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Eddington–Finkelstein-type coordinates

Felix Finster and Christian Röken

We consider the massive Dirac equation in the non-extreme Kerr
geometry in horizon-penetrating advanced Eddington–Finkelstein-
type coordinates and derive a functional analytic integral represen-
tation of the associated propagator using the spectral theorem for
unbounded self-adjoint operators, Stone’s formula, and quantities
arising in the analysis of Chandrasekhar’s separation of variables.
This integral representation describes the dynamics of Dirac parti-
cles outside and across the event horizon, up to the Cauchy horizon.
In the derivation, we first write the Dirac equation in Hamiltonian
form and show the essential self-adjointness of the Hamiltonian.
For the latter purpose, as the Dirac Hamiltonian fails to be elliptic
at the event and the Cauchy horizon, we cannot use standard ellip-
tic methods of proof. Instead, we employ a new, general method for
mixed initial-boundary value problems that combines results from
the theory of symmetric hyperbolic systems with near-boundary el-
liptic methods. In this regard and since the time evolution may not
be unitary because of Dirac particles impinging on the ring singu-
larity, we also impose a suitable Dirichlet-type boundary condition
on a time-like inner hypersurface placed inside the Cauchy horizon,
which has no effect on the dynamics outside the Cauchy horizon.
We then compute the resolvent of the Dirac Hamiltonian via the
projector onto a finite-dimensional, invariant spectral eigenspace of
the angular operator and the radial Green’s matrix stemming from
Chandrasekhar’s separation of variables. Applying Stone’s formula
to the spectral measure of the Hamiltonian in the spectral decom-
position of the Dirac propagator, that is, by expressing the spectral
measure in terms of this resolvent, we obtain an explicit integral
representation of the propagator.

47



i
i

“3-Finster” — 2018/9/3 — 17:53 — page 48 — #2 i
i

i
i

i
i

48 F. Finster and C. Röken
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1. Introduction

In [11], an integral spectral representation of the propagator of the massive
Dirac equation in the non-extreme Kerr geometry outside the event hori-
zon is derived in Boyer–Lindquist coordinates. It has been used to study
the long-time behavior (including decay rates) and the escape probability
of Dirac particles in rotating Kerr black hole spacetimes [10]. The short-
coming of this integral spectral representation is, however, that it yields a
solution of the associated Cauchy problem only outside the event horizon.
In the present paper, we construct a generalized integral spectral repre-
sentation that describes the complete dynamics of Dirac particles outside,
across, and inside the event horizon, up to the Cauchy horizon. The meth-
ods used in the derivation of our integral spectral representation are quite
different from those employed in [11], as is now outlined. We work with
horizon-penetrating advanced Eddington–Finkelstein-type coordinates [22],
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An integral spectral representation of the massive Dirac propagator 49

i.e., with an analytic extension of Boyer–Lindquist coordinates that simul-
taneously covers both the exterior and the interior black hole region without
exhibiting singularities at the horizons and features a proper time function τ .
Furthermore, we employ a regular Carter tetrad, i.e., a symmetric Newman–
Penrose null frame, which reflects, on the one hand, the discrete time and
angle reversal isometries of the Kerr geometry and, on the other hand, its
Petrov type. After computing the corresponding spin coefficients by solving
the first Maurer–Cartan equation of structure, we explicitly determine the
massive Dirac equation in Hamiltonian form

i∂τψ(τ, r, θ, φ) = Hψ(τ, r, θ, φ) ,

where H denotes the Hamiltonian, ψ is a Dirac 4-spinor, and (τ, r, θ, φ)
are the advanced Eddington–Finkelstein-type coordinates. Moreover, we in-
troduce a suitable scalar product on the associated space of solutions, and
show for smooth and compactly supported Dirac 4-spinors that the Hamil-
tonian is symmetric with respect to this scalar product. We also establish
that it coincides with the canonical scalar product obtained by integrat-
ing the normal component (defined with respect to the level sets of τ) of
the Dirac current. As we apply the spectral theorem in the derivation of
the propagator, we need to establish the essential self-adjointness of the
Dirac Hamiltonian. To this end, we first impose a Dirichlet-type boundary
condition on a time-like inner boundary surface placed beyond the Cauchy
horizon. This boundary condition prevents Dirac particles from impinging
on the curvature singularity without affecting their dynamics in the region
outside the Cauchy horizon, consequently leading to a unitary time evolu-
tion. Then, we apply the method of proof for the essential self-adjointness
of the Dirac Hamiltonian for mixed initial-boundary value problems that
are not uniformly elliptic introduced in [15]. Subsequently, it is possible to
derive an integral representation of the Dirac propagator via the spectral
theorem for unbounded self-adjoint operators

ψ = e−iτH ψ0 =

∫
R
e−iωτ ψ0 dPω ,

where dPω is the spectral measure of H, ω is the spectral parameter, and
ψ0 := ψ(τ = 0, r, θ, φ) is smooth initial data with compact support. We com-
pute the spectral measure of the Dirac Hamiltonian employing Stone’s for-
mula [20], which yields an explicit expression in terms of the resolvent of
the Hamiltonian Res(H) := (H − ωc)

−1, for which ωc ∈ C\R. Furthermore,
we determine the resolvent applying quantities obtained in the analysis of
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the systems of radial and angular ordinary differential equations (ODEs)
that arise in Chandrasekhar’s separation of variables, that is, after factor-
ing out the azimuthal angle modes, we project the Dirac Hamiltonian onto
a finite-dimensional, invariant spectral eigenspace of the angular operator,
which leaves us with a matrix-valued first-order ordinary differential opera-
tor in the radial variable. The resolvent of this operator can be calculated by
means of the Green’s matrix of the radial ODE system. For this purpose, we
derive generalized Jost-type equations [21] for this system and study specific
aspects of their solutions, namely the existence, uniqueness, and bounded-
ness. We moreover use the asymptotic radial solutions at infinity, the event
horizon, and the Cauchy horizon for guidance in the implicit construction of
the fundamental solutions of the radial ODE system required for the com-
putation of the corresponding Green’s matrix. Eventually, by summing over
all azimuthal angle modes, we obtain the full resolvent of the Dirac Hamil-
tonian in separated form. The resulting horizon-penetrating generalization
of the integral spectral representation of the Dirac propagator describes the
complete dynamics of massive Dirac particles outside and across the event
horizon of the non-extreme Kerr geometry, up to the Cauchy horizon.

Main Theorem. The massive Dirac propagator in the non-extreme Kerr
geometry in horizon-penetrating advanced Eddington–Finkelstein-type coor-
dinates can be expressed via the integral spectral representation

ψ(τ, r, θ, φ) =
1

2πi

∑
k∈Z

e−ikφ

∫
R
e−iωτ lim

ε↘0

[
(Hk − ω − iε)−1

− (Hk − ω + iε)−1
]
(r, θ; r′, θ′)ψ0,k(r

′, θ′) dω ,

where ψ0,k is the initial data for fixed k-modes and (Hk − ω ∓ iε)−1 are the
unique resolvents of the Dirac Hamiltonian Hk for fixed k-modes on the up-
per and lower complex half-planes.

In a final step, we compute the limit ε↘ 0 of the difference of resolvents
leading to a rigorously simplified form of the propagator.

The article is organized as follows. In Section 2, we provide the mathe-
matical framework for the Kerr geometry and for the massive Dirac equation.
Moreover, we recall required results from the asymptotic analysis of the ra-
dial ODE system and from the spectral analysis of the angular ODE system
arising in Chandrasekhar’s separation of variables without giving proofs.
We derive the Hamiltonian formulation and a suitable scalar product for
the space of solutions of the associated Cauchy problem in Sections 3 and 4,
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respectively. Furthermore, we verify the symmetry of the Hamiltonian with
respect to this scalar product in Appendix A. In Section 5, we show the
essential self-adjointness of the Hamiltonian. Finally, we construct the re-
solvent of the Hamiltonian and the integral spectral representation of the
propagator in Section 6. The fundamental radial solutions required for the
computation of the resolvent are determined in Appendix B.

2. Preliminaries

We recall the necessary basics on the non-extreme Kerr geometry in horizon-
penetrating advanced Eddington–Finkelstein-type coordinates, the general
relativistic, massive Dirac equation in the Newman–Penrose formalism, and
Chandrasekhar’s separation of variables.

The non-extreme Kerr geometry is a connected, orientable and time-
orientable, smooth, asymptotically flat Lorentzian 4-manifold (M, g) with
topology S2 × R2, for which the metric g is stationary and axisymmetric
and given in horizon-penetrating advanced Eddington–Finkelstein-type co-
ordinates (τ, r, θ, φ) with τ ∈ R, r ∈ R>0, θ ∈ [0, π], and φ ∈ [0, 2π) [22] by

g =
(

1− 2Mr

Σ

)
dτ ⊗ dτ − 2Mr

Σ

([
dr − a sin2 (θ) dφ

]
⊗ dτ + dτ ⊗

[
dr − a sin2 (θ) dφ

])
−
(

1 +
2Mr

Σ

)(
dr − a sin2 (θ) dφ

)
⊗
(
dr − a sin2 (θ) dφ

)
− Σ dθ ⊗ dθ − Σ sin2 (θ) dφ⊗ dφ ,

(1)

where M is the mass and aM the angular momentum of the black hole,
with 0 ≤ a < M , and Σ = Σ(r, θ) := r2 + a2 cos2 (θ). The event and Cauchy
horizons are located at r± := M ±

√
M2 − a2, respectively. The advanced

Eddington–Finkelstein-type coordinates are an analytic extension of the
common Boyer–Lindquist coordinates (t, r, θ, ϕ) with t∈R, r∈R>0, θ∈ [0, π],
and ϕ ∈ [0, 2π) [3], covering both the exterior and interior black hole regions
while being regular at the horizons. In terms of the Boyer–Lindquist coordi-
nates, the advanced Eddington–Finkelstein-type time and azimuthal angle
coordinates read

τ := t+
r2

+ + a2

r+ − r−
ln |r − r+| −

r2
− + a2

r+ − r−
ln |r − r−|

φ := ϕ+
a

r+ − r−
ln

∣∣∣∣r − r+

r − r−

∣∣∣∣ .(2)

This horizon-penetrating coordinate system possesses a proper time func-
tion, unlike the original advanced Eddington–Finkelstein (null) coordinates
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[8, 9]. It is advantageous to describe the Kerr geometry in the Newman–
Penrose formalism using a regular Carter tetrad [4, 22]

l =
1√

2Σ r+

(
[∆ + 4Mr] ∂τ + ∆ ∂r + 2a ∂φ

)
n =

r+√
2Σ

(∂τ − ∂r)

m =
1√
2Σ

(
ia sin (θ) ∂τ + ∂θ + i csc (θ) ∂φ

)
m = − 1√

2Σ

(
ia sin (θ) ∂τ − ∂θ + i csc (θ) ∂φ

)
,

(3)

with ∆ = ∆(r) := (r − r+)(r − r−) = r2 − 2Mr + a2 being the horizon func-
tion, because this frame is adapted to the two principal null directions of the
Weyl tensor and to the fundamental discrete time and angle reversal isome-
tries. Thus, since the Kerr geometry is algebraically special and of Petrov
type D, one has the computational advantage that the four spin coefficients
κ, σ, λ, and ν as well as the four Weyl scalars Ψ0,Ψ1,Ψ3, and Ψ4 vanish [18],
and that specific spin coefficients are linearly dependent. Substituting the
Carter tetrad (3) into – and solving – the first Maurer–Cartan equation of
structure, we obtain the spin coefficients [22]

κ = σ = λ = ν = 0 , γ = − r+

23/2
√

Σ
(
r − ia cos (θ)

) ,
ε =

r2 − a2 − 2ia cos (θ) (r −M)

23/2
√

Σ r+

(
r − ia cos (θ)

) , π = −τ =
ia sin (θ)√

2Σ
(
r − ia cos (θ)

) ,
µ = − r+√

2Σ
(
r − ia cos (θ)

) , % = − ∆√
2Σ r+

(
r − ia cos (θ)

) ,
α = −β = − 1

(2Σ)3/2

[(
r2 + a2

)
cot (θ)− ira sin (θ)

]
.

