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Rigidity of geodesic completeness

in the Brinkmann class of

gravitational wave spacetimes

I. P. Costa e Silva, J. L. Flores, and J. Herrera

We consider restrictions placed by geodesic completeness on space-
times possessing a null parallel vector field, the so-called Brinkmann
spacetimes. This class of spacetimes includes important idealized
gravitational wave models in General Relativity, namely the plane-
fronted waves with parallel rays, or pp-waves, which in turn have
been intensely and fruitfully studied in the mathematical and phys-
ical literatures for over half a century. More concretely, we prove a
restricted version of a conjectural analogue for Brinkmann space-
times of a rigidity result obtained by M.T. Anderson for stationary
spacetimes. We also highlight its relation with a long-standing 1962
conjecture by Ehlers and Kundt. Indeed, it turns out that the sub-
class of Brinkmann spacetimes we consider in our main theorem is
enough to settle an important special case of the Ehlers-Kundt con-
jecture in terms of the well known class of Cahen-Wallach spaces.

1. Introduction

In 2000, M.T. Anderson proved a remarkable rigidity theorem [1] establish-
ing that every geodesically complete, chronological, Ricci-flat 4-dimensional
stationary spacetime is isometric to (a quotient of) Minkowski spacetime.
(Recall that a spacetime, i.e., a connected time-oriented Lorentzian mani-
fold, is said to be stationary if it admits a complete timelike Killing vector
field.) The proof of this result is a powerful adaptation of the Cheeger-
Gromov theory of sequences of collapsing Riemannian manifolds (see also
[10] for a much simpler proof of a slightly more restricted version of An-
derson’s theorem). The key importance of this work is not only due to the
pioneering application of these techniques in General Relativity, but also to
the striking insight it gives into the delicate nature of geodesic incomplete-
ness in Lorentzian geometry.
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Geodesic incompleteness of null or timelike geodesics has long been used
in gravitational physics as a geometric description of gravitational collapse,
such as that occurring at the center of black holes or at the Big Bang. Ac-
cordingly, that sort of geodesic incompleteness has indeed been rigorously
shown to occur under reasonable, physically well-motivated conditions in
the so-called singularity theorems of Mathematical Relativity [4, 19, 23, 25].
Since gravity is thought to be always attractive (at least when one disregards
quantum effects), gravitational systems are often unstable, and one expects
gravitational collapse to be rather ubiquitous. This general idea led R. Ge-
roch [18] to conjecture that geodesically complete solutions to the Einstein
field equations should be rare (in some suitable sense). Anderson’s result
can be viewed as one precise geometric realization of this physical idea.

Another such example appeared as early as 1962, in a separate develop-
ment, when J. Ehlers and K. Kundt [12, Section 2-5.7] put forth the conjec-
ture that every geodesically complete, Ricci-flat 4-dimensional pp-wave is a
plane wave. A (standard) pp-wave1 is a spacetime of the form (Rn, g), where
the metric g is given in Cartesian coordinates (u, v, x1, . . . , xn−2) by

(1) g = 2du(dv +H(u, x)du) +

n−2∑
i=1

(dxi)2,

and H : Rn → R is a smooth function independent of the v-coordinate. This
class of spacetimes has been intensely studied both in the mathematical and
physical literatures, since they give an idealized description of gravitational
waves in General Relativity. A pp-wave where H is quadratic on the x-
coordinates, i.e., where

H(u, x) =

n−2∑
i,j=1

aij(u)xixj ,

is called a (standard) plane wave. Plane waves have a number of important
physical and geometrical properties (see, e.g., Ch. 13 of [4] for some of these).

1Observe that pp-waves and plane waves can be defined intrinsically (i.e., in a
coordinate-independent fashion - see, e.g., [22, Definitions 1 and 2]). Therefore, we
use the term standard when there exists a preferred global coordinate system which
allows one to express the metric in a concrete way. Throughout the present paper,
however, all pp-waves and plane waves considered will be standard in this sense,
and so we shall omit this term unless there is risk of confusion. Nevertheless, this
rule will not be applied to general Brinkmann spacetimes, because we will work
simultaneously with general and standard ones.
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Rigidity of geodesic completeness 27

The original version of the Ehlers-Kundt conjecture is still open, but there
has been progress in obtaining partial results [5, 15, 16, 20, 22].

