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Quasi-local energy with respect to

a static spacetime

Po-Ning Chen, Mu-Tao Wang, Ye-Kai Wang,
and Shing-Tung Yau

This article considers the quasi-local energy in reference to a gen-
eral static spacetime. We follow the approach developed by the
authors in [7, 9, 19, 20] and define the quasi-local energy as a differ-
ence of surface Hamiltonians, which are derived from the Einstein-
Hilbert action. The new quasi-local energy provides an effective
gauge independent measurement of how far a spacetime deviates
away from the reference static spacetime on a finitely extended
region.

1. Introduction

Due to the lack of energy density by Einstein’s equivalence principle, the def-
inition of gravitational energy has been a challenging problem. One can at
best hope to define energy as a boundary integral instead of a bulk integral.
The application of the Hamilton-Jacobi theory [4, 11] to the Einstein-Hilbert
action gives an expression that depends on a reference term. For an isolated
system with suitable decay at infinity, it is possible to choose an asymptot-
ically flat coordinate system to anchor the reference term, and this leads to
the celebrated definitions of the ADM energy [1], and the positive energy the-
orems of Schoen-Yau [17], Witten [21], etc. However, for a finitely extended
system, the choice of a reference had remained subtle and ambiguous until
[19, 20] in which isometric embeddings into the Minkowski spacetime were
applied to give a well-defined definition of quasi-local energy. The idea is to
utilize the surface Hamiltonian [4, 11] from the Einstein-Hilbert action to
pick up an optimal one among all such isometric embeddings. The resulting
definition of energy and conserved quantities have had several remarkable

P.-N. Chen is supported by NSF grant DMS-1308164, M.-T. Wang is supported
by NSF grant DMS-1405152, Y.-K. Wang is supported by MOTS in Taiwan grant
105-2115-M-006-016-MY2, and S.-T. Yau is supported by NSF grants PHY-0714648
and DMS-1308244.

1



i
i

“1-Wang” — 2018/8/16 — 10:46 — page 2 — #2 i
i

i
i

i
i

2 P.-N. Chen, et al.

applications [6–8] since then. This approach was subsequently generalized
to define quasi-local energy with respect to de Sitter/Anti-de Sitter refer-
ence recently [9]. In this paper, we further generalize to allow the reference
spacetime to be a general static spacetime. Such an energy is not expected
to have a straightforward positivity property as the Minkowski reference
case.1 The principal application seems to be to a perturbative configuration.
For example, although the black hole uniqueness theorem [5, 12] establishes
the Schwarzschild solution as the unique asymptotically flat static vacuum
spacetime, a black hole in reality will be a perturbation. The quasi-local en-
ergy provides an effective gauge independent measurement of how far such
a perturbation deviates away from the exact Schwarzschild solution.

Throughout this article, a spacetime is a time-oriented Lorentz 4-
manifold. We impose the static condition on the reference spacetime.

Definition 1.1. A static spacetime is a time-oriented Lorentz 4-manifold
(with possibility nonempty smooth boundary) such that there exists a co-
ordinate system (t, x1, x2, x3) (static chart) under which the Lorentz metric
takes the form

(1.1) ǧ = −V 2(x1, x2, x3)dt2 + gij(x
1, x2, x3)dxidxj ,

where V > 0 on the interior and V = 0 on the boundary.

In particular, ∂
∂t is a Killing field. Each time slice, i.e. the hypersurface

defined by t = c for a constant c, is a smooth Riemannian 3-manifold with
possibly nonempty smooth boundary ∂M , such that V > 0 in the interior
of M and V = 0 on ∂M . Denote the covariant derivative of the metric ǧ by
D and that of the metric g by ∇̄.

In the following, we recall the null convergence condition:

Definition 1.2. A spacetime with Lorentz metric ǧ satisfies the null con-
vergence condition if

(1.2) Ricǧ(L,L) ≥ 0

for any null vector L, where Ricǧ is the Ricci curvature of ǧ.

1See a recent positivity result with respect to Schwarzschild reference by Lu-
Miao, “Minimal hypersurfaces and boundary behavior of compact manifolds with
nonnegative scalar curvature”, arXiv:1703.08164
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Quasi-local energy with respect to a static spacetime 3

Recall that L is a null vector if ǧ(L,L) = 0. By [18], a static spacetime
satisfies the null convergence condition (1.2) if and only if

(1.3) ∆̄V g − ∇̄2V + V Ric ≥ 0,

on each time slice, where Ric is the Ricci curvature of the metric g.
In particular, static vacuum spacetimes satisfy the null convergence con-

dition. These spacetimes have been studied extensively. We summarize some
basic properties as follows. The static metric ǧ satisfies the vacuum Einstein
equation with the cosmological constant Λ if

(1.4)

{
−ΛV g − ∇̄2V + V Ric = 0,

∆̄V + ΛV = 0.

From (1.4), it follows that (see [10, Proposition 2.3], [15, Lemma 2.1] for
example)

1) The scalar curvature of gij is constant,

2) 0 is a regular value of V and {V = 0} is totally geodesic,

3) |∇̄V | is a positive constant on each component of {V = 0}.