(4)

Next, introducing a spin bundle SM = M×C4 on M with fibers SxM'
C4, x ∈M, we can formulate the general relativistic, massive Dirac equation
(without an external potential)

(5)
(
γµ∇µ + im

)
ψ(xµ) = 0 , µ ∈ {0, 1, 2, 3} ,

where ∇ is the metric connection on SM, γµ are the Dirac matrices, ψ
is the Dirac 4-spinor defined on the fibers SxM, and m is the invariant
fermion mass. In the Newman–Penrose formalism – by employing a local
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dyad spinor frame – (5) becomes the coupled first-order system of partial
differential equations

(nµ∂µ + µ− γ) G1 − (mµ∂µ + β − τ) G2 =
im√

2
F1

(lµ∂µ + ε− %) G2 − (mµ∂µ + π − α) G1 =
im√

2
F2

(lµ∂µ + ε− %) F1 + (mµ∂µ + π − α) F2 =
im√

2
G1

(nµ∂µ + µ− γ) F2 + (mµ∂µ + β − τ) F1 =
im√

2
G2

(6)

with ψ = (F1,F2,−G1,−G2)T [5]. Inserting the Carter tetrad (3) and the
associated spin coefficients (4) into the system (6), and applying the trans-
formation

(7) ψ′ = Pψ = (H1,H2,−J1,−J2)T , γ′µ = PγµP−1 ,

where
(8)
P := diag

(√
r − ia cos (θ),

√
r − ia cos (θ),

√
r + ia cos (θ),

√
r + ia cos (θ)

)
,

we find

r+

(
∂τ − ∂r

)
J1 +

(
ia sin (θ) ∂τ − ∂θ + i csc (θ) ∂φ − 2−1 cot (θ)

)
J2

= im
(
r + ia cos (θ)

)
H1

r−1
+

(
[∆ + 4Mr] ∂τ + ∆ ∂r + 2a ∂φ + r −M

)
J2

−
(
ia sin (θ) ∂τ + ∂θ + i csc (θ) ∂φ + 2−1 cot (θ)

)
J1 = im

(
r + ia cos (θ)

)
H2

r−1
+

(
[∆ + 4Mr] ∂τ + ∆ ∂r + 2a ∂φ + r −M

)
H1

−
(
ia sin (θ) ∂τ − ∂θ + i csc (θ) ∂φ − 2−1 cot (θ)

)
H2 = im

(
r − ia cos (θ)

)
J1

r+

(
∂τ − ∂r

)
H2 +

(
ia sin (θ) ∂τ + ∂θ + i csc (θ) ∂φ + 2−1 cot (θ)

)
H1

= im
(
r − ia cos (θ)

)
J2 ,

(9)

which is the starting point for the derivation of the Hamiltonian formulation
of the massive Dirac equation on a Kerr background geometry in horizon-
penetrating coordinates presented in the next section. We note in passing
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that the system (9) corresponds to the transformed Dirac equation

(10) −
√

Σ γ0P†P−1
(
γ′µ
[
∇µ + P ∂µ

(
P−1

)]
+ im

)
ψ′ = 0 ,

where γ0 := diag(1, 1,−1,−1). This will become relevant in the following
construction of both the Hamiltonian formulation and the scalar product.

Finally, for the explicit computation of the resolvent of the Dirac Hamil-
tonian, we require specific results arising from Chandrasekhar’s separation
of variables of the system (9). More precisely, we need the asymptotic solu-
tions of the radial ODE system at infinity, at the event horizon, and at the
Cauchy horizon, as well as certain information about the eigenvalues and
eigenfunctions of the angular ODE system. In the following, these results
are recalled. For a detailed analysis and proofs see [22]. Substituting the
separation ansatz

H1 = e−i(ωτ+kφ) R+(r)T+(θ)

H2 = e−i(ωτ+kφ) R−(r)T−(θ)

J1 = e−i(ωτ+kφ) R−(r)T+(θ)

J2 = e−i(ωτ+kφ) R+(r)T−(θ) ,

(11)

in which ω ∈ R and k ∈ Z + 1/2, into (9) yields the first-order radial and
angular ODE systems

R(r?) R̃ =

√
|∆|

r2 + a2

(
0 1

sign(∆) 0

)
ξ R̃(12)

A(θ) T = ξT ,

where

r? := r +
r2

+ + a2

r+ − r−
ln |r − r+| −

r2
− + a2

r+ − r−
ln |r − r−|

is the Regge–Wheeler coordinate,

R(r?) := 11C2 ∂r? +
i

r2 + a2

(
−ω(∆ + 4Mr)− 2ak −

√
|∆|mr√

|∆| sign(∆)mr ω∆

)

A(θ) :=
(

ma cos (θ) −∂θ − 2−1 cot (θ) + aω sin (θ) + k csc(θ)
∂θ + 2−1 cot (θ) + aω sin (θ) + k csc(θ) −ma cos (θ)

)(13)

are matrix-valued radial and angular operators, R̃ :=
(√
|∆|R+, r+ R−

)T
and T := (T+,T−)T are radial and angular vector-valued functions, and
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ξ is the constant of separation. The asymptotic solutions and the decay
properties of the associated errors of the radial ODE system at infinity, the
event horizon, and the Cauchy horizon are specified in the lemmas below.

Lemma 2.1. Every nontrivial solution R̃ of (12) for |ω| ≥ m is asymptot-
ically as r →∞ of the oscillatory form

R̃(r?) = R̃∞(r?) + E∞(r?) = D∞

(
f
(1)
∞ eiφ+(r?)

f
(2)
∞ e−iφ−(r?)

)
+ E∞(r?) ,

where

D∞ =

(
cosh (Ω) sinh (Ω)
sinh (Ω) cosh (Ω)

)
with Ω :=

1

4
ln

(
ω −m
ω +m

)
,

the functions

(14) φ±(r?) = sign(ω)

[
−
√
ω2 −m2 r? +M

(
± 2ω − m2

√
ω2 −m2

)
ln (r?)

]
are the asymptotic phases, and f∞ =

(
f
(1)
∞ , f

(2)
∞
)T 6= 0 is a vector-valued con-

stant. The error E∞ has polynomial decay

‖E∞(r?)‖ =
∥∥R̃(r?)− R̃∞(r?)

∥∥ ≤ a

r?

for a suitable constant a ∈ R>0. For the case |ω| < m, the non-trivial so-

lution R̃ has both contributions that show exponential decay ∼ e−
√
m2−ω2 r?

and exponential growth ∼ e
√
m2−ω2 r?.

Lemma 2.2. Every nontrivial solution R̃ of (12) is asymptotically as r ↘
r± of the form

R̃(r?) = R̃r±(r?) + Er±(r?) =

(
g

(1)
r± e

(
2i
[
ω+kΩ

(±)
Kerr

]
r?
)

g
(2)
r±

)
+ Er±(r?)

with the constants gr± =
(
g

(1)
r± , g

(2)
r±

)T 6= 0 and Ω
(±)
Kerr := a/(2Mr±), as well

as an error with exponential decay

‖Er±(r?)‖ =
∥∥R̃(r?)− R̃r±(r?)

∥∥ ≤ p± e±q±r?
for suitable constants p±, q± ∈ R>0.
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The spectral properties of the eigenvalues and eigenfunctions of the angular
ODE system are summarized in the following proposition.

Proposition 2.3. For any ω ∈ R and k ∈ Z + 1/2, the differential op-
erator (13) has a complete set of orthonormal eigenfunctions (Tl)l∈Z in

L2
(
(0, π), sin (θ) dθ

)2
. The corresponding eigenvalues ξl are real-valued and

non-degenerate, and can thus be ordered as ξl < ξl+1. Moreover, the eigen-
functions are pointwise bounded and smooth away from the poles,

Tl ∈ L∞
(
(0, π)

)2 ∩ C∞((0, π)
)2
.

Both the eigenfunctions Tl and the eigenvalues ξl depend smoothly on ω.

3. Hamiltonian formulation of the massive Dirac equation in
the non-extreme Kerr geometry in horizon-penetrating

coordinates

For the derivation of the Hamiltonian formulation of the massive Dirac
equation in the non-extreme Kerr geometry in horizon-penetrating advanced
Eddington–Finkelstein-type coordinates, it is advantageous to first rewrite
the system (9) in the form

(R+A)ψ′ = 0 ,

where

(15) R :=


−imr 0 −D− 0

0 −imr 0 −D+

D+ 0 imr 0
0 D− 0 imr


and

(16) A :=


ma cos (θ) 0 0 L

0 ma cos (θ) L 0

0 L ma cos (θ) 0
L 0 0 ma cos (θ)


are matrix-valued differential operators with

D+ := r−1
+

(
[∆ + 4Mr] ∂τ + ∆ ∂r + 2a ∂φ + r −M

)
D− := r+(∂τ − ∂r)
L := ia sin (θ) ∂τ + ∂θ + i csc(θ) ∂φ + 2−1 cot (θ) .
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We then separate the τ -derivative and multiply the resulting equation by
the inverse of the matrix

γ̃′τ := −
√

Σ γ0P†P−1γ′τ

=


0 0 −r+ −ia sin (θ)

0 0 ia sin (θ) −r−1
+ [∆ + 4Mr]

r−1
+ [∆ + 4Mr] −ia sin (θ) 0 0

ia sin (θ) r+ 0 0

(17)

(cf. Eq. (10)) as well as by the imaginary unit, which leads to the Schrödinger-
type equation

(18) i∂τψ
′ = −i (γ̃′τ )−1

(
R(3) +A(3)

)
ψ′ =: Hψ′,

where R(3) and A(3) contain the first-order spatial and all zero-order contri-
butions of the operators (15) and (16), respectively. The Dirac Hamiltonian
H may be recast in the more convenient form

(19) H = αj∂j + V , j ∈ {r, θ, φ} ,

with the matrix-valued coefficients

αr := − 1

Σ + 2Mr


i∆ r+a sin (θ) 0 0

r−1
+ ∆ a sin (θ) −i (∆ + 4Mr) 0 0

0 0 −i (∆ + 4Mr) r−1
+ ∆ a sin (θ)

0 0 r+a sin (θ) i∆



(20)

αθ := − 1

Σ + 2Mr


−a sin (θ) ir+ 0 0

ir−1
+ [∆ + 4Mr] a sin (θ) 0 0

0 0 −a sin (θ) −ir−1
+ [∆ + 4Mr]

0 0 −ir+ a sin (θ)


(21)

αφ := − 1

Σ + 2Mr


ia r+csc(θ) 0 0

r−1
+ csc(θ) (∆− 2Σ) −ia 0 0

0 0 −ia r−1
+ csc(θ) (∆− 2Σ)

0 0 r+csc(θ) ia


(22)
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and the potential

V := − 1

Σ + 2Mr

(
B1 B2

B3 B4

)
,(23)

where the quantities Bk, k ∈ {1, 2, 3, 4}, are the (2× 2)-blocks

B1 :=
1

2

(
2i (r −M)− a cos (θ) ir+ cot (θ)

r−1
+

[
2a sin (θ) (r −M) + i cot (θ) (∆ + 4Mr)

]
a cos (θ)

)

B2 := −m
(
r − ia cos (θ)

)( r+ ia sin (θ)

−ia sin (θ) r−1
+ (∆ + 4Mr)

)

B3 := −m
(
r + ia cos (θ)

)( r−1
+ (∆ + 4Mr) −ia sin (θ)

ia sin (θ) r+

)

B4 :=
1

2

(
−a cos (θ) r−1

+

[
2a sin (θ) (r −M)− i cot (θ) (∆ + 4Mr)

]
−ir+ cot (θ) 2i (r −M) + a cos (θ)

)
.

