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Higher gauge theory with string 2-groups

Getachew Alemu Demessie and Christian Sämann

We give a complete and explicit description of the kinematical
data of higher gauge theory on principal 2-bundles with the string
2-group model of Schommer-Pries as structure 2-group. We start
with a self-contained review of the weak 2-category Bibun of Lie
groupoids, bibundles and bibundle morphisms. We then construct
categories internal to Bibun, which allow us to define principal 2-
bundles with 2-groups internal to Bibun as structure 2-groups. Us-
ing these, we Lie-differentiate the 2-group model of the string group
and we obtain the well-known string Lie 2-algebra. Generalizing the
differentiation process, we find Maurer-Cartan forms leading us to
higher non-abelian Deligne cohomology, encoding the kinematical
data of higher gauge theory together with their (finite) gauge sym-
metries. We end by discussing an example of non-abelian self-dual
strings in this setting.
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1896 G. A. Demessie and C. Sämann

1. Introduction and results

Higher gauge theory [1, 2] is an extension of gauge theory which allows for a
consistent and non-abelian parallel transport of extended objects, avoiding
various näıve no-go theorems [3]. It is particularly interesting in the con-
text of string theory, as it may be a good starting point for developing a
description of M5-branes, see e.g. [4].

One of the most important open problems in this context is the lack
of solutions to higher gauge equations which are truly non-abelian. More
specifically, no higher principal bundle with connection is known that is not
gauge equivalent to a trivially embedded abelian gerbe with connection. This
is particularly unfortunate because knowing such a solution would lead to
immediate progress in higher gauge theory, both on the mathematical and
the physical side.

Obvious solutions to look for are higher gauge theoretic versions of
monopoles and instantons. Indeed, higher twistor descriptions of potential
such solutions have been successfully developed [5–7], but these have not
led to new solutions so far. Candidates for non-abelian self-dual string so-
lutions within higher gauge theory were constructed in [8], but these have
the disadvantage that they either do not satisfy the so-called fake-curvature
condition1 or partially break the original gauge symmetry of the higher prin-
cipal bundle.

It is therefore important to consider generalizations of the current for-
mulations of higher gauge theory which do allow for interesting solutions.
One such generalization has been proposed in [9], where spacetime was re-
placed by a categorified space. Here, we develop higher gauge theory with
smooth 2-groups, which are 2-groups internal to the weak 2-category Bibun
of Lie groupoids, bibundles and bibundle morphisms. We focus our atten-
tion in particular on the smooth 2-group model of the string group given by
Schommer-Pries [10].

This 2-group model of the string group is interesting for a number of rea-
sons. First, recall that the most relevant examples of non-abelian monopoles
on R3 and instantons on R4 form connections on principal bundles with
structure group SU(2), where this gauge group is intrinsically linked to the
spin groups Spin(3) ∼= SU(2) and Spin(4) ∼= SU(2)× SU(2) of the isotropy
groups SO(3) and SO(4) of the underlying spacetimes. Correspondingly,

1This condition guarantees that the parallel transport of extended objects is in-
variant under reparameterizations. One might, however, argue that for the simplest
self-dual strings, this condition becomes irrelevant.
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Higher gauge theory with string 2-groups 1897

one might expect the higher version of the spin group, the string group,
to be relevant in the description of higher monopoles and instantons. Other
evidence originating from an analysis of the topological part of the M5-
brane world-volume action [4] suggest that the string group of E8 might
be the appropriate choice. There is further ample motivation from both
physics and mathematics for being interested in higher gauge theory with
the string group, stemming from the connection to 2-dimensional supersym-
metric sigma-models and elliptic cohomology. For a more detailed account,
see [10].

Our goal in this paper is thus to describe explicitly the kinematical
data of higher gauge theory with the smooth string 2-group model as gauge
symmetry structure. In particular, we will need to develop the appropriate
notion of principal bundle, connection and corresponding gauge transforma-
tions. We intend to use our results as a starting point for finding higher
monopole and instanton solutions in future work.

Principal bundles with smooth structure 2-group can be defined in (at
least) two ways. First, we can regard them as certain smooth stacks over the
base manifold, as done in [10] and we review and explain this definition in
our paper. Second, we can give a description in terms of generalized cocycles
with values in the string 2-group. This requires us to introduce the notion
of a category internal to the weak 2-category Bibun together with weak
internal functors. The resulting internal category trivially contains ordinary
categories internal to the category Mfd∞ of smooth manifolds. We can then
define a principal 2-bundle as a weak functor from the Čech groupoid of the
relevant cover of the base manifold to the delooping of the smooth 2-group.
Both approaches are equivalent, but we will mostly use the latter one as it
leads to a convenient description of gauge theory.

As shown in [11], the notion of smooth 2-group is in fact equivalent to a
Lie quasigroupoid, or (2, 0)-category internal to Mfd∞, with a single object,
which is defined in terms of Kan simplicial manifolds. As far as we are
aware, this is the most general reasonable notion of Lie 2-group available in
the literature today. In particular, smooth 2-groups contain ordinary groups
as well as strict 2-groups. Our notion of principal 2-bundle is therefore very
comprehensive and as we show in some detail, special cases include ordinary
principal bundles as well as principal bundles with strict structure 2-groups.

Introducing a connection on these principal 2-bundles is more work,
as it also involves the Lie 2-algebra of the underlying smooth 2-group. To
simplify our computations, we lift the string 2-group model to a weak 2-
group model by introducing preferred horn fillers in the underlying Kan
simplicial manifold.
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1898 G. A. Demessie and C. Sämann

Having defined principal smooth 2-group-bundles, we can readily use an
approach by Ševera [12] for this purpose. Here, the higher Lie algebra of a
higher Lie group arises from the moduli space of functors from the category
of manifolds Mfd∞ to descent data for principal bundles with the higher
Lie group as structure group over surjective submersions N ×R0|1 � N ,
N ∈ Mfd∞. Following this approach, we successfully differentiate the smooth
2-group model for the string group and the resulting Lie 2-algebra is indeed
the well-known string Lie 2-algebra.

Given a Lie 2-algebra, we can immediately derive the local description
of higher gauge theory with the string 2-group together with infinitesimal
gauge transformations from appropriate homotopy Maurer-Cartan equations
on some L∞-algebra and their infinitesimal symmetries.

To glue together these local connection forms to global objects, however,
we also need the explicit form of finite gauge transformations. These can
be obtained by extending Ševera’s differentiation approach. Coboundaries
between the descent data for equivalent principal bundles induce equivalence
relations on the moduli space of functors, which directly translate into finite
gauge transformations of the connection forms. From these we can glean a
full description of the kinematical data of higher gauge theory with the string
2-group. Put in mathematical terms, we obtained a very explicit description
of the second Deligne cohomology group with values in the smooth string
2-group model.

As an application, we discuss examples of solutions to the non-abelian
self-dual string equations. Due to the form of the string Lie 2-algebra, these
solutions still reduce to the well-known abelian ones, if the fake curvature
condition is imposed. A more comprehensive study of self-dual string solu-
tions using smooth 2-groups is postponed to future work.

In this paper, we have tried to be rather self-contained in our presen-
tation to facilitate access to concepts and methods that might not be very
well-known as of now, such as the weak 2-category Bibun, Segal-Mitchison
group cohomology and the extension of Ševera’s differentiation process lead-
ing to gauge potentials and their finite gauge theories.

Finally, a remark on our notation. As in [10], we work with left-principal
bibundles which encode morphisms from a Lie groupoid H to some Lie
groupoid G and for which the (left-) action of the morphisms of G onto the
bibundles is principal. In general, we try to use a consistent right-to-left
notation, but we still write B : H → G for a bibundle from H to G as well
as B ∈ Bibun(H,G).
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Higher gauge theory with string 2-groups 1899

2. The weak 2-category Bibun

2.1. Bibundles as morphisms between Lie groupoids

To discuss gauge theories, we will have to describe various group actions on
fields. Such actions are most naturally captured in the language of groupoids.

Definition 2.1. A groupoid is a small category, in which every morphism
is invertible.

The idea here is that the objects of a groupoid describe a set that the
morphisms act on. A prominent example is the groupoid arising from the
action of a group G on a set X. The action groupoid X//G has objects X
and morphisms X × G. We define source and target maps on the morphisms
as s(x, g) = x and t(x, g) = g B x; the identities are given by idx = (x,1G).
Composition is defined for pairs (x, g) and (x̃, g̃), if t(x, g) = x̃ and we then
have (x, g) ◦ (x̃, g̃) = (x, gg̃).

If we are merely interested in the group G itself, we can consider the
case where X is the one-element set X = ∗ on which G acts trivially. This
yields the so-called delooping BG = (G⇒ ∗) of a group G, with the elements
of G forming the morphisms. Composition of morphisms is here the group
multiplication and the embedding of ∗ in the morphisms yields the unit in G.

To define groupoids with more structure, we use the concept of internal-
ization. Essentially, the objects and morphisms of a category internal to a
category C are objects of C , while the structure maps consisting of source,
target and composition are morphisms of C . In particular, we can consider
groupoids internal to Mfd∞, the category of smooth manifolds and smooth
morphisms between them.

Definition 2.2. A Lie groupoid is a groupoid internal to Mfd∞.

That is, the objects G0 and morphisms G1 of a Lie groupoid G are smooth
manifolds and the structure maps s, t, ◦, id are all smooth. Since Mfd∞ does
not have all pullbacks, we also have to demand that s and t are (surjective)
submersions. Otherwise, the domain of the composition morphism, G1 ×t,s

G0

G1, might not be a manifold. A ubiquitous example of a Lie groupoid is the
delooping BG = (G⇒ ∗) of a Lie group G.

Lie groupoids and the functors internal to Mfd∞ between these form
the category of Lie groupoids. We will be interested in an extension of this
category to a weak 2-category, in which the morphisms between groupoids
are generalized to bibundles.
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1900 G. A. Demessie and C. Sämann

Definition 2.3. A (left-) principal bibundle from a Lie groupoid H =
(H1 ⇒ H0) to a Lie groupoid G = (G1 ⇒ G0) is a smooth manifold B to-
gether with a smooth map τ : B → G0 and a surjective submersion σ : B �
H0

(1)

G1

    

B

τ

��

σ

    

H1

}} }}
G0 H0

Moreover, there are left- and right-action maps

(2) G1 ×s,τ
G0
B → B and B ×σ,tH0

H1 → B,

which satisfy the following compatibility relations

(i) g1(g2b) = (g1g2)b for all (g1, g2, b) ∈ G1 ×s,t
G0
G1 ×s,τ

G0
B;

(ii) (bh1)h2 = b(h1h2) for all (b, h1, h2) ∈ B ×σ,tH0
H1 ×s,t

H0
H1;

(iii) b idH(σ(b)) = b and idG(τ(b)) b = b for all b ∈ B;

(iv) g(bh) = (gb)h for all (g, b, h) ∈ G1 ×s,τ
G0
B ×σ,tH0

H1;

(v) The map G1 ×s,τ
G0
B → B ×H0

B : (g, b) 7→ (gb, b) is an isomorphism
(and thus the G1-action is transitive).

Analogously, one defines right-principal bibundles. All bibundles in this pa-
per will be left-principal bibundles and we will always clearly mark the
surjections σ in our diagrams by a two-headed arrow �.

The generalized maps between Lie groupoids encoded in (equivalence
classes of) bibundles are also called Hilsum-Skandalis morphisms [13]. The
maps σ and τ should be regarded as source and target maps and the mor-
phisms between h0 ∈ H0 and g0 ∈ G0 are given by elements b ∈ B with
σ(b) = h0 and τ(b) = g0. The morphisms between morphisms h1 ∈ H1 and
g1 ∈ G1 are then given by the principal left-action. We will return to this
point shortly.

Bibundles contain ordinary functors between Lie groupoids as follows.

Definition 2.4. Consider a morphism of Lie groupoids φ = (φ0, φ1) be-
tween Lie groupoids H and G, φ0,1 : H0,1 → G0,1. The bundlization φ̂ of φ is
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Higher gauge theory with string 2-groups 1901

the bibundle

(3)

G1

�� ��

H0 ×φ0,s
G0
G1

t

zz

π

$$ $$

H1

~~ ~~
G0 H0

where t is the target map in G and π is the obvious projection. The actions
of G1 and H1 on φ̂ are given by

(4) g′(x, g) := (x, g′ ◦ g) and (x, g)h := (s(h), g ◦ φ1(h))

for g, g′ ∈ G1, h ∈ H1 and (x, g) ∈ φ̂.

There is now a nice characterization of bibundles arising from bundliza-
tion, cf. e.g. [14, 15]:

Proposition 2.5. Given a bibundle B : H → G between Lie groupoids G
and H, the map σ : B � H0 admits a smooth (global) section if and only if
B is isomorphic to a bundlization.

Proof. Assume that φ̂ is a bundlization of a functor φ. Then a section γ :
H0 → B of σ : B � H0 is given by γ(h0) = (h0, idφ0(h0)). Conversely, given
a section γ, we define a functor φ = (φ0, φ1) by putting φ0(h0) = τ(γ(h0)).
The map on morphisms φ1 : H1 → G1 is defined via its left-action

(5) φ1(h1)γ(s(h1)) := γ(t(h1))h1

for all h1 ∈ H1. Because this action is principal, this fixes φ1(h1) uniquely.
Note that s(φ1(h1)) = φ0(s(h1)) because the left-action is a map G1 ×s,τ

G0

B → B. Similarly, we have φ1(idh0
) = idφ0(h0) due to axiom (iii) in the

definition of bibundles and t(φ1(h1)) = t(φ1(h1)γ(s(h1))) = τ(γ(t(h1))h1) =
τ(γ(t(h1))) = φ0(t(h1)). Composition is by Definition (5) compatible with
the resulting functor φ. �

Note that in the proof above, the construction of a section from a functor
and that of a functor from a section are inverses of each other. In particular,
if one starts from a section γ from a functor φ, the reconstruction of a functor
from the bundlization φ̂ and the section γ returns the original functor φ.
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1902 G. A. Demessie and C. Sämann

Let us now list a few instructive examples of bibundles. We evidently
have the identity bibundle from a Lie groupoid H to itself,

(6)

H1

!! !!