From here on, we pick a static spacetime S as in Definition 1.1 and refer
to it as the reference spacetime. Let S̊ denote the interior and ∂S denote
the boundary of S, respectively. In addition, we refer to the hypersurface
t = c as a static slice and the function V as the static potential.

The results in the paper are summarized as follows. The definition of
quasi-local energy is given in §2.2. For a surface in the reference spacetime,
it is proved that the identity isometric embedding not only has energy zero by
definition, but also is a critical point of the quasi-local energy (Theorem 2.6).
The first variation of the quasi-local energy, which characterizes an optimal
isometric embedding, is derived in Theorem 2.8. At last, it is shown that
the identity isometric embedding of a surface in the static slice is locally
energy-minimizing (Theorem 4.2).

2. Quasi-local energy with respect to a static
spacetime reference

In this section, we define a new quasi-local energy allowing the reference
spacetime to be a general static spacetime, following the construction in [9].
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2.1. Geometry of surfaces in a static spacetime

Let S be a reference spacetime. Consider a surface Σ in S̊ defined by an
embedding X of an abstract surface Σ0. In the static chart, we denote the
components of X by (τ,X1, X2, X3). Let σ be the induced metric on Σ, H0

be the mean curvature vector of Σ, and J0 be the reflection of H0 through
the incoming light cone in the normal bundle of Σ. Denote the covariant
derivative with respect to the induced metric σ by ∇.

Given an orthonormal frame {e3, e4} of the normal bundle of Σ in S̊
where e3 is spacelike and e4 is future timelike, we define the connection
one-form associated to the frame

(2.1) αe3(·) = 〈D(·)e3, e4〉.

We assume the mean curvature vector of Σ is spacelike and consider the fol-
lowing connection one-form of Σ with respect to the mean curvature vector:

(2.2) αH0
(·) =

〈
D(·)

J0

|H0|
,
H0

|H0|

〉
.

Let Σ̂ be the surface in the static slice t = 0 given by X̂ = (0, X1, X2, X3)
which is assumed to be an embedding. The surfaces Σ and Σ̂ are canonically
diffeomorphic through the above identification. Let σ̂ be the induced metric
on Σ̂, and Ĥ and ĥab be the mean curvature and second fundamental form
of Σ̂ in the static slice, respectively. Denote the covariant derivative with
respect to the metric σ̂ by ∇̂.

Let C be the image of Σ under the one-parameter family φt generated
by ∂

∂t . The intersection of C with the static slice t = 0 is Σ̂. Let ĕ3 be the

outward unit normal of Σ̂ in the static slice t = 0. Consider the pushforward
of ĕ3 by the one-parameter family φt, which is denoted by ĕ3 again. Let ĕ4

be the future directed unit normal of Σ normal to ĕ3 and extend it along
C in the same manner. It is easy to see that Lemma 2.1, Proposition 2.2,
Proposition 2.3 and Proposition 3.2 of [9] hold for a general static spacetime.
We state them here for later reference.

Lemma 2.1. Along C, we have

ĕ4 =
√

1 + V 2|∇τ |2
(

∂
∂t

V
+ V ∇̂τ

)
(2.3)

∂

∂t
=V
√

1 + V 2|∇τ |2ĕ4 − V 2∇τ.(2.4)
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Proposition 2.2. Along C,

(2.5) Ĥ = −〈H0, ĕ3〉 −
V√

1 + V 2|∇τ |2
αĕ3(∇τ).

Proposition 2.3. Along C, the connection one-form αĕ3 on Σ satisfies

(2.6) (αĕ3)a =
√

1 + V 2|∇τ |2(V ∇̂bτ ĥab − ĕ3(V )τa)

where ĥab on the right hand side is the extension of the second fundamental
form of Σ̂ to C by the one-parameter family φt.

Proposition 2.4. In terms of the connection one-form in mean curvature
gauge αH0

, we have∫
V ĤdΣ̂ =

∫ [√
(1 + V 2|∇τ |2)|H0|2V 2 + div(V 2∇τ)2

+ div(V 2∇τ)θ − αH0
(V 2∇τ)

]
dΣ,

where

(2.7) θ = − sinh−1 div(V 2∇τ)

|H0|V
√

1 + V 2|∇τ |2

and

− H0

|H0|
= cosh θĕ3 + sinh θĕ4

J0

|H0|
= sinh θĕ3 + cosh θĕ4.

(2.8)

In particular,

(2.9)
〈H0, ĕ4〉 = |H0| sinh θ, −〈H0, ĕ3〉 = |H0| cosh θ,

and αH0
= αĕ3 − dθ.

2.2. Definition of quasi-local energy

Let Σ be a surface in a general spacetime N (not necessarily static). We
assume the mean curvature vector H of Σ is spacelike and the normal bundle
of Σ is oriented. The data for defining the quasi-local energy consists of the
triple (σ, |H|, αH) where σ is the induced metric, |H| is the norm of the
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mean curvature vector, and αH is the connection one-form of the normal
bundle with respect to the mean curvature vector

αH(·) =

〈
∇N(·)

J

|H|
,
H

|H|

〉
.