(24)

4. The canonical scalar product

In order to set up a Hilbert space that contains the solutions of (18)

H :=
(
Sol(H − i∂τ ), ( · | · )

)
for which

Sol(H − i∂τ ) =
{
ψ′ ∈ L2(M, SM) | (H − i∂τ )ψ′ = 0

}
,

and to establish the symmetry property of the Hamiltonian H

(φ′|Hψ′) = (Hφ′|ψ′) with φ′, ψ′ ∈ Sol(H − i∂τ )

(or its self-adjointness), we require a suitable scalar product ( · | · ). We thus
work with the scalar product [11]

(25) (ψ|φ)|Nτ
:=

∫
Nτ

≺ψ|/νφ�dµ|Nτ
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defined on the space-like hypersurface Nτ := {τ = const., r, θ, φ}, where

(26) ≺ · | · � : SxM× SxM→ C , (ψ, φ) 7→ ψ?φ

denotes the indefinite spin scalar product of signature (2, 2), ψ? := ψ†S
the adjoint Dirac spinor, /ν = γµνµ the Clifford contraction of the future-

directed, time-like normal ν, and dµ|Nτ
=
√
|det(g|Nτ

)| dφ dθ dr is the in-

variant measure on Nτ , in which g|Nτ
is the induced Riemannian metric.

The matrix S is defined via the relation

(27) γµ† := S γµS −1 .

We note that this scalar product is independent of the choice of the specific
space-like hypersurface Nτ . This can be easily shown by means of Gauss’
theorem and current conservation. In the following, we explicitly compute
the above quantities and subsequently derive a more convenient representa-
tion for the scalar product. We begin with the calculation of the matrix S .
Via (17) and the spinor transformation (7), we find

γµ = − 1√
Σ

(P†)−1 γ0 γ̃′µ P

and hence, using the defining equation (27), we obtain the expression

S =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

Next, we determine the normal vector field ν by means of the conditions

〈ν|∂r〉|g = 〈ν|∂θ〉|g = 〈ν|∂φ〉|g = 0 and 〈ν|ν〉|g = 1 ,

where 〈 · | · 〉g := g( · , · ) = gµν dxµ ⊗ dxν( · , · ) is the spacetime inner prod-
uct on M. Accordingly, employing (1) yields

ν =

(
1 +

2Mr

Σ

)1/2

∂τ −
2Mr

Σ

(
1 +

2Mr

Σ

)−1/2

∂r .

The corresponding dual co-vector reads

(28) ν =

(
1 +

2Mr

Σ

)−1/2

dτ .
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Moreover, the induced metric g|Nτ
on the hypersurface Nτ is simply the

restriction of (1) to Nτ and, thus, we obtain

g|Nτ
= −

(
1 +

2Mr

Σ

)(
dr − a sin2 (θ) dφ

)
⊗
(
dr − a sin2 (θ) dφ

)
− Σ dθ ⊗ dθ − Σ sin2 (θ) dφ⊗ dφ .

The associated Jacobian determinant in the volume measure dµ|Nτ
becomes

(29)
√
|det(g|Nτ

)| = Σ sin (θ)

(
1 +

2Mr

Σ

)1/2

.

We now express the scalar product (25) in terms of the primed quantities
(7) used in (18), and substitute (28) as well as (29). This results in

(30) (ψ′|φ′)|Nτ
=

∫∫∫
ψ′†S ′γ′τφ′Σ sin (θ) dφ dθ dr .

Again employing (17), that is with γ′τ = −P(P†)−1γ0 γ̃′τ/
√

Σ, the scalar
product (30) yields

(ψ′|φ′)|Nτ
= −

∫∫∫
ψ′†S ′P(P†)−1γ0 γ̃′τφ′

√
Σ sin (θ) dφ dθ dr

= −
∫∫∫

ψ′†PP†S ′P(P†)−1γ0 γ̃′τφ′ sin (θ) dφ dθ dr

= −
∫∫∫

ψ′†PS (P†)−1γ0 γ̃′τφ′ sin (θ) dφ dθ dr

= −
∫∫∫

ψ′†S P†(P†)−1γ0 γ̃′τφ′ sin (θ) dφ dθ dr

=

∫∫∫
ψ′† Γτφ′ sin (θ) dφ dθ dr ,

(31)

where
(32)

Γτ := −S γ0 γ̃′τ =


r−1

+ [∆ + 4Mr] −ia sin (θ) 0 0
ia sin (θ) r+ 0 0

0 0 r+ ia sin (θ)

0 0 −ia sin (θ) r−1
+ [∆ + 4Mr]

.
We point out that in the above derivation, we have first applied the relation√

Σ 11C4 = PP†, then the transformation law for the matrix S ′, namely
S = P†S ′P, and finally we have used the fact that both S and the
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product PS are self-adjoint, which leads to PS = S P†. Besides, the
integration limits are suppressed for ease of notation. The eigenvalues λ1, λ2

of the matrix (32) are positive

λ1 =
1

2

(
r+ +

∆ + 4Mr

r+
+

√(
r+ −

∆ + 4Mr

r+

)2

+ 4a2 sin2 (θ)

)
> 0

λ2 =
1

2

(
r+ +

∆ + 4Mr

r+
−

√(
r+ +

∆ + 4Mr

r+

)2

− 4(Σ + 2Mr)

)
> 0

and with algebraic multiplicities µA(λ1) = µA(λ2) = 2, demonstrating that
(31) is indeed positive-definite. The symmetry property of the Dirac Hamil-
tonian (19) with respect to this scalar product is explicitly proven in Ap-
pendix A.

5. Essential self-adjointness of the Dirac Hamiltonian

In this section, we show that the Dirac Hamiltonian in the non-extreme Kerr
geometry in horizon-penetrating advanced Eddington–Finkelstein-type co-
ordinates is essentially self-adjoint using the results obtained in [15] (we re-
cently learned that in [19] related results were found with different methods).
Having an essentially self-adjoint Hamiltonian is necessary for the deriva-
tion of the integral representation of the Dirac propagator presented in the
subsequent section, as it is based on the spectral theorem for unbounded,
self-adjoint operators. The proof of the essential self-adjointness involves the
technical difficulty that in the Kerr geometry the Dirac Hamiltonian is only
almost everywhere elliptic, and hence not uniformly elliptic. More precisely,
it fails to be elliptic at the event and the Cauchy horizon. This can be easily
seen from the evaluation of the determinant of the principal symbol of the
Hamiltonian (19)

(33) P (r, θ; ξ) = αj(r, θ) ξj ,

where ξ ∈ T ?Nτ . In more detail, we first rewrite the matrices αj in terms of
the original Dirac matrices γj

αj = −i (γ̃′τ )−1 γ̃′j = −i (γ′τ )−1γ′j = −i P(γτ )−1γjP−1 .
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Substituting this expression into the principal symbol (33) and computing
the determinant yields

det
(
P (r, θ; ξ)

)
=

det(γjξj)

det(γτ )
.

Using the relations

(γτ )2 = gττ11SxM and γiξi γ
jξj = gijξi ξj 11SxM ,

we obtain

(34) det
(
P (r, θ; ξ)

)
=

(
gijξi ξj
gττ

)2

.

The Hamiltonian fails to be elliptic if its principal symbol is not invertible,
that is, if the determinant (34) vanishes. This is the case for

(35) gijξiξj = 0 with ξ 6= 0 ,

where the quantities gij are the components of the inverse of the spacetime
metric (1)

g =
1

Σ

(
[Σ + 2Mr] ∂τ ⊗ ∂τ − 2Mr (∂τ ⊗ ∂r + ∂r ⊗ ∂τ )−∆ ∂r ⊗ ∂r
− a (∂r ⊗ ∂φ + ∂φ ⊗ ∂r)− ∂θ ⊗ ∂θ − csc2(θ) ∂φ ⊗ ∂φ

)
.

Analyzing condition (35), we find that the Hamiltonian is not elliptic at
the event and the Cauchy horizon. We point out that by using the intrin-
sic Dirac Hamiltonian on the space-like hypersurface Nτ , ellipticity would
be conserved even at the horizons, which can be inferred from the analog
condition

gij|Nτ
ξiξj = 0 with ξ 6= 0 ,

where the gij|Nτ
denote the components of the inverse of the associated in-

duced Riemannian metric

g|Nτ
= − 1

Σ

((
r2 + a2

)2 −∆ a2 sin2 (θ)

Σ + 2Mr
∂r ⊗ ∂r + a [∂r ⊗ ∂φ + ∂φ ⊗ ∂r]

+ ∂θ ⊗ ∂θ + csc2(θ) ∂φ ⊗ ∂φ

)
.
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Figure 1: Carter–Penrose diagram of the region M of the non-extreme Kerr
geometry with constant-τ hypersurfaces Nτ1 and Nτ2 cut-off at the boundary
∂M . A radial Dirichlet-type boundary condition imposed on ∂M leads to
a reflection of Dirac particles away from the singularity without affecting
their dynamics outside the Cauchy horizon. This is represented by Cauchy
data propagated in τ -direction.

However, as we work with the Hamiltonian obtained from the Dirac operator
in the full Kerr spacetime, ellipticity is broken. Therefore, we cannot employ
standard techniques and results from elliptic theory in order to verify the
essential self-adjointness of the Dirac Hamiltonian. Instead, we apply the
results derived in [15], where near-boundary elliptic methods are combined
with results from the theory of symmetric hyperbolic systems (see, e.g.,
[2, 6, 16, 23]). In the following, we state the geometrical and functional
analytic settings for the formulation of the Cauchy problem for the massive
Dirac equation in the non-extreme Kerr geometry in horizon-penetrating
coordinates in Hamiltonian form, which is used as a technical tool in the
proof of the essential self-adjointness of the Dirac Hamiltonian.
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We let (M, g) be the non-extreme Kerr geometry with the metric (1) in
horizon-penetrating advanced Eddington–Finkelstein-type coordinates (2)
and consider the subset

M := {τ, r > r0, θ, φ} ⊂M , where r0 < r− .

Furthermore, we introduce the time-like inner boundary

∂M := {τ, r = r0, θ, φ} of M

and the family of space-like hypersurfaces

N = (Nτ )τ∈R , where Nτ := {τ = const., r > r0, θ, φ} ,

with boundaries

∂Nτ := ∂M ∩Nτ ' S2

(see Figure 1). These hypersurfaces constitute a foliation of M . Moreover,
near ∂M , we define a locally time-like Killing vector field [18]

(36) K := ∂τ + β0 ∂φ with β0 = β0(r0) ∈ R\{0} ,

where ∂τ and ∂φ are the Killing fields describing the stationarity and axisym-
metry of the Kerr geometry, respectively. We note that the specific proof of
existence of unique, global solutions of the Cauchy problem for the massive
Dirac equation in Hamiltonian form for a general class of mixed initial-
boundary value problems on Lorentzian manifolds presented in [15] makes
essential use of a Killing field K = ∂t that is tangential to and time-like on
the inner boundary ∂M and represented by a coordinate system describing
an observer who is co-moving along the associated flow lines. This Killing
field may also be space-like or null in M\∂M . A direct computation shows
that the Killing field K = ∂τ in advanced Eddington–Finkelstein-type coor-
dinates is not everywhere time-like on ∂M . To be more precise, the condition
for ∂τ not being time-like reads

g(∂τ , ∂τ ) = 1− 2Mr

Σ
≤ 0 .