H1

t

}}

s

!! !!

H1

}} }}
H0 H0

which is the bundlization of the identity functor of Lie groupoids. More-
over, bibundles include smooth maps between manifolds and Lie group ho-
momorphisms via bundlization. Inversely, a bibundle between discrete2 Lie
groupoids X ⇒ X and Y ⇒ Y reduces to a morphism X → Y , as condi-
tion (v) in the definition implies that the total space of the bibundle is X.
That is, bibundles between discrete Lie groupoids arise from a bundliza-
tion of smooth maps between manifolds. Similarly, bibundles between Lie
groupoidsH = (H⇒ ∗) and G = (G⇒ ∗) for Lie groups H and G arise from a
bundlization of a smooth functor corresponding to a group homomorphism.

Another non-trivial example is a principal G-bundle over a manifold X
where G is an ordinary Lie group, which can be regarded as a bibundle
between the Lie groupoids X ⇒ X and G⇒ ∗. For a very detailed review
on Lie groupoid bibundles, see also [16].

Definition 2.6. A bibundle map between bibundles B and B′ between
Lie groupoids H and G with structure maps (σ, τ) and (σ′, τ ′) is a map
φ : B → B′, which is biequivariant. That is, σ′ ◦ φ = σ, τ ′ ◦ φ = τ , and φ
commutes with the H and G actions.

Bibundles between Lie groupoids H and G together with bibundle maps
form the category Bibun(H,G). Note that we can also compose bibundles
using the notion of coequalizer3. Given two bibundles B : H → G and B′ :
E → H, we have the coequalizer

(7) B ×σ,tH0
H1 ×s,τ

H0
B′ ⇒ B ×σ,τH0

B′ → B ⊗B′,

where the maps denoted by the double arrow are the left- and right-actions
of H1 on B′ and B, respectively. The coequalizer is therefore the bibundle

2By discrete, we shall always mean categorically discrete, i.e. no morphisms be-
yond the identities, and not topologically discrete.

3see Appendix B
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Higher gauge theory with string 2-groups 1903

given by the quotient by the diagonal action,

(8) B ⊗B′ = (B ×H0
B′)/H1,

where H1 acts on B ×H0
B′ as h : (b, b′) 7→ (bh, h−1b′). This composition is

associative only up to a natural isomorphism of bibundles. For more details,
see [16, 17].

With this composition, the categories Bibun(H,G) extend to a weak 2-
category.

Proposition 2.7. There is a weak 2-category consisting of Lie groupoids
as objects, bibundles as morphisms and bibundle maps as 2-morphisms. We
denote this weak 2-category by Bibun.

Note that the strict 2-category consisting of Lie groupoids, smooth func-
tors and natural transformations, which is a subcategory of Mfd∞Cat, the
strict 2-category of categories, functors and natural transformations internal
to Mfd∞, is also a subcategory of Bibun. The embedding of the objects is
trivial and that of smooth functors is given by bundlization. Maps α̂ between
bibundles φ̂ and ψ̂ between Lie groupoids H and G,

(9)

φ̂ = H0 ×φ0,s
G0
G1

α̂

��

t

xx

π

&& &&
G1 //// G0 H0 H1

oooo

ψ̂ = H0 ×ψ0,s
G0
G1

t

ff
π

88 88

are compatible with the right actions involving φ1 and ψ1. Therefore, they
have to be of the form α̂ : (h, g) 7→ (h′, g′) := (h, gα(h)), where α(h) ∈ G1

encodes a natural transformation α between φ and ψ. This directly implies
the following, cf. e.g. [18]:

Proposition 2.8. Bibundle morphisms between bundlizations φ̂ and ψ̂ are
in one-to-one correspondence with natural transformations φ⇒ ψ.

We now come to the definition of equivalent Lie groupoids via weak
1-isomorphisms in Bibun.
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1904 G. A. Demessie and C. Sämann

Definition 2.9. A bibundle equivalence is a bibundle B ∈ Bibun(H,G),
which also defines a bibundle B−1 ∈ Bibun(G,H) by reversing the roles of
σ and τ . Two Lie groupoids G and H are equivalent, if there is a bibundle
equivalence between them.

Note that the weak 2-category Bibun can be regarded as the 2-category of
“stacky manifolds.” In particular, Lie groupoids are presentations of smooth
stacks. In this context, bibundle equivalence amounts to Morita equivalence.

As an example, consider the action groupoid G = Gn G⇒ G for some
Lie group G. We shall see soon that this groupoid can be regarded as a

Lie 2-group and corresponds to the crossed module G
t−→ G. This action

groupoid is Morita equivalent to the trivial Lie groupoid ∗⇒ ∗ and the
bibundle equivalence reads as

(10)

G× G

"" ""

G
τ

����

σ

�� ��

∗

�� ��
G ∗

where τ is the identity and σ is trivial. For another example, consider the
Čech groupoid U [2] ⇒ U of a cover U := tiUi of a manifold X, where U [2] :=
tijUi ∩ Uj . This Lie groupoid is equivalent to the manifold X itself:

(11)

U [2]

!! !!

U

���� �� ��

X

�� ��
U X

2.2. Smooth 2-groups

The smooth 2-groups we are interested in are in fact 2-groups internal to
the weak 2-category Bibun. Therefore, we now give a brief review of smooth
2-groups. For more details, see [10, 19].

Definition 2.10. A 2-group is a weak monoidal category in which all mor-
phisms are invertible and all objects are weakly invertible.

That is, a 2-group is a category C endowed with a unit e and a bifunctor
⊗ : C × C → C , which satisfies e⊗ a ∼= a and a⊗ e ∼= a as well as (a⊗ b)⊗
c ∼= a⊗ (b⊗ c), where the isomorphisms are given by the left- and right-
unitors la, ra and the associator a. These have to satisfy the usual coherence
axioms, cf. e.g. [10].
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Higher gauge theory with string 2-groups 1905

To define smooth 2-groups, we now internalize 2-groups in the weak 2-
category Bibun, see also Appendix A for a brief review of 2-group objects in
a weak 2-category.

Definition 2.11. A smooth 2-group in the sense of [10] is a 2-group object
in Bibun.

As shown in [20], this definition is equivalent to the canonical definition of
a Lie 2-group in terms of simplicial manifolds.4

Explicitly, a smooth 2-group is given by a Lie groupoid G together with
a bibundle m : G × G → G and a bibundle id : (∗⇒ ∗)→ G as well as bibun-
dle morphisms a, l and r. The bibundle morphisms have to satisfy certain
coherence axioms, cf. Appendix A.

This definition of smooth 2-groups subsumes a large number of other
notions, as explained in detail in [10]. Here, we just summarize the most
important examples. First, a Lie group G, regarded as a Lie groupoid G⇒ ∗
is a smooth 2-group. The monoidal product is the group product in G,
which is promoted to a functor of Lie groupoids and then bundlized. Second,

crossed modules of Lie groups H
∂−−→ G give rise to strict Lie 2-groups, which

are special smooth 2-groups, as follows. Consider the groupoid G× H⇒ G,
with structure maps

(12a) s(g, h) := g, t(g, h) := ∂(h)g and id(g) := (g,1H).

Composition of morphisms is defined by

(12b) (∂(h)g, h′) ◦ (g, h) = (g, h′h)

and the tensor product on morphisms is given by the semidirect group action
on Gn H,

(12c) (g, h)⊗ (g′, h′) := (gg′, h(g B h′)) and g ⊗ g′ := gg′,

where g, g′ ∈ G, h, h′ ∈ H and B: G× H→ H is the action in the crossed
module of Lie groups. One can even show categorical equivalence between
crossed modules of Lie groups and strict Lie 2-groups [19].

Finally, weak Lie 2-groups, i.e. weak 2-groups internal to Mfd∞Cat are
also examples of smooth 2-groups.

4Here, a Lie 2-group is a Kan complex with one 0-simplex and unique horn fillers
for n-simplices with n ≥ 3, cf. [21].
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2.3. Categories internal to Bibun

In order to define principal 2-bundles with smooth structure 2-groups, we
will need the notion of a category internal to Bibun. Recall that a category
internal to a category with pullbacks C is a pair D = (D0,D1) of objects
in C together with source, target, identity and multiplication morphisms
in C such that the usual compatibility conditions between these structure
maps for categories hold. Fully analogously, one defines internal functors
and internal natural transformations.

The concept of an internal category has been weakened in the past to
allow for categories internal to strict 2-categories [22]. Here, we need a slight
extension to weak 2-categories to define categories internal to Bibun.

A more technical issue is that of pullbacks which do not all exist in
Bibun, similarly to the case of Mfd∞. We can circumvent this problem by
introducing the notion of transversality.

Definition 2.12 ([10, Def. 28]). Let H1,2 and G be Lie groupoids and
B1,2 : H1,2 → G be principal left-bibundles. Then B1,2 are transverse, if the
maps B1,2 → G1 are transverse maps.5

We then have the following proposition.

Proposition 2.13 ([10, Prop. 31]). Let H1,2 and G be Lie groupoids
and B1,2 : H1,2 → G be transverse principal left-bibundles. Then the pullback
H1 ×G H2 exists in Bibun.

With this notion, we are now ready to define categories internal to Bibun.

Definition 2.14. A category C internal to Bibun is a pair of Lie groupoids
C0 and C1 together with bibundles

(13) s, t : C1 ⇒ C0, id : C0 → C1, Bc : C1 ×s,t
C0

C1 → C1,

called the source, target, identity and composition morphisms, respectively.
We demand that s and t are transverse, which guarantees the existence of the

5Recall that two maps f : X → Z and g : X → Z are transverse, if the sum of
the pushforwards of TpX along f and TpY along g amounts to the full tangent
space Tf(p)Z = Tf(p)Z for all p, q with f(p) = g(q).
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pullback C1 ×s,t
C0

C1. The following diagrams are required to be commutative:

(14)

C1

t

��

C1 ×C0
C1

pr1oo pr2 //

Bc

��

C1

s

��
C0 C1

too s // C0

C0
id //

1
  

C1

s,t

��
C0

We also have bibundle isomorphisms a, l and r defined in the commutative
diagrams
(15)

C1 ×s,t
C0

C1 ×s,t
C0

C1

Bc×1

yy

1×Bc

%%
C1 ×s,t

C0
C1

a +3

Bc
&&

C1 ×s,t
C0

C1

Bc
xx

C1

C0 ×C0
C1

id×1 //

pr2

""

C1 ×C0
×C1

Bc

��

r �&lx�

C1 ×C0
C0

1×idoo

pr1

||
C1

called the associator, the left- and right-unitors, respectively. Coherence of
the associator and the unitors amounts to the (internal) pentagon identity,
(16a) [

Bc ⊗ (1×Bc)
]
⊗ (Bc × 1× 1)

(a⊗1)◦∼=

#+
Bc ⊗

[
(Bc × 1)⊗ (Bc × 1× 1)

]
(a⊗1)◦∼=

3;

1⊗(a×1)

��

Bc ⊗
[
(1×Bc)⊗ (1× 1×Bc)

]

Bc ⊗
[
(Bc × 1)⊗ (1×Bc × 1)

] (a⊗1)◦∼= +3
[
Bc ⊗ (1×Bc)

]
⊗ (1×Bc × 1)

(1⊗(1×a))◦∼=

KS

as well as the (internal) triangle identity,
(16b)[
Bc ⊗ (Bc × 1)

]
⊗ (1× id× 1)

(a×1)⊗1 +3

(1⊗(r×1))◦∼=
%-

[
Bc ⊗ (1×Bc)

]
⊗ (1× id× 1)

(1⊗(1×l))◦∼=
qy

Bc
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In the above diagrams, we suppressed arrows for the isomorphisms ∼= be-
tween bibundles arising from the non-associativity of horizontal or bibundle
composition ⊗ in Bibun.

Analogously, we now define internal functors.

Definition 2.15. Given two categories C and D internal to Bibun, an
internal functor Φ : C → D consists of bibundles Φ0,1 : C0,1 → D0,1 and bi-
bundle isomorphisms Φ2,c and Φ2,id such that the following diagrams
(2-)commute:
(17)

C1

Φ1

��

s
// C0

Φ0

��

C1t
oo

Φ1

��
D1 s

// D0 D0t
oo

C1 ×C0
C1

Bc //

Φ1×Φ1

��

C1

Φ1

��
D1 ×D0

D1
Bc //

Φ2,c

6>

D1

C0
id //

Φ0

��

C1

Φ1

��
D0

id //

Φ2,id

:B

D1

The bibundle morphisms have to satisfy coherence axioms which amount to
the following commutative diagrams6:
(18a)

Bc ⊗
[
(Φ1 × Φ1)⊗ (Bc × 1)

]
Φ2,c◦∼=

#+
Bc ⊗

[
(Bc × 1)⊗ (Φ1 × Φ1 × Φ1)

]1⊗(Φ2,c×1)
19

a◦∼=
��

Φ1 ⊗ (Bc × (Bc × 1))

1⊗a
��[

Bc ⊗ (1×Bc)
]
⊗ (Φ1 × Φ1 × Φ1)

(1⊗(1×Φ2,c))◦∼= %-

Φ1 ⊗ (Bc × (1×Bc))

Bc ⊗
[
(Φ1 × Φ1)⊗ (1×Bc)

]Φ2,c◦∼=

3;

6Note that in these diagrams, the structure 1- and 2-morphisms in C and D are
labeled by the same symbols.
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and
(18b)

Bc ⊗
[
(Φ1 × Φ1)⊗

[
(1× id)⊗ (1, s)

]]
Φ2,c◦∼=

$,
Bc ⊗

[
(1× id)⊗

[
(Φ1 × Φ0)⊗ (1, s)

]]1⊗(1×Φ2,id)
19

r

%-

[
Φ1 ⊗Bc

]
⊗
[
(1× id)⊗ (1, s)

]
(1⊗r)◦∼=

rz
Φ1

Bc ⊗
[
(id× 1)⊗

[
(Φ0 × Φ1)⊗ (t, 1)

]]l

19

1⊗(Φ2,id×1) %-

[
Φ1 ⊗Bc

]
⊗
[
(id× 1)⊗ (t, 1)

](1⊗l)◦∼=
dl

Bc ⊗
[
(Φ1 × Φ1)⊗

[
(id× 1)⊗ (t, 1)

]]Φ2,c◦∼=

2:

where we again suppressed additional arrows for isomorphisms arising from
the non-associativity of horizontal composition in Bibun. Moreover, we write
(B1, B2) for the morphism (B1 ×B2) ◦∆, where ∆ is the diagonal morphism
∆ : G → G × G. The first diagram contains bibundles from C1 ×C0

C1 ×C0
C1

to D1, while the second diagram contains bibundles from C1 to D1.

