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The c2 invariant is invariant

Dmitry Doryn

The c2 invariants in all 4 different representations of the Feynman
period (parametric and dual parametric representations, position
and momentum spaces) coincide for all log-divergent graphs that
satisfy the condition called duality admissibility. We check this
condition for a good subspace of graphs with certain combinatorial
properties, for instance, for all planar graphs. After the result in
[14], the coincidence holds for all physically relevant graphs.
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Introduction

Good progress has been made in the evaluation of Feynman integrals in QFT
in the last decades, especially in φ4 theory. Nevertheless, this is still a big
problem for graphs starting with 9 loops. An interesting algebraic direction
of research is a relation between the Feynman period and the number of
rational points of poles of the Feynman differential form over finite fields.

In this article we continue and extend the work started by F. Brown,
O. Schnetz and K. Yeats in [9] and prove that a certain part of the point-
counting function is the same for all 4 different representations of the Feyn-
man period.
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For a connected graph G with NG edges, nG + 1 vertices, and hG :=
NG − nG loops, the graph polynomial and the dual graph polynomial are
defined by

(1) ΨG =
∑
T

∏
e/∈T

αe and ϕG =
∑
T

∏
e∈T

αe ∈ Z[α1, . . . , αNG
],

with αis the Schwinger parameters (edge variables) and T running over all
spanning trees of G. Recall that a graph G is said to be log-divergent if
NG = 2hG, and a log-divergent graph G is primitive log-divergent if for any
proper subgraph γ ⊂ G the following inequality holds: 2hγ < Nγ . In the case
G is log-divergent, one has the associated Feynman period IG defined by an
integral of the standard differential form in projective space with double
poles along ΨG = 0. Similarly, the other form of the Feynman period is the
integral IdualG with poles along ϕG with inverted variables. The more natural
representation for physicists is the one in momentum space (ImomG ), see [15],
while the position space (IposG ) is where some good techniques effectively help
in the computations, as Gegenbauer polynomials, see [11], etc. The relations
between these different spaces are shown the following diagram.
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Figure 1.

For a primitive log-divergent graph the 4 integrals defined in this spaces
give the same value (up to normalization with πi). See [17], Section 2 for
more explanation.

In practice, it’s quite complicated to compute the period IG analytically
in any of these representations, and can usually be done only for small
graphs. On the other hand, the values of IG for many known examples of
graphs lie in the Q-algebra spanned by multiple zeta values (MZV), see [4],
[17]. One knows the deep connection of MZV to algebraic geometry and to
mixed Tate motives, see [5]. This motivates the study of the arithmetical
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The c2 invariant is invariant 1955

and algebraic nature of the poles of IG, i.e. of the graph hypersurface XG

defined by the vanishing of ΨG in affine (or projective) setting.
For the structure of ΨG see [6], [10]. The interesting Kontsevich conjec-

ture on the number of rational points of XG was discussed in [1], [17], [13],
[8]. The cohomological approach for the study of XG and the motivic point
of view on the Feynman period can be found in [2], [12], [7].

Recall that for G with nG ≥ 2 one has the congruence #XG(Fq) ≡ 0
mod q2 counting Fq-rational points for a fixed prime power q of (the base
change to Fq of) XG. One defines the c2 invatiant

(2) c2(G)q := #XG(Fq)/q2 mod q.

Motivated by the known examples, one makes the following conjecture (see
Conjecture 5 in [8]):

Conjecture 1. If IG1
= IG2

for two primitive log-divergent graphs G1 and
G2, then c2(G1)q = c2(G2)q.

In other words, c2 invariant should play a role of a discrete analogue of the
Feynman period. One can even define the c2(G) invariant in the Grothen-
dieck ring K0(Vark) of varieties over a field, and can ask the same question
(this is partially done in [9] and in present article in dual setting). Since we
have no Chevalley-Warning vanishing in K0(Vark) (by the result of Huh in
[16]), and since the Grothendieck ring does have not only zero-divisors but
also L itself is a zero divisor (see [3]), the question becomes more compli-
cated.

It was natural to expect the existence and coincidence of the analogues
of the c2(G)q invariants in all 4 spaces in Figure 1, since the values of the
integral representations coincide.

The relation on the level of the c2 invariant in the upper row in Figure 1
was studied in [9]. The authors define the c2 invariant cmom2 (G)q in momen-
tum space for a graph with NG ≤ 2hG, hG ≥ 2 in Proposition-Definition 17
in [9], and they prove the following statement (see Theorem 18 loc. cit.):

Theorem 2. Let G be a log-divergent graph (i.e. NG = 2hG) with hG ≥ 3.
Then the c2 invariants in parametric and momentum spaces coincide:

(3) cmom2 (G)q = c2(G)q.

In this article we discuss analogues of the c2 invariant for the remaining
two spaces : dual parametric and position spaces.
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In Section 1, we study the properties of the dual graph polynomial ϕG

and define c2(G)dualq . The situation is very similar (but dual) to the case
of ΨG.

Section 2 contains the computation of the classes of the dual graph
hypersurface and of its singular locus in the Grothendieck ring, this is a
translation of the results for ΨG from [9] to our setting with minor modifi-
cations.

In Section 3, the computations for point counting functions in position
space are done. We try to follow a similar strategy to the one that was
used in [9] for the case of momentum space. We define cpos2 (G)q out of the
configuration of quadrics (in the vertex variables) in the denominator of the
differential form of IposG , and then we prove

Theorem 3. For a log-divergent graph G with nG ≥ 3, the c2 invariants in
dual parametric space and in position space coincide:

(4) cdual2 (G)q = cpos2 (G)q.

After Theorem 2 and Theorem 3, the remaining point for showing the co-
incidence of the c2 invariants in all 4 representations is to prove that c2

respects the Cremona transformation in the left column in Figure 1. This is
the content of Section 4. For the proof we need to restrict to the graphs we
call duality admissible (see Definition 31). This class contains log-divergent
graphs that are planar or have enough triangles. This additional condition
comes from the fact that any log-divergent graph always has a vertex of
degree ≤ 3 but does not always have a cycle of length ≤ 3. We make a
conjecture that the condition is always satisfied.

Conjecture 4. Let G be a log-divergent graph with hG, nG ≥ 3. Then G is
duality admissible.

The main theorem of the article is the following (see Theorem 39):

Theorem 5. Let G be a duality admissible graph. Then the c2 invariants
for parametric and for dual parametric representations coincide:

(5) cdual2 (G)q = c2(G)q.

This part (left column) of the Figure 1 was assumed to be the hardest one,
see the discussion at the end of Section 3 in [9]. Putting everything together,
we finally get
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The c2 invariant is invariant 1957

Theorem 6. For any duality admissible graph G with hG, nG ≥ 3, the c2

invariants in all four spaces in Figure 1 coincide.

There are several infinite series of graphs, like WSn and ZZn, for which
the Feynman period IG can be computed, these series consist of planar
graphs. Our methods here cover these graphs, since we have proved that
all planar graphs are duality admissible, see Corollary 34. Several other
interesting graphs are also planar. For example, one of the known counter-
examples to Kontsevich conjecture is planar, see Section 6.3 in [8].

In [14], we have found a new approach for proving the duality-
admissibility called the 4-face formula that works also for non-planar graphs,
possibly without triangles. This allows us to prove Conjecture 4 for every
graph G such that each of it’s subquotient graph has a loop of length at most
4. That is enough for all physically relevant graphs. By this we mean that
the minimal graph that we cannot cover has 18 loops, it is outside of the
known special infinite series and it’s period is very far from being calculated
in any sense.

Acknowledgements. The author is very thankful to Dirk Kreimer and
Alexander von Humboldt foundation for financial support. The preparation
of the final version was supported by the Max Planck Institute für Math-
ematik, Bonn and by the research grant IBS-R003-S1, Institute for Basic
Science, South Korea.

1. Dual graph polynomials

We start with a graph G that consists of the set of vertices V (G) and the
set of edges E(G). We define N = NG := |E(G)| and nG := |V (G)| − 1. The
Euler formula implies that hG := NG − nG is the loop number (number of
“independent” cycles). This hG can also be seen as the rank of the first
homology group of G ([2], Section 2). We use the index set IN := {1, . . . , NG}
for labelling the elements of the set E(G) , in other words, E(G) := {ei}i∈IN .
To each edge ei we associate a variable (Schwinger parameter) αi.

For a connected graph G, one defines the first Symanzik polynomial, or
simply the graph polynomial, denoted by ΨG as in (1). Equivalently, ΨG can
be defined as the determinant of the matrix

(6) M(G) =

(
∆(α) ET

−E 0

)
∈ MatN+n,N+n(Z[{αi}i∈IN ]),

where ∆(α) is the diagonal matrix with entries α1, . . . , αN , and E ∈
Matn,N (Z) is the incidence matrix after deleting the last row, N = NG,
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n = nG (see [6], Section 2.2). Out of this matrix, one can define the Dodg-
son polynomials ΨI,J

G,K by ΨI,J
G,K := detM(G)(I; J)K , where M(G)(I; J)K

is obtained from M(G) after removing rows indexed by I and columns in-
dexed by J , and after putting αt = 0 for all t ∈ K. For simplicity, we usually
write ΨI

K for ΨI,I
G,K . These Dodgson polynomials satisfy many identities like

contraction-deletion formula, the first and second Dodgson identities, etc.
(see [6]).

In contrast to ΨG, one can also define

(7) ϕG :=
∑
T

∏
e∈T

αe ∈ Z[{αi}i∈IN ],

the dual graph polynomial. To explain the relation between the graph poly-
nomials and the dual graph polynomials, we define the Cremona transforma-
tion ι : Z[{αi}i∈I ]→ Z[{αi}i∈I ] as follows: for a polynomial P ∈ Z[{αi}i∈I ]
dependent on the variables indexed by I,

ι(P )(α1, . . . , αN ) = P

(
1

α1
, . . . ,

1

αN

)∏
i∈I

αi.