Now, pp-waves are not stationary in general, but one can easily check
from (1) that the vector field ∂v is null and parallel (i.e., with ∇∂v = 0;
here and hereafter ∇ will denote the Levi-Civita connection of the underly-
ing metric tensor). Therefore, pp-waves are distinguished representatives of
the larger class of Brinkmann spaces, that is, Lorentzian manifolds admit-
ting a null parallel vector field X . Such manifolds owe their name to H.W.
Brinkmann, who discovered them in 1925 [8]. Brinkmann spaces have spe-
cial Lorentzian holonomy, which in turn gives rise to a number of interesting
geometric properties (see, e.g., [2, 3, 17, 22] and references therein for re-
cent results). Brinkmann spaces are always time-orientable [3], so there is no
loss of generality in considering only connected, time-oriented Brinkmann
spaces, which we will call simply Brinkmann spacetimes.

A nice way of viewing Brinkmann spacetimes is as null analogues of
stationary spacetimes. One is then naturally led to consider the following
null version of the Anderson’s rigidity theorem, firstly conjectured in [11].

Conjecture 1.1. Every strongly causal, Ricci-flat 4-dimensional Brinkmann
spacetime satisfying certain completeness condition is isometric to (a quo-
tient of) a plane wave spacetime.

Here, the phrase “certain completeness condition” parallels the condi-
tion, present in Anderson’s theorem, that spacetime be geodesically com-
plete. It is not clear to the authors if geodesic completeness alone would suf-
fice in this context. Nevertheless, we do believe that geodesic completeness
plus transversal completeness (see the definition just above Theorem 2.1)
should be enough to get the conclusion of Conjecture 1.1, since Theorems 2.1
and 3.1 show that, under these hypotheses, Conjecture 1.1 reduces to the
Ehlers-Kundt conjecture. On the other hand, the assumption that spacetime
is strongly causal, i.e., has no “almost closed” nonspacelike curves, replaces
the condition in Anderson’s theorem that spacetime be chronological, that
is, the absence of closed timelike curves [11]. These causal conditions imply
that the Killing vector field in each case will give rise to an isometric action
without fixed points, which is in turn convenient in taking quotients. While
the exact analogue of chronology in the null case would be to require that
spacetime be only causal, i.e., has no closed causal curves, it turns out, af-
ter a closer inspection, that a little more causality is required to have the
mentioned quotient behave well [11]. Since in particular every plane wave
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spacetime is causally continuous [13], and hence strongly causal, this as-
sumption does not seem very restrictive.

Our main goal in this paper is to present a proof of the following re-
stricted version of Conjecture 1.1.

Theorem 1.2. Let (M, g) be a geodesically complete, strongly causal, Ricci-
flat 4-dimensional Brinkmann spacetime. If (M, g) is transversally Killing,
then the universal covering (M, g) of (M, g) is isometric to a plane wave.

If X ∈ Γ(TM) denotes the null parallel vector field in the Brinkmann
spacetime (M, g), the extra condition “transversally Killing” means, by
definition, that there exists a Killing vector field Y ∈ Γ(TM) such that
g(X ,Y) = 1 (see discussion after Theorem 2.1 below). A concrete situation
where this occurs is when the Brinkmann spacetime is an autonomous pp-
wave (1), i.e., H does not depend on the variable u. In this case Y := ∂u
will ensure that the pp-wave is indeed transversally Killing (with X = ∂v).
Therefore, from the proof of Theorem 1.2 we deduce the following version
of the Ehlers-Kundt conjecture.

Corollary 1.3. Every geodesically complete, strongly causal, autonomous,
Ricci-flat, 4-dimensional pp-wave is a Cahen-Wallach space.

Recall that a Cahen-Wallach space is an indecomposable, solvable geo-
desically complete symmetric Lorentzian manifold. These were classified by
M. Cahen and N. Wallach in 1970 [9], who showed the universal covering of
any connected component of such a manifold is isometric to (Rn, gλ), where
λ := (λ1, . . . , λn−2) ∈ R \ {0} and

gλ = 2dudv +

n−2∑
i=1

λi(x
i)2du+

n−2∑
i=1

(dxi)2,

which we recognize to be a plane wave without u-dependence.
There are several results related to Conjecture 1.1 in the literature. For

example, Leistner and Schliebner [22] have recently shown that the universal
covering of any compact Ricci-flat Brinkmann spacetime is a plane wave.
Their result holds in any dimension, and is geometrically quite interesting,
but it is unclear to us how strong the assumption of compactness actually
is for this class of spacetimes. For instance, for Brinkmann spacetimes it in
particular implies geodesic completeness [22], which unlike the Riemannian
case does not follow automatically from compactness alone. At any rate,
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Rigidity of geodesic completeness 29

compact spacetimes are never even chronological [23], and therefore have
arguably less physical interest. This, in part, has motivated our search for
analogous results in the non-compact setting.