And we finish with internal natural transformations.

Definition 2.16. Given two internal functors Φ and Ψ between categories
C and D internal to Bibun, a natural transformation β : Φ⇒ Ψ consists of
a bibundle C0 → D1 together with a bibundle isomorphism β2 rendering the
diagrams
(19)

C0

Ψ0

~~

β1

��

Φ0

  
D0 D1t
oo

s
// D0

C1

(β1⊗t,Φ1)

��

(Ψ1,β1⊗s) // D1 ×D1

Bc

��
D1 ×D1

β2

5=

Bc // D1

(2-)commutative. In addition, we have coherence rules amounting to the
commutative diagrams
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(20a)

Bc ⊗
[
(Bc × 1)⊗

[
(Ψ1 × β1 × Φ1)⊗ (1× (t, 1))

]]
a◦∼=

u}[
Bc ⊗ (1×Bc)

]
⊗
[
(Ψ1 × β1 × Φ1)⊗ (1× (t, 1))

]
∼=◦(1⊗(1×β2))◦∼=

��

Bc ⊗
[
(Bc × 1)⊗

[
(β1 × Φ1 × Φ1)⊗ ((t, 1)× 1)

]]

a◦∼=

��

1⊗(β2×1)

ck

[
Bc ⊗ (1×Bc)

]
⊗
[
(Ψ1 ×Ψ1 × β1)⊗ (1× (1, s))

]

a−1

��

[
Bc ⊗ (1×Bc)

]
⊗
[
(β1 × Φ1 × Φ1)⊗ ((t, 1)× 1)

]

(1⊗(1×Φ2,c))◦∼=

��

[
Bc ⊗ (Bc × 1)

]
⊗
[
(Ψ1 ×Ψ1 × β1)⊗ (1× (1, s))

]

(1⊗(Ψ2,c×1))◦∼=
#+

Bc ⊗
[
(β1 × Φ1)⊗

[
(1×Bc)⊗ ((t, 1)× 1)

]]
β2u}

Bc ⊗
[
(Ψ1 × β1)⊗

[
(Bc × 1)⊗ (1, (1, s))

]]

(20b)

β1

(r◦∼=)−1

$,
Bc ⊗

[
(id× 1)⊗ (Ψ0, β1)

]l◦∼=

2:

1⊗(Ψ2,id×1)
��

Bc ⊗
[
(1× id)⊗ (β1,Φ0)

]
1⊗(1×Φ2,id)

��
Bc ⊗

[
(Ψ1 × 1)⊗ (id, β1)

]
Bc ⊗

[
(1× Φ1)⊗ (β1, id)

]
β2⊗idid

ks

The first diagram describes isomorphisms between bibundles from C1 ×C0

C1 to D1 and on this Lie groupoid we have (1× (t, 1)) = ((1, s)× 1). The
second diagram describes isomorphisms between bibundles from C0 to D1

and involves the bibundle isomorphism

(21) β2 ⊗ idid : Bc ⊗ ((β1 ⊗ t,Φ1)⊗ id)⇒ Bc ⊗ ((Ψ1, β1 ⊗ s)⊗ id).
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3. Smooth 2-group bundles

3.1. Ordinary principal bundles

Recall that given a smooth manifold X ∈ Mfd∞, the (generalized) bundles
over X are objects in the slice category7 Mfd∞/X. That is, a generalized
bundle is a smooth manifold P with a smooth morphism P → X.

To obtain a principal bundle P over X with structure Lie group G,
we have to demand that there is a principal group action of G on P and
that the bundle is locally trivial with typical fiber G. The first condition
is implemented as follows. We switch from G to the trivial bundle GX =
(G×X → X), which is a group object in Mfd∞/X. We can then demand
that P is a GX -object π : P → X in Mfd∞/X.

To implement the second condition, we define a cover of X as a smooth
manifold Y together with a surjective submersion κ ∈ Mfd∞(Y,X). While
not all pullbacks exist in Mfd∞, those along surjective submersions do. For
simplicity and for reasons of familiarity, let us restrict ourselves to ordinary
covers κ : U � X given by a disjoint union of patches, U := t iUi. We then
demand that κ∗P is G-equivariantly diffeomorphic to the bundle U × G→
U ∈ Mfd∞/X.

We will also need a description of the principal bundle P in terms of
descent data or transition functions. For this, we use the G-equivariant dif-
feomorphism ρi : Ui × G→ P |Ui to define a transition functions. Note that
the diffeomorphism is of the form ρi(p) = (π(p), gi(p)) for p ∈ π−1(Ui). Then
the expression gij(p) := g−1

i (p)gj(p) for p ∈ π−1(Ui ∩ Uj) depends only on
π(p) since g−1

i (hp)gj(hp) = g−1
i (p)h−1hgj(p) = g−1

i (p)gj(p). We thus obtain
a function gij : Ui ∩ Uj → G, which satisfies the condition gijgjk = gik on
triple overlaps Ui ∩ Uj ∩ Uk 6= ∅. The (gij) thus form a Čech 1-cocycle with
respect to the cover U .

Similarly, one readily shows that diffeomorphic principal bundles P and
P ′ subordinate to the same cover U are described by transition functions
(gij) and (g′ij) which are related by gij = γig

′
ijγj for some local smooth func-

tions γi : Ui → G. The (γi) form the Čech coboundaries linking the Čech
cocycles (gij) and (g′ij).

Alternatively, one can regard the principal bundle P as a functor from
the Čech groupoid tU [2] ⇒ U with U [2] := ti,jUi ∩ Uj to the Lie groupoid
BG = (G⇒ ∗). One readily sees that this functor is encoded in a Čech 1-
cocycle (gij):

7cf. Appendix B
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(22)

G

�� ��

U [2](gij)oo

�� ��
∗ U

∗oo

Moreover, two functors corresponding to diffeomorphic principal bundles
are connected by a natural isomorphism, which in turn gives rise to a Čech
coboundary.

3.2. Definition of smooth 2-group bundles

Let us now generalize the above discussion to the categorified setting. This
yields higher principal bundles as special kinds of stacks, which were already
defined in [10], and we recall the relevant definitions in the following. For a
related approach, see also [23].

Note that a 2-space is a category internal to Mfd∞ and here, we re-
strict our attention to Lie groupoids, i.e. groupoids internal to Mfd∞. The
2-bundles over a 2-space X are then simply elements of (a subcategory of)
the slice 2-category Bibun/X , cf. [23].

Given a smooth 2-group G, we can trivially regard it as a 2-group object
GX in Bibun/X as follows:

(23)

X1

    

B

τ

~~

σ

## ##

G1 ×X1

xx xx
X0 G0 ×X0

We then define:

Definition 3.1. Given a smooth 2-group G, a smooth G-stack is a G-object
in Bibun.

We also define G-stacks over other smooth stacks X , which are the ob-
jects of Bibun:

Definition 3.2. A smooth 2-group over a smooth stack X is a 2-group
object in Bibun/X . Given a smooth 2-group GX over a smooth stack X , a
smooth GX -stack over X is a GX -object in Bibun/X .
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Finally, let us impose the condition of local triviality to arrive at higher
principal bundles. To this end, we need to introduce covers and discuss
pull-backs to the patches in the covers. It will be sufficient for us to work
with covering bibundles arising from a bundlization of 2-covers as defined in
[2]. For a more general perspective, see [10]. Since the 2-spaces we want to
cover are Lie groupoids, we demand that our cover is also a groupoid U =
(U1 ⇒ U0) internal to Mfd∞, together with a functor τ : U → X such that the
contained smooth maps U1 → X1 and U0 → U1 are surjective submersions.
The bundlization of such a 2-cover gives rise to the bibundle

(24)

X1

    

U0 ×τs,sX0
X1

t

zz

π

$$ $$

U1

�� ��
X0 U0

cf. Section 2.1. Pullbacks exist for surjective submersions, and thus they
exist along the corresponding bundlizations8.

Definition 3.3. Given a smooth G-group over a stack X , a principal G-
bundle over X is a smooth G-stack P over X such that there exists a covering
bibundle κ : U → X with κ∗(P) being G-equivariantly equivalent to U × G
as a smooth G-stack over U .

Altogether we have the following picture:
(25)
U1 × G1

�� ��

κ∗P1

�� ��

P1

�� ��

G1 ×X1

�� ��
U0 × G0 Beq

// //oooo κ∗P0 Bκ∗ // //oooo P0

η

v~

G0 ×X0

BU×G

&&

ffff

Bκ∗P

��

OOOO

BP

��

OOOO

GX

xx

OOOO

U1 // // U0 Bκ // //oooo X0 X1
oooo

where BP is a GX -object in Bibun/X , η is a bibundle isomorphism, Beq is a
bibundle equivalence and BU×G ⊗Beq

∼= Bκ∗P .

8Using 2-covers saves us the discussion of transversality conditions for bibundles
required for pullbacks to exist. For details, see e.g. [23].
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Let us work through two examples in somewhat more detail: ordinary
principal bundles and principal 2-bundles over a manifold X, where the
structure 2-group is a crossed module of Lie groups.

In the first case, consider a principal bundle π : P → X with struc-
ture Lie group G over a manifold X with cover κ : U � X. We have an
isomorphism ρi : t iUi × G→ κ∗P such that π ◦ ρi is the obvious projec-
tion. To regard these as principal bundles in the sense of Definition 3.3, we
first trivially extend the group object GX = (G×X → X) to a 2-group ob-
ject over a Lie groupoid, by promoting G×X and X to discrete categories
G = (G×X ⇒ G×X) and X = (X ⇒ X). The projection in GX induces an
obvious functor between G and X , which we can bundlize to the following
smooth 2-group over X :

(26)

X

    

X × G
pr

{{

=

%% %%

X × G

yy yy
X X × G

To obtain a covering bibundle Bκ of X , we proceed similarly. We trivially
extend a cover κ : U � X to the discrete 2-cover (κ, κ) : (U ⇒ U)� (X ⇒
X), and bundlize the result:

(27)

X

    

U
κ

~~

=

�� ��

U

�� ��
X U

Similarly, all the other maps are generalized to bibundles by bundlization
of the corresponding functors between discrete groupoids and it is obvious
how to complete diagram (25). In particular, η is trivial.

In the case of principal 2-bundles over X, we choose the strict structure
Lie 2-group G = (Gn H⇒ G). Again, we promote X and its cover U to
discrete groupoids. We have an obvious functor from the Lie groupoid G × X
to X , which we bundlize to

(28)

X

�� ��

G×X
pr

||

=

%% %%

(Gn H)×X

ww ww
X G×X

As covering bibundle, we choose again (27). Recall that a principal G bundle
over X can be regarded as a 2-space P fibered over X, whose pullback along
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the cover is equivalent to the bundle G × (U ⇒ U), cf. e.g. [24]. Bundlization
then allows us to fill in all the remaining bibundles of diagram (25).

3.3. Cocycle description

Let G be a smooth 2-group. One can now derive transition functions by
locally trivializing the above description of principal G-bundles in the usual
manner.

Alternatively, we can directly derive a description in terms of generalized
Čech cocycles. Let κ : U → X be a covering bibundle of a stack X . We
can construct the Čech groupoid Č (U) of U1 ⇒ U0 as the obvious category
internal to Bibun. Correspondingly, we construct BG of the smooth 2-group
G as a category in Bibun. We then have the following definition, generalizing
the usual Čech description of principal fiber bundles.

Definition 3.4. A principal G-bundle over X subordinate to a cover U
of X is a functor internal to Bibun from the Čech groupoid Č (U) to the
delooping BG of the smooth structure 2-group G. Two principal G-bundles
over X subordinate to a cover U are called equivalent, if there is a natural
isomorphism between their corresponding functors.

Altogether, we get the following diagram:

(29)

G1 ⇒ G0

�� ��

U1,0 ⇔ U1,1

s

��

t

��

aa

}}
β

KS

Φ1

aa

Ψ1

}}

∗⇒ ∗ U0 ⇔ U1
Φ0

Ψ0oo

where Φ and Ψ are internal functors, β is an internal natural isomorphism
and the maps s and t are bibundles9.

As a particularly simple example, consider the principal G-bundle Φ1

whose Φ1

1 -component is given by the bundlization of the functor mapping
all of U1,0 to 1G ∈ G0 and all of U1,1 to id1G ∈ G1.

9In principle, the maps (G1 ⇒ G0)⇒ (∗⇒ ∗) are also given by bibundles, but
since the target is trivial, they collapse to trivial maps.
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Definition 3.5. A trivial principal G-bundle is a principal G-bundle which
is equivalent to the principal G-bundle Φ1.

Let us explain how ordinary principal bundles over a manifold X with
structure group G fit into this definition. If X is the discrete groupoid X ⇒
X, then we can also choose the cover U to be discrete. In this case, the
maps s and t collapse to smooth maps between U1,0 and U0. The Čech
groupoid Č (U) can be reduced to the Čech groupoid of an ordinary cover
U0 = U = tiUi of X and the composition of compatible elements in U1,0 =
U [2] = ti,jUi ∩ Uj is the (bundlization of) the usual composition of double
overlaps. The groupoid G is now the discrete Lie groupoid G⇒ G and the
composition bibundle is simply the bundlization of the multiplication map,
trivially lifted to a functor. Given this initial data, the bibundles contained
in Φ and Ψ reduce to smooth maps (gij) : U [2] → G. Their composition with
multiplication appearing in the second diagram of (17) is encoded in the
bibundles

(30)

G

�� ��

G× G

}} $$ $$

G× G

�� ��

U [3]

{{ !! !!