We often call the application of this transformation simply the dualiza-
tion. By the very definition, ϕG = ι(ΨG). Define ϕI

J := ι(ΨJ
I ). Starting

with the contraction-deletion formula for a graph polynomial, ΨG = Ψk
Gαk +

ΨG,k (Formula (11) in [9]), inverting the variables and multiplying with∏
i∈IN\k αi, one gets the similar-looking contraction-deletion formula for the

dual graph polynomial:

(8) ϕG = ϕk
Gαk +ϕG,k

for any k ∈ IN . Moreover, ϕk
G = ϕG//ek

and ϕG,k = ϕG\ek with G\ek (resp.
G//ek) denoting the graph G after deletion (resp. contraction) of the edge
ek. We will also use a simplified notation: ϕG//k and ϕG\k.

We can easily derive the formulas for special cases of G:

1). If an edge e1 ∈ E(G) forms a tadpole (self-loop), then

(9) ϕG = ϕG\1.

2). If two edges e1, e2 ∈ E(G) form a cycle of length 2 (double-edge), then

(10) ϕG = ϕG\1//2(α1 + α2) +ϕG\12.
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For I ∩ J = ∅ and |I| = |J | define ϕI,J
G := ι(ΨI,J

G ). Sometimes we fix G and
omit the subscript to make the formulas more readable. Fix two indices i 6= j
and consider the special case of the (first) Dodgson identity for Ψ = ΨG (see
[6], (20)):

(11) ΨiΨj + ΨΨij = (Ψi,j)2.

This identity follows from the (studied by Dodgson) identities on the minors
of a symmetric matrix, knowing that ΨG is a determinant of the matrix (6)
that can be made symmetric after inversion of the signs in the lower block.
Dualizing the equation above, we get

(12) ϕiϕj +ϕϕij = (ϕi,j)2αiαj .

Applying (8) twice and taking the coefficients of αiαj , we obtain

(13) ϕj
iϕ

i
j +ϕijϕij = (ϕi,j)2.

Using the expansions of ϕ, ϕi and ϕj in αi and αj (by (8)), one computes

(14) ϕjϕi +ϕijϕ = ϕj
iϕ

i
j +ϕijϕij = (ϕi,j)2.

More generally, define the dual Dodgson polynomials by

(15) ϕIS,JS
G,K := ι

(
ΨIK,JK
G,S

)
for any I, J,K, S ⊂ IN pairwise non-overlapping subsets with |I| = |J |. One
immediately gets ϕIS,JS

G,K := ι(ΨI,J
G\K//S) = ϕI,J

G\K//S .

With this definition we get the non-natural ϕI,I = ϕI from the point of
view of graph polynomials, but the identities on dual Dodgson polynomials
look almost identical to the case of ΨG. The dual Dodgson polynomials
satisfy

(16) ϕI,J
G,K = ±ϕIt,Jt

G,K αt ±ϕ
I,J
G,Kt

for t ∈ IN\(I ∪ J ∪K) and possibly overlapping I and J . The signs in the
formula can be explained by using spanning forest polynomials similar to
the case of ΨG, see [10], Section 2. Recall ([8], Section 2.2) the first Dodgson
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identity:

(17) ΨISx,JSx
K ΨISa,JSb

Kx −ΨIS,JS
Kx ΨISax,JSbx

K = ±ΨISx,JSb
K ΨISa,JSx

K

for I, J, S,K ⊂ IN pairwise non-overlapping with |I| = |J | and a, b, x ∈
IN\(I ∪ J ∪ S ∪K). The sign depends on the order of a, b and x. Dual-
izing this, we get the (dual) Dodgson identity for dual Dodgson polynomials

(18) ϕIKx,JKx
S ϕIKa,JKb

Sx −ϕIK,JK
Sx ϕIKax,JKbx

S = ∓ϕIKx,JKb
S ϕIKa,JKx

S .

We can also derive the second Dodgson identity for dual Dodgson polyno-
mials by dualizing the one for Dodgson polynomials:

(19) ϕIKax,JKx
S ϕIKb,JK

Sx −ϕIKa,JK
Sx ϕIKbx,JKx

S = ±ϕIKx,JK
S ϕIKab,JKx

S. ,

where I, J, S,K ⊂ IN are pairwise non-overlapping, |J | = |I|+ 1 and a, b, x ∈
IN\(I ∪ J ∪ S ∪K).

Define the resultant [f, g]k of two polynomials f = fkαk + fk and g =
gkαk + gk linear in a variable αk by [f, g]k = fkgk − fkgk. The next lemma
is an analogue of Lemma 21 in [9].

Lemma 7. For any 3 distinct edges of G indexed by i, j, k, the following
identity holds:

(20) [ϕi,ϕj ]k = ϕij,jkϕj,k −ϕij,jkϕi,k.

Proof. The proof easily follows from the proof in [9] by replacing ΨG withϕG

because of the similarity of the Dodgson identities (18) and the contraction-
deletion formulas (8) for ΨG and ϕG. �

Corollary 8. Fix an element k ∈ IN and let I be the ideal of Q[{αi}i∈IN ]
generated by ϕk and ϕk. Then

(21) [ϕi,ϕj ]k ∈ Rad(I).

Proof. Using (18) and the linearity of the resultant, one computes

(22) (ϕi,k)2 = [ϕi,ϕi]k = [ϕ,ϕi]k = ϕkϕi
k −ϕkϕ

ik ∈ I.

Thus ϕi,k ∈ I and similarly ϕi,j ∈ I. The lemma above implies the state-
ment. �
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Proposition 9. Let G be a graph with edges E(G) labelled with the set IN
and let I = {1, 2, . . . , t} ⊂ IN be a subset.

i). If the edges labelled with I form a corolla (a set of all the edges incident
to one fixed vertex), then

(23) ϕG,1 =
∑

i∈I\{1}

λiαiϕ1,i
G , where λi = ±1.

ii). If the edges labelled with I form a cycle (topological loop), then

(24) ϕ1
G =

∑
i∈I\{1}

λiϕ1,i
G , where λi = ±1.

Proof. For part (i), we start with the formula for the graph polynomial
with given edges forming a corolla Ψ1

G =
∑

i∈I λiΨ
1,i
G (see Lemma 31 in [6]).

Dualization immediately gives (23). For the part (ii), with edges forming
a cycle, we should just dualize the formula ΨG,1 =

∑
i∈I λiαiΨ

1,i
G that was

proved in [9], Proposition 24. �

Corollary 10. Let G be a connected graph with more than 1 edge and let us
fix any edge of G, say e1. Then there exists a subset I = {1, . . . , t} ⊂ IN such
that ϕ1 lies in the radical Rad(I) of the ideal I ⊂ Z[{αi}i∈IN\{1}] spanned
by ϕ1 and ϕ1i

G for all i ∈ I\{1}.

Proof. Since G is connected, one of the endpoints of the edge e1 has degree
bigger than 1. Define this endpoint by v and its degree by dv. Let I =
{1, . . . , dv} ⊂ IN be the set that labels the edges of the corolla of v. Using
the Dodgson identity (14), one computes

(25) (ϕ1,i)2 = [ϕi,ϕ
i]1 = [ϕi +ϕiαi,ϕi]1 = ϕ1ϕi

1 −ϕ1ϕ
1i ∈ I.

Thus, ϕ1,i ∈ Rad(I) for each i ∈ I\{1}. Now Proposition 9, (i) implies the
statement. �

We return to the representation for ΨG as the determinant of the matrix
(6). Working with blocks, we can modify the matrix as follows:

(26)

(
∆(α) ET

−E 0

)(
JN −∆( 1

α)ET

0 Jn

)
=

(
∆(α) 0

−E E∆( 1
α)ET

)
with ∆( 1

α) := ∆(α)−1. Here Jd denotes the d× d identity matrix for d = n
and d = N . Similar manipulations appear in the proof of Schur’s lemma.
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Taking determinants of both sides, we get

(27) Ψ(α) · 1 =
∏
i∈IN

αi · det

(
E∆

(
1

α

)
ET
)
.

Substituting αi 7→ 1/αi, i ∈ IN , one obtains

(28) ϕ(α) =
∏
i∈IN

αi ·Ψ(1/α) = det(E∆(α)ET ).

We define

(29) P (α) = PG(α) := E∆(α)ET ∈ Matn×n(Z[{αi}i∈IN ]),

then ϕG = detPG(α) as above. One easily sees that the matrix P (α) can be
written as P (α) =

∑
αiPi, where Pi ∈ Matn,n(Z) for an edge ei = (vs, vt) has

entry 1 at the entries (s, s) and (t, t), −1 at (s, t) and (t, s), and 0 elsewhere
(the special case is when one of the endpoints of the edge is the last variable
that corresponds to the removed column of E, then the matrix Pi has only
one entry). If one takes αi = 1 for all i, then PG(α) is the Laplacian matrix
of G after deletion of the last row and the last column.

Now we are going to diagonalize P (α) = PG(α) with respect to certain
n variables (modulo the others).

Proposition 11. Let G be a connected log-divergent graph and let T be
a spanning tree of G. Then there exists a matrix P̃ (α) ∈ Matn×n(Z[α]) ob-
tained from P (α) = PG(α) by elementary row and column operations such
that for any i, 1 ≤ i ≤ nG, there exists a variable appearing only at the entry
(P̃ (α))i,i.

Proof. Assume for a moment that we have a Hamiltonian path in our graph,
that is a connected subgraph T with consecutive edges e1, . . . , en without
loops or branch points which contains all the nG + 1 = n+ 1 vertices. Then,
permuting the edges we can write the matrix P (α) in the form

(30)


. . .

...
...

...
. . . αn−1 + αn−2 + c −αn−1 cn−2n

. . . −αn−1 αn + αn−1 + b −αn

. . . cnn−2 −αn αn + a

 ,

where a, b, c and cij depend only on the variables αe for e ∈ E(G)\E(T )
(each non-specified entry (i, j) of the matrix is denoted by cij). The variable
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αn appears only at the 4 indicated entries in the matrix. More general, αi
associated to ei ∈ E(T ) appears at 4 entries (P (α))t,s with i− 1 ≤ t, s ≤ i.
Consider the following operation op(i, j): add the i-th row to the j-th row,
and then add the i-th colomn to the j-th one. Apply op(n, n− 1) to the
matrix above. Then the matrix takes the form

(31)


. . .

