

p1

p2

p3

p4

p5

1
Zp

0/2 1/2 0/2 1/2 0/2 1/2 0/2 1/2

0/4 1/4 0/4 1/4

0/8
1/8

Figure 9. A drawing of Zp (p = 2 for simplicity). Here k = p−4. The marked
fractions at vertices indicate contributions to {kx}, which are summed along
the geodesic ending at x.

Given this choice of boundary function, the corresponding solution to
the bulk equations of motion can be reconstructed using the integral ker-
nel (4.33):

(4.46) φ(v) =
p

p+ 1

∫
Zp
dµ(x) e2πi{kx}p−dC(x,v).

Recall that dC(x, v) is the distance from v to x, regularized to be zero at
the centerpoint v = C of the tree. We will calculate this integral when v is
inside the branch of the tree above Zp.

Proposition 1. Let v be a vertex in the branch above Zp, at a depth ` (i.e.,
since v ∈ Zp, distance from the centerpoint) such that 0 ≤ ` < − ordp(k)− 2.
Then the reconstructed bulk function φ(v) is zero.

Proof. The claim relies on the simple fact that the sum of all p-th roots of
unity is zero. Since v is above the red line in Fig. (9) (at depth equal to
− ordp(k)− 1), both terms in the integrand are locally constant below the
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line, and the integral may be evaluated as a sum along the vertices at the
height of the red line. Furthermore, the factor p−dC(v,x) is constant for each
of the p vertices on the line that descend from the same ancestor. Since the
measure of each branch is equal, the integral is proportional to the sum of all
p-th roots of unity, and hence to zero. Notice that this also demonstrates that
the reconstructed bulk function is zero everywhere outside Zp: it is zero at
the central vertex, and zero on the boundary of the open ball complementary
to Zp. �

Even without calculating the explicit form of the bulk function for ver-
tices below the screening height, this simple argument already allows us to
make our physical point: in p-adic holography, the qualitative features of
ordinary AdS/CFT persist in a setting where the bulk geometry is discrete,
and in some cases are even sharpened. For instance, we have shown explic-
itly that modes for which |k|p is large (i.e. the short-wavelength behavior
of the boundary conditions) must drop out of the reconstructed bulk field,
making exactly zero contribution to it above a height in the tree precisely
determined by |k|p. The usual intuition that moving into the bulk along
the holographic direction corresponds to integrating out UV modes is thus
neatly confirmed.

The explicit form of the reconstructed bulk function at vertices below
the screening height is easy to calculate, but less central to our discussion;
we leave the computation as an exercise for the reader.

4.5. The possibility of higher-spin fields

We now wish to propose an analogue of higher-spin fields that could be
defined in the p-adic case. While we will motivate our proposal here, we do
not investigate any properties of p-adic CFT with fields other than scalars.
We will return to this question in future work.

We proceed by analogy with two-dimensional CFT, in which the confor-
mal dimension and spin together describe a character of the multiplicative
group C×:

(4.47) φ(reiθ · z) = r∆eisθφ(z).

The group C× ' R×>0 ×U(1); the conformal dimension determines a char-
acter of the first factor, and the spin a character of the second, which can
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be thought of as scale transformations and rotations of the coordinate re-
spectively. The existence of the logarithm function means that we can think
of the multiplicative group R+ as isomorphic to the additive group R.

The structure of the group of units of any local field is understood
(see [48] for details). In particular, for the field Qp, the result is that

(4.48) Q×p ' pZ × F×p × U (1),

where U (1) is the group of “principal units” of the form 1 + p · a, with a ∈ Zp.
This decomposition just reflects the structure of the p-adic decimal expan-
sion: since the p-adic norm is multiplicative, any number x 6= 0 can be writ-
ten in the form

(4.49) x = pordp(x) (x0 + x1p+ · · · ) ,

where x0 6= 0 (so that x0 ∈ F×p ' Cp−1) and the other xi may be any digits
chosen from Fp. Dividing through by x0, one gets

(4.50) x = pordp(x) · x0

1 +
∑
i≥1

x̃ip
i

 ,

where x̃i = xi/x0, and the factor in parentheses is a principal unit. A charac-
ter of Q×p is therefore a triple of characters, one for each factor in (4.48). The
first factor, as in the normal case, corresponds to the scaling dimension of
the field; the last two factors are therefore analogous to the spin. Obviously,
the second factor corresponds to a Z/(p− 1)Z phase. It is also known [48]
that the set of characters of U (1) is countable and discrete.

In fact, we can naively understand a broader class of the characters
of Z×p = F×p × U (1). Recall the description of Zp as the inverse limit of its
finite truncations:

(4.51) Zp = lim←−Z/pnZ.

Since this is an inverse limit of rings, there are projection maps between the
respective multiplicative groups:

(4.52) Z×p → (Z/pnZ)× ' Cpn−1(p−1).

Therefore, any multiplicative character of a cyclic group Cpn−1(p−1) (i.e., any
finite root of unity of order pn−1(p− 1), for arbitrary n) will give a character
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of (Z/pnZ)×, which will in turn pull back to define a multiplicative character
of the spin part of Q×p . Spin in the p-adic case is therefore both similar to
and interestingly different from ordinary two-dimensional CFT.

5. Entanglement entropy

The entanglement entropy in quantum field theories is a notoriously difficult
and subtle quantity to compute, and much effort has been expended in
developing a toolbox of techniques that provide exact results. One of the first
systems in which the computation became tractable was two-dimensional
conformal field theory, and in particular the theory of free bosons. Since
we are primarily considering the free boson in our discussion, one might
hope that the same techniques can be applied in the p-adic case. While
we believe that this is the case, and plan to give a full calculation of the
entanglement entropy in future work, there are subtleties that arise in each
technique and prevent it from being used naively. We will demonstrate these
techniques, illustrate the subtle issues that arise, and justify to some extent
our conjecture for the entanglement entropy in what follows. The discussion
in this section should all be understood as speculative; while we include
it due to tantalizing analogies with ordinary AdS/CFT and in the hopes
of encouraging further investigation, all currently remains unsupported by
rigorous proof.