U [3]

}} }}
G G× G U [3]

with U [3] := ti,j,kUij ×M Ujk = ti,j,kUi ∩ Uj ∩ Uk and the second bibundle
is the bundlization of the group multiplication. These bibundles compose to
the bibundle

(31)

G

�� ��

U [3]

~~
"" ""

U [3]

|| ||
G U [3]

Altogether, we recover the usual Čech cocycles encoding transition functions
of a principal G-bundle over X subordinate to the cover U :

(32) gij(x)gjk(x) = gik(x), x ∈ Ui ∩ Uj ∩ Uk.

Analogously, the bibundle morphisms contained in β arise from bundlizing
smooth maps (γi) : (Ui)→ G. If (gij) and (g′ij) are the cocycles corresponding
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to the functors Φ and Ψ, then we have

(33) γi(x)gij(x) = g′ij(x)γj(x),

and the γi form a Čech coboundary.

3.4. Example: Principal 2-bundles with strict structure 2-group

As a preparation for discussing principal 2-bundles with smooth 2-groups
as their structure 2-groups, let us also go through the example of principal
2-bundles with strict structure 2-group in much detail.

The relevant 2-cover is again derived from the Čech groupoid of the
underlying manifoldX as a category internal to Bibun as done in the previous
section. The structure 2-group is given by a strict Lie 2-group G = (Gn H)⇒
G, which is regarded as a category G ⇒ ∗ internal to Bibun with the bibundle
Bc being the monoidal product in the strict Lie 2-group G.

Here, the bibundle Φ1 (and Ψ1) no longer collapses straightforwardly.
To simplify the discussion, let us assume that the cover U is sufficiently fine
so that U [2] = ti,jUij is contractible. Then the bibundle Φ1 reads as

(34)

Gn H

!! !!

Φ1 = U [2] × H

τ

yy

σ

&& &&

U [2]

}} }}
G U [2]

where σ is the projection. The bibundle Φ1 is now necessarily a trivial bi-
bundle over U [2] and therefore isomorphic to a bundlization. Instead of using
this fact, let us come to this conclusion by explicitly working through the
details.

Note that τ is fully fixed by its image of elements (i, j, x,1H) ∈ U [2] × H,
because the left-action fixes the remaining part of τ . In particular,

(35) (i, j, x, h) =
(
τ(i, j, x,1H), h

)
(i, j, x,1H),

and thus

(36) τ(i, j, x, h) = t
(
τ(i, j, x,1H), h

)
.

We therefore define

(37) gij(x) := τ(i, j, x,1H),
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implying τ(i, j, x, h) = ∂(h)gij(x). Altogether, we see that the bibundle Φ1

is simply the bundlization of the functor

(38)

Gn H

�� ��

U [2]

�� ��

(gij ,1H)oo

G U [2](gij)oo

as expected since the bibundle is a trivial bundle over U [2].
Let us now consider the appropriate version of the second diagram in

(17), which encodes (weak) compatibility of the internal functor with bibun-
dle composition:

(39)

U [3] × H

τ⊗τ

{{ $$ $$
Φ2,c

��

Gn H //// G U [3] U [3]oooo

U [3] × H

τ◦pr13

cc :: ::

with U [3] = t i,j,kUijk. Since the map Φ2,c is compatible with the principal
left-action and the projections σ, it is fully determined by the function h :
U [3] → H defined implicitly according to

(40) Φ2,c(i, j, k, x,1H) = (i, j, k, x, h−1
ijk(x)), (i, j, k, x,1H) ∈ U [3] × H,

where we chose to invert hijk for consistency with conventions e.g. in [5].
The condition that (τ ⊗ τ) = τ ◦ pr13 ◦ Φ2,c then directly translates into the
equation

(41) ∂(hijk(x))gij(x)gjk(x) = gik(x).

Also, the coherence axiom (18a) amounts to

(42) Φikl ◦ (Φijk ⊗ idΦkl) = Φijl ◦ (idΦij ⊗ Φjkl),

where the restriction of Φ2,c : U [3] × H→ U [3] × H to Φijk : Ui ∩ Uj ∩ Uk ×
H→ Ui ∩ Uj ∩ Uk × H and of Φ : (U [2] ⇒ U [2])→ (Gn H⇒ G) to Φij :
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(Uij ⇒ Uij)→ (Gn H⇒ G) appear. Evaluating (42) on (i, j, k, l, x,1H) us-
ing the formulas (12), we obtain the relation

(43) hiklhijk = hijl(gij B hjkl).

Equations (41) and (43) are the usual cocycle relations for a principal 2-
bundle with strict structure 2-group.

Given two such cocycles (gij , hijk) and (g′ij , h
′
ijk), we can consider in-

ternal natural isomorphisms between them, cf. Definition 2.16. Such an iso-
morphism β is encoded in a bibundle β1 from U ⇒ U to Gn H⇒ H and a
bibundle isomorphism β2 contained in

(44)

Bc ⊗
(
(β1 ⊗ t),Φ1

)
ww '' ''

β2

��

Gn H //// G U [2] U [2]oooo

Bc ⊗
(
Ψ1, (β1 ⊗ s)

)
gg 77 77

Here, Bc is the bundlization of the vertical composition functor in the strict
2-group Gn H⇒ H and we use again the standard notation (B1, B2) :=
(B1 ×B2)⊗∆, where ∆ : G → G × G is the appropriate diagonal bibundle.
Following arguments analogous to those given above, the bibundle β1 is dif-
feomorphic to U × H and the map τ : U × H→ G is fully determined by
maps γi(x) := τ(i, x,1H). Moreover, the bibundles related by the isomor-
phism β2 are isomorphic to U [2] × H, and the isomorphism β2 is fixed by
maps χij(x) := β2(i, j, x,1H). The second diagram in (19) then immediately
yields the equation

(45a) γigij = ∂(χij)g
′
ijγj .

The commutative diagram (20a) simplifies a bit, because all associators are
trivial. Evaluating the bibundle isomorphisms at (i, j, k, x,1H) in U [3] × H,
we obtain the relation

(45b) χikh
′
ijk = (γi B hijk)χij(g

′
ij B χjk).

Equations (45) give the usual coboundary relation for a principal 2-bundle
with strict structure 2-group, as found e.g. in [2] or in the conventions close
to ours here in [5].
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4. The string group

4.1. General remarks

The string group String(n) is a 3-connected cover of the spin group Spin(n).
It fits within the Whitehead tower of the orthogonal group O(n). Recall that
the Whitehead tower over a space X consists of a sequence of spaces

(46) ∗ → · · · νi+1−−−−→ X(i) νi−−→ · · · ν3−−→ X(2) ν2−−→ X(1) ν1−−→ X,

where the maps νi induce isomorphisms on all homotopy groups in degree
k ≥ i and πj(X

(i)) = 0 for j < i. In the case of O(n), we have

(47) · · · → String(n)→ Spin(n)→ Spin(n)→ SO(n)→ O(n).

The string group is only defined up to homotopy, and therefore the
group structure can only be determined up to A∞-equivalence. Moreover
the smooth structure on the string group is not determined at all. There-
fore, there exist various different models and the first geometric model as
a topological group was constructed by Stolz [25] and Stolz and Teichner
in [26]. Because π1 and π3 of String(n) vanish, the string group cannot be
modeled by a finite-dimensional Lie group.

Looking for ways to circumvent this issue, one is naturally led to Lie
2-group models of the string group [19]. These are Lie 2-groups endowed
with a Lie 2-group homomorphism to Spin(n), regarded as a Lie 2-group.
A first such model was constructed in [27], which is a strict but infinite-
dimensional Lie 2-group and differentiates to a strict Lie 2-algebra which is
equivalent to the string Lie 2-algebra. Closely related is the construction of
[21], which yields an integration of the String Lie 2-algebra as a simplicial
manifold. Moreover, there is an infinite-dimensional model as a strict Lie
2-group [28] which was obtained by smoothening the original Stolz-Teichner
construction. The model we shall be mostly interested in here is that of
Schommer-Pries [10]: a group object in Bibun which is semistrict but finite
dimensional. We believe that this model is best suited for a description of
physically interesting solutions to higher gauge theory.

4.2. Differentiable hypercohomology

A particularly interesting Lie 2-algebra is the string Lie 2-algebra of a com-
pact simple Lie group G, and we will encounter its explicit form later. This



i
i

“2-Demessie” — 2018/3/28 — 18:41 — page 1921 — #27 i
i

i
i

i
i

Higher gauge theory with string 2-groups 1921

Lie 2-algebra is fully characterized by the Cartan-Killing form on a Lie
group, which represents an element of H3(Lie(G),R). In [19], the authors
showed that Lie 2-groups are classified by a pair of groups G, H, with H
abelian, an action of G on H by automorphism and an element of H3(G,H).
It is thus tempting to assume that the string Lie 2-algebra can be integrated
to such classifying data. As shown in [19], however, this cannot be done if
the underlying topology is to be respected.

The reason behind this problem is that ordinary group cohomology is
not the right framework for this integration. As done in [10], one should
rather switch to Segal-Mitchison group cohomology [29], which we briefly
review in the following.

Recall that given a simplicial set S• =
⋃∞
p=0 Sp, we have face and de-

generacy maps10 fpi : Sp → Sp−1 and dpi : Sp → Sp+1, 0 ≤ i ≤ p. The former
induce a coboundary operator on functions on S•, δ : C∞(Sp−1)→ C∞(Sp),
via (δf)(s) :=

∑p
j=0(−1)jf(fpj s) for s ∈ Sp.

Given a manifold M together with a good cover π : V1 = ti(Vi)�M ,
we can define a simplicial set, the nerve of the Čech groupoid, as the fibered
product11

(48) V• =

∞⊔
p=1

V [p] =

∞⊔
p=1

⊔
i1,...,ip

Vi1 ×M Vi2 ×M · · · ×M Vip .

Sheaf-valued maps on V [p] are called a Čech (p− 1)-cochains. Together with
the corresponding simplicial coboundary operator δČ , they form a complex.
Čech cohomology with values in the sheaf S is simply the cohomology of
that complex.

In many constructions in category theory, and in particular in higher
category theory, it is actually more convenient to talk about the nerve of
a category than about the category itself. Consider for example the nerve
N(BG) of the groupoid BG, which is the simplicial set G• =

⋃∞
p=0 G

×p, where

G is some Lie group and G×0 = ∗. The face and degeneracy maps are given

10Note that our symbols for these maps differ from another widespread choice.
11If πi : Vi →M are the restrictions of π, then the fibered product is defined as

Vi ×M Vj := {(i, j, x)|πi(x) = πj(x)}.
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by

(49)

f10(g1) = f11(g1) = ∗,

fpi (g1, . . . , gp) =


(g2, . . . , gp) if i = p > 1,
(g1, . . . , gp−1) if i = 0, p > 1,
(g1, . . . , gi−1gi, gi+1, . . . , gp) if 0 < i < p > 1,

d0
0(∗) = 1G,

dpi (g1, . . . , gp) = (g1, . . . , gi−1, gi, gi, . . . , gp).

We denote the differential arising as a coboundary operator of this simplicial
complex by δN .

To combine this simplicial complex with that arising from the Čech
groupoid, we need to consider a simplicial cover of G•. Our definition of
such a cover will come with somewhat more structure than that of [10], cf.
[30].

Definition 4.1. A simplicial cover (V•, I•) of a simplicial manifold M• is
a simplicial set I• together with a simplicial manifold V• covering M• such
that for all j ∈ Ip,

(50) fi(Vp,j) ⊂ Vp−1,fi(j) and di(Vp,j) ⊂ Vp+1,di(j),

where 0 ≤ i ≤ p or 0 ≤ i ≤ p+ 1, respectively, and the face and degeneracy
maps are those of V• and I•.

Given now an abelian group A, we can consider the hypercohomology of
smooth A-valued Čech cochains on G•, where the differentials are induced
by the two simplicial structures. We have the following double complex.

(51)

...

C∞
(
V

[1]
3 ,A

)δN

OO

δČ // . .
.

C∞
(
V

[1]
2 ,A

)δN

OO

δČ // C∞
(
V

[2]
2 ,A

)δN

OO

δČ // . .
.

C∞
(
V

[1]
1 ,A

)δN

OO

δČ // C∞
(
V

[2]
1 ,A

)δN

OO

δČ // C∞
(
V

[3]
1 ,A

)δN

OO

δČ // . .
.

C∞
(
V

[1]
0 ,A

)δN

OO

δČ // C∞
(
V

[2]
0 ,A

)δN

OO

δČ // C∞
(
V

[3]
0 ,A

)δN

OO

δČ // C∞
(
V

[4]
0 ,A

)δN

OO

δČ // · · ·



i
i

“2-Demessie” — 2018/3/28 — 18:41 — page 1923 — #29 i
i

i
i

i
i

Higher gauge theory with string 2-groups 1923

Note that V0 covers the point ∗ and therefore the bottom line of the dia-
gram above can be chosen to be trivial. For simplicity, we shall label the

(p, q)-cochains by Cp,q(A) := C∞(V
[p+1]
q ,A) in the following. Segal-Mitchison

cohomology is now the total cohomology of this double complex. The un-
derlying differential is

δSM = δČ + (−1)pδN :(52)
n⊔
p=0

C∞(V
[p+1]
n−p ,A) =

n⊔
p=0

Cp,n−p(A) →
n+1⊔
p=0

Cp,n+1−p(A),

where p is the Čech degree of the cochain that δSM acts on. We shall al-
ways work with normalized cocycles, which become trivial if two subsequent
arguments are identical.

As an example, consider a representative λ of a generator of
H3

SM(Spin(n),U(1)). Such an element encodes a model for the string group
as shown later. It is given by four smooth maps12

(53a) λ = (λ3,0 = 0, λ2,1, λ1,2, λ0,3), λi,j ∈ Ci,j(U(1)),

where the cocycle condition δSMλ = 0 reads as

(53b) 0 = δČλ
2,1, δNλ

2,1 = δČλ
1,2, δNλ

1,2 = δČλ
0,3, δNλ

0,3 = 0.