After finishing this paper, we became aware of another, much more
general context in which the assumptions in Theorem 1.2 are natural2,
namely in a local classification scheme, recently carried out by M. Mars
and J.M.M. Senovilla [21] (see also [6]), for a class of algebraically special
spacetimes which includes both Kerr and Brinkmann spacetimes (as well as
generalizations of these). More specifically, in [21] the authors investigate 4-
dimensional Einstein spacetimes (M, g) endowed with a Killing vector field
Y ∈ Γ(TM) and satisfying a certain “alignment” relation between the Weyl
tensor and the curl of Y. In an important special case (cf. Theorem 1 of
[21]) of their classification scheme as applied to Ricci-flat spacetimes, these
authors show the global existence of a parallel null vector field X ∈ Γ(TM)
for which g(X ,Y) = 1, and therefore end up precisely with what we call here
a transversally Killing Brinkmann spacetime. Indeed, they show that these
are locally isometric to autonomous pp-waves. (Mars and Senovilla call these
stationary vacuum Brinkmann spacetimes.) Theorem 1.2 can thus be viewed
as a global rigidity result pertaining to such a subclass of spacetimes.

The paper is organized as follows. In Section 2, we introduce the so-
called standard Brinkmann spacetimes, and establish some of the terminol-
ogy which we will need in the main proof. Brinkmann already knew that a
4-dimensional Ricci-flat Brinkmann spacetime is locally a pp-wave [8] (see
also [17, 24]), but we wish to globalize this result here, which we do in Sec-
tion 3. After some technical lemmas, Theorem 1.2 is proved in Section 4.
We finish with a discussion at the end of this same section of a context in
which our theorem implies that our spacetime is of Cahen-Wallach type.

2. Preliminaries on Brinkmann spacetimes

Let (Mn, g) (n ≥ 3) be a Brinkmann spacetime, which, recall, is a smooth3

connected time-oriented Lorentzian manifold admitting a complete null par-
allel vector field X (i.e., with ∇X = 0). We will say that the Brinkmann
spacetime (M, g) is standard if M = R2 ×Q for some (n− 2)-dimensional
smooth manifold Q which we shall call the spatial fiber, and the metric g
can be expressed as

2We are grateful to J.M.M. Senovilla for bringing this to our attention, and for
pointing out Refs. [6, 21] to us.

3Here and hereafter, by smooth we always mean C∞.
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(2) g = du⊗ (dv +H du+ Ω) + (dv +H du+ Ω)⊗ du+ γ,

where:

(a) γ is a smooth (0, 2)-tensor on R2 ×Q whose radical at each p =
(v0, u0, x0) ∈ R2 ×Q is span{∂v|p, ∂u|p}, and so

Q 3 x 7→ γ(v0,u0,x)|TxQ×TxQ

defines a smooth Riemannian metric on Q.

(b) Ω is a smooth 1-form on R2 ×Q with Ω(∂v) = Ω(∂u) = 0, and so Q 3
x 7→ Ω(v0,u0,x)|TxQ defines a smooth 1-form on Q and

(c) γ, Ω and H have no dependence on the v-coordinate as ∂v = X is in
particular a Killing vector field.

As discussed in the Introduction, if Ω = 0 and γ is the flat Euclidean
metric on Q = R2, we will say that (M, g) is a (standard) pp-wave. Moreover,
a standard pp-wave where H is quadratic on the x-coordinates will be called
a (standard) plane wave. Finally, a standard Brinkmann spacetime will be
called autonomous if the quantities H,Ω and γ in (2) have no dependence on
the coordinate u. Therefore, in the autonomous standard Brinkmann case
the vector field ∂u is also a Killing vector field.

In general, a Brinkmann spacetime need not be standard. However, as
recently shown by two of us (IPCS and JLF) [11], it is possible to obtain
mild conditions ensuring that in a Brinkmann spacetime (M, g) the com-
plete parallel vector field X can indeed be expressed in the standard form.
This will happen, for instance, if (M, g) is transversally complete, which
means by definition that there exists a complete field Y ∈ Γ(TM) conjugate
to X , in the sense that g(X ,Y) = 1 and [X ,Y] = 0. Concretely (see [11,
Theorem V.11]),

Theorem 2.1. Let (M, g) be a strongly causal and transversally complete
Brinkmann spacetime. Then, the universal covering (M, g) of (M, g) is iso-
metric to a standard Brinkmann spacetime (2). The isometry can be chosen
to be such that it associates the lift X of X to ∂v and the lift Y of Y to ∂u.

We will say that a Brinkmann spacetime (M, g) is transversally Killing
if there exists a (not necessarily complete) Killing field Y conjugate to the
complete parallel vector field X of (M, g). Actually, as long as Y is Killing,
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we need only impose either that [X ,Y] = 0 on M and g(X (p),Y(p)) = 1 at a
single point p ∈M , or that g(X ,Y) = 1 on M in order to ensure that (M, g)
is transversally Killing:

Proposition 2.2. Let (M, g) be a spacetime with a parallel vector field
X and a Killing vector field Y. Then [X ,Y] = 0 if and only if g(X ,Y) is
constant throughout M .