As in the real case, we expect the entanglement entropy to have UV
divergences. These are normally thought of as localized to the “boundary”
of the region under consideration. Care must be used in defining what we
mean by interval and boundary; the p-adic numbers have no ordering, and
every element of an open set is equally (or equally not) a boundary element.
Whenever possible, we must think in terms of open sets. Over the reals,
the open sets are intervals with measure or length given by the norm of the
separation distance of the endpoints; as the reader will recall, p-adic open
sets are perhaps best visualized using the Bruhat–Tits tree. Once a center
C of the tree is picked, we can pick any other vertex v and consider the cone
of points below v extending out towards the boundary, which is an open
neighborhood in P1(Qp). A perhaps surprising fact which follows from the
definition of the p-adic norm |x− y|p (x, y ∈ P1(Qp)) is that it is related to
the height of the cone required to connect x to y (see Fig. 10).

We can take the boundary region V to be the open set defined by
the cone below a chosen bulk vertex v. Following standard arguments, say
of [16, 55], the total Hilbert space on Qp splits into Hilbert spaces on V
and its complement, H = HV ⊗H−V . The entanglement entropy is defined
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by S(V ) = − tr(ρV log ρV ) and by construction satisfies S(V ) = S(−V ). As
there are an infinite number of points xi ∈ V ∈ P1(Qp), there is an un-
bounded number of local degrees of freedom φ(xi) (as is typical of quantum
field theories). In the continuum case, this implies logarithmic divergences
arising from entanglement between modes in V and those in −V . We expect
the same to be true in the p-adic case.

In the works of Cardy and Calabrese [12, 13], the entanglement entropy
for intervals in 1 + 1-dimensional conformal field theories are explicitly cal-
culated. The p-adic field theories considered here are exactly analogous to
the two-dimensional free boson; in both, the scalar φ(x) has conformal di-
mension zero and (as we have shown above) a logarithmically divergent
propagator. We wish to understand how much of their calculation can be
duplicated in the p-adic case. These authors generally follow a series of steps
beginning with the replica trick, which is the observation that n powers of
the reduced density matrix ρV can be computed by evaluating the partition
function on a Riemann surface obtained by gluing n copies of the theory to-
gether along the interval V . The entanglement entropy follows from analytic
continuation of these results in n, followed by the limit n→ 1, according to
the formula

(5.1) tr(ρnV ) =
Zn(V )

Zn1
, SV = − lim

n→1

∂

∂n

Zn(V )

Zn1
,

where Zn(V ) is the n-sheeted partition function and Z1 is the partition
function of 1 sheet with no gluing, which is required for normalization.

In 1 + 1 dimensions, the n-sheeted partition function can be viewed as
a Riemann surface, and the holomorphic properties of this surface make
the calculation tractable. In particular, if the interval has the boundary
points x and y, the complicated world sheet topology can be mapped to the
target space by defining multi-valued twist fields Φn(x),Φn(y) on the plane
whose boundary conditions implement the n sheeted surface. One can find
that tr(ρnV ) behaves exactly like the nth power of a two point function of
the twist fields, once their conformal dimension has been determined using
Ward identities:

(5.2) tr(ρnV ) ∼ 〈0|Φn(x)Φn(y)|0〉n ∼ |x− y|−
c

6
(n− 1

n
) ,

where c is the central charge and ε is a normalization constant from Z1.
When n = 1 exactly, the twist fields have scaling dimension 0 and the above
correlator no longer makes sense. Instead, taking the limit as n→ 1, the
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linear term is −n c3 ln
(x−y

ε

)
. Taking the derivative gives the famous universal

formula for the entanglement entropy [32].
The difficulty in performing the same calculation over the p-adics con-

sists in fixing the dimensions of the twist operators. It seems plausible that
these operators can be defined similarly to the normal case; after all, all
that they do is implement certain boundary conditions at branch points on
the fields in a theory of n free bosons. However, the usual arguments that
fix their dimension rely on the existence of a uniformizing transformation
z 7→ zn that describes the relevant n-sheeted branched cover of P1 by P1;
the Schwarzian of this holomorphic (but not Möbius) transformation then
appears as the conformal dimension. The argument using the OPE with the
stress tensor is identical in content. Both cases rely on the existence of holo-
morphic (but not fractional-linear) transformations, and a measure — the
Schwarzian or conformal anomaly — of their “failure” to be Möbius.

In the p-adic case, this is related to the question of local conformal
transformations; it has been suggested [46] that no such symmetries exist.
Moreover, since Qp is not algebraically closed, a transformation like z 7→ zn

need not even be onto. Nevertheless, we can still define the twist operators,
and we suppose that they transform as primaries with some conformal di-
mensions ∆n. Their two-point function then gives the density matrix. This
function is:

(5.3) 〈0|Φ(p)
n (x)Φ(p)

n (y)|0〉n ∼ |x− y|−2n∆n

p ,

where ∆n are the model-dependent (and unknown) conformal dimensions.
Inserting this ansatz into − limn→1

∂
∂n tr(ρnV ) and taking the limit n→ 1,

∆n → 0 gives:

(5.4)

(
2n
∂∆n

∂n

∣∣
n=0

)
ln

∣∣∣∣x− yε
∣∣∣∣
p

.

While this is not a proof, it provides some evidence for the expected log-
arithmic scaling of the entropy. We expect that the dimensions ∆n → 0 as
n→ 1, since of course the twist operator on one sheet is just the identity. If
we could fix the conformal dimension without using the conformal anomaly,
this calculation would fix not only the logarithmic form of the answer, but
also the coefficient that plays the role of the central charge. It may be possi-
ble to do this by examining the path integral with twist-operator insertions
directly.