Evidently, the map λ2,1 defines an element in H2(Spin(n),U(1)) and there-
fore encodes an abelian gerbe over Spin(n).

To conclude, let us briefly show how one can construct a simplicial cover
of Spin(n)• = N(BSpin(n)) following [30], which is the starting point for
constructing an element of H3

SM(Spin(n),U(1)). We focus on the case n = 3,
but our construction readily generalizes to arbitrary n.

Example 4.2. An element g ∈ Spin(3) ∼= SU(2) is parameterized by a real
vector (x1, x2, x3, x4) of length 1 as follows:

(54) g =

(
x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
.

12For comparison, λ1, λ2 and λ3, δh and δv in [10] correspond to λ2,1, λ1,2, λ0,3,
δČ and δN , respectively.
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A convenient cover of SU(2) is given by V1 = V
[1]

1 = ti∈I1V1,i with I1 =
{1, . . . , 8} and

(55)

V1,1 = {g ∈ SU(2)| x1 ≥ 0}, V1,2 = {g ∈ SU(2)| x1 < 0},
V1,3 = {g ∈ SU(2)| x2 ≥ 0}, V1,4 = {g ∈ SU(2)| x2 < 0},
V1,5 = {g ∈ SU(2)| x3 ≥ 0}, V1,6 = {g ∈ SU(2)| x3 < 0},
V1,7 = {g ∈ SU(2)| x4 ≥ 0}, and V1,8 = {g ∈ SU(2)| x4 < 0}.

The index set I1 is now trivially extended to a simplicial set I• by using
multiindices:

(56) I2 = {(i1, i2, i3)|i1,2,3 ∈ I1}, I3 = {(j1, j2, j3, j4)|j1,2,3,4 ∈ I2}, etc.

The actions of the face fpi and degeneracy maps dpi are obvious: the former
drop the i-th slot, while the latter double the i-th slot. Note that the Ip
are finite and carry a total order induced by the lexicographic ordering of
indices.

The simplicial cover V• is then obtained from the preimages of the face
maps of the nerve of BSU(2):

(57)

V2,(i1,i2,i3) := (f20)−1(V1,i1) ∩ (f21)−1(V1,i2) ∩ (f22)−1(V1,i3),

V3,(j1,j2,j3,j4) := (f30)−1(V2,j1) ∩ (f31)−1(V2,j2)

∩ (f32)−1(V2,j3) ∩ (f33)−1(V2,j4),

etc. with the obvious face and degeneracy maps.
The lexicographic ordering of indices allows us to introduce a section

φ of π : V• → N(BSpin(3)). In particular, φ1(g) is the element v ∈ V1,i with
π(v) = g and i as small as possible.

4.3. The string group model of Schommer-Pries

In [10], Schommer-Pries constructed a smooth 2-group model of the string
group, and we briefly recall this construction in the following. First, we
need to generalize the extension of Lie groups by other Lie groups to the
categorified setting, as done in [10, Def. 75]:

Definition 4.3. An extension of a smooth 2-group G by a smooth 2-group
A consists of a smooth 2-group E together with homomorphisms f : A → E ,
g : E → G and a 2-homomorphism α : g ◦ f → 0 such that E is a principal
A-bundle over G.
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We are interested in extensions of a smooth 2-group G = (G⇒ G)
by a smooth abelian 2-group A = A⇒ ∗, which form the weak 2-category
Ext (G,A). The following theorem gives a way of encoding this weak 2-
category in Segal-Mitchison cohomology classes:

Theorem 4.4 ([10, Thm. 1]). Let G be a Lie group and A be an abelian
Lie group, viewed as a trivial G-module. Then there is an (unnatural) equiv-
alence of weak symmetric monoidal 2-categories13:

(58) Ext (G,BA) ∼= H3
SM(G,A)×H2

SM(G,A)[1]×H1
SM(G,A)[2].

For the model Sλ of the string group of SO(n), we are interested in the
case G = Spin(n) and A = U(1). At least for n ≥ 5, the cohomology groups
H2

SM(G,A) and H1
SM(G,A) are trivial. Thus, the corresponding extension

is parameterized by an element λ = (λ3,0, λ2,1, λ1,2, λ0,3) of H3
SM(G,A), cf.

Equations (53). We now have the following theorem.

Theorem 4.5 ([10, Thm. 100]). For n ≥ 5, H3
SM(Spin(n),U(1)) ∼= Z and

the central extension of smooth 2-groups Sλ corresponding to a generator λ
gives a smooth 2-group model for String(n).

Let us now work through the details of this string group model Sλ. Given
a simplicial cover V• of Spin(n) as constructed in Section 4.2, the 3-cocycle
λ contains the non-trivial smooth maps

(59) λ0,3 : V
[1]

3 → A, λ1,2 : V
[2]

2 → A and λ2,1 : V
[3]

1 → A.

As remarked in Section 4.2, the map λ2,1 is in fact a Čech 2-cocycle and de-
fines an A-bundle gerbe over Spin(n). Identifying bundle gerbes with central
groupoid extensions, we obtain the groupoid underlying the smooth 2-group
corresponding to λ:

(60) Sλ := V
[2]

1 × A⇒ V1.

Here the source, target and identity maps are given by

(61) s(v0, v1, a) = v1, t(v0, v1, a) = v0 and id(v0) = (v0, v0, 0),

13Here, the weak 2-categories M , M [1] and M [2] are the obvious trivial weak
2-categories with objects M , ∗, ∗, morphisms M , M , ∗ and 2-morphisms M , M ,
M , respectively.
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and the invertible composition is defined as

(62) (v0, v1, a0) ◦ (v1, v2, a1) := (v0, v2, a0 + a1 + λ2,1(v0, v1, v2))

for v0,1,2 ∈ V1 and a0, a1 ∈ A. It remains to specify the 2-group structure on
the Lie groupoid Sλ.

Note that there is a Lie groupoid functor (f0, f2) from the Lie groupoid

C2 := (V
[2]

2 × A×2 ⇒ V2) to Sλ × Sλ. This functor is a weak equivalence in
Mfd∞Cat and upon bundlization, we can invert it. The same is true for

the functor (f0f0, f2f0, f2f2) from the Lie groupoid C3 := (V
[2]

3 × A×3 ⇒ V3)
to S×3

λ . This yields bibundles

(63) B2 : Sλ × Sλ → C2 and B3 : Sλ × Sλ × Sλ → C3.

Furthermore, we have the Lie groupoid functors

(64) C2
m−→ Sλ, C3

p1−→ Sλ and C3
p2−→ Sλ,

where

(65)

m(y0, y1, a0, a1) := (f1(y0), f1(y1), a0 + a1 + λ1,2(y0, y1)),

p1(z0, z1, a0, a1, a2) := (f1f1(z0), f1f1(z1),

a0 + a1 + a2 + f∗1λ
1,2(z0, z1) + f∗3λ

1,2(z0, z1)),

p2(z0, z1, a0, a1, a2) := (f1f2(z0), f1f2(z1),

a0 + a1 + a2 + f∗0λ
1,2(z0, z1) + f∗2λ

1,2(z0, z1))

for y0,1 ∈ V [2]
2 , z0,1 ∈ V [2]

3 and a0,1,2 ∈ A. There is a natural isomorphism

T : V3 −→ V
[2]

1 × U(1) defined by

T (z0) = (f1f1(z0), f1f2(z0), λ0,3(z0)), z0 ∈ V3,(66)

which satisfies

p2(z0, z1, a0, a1, a2) ◦ T (z1) = T (z0) ◦ p1(z0, z1, a0, a1, a2)(67)

due to δČλ
0,3 = δNλ

1,2.
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After bundlization and composition with the bibundles (63), we obtain
bibundles

(68)

Bm : Sλ × Sλ → Sλ,
Bp1

: Sλ × Sλ × Sλ → Sλ,
Bp2

: Sλ × Sλ × Sλ → Sλ,

and the natural isomorphism T yields a bibundle isomorphism a : Bp1
⇒

Bp2
. Because the bibundles Bp1

and Bp2
can be identified with Bm ⊗ (Bm ×

1) and Bm ⊗ (1×Bm), respectively, a is indeed the associator. Here, a is
completely determined by T since a is the horizontal composition of T with
the identity isomorphism on B3.

It remains to define the unit e as well as the left- and right-unitors l
and r. Both unitors are trivial (i.e. the identity isomorphism) and up to
isomorphism, the unit is uniquely defined as the bundlization e of the Lie
groupoid functor

(69) (∗⇒ ∗) −→ Sλ,

which takes ∗ to a v0 ∈ V [1]
1,p with π(v0) = 1G.

Let us now briefly verify that we indeed constructed a smooth 2-group.
For this, we need to check that the bibundle (Bp1

, Bm) is an equivalence
and that the internal pentagon identity is satisfied. The former is relatively
clear, because B2 and thus also (Bp1

, B2) are bibundle equivalences. One
then readily checks that

(70) (id× m̂) : Sλ × C2 → Sλ × Sλ

is a bibundle equivalence. It is obvious that the associator only affects the A-
part of the Lie groupoids Sλ, C2 and C3, and therefore the internal pentagon
identity reduces to the equation

λ0,3(v1, v2, v3) + λ0,3(v0, v1v2, v3) + λ0,3(v0, v1, v2)(71)

= λ0,3(v0v1, v2, v3) + λ0,3(v0, v1, v2v3),

where v0,1,2,3 ∈ V [1]
1 . This is precisely the equation δNλ

0,3 = 0, which holds
since λ is a Segal-Mitchison 3-cocycle. Finally, note that the interchange
law, which is the compatibility condition for the vertical and horizontal
multiplications, follows from δNλ

2,1 = δČλ
1,2.

We conclude this section with the following two remarks:
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Remark 4.6. While we are mostly interested in the smooth 2-group model
of the string group Sλ given by the central extension of the smooth 2-group
Spin(n)⇒ Spin(n) by A⇒ ∗, the above construction of this extension as
well as most of our following discussion readily generalizes to arbitrary Lie
groups G.

Remark 4.7. Multiplicative bundle gerbes as defined in [31] are special
cases of the above construction of a 2-group object internal to Bibun from a
Segal-Mitchison 3-cocycle.

4.4. From the smooth 2-group model to a weak 2-group model

Recall that it has been shown in [20] that smooth 2-groups are equivalent
Lie 2-quasigroupoids with a single object, which are given by certain Kan
simplicial manifolds. The difference to a weak Lie 2-group, which is a weak
2-group object internal to Mfd∞Cat, is that in the latter case, horizontal
composition of objects and morphisms yields unique objects, which is not
true in the case of Lie 2-quasigroupoids.

In particular, consider horizontal composition of two objects (v0, v1) by
the composition bibundle Bm in the smooth string 2-group model. The result
is a set of isomorphic objects given by {τ(b)|b ∈ Bm : σ(b) = (v0, v1)}. If
the simplicial cover V• used in the construction of the string group model
consists of contractible patches V1, then the bibundle Bm, and in particular
the bibundle C2 is trivial over V1 × V1 and allows for a global section. By
Proposition 2.5, Bm is then isomorphic to a bundlization.

To give the underlying multiplication functor explicitly, we proceed as
follows. Without restriction in the cases we are interested in, we assume a
simplicial cover V• as constructed in Example 4.2. In particular, the sim-
plicial index set I• has now a total order with each subset of the simplicial
set having a lowest element. We can now use these lowest elements to fix
ambiguities, like defining preferred horn fillers and fixing a unique identity
object in Sλ.

First, consider the surjective submersion (f2, f0) : V2 → V1 × V1. For
each element (v0, v1) ∈ V1 × V1, we can now choose the element of V2 over
(v0, v1) with the lowest position according to the obvious lexicographic or-

dering of patch multiindices. This defines a function φ
[1]
2 : (V1 × V1)→ V2

satisfying

(72) f20φ
[1]
2 (v0, v1) = v1 and f22φ

[1]
2 (v0, v1) = v0.
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In the language of quasigroupoids and Kan complexes, the function φ2 picks
a horn filler in V2 for the horn (v0, v1) ∈ V1 × V1. Applying the face map f21
to this horn filler then yields a preferred horizontal composition:

(73) v0 ⊗ v1 := f21φ
[1]
2 (v0, v1).

Since the lexicographic ordering on V2 arises from that on V1, we evidently

have a relation between φ
[1]
2 : V1 × V1 → V2 and φ1 : G→ V1:

Proposition 4.8. The horizontal composition is completely induced from
the product on G:

(74) v0 ⊗ v1 := f21φ
[1]
2 (v0, v1) = φ1(π(v0)π(v1))

for all v0,1 ∈ V1.

Corollary 4.9. We have the following identities:

(75)

π(v0 ⊗ v1) = π(v0)π(v1),

v0 ⊗ v1
∼= v2 ⊗ v3 ⇒ v0 ⊗ v1 = v2 ⊗ v3,

(v0 ⊗ v1)⊗ v2 = v1 ⊗ (v1 ⊗ v2)

for all v0,1,2 ∈ V1.

Proof. The first relation follows from the fact that φ1 is a section of π and
therefore π ◦ φ1 = idG. The second and third relations are then direct con-
sequences of the first one. �

Note that the above corollary does not imply that the associator is trivial;

it merely has the same source and target. We can now readily extend φ
[1]
2 :

V1 × V1 → V2 to higher fibered products as done in the following lemma:

Lemma 4.10. The map φ
[2]
2 : V

[2]
1 × V [2]

1 → V
[2]

2 with

(76) φ
[2]
2

(
(v0, v1), (v2, v3)

)
:=
(
φ

[1]
2 (v0, v2), φ

[1]
2 (v1, v3))

)
,

where v0,1,2,3 ∈ V1 with π(v0) = π(v1) and π(v2) = π(v3), renders the follow-
ing diagram commutative:
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(77)

G× G V2π2

oo V
[2]

2
oooo

G× G

=

OO

V1 × V1π1×π1

oo

φ
[1]
2

OO

V
[2]

1 × V [2]
1

oo oo

φ
[2]
2

OO

The maps φ
[1]
2 and φ

[2]
2 define a functor internal to Mfd∞,

(78)

V
[2]

2 × A× A

�� ��

V
[2]

1 × V [2]
1 × A× A

�� ��

φ
[2]
2 ×idA×A

oo

V2 V1 × V1
φ

[1]
2

oo

and we can replace the bibundle C2 with the bundlization of this functor,
making horizontal composition unique also for morphisms.