Here J is the reflection of H through the incoming light cone in the normal
bundle. For an isometric embedding X into the interior S̊ of a reference
spacetime S with the static potential V , we write X = (τ,X1, X2, X3) with
respect to a fixed static chart. We define X̂, Σ̂, Ĥ as in the last subsection.
The quasi-local energy associated to the pair (X, ∂∂t) is defined to be

E

(
Σ, X,

∂

∂t

)
=

1

8π

{∫
V ĤdΣ̂−

∫ [√
(1 + V 2|∇τ |2)|H|2V 2 + div(V 2∇τ)2

(2.10)

− div(V 2∇τ) sinh−1 div(V 2∇τ)

V |H|
√

1 + V 2|∇τ |2

− V 2αH(∇τ)

]
dΣ

}
.

Using Proposition 2.4, we rewrite the quasi-local energy as follows:

E

(
Σ, X,

∂

∂t

)
=

1

8π

{∫ [√
(1 + V 2|∇τ |2)|H0|2V 2 + div(V 2∇τ)2

(2.11)

− div(V 2∇τ) sinh−1 div(V 2∇τ)

V |H0|
√

1 + V 2|∇τ |2

− V 2αH0
(∇τ)

]
dΣ

−
∫ [√

(1 + V 2|∇τ |2)|H|2V 2 + div(V 2∇τ)2

− div(V 2∇τ) sinh−1 div(V 2∇τ)

V |H|
√

1 + V 2|∇τ |2

− V 2αH(∇τ)

]
dΣ

}
.

The optimal isometric embeddings is defined as in [9].
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Definition 2.5. Let S be a reference spacetime. An optimal isometric
embedding for the data (σ, |H|, αH) is an isometric embedding X0 of σ into
S̊ that is a critical point of the quasi-local energy E(Σ, X, ∂∂t) among all

nearby isometric embeddings X of σ into S̊.

We show that for a surface in the interior S̊ of the reference static
spacetime, the identity embedding is an optimal isometric embedding.

Theorem 2.6. The identity isometric embedding for a surface Σ in the
interior S̊ of S is a critical point of its own quasi-local energy. Namely,
suppose Σ in S̊ is defined by an embedding X0. Consider a family of iso-
metric embeddings X(s), −ε < s < ε such that X(0) = X0. Then we have

d

ds
|s=0E

(
Σ, X(s),

∂

∂t

)
= 0.

Proof. Denote d
ds |s=0 by δ and set

H1 =

∫
V ĤdΣ̂

and

H2 =

∫ [√
(1 + V 2|∇τ |2)|H0|2V 2 + div(V 2∇τ)2

− div(V 2∇τ) sinh−1 div(V 2∇τ)

V |H0|
√

1 + V 2|∇τ |2
− V 2αH0

(∇τ)

]
dΣ.

It suffices to prove that δH1 = δH2, where for the variation of H2, it is
understood that H0 and αH0

are fixed at their values at the initial surface
X0(Σ) and only τ and V are varied.

It is convenient to rewrite H1 and H2 in terms of the following two
quantities: A = V

√
1 + V 2|∇τ |2 and B = div(V 2∇τ). In terms of A and B

H1 =

∫
ĤA dΣ

H2 =

∫ [√
|H0|2A2 +B2 −B sinh−1 B

|H0|A
− αH0

(V 2∇τ)

]
dΣ.



i
i

“1-Wang” — 2018/8/16 — 10:46 — page 8 — #8 i
i

i
i

i
i

8 P.-N. Chen, et al.

As a result, we have

δH2 =

∫ [
δA

(
|H0|2A√
|H0|2A2 +B2

+
B2

A
√
|H0|2A2 +B2

)]
dΣ

−
∫ [

(δB) sinh−1 B

|H0|A
+ αH0

(δ(V 2∇τ))

]
dΣ

= I− II

By (2.9) and sinh θ = − B
|H0|A , integrating by parts gives

II =

∫ [
δ(V 2∇τ) · ∇θ + αH0

(δ(V 2∇τ))
]
dΣ =

∫
αĕ3(δ(V

2∇τ))dΣ.

On the other hand, we simplify the integrand of I using (2.7),

|H0|2A√
|H0|2A2 +B2

+
B2

A
√
|H0|2A2 +B2

=

√
|H0|2A2 +B2

A
= −〈H0, ĕ3〉.