A possible way around this difficulty might be to consider a harder
problem first: to think about N > 1 intervals rather than one. The genus
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of the Riemann surface that appears in the replica trick is then g = (n−
1)(N − 1); thus, for one interval, we are considering a branched cover of P1

over itself, and the conformal anomaly is a necessary ingredient. However,
one might hope that for two intervals, we can simply compute the partition
function on a series of higher-genus Riemann surfaces (which is understood in
the p-adic case), and take the limit as the genus approaches zero. Discussions
of the entanglement entropy in terms of Schottky uniformization — which
therefore appear tailored to our needs — have appeared in the literature [23].

Two difficulties appear in this case: the first is matching the moduli of
the Riemann surface in question to the lengths of the intervals; the second is
more subtle, and reflects the fact that, over the p-adics, not every branched
cover of the p-adic projective line is a Mumford curve [9]. We believe that one
of the strategies outlined here will succeed in producing a rigorous compu-
tation of the entanglement entropy, but we must relegate that computation
to future work.

5.1. Ryu-Takayanagi formula

Let us take as given the conjecture from the previous section that the en-
tanglement entropy of a region in the boundary CFT should be computed
as the logarithm of its p-adic size. We take our interval to be the small-
est p-adic open ball which contains points x and y. This interval has size
|x− y|p. To understand the Ryu-Takayanagi formula, it remains to compute
the length of the unique geodesic connecting x to y. The tree geometry for
this setup is depicted in Fig. 10. Since there are an infinite number of steps
required to reach the boundary, the geodesic length is formally infinite, just
as in the real case. We regulate this by cutting off the tree at some finite
tree distance a from the center C, which can be thought of as ordp(ε) for
some small p-adic number ε. We will then take this minimum number ε→ 0
(p-adically). This limit will push the cutoff in the tree to infinite distance
from C.

An SL(2,Qp) transformation can always be used to move the points
x and y to the Zp part of the tree first to simplify the argument. Then
introducing the distance cutoff a effectively truncates the decimal expansions
of x and y to the first a decimal places. In the case where |x− y|p = 1, the
geodesic connecting the two points passes through C and has length 2a. If
|x− y|p < 1, the geodesic is shorter by a factor of 2d, where |x− y|p = p−d.
Roughly speaking, as can be seen in Fig. 10, smaller boundary regions are
subtended by shorter geodesics in the tree.
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∞

0

C

x y

|x− y|p = p−d
x′ y′

d

Figure 10. Boundary anchored geodesics in Tp have a natural interpretation
in terms of the p-adic norm. Once the arbitrary position of the center C is
fixed, the norm of open sets in Qp is given by p−d, where d is the integer
number of steps from C required before the path to the endpoints splits. In
this example, |x− y|p is described by the red geodesic and the value is p−2.
The set corresponding to the green geodesic has a smaller norm by a factor
of p because the vertex is 1 step further down the tree. As in the case of real
AdS, the length of the geodesic is formally infinite. One can truncate the
tree at a fixed distance from the center, then take the limit as this cutoff is
removed. It should be apparent that the (formally infinite) red geodesic is
longer than the green one by two steps. Up to constant factors, the length of
any boundary-anchored geodesic is a universal infinite term minus d. This
explains the logarithmically divergent scaling of geodesic length with p-adic
norm.

We see that the cutoff-dependent distance is

(5.5) d(x, y)a = 2a+
2

ln p
ln |x− y|p.
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We would like to take a→∞. Up to the factor of ln p, we can define a
to be the logarithm of a p-adic cutoff ε such that a→∞ as ε→ 0. Using
this definition, we find the length of a boundary-anchored geodesic to be

(5.6) d(x, y) = lim
ε→0

2

ln p
ln

∣∣∣∣x− yε
∣∣∣∣
p

.

Up to the overall factor in front (which presumably depended on our choice
of the length of each leg of the tree), we see the geodesic length is logarith-
mically divergent in interval size.

5.2. An adelic formula for entanglement?

We have argued that the general form of entanglement entropy scaling for
the boundary theory is dual to a geodesic length in the bulk. At the present
time we lack a p-adic notion of central charge c or theory dependent quan-
tity which counts boundary degrees of freedom. Nevertheless, we claim the
general form is

(5.7) Sp(x− y) = cp ln

∣∣∣∣x− yεp

∣∣∣∣
p

.

We now wish to speculate about the possibility of an adelic formula for
the entanglement entropies.

In the study of p-adic numbers, there exists a surprising formula which
relates the various p-adic valuations of a rational number to its real norm.
This is a different form of the fundamental theorem of arithmetic, and is
sometimes known as an adelic formula:

(5.8)

∞∏
p

|x|p = 1.

Here x ∈ Q and the product is taken over all primes. The “prime at ∞”
corresponds to the usual archimedean norm |x|∞ = |x|. This equality follows
by considering the unique prime factorization of x into a product of prime
powers. When x contains a factor pn, then |x|p = p−n. This means the infinite
product over primes is well defined because only finitely many terms are not
equal to 1. In fact, the product over the finite primes gives exactly the
inverse of the real norm |x|. Therefore the product over all finite places and
the infinite place is unity.
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We now wish to again recall the familiar formula for the universal entan-
glement entropy of an interval in a 1+1 dimensional conformal field theory;
written suggestively in the “prime at infinity” notation:

(5.9) S∞(x− y) =
c

3
ln

∣∣∣∣x− yε∞

∣∣∣∣
∞
.