We also have a surjective submersion (f30 , f
3
2 , f

3
3) : V3 → V2 × V2 × V2, and

we define a map φ
[1]
3 : V1 × V1 × V1 as the horn filler of φ2(v1, v2), φ2(v0, v1 ⊗

v2) and φ2(v0, v1) with the lowest lexicographic position. It satisfies

(79)

f30φ3(v0, v1, v2) = φ2(v1, v2), f20 f
3
0φ3(v0, v1, v2) = v2,

f32φ3(v0, v1, v2) = φ2(v0, v1 ⊗ v2), f22 f
3
0φ3(v0, v1, v2) = v1,

f33φ3(v0, v1, v2) = φ2(v1, v2), f22 f
3
2φ3(v0, v1, v2) = v0.

Altogether, we arrive at the following theorem.

Theorem 4.11. The Lie groupoid Sλ := V
[2]

1 × A⇒ V1, together with the
identity-assignment

I : (∗⇒ ∗)→ Sλ, I0(∗) := 1Sλ := φ1(1G),(80a)

I1(∗) := id1Sλ := (1Sλ ,1Sλ , 0),

the horizontal composition

(80b)

v0 ⊗ v1 := f21φ2(v0, v1) = φ1(π(v0)π(v1)),

(v0, v1, a0)⊗ (v2, v3, a1) :=
(
v0 ⊗ v2, v1 ⊗ v3,

a0 + a1 + λ1,2(φ2(v0, v2), φ2(v1, v3))
)
,



i
i

“2-Demessie” — 2018/3/28 — 18:41 — page 1931 — #37 i
i

i
i

i
i

Higher gauge theory with string 2-groups 1931

the vertical composition

(80c) (v0, v1, a0) ◦ (v1, v2, a1) := (v0, v2, a0 + a1 + λ2,1(v0, v1, v2)),

the unitors

(80d)
lv = (v,1Sλ ⊗ v, 0) = (v, φ1(π(v)), 0),

rv = (v, v ⊗ 1Sλ , 0) = (v, φ1(π(v)), 0)

and associator

av0,v1,v2
=
(
f1f2(φ3(v0, v1, v2)), f1f1(φ3(v0, v1, v2)), λ0,3(φ3(v0, v1, v2))

)
(80e)

=
(
v0 ⊗ v1 ⊗ v2, v0 ⊗ v1 ⊗ v2, λ

0,3(φ3(v0, v1, v2))
)
,

where v0,1,2,3 ∈ V1 and a0,1 ∈ A, forms a weak Lie 2-group, which we denote
by Sw

λ .

Note that since the unitors are non-trivial, Sw
λ is not a semistrict Lie 2-group

in the sense of [7].
This description of the smooth string 2-group model as a weak Lie 2-

group will simplify the explicit computations leading to the cocycle descrip-
tion of principal Sλ-bundles with connection later on.

5. Differentiation of the string 2-group model

5.1. Strong homotopy Lie algebras and NQ-manifolds

Clearly, any reasonable differentiation prescription for a categorified Lie
group should yield a categorified Lie algebra. The most general notion of
categorification of a Lie algebra is that of a weak Lie 2-algebra [32]. Here,
we can restrict ourselves to so-called semistrict Lie n-algebras, which in turn
are categorically equivalent to n-term L∞-algebras [33]. In the differentia-
tion method we will use later, the latter will appear in their dual form as
NQ-manifolds.

Definition 5.1. An NQ-manifold is an N-graded manifold endowed with
a vector field Q of degree 1 such that Q2 = 0. We will refer to the vector
field Q as the Chevalley-Eilenberg differential.
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NQ-manifolds are in one-to-one correspondence with L∞-algebroids14.
To get strong homotopy Lie algebras, we need the following restriction.

Definition 5.2. An L∞-algebra is an NQ-manifold concentrated in positive
degrees. An n-term L∞-algebra is an NQ-manifold concentrated in degrees
{1, . . . , n}.

For n = 1, this yields the ordinary Chevalley-Eilenberg description of a Lie
algebra.

Let us describe 2-term L∞-algebras, which are categorically equivalent
to semistrict Lie 2-algebras, in more detail. They will play the role of a
categorified gauge Lie algebra in our later discussion.

Example 5.3. Let X and Y be complex vector spaces with coordinates
xα and ya. Then X[1]⊕ Y [2] is an NQ-manifold, where the notation implies
that elements in X[1] and Y [2] come with homogeneous grading 1 and 2,
respectively. The vector field Q is necessarily of the form

(81) Q = −fαa ya
∂

∂xα
− 1

2f
γ
αβx

αxβ
∂

∂xγ
− faαbxαyb

∂

∂ya
− 1

3!f
a
αβγx

αxβxγ
∂

∂ya

with some structure constants f ...... ∈ C. The latter define graded antisym-
metric multilinear brackets on the shifted space X[0]⊕ Y [1]. Introducing the
grade-carrying bases (τα) and (ta) on X[0] and Y [1], respectively, we have

(82)
µ1(ta) = fαa τα, µ2(τα, τβ) = fγαβτγ ,

µ2(τα, ta) = f baαtb, µ3(τα, τβ, τγ) = faαβγta.

Note that the operations µi are of degree i− 2 and the condition Q2 = 0
yields the usual higher or homotopy Jacobi relations between the µi defining
a 2-term L∞-algebra, cf. [34, 35].

5.2. Cocycle description of principal string 2-group bundles

For the differentiation of the string 2-group model Sλ, we need descent data
for principal Sλ-bundles in terms of Čech cocycles and Čech coboundaries.
Let us develop these in the following. We restrict ourselves to principal Sλ-
bundles over ordinary manifolds subordinate to a cover U , and consequently,

14Some care has to be taken when homogeneous parts of the NQ-manifold become
infinite dimensional.
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the covering groupoid U = U ⇒ U is discrete. Following the discussion in
Section 3.3, we start from the diagram

(83)

Sλ

�� ��

U [2] ⇔ U [2]

s

��

t

��

__

~~
β

KS

Φ1

__

Ψ1

~~

∗⇒ ∗ U ⇔ U
Φ0

Ψ0oo

where Sλ ⇒ (∗⇔ ∗) is a category internal to Bibun with composition given
by the bibundle Bm. The information contained in the functors Φ and Ψ
as well as in the natural isomorphism β, together with the coherence con-
ditions will yield the appropriate generalization of Čech cochains, cocycles
and coboundaries describing principal Sλ-bundles and their isomorphisms.

We will assume that the cover U is good and in particular, that U [2]

is contractible. This implies that the bibundles Φ1 and Ψ1 are both trivial
bundles over U [2] admitting a global smooth section. By Proposition 2.5, this
implies that Φ and Ψ are isomorphic to bundlizations φ̂ and ψ̂ of smooth
functors of Lie groupoids φ and ψ. Moreover, because of Proposition 2.8, the
bibundle map β can be given by a smooth natural transformation between
φ and ψ. The only bibundle which is not a bundlization here is the multi-
plication Bm, which appears in the coherence diagrams for internal functors
(18a) and for internal natural transformations (20a) with Bc = Bm.

An explicit evaluation of the composition of bibundle isomorphisms in
(18a) is rather cumbersome. To simplify our discussion, we therefore choose
to switch to the weak Lie 2-group model Sw

λ of the string 2-group model given
in Section 4.4. Our principal 2-bundles will therefore be weak principal 2-
bundles in the sense of [7], which are given by weak 2-functors internal to
Mfd∞Cat from the Čech 2-groupoid to the delooping of Sw

λ . From there, we
also recall the following proposition:

Proposition 5.4 ([7], Prop. 3.15). Every weak principal 2-bundle Φ
is equivalent to its normalization, which is given by a normalized weak
2-functor which maps to the unit in the structure 2-group over overlaps
U0 ∩ U0 and whose 2-morphisms are the obvious left and right unitors over
U0 ∩ U0 ∩ U1 and U0 ∩ U1 ∩ U1.
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We will give the consequences of this proposition below; for more details,
see [7]. With the above simplifications, we arrive at the following theorem.

Theorem 5.5. The functor Φ defining a (normalized) principal Sw
λ -bundle

is described by a 1-cochain (vij) ∈ C∞(U [2], V1) together with a 2-cochain

vijk ∈ C∞(U [3], V
[2]

1 × A) such that

vijk = (vik, vij ⊗ vjk, aijk), vii = 1Sλ , viij = lvij , vijj = rvij ,(84)

aikl + aijk + λ1,2(φ2(vik, vkl), φ2(vij ⊗ vjk, vkl))
= aijl + ajkl + λ1,2(φ2(vij , vjl), φ2(vij , vjk ⊗ vkl))

+ λ0,3(φ3(vij , vjk, vkl)),

where aijk ∈ C∞(U [3],A). We call the data (vij , aijk) a degree-2 Čech cocycle
over the cover U with values in Sw

λ .

Proof. The first line of equations in (84) is readily derived from (vijk) en-
coding the natural isomorphism

(85) Φ2,ijk : Φ1,ij ⊗ Φ1,jk ⇒ Φ1,ik,

cf. the second diagram in (17), together with Proposition 5.4. The coherence
axioms of this natural isomorphism read as

(86)
vikl ◦ (vijk ⊗ idvkl) = vijl ◦ (idvij ⊗ vjkl) ◦ avij ,vjk,vkl ,

vijj ◦ (idvij ⊗ id1Sλ ) = rvij and viij ◦ (id1Sλ ⊗ idvij ) = lvij ,

cf. (18a). The last two equations are identities, and the first one reduces to(
vil, (vij ⊗ vjk)⊗ vkl, aikl+aijk+λ1,2(φ2(vik, vkl), φ2(vij ⊗ vjk, vkl))(87)

+ λ2,1(vil, vik ⊗ vkl, (vij ⊗ vjk)⊗ vkl)
)

=
(
vil, (vij ⊗ vjk)⊗ vkl, aijl+ajkl+λ1,2(φ2(vij , vjl), φ2(vij , vjk ⊗ vkl))
+ λ2,1(vil, vij ⊗ vjl, vij ⊗ (vjk ⊗ vkl)) + λ0,3(φ3(vij , vjk, vkl))

+ λ2,1(vil, vij ⊗ (vjk ⊗ vkl), (vij ⊗ vjk)⊗ vkl)
)
.

The identities of Corollary 4.9 together with the fact that we are working
with normalized cocycles cause λ2,1 to drop out of Equation (87). The re-
maining non-trivial part of this equation then yields the equation on the
2-cochain (aijk). �

It is now similarly straightforward to describe the natural 2-isomorphism
β given the coboundary relation between two Čech 2-cocycles.
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Theorem 5.6. The natural isomorphism β : Φ⇒ Ψ giving an equivalence
relation between (normalized) principal Sw

λ -bundles Φ and Ψ described by
2-cocycles (vij , aijk) and (v′ij , a

′
ijk) is captured by 0-cochain and 1-cochains,

(88) (βi) ∈ C∞(U, V1) and (βij) ∈ C∞(U [2], V
[2]

1 × A),

such that

βij = (βi ⊗ v′ij , vij ⊗ βj , αij), βii = r−1
βi
◦ lβi = idφ1(π(βi)),(89)

αik + aijk + λ1,2(φ2(vik, βk), φ2(vij ⊗ vjk, βk))
= αij + a′ijk + αjk + λ1,2(φ2(βi, v

′
ik), φ2(βi, v

′
ij ⊗ v′jk))

+ λ0,3(βi, v
′
ij , v

′
jk)− λ0,3(vij , βj , v

′
jk) + λ0,3(vij , vjk, βk).

where αij ∈ C∞(U [2],A). We call the data (βi, αij) a degree-2 Čech cobound-
ary over the cover U with values in Sw

λ .

Proof. The first equation in (89) is directly obtain from the defining diagram
for βij , cf. the second diagram in (19). The coherence axioms then read as

(90)

βik ◦ (vijk ⊗ idβk) = (idβi ⊗ v′ijk) ◦ aβi,v′ij ,v′jk ◦ (βij ⊗ idv′jk)

◦ a−1
vij ,βj ,v′jk

◦ (idvij ⊗ βjk) ◦ avij ,vjk,βk ,

βii ◦ (id1Sλ ⊗ idβi) = (idβi ⊗ id1Sλ ) ◦ r−1
βi
◦ lβi ,

cf. (20), with the second condition directly reducing to the identity

βii = r−1
βi
◦ lβi = (φ1(π(βi)), φ1(π(βi)), λ

2,1(φ1(π(βi)), βi, φ1(π(βi)))(91)

= idφ1(π(βi)).

The part in V
[2]

1 of the first condition also yields an identity. Thus the
component in A reads as

αik + aijk + λ1,2(φ2(vik, βk), φ2(vij ⊗ vjk, βk))
+ λ2,1(βi ⊗ v′ik, vik ⊗ βk, (vij ⊗ vjk)⊗ βk)

= αij + a′ijk + αjk + λ1,2(φ2(βi, v
′
ik), φ2(βi, v

′
ij ⊗ v′jk)) + λ0,3(βi, v

′
ij , v

′
jk)

+ λ1,2(φ2(βi ⊗ v′ij , v′jk), φ2(vij ⊗ βj , v′jk))− λ0,3(vij , βj , v
′
jk)

+ λ1,2(φ2(vij , βj ⊗ v′jk), φ2(vij , vjk ⊗ βk)) + λ0,3(vij , vjk, βk)
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+ λ2,1(βi ⊗ v′ik, βi ⊗ (v′ij ⊗ v′jk), (βi ⊗ v′ij)⊗ v′jk)
+ λ2,1(βi ⊗ (v′ij ⊗ v′jk), (βi ⊗ v′ij)⊗ v′jk, (vij ⊗ βj)⊗ v′jk)
+ λ2,1((βi ⊗ v′ij)⊗ v′jk, (vij ⊗ βj)⊗ v′jk, vij ⊗ (βj ⊗ v′jk))
+ λ2,1((vij ⊗ βj)⊗ v′jk, vij ⊗ (βj ⊗ v′jk), vij ⊗ (vjk ⊗ βk))
+ λ2,1(vij ⊗ (βj ⊗ v′jk), vij ⊗ (vjk ⊗ βk), (vij ⊗ vjk)⊗ βk).