Proof. Given any vector field Z ∈ Γ(TM), we have

d(g(X ,Y))(Z) = Zg(X ,Y) = g(X ,∇ZY) = −g(Z,∇XY) = g(Z, [Y,X ]),

where we have used that Y is Killing on the third equality and that X is
parallel on the second and the last equalities. �

As a consequence of Theorem 2.1, we have the following.

Corollary 2.3. Let (M, g) be a strongly causal, geodesically complete and
transversally Killing Brinkmann spacetime. Then, the universal covering
(M, g) of (M, g) is isometric to a standard autonomous Brinkmann space-
time.

Proof. Note that since (M, g) is transversally Killing, there exists a Killing
vector field Y such that g(X ,Y) = 1 and [X ,Y] = 0. Since (M, g) is geodesi-
cally complete, Y is actually a complete vector field conjugate to X , and
so (M, g) is also transversally complete. Thus, we can apply Theorem 2.1
and obtain that the universal cover of (M, g) is isometric to a standard
Brinkmann spacetime. Moreover, the isometry can be chosen to be such
that ∂u is associated to Y the lift of Y, and so ∂u is Killing. In particular,
the standard Brinkmann spacetime is autonomous. �

Without any causality assumptions we have the following rigidity result,
whose proof uses (a version of) Theorem 3 of [22].

Proposition 2.4. Let (M, g) be a geodesically complete, Ricci-flat 4-
dimensional Brinkmann spacetime. If (M, g) is transversally Killing, then
the universal covering (M, g) of (M, g) is isometric to a standard pp-wave.

Proof. Since (M, g) is Ricci-flat and 4-dimensional, it is locally a standard
pp-wave (see, e.g., [17] or the proof of Theorem 3.1 below), and therefore we
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have [22] that

R(V,W ) = 0, ∀V,W ∈ X⊥.

But then, since there exists a (complete) Killing vector field Y with g(X ,Y) =
1, (M, g) is a pp-wave (in the intrinsic way, see Footnote 1) and Theorem 3
of [22] yields4 the result. �

Remark 2.5. We shall need to give below an alternative proof of Proposi-
tion 2.4 which uses strong causality. The justification is that this proof has
the advantage of giving a very concrete form for the effect of the Killing vec-
tor field on the function H (cf. Remark 3.2 below). This will be crucial for
our main proof. Moreover, strong causality is needed elsewhere in the proof
anyway, so there is no real loss of generality in that causal assumption.

We end this section with some comments regarding notation. A coordi-
nate system on a standard Brinkmann spacetime will be often denoted by
{u, v, x1, . . . , xn−2}, where {x1, . . . , xn−2} is a local coordinate system for Q.
We will denote generic spatio-temporal indices by greek letters α, β, . . . , and
indices on the spatial fiber by latin letters i, j, . . . . We will also make use
of u, v for the corresponding indices, to avoid confusion with spatial fiber
indices. We use throughout the Einstein’s summation convention. Finally,
the superscript “Q” indicates (covariant or exterior) differentiation and/or
geometric quantities on the Riemannian manifold (Q, γ).

3. From a standard Brinkmann spacetime to a pp-wave

Our first aim in this paper is to show that under conditions analogous to
those appearing in Anderson’s rigidity theorem, standard Brinkmann space-
times are isometric to pp-waves. Concretely,

Theorem 3.1. Let (Mn, g) be a standard Brinkmann spacetime and as-
sume that:

i) M is simply connected,

ii) n = 4,

iii) (M, g) is geodesically complete, and

4In [22] the authors assume in their Theorem 3 the existence of a complete null
vector field Y such that g(X ,Y) = 1, but actually the causal character of Y is not
used anywhere in the proof.
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iv) Ric = 0, i.e., (M, g) is Ricci-flat.

Then (M, g) is isometric to a pp-wave. In fact, M = R4 and there exist
coordinates {U, V,X, Y } with (U, V,X, Y ) ∈ R4, such that

g = 2dU(dV + H̃(U,X, Y )dU) + dX2 + dY 2, with H̃ harmonic in X,Y .