One might hope through a better understanding of p-adic conformal field
theory or the holographic dual, the value of the proportionality constant
or the p-adic central charge might be determined. In the (perhaps unlikely)
event that the central charges of the p-adic theory agree with the real case,
then using the adelic formula for the interval, we propose:

If cp = c/3 for all p and x− y ∈ Q, then
∞∑
p

Sp(x− y) ∝ ln

( ∞∏
p

∣∣∣∣x− yεp

∣∣∣∣
p

)
= 0.(5.10)

One might be suspicious about this formula; each of the entropies Sp are
formally divergent. Additionally, since these quantities are entropies they
are expected to be positive. Therefore care must be taken in interpreting
the above.

One possible resolution is the erroneous application of the adelic formula
to the cutoffs εp. In computing Sp holographically, we assumed |ε|p → 0.
However, if |εp|p → 0 in one norm, it is not generally true that |εp|p′ → 0
for another choice p′. Therefore, we require a numerically different cutoff
parameter εp for each system over p. As all these parameters are taken to 0
in their respective norms, the corresponding entanglement entropies diverge.

Understanding that the cutoffs εp do not cancel on the left or right hand
sides, we are left with the divergent pieces of the entropy being equal on
both sides. However, if we vary the length of |x− y|∞ in the real physical
system, we see that the entropy difference associated with this interval is
distributed across the Sp’s such that the sum is zero. Put another way,
varying the real interval length will cause some values of |x− y|p for different
p to increase and others to decrease. This causes some Sp to increase and
others to decrease such that the total change of entropy over all finite and
infinite places is 0.

We will leave it to future work to try to derive or understand this relation
further.
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6. p-adic bulk geometry: Schottky uniformization and
non-archimedean black holes

6.1. Holography for Euclidean higher-genus black holes

The first explicit form of AdS/CFT correspondence for the asymptotically
AdS3 higher genus black holes, in the Euclidean signature, was obtained
in [44], where the computation of the Arakelov Green function of [40] is
shown to be a form of the holographic correspondence for these black holes,
where the two-point correlation function for a field theory on the conformal
boundary XΓ is written in terms of gravity in the bulk HΓ, as a combination
of lengths of geodesics.

At the heart of Manin’s holographic formula lies a simple identity relat-
ing conformal geometry on P1(C) and hyperbolic geometry on H3, namely
the fact that the cross ratio of four points on the boundary P1(C) can be
written as the length of an arc of geodesic in the bulk H3. More precisely,
consider the two point correlation function g(A,B) on P1(C). This is de-
fined by considering, for a divisor A =

∑
xmx x, the Green function of the

Laplacian

∂∂̄gA = πi(deg(A)dµ− δA),

with δA the delta current associated to the divisor, δA(ϕ) =
∑

xmxϕ(x), and
dµ a positive real-analytic 2-form. The Green function gA has the property
that gA −mx log |z| is real analytic for z a local coordinate near x, and
is normalized by

∫
gAdµ = 0. For two divisors A,B, with A as above and

B =
∑

y ny y the two point function is given by g(A,B) =
∑

y nygA(y). For
degree zero divisors it is independent of the form dµ and is a conformal
invariant. If wA is a meromorphic function on P1(C) with Div(wA) = A,
and CB is a 1-chain with boundary B, the two point function satisfies

g(A,B) = Re

∫
CB

dwA
wA

.

For (a, b, c, d) a quadruple of points in P1(C), the cross ratio 〈a, b, c, d〉 sat-
isfies

〈a, b, c, d〉 =
w(a)−(b)(c)

w(a)−(b)(d)
,
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where (a)− (b) is the degree zero divisor on P1(C) determined by the points
a, b, and the two point function is

g((a)− (b), (c)− (d)) = log
|w(a)−(b)(c)|
|w(a)−(b)(d)|

.

Given two points a, b in P1(C), let `{a,b} denote the unique geodesics in H3

with endpoints a and b. Also given a geodesic ` in H3 and a point c ∈ P1(C)
we write c ∗ ` for the point of intersection between ` and the unique geodesic
with an endpoint at c and intersecting ` orthogonally. We also write λ(x, y)
for the oriented distance of the geodesic arc in H3 connecting two given
points x, y on an oriented geodesic. Then the basic holographic formula
identifies the two point function with the geodesic length

g((a)− (b), (c)− (d)) = −λ(a ∗ `{c,d}, b ∗ `{c,d}).

One can also express the argument of the cross ratio in terms of angles
between bulk geodesics (see [40], [44]). This basic formula relating the two
point correlation function on the boundary to the geodesic lengths in the
bulk is adapted to the higher genus cases by a suitable procedure of averaging
over the action of the group that provides an explicit construction of a basis
of meromorphic differentials on the Riemann surface XΓ in terms of cross
ratios on P1(C). A basis of holomorphic differentials on XΓ, with∫

Ak

ωγj = 2πiδjk,

∫
Bk

ωγj = τjk

the period matrix, is given by

ωγi =
∑

h∈S(γi)

dz log〈z+
h , z

−
h , z, z0〉,

for z, z0 ∈ ΩΓ, with S(γ) the conjugacy class of γ in Γ. The series converges
absolutely when dimH(ΛΓ) < 1. Meromorphic differentials associated to a
divisor A = (a)− (b) are similarly obtained as averages over the group action

ν(a)−(b) =
∑
γ∈Γ

dz log〈a, b, γz, γz0〉

and the Green function is computed as a combination

ν(a)−(b) −
∑
j

Xj(a, b)ωγj
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with the coefficients Xj(a, b) so that the Bk-periods vanish. Since in the
resulting formula each crossed ratio term is expressible in terms of the length
of an arc of geodesic in the bulk, the entire Green function is expressible in
terms of gravity in the bulk space. We refer the reader to §§2.3, 2.4, and 2.5
of [44] and to [45] for a more detailed discussion and the resulting explicit
formula of the holographic correspondence for arbitrary genus.

