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Integrable lattice models from

gauge theory

Edward Witten

These notes provide an introduction to recent work by Kevin
Costello in which integrable lattice models of classical statistical
mechanics in two dimensions are understood in terms of quan-
tum gauge theory in four dimensions. This construction will be
compared to the more familiar relationship between quantum knot
invariants in three dimensions and Chern-Simons gauge theory.
(Based on a Whittaker Colloquium at the University of Edinburgh
and a lecture at Strings 2016 in Beijing.)

1. Preliminary remarks

Since the discovery of the Bethe ansatz in the early days of quantum me-
chanics, integrable quantum spin systems in 1 + 1 dimensions and their close
cousins of various sorts have been a topic of much fascination. Important
advances have been made by many physicists and mathematicians, among
them Onsager, Yang, Baxter, Lieb, Kruskal, Fadde’ev, Drinfeld, Miwa,
Jimbo, and A. and Al. Zamolodchikov. The subject is so multi-faceted that
no short summary can do justice to it.

In today’s lecture, I will be describing a new approach to integrable
lattice models of two-dimensional classical statistical mechanics, developed
recently by Kevin Costello [1]. Costello’s work has offered an essentially
new perspective in which these models are understood in terms of four-
dimensional gauge theory.1 Arguably this perspective is in line with a vision
relating theories in different dimensions that was offered many years ago by
Michael Atiyah [4]. As we will see, Costello’s work is also a close cousin of
the relationship [5] between Chern-Simons gauge theory in three dimensions
and the Jones polynomial of a knot.2

1Another and superficially quite different relation of some of the same models to
gauge theory was discovered earlier by Nekrasov and Shatashvili [2, 3].

2Costello has actually described two related approaches to this subject, one in
terms of a four-dimensional cousin of Chern-Simons gauge theory and one in terms
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1820 Edward Witten

There are several different kinds of integrable systems in one space or two
spacetime dimensions, including classical nonlinear PDE’s, continuum quan-
tum field theories, quantum spin chains, and classical lattice systems. How-
ever, these different types of model turn out to be closely related. (Among
the many excellent sources where one can find different perspectives are [7–
10].) Even though our main topic today will be lattice statistical mechanics
in two dimensions, to motivate the ideas I will begin with integrable models
of continuum quantum field theory in 1 + 1 dimensions. The ideas that I will
sketch were first used as a tool to directly construct a relativistic S-matrix
by A. and Al. Zamolodchikov [11].

Fig. 1 is meant to be a spacetime picture of elastic scattering of two
particles in 1 + 1 dimensions. A particle of constant velocity is represented
by a straight line, with a slope depending on the velocity. Because of conser-
vation of energy and momentum, the outgoing particles go off at the same
slope (same velocity) as the incoming particles. There are time delays that
I have not tried to draw. The time delays mean that the outgoing lines are
parallel to the ingoing ones, but displaced slightly inwards. This will not
really affect our discussion.

In a typical relativistic quantum field theory, there are also particle pro-
duction processes, which are a large part of what makes quantum field the-
ory interesting. An example with two particles going to three is sketched in
Fig. 2. The symmetries of typical relativistic field theories allow such pro-
cesses and they happen all the time in the real world. In a 2→ 3 scattering
event, in a massive theory, the incoming and outgoing lines can be assumed
to all end or begin at a common point in spacetime, to within an error that
depends on the range of the particle interactions and is reflected in the time
delays.

However, in two spacetime dimensions, there are “integrable” field the-
ories that have extra symmetries that commute with the velocity or mo-
mentum but move a particle in space by an amount that depends on its
velocity. Then particle production is not possible. Starting with a spacetime
history in which the incoming and outgoing lines meet at a common point
in spacetime, a symmetry that moves the incoming and outgoing lines by
a velocity-dependent amount will create a history such as that of Fig. 3 in
which the outgoing particles could have had no common origin in spacetime.

of a twisted version of four-dimensional N = 1 super Yang-Mills theory. Roughly
speaking, the first approach, which we follow here, comes by integrating out some
variables from the second. For a review of the second approach, see [6].
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Integrable lattice models from gauge theory 1821

Figure 1: A spacetime picture of two-body elastic scattering in 1 + 1 dimen-
sions.

Figure 2: Inelastic scattering in 1 + 1 dimensions with particle production.