This inequality is solved by

M −
√
M2 − a2 cos2 (θ) ≤ r ≤M +

√
M2 − a2 cos2 (θ) ,

which is the ergosphere region. But taking K as the linear combination (36),
it turns out to be a Killing field that satisfies all the above assumptions. To
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make the connection between (36) and the Killing field K = ∂t, we use the
coordinate transformation

R× R>0 × [0, π]× [0, 2π)→ R× R>0 × [0, π]× [0, 2π) ,

(τ, r, θ, φ) 7→ (t, r, θ,Φ)

with

(37) t = τ and Φ = φ− β0τ .

This transformation can be easily derived from the condition

K = ∂t =
∂τ

∂t
∂τ +

∂φ

∂t
∂φ = ∂τ + β0 ∂φ .

Evaluation of the gradient

∇t = gµν(∂µt) ∂ν = gtν ∂ν

and subsequently

g(∂t,∇t) = gtt = 1 > 0 as well as g(∇t,∇t) = gtt = 1 +
2Mr

Σ
> 0

demonstrates that ∇t is future-pointing and time-like and, hence, that the
coordinate t is a time function as is the original time coordinate τ [22]. Due
to the specific form of the transformation (37), we find that the induced
metric g|t=const. on the level sets of t is identical to the induced metric

g|Nτ
= −

(
1 +

2Mr

Σ

)
dr ⊗ dr + a sin2 (θ)

(
1 +

2Mr

Σ

)[
dr ⊗ dφ+ dφ⊗ dr

]
− Σ dθ ⊗ dθ − sin2 (θ)

[
Σ + a2 sin2 (θ)

(
1 +

2Mr

Σ

)]
dφ⊗ dφ

on the level sets of τ for the advanced Eddington–Finkelstein-type coor-
dinates. As a consequence, all the results obtained for the co-moving co-
ordinate system in [15] will also hold true for the advanced Eddington–
Finkelstein-type coordinates.
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Next, in addition to these geometric structures, we introduce the spin
bundle SM of M with fibers SxM ' C4, where x ∈M . We may then con-
sider the Dirac Hamiltonian given in (19)

(38) H = αj∂j + V on Nτ ,

which is a symmetric operator with respect to the scalar product specified
in (31)

(39) (ψ′|φ′)|Nτ =

∫ ∞
r0

∫
S2

ψ′† Γτφ′ sin (θ) dφ dθ dr ,

where the Dirac 4-spinors ψ′, φ′ ∈ SxM and the matrix Γτ is defined in (32).
We note that for H being symmetric with respect to (39), we have to impose
the radial Dirichlet-type boundary condition (see Appendix A)(

/n− iP(P†)−1
)
ψ′|∂M = 0 ,

in which n is the inner normal to ∂M and P is determined by (8). This
boundary condition has the effect that Dirac particles are reflected at ∂M
away from the singularity such that, without changing their dynamics out-
side the Cauchy horizon, we obtain a unitary time evolution. The specific
domain of the Hamiltonian reads

Dom(H) =
{
ψ′ ∈ C∞0 (Nτ , SM)

∣∣ (/n− iP(P†)−1
)
ψ′|∂Nτ = 0

}
.

In this setting, we find a unique, global solution of the Cauchy problem for
the massive Dirac equation in Hamiltonian form in the class C∞sc (M,SM).

Lemma 5.1. The Cauchy problem for the massive Dirac equation in the
non-extreme Kerr geometry in horizon-penetrating advanced Eddington–Fin-
kelstein-type coordinates{

i∂τψ
′ = Hψ′

ψ′|τ=0 =: ψ′0 ∈ C∞0 (Nτ=0, SM)

with the radial Dirichlet-type boundary condition at ∂M given by

(40)
(
/n− iP(P†)−1

)
ψ′|∂M = 0 ,

where the initial data ψ′0 is smooth, compactly supported outside, across, and
inside the event horizon, up to the Cauchy horizon, and is compatible with
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the boundary condition, i.e.,(
/n− iP(P†)−1

)
(Hpψ′0)|∂Nτ = 0 ∀ p ∈ N0 ,

has a unique, global solution ψ′ in the class of smooth functions with spatially
compact support C∞sc (M,SM). Evaluating this solution at subsequent times
τ and τ ′ gives rise to a unique unitary propagator

U τ
′, τ : C∞0 (Nτ , SM)→ C∞0 (Nτ ′ , SM) .

The proof of this lemma is shown in detail for a more general class of non-
uniformly elliptic mixed initial-boundary value problems for the Dirac equa-
tion in Hamiltonian form on Lorentzian manifolds with dimension d ≥ 3 in
[15]. The existence of a unique, global solution ψ′ ∈ C∞sc (M,SM) is im-
perative for the specific proof of the essential self-adjointness of the Dirac
Hamiltonian presented in the same work. Below, we state the result for
the Hamiltonian in the non-extreme Kerr geometry in horizon-penetrating
coordinates (38).

Theorem 5.2. The massive Dirac Hamiltonian H in the non-extreme Kerr
geometry in horizon-penetrating advanced Eddington–Finkelstein-type coor-
dinates with domain of definition

Dom(H) =
{
ψ′ ∈ C∞0 (Nτ , SM)

∣∣ (/n− iP(P†)−1
)

(Hpψ′)|∂Nτ = 0 ∀ p ∈ N0

}
is essentially self-adjoint.

6. Resolvent of the Dirac Hamiltonian and integral spectral
representation of the Dirac propagator

We may now construct an integral spectral representation of the Dirac prop-
agator that yields the dynamics of massive Dirac particles outside, across,
and inside the event horizon, up to the Cauchy horizon. More precisely, we
derive an explicit expression for the spectral measure dPω of the essentially
self-adjoint Dirac Hamiltonian H defined in (38) with the domain specified
in Theorem 5.2, which arises in the formal spectral decomposition of the
Dirac propagator

(41) ψ′(τ, r, θ, φ) = e−iτHψ′0(r, θ, φ) =

∫
R
e−iωτψ′0(r, θ, φ) dPω ,
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where ψ′0 is smooth, spatially compact initial data. To this end, we em-
ploy Stone’s formula and, thus, express the spectral measure in terms of
the resolvent Res(H) = (H − ωc)

−1 of the Hamiltonian. As the spectrum
of the Hamiltonian σ(H) ⊆ R is on the real line, this resolvent exists for
all ωc ∈ C\R with real part Re(ωc) = ω ∈ σ(H) and is given uniquely. In
the computation of the resolvent, we make use of quantities obtained in the
analysis of Chandrasekhar’s separation of variables, namely the angular pro-
jector onto a finite-dimensional, invariant eigenspace of the angular operator
(13) and the Green’s matrix of the radial ODE system (12).

Theorem 6.1. The massive Dirac propagator in the non-extreme Kerr ge-
ometry in horizon-penetrating advanced Eddington–Finkelstein-type coordi-
nates can be expressed via the integral spectral representation

ψ′(τ, r, θ, φ) =
1

2πi

∑
k∈Z

e−ikφ

∫
R
e−iωτ lim

ε↘0

[
(Hk − ω − iε)−1

− (Hk − ω + iε)−1
]
(r, θ; r′, θ′)ψ′0,k(r

′, θ′) dω ,

where ψ′0,k ∈ C∞0
(
(r0,∞)× [0, π], SM

)
is the initial data for fixed k-modes

and (Hk − ω ∓ iε)−1 are the resolvents of the Dirac Hamiltonian for fixed
k-modes Hk on the upper and lower complex half-planes. The resolvents are
unique and of the form

(Hk − ω ∓ iε)−1(r, θ; r′, θ′)ψ′0,k(r
′, θ′) = −

∑
l∈Z

∫ 1

−1
Ql(θ; θ

′)

∫ ∞
r0

C

×
(
G(r; r′)k,l,ω±iε 0C2

0C2 G(r; r′)k,l,ω±iε

)
E (r′, θ′)ψ′0,k(r

′, θ′) dr′d
(
cos (θ′)

)
with Ql( · , · ) being the integral kernel of the spectral projector onto a finite-
dimensional, invariant eigenspace of the angular operator (13) that cor-
responds to the spectral parameter ξl, G(r; r′)k,l,ω±iε the two-dimensional
Green’s matrix of the radial first-order ODE system (12), and

C =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0
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as well as

E (r′, θ′) = −


i
(
∆(r′) + 4Mr′

)
r+a sin (θ′) 0 0

0 0 −ir+ a sin (θ′)
0 0 r+a sin (θ′) i

(
∆(r′) + 4Mr′

)
a sin (θ′) −ir+ 0 0

.
Proof. We first compute the resolvents (Hk − ω ∓ iε)−1 of the Dirac Hamil-
tonian for fixed k-modes Hk, where ω ∈ R and ε > 0 is sufficiently small
so that it can be considered as a slightly non-self-adjoint perturbation. For
this purpose, we begin by substituting Chandrasekhar’s mode ansatz with
complex-valued frequencies

ψ′(τ, r, θ, φ) = e−i(ωετ+kφ) Ψ(r, θ) in which Ψ ∈ L2
(
(r0,∞)× [0, π], SM

)
into the Dirac equation (18) restricted to M , yielding

(42) (Hk − ωε)Ψ = 0 ,

where

Hk := αr∂r + αθ∂θ − ik αφ + V

with the Dirac matrices αj , j ∈ {r, θ, φ}, and the potential V given in (20)–
(23). We remark that we introduced the abbreviation ωε∈C with Re(ωε)=ω
and Im(ωε) ∈ {−ε, ε} in order to cover the resolvents in both the upper
and lower complex half-planes simultaneously. Next, we define the spectral
projector

QlΨ :=

∫ 1

−1
Ql(θ; θ

′) Ψ(r, θ′) d
(
cos (θ′)

)
onto the finite-dimensional, invariant eigenspace of the matrix-valued an-
gular operator (13), which results from Chandrasekhar’s separation of vari-
ables, corresponding to the spectral parameter ξl with l ∈ Z. This spectral
projector is idempotent

Qnl = Ql for all n ∈ N ,

and the family of spectral projectors (Ql)l∈Z is complete

(43)
∑
l∈Z

Ql = 11 .
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We may therefore express the angular operator (13) by means of the family
(Ql)l∈Z as

A =
∑
l∈Z

ξlQl .

Applying this representation of the angular operator and the completeness
constraint (43) in Eq. (42), we obtain

(44) − (Σ + 2Mr)−1
∑
l∈Z
M(∂r; r, θ)k,l,ωε Ql Ψ = 0 ,

where

M(∂r; r, θ)k,l,ωε :=


iOk,ωε a sin (θ)Uωε ir+ Sl a sin (θ)Sl

a sin (θ)

r+
Ok,ωε − i(∆ + 4Mr)

r+
Uωε a sin (θ)Sl − i(∆ + 4Mr)

r+
Sl

− i(∆ + 4Mr)

r+
Sl a sin (θ)Sl − i(∆ + 4Mr)

r+
Uωε

a sin (θ)

r+
Ok,ωε

a sin (θ)Sl ir+ Sl a sin (θ)Uωε iOk,ωε


with the purely radial differential operators Ok,ωε , Uωε , and the function Sl
defined by

Ok,ωε := ∆ ∂r + r −M − iωε(∆ + 4Mr)− 2iak

Uωε := r+(∂r + iωε)

Sl := ξl + imr .