6.2. Holography on p-adic higher genus black holes

In the special case of a genus-one curve, the relevant Schottky group is
isomorphic to qZ, for some q ∈ k∗, and the limit set consists of two points,
which we can identify with 0 and ∞ in P1(k). The generator of the group
acts on the geodesic in Tk with endpoints 0 and ∞ as a translation by
some length n = log |q| = vm(q), the valuation. The finite graph Gk is then
a polygon with n edges, and the graph Tk/Γ consists of this polygon with
infinite trees attached to the vertices. The boundary at infinity of Tk/Γ is
a Mumford curve XΓ(k) of genus one with its p-adic Tate uniformization.
The graph Tk/Γ is the p-adic BTZ black hole, with the central polygon Gk

as the event horizon (see Fig. 11).
The higher genus cases are p-adic versions of the higher genus black holes

discussed above, with the finite graph Gk as event horizon.
Given a set of generators {γ1, . . . , γg} of a p-adic Schottky group, let nγi

be the translation lengths that describe the action of each generator γi on
its axis `γi . More precisely, if an element γ is conjugate in PGL(2,k) to an
element of the form (

q 0
0 1

)
,

then the translation length is nγ = vm(q) = ordk(q), the order (valuation)
of q. The translation lengths {nγi} are the Schottky invariants of the p-adic
Schottky group Γ. It is shown in [15] that the Schottky invariants can be
computed as a spectral flow.

The Drinfeld–Manin holographic formula of [39] for p-adic black holes of
arbitrary genus is completely analogous to its archimedean counterpart of
[40]. There is a good notion of k-divisor on P1(k), as a function P1(k̄)→ Z,
with z 7→ mz, with the properties that mz1 = mz2 if z1 and z2 are conjugate
over k; that all points z with mz 6= 0 lie in the set of points of P1 over a finite
extension of k; and that the set of points with mz 6= 0 has no accumulation
point. As before we write such a divisor as A =

∑
zmz z. Given a Γ-invariant

divisor A of degree zero, there exists a meromorphic function on ΩΓ(k) with
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Figure 11. The p-adic BTZ black hole. (As pictured, p = 3).

divisor A. It is given by a Weierstrass product

WA,z0 =
∏
γ∈Γ

wA(γz)

wA(γz0)
,

where wA(z) is a k-rational function on P1(k) with divisor A. The con-
vergence of this product is discussed in Proposition 1 of [39]: the non-
archimedean nature of the field k implies that the product converges for all
z ∈ ΩΓ \ ∪γγ(supp(A)). The function WA,z0 is a p-adic automorphic function
(see [43]) with WA,z0(γz) = µA(γ)WA,z0(z), with µA(γ) ∈ k∗, multiplicative
in A and γ. One obtains a basis of Γ-invariant holomorphic differentials on
XΓ(k) by taking

ωγi = d logW(γi−1)z0,z1 ,
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Figure 12. Drinfeld’s p-adic upper half plane and the Bruhat–Tits tree.

where

W(γ−1)z0,z1(z) =
∏

h∈C(γ)

whz+γ −hz−γ (z)

whz+γ −hz−γ (z0)
,

for C(g) a set of representatives of Γ/γZ.
It is shown in [39] that the order of the cross ratio on P1(k) is given by

ordk
wA(z1)

wA(z2)
= #{`z1,z2 , `a1,a2

},

for A = a1 − a2 and `x,y the geodesic in the Bruhat–Tits tree with endpoints
x, y ∈ P1(k), with #{`z1,z2 , `a1,a2

} the number of edges in common to the
two geodesics in Tk. This is the basic p-adic holographic formula relating
boundary two point function to gravity in the bulk.

A difference with respect to the archimedean case is that, over C, both
the absolute value and the argument of the cross ratio have an interpretation
in terms of geodesics, with the absolute value expressed in terms of lengths
of geodesic arcs and the argument in terms of angles between geodesics,
as recalled above. In the p-adic case, however, it is only the valuation of
the two point correlation function that has an interpretation in terms of
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geodesic lengths in the Bruhat–Tits tree. The reason behind this discrep-
ancy between the archimedean and non-archimedean cases lies in the fact
that the Bruhat–Tits tree Tk is the correct analog of the hyperbolic han-
dlebody H3 only for what concerns the part of the holographic correspon-
dence that involves the absolute value (respectively, the p-adic valuation)
of the boundary two point function. There is a more refined p-adic space,
which maps surjectively to the Bruhat–Tits tree, which captures the com-
plete structure of the p-adic automorphic forms for the action of a p-adic
Schottky group Γ: Drinfeld’s p-adic upper half plane, see Chapter I of [7].
Given k as above, let Cp denote the completion of the algebraic closure of k.
Drinfeld’s p-adic upper half plane is defined as Hk = P1(Cp) \ P1(k). One
can view this as an analog of the upper and lower half planes in the complex
case, with H+ ∪H− = P1(C) \ P1(R). There is a surjection λ : Hk → Tk,
defined in terms of the valuation, from Drinfeld’s p-adic upper half plane
Hk to the Bruhat–Tits tree Tk. For vertices v, w ∈ V (Tk) connected by
an edge e ∈ E(Tk), the preimages λ−1(v) and λ−1(w) are open subsets of
λ−1(e), as illustrated in Fig. 12. The map λ : Hk → Tk is equivariant with
respect to the natural actions of PGL(2,k) on Hk and on Tk. In particular,
given a p-adic Schottky group Γ ⊂ PGL(2,k), we can consider the quotients
H̃Γ = Hk/Γ and HΓ = Tk/Γ and the induced projection λ : H̃Γ → HΓ. Both
quotients have conformal boundary at infinity given by the Mumford curve
XΓ = ΩΓ(k)/Γ, with ΩΓ(k) = P1(k) r ΛΓ, the domain of discontinuity of
the action of Γ on P1(k) = ∂Hk = ∂Tk. One can view the relation between
Hk and Tk illustrated in Fig. 12, and the corresponding relation between
H̃Γ and HΓ, by thinking of H̃Γ as a “thickening” of the graph HΓ, just as in
the Euclidean case one can view the union of the fundamental domains of
the action of Γ on H3, as illustrated in Fig. 5, as a thickening of the Cayley
graph (tree) of the Schottky group Γ, embedded in H3.