Proof. Note, first of all, that (i) implies that Q is connected and simply
connected. Pick local coordinates {x1, . . . , xn−2} on an open connected and
simply connected patch U ⊆ Q, together with the given global coordinates
(u, v) on the R2 part. On the neighborhood covered by the coordinates
u, v, x1, . . . , xn−2, the metric (2) becomes

(3) g = 2du(dv +H(u, x)du+ Ωi(u, x)dxi) + γij(u, x)dxidxj ,

where x = (x1, . . . , xn−2). A direct computation of the Christoffel symbols
shows that the only non-zero ones are

(4)

Γiuu = −(∇QH)i + γij
∂Ωj

∂u
,

Γiuk = Γiku = −γij(dQΩ)jk + γij
∂γjk
∂u

,

Γijk = (ΓQ)ijk,

Γvku =
∂H

∂xk
+ γijΩi(d

QΩ)jk − γijΩi
∂γjk
∂u

,

Γvij =
1

2

[
(∇Q)iΩj + (∇Q)jΩi −

∂γij
∂u

]
Γvuu =

∂H

∂u
+ Ωi(∇QH)i − γijΩi

∂Ωj

∂u
.

Again, a direct calculation reveals that

(5) Rijkl = (RQ)ijkl, Rvαvβ = 0, Rujul = 0,

so that 0 = (Ric)jl = (RicQ)jl, i.e., (Q, γ) is Ricci-flat. Specializing to n = 4,
we have that dim Q =2, so Q is flat. Since Q is simply connected and
bidimensional, it is diffeomorphic to R2, and we may take U ≡ Q, which we
do from now on. We may, therefore, select a posteriori coordinates x := x1

and y := x2 so that γij = δij , and thus Γijk = (ΓQ)ijk = 0 globally.
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With these coordinates, we have

0 = (Ric)uk =
∂(dQΩ)ik
∂xi

,

or
∂

∂xi

(
∂Ωi

∂xk
− ∂Ωk

∂xi

)
= 0. (k = 1, 2)

The latter equation implies that the quantity

(6) α :=
1

2

(
∂Ω1

∂y
− ∂Ω2

∂x

)
only depends on the parameter u, i.e., α ≡ α(u). We may therefore define a
new 1-parameter family of closed (thus, exact) 1-forms Ω̃(u) on Q by

Ω̃ := (−αy + Ω1)dx+ (αx+ Ω2)dy.

Therefore, there exists some function f ∈ C∞(R×Q) such that Ω̃ = df , and
so,

Ω1(u, x, y) =
∂f

∂x
(u, x, y) + α(u)y, Ω2(u, x, y) =

∂f

∂y
(u, x, y)− α(u)x.

Consider now the change of variable V = v + f(u, x, y) which transforms the
metric (3) into

(7) 2du
(
dV + Ȟ(u, x, y)du+ α(u) (ydx− xdy)

)
+ dx2 + dy2,

where

(8) Ȟ(u, x, y) := H(u, x, y)− ∂f

∂u
(u, x, y).

Then, all we need to do is remove the term α(u) (ydx− xdy) to obtain a
pp-wave. In order to achieve this, let us consider the following coordinates

(9)
X = cos(β(u))x+ sin(β(u))y,

Y = − sin(β(u))x+ cos(β(u))y,

where β(u) =
∫ u

0 α(s)ds, and observe that

dX2 + dY 2 = dx2 + dy2 + α2(u)
(
x2 + y2

)
du2 + 2α(u)du (ydx− xdy) .
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In conclusion, in the coordinates {U, V,X, Y } (with U := u) we have
that the metric (7) becomes

(10) g = 2dU(dV + H̃(U,X, Y )dU) + dX2 + dY 2,

where

(11) H̃(U,X, Y ) := H(u, x, y)− ∂f

∂u
(u, x, y)− α2(u)

2
(x2 + y2).

The condition that (M, g) is Ricci-flat translates, in terms of these co-
ordinates, into

(12)
∂2H̃

∂X2
+
∂2H̃

∂Y 2
= 0.

Now, U and V clearly have range R, and the form of the metric (10) im-
plies the 2-dimensional submanifolds U, V = const. are totally geodesic, and
hence (since (M, g) is geodesically complete) are isometric copies of the Eu-
clidean 2-dimensional spaces. Hence, the range of both X and Y is also R,
which concludes the proof. �

Remark 3.2. In the particular case when the standard Brinkmann space-
time (M, g) is autonomous, we deduce that the function α defined on (6)
is actually constant. Hence, the new coordinates X and Y can be viewed as
arising from x, y, for each u, via a rotation of angle α · u. So, even if we start
from an autonomous Brinkmann spacetime, the pp-wave obtained after the
changes of variables discussed above is not necessarily autonomous. Note,
however, that in this case H̃ has a very concrete dependence on U(:= u),
given precisely by the variable change (9), and we deduce from (11) that

(13) H̃(U,X, Y ) = Ĥ(x, y) := H(x, y)− α2

2
(x2 + y2).