In the following, we show that the computation of the resolvent of the
operator M(∂r; r, θ)k,l,ωε in (44) can be reduced to determining the two-
dimensional Green’s matrix of the radial ODE system (12). Writing the
Dirac equation (44) in the factorized form

−(Σ + 2Mr)−1 B(r, θ)
∑
l∈Z
R(∂r; r)k,l,ωε Ql Ψ = 0 ,

where the matrix B(r, θ) and the matrix-valued radial operator R(∂r; r)k,l,ωε
read

B(r, θ) :=


i a sin (θ) 0 0

a sin (θ)

r+
− i(∆ + 4Mr)

r+
0 0

0 0 − i(∆ + 4Mr)

r+

a sin (θ)

r+

0 0 a sin (θ) i
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and

R(∂r; r)k,l,ωε :=


Ok,ωε 0 r+ Sl 0

0 Uωε 0 Sl
Sl 0 Uωε 0
0 r+ Sl 0 Ok,ωε

 ,

we can easily bring it into the block diagonal representation
(45)

− E −1(r, θ)
∑
l∈Z

(
R2×2(∂r; r)k,l,ωε 0C2

0C2 R2×2(∂r; r)k,l,ωε

)
C−1Ql Ψ = 0 ,

in which

(46)

(
R2×2(∂r; r)k,l,ωε 0C2

0C2 R2×2(∂r; r)k,lωε

)
= C−1R(∂r; r)k,l,ωε C

with

(47) R2×2(∂r; r)k,l,ωε :=

(
Ok,ωε r+ Sl
Sl Uωε

)
,

and the matrices E −1(r, θ) and C are defined by

E −1(r, θ) := (Σ + 2Mr)−1 B(r, θ) C

and

C :=


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 .

From the specific form of (45), it is obvious that the key quantity in the
determination of the resolvent of M(∂r; r, θ)k,l,ωε , and thus of the resolvent
(Hk − ωε)−1, is the solution G(r; r′)k,l,ωε of the distributional equation

(48) R2×2(∂r; r)k,l,ωε G(r; r′)k,l,ωε = δ(r − r′) 11C2 .

We point out that (47) is identical to the operator (12), but for a complex-
valued frequency ω with imaginary part Im(ω) ∈ {−ε, ε}. Hence,G(r; r′)k,l,ωε
corresponds to the Green’s matrix of the radial ODE system obtained via
Chandrasekhar’s separation of variables. However, in the case of a complex-
valued frequency, the solution of the radial ODE system has an additional
dampening contribution guaranteeing that Ψ(r, θ) is in L2

(
(r0,∞)× [0, π],
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SM
)
, which is in contrast to the original case with ω ∈ R. In order to solve

the distributional equation (48), we first introduce the vector-valued func-
tions

Φ1(r; r′) =

(
Φ1,1(r; r′)
Φ1,2(r; r′)

)
and Φ2(r; r′) =

(
Φ2,1(r; r′)
Φ2,2(r; r′)

)
that

• for r 6= r′ are linearly independent solutions of the homogeneous equa-
tion

R2×2(∂r; r)k,l,ωε Φ(r; r′) = 0 ,

• have jump discontinuities at r = r′,

• satisfy the Dirichlet-type boundary condition (40) at r = r0 ,

• and are square-integrable, that is∥∥Φ1/2(r; r′)
∥∥2

2
=

∫ ∞
r0

∥∥Φ1/2(r; r′)
∥∥2

dr <∞ .

These functions are specified in Appendix B. It turns out that their r′-
dependence can be chosen in such a way that it is solely contained in
Heaviside step functions Θ. For clarity, these Heaviside step functions are
explicitly stated in what follows, which makes it possible to consider Φ1

and Φ2 as functions of only the variable r. From the first and the last of
the above properties as well as from Lemma 2.1 and Lemma 2.2 (but with
a complex-valued frequency ωε ∈ {ω + iε, ω − iε} and with the substitution√
ω2 −m2 →

√
|ωε|2 −m2), we can moreover infer that they have the spe-

cific asymptotics

Φ1/2(r) ∼ eiφ+(r?(r))

( c1,∞√
∆

c2,∞

)
for r →∞ and

{
Im(ωε) < 0 if |ωε| ≥ m
Re(ωε) ≥ 0 if |ωε| < m

Φ1/2(r) ∼ e−iφ−(r?(r))

( c3,∞√
∆

c4,∞

)
for r →∞ and

{
Im(ωε) > 0 if |ωε| ≥ m
Re(ωε) < 0 if |ωε| < m

Φ1/2(r) ∼

 c1,r±√
|∆|

e2i
(
ωε+kΩ

(±)
Kerr

)
r?(r)

c2,r±

 for

{
r → r+ and Im(ωε) < 0

r → r− and Im(ωε) > 0

Φ1/2(r) ∼ c3,r±

(
0
1

)
for

{
r → r+ and Im(ωε) > 0

r → r− and Im(ωε) < 0 ,
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where cn,∞ and cm,r± , with n ∈ {1, 2, 3, 4} as well as m ∈ {1, 2, 3}, are scalar
constants. We then use the ansatz

(49) G(r; r′)k,l,ωε =


Θ(r − r′) Φ1(r)P1(r′) + Θ(r′ − r) Φ2(r)P2(r′)

for r+ < r′ <∞ and r0 ≤ r′ ≤ r−

Θ(r − r′) Φ1(r)P1(r′) + Θ(r − r′) Φ2(r)P2(r′)

for r− < r′ ≤ r+

for the radial Green’s matrix in case |ωε| ≥ m and Im(ωε) < 0 or |ωε| < m
and Re(ωε) ≥ 0, whereas in case |ωε| ≥ m and Im(ωε) > 0 or |ωε| < m and
Re(ωε) < 0, we employ the ansatz

(50) G(r; r′)k,l,ωε =


Θ(r − r′) Φ1(r)P1(r′) + Θ(r′ − r) Φ2(r)P2(r′)

for r+ < r′ <∞ and r0 ≤ r′ ≤ r−

Θ(r′ − r) Φ1(r)P1(r′) + Θ(r′ − r) Φ2(r)P2(r′)

for r− < r′ ≤ r+ ,

in which P1 and P2 are unknowns yet to be determined. Applying the radial
operator (47) to (49) and (50), we obtain

R2×2(∂r; r)k,l,ωε G(r; r′)k,l,ωε

=

(
∆ 0
0 r+

)
δ(r − r′)

{[
Φ1(r′)P1(r′)∓ Φ2(r′)P2(r′)

]
for (49)[

±Φ1(r′)P1(r′)− Φ2(r′)P2(r′)
]

for (50) .

Comparing these equations with (48) yields the two systems

(
∆−1 0

0 r−1
+

)
=

{
Φ1(r′)P1(r′)∓ Φ2(r′)P2(r′) for (49)

±Φ1(r′)P1(r′)− Φ2(r′)P2(r′) for (50) .

Their solutions P1/2(r′) read

P1,1(r′) =
Φ2,2(r′)

∆(r′)W (r′)
, P1,2(r′) = − Φ2,1(r′)

r+W (r′)
,

P2,1(r′) = ± Φ1,2(r′)

∆(r′)W (r′)
, P2,2(r′) = ∓ Φ1,1(r′)

r+W (r′)
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for the ansatz (49) and

P1,1(r′) = ± Φ2,2(r′)

∆(r′)W (r′)
, P1,2(r′) = ∓ Φ2,1(r′)

r+W (r′)
,

P2,1(r′) =
Φ1,2(r′)

∆(r′)W (r′)
, P2,2(r′) = − Φ1,1(r′)

r+W (r′)

for ansatz (50), where

W (r′) = W (Φ1,Φ2)(r′) := Φ1,1(r′) Φ2,2(r′)− Φ1,2(r′) Φ2,1(r′)

is the Wronskian. Substituting these expressions into (49) and (50), respec-
tively, leads in case r+ < r′ <∞ or r0 ≤ r′ ≤ r− to the Green’s matrix

G(r; r′)k,l,ωε =
1

W (r′)

Θ(r − r′)


Φ1,1(r)Φ2,2(r′)

∆(r′)
−Φ1,1(r)Φ2,1(r′)

r+
Φ1,2(r)Φ2,2(r′)

∆(r′)
−Φ1,2(r)Φ2,1(r′)

r+


k,l,ωε

+Θ(r′ − r)


Φ2,1(r)Φ1,2(r′)

∆(r′)
−Φ2,1(r)Φ1,1(r′)

r+
Φ2,2(r)Φ1,2(r′)

∆(r′)
−Φ2,2(r)Φ1,1(r′)

r+


k,l,ωε



(51)

for both (49) and (50), whereas in case r− < r′ ≤ r+ it leads to the Green’s
matrices

G(r; r′)k,l,ωε = 1

W (r′)


Φ1,1(r)Φ2,2(r′)− Φ2,1(r)Φ1,2(r′)

∆(r′)

Φ2,1(r)Φ1,1(r′)− Φ1,1(r)Φ2,1(r′)

r+
Φ1,2(r)Φ2,2(r′)− Φ2,2(r)Φ1,2(r′)

∆(r′)

Φ2,2(r)Φ1,1(r′)− Φ1,2(r)Φ2,1(r′)

r+


k,l,ωε

×

{
Θ(r − r′) for (49)

−Θ(r′ − r) for (50) .

(52)

Subsequently, we may directly read off the resolvent of the Dirac Hamilto-
nian for fixed k-modes from the block-diagonalized representation (45). We
thus find

(Hk − ωε)−1Ψ = −
∑
l∈Z

Ql

∫ ∞
r0

C

(
G(r; r′)k,l,ωε 0C2

0C2 G(r; r′)k,l,ωε

)
× E (r′, θ) Ψ(r′, θ) dr′ ,

(53)
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where the Green’s matrix G(r; r′)k,l,ωε is given in (51) and (52). To show
that this expression is actually the desired resolvent, we verify the identity

(54) (Hk − ωε)(Hk − ωε)−1Ψ = Ψ .

Accordingly, applying the operator in (45) to (53), we obtain in a first step

(Hk − ωε)(Hk − ωε)−1Ψ = E −1(r, θ)
∑
l∈Z

(
R2×2(∂r; r)k,l,ωε 0C2

0C2 R2×2(∂r; r)k,l,ωε

)

× C−1

∫ 1

−1
Ql(θ; θ

′)
∑
m∈Z

∫ 1

−1
Qm(θ′; θ′′)

∫ ∞
r0

C
(
G(r; r′)k,m,ωε 0C2

0C2 G(r; r′)k,m,ωε

)
× E (r′, θ′′) Ψ(r′, θ′′) dr′ d

(
cos (θ′′)

)
d
(
cos (θ′)

)
.

Moving the integral kernel of the spectral projector Ql(θ; θ
′) into the θ′′-

integral and taking into account that the spectral projectors are idempotent,
i.e., their integral kernels satisfy the relation

Ql(θ; θ
′)Qm(θ′; θ′′) = δlm δ

(
cos (θ)− cos (θ′)

)
Qm(θ; θ′′) ,

we infer, after evaluating the θ′-integral and the sum over all integers m,
that

(Hk − ωε)(Hk − ωε)−1Ψ = E −1(r, θ)
∑
l∈Z

(
R2×2(∂r; r)k,l,ωε 0C2

0C2 R2×2(∂r; r)k,l,ωε

)

× C−1

∫ 1

−1
Ql(θ; θ

′′)

∫ ∞
r0

C

(
G(r; r′)k,l,ωε 0C2

0C2 G(r; r′)k,l,ωε

)
× E (r′, θ′′) Ψ(r′, θ′′) dr′ d

(
cos (θ′′)

)
.