Thus, when considering the non-archimedean holographic correspon-
dence and p-adic black holes of arbitrary genus, one can choose to work with
either HΓ or with H̃Γ as the bulk space, the first based on Bruhat–Tits trees
and the second (more refined) based on Drinfeld’s p-adic upper half spaces.
In this paper we will be focusing on those aspects of the non-archimedean
AdS/CFT correspondence that are captured by the Bruhat–Tits tree, while
we will consider a more refined form of non-archimedean holography, based
on Drinfeld’s p-adic upper half planes, in forthcoming work.
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0 1 2 3 4 5 6 7 8

v

0 ∞

` = 4

Figure 13. The action of a rank-one Schottky group (translation by ` along
a fixed geodesic) on the Bruhat–Tits tree. As pictured, n = h = 2.

6.3. Scalars on higher-genus backgrounds: sample calculation

In light of this discussion of higher-genus holography in the p-adic case, it
is easy to understand how to generalize the arguments and calculations we
discussed for scalar fields in §4 to the BTZ black hole, or to higher-genus
hyperbolic handlebodies, the p-adic analogues of Krasnov’s Euclidean black
holes. One can simply think of the higher-genus geometry as arising from
the quotient of the tree Tp (and its boundary P1(Qp)) by the action of a
rank-g Schottky group. Any quantity that can then be made equivariant
under the action of the Schottky group will then descend naturally to the
higher-genus setting.

As a simple example, it is easy to construct the genus-1 analogue of
our basic Green’s function (4.28), using the method of images. We perform
this calculation in the following paragraphs. The result makes it easy to
perform the reconstruction of bulk solutions to the equations of motion in
a BTZ background, with specified boundary conditions at infinity along the
genus-1 conformal boundary.

Without loss of generality, we can label the distance along the geodesic
which is translated by the chosen Schottky generator by integers, and imag-
ine that the source is attached at a boundary point x connected to the
vertex 0. The bulk vertex v at which we want to evaluate the Green’s func-
tion will be attached to vertex n (0 ≤ n < `), at a depth h from the central
geodesic. The quantity to be calculated is simply

(6.1) ε(g=1)
κ,x (v) =

∑
g∈Z

pκ〈v,gx〉,

where the sum ranges over the images of x under the Schottky group. We
take the integrand to be normalized to 1 at the vertex where the branch
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containing x meets the central geodesic. The cases n = 0 and n 6= 0 are
different, and we will treat them separately.

n = 0: In this case, the sum becomes

εκ,x(v) = pκ〈v,x〉 + 2
∑
m>0

(
p−κ`

)m
= pκ〈v,x〉 +

2p−κh

pκ` − 1
.(6.2)

n 6= 0: In this case, the sum becomes

εκ,x(v) =
∑
m≤0

pκ(−n−h−|m|`) +
∑
m>0

pκ(n−h−m`)

= p−κh
(
pκ(`−n) + pκn

pκ` − 1

)
.(6.3)

In both cases, the result has the expected boundary behavior: it falls off
asymptotically as p−κh when v approaches any boundary point other than x
itself.

7. Conclusion

In this work we have proposed an algebraically motivated way to discretize
the AdS/CFT correspondence. The procedure of replacing real or complex
spacetimes by Qp introduces a nontrivial discrete bulk and boundary struc-
ture while still preserving many desirable features of the correspondence.
The boundary conformal field theory lives on an algebraic curve in both the
ordinary and non-archimedean examples; the P1(Qp) theory naturally enjoys
the p-adic analogue of the familiar global conformal symmetry, PGL(2,Qp).
This same group comprises the isometries of the lattice bulk spacetime
Tp = PGL(2,Qp)/PGL(2,Zp), a maximally symmetric coset space analo-
gous to Euclidean AdS.

In analogy with the BTZ black hole and higher genus examples in AdS3,
higher genus bulk spaces in the p-adic case are obtained by Schottky uni-
formization. One takes quotients of the geometry by p-adic Schottky groups
Γ ⊂ PGL(2,Qp), producing Mumford curves at the boundary. These curves
holographically correspond to bulk geometries consisting of discrete black
holes, which appear automatically and do not need to be put in by hand.

Having found a discretization which does not break any symmetries of
the problem, we then proposed one way of obtaining a holographic tensor



i
i

“4-Marcolli” — 2018/9/3 — 17:59 — page 164 — #72 i
i

i
i

i
i

164 M. Heydeman, et al.

network from a Bruhat–Tits tree. We roughly identify the tree as a space of
discrete geodesics in the network. Following Pastawski et al.’s holographic
error-correcting code, the entanglement entropy of a deleted region is re-
produced by counting geodesic lengths in the bulk. This perspective puts
a stronger notion of bulk geometry into tensor networks, and suggests that
the p-adic systems considered here may be closer to tensor network models
than their archimedean counterparts. This construction might have further
applications in entangled bulk states, nongeometric bulk states, and other
more exotic features of quantum gravity not present in many existing tensor
network models.

After discrete bulk Hilbert spaces in tensor networks, we then turned
our attention to continuous Hilbert spaces of scalar fields in the tree. In the
semiclassical analysis, massless and massive scalar solutions to the lattice
model couple naturally to CFT operators at the boundary, just as in the
archimedean case. We identified boundary/bulk propagators in the discrete
analog of empty AdS, as well as in the p-adic BTZ black hole; the method
of images can be used to generalize these results to arbitrary higher-genus
bulk backgrounds. We are led to believe that the semiclassical physics of
the bulk “gravity” theory is dual to an exotic conformal field theory living
on the fractal p-adic boundary. At the present time, little is known about
these p-adic conformal field theories outside of p-adic string theory; we hope
the connection to holography may draw attention to this area. Viewed as a
renormalization scale, we have shown that moving up the tree corresponds to
exact course graining of boundary mode expansions. The intimate relation
between conformal symmetry, AdS geometry, and renormalization still holds
in this entirely discrete setting.