By contrast, two particle scattering does happen even in integrable sys-
tems, since two lines in the plane do generically intersect, as in Fig. 4. But
in an integrable theory, two particle scattering is purely elastic, in the sense
that the initial and final particles have the same masses (this is true sep-
arately for the left- and right-moving particles). Otherwise, the initial and
final velocities are different and consideration of a symmetry that moves
particles in a velocity-dependent way again leads to a contradiction.
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Figure 3: An inelastic 2→ 3 scattering process is sketched by the solid lines.
In a theory that has a symmetry that moves particles by an amount that de-
pends on their momentum, the application of such a symmetry would move
the outgoing lines parallel to themselves, leaving their slope unchanged. (By
combining the symmetry in question with an ordinary spacetime transla-
tion, we can assume that the incoming lines are unaffected, as drawn here.)
After such a transformation, the outgoing lines – now showed as dotted lines
– have no common point of intersection in the plane, let along a common
point of intersection at which they also meet the incoming lines. This means
that a 2→ 3 process is not possible in a theory with such a symmetry.

Figure 4: Two lines in the plane generically intersect, a statement that is
not affected by translating them parallel to themselves. So two-body elastic
scattering can be nontrivial even in an integrable field theory.
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Figure 5: Elastic scattering depends only on the rapidity difference.

How do we characterize a particle? A particle has a velocity, or better,
in relativistic terms, a “rapidity” θ. The energy E and momentum p are
expressed in terms of θ and the particle mass m by

(1.1)

(
E
p

)
= m

(
cosh θ
sinh θ

)
A Lorentz boost adds a constant to the rapidity, so scattering of two particles
with rapidities θ1 and θ2 depends only on the rapidity difference θ = θ1 − θ2

(Fig. 5).
But the amplitude for scattering of two particles of rapidities θ1 and θ2 is

in general not only a function of the rapidity difference θ = θ1 − θ2 because
there may be several different “types” of particles of the same mass. An
obvious reason for this, although not the most general possibility, is that
the theory might have a symmetry group G and the particles may be in an
irreducible representation ρ of G.

The picture is then more like Fig. 6. Here i, j, k, l can be understood to
represent basis vectors in the representation ρ. We write Rij,kl(θ) for the
quantum mechanical “amplitude” that describes this process. It is usually
called the R-matrix.

The real fun comes when we consider three particles in the initial and fi-
nal state. Since we can move them relative to each other, leaving their slopes
(or rapidities) fixed, we can assume that there are only pairwise collisions.
But there are two ways to do this, as in Fig. 7, and they must give equiva-
lent results. Concretely equivalence of these pictures leads to the celebrated
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Figure 6: Elastic scattering of particles that carry labels i, j, k, l, with ra-
pidity difference θ.

Figure 7: There are two ways to express a 3→ 3 scattering process as a
succession of three 2→ 2 scattering processes.

“Yang-Baxter equation,” which schematically reads

(1.2) R23R13R12 = R12R13R23.

The Yang-Baxter equation is a good example of a relationship that is much
more transparent in terms of a picture (Fig. 8) than by writing out an
algebraic formula in detail.



i
i

“10-Witten” — 2018/3/8 — 18:47 — page 1825 — #7 i
i

i
i

i
i

Integrable lattice models from gauge theory 1825

Figure 8: In more detail, the equivalence of the two pictures in Fig. 7 leads to
this relation, called the Yang-Baxter equation. A sum over internal particle
types (q, r, and s on the left and u, t, and v on the right) is understood.

Actually, there is a subtle but important difference between the R-matrix
that solves the Yang-Baxter equation and the S-matrix that describes par-
ticle scattering in an integrable relativistic field theory. The reason for this
is that the Yang-Baxter equation is not sensitive to an overall c-number fac-
tor, that is it is invariant under the transformation Rijkl(θ)→ F (θ)Rijkl(θ),
for any scalar function F (θ). (This invariance is manifest in Fig. 8; on both
the left and the right, one has a succession of three scattering events with
rapidity differences θi − θj , 1 ≤ i < j ≤ 3. So overall factors F (θi − θj) will
cancel out.) In applications of the Yang-Baxter equation to classical statisti-
cal mechanics, such an overall factor is of little importance and one usually
simply picks a convenient normalization of the solution of the Yang-Baxter
equation. But in S-matrix theory, the prefactor F (θ) is very important. In
simple examples, as pioneered in [11], the prefactor is determined by condi-
tions of unitarity and crossing symmetry and some knowledge of whether the
S-matrix should have bound state poles. It is possible to have two different
models (for example the nonlinear σ-model with target a sphere SN−1 and
corresponding O(N) symmetry and an N -component Gross-Neveu model
with the same symmetry) that are governed by the same R-matrix but with
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different choices of the prefactor. In fact, recently it has been argued [12]
that integrable relativistic field theories in 1 + 1 dimensions have continu-
ous deformations whose S-matrices differ only by the choice of F (θ). These
deformations depend on infinitely many parameters that are irrelevant in
the renormalization group sense.