Next, we can also move the constant matrix C−1 as well as the matrix-valued
radial operator (46) into the θ′′- and the r′-integral. Employing (48) yields

(Hk − ωε)(Hk − ωε)−1Ψ = E −1(r, θ)
∑
l∈Z

Ql

∫ ∞
r0

δ(r − r′) E (r′, θ)Ψ(r′, θ) dr′ .

Solving the integral with respect to the variable r′ and substituting the
completeness constraint for the spectral projectors (43), we immediately
obtain the identity (54).

Having established the explicit form of the resolvent (Hk − ωε)−1 in (53),
we continue deriving the integral spectral representation of the Dirac prop-
agator. To this end, we express the Dirac spinor ψ′ at time τ in terms of the
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propagator U τ,0 = e−iτH applied to smooth, spatially compact initial data
ψ′0 at time τ = 0 and expand the initial data in terms of k-modes

(55) ψ′ = e−iτH ψ′0 =
∑
k∈Z

e−ikφ e−iτHk ψ′0,k .

We furthermore introduce the spectral projector of the Dirac Hamiltonian
for fixed k-modes Hk onto the interval I ⊂ R

PI(Hk) := χI(Hk) ,

where χI denotes the characteristic function

χI(Hk) :=

{
1 for ω ∈ I
0 for ω /∈ I

with ω ∈ σ(Hk). Then, by making use of the identity relation

P (−∞,∞)(Hk) = 11 ,

we write (55) as

ψ′ =
∑
k∈Z

e−ikφ e−iτHk lim
a→∞

P (−a,a)(Hk)ψ
′
0,k

=
1

2

∑
k∈Z

e−ikφ lim
a→∞

e−iτHk
[
P (−a,a)(Hk) + P [−a,a](Hk)

]
ψ′0,k .

Employing Stone’s formula for the spectral projector of an unbounded, self-
adjoint operator [20], which in our framework reads

e−iτHk
[
P (−a,a)(Hk) + P [−a,a](Hk)

]
ψ′0,k

= lim
ε↘0

1

πi

∫ a

−a
e−iωτ

[
(Hk − ω − iε)−1 − (Hk − ω + iε)−1

]
ψ′0,k dω ,

we obtain

ψ′ =
1

2πi

∑
k∈Z

e−ikφ lim
a→∞

lim
ε↘0

∫ a

−a
e−iωτ

[
(Hk − ω − iε)−1

− (Hk − ω + iε)−1
]
ψ′0,k dω ,

where the resolvents are given by (53). Finally, since the fundamental solu-
tions that occur in the resolvents are bounded for all ε > 0 and all ω ∈ R
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as shown in Appendix B, we can apply Lebesgue’s dominated convergence
theorem and commute the ε-limit and the integral with respect to ω, yielding

ψ′(τ, r, θ, φ) =
1

2πi

∑
k∈Z

e−ikφ

∫
R
e−iωτ lim

ε↘0

[
(Hk − ω − iε)−1

− (Hk − ω + iε)−1
]
(r, θ; r′, θ′)ψ′0,k(r

′, θ′) dω .

(56)

We note that by comparing this expression to formula (41), we may directly
identify the spectral measure dPω of the Dirac Hamiltonian H. �

This integral spectral representation can be further simplified, on the one
hand, by performing the limit r0 ↗ r− and, on the other hand, by computing
the difference of the two resolvents (Hk − ω − iε)−1 and (Hk − ω + iε)−1 for
ε↘ 0. In the following, we explicitly work out the case |ωε| ≥ m. The case
|ωε| < m may be treated similarly. As the fundamental solutions Φ1(r; r′)
and Φ2(r; r′), which constitute the radial Green’s matrix G(r; r′)k,l,ωε and
therefore the resolvent (Hk − ωε)−1, are given piecewise for the domains
r+ < r′ <∞, r− < r′ ≤ r+, and r0 ≤ r′ ≤ r− (see the second part of Ap-
pendix B), we begin by splitting the r′-integral in the difference of resolvents
in the limit ε↘ 0 into the three associated contributions

lim
ε↘0

[
(Hk − ω − iε)−1 − (Hk − ω + iε)−1

]
ψ′0,k = lim

ε↘0

∑
l∈Z

Ql

(∫ r−

r0

+

∫ r+

r−

+

∫ ∞
r+

)
× C

(
G(r; r′)k,l,ω−iε −G(r; r′)k,l,ω+iε 0C2

0C2 G(r; r′)k,l,ω−iε −G(r; r′)k,l,ω+iε

)
× E (r′, θ)ψ′0,k(r

′, θ) dr′ .

(57)

Because the integrands in (57), and hence the lth summand, are bounded
for all values of ε, r′, and θ (see the first part of Appendix B and keeping
in mind that the initial data for fixed k-modes ψ′0,k has spatially compact
support), we can again employ Lebesgue’s dominated convergence theorem,
which allows us to commute the limit ε↘ 0 with the sum over the integers l,
the spectral projectorQl, and the integrals with respect to r′. Then, applying
the limit r0 ↗ r− to the integral spectral representation (56) and commuting
this limit with the sum over the integers k, the integral with respect to ω,
and last the sum over the integers l as well as the spectral projector Ql (in
the difference of resolvents) using the same reasoning as before, we obtain
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the expression

lim
r0↗r−

lim
ε↘0

[
(Hk − ω − iε)−1 − (Hk − ω + iε)−1

]
ψ′0,k =

∑
l∈Z

Ql

(∫ r+

r−

+

∫ ∞
r+

)
C

×

 lim
ε↘0

[
G(r; r′)k,l,ω−iε −G(r; r′)k,l,ω+iε

]
0C2

0C2 lim
ε↘0

[
G(r; r′)k,l,ω−iε −G(r; r′)k,l,ω+iε

] 
× E (r′, θ)ψ′0,k(r

′, θ) dr′ .

(58)

In order to compute the limit ε↘ 0 of the difference of the radial Green’s
matrices G(r; r′)k,l,ω−iε and G(r; r′)k,l,ω+iε in the domain r+ < r′ <∞, we
introduce the auxiliary functions (see the second part of Appendix B)

χ1(r) := lim
ε↘0

qΦ(∞)(r) and χ2(r) := lim
ε↘0

Φ̂(∞)(r) ,

and write the ε-limits of the fundamental radial solutions Φ1 and Φ2 as

lim
ε↘0

Φ1 = χ1 and lim
ε↘0

Φ2 = αχ1 + βχ2 for Im(ωε) > 0

lim
ε↘0

Φ1 = χ2 and lim
ε↘0

Φ2 = γχ1 + δχ2 for Im(ωε) < 0 ,
(59)

where α, β, γ, and δ are constants. The corresponding Wronskian yields

(60) lim
ε↘0

W (Φ1,Φ2) =

{
βW (χ1, χ2) for Im(ωε) > 0

−γ W (χ1, χ2) for Im(ωε) < 0 .

Substitution of (59) and (60) into (51) results in

lim
ε↘0

[
G(r; r′)k,l,ω−iε −G(r; r′)k,l,ω+iε

]
|r+<r′<∞

=
1

W (χ1, χ2)(r′)

2∑
u,v=1

Tu,v

 −
χu,1(r)χv,2(r′)

∆(r′)

χu,1(r)χv,1(r′)

r+

−χu,2(r)χv,2(r′)

∆(r′)

χu,2(r)χv,1(r′)

r+


k,l,ω

(61)

with the coefficients

T1,1 =
α

β
, T1,2 = T2,1 = 1 , and T2,2 =

δ

γ
.
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For the domain r− < r′ ≤ r+ on the other hand, we define the auxiliary
functions

χ̃1(r) := Θ(r+ − r) lim
ε↘0

Φ̂(−)(r) + Θ(r − r+) lim
ε↘0

Φ̂(∞)(r)

and

χ̃2(r) := Θ(r − r−) lim
ε↘0

qΦ(−)(r) ,

and express the ε-limits of the fundamental radial solutions by

lim
ε↘0

Φ1 = α′χ̃1 + β′χ̃2 and lim
ε↘0

Φ2 = χ̃2 for Im(ωε) > 0

lim
ε↘0

Φ1 = χ̃1 and lim
ε↘0

Φ2 = γ′χ̃1 + δ′χ̃2 for Im(ωε) < 0 ,
(62)

in which α′, β′, γ′, and δ′ are also constants. In this case, the Wronskian
becomes

(63) lim
ε↘0

W (Φ1,Φ2) =

{
α′W (χ̃1, χ̃2) for Im(ωε) > 0

δ′W (χ̃1, χ̃2) for Im(ωε) < 0 .

Using (62) and (63) in (52) to calculate the difference of Green’s matrices
for ε↘ 0 leads to

lim
ε↘0

[
G(r; r′)k,l,ω−iε −G(r; r′)k,l,ω+iε

]
|r−<r′≤r+

=
1

W (χ̃1, χ̃2)(r′)

2∑
u,v=1

T̃u,v


χ̃u,1(r) χ̃v,2(r′)

∆(r′)
− χ̃u,1(r) χ̃v,1(r′)

r+
χ̃u,2(r) χ̃v,2(r′)

∆(r′)
− χ̃u,2(r) χ̃v,1(r′)

r+


k,l,ω

(64)

with the coefficients

T̃1,1 = T̃2,2 = 0 and T̃1,2 = −T̃2,1 = 1 .

Abbreviating (61) and (64) by G(r;r+<r
′<∞)k,l,ω and G(r;r−<r

′≤r+)k,l,ω,
respectively, and inserting these quantities into (58), the Dirac propagator
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(56) yields

ψ′(τ, r, θ, φ) =
1

2πi

∑
k,l∈Z

e−ikφ

∫
R
e−iωτ Ql C

×
[∫ r+

r−

(
G(r; r− < r′ ≤ r+)k,l,ω 0C2

0C2 G(r; r− < r′ ≤ r+)k,l,ω

)
+

∫ ∞
r+

(
G(r; r+ < r′ <∞)k,l,ω 0C2

0C2 G(r; r+ < r′ <∞)k,l,ω

)]
× E (r′, θ)ψ′0,k(r

′, θ) dr′ dω

=
1

2πi

∑
k,l∈Z

e−ikφ

∫
R
e−iωτ Ql C 11C2

⊗
[∫ r+

r−

G(r; r− < r′ ≤ r+)k,l,ω +

∫ ∞
r+

G(r; r+ < r′ <∞)k,l,ω

]
× E (r′, θ)ψ′0,k(r

′, θ) dr′ dω .

Given in this form, the generalized, horizon-penetrating integral spectral
representation of the massive Dirac propagator in the non-extreme Kerr
geometry resembles the one restricted to the region outside the event horizon
derived in [11].

Appendix A. Symmetry of the Dirac Hamiltonian and
Dirichlet-type boundary condition

In this appendix, we show the symmetry of the Dirac Hamiltonian H with
respect to the canonical scalar product ( · | · )|Nτ

on the space-like hyper-
surface Nτ by direct computation. Furthermore, we introduce and discuss
the relevant radial Dirichlet-type boundary condition imposed on the Dirac
spinors.

Theorem A.1. The Dirac Hamiltonian (19) is symmetric with respect to
the scalar product (31).

Proof. To establish the symmetry, namely that

(ψ′|Hφ′)|Nτ
= (Hψ′|φ′)|Nτ

,

we begin by splitting the potential V given in (23) into mass-independent
and mass-dependent parts

V = V0 + Vm ,
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where

V0 := − 1

Σ + 2Mr

(
B1 0C2

0C2 B4

)
and Vm := − 1

Σ + 2Mr

(
0C2 B2

B3 0C2

)
.