On the other hand, if we also assume that span{∂v, ∂u}⊥ is integrable,
then Ω is closed, and thus exact (as we are in the universal cover). Therefore,
the function α not only is constant, but actually equal to zero, and the change
of coordinates in the spatial fiber (9) becomes trivial. We conclude that in this
case, the arguments in Theorem 3.1 lead in fact to an autonomous pp-wave.
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4. Proof of Theorem 1.2

In order to prove Theorem 1.2, we will need some preliminary lemmas and
definitions. The following definition was introduced (in slightly different
form) in Refs. [14, 15].

Definition 4.1. A function F : Rn → R is at most quadratic if there exist
numbers a, b > 0 such that

F(x) ≤ a‖x‖2 + b,∀x ∈ Rn.

Remark 4.1. Note that if a function F : Rn → R is not at most quadratic,
then there exists a sequence {xk}k in Rn for which

F(xk) > k‖xk‖2 + k,∀k ∈ N,

and, in particular, ‖xk‖ → +∞ as k → +∞. Clearly, if F remains bounded
above by a polynomial of degree at most 2 outside a compact subset of Rn
then F is at most quadratic.

The importance of Definition 4.1 in our context arises from the following
result, due to H.P. Boas and R.P. Boas (see [7], Thm. II).

Lemma 4.2. A harmonic function F : Rn → R bounded from one side by
a polynomial of degree m is also a polynomial of degree at most m. In
particular, if F is at most quadratic, then there exist numbers aij , bj ∈ R
(i, j ∈ {1, . . . , n}) such that

F(x) =

n∑
i,j=1

aijx
ixj +

n∑
j=1

bjx
j + F(0).

The following two technical lemmas will also be instrumental in our
proof.

Lemma 4.3. Let Ω ⊆ C ≡ R2 be an open set containing 0, and let F : Ω→
R be a harmonic function such that F(0) = 0. Then, for each R > 0 such
that BR(0) ⊂ Ω, there exists a number θR ∈ [0, 2π) for which∫ R

0
F(reiθR) dr = 0.



i
i

“2-Silva” — 2018/8/21 — 10:07 — page 37 — #13 i
i

i
i

i
i

Rigidity of geodesic completeness 37

Proof. Fix one such R > 0. Consider the continuous function IR : θ ∈ [0, 2π)
7→ IR(θ) ∈ R given by

IR(θ) :=

∫ R

0
F(reiθ) dr, ∀θ ∈ [0, 2π).

Integrating this function on the interval [0, 2π), we get∫ 2π

0
IR(θ) dθ =

∫ 2π

0

∫ R

0
F(reiθ) drdθ =

∫ R

0

(∫ 2π

0
F(reiθ) dθ

)
dr

=

∫ R

0
2πrF(0) dr ≡ 0,

where we have used the mean value theorem for harmonic functions in the
third equality. Hence, for some θR ∈ [0, 2π) , IR(θR) = 0 as claimed. �

Lemma 4.4. Let Ω ⊆ C ≡ R2 be an open set containing 0, and let F : Ω→
R be a harmonic function such that F(0) = 0. Then, for each R > 0 such
that BR(0) ⊂ Ω, and for each p ∈ ∂BR(0), there exists a piecewise smooth
curve z : [0, 1]→ BR(0) such that

i) z(0) = z(1) = 0 and z(t0) = p for some t0 ∈ (0, 1),

ii)
∫ 1

0 F(z(t))dt ≥ 1
5F(p), and

iii)
∫ 1

0 ‖ż(t)‖
2dt ≤ 50π2R2.

Proof. Fix one such R > 0, and let θR ∈ [0, 2π) be as in Lemma 4.3. Write
p = Reiθ0 ≡ (R cos θ0, R sin θ0). We may assume θ0 ≥ θR, since the case when
θ0 ≤ θR is entirely analogous.

Assume first that θ0 = θR. In this case, we define

(14) z(t) =


5
2 tRe

iθR if t ∈ [0, 2/5]

p if t ∈ [2/5, 3/5]
5
2(1− t)ReiθR if t ∈ [3/5, 1].

With this definition, appropriate changes of variables immediately show that∫ 2/5

0
F(z(t))dt =

∫ 1

3/5
F(z(t))dt = (2/5R)

∫ R

0
F(reiθR) dr = 0
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from the choice of θR, and hence∫ 1

0
F(z(t))dt =

1

5
F(p).

Moreover, ∫ 1

0
‖ż(t)‖2dt = 5R2 < 50π2R2.

We now assume that θ0 > θR. Consider the standard parametrization γ :
t ∈ [0, 2π] 7→ Reit ∈ C of the circle of radius R. By the mean value theorem
for the harmonic function F we have

0 = F(0) =
1

2π

∫ θR+2π

θR

F(γ(t))‖γ̇(t)‖dt,

whence we conclude that

(15) 0 =

∫ θR+2π

θR

F(γ(t))dt =

∫ θ0

θR

F(γ(t))dt+

∫ θR+2π

θ0

F(γ(t))dt.