...
...

...
. . . αn−1 + αn−2 + c −αn−1 c′n−2n

. . . −αn−1 a+ αn−1 + b a

. . . c′nn−2 a αn + a



with c′i,j independent of αe, e ∈ E(T ). The variable αn appears only at
the bottom right corner. Similarly, doing the basic operations step by step
op(n− 1, n− 2), op(n− 2, n− 3), . . . , op(2, 1), we can bring all the variables
αe, e ∈ E(T ) to the diagonal, i.e. αe appears only at the entry (e, e), as
desired.

A log-divergent graph does not always have a hamiltonian path. Consider
G1 = K4 a complete graph on 4 vertices and G2 = K5\e a complete graph
on 5 vertices with edge e = (u, v) removed. Then, in the middle of each of the
6 edges of G1 we insert a copy of G2 in such a way that the vertices u and v
become again 4-valent. The resulting graph G has 34 vertices and NG = 72.
This is an example of a log-divergent graph in φ4 without a hamiltonian
path. Thus, we have to extend the construction of PG(α) given above.

Consider a fixed spanning tree T of G with edges E′ := E(T ) ⊂ E(G),
|E′| = n. We will prove that the matrix P (α) can be transformed into an
other matrix with the variables αe, e ∈ E′ appearing only on the diagonal.
To do this we can ignore the other variables (put the variables αe equal zero
for e ∈ E′′ = E(G)\E′). Let’s (re)number the edges of T in the following
way. Take a vertex which is not a branch point of T to be a (top) root of the
tree, fixing some planar embedding, and number to edges going from top to
bottom and from left to right. More precisely, going through the graph and
numbering the visited vertices, if we come to the branch point, then we start
with the left branch. When the left branch is numbered (a leaf is reached),
we return to the last branch point and go on with the next (from left to
right) branch. This algorithm is usually called depth first search.

One can get the intuition of the numeration algorithm by analysing the
following example of a spanning tree T of a graph with 7 vertices.
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Figure 2.

The root will be the vertex we throw away in the procedure of construction of
the block E in the matrix for ΨG. The matrix P (α) for this example modulo
the ideal IT ⊂ Z[{αe}e∈E(G)] generated by αe, e ∈ E′′, takes the form:

α1 + α2 + α5 −α2 ◦ ◦ −α5 ◦
−α2 α2 + α3 + α4 −α3 −α4 ◦ ◦
◦ −α3 α3 ◦ ◦ ◦
◦ −α4 ◦ α4 ◦ ◦
−α5 ◦ ◦ ◦ α5 + α6 −α6

◦ ◦ ◦ ◦ −α6 α6

 .

Here ◦ denotes an entry congruent to 0 modulo IT . Doing the basic opera-
tions op(i, j) for the pairs of rows and columns (i, j) equal (4, 2), (3, 2), (6, 5),
(5, 1) and (2, 1) consequently, one gets the diagonal matrix with entries
α1, α2, . . . , α6.

Now consider the case of a general connected log-divergent graph G with
a spanning tree T . We diagonalize the matrix P (α) by induction on the num-
ber m of branch points of T . For m = 0 this is the case of a Hamiltonian path
described above. Assume that for smaller m and for all graphs the desired
matrix is build. Consider the branch point R with the biggest depth in the
rooted tree (the lowest on the corresponding picture similar to the example
above) or the leftmost one of such points (if several). According to the nu-
meration of edges, the left branch consists of the edges es, . . . , es+p for some
s, p ≥ 1. Since the leftmost branch of R has no more branch points, we can
diagonalize this block as in the case m = 0 by applying p basic operations.
This corresponds to op(3, 2) in the example. The variables αs, . . . , αs+p are
brought to the diagonal. After forgetting these p rows and columns with in-
deces from s+ 1 to s+ p, the diagonalization of the remaining part follows
from the induction hypothesis for the tree T//{es+1 · · · es+p}. The matrix

P̃ (α) is constructed. �
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Definition 12. Let k be a field, char(k) = 0. The dual graph hypersurface
ZG associated to a connected graph G is defined by the vanishing of ϕG:
ZG := V(ϕG) ⊂ ANG

k .

Definition 13. Define the singular locus of the dual graph hypersurface
ZG by

(32) Sing(ZG) :=

{
α ∈ ANG

k

∣∣∣ϕG(α) =
∂

∂αi
ϕG(α) = 0, ∀i ≤ NG

}
.

Proposition 14. Assume that the first nG edges of G form a spanning
tree. Then the ideal of Sing(ZG) in k[{α}i∈IN ] is

(33) I(Sing(ZG)) = k
[
{α}i∈IN

]〈
ϕG,

∂

∂αi
ϕG

∣∣∣ i ≤ nG〉
(is generated by the derivatives for the first nG edges).

Proof. The inclusion of the right hand side of (33) into the left one is clear.
We are going to prove the opposite inclusion, that is: ϕi

G ∈ I ′ for all i ∈
IN , where I ′ := 〈ϕG,ϕ

i
G| i ≤ nG〉. Denote by T the tree formed by the

edges e1, . . . , enG
. Recall that in Propostion 11 we have constructed the

matrix P̃ (α) that is a “diagonalization” of P (α) with respect to nG variables
corresponding to the edges of a given spanning tree T . We denote P̃ (α) by
P (α) again. After renumbering of the variables, we can assume that αi is
only in (a linear summand of) P i,i for i = 1, . . . , nG. Here P I,J = P I,J(t),
I, J ⊂ IN denotes the matrix that we get from P (α) after deleting I rows
and J columns. Thus ϕi

G(α) = P i,i(α) for any i = 1, . . . , nG. Consider any
edge ej , j > nG with endpoints vs and vt. Since T is a spanning tree, there
exist a path from vs to vt that belongs to T , say ej1 , . . . , ejr , 1 ≤ ji ≤ nG,
for i ≤ r. These edges together with the edge ej form a loop. By Proposition
9, (ii) one gets

(34) ϕj
G =

∑
i

λiϕj,ji
G with λi = ±1.

The Dodgson identity (14) for the symmetric matrix P = P (α) takes the
form

(35) detP i,i detP j,j − detP detP ij,ij = (detP i,j)2

and impliesϕj,i
G ∈ I ′ for any 1 ≤ i ≤ nG, 1 ≤ j ≤ NG. By formula (34) above,

one gets ϕj
G ∈ I ′ for 1 ≤ j ≤ NG. �
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Lemma 15. In terms of the matrix PG(α), the singular locus Sing(ZG) is
given by

(36) Sing(ZG) =
{
α ∈ ANG

∣∣ rankPG(α) < nG − 1
}
.

Proof. Since the rank of a matrix is stable under the elementary row and
column operations, Proposition 11 yields that it is enough to prove the state-
ment for P (α) := P̃ (α) with variables ordered in the way T is a spanning tree
formed by e1, . . . , enG

. Consider t ∈ Sing(ZG). It follows that detP i,i(t) =
∂
∂αi
ϕG(t) = 0 for i = 1, . . . , nG and ϕG(t) = 0. The Dodgson identity (35)

now implies detP i,j(t) = 0 for i, j = 1, . . . , nG. Hence rankP (t) < nG − 1.
For the opposite inclusion in (36), consider a point t of the set on

the right hand side. Since rankP (t) < nG − 1, we get ϕG(t) = detP (t) =

0 and ϕi
G(t) = det P̃ i,i(t) = 0 for i = 1, . . . , nG. Proposition 14 yields t ∈

Sing(ZG). �

2. [ZG] and [Sing(ZG)] in K0(Vark)

The main theorems of this article concerns the relations between the num-
ber of Fq-rational points of certain varieties. Nevertheless, a part of the
computations is valid for K0(Vark).

For a fixed field k, the Grothendieck ring of varieties K0(Vark) is de-
fined as a free Z module generated by the isomorphism classes [X] of sepa-
rated schemes X of finite type over k modulo the following relation: [X] =
[Y ] + [X\Y ] for closed subschemes Y ⊂ X. The ring structure is given by
the product [X] · [Y ] = [(X × Y )red]. The element 1 in this ring is 1 :=
[Spec k] and the Lefshetz element is defined by L := [A1

k]. We will work
with affine schemes and we usually write [f1, . . . , fr] (resp. [I]) for the class
of V(f1, . . . , fr) ⊂ ANk (resp. V(I) ⊂ ANk ) in K0(Vark), where f1, . . . , fr is a
collection of polynomials in k[x1, . . . , xN ] (resp. I ⊂ k[x1, . . . , xN ]).

The graph polynomials ΨG and ϕG are linear with respect to each of the
variables, as well as some of the Dodgson polynomials in certain situations.
Recall the standard tool for computing the class in the Grothendieck ring
using linearity (see [8], Lemma 16):

Lemma 16. Let f1, f1, g
1, g1 ∈ k[α2, . . . , αN ]. Then, for the varieties in

the LHS contained in AN and the ones of the RHS in AN−1, the following
equalities hold:

i). [f1α+ f1] = [f1, f1]L + LN−1 − [f1],
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ii). [f1α+ f1, g
1α+ g1] = [f1, f1, g

1, g1]L + [f1g1 − g1g1]− [f1, g1].

Proposition 17. Let G be a graph with hG ≥ 2. Then, in K0(Vark), the
following congruence holds:

(37) [ϕG] ≡ 0 mod L2.

Proof. The proof is similar to the proof of Proposition 18 of [8]. By Euler’s
formula, the condition hG ≥ 2 is equivalent to nG + 2 ≤ NG, where nG is
the degree of ϕG. If G is disconnected, then ϕG = 0 and there is nothing to
prove. Assume G is a connected graph. Using induction on r, we prove that
for f ∈ Z[α1, . . . , αr] of degree ≤ r, and for any G with at least 2 loops and
for any edge of G, say e1, there exist elements a(f), b(G, 1), c(G) ∈ K0(Vark)
such that the following statements hold:

1). [f ] = a(f)L mod L2.