The (2× 2)-blocks Bk, with k ∈ {1, 2, 3, 4}, are specified in (24). This pro-
cedure bears the advantage of obtaining anti-self-adjoint and self-adjoint
matrices

(A.1) ΓτV0 = −V †0 Γτ and ΓτVm = V †mΓτ ,

for which Γτ = Γτ† is defined in (32). We may then write

(ψ′|Hφ′)|Nτ
=

∫∫∫
ψ′† ΓτH φ′ sin (θ) dφ dθ dr

=

∫∫∫
ψ′† Γταj∂j(φ

′) sin (θ) dφ dθ dr

+

∫∫∫
ψ′† ΓτV0 φ

′ sin (θ) dφ dθ dr

+

∫∫∫
ψ′† ΓτVm φ

′ sin (θ) dφ dθ dr .

Integration by parts of the first triple integral in the second line and sub-
stitution of the relations (A.1) in the remaining two triple integrals results
in

(ψ′|Hφ′)|Nτ
= −

∫∫∫
∂j
(
ψ′† Γταj sin (θ)

)
φ′ dφ dθ dr

−
∫∫∫

ψ′† V †0 Γτφ′ sin (θ) dφ dθ dr

+

∫∫∫
ψ′† V †m Γτφ′ sin (θ) dφ dθ dr

= −
∫∫∫

∂j(ψ
′†) Γταjφ′ sin (θ) dφ dθ dr

−
∫∫∫

ψ′†
[
∂j(Γ

τ )αj + Γτ∂j(α
j) + Γταθ cot (θ)

]
× φ′ sin (θ) dφ dθ dr

−
∫∫∫

(V0 ψ
′)† Γτφ′ sin (θ) dφ dθ dr

+

∫∫∫
(Vm ψ

′)† Γτφ′ sin (θ) dφ dθ dr .

(A.2)
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We remark that in the integration by parts, the angular derivatives do not
give rise to boundary terms because the two-dimensional submanifold S2 in
Nτ ' R>0 × S2 is compact without boundary. The radial derivative, on the
other hand, yields a boundary term that vanishes as we impose an appropri-
ate Dirichlet-type boundary condition on the Dirac spinors. More precisely,
since the computation of the matrix Γταr leads to the expression

Γταr = i diag

(
−∆

r+
, r+, r+,−

∆

r+

)
,

the radial boundary term becomes∫∫
S2

ψ′† Γταrφ′ sin (θ) dφ dθ
∣∣∣r2
r1

= ir+

∫∫
S2

(
−∆

r2
+

ψ′1φ
′
1 + ψ′2φ

′
2 + ψ′3φ

′
3 −

∆

r2
+

ψ′4φ
′
4

)
sin (θ) dφ dθ

∣∣∣r2
r1
.

In order for this term to vanish, we impose the radial Dirichlet-type bound-
ary condition

(A.3)

2∑
i=1

(−1)i
(
−∆

r2
+

ψ′1φ
′
1 + ψ′2φ

′
2 + ψ′3φ

′
3 −

∆

r2
+

ψ′4φ
′
4

)
|r=ri

= 0 .

In the present work, we consider only Dirac spinors with support from a
specific time-like inner boundary at r = r0 < r− beyond the Cauchy horizon
up to infinity, that is

suppφ′ = (r0,∞)× S2 .

Moreover, we require the Dirac spinors to be in L2
(
(r0,∞)× S2, SM

)
, im-

plying proper decay at infinity. Taking this into account, the radial boundary
condition (A.3) reduces to a condition for the time-like inner boundary at
r = r0

(A.4)

(
−∆

r2
+

ψ′1φ
′
1 + ψ′2φ

′
2 + ψ′3φ

′
3 −

∆

r2
+

ψ′4φ
′
4

)
|r=r0

= 0 ,

which can be brought into a more suitable form as follows. By means of
the spin scalar product (26) and the relation S ′γ′r = i Γταr/Σ, we may
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represent (A.4) as

(A.5) ≺ψ′|γ′rφ′�|{τ}×{r0}×S2 = 0 .

Now, introducing n as the unit normal to the hypersurfaces {τ} × S2, we
can write (A.5) in the form

(A.6) ≺ψ′|/nφ′�|{τ}×{r0}×S2 = 0 ⇐ (/n− iH)ψ′|{τ}×{r0}×S2 = 0 ,

where the slash again denotes Clifford multiplication and H is an arbitrary
matrix with the property H = (S ′)−1H†S ′. The implication can be easily
verified via the calculation

≺ψ′|/nφ′�|{τ}×{r0}×S2 = ≺/nψ′|φ′�|{τ}×{r0}×S2

= ≺iHψ′|φ′�|{τ}×{r0}×S2

= −≺ψ′| iHφ′�|{τ}×{r0}×S2

= −≺ψ′|/nφ′�|{τ}×{r0}×S2 .

To guarantee compatibility of the boundary condition on the right hand
side of (A.6) with a potential product structure of the Dirac 4-spinors, in
which the dependences on the variables τ, r, θ, and φ are separated (such as
in Chandrasekhar’s separation ansatz (11)), we choose

H = P(P†)−1 ,

where P is defined in (8). We note in passing that this Dirichlet-type bound-
ary condition is a so-called MIT-type boundary condition for Dirac fields [7]
that describes a perfect reflection of Dirac particles at the respective bound-
ary surface. Continuing the proof of symmetry, the explicit computation of
the square bracket in the fourth line of (A.2) yields the result

∂j(Γ
τ )αj + Γτ∂j(α

j) + Γταθ cot (θ) = −2V †0 Γτ .

Besides, all three matrix products Γταj , with j ∈ {r, θ, φ}, are anti-self-
adjoint

Γταj = −αj†Γτ† = −αj†Γτ .
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Therefore, we immediately find that

(ψ′|Hφ′)|Nτ
=

∫∫∫
∂j(ψ

′†)αj† Γτφ′ sin (θ) dφ dθ dr

+ 2

∫∫∫
(V0ψ

′)† Γτφ′ sin (θ) dφ dθ dr

−
∫∫∫

(V0ψ
′)† Γτφ′ sin (θ) dφ dθ dr

+

∫∫∫
(Vmψ

′)† Γτφ′ sin (θ) dφ dθ dr

=

∫∫∫
(αj∂jψ

′)† Γτφ′ sin (θ) dφ dθ dr

+

∫∫∫
(V0ψ

′)† Γτφ′ sin (θ) dφ dθ dr

+

∫∫∫
(Vmψ

′)† Γτφ′ sin (θ) dφ dθ dr

=

∫∫∫
(Hψ′)† Γτφ′ sin (θ) dφ dθ dr = (Hψ′|φ′)|Nτ

.

�

Appendix B. Fundamental solutions for the construction of
the radial Green’s matrix

In order to determine the fundamental solutions Φ1(r; r′) and Φ2(r; r′) of the
radial system (12) with complex-valued frequencies, which are used for the
construction of the Green’s matrix defined via equation (48), we first study
certain aspects of the associated Jost-type solutions [1, 21]. In more detail,
we derive radial Jost-type equations that yield solutions with asymptotic
behaviors near infinity, the event horizon, and the Cauchy horizon similar
to those given in Lemmas 2.1 and 2.2, and briefly discuss the existence,
uniqueness, and boundedness of these solutions. Since we apply Lebesgue’s
dominated convergence theorem to simplify our integral spectral represen-
tation of the Dirac propagator, the latter aspect becomes also relevant for
the commutation of specific limits, sums, and integrals. For the derivation of
the Jost-type equations, we rewrite the radial first-order system (12) as two
second-order scalar equations. In terms of the Regge–Wheeler coordinate r?
and the function R̃ = (R̃+, R̃−)T =

(√
|∆|R+, r+ R−

)T
, these read

(B.7)
[
∂r?r? + J±ξ,k,ω(r) ∂r? + K±ξ,k,ω(r)

]
R̃± = 0 ,
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where

Jξ,k,ω(r) :=
1

r2 + a2

[
r − M(3r2 − a2)

r2 + a2
− 4iωMr − 2ika− im∆

ξ + imr

]
K+
ξ,k,ω(r) :=

∆

(r2 + a2)2

[(
iω [∆ + 4Mr] + 2ika

)(
−iω +

r −M
∆

+
im

ξ + imr

)
− 2iω (r +M)−m2r2 − ξ2

]
K−ξ,k,ω(r) :=

∆

(r2 + a2)2

[
iω

(
r −M − 4iωMr − 2ika+

im∆

ξ − imr

)
+ ω2∆−m2r2 − ξ2

]
.

Employing the ansatzes

R̃±(r?) = exp

(
−1

2

∫
K±ξ,k,ω(r) dr?

)
Y±(r?) ,

we may transform (B.7) into the Schrödinger-type equations

(B.8)
[
∂r?r? + V ±ξ,k,ω(r)

]
Y± = 0

with the potentials

V ±ξ,k,ω(r) := K±ξ,k,ω(r)−
J2
±ξ,k,ω(r)

4
−
∂r?J±ξ,k,ω(r)

2
.

To obtain Jost-type equations with boundary conditions prescribed at in-
finity, we split these potentials into an asymptotic contribution effective at
infinity and otherwise regular contributions

(B.9) V ±ξ,k,ω = V∞ + V ±reg. ,

where the asymptotic contribution is given by the expression

(B.10) V∞ = V∞(r?) := ω2 −m2 +
2Mm2

r?

and the regular contributions are on the order of V ±reg. = O
(
1/r2

?

)
satisfying

the condition ∫ ∞
r?

∣∣V ±reg.(y)
∣∣ dy <∞ for all r? > 0 .
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We remark that the asymptotic potential (B.10) corresponds to the equation

(B.11)
[
∂r?r? + V∞(r?)

]
Y∞ = 0 ,

which has the solution [25]

Y∞ = Z1W−α, 1
2

(
2i sign(ω)

√
ω2 −m2 r?

)
+ Z2W+α, 1

2

(
−2i sign(ω)

√
ω2 −m2 r?

)
,

whereW±α, 1
2
( · ) are Whittaker functions with α := i sign(ω)Mm2/

√
ω2 −m2

and Z1/2 denote constants. The asymptotics of this solution at infinity reads
in case |ω| ≥ m

Y∞ ∼ Z ′1 exp

(
i sign(ω)

[√
ω2 −m2 r? +

Mm2

√
ω2 −m2

ln (r?)

])
+ Z ′2 exp

(
−i sign(ω)

[√
ω2 −m2 r? +

Mm2

√
ω2 −m2

ln (r?)

])
,

(B.12)

whereas for |ω| < m it yields

Y∞ ∼ Z ′1 exp

(
sign(ω)

[√
m2 − ω2 r? +

Mm2

√
m2 − ω2

ln (r?)

])
+ Z ′2 exp

(
−sign(ω)

[√
m2 − ω2 r? +

Mm2

√
m2 − ω2

ln (r?)

])
with Z ′1/2 also being constants (cf. Lemma 2.1). In the following, we re-

strict our attention to the case |ω| ≥ m. The case |ω| < m may be treated
accordingly. As in the usual study of Jost equations and their solutions, we
complexify the Schrödinger-type equations (B.8) via the analytic continua-
tion ω → ωc ∈ C of the frequency. Then, by means of the above splittings of
the potentials (B.9) and the specific form of the asymptotic solution (B.12),
we can write the Jost-type equation representation of (B.8) as

Y±(r?) = exp

(
i sign

(
Im(ωc)

)
sign(ωc)

[√
|ωc|2 −m2 r? +

Mm2√
|ωc|2 −m2

ln (r?)