Therefore, by (2.5), I is equal to∫
(−〈H0, ĕ3〉)δAdΣ =

∫ [
Ĥ +

V αĕ3(∇τ)√
1 + V 2|∇τ |2

]
δAdΣ

=

∫
ĤδAdΣ

+

∫ [
(δV )V 3|∇τ |2 + V 4∇τ∇δτ

1 + V 2|∇τ |2
(αĕ3(∇τ)) + (δV )V αĕ3(∇τ)

]
dΣ.

and

δH2 =

∫
ĤδAdΣ +

∫ [
(δV )V 3|∇τ |2 + V 4∇τ∇δτ

1 + V 2|∇τ |2
(αĕ3(∇τ))(2.12)

− αĕ3(V δV∇τ + V 2∇δτ)

]
dΣ

=

∫
ĤδAdΣ

−
∫

(αĕ3)a

(
σac − V 2∇aτ∇cτ

1 + V 2|∇τ |2

)
(V δV τc + V 2δτc)dΣ

=

∫
ĤδAdΣ +

∫
−(αĕ3)aσ̂

ac(V δV τc + V 2δτc)dΣ.
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Applying Proposition 2.3, the second integral in the last line can be rewritten
as ∫ √

1 + V 2|∇τ |2(ĕ3(V )τa − V ∇̂bτ ĥab)σ̂ac(V δV τc + V 2δτc)dΣ

=

∫
[ĕ3(V )σ̂ab − V ĥab](V δV τaτb + V 2τaδτb)dΣ̂

=
1

2

∫
[ĕ3(V )σ̂ab − V ĥab](δσ̂)abdΣ̂.

On the other hand, as V dΣ̂ = AdΣ and δdΣ = 0,

δH1 =

∫
ĤδAdΣ +

∫
V δĤdΣ̂.(2.13)

To prove δH1 = δH2, by (2.12) and (2.13), it suffices to show

(2.14)

∫
V

[
δĤ +

1

2
ĥab(δσ̂)ab

]
dΣ̂ =

1

2

∫ [
ĕ3(V )σ̂ab(δσ̂)ab

]
dΣ̂.

We decompose δX̂ into tangential and normal parts to Σ̂. Let

δX̂ = P a
∂X̂

∂va
+ βν.

For the first and second variations of the induced metric, we have

(2.15) (δσ̂)ab = 2βĥab + ∇̂a(P cσ̂cb) + ∇̂b(P cσ̂ca)

and

δĤ = −∆̂β −Ric(e3, e3)β − βσ̂abσ̂dcĥacĥbd + P a∇̂aĤ(2.16)

= −∆̂β −Ric(e3, e3)β − βσ̂abσ̂dcĥacĥbd

+ P a∇̂bĥab − P cRic

(
∂X̂

∂vc
, e3

)
,

where the Codazzi equation is used.
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We derive from (2.15) and (2.16)
(2.17)

δĤ +
1

2
ĥab(δσ̂)ab = −∆̂β −Ric(e3, e3)β + ∇̂b(P cĥcb)− P cRic

(
∂X̂

∂vc
, e3

)
.

(2.14) is thus equivalent to

∫
V

[
−∆̂β −Ric(e3, e3)β + ∇̂b(P cĥcb)− P cRic

(
∂X̂

∂vc
, e3

)]
dΣ̂

=

∫
ĕ3(V )[βĤ + ∇̂b(P cσ̂cb)]dΣ̂.

The above equality follows from the following two identities:∫
ĕ3(V )βĤdΣ̂ =

∫
V [−∆̂β −Ric(e3, e3)β]dΣ̂(2.18) ∫

ĕ3(V )∇̂b(P cσ̂cb)dΣ̂ =

∫
V [∇̂b(P cĥcb)−Ric(e3, c)]dΣ̂,(2.19)

which can be derived by integrating by parts and the static equation. �

We define the quasi-local energy density ρ with respect to the isometric
embedding X.

Definition 2.7. The quasi-local energy density with respect to the isomet-
ric embedding X is defined to be

ρ =

√
|H0|2 + (divV 2∇τ)2

V 2+V 4|∇τ |2 −
√
|H|2 + (divV 2∇τ)2

V 2+V 4|∇τ |2

V
√

1 + V 2|∇τ |2
.(2.20)

An immediate consequence of Theorem 2.6 is the following formula for
the first variation of the quasi-local energy:

Theorem 2.8. Let Σ be a surface in a physical spacetime with the data
(σ, |H|, αH). Let X0 be an isometric embedding of σ into the interior S̊
of the reference spacetime and let (|H0|, αH0

) be the corresponding data on
X0(Σ). Consider a family of isometric embeddings X(s), −ε < s < ε such
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that X(0) = X0. Then we have

d

ds
|s=0E

(
Σ, X(s),

∂

∂t

)
(2.21)

=
1

8π

∫
δV

[
ρV (1 + 2V 2|∇τ |2)

− 2V∇τ∇ sinh−1 ρdiv(V 2∇τ)

|H0||H|
+ (αH − αH0

)(2V∇τ)

]
dΣ

+
1

8π

∫
(δτ)div

[
V 2∇ sinh−1 ρdiv(V 2∇τ)

|H0||H|

− ρV 4∇τ + V 2(αH0
− αH)

]
dΣ,

where δτ = d
ds |s=0τ(s), δXi = d

ds |s=0X
i(s) and δV = δXi∇̄iV .