2). [ϕG,1,ϕ
1
G] = b(G, 1)L mod L2.

3). [ϕG] = c(G)L2 mod L3.

Part 1). For r = 1 the statement is obvious. By Lemma 16, (i), for f =
f1α1 + f1, one computes [f ] = Lr−1 − [f1] + [f1, f1]L. Since the degree of f1

is also less then the number of variables, we can construct a(f) inductively:

(38) a(f) := [f1, f1]− a(f1).

Part 2). Fix any other edge e2. By contraction-deletion formula (8) applied
to the graphs G\1 and G//1, ϕ1

G = ϕ12
G α2 +ϕ1

G,2 and ϕG,1 = ϕ2
G,1α2 +

ϕG,12. The Dodgson identity (15) reads ϕ1
G,2ϕ

2
G,1 −ϕ12

GϕG,12 = (ϕ1,2
G )2.

Lemma 16 implies

(39) [ϕ1
G,ϕG,1] = L[ϕ1

G,2,ϕ
2
G,1,ϕ

12
G ,ϕG,12] + [ϕ1,2

G ]− [ϕ12
G ,ϕ

2
G,1].

Note that degϕ1,2
G = nG − 1 ≤ NG − 3, thus ϕ1,2

G satisfies the conditions for
part (1). For positive nG, we inductively define

(40) b(G, 1) := [ϕ1
G,2,ϕ

2
G,1,ϕ

12
G ,ϕG,12] + a(ϕ1,2

G )− b(G//2, 1),

where the choice of e2 on each step is made in a way to avoid the contraction
of a self-loop. The base of the induction is a graph with one vertex and
NG − nG ≥ 2 self-loops. Then ϕG\1 = 0 and ϕG//1 = 1. One gets b(G, 1) = 1
for NG − nG = 2 and b(G, 1) = 0 for NG − nG > 2.
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Part 3). Since ϕG is linear in α1, Lemma 16, (i) implies

(41) [ϕG] = [ϕ1
G,ϕG,1]L + LNG−1 − [ϕ1

G].

If nG ≥ 2, define c(G) inductively by

(42) c(G) := b(G, 1)− c(G//1).

If G has less than 2 vertices, then G should be formed by 1 vertex and
` ≥ 2 self-loops. One directly computes c(G) = 1 for ` = 2, and c(G) = 0
otherwise. �

The ring K0(Vark) does not only have zero-divisors, but also elements z such
that z · L = 0. That is why the element c(G) above is defined only modulo
the ideal AnnK0

(L) generated by such elements z.

Definition 18. Define L̃ := 〈L〉+ AnnK0
(L) ⊂ K0(Vark) to be the ideal

generated by L and the elements of AnnK0
(L). For a graph G define the

invariant cdual2 (G) to be the element c(G) from the proof above. In other
words,

(43) cdual2 (G) := [ϕG]/L2 mod L̃.

If one of the loops of G is of length 2, using (10), one can easily prove
that cdual2 (G) ≡ 0 mod L̃ since we can get rid of one of the variables and
we obtain a fibration with each fibre isomorphic to A1.

In the case when G has a loop of length 3, we are able to give a concrete
description of the cdual2 (G) invariant.

Proposition 19. Let G be a graph with 3 edges (say e1,e2,e3) forming a
triangle and with hG ≥ 3. Then

(44) cdual2 (G) ≡ [ϕ1,2
G,3,ϕ

13,23
G ] mod L̃.

Proof. Recall that the proof of the corresponding statement for the graph
polynomial uses the special structure of ΨG in the case of the existence of
a 3-valent vertex, see Lemma 24 in [8]. There is also a certain symmetric
structure of ΨG in the case of the existence of a triangle in G. This formula
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can be found in Example 33, [6]:

ΨG = f123α1α2α3 + (f1 + f2)α1α2 + (f1 + f3)α1α3(45)

+ (f2 + f3)α2α3 + f0(α1 + α2 + α3),

together with f0f123 = f1f2 + f2f3 + f1f3, where f123 = Ψ123, f0 = Ψi
jk,

f i = Ψij,ik for {i, j, k} = {1, 2, 3}. We dualize this using (15) to get the fol-
lowing formula for ϕG:

ϕG = g0(α1α2 + α2α3 + α1α3) + (g1 + g2)α3(46)

+ (g1 + g3)α2 + (g2 + g3)α1 + g123,

with the only identity

(47) g0g123 = g1g2 + g2g3 + g1g3.

Here g123 = ϕ123, g0 = ϕij
k , gi = ϕj,k

i , gi + gj = ϕk
ij , {i, j, k} = {1, 2, 3}. The

formula looks identical to that for ΨG in the case G has a 3-valent vertex
(see [6], Example 32), so one can use the same strategy as in the proof of
Proposition 23 in [8] to derive

(48) [ϕG] = LN−1 + L3[g0, g1, g2, g3, g123]− L2[g0, g1, g2, g3].

Thus cdual2 (G) ≡ [g0, g1, g2, g3] mod L̃. The next part of the proof goes simi-
lar to the proof of Lemma 24 in [8]. By (47), the inclusion-exclution formula
yields

(49) [g0, g3] = [g0, g1g2, g3] = [g0, g1, g3] + [g0, g2, g3]− [g0, g1, g2, g3],

and [g0, g1+g3] = [g0, g1+g3, g1g3] = [g0, g1, g3]. By contraction-deletion for-
mula (8), [g0, g1 + g3] = [ϕ12

3 ,ϕ
2
13] = [ϕ1

G′ϕG′,1] for G′ = G\3//2. Since G
has at least 3 loops, the graph G′ has hG′ ≥ 2. We use Proposition 17, (2)
and get L

∣∣[ϕ1
G′ϕG′,1]. By symmetry, we also get the divisibility L|[g0, g2, g3].

Now (48) and (49) imply

(50) [ϕG] ≡ L2[g0, g1, g2, g3] ≡ L2[g0, g3] ≡ L2[ϕ1,2
3 ,ϕ13,23] mod L3.

The statement follows from the definition of cdual2 (G). �

We are going to use Proposition 29 from [9]. This is the simultaneous
elimination of one variable from an ideal in the Grothendieck ring whose
generators are all linear in that variable.
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Proposition 20. Let f1, . . . , fn be linear in α, write fi = fαi α+ fi,α, 1 ≤
i ≤ n. Then

[f1, . . . , fn] = [fα1 , f1,α, . . . , f
α
n , fn,α]L(51)

+ [[f1, f2]α, . . . , [f1, fn]α]− [fα1 , . . . , f
α
n ]

+

n−2∑
k=1

(
[fα1 , f1,α . . . , f

α
k , fk,α, [fk+1, fk+2]α, . . . , [fk+1, fn]α]

− [fα1 , f1,α . . . , f
α
k , fk,α]

)
.

Now we return to the singular locus of the dual graph hypersurface Sing(ZG)
appeared in Definition 13. In the Grothendieck ring one immediately gets

(52) [Sing(ZG)] = [ϕG,ϕ
1
G, . . . ,ϕ

NG

G ] ∈ K0(Vark).

Proposition 21. Let G be a connected graph with N = NG edges and with
hG ≥ 2 loops. Then, in K0(Vark), one has

(53) [Sing(ZG)] + [Sing(ZG//1)] = L[ϕ1,ϕ1, {ϕ
1t,ϕt

1}t=2,...,N ] + [ϕ1,ϕ1]

for some edge e1.

Proof. The proof is very similar to the proof of Lemma 30 in [9]. The edge
e1 is chosen to be an edge whose deletion does not disconnect G. We write
[Sing(ZG)] = [ϕ,ϕ1, . . . ,ϕN ] and apply Proposition (20) to the set of poly-
nomials ϕ,ϕ1, . . . ,ϕN linear in the variable α = α1. Each summand of the
big sum on the right hand side in (51) is of the form[

ϕ1,ϕ1, . . . ,ϕ
1t,ϕt

1, [ϕ
t+1,ϕt+2]1,(54)

. . . , [ϕt+1,ϕN ]1
]
− [ϕ1,ϕ1, . . . ,ϕ

1t,ϕt
1].

By Corollary 8, for any a 6= b ∈ IN\{1}, the resultant [ϕa,ϕb]1 is contained
in the radical of the ideal spanned by ϕ1,ϕ1. In the Grothendieck ring we
see only the reduced scheme structure (an ideal is undistinguishable from
its radical). It follows that the two classes above sum to 0 for every t. Hence
(51) reduces to

[Sing(ZG)] = L[ϕ1,ϕ1, . . . , {ϕ
1t,ϕt

1}t](55)

− [ϕ1, {[ϕ,ϕt]1}t]− [ϕ1, {ϕ1t}t],

where t ranges from 2 to N in each of the three expressions on the right
hand side. Since [ϕ,ϕt]1 = ϕ1ϕt

1 −ϕ1ϕ
1t, the middle summand on the
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right hand side simplifies as [ϕ1, {[ϕ,ϕt]}t] = [ϕ1, {ϕ1ϕ
1t}t]. Considering

the cases ϕ1 = 0 and ϕ1 6= 0 separately, one computes

[ϕ1, {ϕ1ϕ
1t}t] = [V(ϕ1, {ϕ1ϕ

1t}t)\V(ϕ1,ϕ
1, {ϕ1ϕ

1t}t)](56)

+ [ϕ1,ϕ
1, {ϕ1ϕ

1t}t]
= [V(ϕ1, {ϕ1t}t)\V(ϕ1,ϕ

1, {ϕ1t}t)] + [ϕ1,ϕ
1]

= [ϕ1,ϕ
1] + [ϕ1, {ϕ1t}t]− [ϕ1,ϕ1, {ϕ

1t}t].

Now we can consider a corolla in G which contains the edge e1 and we
apply Corollary 10. It follows that ϕ1 ∈ Rad(I) for the ideal I ⊂ Z[{αi}I\1]
generated by ϕ1, and {ϕ1i}i∈I\1 for some I ⊂ IN . Thus the second and the
third summand of the last expression in (56) sum up to zero. The last term
on the right in (55) defines the singular locus of the dual graph hypersurface
for the graph G//1. �

Theorem 22. Let G be a graph with at least 2 loops. Then, for the singular
locus of the dual graph hypersurface of G, the following congruence holds:

(57) [Sing(ZG)] ≡ 0 mod L.