])
+

∫ ∞
r?

sin
(√

V∞(y) [r? − y]
)√

V∞(y)
V ±reg.(y) Y±(y) dy .

(B.13)

We note that the proper complexification of the asymptotic Schrödinger-type
equation (B.11), which is in accordance with the particular representation
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(B.12) of the asymptotic solutions containing signum functions, is obtained
by first rewriting the potential V∞ defined in (B.10) in the form

V∞ = sign2(ω)

(
|ω|2 −m2 +

2Mm2

r?

)
and subsequently extending the frequency ω to complex values. This is rele-
vant for the derivation of the exponential term in (B.13). Applying the series
ansatzes

Y±(r?) =

∞∑
n=0

Y±,n(r?) ,

where the zeroth-order terms are given by

Y±,0(r?) = exp

(
i sign

(
Im(ωc)

)
sign(ωc)

[√
|ωc|2 −m2 r? +

Mm2√
|ωc|2 −m2

ln (r?)

])
,

in (B.13), we find the recurrence relations

Y±,n(r?) =

∫ ∞
r?

sin
(√

V∞(y) [r? − y]
)√

V∞(y)
V ±reg.(y) Y±,n−1(r?) dy for n ≥ 1 .

In the theorem below, we discuss the relevant points pertaining to the exis-
tence, uniqueness, and boundedness of such solutions for the case Im(ωc)<0.
Detailed proofs are worked out explicitly in, e.g., [13, 14, 17, 21]. The results
and proofs for the case Im(ωc) > 0 are in essence identical.

Theorem B.1. For each ωc ∈ C with ωc 6= 0 and Im(ωc) < 0, the Jost-type
equations (B.13) have unique solutions Y±(r?) obeying

lim
r?→∞

∣∣∣∣ exp

(
i sign(ωc)

[√
|ωc|2 −m2 r? +

Mm2√
|ωc|2 −m2

ln (r?)

])
Y±(r?)

∣∣∣∣ <∞.
These solutions are moreover continuously differentiable in r? on the interval
(0,∞) with

lim
r?→∞

[
exp

(
i sign(ωc)

[√
|ωc|2 −m2 r? +

Mm2√
|ωc|2 −m2

ln (r?)

])
Y±(r?)

]
= 1

and

lim
r?→∞

[
exp

(
i sign(ωc)

[√
|ωc|2 −m2 r? +

Mm2√
|ωc|2 −m2

ln (r?)

])
∂r?Y±(r?)

]
= −i sign(ωc)

√
|ωc|2 −m2 .
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For each fixed value of r?, Y±(r?) and ∂r?Y±(r?) are functions that are
analytic in {ωc | Im(ωc) < 0}, continuous in {ωc |ωc 6= 0 and Im(ωc) < 0},
and satisfy the bound∣∣∣∣Y±(r?)− exp

(
−i sign(ωc)

[√
|ωc|2 −m2 r? +

Mm2√
|ωc|2 −m2

ln (r?)

])∣∣∣∣
≤ exp

(
Im
(√

V∞(r?)
)
r?

) ∣∣exp
(
Q±(r?)

)
− 1
∣∣

as well as∣∣∣∣∂r?Y±(r?) + exp

(
−i sign(ωc)

[√
|ωc|2 −m2 r? +

Mm2√
|ωc|2 −m2

ln (r?)

])
× i sign(ωc)

(√
|ωc|2 −m2 +

Mm2√
|ωc|2 −m2 r?

)∣∣∣∣
≤ exp

(
Im
(√

V∞(r?)
)
r? + Q±(r?)

)∫ ∞
r?

∣∣V ±reg.(y)
∣∣ dy ,

where

Q±(r?) :=

∫ ∞
r?

4y
∣∣V ±reg.(y)

∣∣
1 + y

∣∣√V∞(y)
∣∣ exp

([
Im
(√

V∞(y)
)

+
∣∣Im(√V∞(y)

)∣∣]y)dy.

It remains to determine the Jost-type equations with boundary conditions
prescribed at the event horizon and at the Cauchy horizon. This can be done
using a similar approach as in the above case. For details, we again refer to
[13, 14].

We now specify the fundamental solutions Φ1(r; r′) and Φ2(r; r′) of the
radial system (12) with complex-valued frequencies. Due to the high degree
of complexity of this system, explicit analytical expressions for its funda-
mental solutions are not known. Thus, we describe them in terms of suitable
asymptotic expansions. To this end, we define, on the one hand, auxiliary
functions that have the proper decay at infinity (cf. Lemma 2.1)

Φ̂(∞)(r) := |∆|−1/2

[
d1,∞ e

iφ+(r?(r))

(
1
0

)
+O

(
1

r?(r)

)]
for

{
Im(ωε) < 0 if |ωε| ≥ m
Re(ωε) ≥ 0 if |ωε| < m

qΦ(∞)(r) := d2,∞ e
−iφ−(r?(r))

(
0
1

)
+O

(
1

r?(r)

)
for

{
Im(ωε) > 0 if |ωε| ≥ m
Re(ωε) < 0 if |ωε| < m ,

where the quantities d1/2,∞ are scalar constants and the functions φ± are
given in (14), but with frequencies ωε ∈ {ω + iε, ω − iε}, for which ε > 0, and
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with the substitution
√
ω2 −m2 →

√
|ωε|2 −m2. On the other hand, we use

auxiliary functions that are finite at the event and the Cauchy horizon and
further comply with the associated asymptotics (cf. Lemma 2.2)

Φ̂(+)(r) := |∆|−1/2

[
d1,r+ e

2i
(
ωε+kΩ

(+)
Kerr

)
r?(r)

(
1
0

)
+O

(
eqr?(r)

)]
for Im(ωε) < 0

qΦ(+)(r) := d2,r+

(
0
1

)
+O

(
eqr?(r)

)
for Im(ωε) > 0

Φ̂(−)(r) := d1,r−

(
0
1

)
+O

(
e−qr?(r)

)
for Im(ωε) < 0

qΦ(−)(r) := |∆|−1/2

[
d2,r− e

2i
(
ωε+kΩ

(−)
Kerr

)
r?(r)

(
1
0

)
+O

(
e−qr?(r)

)]
for Im(ωε) > 0 ,

where d1/2,r± are scalar constants as well. To clarify the notation, we point
out that the superscripts (∞), (+), and (−) designate asymptotic expansions
at infinity, the event horizon, and the Cauchy horizon, respectively. Besides,
we remark that the existence and uniqueness of fundamental solutions of the
radial system (12) with these particular asymptotic expansions follows from
the above study of the radial Jost-type equations and, moreover, that these
asymptotic expansions ensure that the fundamental solutions are square-
integrable. For example, as the Regge–Wheeler coordinate r? tends to minus
infinity at the event horizon, the exponential factor in the auxiliary function
Φ̂(+) tends to zero because Im(ωε) < 0. However, this exponential factor
would not be square-integrable if Im(ωε) > 0. Last, we introduce an auxiliary
function that satisfies the Dirichlet-type boundary condition (40) at r = r0

Φ∂M (r) := Φ
(1)
∂M (r)

(
1

i
√
|∆| / r+

)
,

with Φ
(1)
∂M denoting its first component. Then, in case |ωε|≥m and Im(ωε)<0

or |ωε| < m, Im(ωε) < 0, and Re(ωε) ≥ 0, the fundamental radial solutions
Φ1 and Φ2 read

Φ1(r; r+ < r′ <∞) = Θ(r − r′) Φ̂(∞)(r)

Φ2(r; r+ < r′ <∞) = Θ(r′ − r) Θ(r − r+) Φ̂(+)(r)

Φ1(r; r− < r′ ≤ r+) = Θ(r − r′)
[
Θ(r+ − r) Φ̂(−)(r) + Θ(r − r+) Φ̂(∞)(r)

]
Φ2(r; r− < r′ ≤ r+) = Θ(r − r′) Θ(r+ − r) Φ̂(+)(r)

(B.14)
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Φ1(r; r0 ≤ r′ ≤ r−) = Θ(r − r′)
[
Θ(r+ − r) Φ̂(−)(r) + Θ(r − r+) Φ̂(∞)(r)

]
Φ2(r; r0 ≤ r′ ≤ r−) = Θ(r′ − r) Φ∂M (r) ,

(B.14)

whereas for |ωε|≥m and Im(ωε)>0 or |ωε|<m, Im(ωε)>0, and Re(ωε)<0,
they are given by

Φ1(r; r+ < r′ <∞) = Θ(r − r′) qΦ(∞)(r)

Φ2(r; r+ < r′ <∞) = Θ(r′ − r)
[
Θ(r − r−) qΦ(+)(r) + Θ(r− − r) Φ∂M (r)

]
Φ1(r; r− < r′ ≤ r+) = Θ(r′ − r)

[
Θ(r − r−) qΦ(+)(r) + Θ(r− − r) Φ∂M (r)

]
Φ2(r; r− < r′ ≤ r+) = Θ(r′ − r) Θ(r − r−) qΦ(−)(r)

Φ1(r; r0 ≤ r′ ≤ r−) = Θ(r − r′) Θ(r− − r) qΦ(−)(r)

Φ2(r; r0 ≤ r′ ≤ r−) = Θ(r′ − r) Φ∂M (r) .

(B.15)

In the remaining cases |ωε| < m, Im(ωε) < 0, and Re(ωε) < 0 or |ωε| < m,
Im(ωε) > 0, and Re(ωε) ≥ 0, we also obtain the fundamental solutions (B.14)
or (B.15), respectively, but with the auxiliary functions Φ̂(∞) and qΦ(∞) in-
terchanged. A case-by-case analysis shows that these solutions are uniquely
determined by the conditions and asymptotics listed in the proof of Theo-
rem 6.1.
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[5] S. Chandrasekhar, The mathematical theory of black holes, Oxford Uni-
versity Press (1983).

[6] P. R. Chernoff, Essential self-adjointness of powers of generators of
hyperbolic equations, Journal of Functional Analysis 12 (1973), 401.

[7] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf,
New extended model of hadrons, Physical Review D 9 (1974), 3471.

[8] A. S. Eddington, A comparison of Whitehead’s and Einstein’s formulae,
Nature 113 (1924), 192.

[9] D. Finkelstein, Past-future asymmetry of the gravitational field of a
point particle, Physical Review 110 (1958), 965.

[10] F. Finster, N. Kamran, J. Smoller, and S. T. Yau, Decay rates and prob-
ability estimates for massive Dirac particles in the Kerr–Newman black
hole geometry, Communications in Mathematical Physics 230 (2002),
201. arXiv:gr-qc/0107094.

[11] F. Finster, N. Kamran, J. Smoller, and S. T. Yau, The long-time
dynamics of Dirac particles in the Kerr–Newman black hole geome-
try, Advances in Theoretical and Mathematical Physics 7 (2003), 25.
arXiv:gr-qc/0005088.

[12] F. Finster, N. Kamran, J. Smoller, and S. T. Yau, An integral spec-
tral representation of the propagator for the wave equation in the Kerr
geometry, Communications in Mathematical Physics 260 (2005), 257.
arXiv:gr-qc/0310024.

[13] F. Finster, N. Kamran, J. Smoller, and S. T. Yau, Decay of solutions
of the wave equation in the Kerr geometry, Communications in Math-
ematical Physics 264 (2006), 465. arXiv:gr-qc/0504047.

[14] F. Finster and J. Smoller, Decay of solutions of the Teukolsky equation
for higher spin in the Schwarzschild geometry, Advances in Theoretical
and Mathematical Physics 13 (2009), 71. arXiv:gr-qc/0607046.
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