We may consider two cases:

(a)

∫ θ0

θR

F(γ(t))dt ≥ 0, or (b)

∫ θR+2π

θ0

F(γ(t))dt ≥ 0.

For (a), consider the reparametrization

β : t ∈ [1/5, 2/5] 7→ γ(5(θ0 − θR)t+ 2θR − θ0)

of the curve γ. Then

0 ≤
∫ θ0

θR

F(γ(t))dt =
1

5(θ0 − θR)

∫ 2/5

1/5
F(β(s))ds,

and since we assume θ0 > θR we conclude that

(16)

∫ 2/5

1/5
F(β(s))ds ≥ 0.

Also, note that β(1/5) = ReiθR and β(2/5) = Reiθ0 = p, and∫ 2/5

1/5
‖β̇(t)‖2dt = 5(θ0 − θR)2R2 ≤ 20π2R2.
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We may therefore define z : [0, 1]→ C by

(17) z(t) =



5tReiθR if t ∈ [0, 1/5]

β(t) if t ∈ [1/5, 2/5]

p if t ∈ [2/5, 3/5]

β(1− t) if t ∈ [3/5, 4/5]

5(1− t)ReiθR if t ∈ [4/5, 1].

Thus, ∫ 1

0
F(z(t))dt =

∫ 1/5

0
F(5tReiθR)dt+

∫ 2/5

1/5
F(β(t))dt+

1

5
F(p)(18)

+

∫ 4/5

3/5
F(β(1− t))dt+

∫ 1

4/5
F(5(1− t)ReiθR)dt

=
2

5R

∫ R

0
F(reiθR)dr(≡ 0)

+ 2

∫ 2/5

1/5
F(β(t))dt(≥ 0) +

1

5
F(p)

≥ 1

5
F(p),

while ∫ 1

0
‖ż(t)‖2dt = 2

∫ 2/5

1/5
‖β̇(t)‖2dt+ 10R2 ≤ 50π2R2,

which concludes case (a). The case (b) follows analogously, just interchanging
β with a map β̃ : [1/5, 2/5]→ C defined by

β̃(t) = γ(5(θR + 2π − θ0)t+ 2θ0 − θR − 2π)

(compare with the definition of β), and the result follows. �

Proof of Theorem 1.2. Note that since (M, g) is transversally Killing, Corol-
lary 2.3 ensures that the universal covering of (M, g) is a standard au-
tonomous Brinkmann spacetime. We can then assume without loss of gen-
erality that (M, g) is a standard autonomous Brinkmann spacetime, and so,
that M = R2 ×Q and g is expressed as (2) where H, Ω and γ do not depend
on the variable u.

Observe that now we can apply Theorem 3.1, which ensures the exis-
tence of coordinates {U, V,X, Y } with (U, V,X, Y ) ∈ R4 for which g has the
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expression

g = 2dU(dV + H̃(U,X, Y )dU) + dX2 + dY 2, with H̃ harmonic in X,Y .

Moreover, due the fact that (M, g) is autonomous, Remark 3.2 ensures that
H̃(U,X, Y ) = Ĥ(x, y) (see (13)).

We wish to show that H̃ is quadratic in the coordinates X, Y . Now, since
the coordinate transformations for X and Y are linear in x, y (cf. (9)), in
order to accomplish this it is enough to show that Ĥ is a quadratic function
of x and y.

Assume then, by way of contradiction, that Ĥ is not quadratic as a
function of x, y. Since −Ĥ is harmonic in x, y, due to Lemma 4.2 −Ĥ can
not be at most quadratic in these coordinates. Therefore (cf. Remark 4.1)
we can pick a sequence pk = (xk, yk) in R2 for which

(19) − Ĥ(pk) > k‖pk‖2 + k, ∀k ∈ N

and Rk := ‖pk‖ → +∞ as k → +∞.
Our strategy from now on is as follows. We will show the existence of

some open set U0 containing the origin (0, 0, 0, 0) of M ≡ R4 and timelike
curve segments with endpoints arbitrarily close to the origin, such that they
are not contained in U0, in violation of our assumption of strong causality
for (M, g). This contradiction then yields that Ĥ is indeed quadratic, which
in turn establishes the theorem.