Proof. If G is disconnected, then ϕG = 0 and there is nothing to prove.
If G has a self-loop, let’s say, formed by an edge e1, then by (9) all the

ϕI
J for G are independent of α1. It follows that we can project down to the

situation of G\1 with fibres A1, and the statement follows.
If G has a loop of length 2, then by (10), one can writeϕG=ϕG\1//2(α1+

α2) +ϕG\12. After making the change of the variables α2 := α1 + α2, we can

again project to the situation of G\1 with fibres A1 and then (57) holds.
So we can assume that the graph G is connected with no self-loops

or double edges. The proof goes by the induction on the number of edges
NG. The assumptions on G imply NG ≥ 5. Since hG ≥ 2 is equivalent to
nG + 2 ≤ NG by Euler’s formula, we are able to use Proposition 17, (2) and
get [ϕ1

G,ϕG,1] ≡ 0 mod L. Hence, (53) implies

(58) [Sing(ZG)] ≡ −[Sing(ZG//1)] mod L.

If the graph G//1 still has a double edge then the divisibility L|[Sing(ZG//1)]
is clear. Otherwise we proceed by induction. �
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3. The c2 invariant in position space

Fix a field k (k can be Fq, C or (the usual for physicists) R). Consider a
log-divergent graph G with NG edges {ei}i∈IN and nG + 1 vertices. To each
vertex we associate a variable xp ∈ k4, p = 1, . . . , n+ 1, with n := nG. We
use the following twistor type metric of k4:

(59) |x|2 = x1x2 + x3x4, for x = (x1, x2, x3, x4) ∈ k4.

The arithmetic over finite fields of varieties defined by use of other metric
(like Euclidian metric) can differ because of lack of

√
−1 in the field and

problems in even characteristic. Our choice is consistent with the momentum
space situation considered in [9].

The propagator attached to an edge ei with endpoints having associated
variables xs and xt is an element of the fraction field of Z[{xjp}p,j ] and has
the form

(60)
1

qi(x)
=

1

|xs − xt|2
∈ Frac(Z[{xjp}p,j ]),

with 1 ≤ i ≤ NG, 1 ≤ j ≤ 4, 1 ≤ p ≤ n+ 1 with one exception: xn+1 is set
to be zero in any expression above where it appears, i.e. in the case when
ei is incident to (n+ 1)-th vertex. We need this restriction for the correct
definition of the period.

For a primitive log-divergent graph G, NG = 2n, the Feynman period
representation in the position space is defined to be the value

(61) IposG :=

∫
PR4n−1

Ω(x)

q1 · · · qNG

,

where Ω(x) is the standard differential form in projective space with coordi-
nates xjp, 1 ≤ j ≤ 4, 1 ≤ p ≤ n. We will be interested in the configuration of
the quadrics qi in A4n

k . One can easily translate the results from projective
space to affine space and vice versa; for counting the Fq-rational points we
prefer the affine setting.

Consider the universal quadric

(62) Q(α, x) =

NG∑
i=1

αiqi(x) ∈ Z
[
{αi}i∈IN , {xp}p=1,...,n

]
depending on the edge (Schwinger) variables αi and the vertex variables
(4-vectors) xp. This is the key tool of the Schwinger trick, see Figure 1.
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We return to (60) and consider two adjacent vertices with associated
variables a and b. The denominator of the propogator can be written as

(63) |a− b|2 =
(
a2a4 b2 b4

)
1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1




a1

a3

b1

b3

 .

It follows that the universal quadric (62) can be written as coming from
a matrix consisting of blocks of the shape (63) multiplied by αi’s. After a
suitable permutation of rows and columns, one gets

(64) Q(α, x) =

(
x2

x4

)T (
PG(α) 0

0 PG(α)

)(
x1

x3

)
,

where xj is a vector build up of consecutive coordinates xj1, . . . , x
j
n, 1 ≤ j ≤

4, and PG(α) ∈ Matn,n(Z[{αi}i∈IN ]) is the matrix from (29).

Recall that in Proposition 11 we have constructed the matrix P̃ (α) out
of PG(α) by the diagonalization with respect to the edges of a given fixed
spanning tree T of G. We need two more propositions.

Proposition 23. For a graph G with NG edges and n+ 1 vertices, and
for a subset of edges I ⊂ IN , define by PĪ the matrix P̃G(α)|{αi=0,i 6∈I} that

is obtained from P̃G(α) by setting to zero all the variables with indices in
IN\I. Then

(65) (L− 1)
(
L|I|−1

[
{qi(x)}i∈I

]
− L2n−1

[
PĪ · x2, PĪ · x4

])
= 0,

where [{qi(x)}i∈I ] denotes the class of the vanishing of all the qis (with i
from the given set) in K0(Vark).

Proof. We compute the number of rational points on the quadric QI(α, x) =∑
i∈I αiqi(x) in two ways projecting to the space of the edge variables α or

of the vertex variables x. Firstly, consider the natural projection of QI to
A|I|({xjp}), 1 ≤ j ≤ 4, 1 ≤ p ≤ n. Since QI is linear in each αi, the general
fibre is isomorphic to A|I|−1. In the case of the intersection of all the quadrics
qi (writing [{qi}i∈I ] for the class in the Grothendieck ring in this situation),
the fibre is isomorphic to A|I|. We get

(66) [QI ] = L|I|−1
(
L4n − [{qi(x)}i∈I ]

)
+ L|I|[{qi(x)}i∈I ].
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On the other hand, by use of (64), QI(α, x) can be rewritten in the form

(67) QI(α, x) =

(
x2

x4

)T (
PĪ(α) 0

0 PĪ(α)

)(
x1

x3

)
and thus is isomorphic to a fibration over A|I|+2n(αi, x

1
p, x

3
p), i ∈ I, 1 ≤ p ≤ n

with fibres linear subspaces in the variables x2
p and x4

p. One computes

(68) [QI(α, x)] = L2n−1(L|I|+2n − [PĪ · x2, PĪ · x4])]) + L2n[PĪ · x2, PĪ · x4].

Together with (66), this yields the statement. �

Proposition 24. Define ϕG,Ī :=detPĪ(α)=ϕG|αi=0,i 6∈I for I⊂IN . Then

[PĪ · x2, PĪ · x4] ≡ L|I| + (L2 − 1)[ϕG,Ī ](69)

− L2[rankPĪ < nG − 1] mod L4.

Proof. The equation PĪ · x2 = 0 is a system of n linear equations in the
variables x2, thus the vanishing locus of this system is isomorphic to Ar for
r = corankPĪ . The equation PĪ · x4 = 0 gives the same system but in the
variables x4. As a consequence,

[PĪ · x2, PĪ · x4] ≡ [corankPĪ = 0] + L2[corankPĪ = 1] mod L4(70)

≡ L|I| − [corankPĪ > 0]

+ L2
(
[corankPĪ > 0]− [corankPĪ > 1]

)
mod L4.

Since (ϕG = 0)⇔ (corankPĪ > 0), the congruence (69) follows. �

From now on we have to reduce to the computation of the number of
rational points over finite fields.

Consider f1, . . . , fr ⊂ Z[a1, . . . , aN ] and fix q = ps a prime power. Denote
by f̄i the reduction of fi modulo q. Define [f1, . . . , fr]q ∈ N0 to be the number
of Fq-rational points of the variety V(f̄1, . . . , f̄r) ⊂ ANFq

.
Similarly to what happens in momentum space, our object of interest

is the point counting function of the union V(q1 · · · qN ) of quadrics that is
the denominator of the differential form in the representation of a period
in position space. We are going to use Chevalley-Warning theorem. The
possible analogue of this result in the Grothendieck ring of varieties is called
the geometric Chevalley-Warning question and was recently proved to be
false (see [16]). This means that the results for the counting points functions
over Fq below cannot be easily lifted to the Grothendieck ring.



i
i

“3-Doryn” — 2018/3/20 — 15:59 — page 1975 — #23 i
i

i
i

i
i

The c2 invariant is invariant 1975

The counting points functor factors through the Grothendieck ring of
varieties mapping 1 to 1 and L to q, so the results of the previous two
propositions and the results of Section 2 imply the corresponding congru-
ences for the number of rational points. For instance, the following definition
corresponds to Definition 18 and will be used later in the section.

Definition 25. For a graph G with hG ≥ 2 and a prime power q, define
the invariant cdual2 (G)q by

(71) cdual2 (G)q := [ϕG]q/q
2 mod q.

Theorem 26. (Chevalley-Warning) Let f1, . . . , fr ∈ Z[a1, . . . , aN ] be poly-
nomials with

∑
i deg fi < N . Then, for any prime power q,

(72) [f1, . . . , fr]q ≡ 0 mod q.

Proposition 27. For any graph G with NG ≤ 2nG, one has

[q1 · · · qNG
]q ≡ (−q)2n−NG

(
[ϕG]q + q2[Sing(ZG)]q(73)

− q
∑
i∈IN

[ϕG\i]q + q2
∑
i,j∈IN

[ϕG\i,j ]q

)
mod q3.

Proof. First we apply the inclusion-exclusion formula

(74) [q1 · · · qNG
]q =

∑
I⊂IN

(−1)|I|+1[{qi}i∈I ]q.

Proposition 23 implies [{qi}i∈I ]q = q2n−|I|[PĪ · x2, PĪ · x4]q. We immediately
get q3|[{qi}i∈I ]q for |I| ≤ NG − 3. For each I in the case NG − 2 ≤ |I| ≤
NG, we are going to use Proposition 24. It follows that q2n−|I|q2[rankPĪ <
nG − 1]q ≡ 0 mod q3 for |I| < NG, and [ϕG,Ī ]q = [ϕG\(IN\I)]q. In the case
|I| = NG one obtains I = IN , [ϕG,ĪN

]q = [ϕG]q, and [rankPĪ < n− 1]q =
[Sing(ZG)]q, which follows from Lemma 15. Thus

(75)
[
{qi}i∈I

]
q
≡


− q2n−NG([ϕG]q + q2[Sing(ZG)]) mod q3, I = IN ,

− q2n−|I|([ϕG,Ī ]q) mod q3, |I| = NG − 1, NG − 2,

0 mod q3, |I| ≤ NG − 3.