Motivated by the tensor network models, we suggest that the entan-
glement entropy of regions of the field theory is computed by the unique
geodesic lengths in the bulk space. While as of yet we have no formal proof
in the free-boson field theory, a number of arguments have been presented
which support this conjecture. Under very specific circumstances, it might
even be possible to learn certain properties of the archimedean entangle-
ment entropies from their corresponding p-adic counterparts with the help
of adelic formulas.

While we have established some essential features of p-adic holography,
ranging from algebraic curves to tensor networks and from bulk/boundary
propagators and renormalization scales to entanglement, much about these
exotic systems remains to be understood. We propose a number of ideas to
be explored in future work.



i
i

“4-Marcolli” — 2018/9/3 — 17:59 — page 165 — #73 i
i

i
i

i
i

Tensor networks, p-adic fields, and algebraic curves 165

One major ingredient missing from our story is a proper description (and
quantization) of the gravitational degrees of freedom. The bulk geometries
(with or without black holes in the interior) can loosely be described as p-adic
discretizations of asymptotically AdS spacetimes. One way to add dynamical
metric degrees of freedom without spoiling the asymptotic behavior might
be to make the edge lengths of the Bruhat–Tits tree dynamical. The p-adic
version of empty AdS might correspond to a solution with uniform edge
lengths like the system considered here; thermal or black hole states seem
to require topology change in the interior.

If we believe that the full quantum gravity Hilbert space of the interior
involves fluctuating edge lengths and graph topology, one might ask if tensor
network models could be adapted to this picture. More complicated tensor
networks might be used to study objects such as black holes, EPR pairs,
and nongeometric states. The role of planarity of the tensor network may
play an important role in this story.

From the point of view of the p-adic conformal field theory, one might ask
for more interesting examples than the free boson. We have already offered
some speculations about higher spin fields based on representation theory
of the p-adic conformal group; it would be nice to formulate these models
explicitly and search for interesting gravity duals. Additionally, the models
we have studied so far do not appear to have extended conformal symmetry
or a central charge. These important ingredients of 1+1 dimensional CFT’s
might appear with the more careful inclusion of finite extensions of Qp.
These finite extensions might also be linked to the passage to Lorentzian
signature.

To briefly mention another important idea to which we will return in fu-
ture work: one should note that the path integral of a bulk field is itself very
much like a tensor network, albeit one where the local Hilbert spaces are
infinite-dimensional. A boundary state can be obtained by doing the bulk
path integral with fixed boundary conditions; this defines a wave-functional
on the space of boundary field configurations. The state is then computed
by concatenating many copies of a single universal linear map, defined by
integrating out one field and adding the terms in the action that couple it to
p of its neighbors. There is a sense, therefore, in which the bulk theories we
have discussed already are tensor networks — recipes for constructing states
that are built out of infinite hierarchical networks of concatenated, homoge-
neous, locally similar linear maps. Many questions leap to mind about this
— for example, what are the error-correcting properties of the basic linear
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map defined by our path integral? Can one imagine truncating the path in-
tegral in a sensible way to define a tensor network of finite local dimension?
We look forward to investigating these questions in detail.

We finally address future work for the entanglement entropy in a p-adic
holographic theory. As already mentioned, the single and multiple interval
entanglement entropies will likely require a detailed replica computation.
This may be possible through a more detailed study of branched covers of the
p-adic plane as Mumford curves. With entanglement entropies in hand, one
might ask for new and old proofs of entropy inequalities; these are expected
to be simplified by the ultrametric nature of the p-adics. Finally, it remains
to be seen how much can be learned about real AdS/CFT from studying
these systems adelically over every prime.

Note added

As this work was being completed, we became aware of [31], which treats
similar ideas from a somewhat different viewpoint, and in which some of our
results in §4.1–4.3 were independently obtained.

Acknowledgements

The authors wish to thank N. Bao, H. Kim, M. Koloğlu, T. McKinney,
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Appendix A. p-adic integration

Here we review some aspects of p-adic integration, including basic properties
and examples, the Fourier transform, and the p-adic gamma function Γp. A
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more comprehensive review is found in [10]. For formal proofs, as well as
extensive integration tables, the reader may consult [59].

As already discussed, the unique additive Haar measure dx on Qp is
normalized so that

(A.1)

∫
Zp
dx = 1.

To find the volume of the set Br, which consists of x ∈ {Qp, |x|p ≤ pr},
we may scale the measure and reduce this to the integral above on Zp as:

(A.2)

∫
Br
dx = pr

∫
Zp
dx = pr.

As r →∞, the volume diverges as in the real case. Compactifying the point
at infinity amounts to switching from the Haar measure to the Patterson-
Sullivan measure dµ0(x); these measures agree on Zp and differ in the com-
plement by dµ0(x) = dx/|x|2p.

With this measure the volume is computed with a change of variables:∫
Qp
dµ0(x) =

∫
Zp
dx+

∫
Qp−Zp

|x|−2
p dx(A.3)

= 1 +
1

p

∫
Zp
du, u =

1

px
, du =

p dx

|x|2p
(A.4)

=
p+ 1

p
.(A.5)

A large class of elementary integrals may be evaluated using these methods;
see the above references for complete details.