So, let us fix U0 be the open Euclidean ball in R4 centered at the origin
and with radius R0 > 0. Fix a number 0 < ∆ < R0. We can assume that
Rk > R0 for all k ∈ N, and so, that any point (u, v, pk) /∈ U0. For each k ∈ N,
we may use Lemma 4.4 with F = −Ĥ and pick a piecewise smooth curve
zk : t ∈ [0, 1] 7→ BRk

(0) ⊂ C ≡ R2 such that

(i) zk(0) = zk(1) = (0, 0) and z(tk) = pk for some tk ∈ (0, 1),

(ii) -
∫ 1

0 Ĥ(zk(t))dt ≥ −1
5Ĥ(pk), and

(iii)
∫ 1

0 ‖żk(t)‖
2dt ≤ 50π2R2

k.

Using these curves, we may define for each k ∈ N, the piecewise curve Zk : t ∈
[0, 1] 7→ C given by Zk(t) = eiα∆tzk(t) for each t ∈ [0, 1], where α is defined
in (6) and it is constant due the autonomous character of (M, g). Observe
that, from construction, H̃(α∆t, Zk(t)) = Ĥ(zk(t)). Therefore, if we write
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zk(t) = xk(t) + iyk(t) we compute:

‖Żk‖2 = Żk Żk = α2∆2‖zk‖2 + ‖żk‖2 + iα∆(zkżk − żkzk)(20)

= α2∆2R2
k + ‖żk‖2 + 2α∆(xkẏk − ykẋk)

≤ α2∆2R2
k + ‖żk‖2 + 4|α|∆Rk‖żk‖

≤ 3α2∆2R2
k + 3‖żk‖2.

Joining the previous inequality with (iii) we conclude that

(21)

∫ 1

0
‖Żk(t)‖2dt ≤ C(α,∆)R2

k,

where

C(α,∆) = 3α2∆2 + 150π2.

Finally, for each number E > 0 and for each k ∈ N, we can define the curve
ΓEk : [0, 1]→ R4 given, for each t ∈ [0, 1], by

ΓEk (t) := (V E
k (t),∆t, Zk(t)),

where

V E
k (t) := −∆

∫ t

0
H̃(α∆s, Zk(s))ds−

1

2∆

∫ t

0
‖Żk(s)‖2ds−

Et

2∆
(22)

= −∆

∫ t

0
Ĥ(zk(s))ds−

1

2∆

∫ t

0
‖Żk(s)‖2ds−

Et

2∆
.

It is easy to check, using the line element of g in the form (10), that each
ΓEk defines a timelike curve in (M, g).

Now, consider the smooth functions hk : E ∈ (0,+∞) 7→ V E
k (1) ∈ R (k ∈

N). Clearly, for each k ∈ N, hk(E) < 0 for large enough E. However, collect-
ing our estimates (ii), (19) and (21), we get from (22)

(23) hk(1) ≥
(
k

5
∆− C(α,∆)

2∆

)
R2
k +

k

5
− 1

2∆
.

It is clear from inequality (23) that we can pick k0 ∈ N for which hk0(1) > 0,
and since hk0 is continuous, there exists E0 > 0 for which hk0(E0) = 0. We
then conclude that ΓE0

k0
is a timelike curve such that ΓE0

k0
(0) = (0, 0, 0, 0)

and ΓE0

k0
(1) = (0,∆, 0, 0) ∈ U0 but ΓE0

k0
(tk0) = (V E0

k0
(tk0),∆tk0 , pk) /∈ U0, as

desired; so the proof is complete. �
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In the Introduction, we have shown how Theorem 1.2 implies, via Corol-
lary 1.3, that a physically relevant but relatively restricted class of pp-waves
actually fall under the important Cahen-Wallach subclass. Our final goal
in this paper is to widen the scope of that result so as to encompass the
larger class of those Brinkmann spacetimes envisaged in Theorem 1.2, and
give a precise, concrete geometric characterization of when these are Cahen-
Wallach spaces.

In order to achieve this, let (M, g) be a Brinkmann spacetime in the
conditions of Theorem 1.2. Corollary 2.3 allows us to assume without loss of
generality that (M, g) is a standard autonomous Brinkmann spacetime. Now
we assume, in addition, that span{X ,Y}⊥ is an integrable distribution, being
X , Y the corresponding parallel and Killing null fields. Then, by applying
Theorem 3.1, and taking into account Remark 3.2, we deduce that (M, g) is
isometric to an autonomous pp-wave, i.e. with H independent of u. So, if we
take up again the arguments of the proof of Theorem 1.2, we conclude that
H must be quadratic in the spatial coordinates, and thus a Cahen-Wallach
space. Summarizing:

Corollary 4.5. Let (M, g) be a Brinkmann spacetime in the conditions of
Theorem 1.2 and denote by X and Y, respectively, the corresponding paral-
lel and Killing null fields. Then, the universal cover of (M, g) is a Cahen-
Wallach spacetime if and only if span{X ,Y}⊥ is an integrable distribution.
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Campus de Rabanales, 14071 Córdoba, Spain
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