Summing everything together and using (74), one gets (73). �
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Corollary 28. For G a graph with NG ≤ 2nG, nG ≥ 2, one has

(76) [q1 · · · qNG
]q ≡ 0 mod q2.

Proof. Proposition 27 trivially implies the statement for 2nG > NG + 1, so
we need only understand the cases 2nG = NG + 1 and 2nG = NG, nG ≥
2. By Proposition 17, q2

∣∣[ϕG]q for 2nG = NG for nG ≥ 2, and q
∣∣[ϕG]q for

2nG = NG + 1 with nG ≥ 2. For the third summand of the right hand side
of (73) in the case 2nG = NG, we have q|[ϕG′ ]q for any G′ = G\e with e ∈
E(G). Now (76) follows. �

Using the corollary, we can give the following definition.

Definition 29. Let G be a graph with NG ≤ 2nG and nG ≥ 2. We define
the c2 invariant of G in position space as follows:

(77) cpos2 (G)q := [q1 · · · qN ]q/q
2 mod q3.

Now we are able to prove the coincidence of c2 invariants in the dual
parametric space (Definition 25) and in position space.

Theorem 30. Let G be a graph with nG ≥ 3. Then the following holds.

1). If NG < 2nG, then cpos2 (G)q = 0.

2). If NG = 2nG (i.e. G is log-divergent), then

(78) cdual2 (G)q = cpos2 (G)q.

Proof. Part 1). We are going to use Formula (73). In the case 2nG > NG + 2
the statement holds for trivial reasons.
If 2nG = NG + 2, then q|[ϕG]q by Proposition 17 for NG ≥ nG + 2 and by
direct computation for nG = 3 and NG = 4.
If 2nG = NG + 1, then NG ≥ nG + 2, thus again q2|[ϕG]q. For any edge e1,
we also have G\1 disconnected or NG\1 ≥ nG\1 + 1, hence q|[ϕG\1]q. The
statement follows.

Part 2). We have NG = 2nG, so either G//e is disconnected or NG//e ≥
nG//e + 1, hence q2|[ϕG//e]q. Similarly, either G//e1e2 is disconnected or
NG//e1e2 ≥ nG//e1e2 + 1, hence q|[ϕG//e1e2

]q. Thus, Formula (73) reduces to

(79) [q1 . . . qN ]q ≡
(
[ϕG]q + q2[Sing(ZG)]q

)
mod q3.

The statement follows from Theorem 22 and the definitions of cpos2 (G)q and
cdual2 (G)q. �
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4. The c2 invariant respects dualization

In this section we prove the coincidence of c2(G)q and cdual2 (G)q for a subset
of log-divergent graphs G which we call duality admissible.

We cannot use the proof of the statements from the end of the previ-
ous section for the corresponding statements for c2 in the Grothindieck ring
K0(Vark) since we intensively apply Chevalley-Warning vanishing. We do
not use K0(Vark) in this section at all, but we again intensively use the no-
tation [Y ] here meaning the point-counting function. More precisely, starting
from now, we omit the index q and write [Y ] for the number of Fq–rational
points of an affine scheme Y (or its reduction) over Fq for a fixed prime
power q. This will make the formulas more readable. We also define [Y ]′ to
be [Y ∩ (Gm)N ] for a fixed embedding of (Gm)N ↪→ ANk , where Y ⊂ ANk is
an affine scheme. For instance, the function f 7→ [f ]′ counts the number of
solutions of f = 0 with non-zero coordinates.

For example, since ϕI
J = ι(ΨJ

I ) for any graph G and any edges indexed
by I, J ⊂ IN , one has a bijection between non-zero solutions of ΨI

J = 0 and
non-zero solutions of ϕJ

I = 0, thus

(80) [ϕI
J ]′ = [ΨJ

I ]′.

Assume for a moment that Ψ ∈ Z[α1, . . . , αN ] is any polynomial of degree
n linear with respect to each of the variables (not necessarily a graph poly-
nomial). Grouping the summands by the number of the variables αi which
are zero, we get

[Ψ] = [Ψ]′ +
∑
i

[Ψi]
′ +
∑
i,j

[Ψi,j ]
′ +
∑
i,j,k

[Ψijk]
′ + · · ·(81)

= [Ψ]′ +

N∑
t=1

∑
|I|=t

[ΨI ]
′.

On the other hand, computing affinely, in the solutions for a summand [ΨI ]
the variables αj , j /∈ I are allowed to vanish. By inclusion-exclusion formula,
one obtains

[Ψ] = [Ψ]′ +
∑
i

[Ψi]−
∑
i,j

[Ψi,j ] +
∑
i,j,k

[Ψijk]− · · ·(82)

= [Ψ]′ +

N∑
t=1

(−1)t+1
∑
|I|=t

[ΨI ].
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We should restrict our attention to the following type of graphs.

Definition 31. A log-divergent graph G with hG, nG ≥ 3 and N = NG

edges is called duality admissible if

(83) [ϕJ
I ] ≡ 0 mod q3

for any I, J ⊂ IN with |J | > |I| ≥ 0, |I| ≤ nG − 3.

The motivation of this definition is the observation that the similar con-
ditions for the graph polynomial itself are satisfied, and both these congru-
ences will be intensively used in the proof of the main theorem.

Proposition 32. Let G be a graph with N = NG edges. For I, J ⊂ IN the
congruence

(84) [ΨI
J ] ≡ 0 mod q3

holds in any of the 2 cases:

1). |I| − |J | > hG − nG, |J | ≤ nG − 3.

2). G is log-divergent graph and |I| > |J |, |J | ≤ nG − 3.

Proof. Part (2) is the special case of part (1).
Part 1). By definition, ΨI

G,J = ΨG′ for the graph G′ := G\I//J . We can
assume G′ is connected, otherwise the divisibility is clear. Each deletion
of an edge of G decreases hG, and each contraction of an edge decreases
nG. Thus G′ is of type (NG′ , hG′ , nG′) = (NG − |I| − |J |, hG − |I|, nG − |J |).
If G′ has a vertex of degree 1 and is incident to the edge e1, then ΨG′ is
independent of α1 and one computes [ΨG′ ] = q[ΨG′′ ] for G′′ := G′//1. The
divisibility q2|[ΨG′//1] is standard for nG′′ ≥ 2 and follows from the analogue
of Proposition 17, see [8], Lemma 16. Now one gets q3|[ΨG′ ]. If G′ has a
2-valent vertex with incident edges e1 and e2, then, after redefining the
variables α2 := α1 + α2 one gets rid of α1 and obtains [ΨG′ ] = q[ΨG′′ ] for
G′′ := G′//1 (see [8], Lemma 17, (1)). Thus q3|[ΨG′ ] in this case.

Consider now the case when all the vertices ofG′ are of degrees≥ 3. Since
|I| − |J | > hG − nG, G′ should have a vertex of degree 3. Indeed, nG − |J | >
hG − |I| imply nG′ > hG′ and NG′ < 2nG′ . But on the other hand, each
vertex is incident to at least 4 edges and each edge is counted twice, so
2(nG′ + 1) ≤ NG′ , which gives a contradiction.
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Let |J | ≤ nG − 3. Then nG′ ≥ 3 and Lemma 24 in [8] gives [ΨG′ ] ≡
q2[Ψ1,2

G′,3,Ψ
13,23
G′ ] mod q3. Since 2hG′ < NG′ , we apply Chevalley-Warning

(Theorem 26) to the polynomials in the last square brackets and get [ΨG′ ] ≡
0 mod q3. �

Proposition 33. Let G be a graph with hG, nG ≥ 3. Assume that for any
subsets of edges of G indexed by I, J ⊂ IN , |I| < |J |, for the subquotient
graph G\I//J the following holds: G\I//J is disconnected, or is planar, or
has a loop of length at most 3. Then G is duality admissible.

Proof. Let G′ := G\I//J in the way that ϕJ
G,I = ϕG′ . Instead of the vertices

of small degree, we look at loops of small length. Similarly to the proof above,
we consider the case of existence of a self-loop or a double edge (2-loop) and
use (9), (10), and Proposition 17 and easily get q3|[ϕG′ ].

Now consider the case when all the loops of a G′ are of length at least
3. Assume G′ is planar. There is a notion of the planar dual graph γdual of
a planar graph γ, (see, for example, (2.2) in [17]). Its vertices (resp. cycles)
correspond to cycles (resp. vertices) of the original graph, hγdual = nγ and
nγdual = hγ . The important identity is ϕγ = Ψγdual . Thus, one can use the

statement of Proposition 32 and derive [ϕG′ ] ≡ 0 mod q3.
The last case to consider is when G′ has no self-loops or 2-loops and is not

planar. By the assumption, G is duality admissible, so G′ should have a loop
of length 3 (say, formed by edges e1, e2 and e3). Thus, by Proposition 19, one
gets [ϕG′ ] ≡ [ϕ1,2

G′,3,ϕ
13,23
G ] mod q3. We are again able to apply Chevalley-

Warning theorem (Theorem 26) to the two polynomials ϕ1,2
G′,3, ϕ13,23

G and

get [ϕG′ ] ≡ 0 mod q3. �

Corollary 34. Let G be a planar graph. Then G is duality admissible.

Proof. If G is planar, then each subquotient graph G\I//J is also planar. The
conditions in Proposition 33 are satisfied, thus G is duality admissible. �

In general, the essential part of the conditions in Proposition 33 is the ex-
istence of a 3-loop in any subquotient graph, that allows us to get good
divisibility conditions for [ϕJ

I ] by Proposition 19. The corresponding divis-
ibility for the dual situation, i.e. for [ΨI

J ], is “easier” to be satisfied since
a log-divergent graph always has a 3-valent vertex. An example of a log-
divergent graph that has no 3-loops can be found in [17] on Figure 1,d)
(after deletion of one of the vertices). We can also extend the ideas to the
graphs that possibly have no triangles, but have a 4-loop. This was done in
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[14]. The graphs without 4-loops (i.e. graphs of girth ≥ 5) are too big and
special for being interesting from the physical point of view.