Just as in the proof of Theorem 5.5, terms containing λ2,1 drop out due to
identities from Corollary 4.9. The same is true for the third and fourth term
containing λ1,2. The remaining part is then coboundary condition on the
αij . �

5.3. Functor from manifolds to descent data

To differentiate the smooth 2-group model of the string group, we use a
method suggested by Ševera [12]. He observed that the Lie algebra g of
a Lie group G can be regarded as the moduli space of functors from the
category of manifolds to descent data of principal G-bundles on the surjective
submersion N ×R0|1 → N . In particular, such descent data is given in terms
of functions g(θ0, θ1) : N ×R0|2 → G, which satisfy

(92) g(θ0, θ1)g(θ1, θ2) = g(θ0, θ2).

This relation implies that g(θ0, θ1) = g(θ0, 0)(g(θ1, 0))−1 and we can ex-
pand15

(93) g(θ0, 0) = 1G + ωθ0,

where ω ∈ g[1]. We thus recover the Lie algebra as a vector space. The
moduli space g[1] comes with a natural action of Hom(R0|1,R0|1) and one of
its generators can be identified with the Chevalley-Eilenberg differential of g,
encoding the Lie bracket. The natural action of this generator on functions
f on R0|k reads as

(94) dKf(θ0, θ1, . . . , θk−1) :=
d

dε
f(θ0 + ε, θ1 + ε, . . . , θk−1 + ε),

15For simplicity, assume that G is a matrix group. Otherwise, one has to insert
the diffeomorphism between G and T1G in an infinitesimal neighborhood of 1 and
its inverse into all formulas.
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and its application to

(95) g(θ0, θ1) = 1G + ω(θ0 − θ1) + 1
2 [ω, ω]θ0θ1

induces an action dKω = −1
2 [ω, ω], which in turn yields the Chevalley-

Eilenberg differential

(96) Qξα = −1
2f

α
βγξ

β ∧ ξγ ,

where the ξα are the coordinate functions on g[1].
Ševera pointed out that this construction extends to higher principal

bundles with arbitrary Kan simplicial complexes as structure quasi-
groupoids, and it yields a differentiation of the latter to L∞-algebroids. The
definition relevant for our purposes is then the following.

Definition 5.7. The Lie n-algebra of a smooth n-group G is the moduli
space of functors taking a manifold N to descent data of principal G-bundles
with respect to the surjective submersion N ×R0|1 � N . The algebra struc-
ture is encoded in the Chevalley-Eilenberg differential given by a generator
of the action of Hom(R0|1,R0|1) onto the moduli space.

We are now interested in the special case of principal Sw
λ -bundles. Our dis-

cussion will follow closely that of [7], with generalized arguments due to Sw
λ

having non-trivial unitors.
We start from a weak normalized 2-functor encoded in a degree-2 Čech

cocycle v on the cover N ×R0|1 � N . This cocycle consists of a V1-valued

Čech 1-cochain together with a V
[2]

1 × U(1)-valued 2-cochain,

(97)
v(θ0, θ1) and

v(θ0, θ1, θ2) =
(
v(θ0, θ2), v(θ0, θ1)⊗ v(θ1, θ2), a(θ0, θ1, θ2)

)
.

Since v is normalized, we have v(θ0, θ0) = v(0, 0) = 1Sλ . Note that in a
cover V1 as constructed in Example 4.2, open sets in V1 are fully con-
tained within one of the patches. Because v(θ0, θ1) depends smoothly on the
Graßmann variables, it lies on the same patch V1,i as 1Sλ . This patch con-
tains an infinitesimal neighborhood of 1Sλ , and we have φ1(π(v(θ0, θ1))) =
v(θ0, θ1), which leads to significant simplifications. In particular, the equa-
tion π(v(θ0, θ1))π(v(θ1, θ2)) = π(v(θ0, θ2)) implied by the cocycle condition
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now lifts to V1:

(98) v(θ0, θ1)⊗ v(θ1, θ2) = v(θ0, θ2).

This, in turn, renders the λ1,2-terms in the cocycle condition (84) for the
a(θ0, θ1, θ2) trivial, leaving us with

a(θ0, θ2, θ3) + a(θ0, θ1, θ2)(99)

= a(θ0, θ1, θ3) + a(θ1, θ2, θ3) + λ0,3(φ3(v(θ0, θ1), v(θ1, θ2), v(θ2, θ3)).

As one might expect due to the form of the surjective submersion, the
principal Sw

λ -bundle we are dealing with here is trivial.

Lemma 5.8. The cochain β defined by

(100) β(θ0) := v(θ0, 0) and α(θ0, θ1) := a(θ0, θ1, 0)

forms a coboundary as defined in Theorem 5.6, trivializing the principal Sw
λ -

bundle described by v. Moreover, we have α(θ0, 0) = 0 as well as α(0, θ0) = 0.

Proof. This follows by direct computation16, using the fact that the λ(p,q)

vanish if an argument is given by a sequence of degeneracy maps acting on
1Sλ . Note in particular that a(θ0, θ0, θ1) = a(θ0, θ1, θ1) = 0 because of the
normalization of v. �

We can now fix the following expansion of the cochain β in the Graßmann
variables, using implicitly the local diffeomorphism between the neighbor-
hood of 1Sλ and T1SλV1:

(101) β(θ0) = 1Sλ + ωθ0 and α(θ0, θ1) = ψθ0θ1,

where ω ∈ T1Sλ [1]V1
∼= T1G

[1]G = Lie(G)[1] and ψ ∈ Lie(A)[2].
Next, we use the explicit coboundary relations to compute the Graßmann

expansion of the cocycle components. The fact that in a neighborhood of 1Sλ ,
the horizontal composition collapses to group multiplication in G directly

16see also [7] for some of the technical details
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yields

(102) v(θ0, θ1) = 1Sλ + ω(θ0 − θ1) + 1
2 [ω, ω]θ0θ1,

cf. Equation (95). On the other hand, the coboundary relation for the mor-
phisms reduces to

α(θ0, θ2) + a(θ0, θ1, θ2)(103)

= α(θ0, θ1) + α(θ1, θ2) + λ0,3(v(θ0, θ1), v(θ1, θ2), β(θ2)).

Since λ0,3(1Sλ ,−,−) = λ0,3(−,1Sλ ,−) = λ0,3(−,−,1Sλ) = 0, we have

(104) λ0,3(v(θ0, θ1), v(θ1, θ2), β(θ2)) =: λ0,3(ω, ω, ω)θ0θ1θ2,

where λ0,3(ω, ω, ω) is the obvious linearization of λ0,3 around (1Sλ ,1Sλ ,1Sλ).
From this, we compute the expansion

(105) a(θ0, θ1, θ2) = ψ(θ0θ1 + θ1θ2 − θ0θ2) + λ0,3(ω, ω, ω)θ0θ1θ2.

The Chevalley-Eilenberg differential induced by the relevant generator of
Hom(R0|1,R0|1) is then characterized by

(106)
dKω = −1

2 [ω, ω],

dKψ = −λ0,3(ω, ω, ω).

We can summarize our findings in the following theorem.

Theorem 5.9. The Lie 2-algebra of the smooth 2-group model Sw
λ of the

string group with G = Spin(n) is the string Lie 2-algebra equivalent to the 2-
term L∞-algebra u(1)[1]→ Lie(G), together with the non-trivial higher prod-
ucts

(107) µ2(x1, x2) = [x1, x2], µ3(x1, x2, x3) = k(x1, [x2, x3])

for some k ∈ R. Here (−,−) and [−,−] denote the Killing form and the Lie
bracket on Lie(G), respectively.

Proof. It only remains to argue that λ0,3(ω, ω, ω) ∼ k(ω, [ω, ω]) for some
k ∈ R. For the Lie groups considered in this theorem, any such 3-cocycle is
necessarily of this form. �
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5.4. Equivalence transformations

Let us now extend the above differentiation process to derive equivalence re-
lations on the moduli space. Later we will exchange the Chevalley-Eilenberg
differential for the de Rham differential and this will give us gauge trans-
formations for connections on principal Sw

λ -bundles and further the full un-
derlying Deligne cohomology of these bundles. This approach to Deligne
cohomology with values in categorified groups was first used in [7].

Given a principal Sw
λ -bundle on N ×R0|1 � N in terms of a Čech 2-

cocycle v, we now perform an isomorphism β to another such Čech 2-cocycle
v′:

(108)
(
β(θ0), α(θ0, θ1)

)
:
(
v(θ0, θ1), a(θ0, θ1, θ2)

)
→
(
v′(θ0, θ1), a′(θ0, θ1, θ2)

)
.

At the level of moduli, this translates into a relation

(109)
(
β(θ0), β(θ0, θ1)

)
: (ω, ψ) → (ω′, ψ′)

and we are interested in the explicit isomorphism. The Čech 2-coboundary
β is necessarily of the form

(110) β(θ0) = β − dKβ θ0 and α(θ0, θ1) = ζ(θ1 − θ0) + dKζ θ0θ1.

Because both v and v′ are normalized, β relates the 2-cocycles as follows:

v(θ0, θ1)⊗ β(θ1) = β(θ0)⊗ v′(θ0, θ1),(111)

α(θ0, θ2) + a(θ0, θ1, θ2) = α(θ0, θ1) + a′(θ0, θ1, θ2) + α(θ1, θ2)

+ λ0,3(β(θ0), v′(θ0, θ1), v′(θ1, θ2))

− λ0,3(v(θ0, θ1), β(θ1), v′(θ1, θ2))

+ λ0,3(v(θ0, θ1), v(θ1, θ2), β(θ2)),

and the second equation reduces to

ψ(θ0θ1 + θ1θ2 − θ0θ2) =
(
ψ′ + dKζ + λ0,3(β, ω′, ω′)(112)

− λ0,3(ω, β, ω′) + λ0,3(ω, ω, β)
)

× (θ0θ1 + θ1θ2 − θ0θ2),

λ0,3(ω, ω, ω) = λ0,3(ω′, ω′, ω′) + λ0,3(β, [ω, ω], ω) + · · ·
− λ0,3(dKβ, ω

′, ω′)− · · · .
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From the first equation in (111) and the first equation in (112), we readily
read off the following relations:

(113)
β ⊗ ω′ = ω ⊗ β + dKβ,

ψ′ = ψ − dKζ − λ0,3(β, ω′, ω′) + λ0,3(ω, β, ω′)− λ0,3(ω, ω, β).

The second equation of (112) is then automatically satisfied, and we arrive
at the following theorem.

Theorem 5.10. Čech 2-coboundaries between Čech 2-cocycles v = (ω, ψ)
and v′ = (ω′, ψ′) corresponding to descent data for principal Sw

λ -bundles on
surjective submersions of the form N ×R0|1 � N are parameterized by ele-
ments β ∈ V1 and ζ ∈ A[1]. The moduli of the coboundaries and cocycles are
related as in Equation (113).

6. Gauge theory with the string 2-group

6.1. Local description with infinitesimal gauge symmetries

The local description of higher gauge theory with the string 2-group is readily
given without our above considerations and below we briefly recall how, cf.
e.g. [7]. The string Lie 2-algebra of a connected compact simple Lie group is
known to be u(1)→ g with non-trivial higher products µ2(x1, x2) = [x1, x2]
and µ3(x1, x2, x3) = k(x1, [x2, x3]), xi ∈ g and k ∈ R. This L∞-algebra can
be tensored with the graded differential algebra of differential forms on a
contractible patch U of a manifold, Ω•(U). The result is another L∞-algebra,
L̃ with higher products µ̃i. The latter are the tensor products of the higher
products µi on the string Lie 2-algebra with the differential on Ω•(U).

Recall that in any L∞-algebra, we can define homotopy Maurer-Cartan
elements. In L̃, these are elements φ, for which the homotopy Maurer-Cartan
equation

(114)

∞∑
i=1

(−1)i(i+1)/2

i!
µ̃i(φ, . . . , φ) = 0

is satisfied. This equation exhibits a gauge symmetry, parameterized at in-
finitesimal level by an element γ ∈ L̃ of degree 0, which maps Maurer-Cartan
elements to Maurer-Cartan elements:

(115) φ→ φ+ δφ with δφ =
∑
i

(−1)i(i−1)/2

(i− 1)!
µ̃i(γ, φ, . . . , φ).
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More explicitly, we have the following proposition.

Proposition 6.1. The homotopy Maurer-Cartan elements of L̃ are given
by pairs A ∈ Ω1(U)⊗ g and B ∈ Ω2(U)⊗ u(1) satisfying the equations

(116)
F := dA+ 1

2µ2(A,A) = 0,

H := dB − 1
3!µ3(A,A,A) = 0.

Infinitesimal gauge transformations are parameterized by pairs x ∈ Ω0(U)⊗
g and ζ ∈ Ω1(U)⊗ u(1) and act according to

(117) δA = dx+ µ2(A, x) and δB = −dζ + 1
2µ3(x,A,A).

Proof. Substituting φ = A−B and γ = x+ ζ into (114) and (115) yields
the proposition. �

6.2. Non-abelian Deligne cohomology with values in the string
2-group

The full global description of non-abelian gauge theory is governed by non-
abelian Deligne cohomology. Let us first review the case of ordinary prin-
cipal bundles with connection before presenting the details for principal
Sw
λ -bundles.

Given a Lie group G with Lie algebra g = Lie(G), a principal G-bundle
with connection over a manifold M with respect to a cover U = tiUi �M is
described by a non-abelian Deligne 1-cocycle. Such a 1-cocycle consists of G-
valued transition functions (gij) on the fibered product U ×M U = ti,jUi ∩
Uj and g-valued one-forms (Ai) on U satisfying

(118) gijgjk = gik and Aj = g−1
ij Aigij + g−1

ij dgij .