Proof. The proof is identical to the proof of Theorem 5.4 of [9] where The-
orem 5.3 of [9] is replaced by Theorem 2.6 above. �

3. A Reilly-type formula for static manifolds

In this section, we generalize Lemma 6.1 of [9] for de Sitter and anti-de
Sitter spacetimes to general static spacetimes. The proof of [9, Lemma 6.1]
relies on a Reilly-type formula for functions on space forms in [16]. We first
prove a Reilly-type formula for a pair (V, Y ) of a positive function V and a
one-form Y on a Riemannian manifold (M, g) following the recent work of
[14]. Then we apply the Reilly-type formula for the pair to the case where
V is the static potential of the reference spacetime.

Let (M, g) be a Riemannian n-manifold and ∇̄ and ∆̄ be the covariant
derivatives and the Laplace operator with respect to g. Let Ω be a bounded
domain with smooth boundary ∂Ω in M . Let II and H be the second fun-
damental form and mean curvature of ∂Ω and ∇ be the covariant derivative
on ∂Ω.

Proposition 3.1. Let V be a positive function on Ω and Y be a one-form
on Ω. Let Y T be the tangential component of Y to ∂Ω. We have the following
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integral identity

∫
∂Ω

[
− 1

V
II(Y T , Y T ) +

1

V 2

∂V

∂ν
|Y T |2 − 1

V
H〈Y, ν〉2 − 2

V
∇a(Y T )a〈Y, ν〉

]
dA

=

∫
Ω

[
1

V 2

(
∆̄V g − ∇̄2V + V Ric

)
(Y, Y ) +

1

4V
|∇̄iYj + ∇̄jYi|2 −

1

V
(∇̄iY i)2

− V 3

4

∣∣∣∣∇̄i( YjV 2

)
− ∇̄j

(
Yi
V 2

)∣∣∣∣2
]
dΩ.

(3.1)

where ν is the outward unit normal of ∂Ω.

Proof. We write V i for ∇̄iV in the proof and apply the Bochner formula to
1
V |Y |

2:

1

2
∆̄

(
1

V
|Y |2

)
= − ∆̄V

2V 2
|Y |2 +

|∇̄V |2

V 3
|Y |2

+

(
−3

2

1

V 2
V i∇̄i|Y |2 +

1

V 2
V i∇̄iYjY j

)
︸ ︷︷ ︸

I

+
1

2V
∆̄|Y |2.

The last term can be treated as in the classical Bochner formula for one-
form:

1

V
∇̄i∇̄jYiY j +

1

V
∇̄i(∇̄iYj − ∇̄jYi)Y j +

1

V
∇̄iYj∇̄iY j

=
1

V
∇̄j∇̄iYiY j +

1

V
RjkY

kY j +
1

V
∇̄i(∇̄iYj − ∇̄jYi)Y j +

1

V
∇̄iYj∇̄iY j

= ∇̄j
(

1

V
∇̄iYiY j

)
− 1

V
(∇̄iYi)2 +

1

V 2
∇̄iYiY jV j +

1

V
RjkY

kY j

+ ∇̄i
(

1

V
(∇̄iYj − ∇̄jYi)Y j

)
+

1

V
∇̄iYj∇̄jY i +

1

V 2
(∇̄iYj − ∇̄jYi)V iY j .

For term I, we have

I = −3

2
∇̄i
(

1

V 2
V i|Y |2

)
+

3

2

∆̄V

V 2
|Y |2 − 3

|∇̄V |2

V 3
|Y |2

+ ∇̄j
(

1

V 2
V iYiY

j

)
+

2

V 3
〈∇̄V, Y 〉2 − ∇̄i∇̄jV

V 2
Y iY j

− 1

V 2
〈∇̄V, Y 〉∇̄jY j +

1

V 2
V i(∇̄iYj − ∇̄jYi)Y j .
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Collecting terms, we obtain

1

2
∆̄

(
1

V
|Y |2

)
=

1

V 2

(
∆̄V g − ∇̄2V + V Ric

)
(Y, Y )− 1

V
(∇̄iY i)2

−2
|∇̄V |2|Y |2

V 3
+ 2
〈∇̄V, Y 〉2

V 3
+

2

V 2
(∇̄iYj − ∇̄jYi)V iY j +

1

V
∇̄jYi∇̄iY j︸ ︷︷ ︸

II

+ ∇̄i
(

1

V
(∇̄iYj − ∇̄jYi)Y j

)
− 3

2
∇̄i
(

1

V 2
V i|Y |2

)
+ ∇̄j

(
1

V 2
〈∇̄V, Y 〉Y j

)
+ ∇̄j

(
1

V
∇̄iY iY j

)
.