An interesting set of subquotient graphs of G not covered by the condi-
tions on I and J in Definition 31 and Proposition 32 is formed by the graphs
γ with hγ , nγ ≤ 2. We refer to such graphs as small graphs. For a graph G,
let’s denote:

Ru,v(G) :=
{
γ = G\I//J

∣∣∣ γ is connected and co-connected,(85)

|I| = hG − u, |J | = nG − v
}
,

and ru,v(G) := |Ru,v(G)|. By co-connected we mean that no self-loop has
been contracted. We also define R

u,v
(G) ⊃ Ru,v(G) for the same set but

without condition “connected and co-connected”, and r̄u,v := |Ru,v(G)|. One
can easily compute

(86) r̄u,v(G) =
NG!

u!v!(NG − u− v)!
= r̄v,u(G).

The numbers ru,v(G) are well-understood in the case u = 0 or v = 0.

Proposition 35. Let G be a graph. Then, for u ≥ 0,

(87) ru,0(G) =

(
hG
u

)
·#{spanning trees of G}

and

(88) r0,v(G) =

(
nG
v

)
·#{spanning trees of G}.

Proof. Let γ = G\I//J be a subquotient graph such that it is connected and
co-connected with hγ = u and nγ = 0. To obtain γ from G, we can first
contract nG edges in J . Since γ is co-connected, these edges form no cycles,
so they build a spanning tree. We obtain a dot with hG self-loops and we
need to delete |I| of them. Hence, we get the binomial coefficient.

Similarly for the second part: we first delete hG edges and notice that
γ is connected if these edges form the complement of a spanning tree. The
statement follows. �

Corollary 36. Let G be a log-divergent graph. Then for any u, 0 ≤ u ≤ hG,

(89) ru,0(G) = r0,u(G).
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q q q qqqr r r r r r r rrrrr
r

Gn Gdualn

Figure 3.

Proof. The statement trivially follows from Proposition 35 since hG = nG
for a log-divergent graph by definition. �

The numbers ru,v of small subquotient graphs for different u and v are a
part of the local information about G and are hard to control for u 6= 0 6= v.
Nevertheless, the numbers r1,2 and r2,1 will appear in the proof of our main
theorem. Below we analyse one important example.

Lemma 37. For a given n ≥ 2, let Gn be a log-divergent graph with NG =
2n edges of the following shape (left to right) : triple edge, n− 2 copies of a
double edge, single edge, as shown in Figure 3 above. Let Gdualn be the planar
dual to Gn. Then

(90) r1,2(Gn) = 3 · 2n−3n(n− 1)2

and

(91) r2,1(Gn) = r1,2(Gdualn ) = 2n−2 + 3 · 2n−3 · (n− 1)n2.

Proof. First we prove (90). The set of small subquotient graphs γ = G\I//J
for r1,2(Gn) in (85) can be represented by A ∪B ∪ C ∪D, where each γ in
A and B (resp. C and D) was obtained by deletion of one (resp. two) of the
edges of a triple edge in G, and each γ in A and C (resp. B and D) has a
double edge (resp. self-loop). Then one computes :

r1,2(Gn) = |A|+ |B|+ |C|+ |D|(92)

= 3 · 2n−2(n− 1) + 3 · 2n−2(n− 1)(n− 2)

+ 3(n− 2) · 2n−3(n− 1) + 3(n− 2) · 2n−3(n− 1)(n− 2)

= 3 · 2n−3 · n(n− 1)2.



i
i

“3-Doryn” — 2018/3/20 — 15:59 — page 1982 — #30 i
i

i
i

i
i

1982 Dmitry Doryn

Now we prove (91). The corresponding set of subquotient graphs γ for
r1,2(Gdualn ) can be represented by A ∪B ∪ C, where for γ in B ∪ C (resp. A)
the initial self-loop of Gn was (resp. was not) deleted, and in B (resp. C) an
edge of the triangle was (was not) deleted. Analysing separately, one gets

r1,2(Gdual) = |A|+ |B|+ |C|(93)

= 3 · 2n−2 · n(n− 1)

+ 3 · 2n−3(n− 2) ·
(
(n− 1) + (n− 1)(n− 2)

)
+ 2n−2

(
1 + 3(n− 2) + 3(n− 2)(n− 3)/2

)
= 2n−2 + 3 · 2n−3 · (n− 1)n2.

�

Remark 38. In contrast to the equality r0,u(G) = r0,u(Gdual), in the ex-
ample above we see, that for each even NG = 2n, the number r1,2(G) is not
necessarily stable under duality. Indeed, the two computed values for the
graph Gn in Figure 3 are different, for each n ≥ 2.

Now we are ready to prove the main theorem of this section.

Theorem 39. Let G be a duality admissible graph with hG, nG ≥ 2. Then

(94) c2(G)q = cdual2 (G)q.

Proof. Define n := nG = hG,N := NG = 2n. Let Ψ := ΨG be the graph poly-
nomial and let ϕ := ϕG be the dual one. Denote by P the Q-algebra gen-
erated by the sums of the point-counting functions. It is spanned by the
functions q 7→ #Y (Fq) from the set of prime powers to integers with Y ∈
VarQ. Consider the elements St :=

∑
I,J [ΨI

J ]′, where the sum goes over all
I, J ⊂ IN with |I| = |J | = t, t = 1, . . . , n. Identity (80) shows that St re-
spects Cremona transformation, i.e. is symmetric under (Ψ↔ ϕ). By (82),
St is in P for any t. One also has q3 = [A3] ∈ P.

Let I ⊂ P be the ideal generated by q3 and all St, 1 ≤ t ≤ n− 1.
We start with Ψ and apply formula (81):

(95) [Ψ] = [Ψ]′ +

N∑
t=1

∑
|I|=t

[ΨI ]
′.
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Using the duality [ΨJ
I ]′ = [ϕI

J ]′ for all I, J ⊂ IN , one gets

(96) [Ψ] = [ϕ]′ +

N∑
t=1

∑
|I|=t

[ϕI ]′.

We always assume ΨJ
I = 0 and ϕI

J = 0 for I ∩ J 6= ∅. For each [ϕI ]′ we
substitute the expression from (82) applied to Ψ := ϕI and get

(97) [Ψ] = [ϕ]′ +

N∑
t=1

∑
|I|=t

[ϕI ] +

N−t∑
s=1

(−1)s
∑
|J |=s

[ϕI
J ]

 .

We know that [ϕI
J ] = [ϕG′ ] = 0 = [ΨJ

I ] withG′ = G\J//I for |I| > n or |J | >
n, so we can reduce the upper bound of the summation signs from N to n.
Since [ϕI

J ] ≡ 0 mod q3 by Proposition 33 for all I, J ⊂ IN with |I| > |J |
and |J | ≤ n− 3, we forget these summands shifting to the computations
modulo q3. There are also summands [ϕI

J ] with |I| > |J | ≥ n− 2. In other
words, these are the summands [ϕγ ] for small graphs γ = G\J//I with nG′ <
hG′ ≤ 2. We will collect all terms [ϕγ ] that we get for such small graphs
(and also add the dual objects on the further steps) to a sum denoted by
A1 (respectively Ar on the r-th step).

Now, the summands [ϕI
J ] of the last brackets of (97) with |I| = |J | = t

do not need to be 0, but they sum up to the element St ∈ I. Thus one gets

(98) [Ψ] ≡ [ϕ]′ +

n∑
t=1

∑
|I|=t

n−t∑
s=t+1

(−1)s
∑
|J |=s

[ϕI
J ] +A1 mod I.

Using induction on r, 1 ≤ r ≤ N , we now prove the following statement:

(99) [Ψ] ≡


[ϕ]′ +

n∑
t=r

∑
|I|=t

n−t∑
s=t+1

d
(r)
t,s

∑
|J |=s

[ϕI
J ] +Ar mod I, r odd,

[Ψ]′ +

n∑
t=r

∑
|I|=t

n−t∑
s=t+1

d
(r)
t,s

∑
|J |=s

[ΨI
J ] +Ar mod I, r even.

Here Ar is again a sum of terms [ϕG′ ] and the duals [ΨG′ ] for small graphs.

Formula (98) is the base of the induction, r = 1 and d
(1)
t,s = (−1)s.
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For general r, we first start with an odd r and the congruence

(100) [Ψ] ≡ [ϕ]′ +

n∑
t=r

∑
|I|=t

n−t∑
s=t

d
(r)
t,s

∑
|J |=s

[ϕI
J ] +Ar mod I.

The application of (82) for each Ψ := ϕI
J yields:

[Ψ] ≡ [ϕ]′ +

n∑
t=r

∑
|I|=t

n−t∑
s=t+1

d
(r)
t,s

∑
|J |=s

[ϕI
J ]′ +

n−t−s∑
p=1

∑
|K|=p

[ϕI
JK ]′

(101)

+Ar mod I

with the rightmost summation going over all K ⊂ IN\(I + J). Collecting
the summands by the cardinality of indices, we get

(102) [Ψ] ≡ [ϕ]′ +

n∑
t=r

∑
|I|=t

n−t∑
s=t+1

b
(r)
t,s

∑
|J |=s

[ϕI
J ]′ +Ar mod I.

The coefficients b
(r)
t,s depend only on d

(r)
i,j , i = |I| ≤ t, j = |J | ≤ s, but not on

I and J . Using the duality, we rewrite

(103) [Ψ] ≡ [Ψ]′ +

n∑
t=r

∑
|I|=t

n−t∑
s=t+1

b
(r)
t,s

∑
|J |=s

[ΨJ
I ]′ +Ar mod I.

Now, applying (81) to each Ψ = ΨJ
I , one can rewrite the formula above as

[Ψ] ≡ [Ψ]′+

n∑
t=r

∑
|I|=t

n−t∑
s=t+1

b
(r)
t,s

∑
|J |=s

[ΨJ
I ]+(−1)p

n−t−s∑
p=1

∑
|K|=p

[ΨJ
IK ]

(104)

+Ar mod I.