Note that the cocycle conditions glue together the local data contained
in (Ai) to a global connection. Two such Deligne 1-cocycles (gij , Ai) and
(g′ij , A

′
i) are considered equivalent, if they are related by a Deligne 1-

coboundary consisting of G-valued functions on U , (gi), as follows:

(119) g′ij = g−1
i gijgj and A′i = g−1

i Aigi + g−1
i dgi.

The coboundary relations describe finite gauge transformations of the 1-
cocycles.
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From our discussion in Section 5, we can now derive the explicit form
of Deligne 2-cocycles and 2-coboundaries for principal Sw

λ -bundles. In the
following, M denotes the base manifold of the principal Sw

λ -bundle and U =
tiUi �M is a cover of M .

Definition 6.2. Let G be a connected compact simple Lie group with Lie
algebra g := Lie(G). Let furthermore Lie(Sw

λ ) = (g× u(1)⇒ g) be the Lie
2-algebra of the weak 2-group model Sw

λ over G. A Deligne 2-cocycle with
values in Sw

λ , which describes a principal Sw
λ -bundle with connective struc-

ture, is then given by a Sw
λ -valued Čech 2-cocycle (vij , aijk) together with

local forms A = (Ai) ∈ Ω1(U, g), B = (Bi) ∈ Ω2(U, u(1)) and forms on over-
laps ζ = (ζij) ∈ Ω1(U ×M U, u(1)), satisfying the following cocycle relations:

π(vik) = π(vij ⊗ vjk), vii = 1Sλ ,

(120)

aikl + aijk + λ1,2(φ2(vik, vkl), φ2(vij ⊗ vjk, vkl))
= aijl+ajkl+λ

1,2(φ2(vij , vjl), φ2(vij , vjk ⊗ vkl))+λ0,3(φ3(vij , vjk, vkl)),

π(vij)Ai = Ajπ(vij) + dπ(vij), dAi + 1
2 [Ai, Ai] = 0,

Bi = Bj − dζij − λ0,3(vij , Ai, Ai) + λ0,3(Aj , vij , Ai)− λ0,3(Aj , Aj , vij),

ζkj+λ
0,3(Aj , vji, vij) = ζij+ζki+dajik+λ0,3(vji, Ak, vik)−λ0,3(vji, vik, Ak).

Here, the transformations of A and B on double overlaps of patches are the
previously derived gauge transformations. The transformations of the ζij are
compatibility conditions for the previous transformations on triple overlaps.

Definition 6.3. A Deligne 2-coboundary between two Deligne 2-cocycles
(v, a,A,B, ζ) and (v′, a′, A′, B′, ζ ′) is a set of functions β = (βi) ∈ C∞(U, V1),
local 1-forms ζ = (ζi) ∈ Ω1(U, u(1)) and functions on overlaps α = (αij) ∈
C∞(U ×M U,U(1)) such that
(121)
βi ⊗ v′ij = vij ⊗ βj , βii = idφ1(π(βi)),

αik + aijk + λ1,2(φ2(vik, βk), φ2(vij ⊗ vjk, βk))
= αij + a′ijk + αjk + λ1,2(φ2(βi, v

′
ik), φ2(βi, v

′
ij ⊗ v′jk))

+ λ0,3(βi, v
′
ij , v

′
jk)− λ0,3(vij , βj , v

′
jk) + λ0,3(vij , vjk, βk),

π(βi)A
′
i = Aiπ(βi) + dπ(βi),

B′i = Bi − dζi − λ0,3(βi, A
′
i, A
′
i) + λ0,3(Ai, βi, A

′
i)− λ0,3(Ai, Ai, βi),

ζji − λ0,3(Ai, vij , βj) + λ0,3(Ai, βi, v
′
ij) + λ0,3(βi, v

′
ij , A

′
j) + ζj

= ζ ′ji − λ0,3(vij , Aj , βj) + λ0,3(v′ij , βj , A
′
j) + dαij + λ0,3(βi, A

′
i, v
′
ij) + ζi.



i
i

“2-Demessie” — 2018/3/28 — 18:41 — page 1944 — #50 i
i

i
i

i
i

1944 G. A. Demessie and C. Sämann

Two Deligne 2-cocycles related by a Deligne 2-coboundary are called
equivalent.

As a consistency check, consider the Deligne 2-cocycle relations and remove
one index, say k. Then relabel all affected cochains as their corresponding
parts of a 2-coboundary, e.g. vik → vi → βi. The resulting relations have to
agree with the relations for a 2-coboundary between a Deligne 2-cocycle and
the trivial Deligne 2-cocycle, which they do.

The above two definitions provide all necessary details for a global de-
scription of the kinematical part of higher gauge theory with the string
2-group Sw

λ as structure group.

6.3. Application: A self-dual string solution

As stated in the introduction, one of the most pressing issues in higher gauge
theory is the explicit construction of physically well-motivated examples of
higher principal bundles with connective structure. Obvious candidates for
dynamical constraints on such connections are the self-duality equation for
a 3-form curvature on R1,5, as well as the self-dual string equation in R4.
The former should be closely related to a non-abelian formulation of the
long-sought (2,0) superconformal field theory in six-dimensions; the latter
will be considered in some detail below in a simple case which is readily
discussed.

Recall that k abelian self-dual strings [36] are described by a 2-form
B together with a function Φ satisfying the equation H = dB = ∗dΦ on
M = R4\{x1, . . . , xk}. The points x1, . . . , xk are identified with the locations
of the k self-dual strings, and the Higgs field Φ as well as the 2-form potential
B diverge at these points.

One can readily translate the self-dual string equation to higher gauge
theory, cf. e.g. [5] or [8]. Note that the spin group of the underlying space-
time was intrinsically linked to the gauge group in the ’t Hooft-Polyakov
monopole [37] and the BPST instanton [38, 39]. Therefore, a good choice of
an interesting gauge 2-group for self-dual strings is the string group Sw

λ of
Spin(4) ∼= SU(2)× SU(2).

The self-dual string involving the connection of a principal Sw
λ -bundle is

described by a spin(4)-valued 1-form A on M together with a u(1)-valued
2-form B and a u(1)-valued function Φ. These have to satisfy the equations

(122) F = dA+ 1
2 [A,A] = 0 and H = dB − 1

3!µ3(A,A,A) = ∗dΦ,
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where the first equation is the fake-curvature condition and the second
equation is the non-abelian version of the self-dual string equation. The
fake-curvature condition implies here that A is pure gauge, and we write
A = π(v)−1dπ(v) for some v ∈ C∞(M,V1). Since dµ3(A,A,A) = 0, we then
have d ∗ dΦ = 0 and Φ is a harmonic function on M . To choose a simple
example, we put M = R4\{0} and Φ = 1

r2 , where r is the distance from the
origin in R4. There are now two extreme solutions which satisfy the second
equation in (122). One is v = 1Sw

λ
and

(123)
B = 3

8dxµ ∧ dxνεµνκλ
xκ
(
R2 arctan

(
rλ

xλ

)
− rλxλ

)
R2(rλ)3

,

R = |x|, rλ =
√
|x|2 − (xλ)2,

the other being B = 0 and

(124) v = φ1

(
1

|x|

(
x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
, 1

)
.

The first one is a reformulation of the solution given in [40], the second
one is an adaptation of the standard gerbe over S3 ∼ SU(2). Note that the
content of v in the second solution can be partially gauged into the other
SU(2) contained in Spin(4).

We can now show that the above two solutions are indeed gauge equiva-
lent, as one would expect. First, recall that the self-dual string equation on
R4 can be augmented to a self-duality equation on R1,5 by assuming that all
fields and forms are constant in the two additional direction and identifying
Φ with the 2-form potential in these directions. The gauge transformations
of Φ should therefore be identified with those of this component of B, which
vanishes if all gauge parameters are constant and the 1-form potentials van-
ish in these directions. It follows that Φ is gauge invariant and the same
holds trivially for H. Since both solutions have the same Φ and thus the
same H, this implies that they are gauge equivalent.

Altogether, we found that a solution to the non-abelian self-dual string
Equations (122) is gauge equivalent to the usual abelian solution. The reason
for this was the fake curvature relation F = 0. This equation guarantees that
parallel transport along surfaces is reparameterization invariant, see e.g.
[41]. Even though this relation appears naturally in a twistor construction
of non-abelian self-dual strings [5], this equation is not physically relevant
for self-dual strings, as the string is perpendicular to the space M and there
is no parallel transport within M . For more details on this point, see [8]. A
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study of non-abelian self-dual string solutions which do not satisfy the fake
curvature relation is beyond our scope here, and we postpone it to future
work.

Acknowledgements

CS would like to thank Chenchang Zhu for a helpful discussion. This work
was partially completed during the workshop “Higher Structures in String
Theory and Quantum Field Theory” at the Erwin Schrödinger International
Institute for Mathematical Physics and CS would like to thank the organizers
and the institute for hospitality. The work of GAD is supported by a MACS
Global Platform Studentship of Heriot-Watt University. The work of CS was
partially supported by the Consolidated Grant ST/L000334/1 from the UK
Science and Technology Facilities Council.

Appendix A. Group objects in categories

Recall that a category with finite products has a terminal object ∗ and
products between any two objects.

Definition A.1. A group object in a category C with finite products is
an object G ∈ C together with morphisms m ∈ C (G×G,G), e ∈ C (∗, G),
inv ∈ C (G,G) such that the following diagrams are commutative:

(A.1)

G×G×G idG×m //

m×idG
��

G×G
m
��

G×G m // G

∗ ×G = G× ∗ idG×e //

e×idG
��

=

))

G×G
m
��

G×G m // G

G
∆ //

!!

G×G inv×idG //

idG×inv
��

G×G

m

��

G×G
m

))∗ e // G

where ∆(g) = (g, g). A group is then a group object in Set and a Lie group
is a group object in Mfd∞.

Definition A.2. Given a group object G in a category with finite products
C , a G-object in C is an object X ∈ C together with a morphism α : G×
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X → X such that the following diagrams commute:

(A.2)

G×G×X m×idX //

idG×α
��

G×X
α
��

G×X α // X

∗ ×X 1×idX //

p2

��

G×X
α
��

X
idX // X

We now need to lift the above definitions to 2-categories. The defini-
tion of a 2-group object was introduced in [19]. Here, we follow closely the
presentation in [10].

Definition A.3. Given a weak 2-category C with finite products, a 2-
group object in C is given by an object C0 in C together with 1-morphisms
m : C0 × C0 → C0 and e : ∗ → C0 as well as invertible 2-morphisms

(A.3)
a : m ◦ (m× 1)→ m ◦ (1×m),

l : m ◦ (e× 1)→∼= and r : m ◦ (1× e)→∼=,

where ∼= denotes the isomorphisms ∗ × C0
∼= C0

∼= C0 × ∗. The morphism
(pr1,m) : C0 × C0 → C0 × C0 has to be an equivalence and a, l and r have
to satisfy the (internal) pentagon and triangle identities, cf. [10].

The pentagon and triangle identities are obtain by considering the two ob-
vious morphisms

(A.4) (m ◦ (m× 1)) ◦ (m× 1× 1)
55

))
m ◦ ((1×m) ◦ (1× 1×m))

and for the triangle identity, we look at

(A.5) m ◦ ((m ◦ (1× e))× 1)
77

''
m ◦ (1× 1)

This yields essentially the diagrams (16) with Bc replaced by m.

Definition A.4. A homomorphism φ between 2-groups G and G′ in a weak
2-category C consists of a 1-morphism φ1 : G1 → G2 and a 2-isomorphism
φ2 : m′ ◦ (φ1 × φ1)→ φ1 ◦m and φ0 : id′ → φ1 ◦ id. These have to satisfy three
coherence axioms, cf. [10] and diagrams (18).

Definition A.5. Given a 2-group object G in a weak 2-category C with
finite products, a G-object in C is an object X in C together with a 1-
morphism α : G × X → X as well as invertible 2-morphisms aα : α ◦ (m×
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idX )→ α ◦ (idG × α) and lα : α ◦ (e× idX )→ idX , such that the following
diagrams 2-commute:

(A.6)

G × G × X m×idX //

idG×α
��

G × X
α
��

aα

rz
G × X α

// X

∗ × X e×idX //

p2

��

G × X
α
��

lα

rzX
idX

// X

Moreover, certain coherence axioms for aα and lα are satisfied, cf. [10] and
diagrams (20).

Appendix B. Further useful definitions and proposition

To compose bibundles, we needed the notion of coequalizer.

Definition B.1. Given two morphisms f, g : X1 ⇒ X0 in a category C , a
coequalizer is an object Y ∈ C together with a morphism y : X0 → Y such
that y ◦ f = y ◦ g. Moreover, we demand that the pair (y, Y ) is universal in
the sense that for any other such pair (y′, Y ′), there is a unique morphism
u : Y → Y ′.

In the definition of a G-stack over X, we needed the concept of a slice
2-category. First, the following definition.

Definition B.2. Given a category C together with an object a ∈ C , the
slice category C /a has as its objects the class C (−, a). Morphisms between
two objects f : b→ a and g : c→ a of the slice category are commutative
triangles, i.e. elements h of C (b, c) with g ◦ h = f .

This is generalized to 2-categories as follows.

Definition B.3. Given a (weak) 2-category C and an object a ∈ C , the
slice 2-category C /a consists of the following data. The objects C /a are the
1-morphisms of C with codomain a. The 1-morphisms of C /a between ob-
jects f : b→ a and g : c→ a are pairs (h, χ), where h : b→ c is a 1-morphism
of C and χ : f ∼= gh is a 2-isomorphism in C :

(B.7)

b
h //

f ��

c

g
��

χ 3;

a
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Finally, consider two 1-morphisms (h1, χ1) and (h2, χ2) between f : b→ a
and g : c→ a in C /a. The 2-morphisms from (h1, χ1) to (h2, χ2) are 2-
morphisms ξ : h1 ⇒ h2 of C such that χ2(f) = (gξ)χ1(f).
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d’A. Connes), Ann. Sci. École Norm. Sup. (4) 20 (1987) 325.
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