We now turn our attention to the p-adic Fourier transform of a function
f(x) : Qp → C. As discussed in section 4.2.1, this involves integrating the
function against the additive character χ(x) = e2πi{kx} over all Qp. This
generates a new complex valued function in terms of the p-adic momentum
k ∈ Qp:

f̃(k) =

∫
Qp
χ(kx)f(x)dx,(A.6)

f(x) =

∫
Qp
χ(−kx)f̃(k)dk.(A.7)

The analogy with the real Fourier transform should be clear. In prac-
tice evaluating this kind of integral often requires one to divide Qp into
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spheres consisting of points with |x|p = pn and performing the integral on
each sphere. This can be seen in the example:

(A.8)

∫
Br
χ(kx)dx =

{
pr, |k|p ≤ p−r

0, otherwise.

As in the real case, one may find tables with numerous p-adic Fourier trans-
forms of elementary functions in the literature.

The final integral expression is that of the Gelfand-Graev-Tate Γ func-
tion:

(A.9) Γp(α) =

∫
Qp
χ(x)|x|α−1

p dx =
1− pα−1

1− p−α
.

This function has some similar properties to the ordinary gamma function.
It is fairly ubiquitous in certain p-adic integral calculations, and we refer the
reader to literature on p-adic string theory for details.

Appendix B. p-adic differentiation

As already discussed, complex fields living on the boundary P1(Qp) are maps

(B.1) f(x) : P1(Qp)→ C.

In the archimedean case of 2d conformal field theory, we have f(z, z̄) :
P1(C)→ C and it makes sense to define holomorphic and antiholomorphic
derivatives ∂f

∂z and ∂f
∂z̄ , using the normal definition of derivative. In the p-

adic case, the analogous differentiation expressions no longer make sense, as
we would be dividing a complex number by a p-adic number and no such
operation is a priori defined.

The only notion of derivative we may use is the Vladimirov deriva-
tive [22, 59], which is a nonlocal pseudo-differential operator. Roughly speak-
ing, this operation is the p-adic analog of Cauchy’s Differentiation Formula,
in which the derivative of a function at a point is expressed as a weighted
integral of the function over a curve. It is also known as a normal deriva-
tive [62] in the context of the p-adic string, where it is interpreted as the
derivative of the embedding coordinates Xµ normal to the boundary of the
worldsheet. Because this operator is defined on Qp without any reference to
an embedding or worldsheet, we opt to refer to it as a Vladimirov derivative.
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The nth Vladimirov derivative is defined by the expression

(B.2) ∂n(p)f(x) =

∫
Qp
dx′

f(x′)− f(x)

|x′ − x|n+1
p

.

In this expression, n is frequently an integer, but it may in principle assume
any real value. This is a regularized way of writing the convolution of f

with the kernel |x|−(1+n)
p ; the convolution integral often does not converge,

whereas (B.2) (which is the same thing up to a shift by an infinite con-
stant) is always well-defined and finite. Some authors may choose a different
normalization constant; the most common is

(B.3) Dnf(x) =
1

Γp(−n)

∫
dy

f(y)− f(x)

|y − x|1+n
p

,

where Γp is the p-adic gamma function. This is done so that Vladimirov
derivatives obey the expected composition law on the nose:

(B.4) DaDb = DbDa = Da+b.

At first sight the expression above may not resemble any familiar notions
of differentiation. We may see this as a good notion for derivative in two
ways; in the case of the p-adic string this expression is the boundary limit
of the normal derivative on Tp, as shown in [62]. We may also compute the
Vladimirov derivative of some functions and compare with the real case.
This is done in the following section.

B.1. Examples

We wish to first compute the derivative of the additive character, χ(kx).
This function is the p-adic analog of a plane wave with momentum k, so
we expect it to be an eigenfunction of the derivative with eigenvalue related
to k. We can change variables to y = k(x′ − x) (for which dy = |k|pdx′) and
simplify the integral appearing in the Vladimirov derivative:

∂n(p)χ(kx) =

∫
Qp

χ(kx′)− χ(kx)

|x′ − x|n+1
p

dx′(B.5)

= |k|np
∫
Qp

χ(y + kx)− χ(kx)

|y|n+1
p

dy(B.6)

= |k|npχ(kx)

∫
Qp

χ(y)− 1

|y|n+1
p

dy,(B.7)
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where we used the additive property of the character to extract the x depen-
dence. The integrand appears to diverge as y → 0; however, the numerator
is actually zero in an open neighborhood of the origin, so that the integral
is finite. (This integral is discussed in detail in [4] and [27].) The result is

(B.8)

∫
Qp

χ(y)− 1

|y|n+1
p

dy =
1− p−n−1

1− pn
= Γp(−n),

where we have used the definition of the p-adic gamma function in Eq. (A.9).
So the end result is

(B.9) ∂n(p)χ(kx) = Γp(−n)|k|npχ(kx).

The additive character χ(kx) is therefore an eigenfunction of the Vladimirov
derivative, with eigenvalue given (up to the factor of the gamma function)
by the p-adic norm of its “momentum” k. For the derivatives with normal-
ization (B.3), we would have precisely

(B.10) Dnχ(kx) = |k|np χ(kx).

Another example we may wish to compute is the nth derivative of |x|sp
for some s ∈ C. This may be most easily be computed by Fourier transform
and serves as an example of an alternative representation of the Vladimirov
derivative:

(B.11) ∂n(p)|x|
s
p =

∫
χ(−kx)|k|np |̃x|spdk,

where |̃x|sp is the p-adic Fourier transform of |x|sp, given in [59, 64]:

(B.12) |̃x|sp =

∫
χ(kx)|x|spdx = Γp(s+ 1)|k|−s−1

p

everywhere it is defined. Applying this formula twice to the derivative we
wish to compute, we arrive at

(B.13) ∂n(p)|x|
s
p = Γp(s+ 1)Γp(n− s)|x|s−np ,

which should resemble the ordinary nth derivative of a polynomial function.
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