Making the substitution

∇̄iYj − ∇̄jYi =
2

V
(ViYj − VjYi) + V 2

[
∇̄i
(
Yj
V 2

)
− ∇̄j

(
Yi
V 2

)]
(3.2)

and

∇̄iYj =
1

2

(
∇̄iYj + ∇̄jYi

)
+

1

2

(
∇̄iYj − ∇̄jYi

)
,

we get

II = 2
|∇̄V |2|Y |2

V 3
− 2
〈∇̄V, Y 〉2

V 3
+ 2

[
∇̄i
(
Yj
V 2

)
− ∇̄j

(
Yi
V 2

)]
V iY j

+
1

4V
|∇̄iYj + ∇̄jYi|2 −

1

4V
|∇̄iYj − ∇̄jYi|2

=
1

4V
|∇̄iYj + ∇̄jYi|2 −

V 3

4

∣∣∣∣∇̄i( YjV 2

)
− ∇̄j

(
Yi
V 2

)∣∣∣∣2 .
Here (3.2) is used again in the last equality. In summary, we obtain

1

2
∆̄

(
1

V
|Y |2

)
=

1

V 2

(
∆̄V g − ∇̄2V + V Ric

)
(Y, Y )− 1

V
(∇̄iY i)2

+
1

4V
|∇̄iYj + ∇̄jYi|2 −

V 3

4

∣∣∣∣∇̄i( YjV 2

)
− ∇̄j

(
Yi
V 2

)∣∣∣∣2
+ ∇̄i

(
1

V
(∇̄iYj − ∇̄jYi)Y j

)
− 3

2
∇̄i
(

1

V 2
V i|Y |2

)
+ ∇̄j

(
1

V 2
〈∇̄V, Y 〉Y j

)
+ ∇̄j

(
1

V
∇̄iY iY j

)
.
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Integrating by parts, we get

∫
∂Ω

[
1

2

∂

∂ν

(
1

V
|Y |2

)
− 1

V
(∇̄iYj − ∇̄jYi)νiY j +

3

2V 2

∂V

∂ν
|Y |2

− 1

V 2
〈∇̄V, Y 〉〈Y, ν〉 − 1

V
∇̄iY i〈Y, ν〉

]
dA

=

∫
Ω

1

V 2

(
∆̄V g − ∇̄2V + V Ric

)
(Y, Y ) +

1

4V
|∇̄iYj + ∇̄jYi|2 −

1

V
(∇̄iY i)2

− V 3

4

∣∣∣∣∇̄i( YjV 2

)
− ∇̄j

(
Yi
V 2

)∣∣∣∣2 dΩ.

Let’s turn to the boundary integral. We compute

1

2

∂

∂ν

(
1

V
|Y |2

)
= −1

2

1

V 2

∂V

∂ν
|Y |2 +

1

V
〈∇̄Y Y, ν〉+

1

V

(
〈∇̄νY, Y 〉 − 〈∇̄Y Y, ν〉

)
,

and the boundary integral becomes

∫
∂Ω

[
1

V
〈∇̄Y Y, ν〉+

1

V 2

∂V

∂ν
|Y |2 − 1

V 2
〈∇̄V, Y 〉〈Y, ν〉 − 1

V
∇̄iY i〈Y, ν〉

]
dA.

Decomposing Y into tangential part and normal part to ∂Ω and using the
identity

∇̄iY i = ∇a(Y T )a + 〈∇̄νY, ν〉+H〈Y, ν〉.

Along ∂Ω, we have

1

V
〈∇̄Y Y, ν〉 −

1

V
∇̄iY i〈Y, ν〉

=
1

V
〈∇̄Y T +〈Y,ν〉νY

T + 〈Y, ν〉ν, ν〉 − 1

V
∇̄iY i〈Y, ν〉

= − 1

V
II(Y T , Y T ) +

1

V
Y T (〈Y, ν〉) +

1

V
〈∇̄νY, ν〉〈Y, ν〉 −

1

V
∇̄iY i〈Y, ν〉

= − 1

V
II(Y T , Y T ) +

1

V
(Y T )a∇a〈Y, ν〉 −

1

V
∇a(Y T )a〈Y, ν〉 − 1

V
H〈Y, ν〉2.

Integrating by parts the term 1
V (Y T )a∇a〈Y, ν〉, we get
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∫
∂Ω

[
1

V
〈∇̄Y Y, ν〉 −

1

V
∇̄iY i〈Y, ν〉

]
dA

=

∫
∂Ω

[
− 1

V
II(Y T , Y T ) +

1

V 2
〈∇V, Y T 〉〈Y, ν〉

− 2

V
∇a(Y T )a〈Y, ν〉 − 1

V
H〈Y, ν〉2

]
dA

=

∫
∂Ω

[
− 1

V
II(Y T , Y T ) +

1

V 2
〈∇̄V, Y 〉〈Y, ν〉 − 1

V 2

∂V

∂ν
〈Y, ν〉2

− 1

V
H〈Y, ν〉2 − 2

V
∇a(Y T )a〈Y, ν〉

]
dA.

This finishes the proof of the Proposition. �

In particular, for any smooth function f on Ω, we apply Proposition 3.1 to
the one-form Y = V ∇̄f − f∇̄V and derive the following:

Corollary 3.2. Let f be a function on Ω and define the one-form Y =
V ∇̄f − f∇̄V . We have∫

Ω

[
1

V 2

(
∆̄V g − ∇̄2V + V Ric

)
(Y, Y ) +

1

V
|V ∇̄2f(3.3)

− f∇̄2V |2 − (V ∆̄f − f∆̄V )2

]
dΩ

=

∫
∂Ω

[
− 1

V
II(Y T , Y T )− 2

V
∇a(Y T )a〈Y, ν〉

− 1

V
H〈Y, ν〉2 +

1

V 2

∂V

∂ν
|Y T |2

]
dA.