By Proposition 32, we can get rid of all the summands [ΨJ ′

I′ ] for |J ′| ≥ |I ′|,
|I ′| ≤ n− 3, while the sums

∑
I′,J ′ [Ψ

J ′

I′ ], |I ′| = |J ′| contribute to 0 mod I.
We also sum up all the terms for small graphs (here γ with hγ < nγ ≤ 2);
then adding Ar, we denote the result by Ar+1.
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Collecting the remaining summands by the cardinality of indices, one gets

(105) [Ψ] ≡ [Ψ]′ +

n∑
s=r+1

∑
|J |=s

n−s∑
t=s+1

∑
|I|=t

d
(r+1)
s,t [ΨJ

I ] +Ar+1 mod I

for some integer coefficients d
(r+1)
s,t (linearly) depending on b

(r)
i,j , i ≤ t, j ≤ s.

-

6

-

6

-

6

q qr q
r qqr

q

r r r

qq
qq
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r
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r
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I

Figure 4.

On Figure 4 on the left there are indicated the pairs (I, J) for which the
summands [ΨJ

I ]′ appear in formula (103). The middle picture shows the pairs
(J, I) and (J, IK) such that ΨJ

IK appear in formula (104). The right picture
shows what summands [ΨJ

I ] survive in (105). Reflecting the right picture, we
see that we have decreased the number of the (fat) points (terms surviving
in the sum) by 1 level.

Interchanging s and t, as well as I and J in (105), one obtains the
statement for r + 1 in (99):

(106) [Ψ] ≡ [Ψ]′ +

n∑
t=r+1

∑
|I|=t

n−t∑
s=t+1

∑
|J |=s

d
(r+1)
s,t [ΨI

J ] +Ar+1 mod I.

The conditions (duality and vanishing lemmas) we used above are symmetric
under Ψ↔ ϕ in the right hand side of equations (100)–(105). This implies
the proof for the case r is even when starting with formula (100) and with Ψ
instead of ϕ on the right hand side. This finishes our inductive proof of (99).

The polynomials Ψ and ϕ are of degree n of N = 2n variables. On the
r = (n− 3)-rd step we get rid of all the summands in the big sums on the
right hand side of (99). Indeed, consider the case when r is odd. On that step
we derive (105) with terms with |J | > |I| ≥ n− 2 (corresponding to small
graphs). But these terms are considered to be in Ar+1 already. The same
holds in the case when r is even.



i
i

“3-Doryn” — 2018/3/20 — 15:59 — page 1986 — #34 i
i

i
i

i
i

1986 Dmitry Doryn

We get [Ψ] ≡ [ϕ]′ +An−2 ≡ [Ψ]′ +An−2 mod I. In other words,

(107) [Ψ] = [Ψ]′ + a(Ψ) +

n∑
i=1

ui(Ψ)Si + v(Ψ)q3

with a(Ψ) := Ar−2, v(Ψ), ui(Ψ) ∈ P, 1 ≤ i ≤ N .
Now we want to do the similar computation starting with [ϕ] in the left

hand side of (95). One can again use the symmetry between Ψ and ϕ in the
applied conditions (Proposition 32) and duality. Starting with formula (95),
we do the same swapping of Ψ with ϕ both on the left and on the right
hand side of each formula until we finally derive

(108) [ϕ] = [ϕ]′ + a(ϕ) +

n∑
i=1

ui(ϕ)Si + v(ϕ)q3

for a(ϕ), v(ϕ), ui(ϕ) ∈ P, 1 ≤ i ≤ n. We do not have control on the relation

between v(Ψ) and v(ϕ), but the coincidence of the coefficients d
(r)
t,s , b

(r)
t,s in

(95)–(107) for Ψ and ϕ yields ui(Ψ) = ui(ϕ) for each i, 1 ≤ i ≤ n. Now
(107) and (108) imply

(109) [Ψ]− [ϕ] = (v(Ψ)− v(ϕ))q3 + (a(Ψ)− a(ϕ)).

Let’s show that a(Ψ) = a(ϕ), i.e. a is stable under duality.
By the discussion before Formula (105) for Ψ in the case when r is

odd, Ar+1(Ψ)\Ar(Ψ) is a sum of terms of the form [Ψγ ] for small graphs
γ = G\J//I with hγ < nγ ≤ 2, multiplied by some coefficients. If γ ∈ R0,1

(see (85)), there is a unique such subquotient graph up to isomorphism.
Then Ψγ = 1 and [Ψγ ] = 0. Otherwise, if γ with hγ = 0 and nγ = 1 is dis-
connected or co-disconnected, then Ψγ = 0 and [Ψγ ] = q. There is also a
unique subgraph γ ∈ R0,2 up to isomorphism, it gives Ψγ = 1 and [Ψγ ] = 0,
while in a disconnected or co-disconnected situation we get [Ψγ ] = q2. In
the last case of a small graph, for γ ∈ R1,2, there are 4 different possible
non-isomorphic graphs, but they all give the same [Ψγ ] = q2, while in a
disconnected or co-disconnected situation we get [Ψγ ] = q3.

Similar to d
(r+1)
s,t in (105), the coefficient of a small graph γ ∈ Ru,v de-

pends only on the values u and v, but not on the edges we delete and con-
tract, and the dependence is linear in the coefficients of the previous step,
so we get certain expressions of binomial coefficients, which we denote by

d̃
(r+1)
u,v := d

(r+1)
n−u,n−v. Since the number of connected and co-connected small



i
i

“3-Doryn” — 2018/3/20 — 15:59 — page 1987 — #35 i
i

i
i

i
i

The c2 invariant is invariant 1987

graphs for u = 0 or v = 0 in known by Corollary 36, we compute

Ar+1(Ψ)\Ar(Ψ) = d̃
(r+1)
0,1 (Ψ)

(
r̄0,1(Ψ)− r0,1(Ψ)

)
q(110)

+ d̃
(r+1)
0,2 (Ψ)

(
r̄0,2(Ψ)− r0,2(Ψ)

)
q2

+ d̃
(r+1)
1,2 (Ψ)

(
r1,2(Ψ)q2 + (r̄1,2(Ψ)− r1,2(Ψ))q3

)
,

where ru,v(Ψ) := ru,v(G) and r̄u,v(Ψ) := r̄u,v(G) are the numbers in (85).
Now suppose we start with [ϕ] and use the same reduction procedure as

in (99). We again collect the sums of small graphs into Ar. When we restrict
our attention to the case when r is odd and do the same as above, we get the
expression for Ar+1(ϕ)\Ar(ϕ) similar to (110). Analysing the small classes
in Ar+1(ϕ)\Ar(ϕ), one obtains same values [ϕγ ] = qi or 0. We know also

that d̃
(r+1)
u,v (Ψ) = d̃

(r+1)
u,v (ϕ), since it depends only on the number of steps

and on u and v, but not on I and J (not on the local topology G). We also
know that r0,v(Ψ) := r0,v(G) = rv,0(G) =: r0,v(ϕ) for v = 1 and 2, and also
ru,v(Ψ) = ru,v(ϕ) by (86). Comparing the two equations of the form (110)
for Ψ and ϕ, we derive

Ar+1(Ψ)\Ar(Ψ)−Ar+1(ϕ)\Ar(ϕ)(111)

= d̃
(r+1)
1,2

(
r1,2(Ψ)q2 + (r̄1,2(Ψ)− r1,2(Ψ))q3

)
− d̃(r+1)

1,2

(
r1,2(ϕ)q2 + (r̄1,2(ϕ)− r1,2(ϕ))q3

)
= d

(r+1)
1,2 q2(1− q)

(
r1,2(G)− r2,1(G)

)
.

Let us look at the situation for [Ψ] again but on the even step r of reduction.
Then the classes Ψγ becomes ϕγ on the right hand side of (99) and the
situation is similar to the odd step for [ϕ], and vice-versa. So one obtains

(112) (Ar+1\Ar)(Ψ)− (Ar+1\Ar)(ϕ) = d
(r+1)
2,1 q2(1− q)

(
r2,1(G)− r1,2(G)

)
with r even.

We can sum over all r and obtain an equality in terms of a=
∑

r Ar+1\Ar :

(113) a(Ψ)− a(Φ) = Cq2(1− q)(r1,2(G)− r2,1(G))

with a particular coefficient C ∈ Z. This coefficient depends only on the
number of steps (the size of G) but not on G itself. So C = C(n), where
NG = 2n is the number of edges of our log-divergent graph G.
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We return to (109) and write

(114) [Ψ]− [ϕ] = (v(Ψ)− v(ϕ))q3 + C(n)q2(1− q)(r1,2(G)− r2,1(G)).

Our next step is to show that the coefficient C(n) is 0 for each n. Consider
again the example G = Gn from Figure 3 for a fixed n ≥ 2. A simple direct
computation yields

(115)
ΨGn

= (α1α2 + α2α3 + α1α3)(α4 + α5) · · · (α2n−2 + α2n−1),

ϕGn
= (α1 + α2 + α3)(α4 + α5) · · · (α2n−2 + α2n−1)α2n

for obvious labelling of edges from left to right on the figure. Thus, on the
level of point counting, q3|[Ψ] and q3|[ϕ]. Equation (114) for G = Gn implies

(116) C(n)q2(1− q)(r1,2(Gn)− r2,1(Gn)) ≡ 0 mod q3.

By Lemma 37, we know that r1,2(Gn)− r2,1(Gn) = F (n) is the polynomial
expression of n and 2n. The congruence above implies that C(n) is divisible
by q, for every prime power q6 |F (n). That is why C(n) = 0.

Since C(n) vanishes, we derive from (114) that

(117) [ΨG]− [ϕG] ≡ 0 mod q3

for any log-divergent graph G with at least 6 edges. Since [ΨG] ≡ q2 · c2(G)q
mod q3 and [ϕG] ≡ q2 · cdual2 (G)q mod q3, Formula (117) finally yields

(118) cdual2 (G)q = c2(G)q.

�
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