Proof. We observe that for Y = V ∇̄f − f∇̄V ,

∇̄i
(
Yj
V 2

)
− ∇̄j

(
Yi
V 2

)
= 0,

∇̄iYj + ∇̄jYi = 2(V ∇̄i∇̄jf − f∇̄i∇̄jV ).

The corollary follows immediately from Proposition 3.1. �

We apply Corollary 3.2 to obtain the following positivity result.

Theorem 3.3. Suppose (M, g) is a Riemannian manifold and V is a smooth
function such that the triple (M, g, V ) satisfies the null convergence condition
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(1.3). Let Σ be a closed connected mean convex hypersurface in M . Suppose
Σ bounds a domain Ω in M such that ∂Ω = Σ ∪N where N is contained in
∂M. For any τ ∈ C∞(Σ), we have∫

Σ

[
[∇a(V 2∇aτ)]2

V H
− V 3II(∇τ,∇τ) + V 2∂V

∂ν
|∇τ |2

]
dΣ ≥ 0.(3.4)

Proof. By Lemma 2.5 of [14], the Dirichlet boundary value problem

(3.5)


V ∆̄f − f∆̄V = 0 in Ω,

f = V τ on Σ,

f = 0 on N,

admits a unique solution f .
Consider the one-form Y = V ∇̄f − f∇̄V . By a direct computation, (3.4)

is equivalent to∫
Σ

[∇a(Y T )a]2

V H
− 1

V
II(Y T , Y T ) +

1

V 2

∂V

∂ν
|Y T |2dΣ ≥ 0,

where Y T = V∇f − f∇V .
On the other hand, Y = 0 on N and (3.3) is the same as∫

Σ

[∇a(Y T )a]2

V H
− 1

V
II(Y T , Y T ) +

1

V 2

∂V

∂ν
|Y T |2dΣ

=

∫
Σ

1

V

(√
H〈Y, ν〉+

∇a(Y T )a√
H

)2

dΣ

+

∫
Ω

1

V 2

(
∆̄V g − ∇̄2V + V Ric

)
(Y, Y ) +

1

V
|V ∇̄2f − f∇̄2V |2dΩ.

The assertion follows from (1.3). �

4. Positivity of the second variation

In this section, we prove that a convex surface in the static slice of the
reference spacetime is a local minimum of its own quasi-local energy. For
this result, we assume that the isometric embedding into the static slice is
infinitesimally rigid and the reference spacetime satisfies the null convergence
condition.

Definition 4.1. An isometric embedding into the static slice is infinites-
imally rigid if the kernel of the linearized isometric embedding equation
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consists of the restriction of the Killing vector fields of the static slice to the
surface.

Theorem 4.2. Suppose the reference spacetime S satisfies the null con-
vergence condition (1.2). Let X(s) = (τ(s), Xi(s)), s ∈ (−ε, ε) be a family of
isometric embeddings of the same metric σ into the interior S̊ such that the
image of X(0) is a convex surface Σ0 in the static slice, then

d2

ds2
|s=0E

(
Σ0, X(s),

∂

∂t

)
≥0

if the isometric embedding of Σ0 into the static slice is infinitesimally rigid
and Σ0 bounds a domain in the static slice.

Proof. Let H0(X(s)) and αH0
(X(s)) be the mean curvature vector and the

connection one-form in mean curvature gauge of the image of X(s). For
simplicity, set δ|H0| = d

ds |s=0|H0(X(s))| and δαH0
= d

ds |s=0αH0
(X(s)). Let

X̂(s) = (0, Xi(s)) be the projection of X(s)(Σ) onto the static slice. X̂(s) is
an isometric embedding of the metric

σ̂(s)ab = σab + V 2(s)τa(s)τb(s)

into the static slice and δσ̂ = d
ds |s=0σ̂(s) = 0, as τ(0) = 0.

From the infinitesimal rigidity of the isometric embeddings into the static
slice, there is a family of isometries Â(s) of the static slice with Â(0) = Id
such that

δÂ = δX̂

along the surface Σ0. Here we set δÂ = d
ds |s=0Â(s) and δX̂ = d

ds |s=0X̂(s).
Moreover, there is a family A(s) of isometries of the reference spacetime
whose restriction to the static slice is the family Â(s). Consider the following
family of isometric embeddings of σ into the reference spacetime:

X̆(s) = A−1(s)X(s).

Suppose X̆(s) = (τ̆(s), X̆i(s)) in the fixed static coordinate, we have

(4.1)
d

ds
|s=0X̆

i(s) = 0.

We claim that

(4.2)
d2

ds2
|s=0E

(
Σ0, X(s),

∂

∂t

)
=

d2

ds2
|s=0E

(
Σ0, X̆(s),

∂

∂t

)
.
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Let H0(X̆(s)) and αH0
(X̆(s)) be the the mean curvature vector and the

connection one-form in mean curvature gauge of the images of X̆(s).

|H0(X(s))| =|H0(X̆(s))|
αH0

(X(s)) =αH0
(X̆(s))

(4.3)

since both are invariant under isometries of the reference spacetime. By
(4.1), is easy to see that

(4.4)
d

ds
|s=0|H̆0(s)| = 0.

Moreover, while τ̆(s) is different from τ(s), we have

(4.5)
d

ds
|s=0τ̆(s) =

d

ds
|s=0τ(s) = f

since τ(0) = 0, A(0) = Id and the static slice is invariant under the action
of A(s).

We apply Theorem 2.8 to each of X(s)(Σ) and X̆(s)(Σ) and use (4.3),
(4.4) and (4.5) to differentiate (2.21) one more time. Only the derivative of
the term 1

8π

∫
Σ(δτ)div(V 2αH0

)dΣ survives after the evaluation at s = 0. We
thus conclude that both sides of (4.2) are the same as

− 1

8π

∫
(δαH0

)(V 2∇f)dΣ0.

Differentiating (2.6), (2.7) and (2.9) with respect to s, we conclude that

(δαH0
)a = ∇a

(
div(V 2∇f)

V |H0|

)
+ V hab∇bf − fae3(V ).

As a result,

−
∫

(δαH0
)(V 2∇f)dΣ0

=−
∫
V 2fa[∇a

(
div(V 2∇f)

V |H0|

)
+ V hab∇bf − fae3(V )]dΣ0

=

∫ {
[div(V 2∇f)]2

|H0|V
− V 3habfafb + V 2|∇f |2e3(V )

}
dΣ0.

The theorem follows from Theorem 3.3. �
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In [13, Theorem 4], it is proved that in a spherically symmetric 3-manifold
with metric

g =
1

f2(r)
dr2 + r2dS2,

the sphere of symmetry r = c is not infinitesimally rigid unless g is a space
form. From the symmetry, it is easy to see that the sphere of symmetry is of
constant mean curvature (CMC). In the following theorem, we prove that
the conclusion for Theorem 4.2 still holds for the sphere of symmetry if it is
a stable CMC surface.

Definition 4.3. A CMC surface Σ is stable if

(4.6)

∫ [
|∇f |2 − (|h|2 +Ric(ν, ν))f2

]
dΣ ≥ 0

for all functions f on Σ such that∫
fdΣ = 0.

Here h denote the second fundamental form of the surface.

Theorem 4.4. Suppose the reference spacetime S satisfies the null conver-
gence condition (1.2), and the static slice is spherically symmetric (with a
spherically symmetric static potential). Let X(s) = (τ(s), Xi(s)), s ∈ (−ε, ε)
be a family of isometric embeddings of the same metric σ into the interior
S̊ such that Σ0 = X(0) is a sphere of symmetry in the static slice. Then

d2

ds2
|s=0E

(
Σ0, X(s),

∂

∂t

)
≥0

if Σ0 is a stable CMC surface and ν(V ) ≥ 0.

Proof. Let H0(X(s)) and αH0
(X(s)) be the mean curvature vector and the

connection one-form in mean curvature gauge of the image of X(s). For
simplicity, set δ|H0| = d

ds |s=0|H0(X(s))| and δαH0
= d

ds |s=0αH0
(X(s)). Let

X̂(s) = (0, Xi(s)) be the projection of X(s)(Σ) onto the static slice. X̂(s) is
an isometric embedding of the metric

σ̂(s)ab = σab + V 2(s)τa(s)τb(s)

into the static slice and δσ̂ = d
ds |s=0σ̂(s) = 0, as τ(0) = 0. Finally, let Ĥ(s)

be the mean curvature of X̂(s) in the static slice.
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We apply Theorem 2.8 to each of X(s)(Σ) and conclude that

d2

ds2
|s=0E

(
Σ0, X(s),

∂

∂t

)
= − 1

8π

∫
(δαH0

)(V 2∇f)dΣ0 +
1

8π

∫
δV δ|H0|dΣ0.

The first integral is non-negative as in the proof of the Theorem 4.2. For the
second integral, we observe that

δ|H0| = δĤ.

We decompose δX̂ into tangential and normal parts to Σ0. Let

δX̂ = P a
∂X̂

∂va
+ βν.

The components β and P a satisfy

(4.7) 2βhab +∇aPb +∇bPa = 0

since δσ̂ = 0.
Taking the trace of (4.7) and integrating, we conclude that∫

βH0dΣ0 = 0.

In particular,
∫
βdΣ = 0 since H0 is a constant. Since V , H0 and ν(V ) are

constants on Σ0, integrating over Σ0 gives∫
δV δĤdΣ0 = ν(V )

∫
β(−∆β − (|h|2 +Ric(ν, ν))β)dΣ0.

Integrating by parts, we see that the right hand side is non-negative if Σ0 is
a stable CMC surface and ν(V ) is non-negative. �

Remark 4.5. For a static spacetime with metric

ǧ = −V 2(r)dt2 +
1

V 2(r)
dr2 + r2dS2,

the null convergence condition and the stable CMC condition can be ex-
pressed explicitly in terms of V (r) and its derivatives. See [3, 18].
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