The traditional solutions of the Yang-Baxter equation – as discovered
by Bethe, Lieb, Yang, Baxter, Fadde’ev, Belavin, Drinfeld and others – are
classified by the choice of a simple Lie group G and a representation ρ,
subject to (1) some restrictions on ρ, and (2) the curious fact that in many
important cases (like the 6-vertex model of Lieb and the 8-vertex model
of Baxter) a solution of the Yang-Baxter equation associated to a given
group G does not actually have G symmetry. In fact, there are three broad
classes of solutions of Yang-Baxter, which are called rational, trigonometric,
and elliptic depending on whether the R-matrix is a rational, trigonometic,
or elliptic function of θ. Only the rational solutions of Yang-Baxter have G
symmetry. Prior to the work of Costello, it was, at least to me, a longstanding
puzzle to understand better why there are solutions of the Yang-Baxter
equation that are in some sense associated to the Lie groupG but do not have
G symmetry. (The question can be restated in terms of quantum groups,
but to me this merely raises the equivalent question of “why” these exist
appropriate quantum group deformations.)

Now finally we come to the lattice models. I have motivated the Yang-
Baxter equation by talking about relativistic scattering, but solutions of
Yang-Baxter can be used to construct several different kinds of integrable
model. Today we will focus on the integrable lattice systems of classical
statistical mechanics. They are constructed directly from a solution of the
Yang-Baxter equation.3 To understand how this is done, consider Fig. 9.
In this this rather busy picture, the vertical and horizontal lines are la-
beled by rapidities. I have labeled the vertical lines by the same rapidity
θ (though this restriction is not necessary) and the horizontal lines by dif-
ferent rapidities θi. In addition, each line segment in the figure is labeled
by a basis vector is, js, ks, . . . in some matrix-valued solution of the Yang-
Baxter equation. These labels will be the “spins” of our lattice model. For
the Boltzmann weights, we include for each crossing in the figure a factor of
the appropriate R-matrix element. Thus this is a model in which the spins

3For example, see [9]. The solution of Yang-Baxter used in this construction
need not necessarily be rational, so for this application one considers more general
solutions of Yang-Baxter than the ones that arise in the integrable relativistic field
theories.
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Figure 9: An integrable lattice model associated to a solution of the Yang-
Baxter equation. Horizontal and vertical lines are labeled by rapidities. (In
constructing the standard integrable models and proving their integrability,
one often labels vertical lines by a common rapidity θ and horizontal lines by
varying rapidities θi, so this case is sketched here.) Line segments between
two vertices are labeled by basis vectors is, js, ks, etc., in some solution of the
Yang-Baxter equation; these are the “spins” of the integrable lattice model.
At each vertex, there is a four-spin interaction given by the relevant matrix
element of the R-matrix. In some special cases, the four-spin interactions
collapse to two-spin interactions, leading to more simple-looking integrable
models such as the Ising model.

live on the edges of a square lattice, and there is an interaction among every
four spins that live on edges that meet at a common vertex.4 It turns out
that models constructed in this way are integrable, because “the transfer
matrices commute,” which means that (using the Yang-Baxter equation)
the horizontal lines can be moved up and down past each other. Conversely,
familiar integrable lattice models can be put in this form.

2. The Yang-Baxter equation and gauge theory

Perhaps the most obvious question about the Yang-Baxter equation is “why”
solutions of this highly overdetermined equation exist. There is another area
in which one finds something a lot like the Yang-Baxter equations. This is

4To make a physically sensible model of classical statistical mechanics, one
chooses the rapidities so that the relevant matrix elements of the R-matrix are
all real and positive.
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Figure 10: A Reidemeister move of knot theory, with an obvious resemblance
to the Yang-Baxter equation.

Figure 11: In knot theory, one knot passes “over” or “under” the other, as in
the last figure or the next one. But in Yang-Baxter theory, two lines simply
cross in the plane, as sketched here.

the theory of knots in three dimensions. Knots are often described in terms of
projections to the plane; two knot projections describe the same knot if they
can be related by certain moves that are known as Reidemeister moves. The
most important Reidemeister move is shown in Fig. 10. The resemblance
to the Yang-Baxter equation is obvious, but there is also a conspicuous
difference. In knot theory, one strand passes “over” or “under” the other,
while Yang-Baxter theory is a purely two-dimensional theory in which lines
simply cross, with no “over” or “under,” as sketched in Fig. 11. Likewise,
rough analogs of the other Reidemeister moves exist in Yang-Baxter theory
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(see figs. 4 and 5 of [13]), but they do not really have the same content as in
knot theory because of the lack of a distinction between “over” and “under.”

In this respect, knot theory has structure that is absent in Yang-Baxter
theory. But there is also an important difference in the opposite direction: in
Yang-Baxter theory, the spectral parameter is crucial, but it has no analog
in knot theory.

Despite these differences, the analogy between the Yang-Baxter equation
and the first Reidemeister move of knot theory is rather conspicuous, so let
us pursue this a little bit. The usual solutions of Yang-Baxter depend, as I
have said, on the choice of a simple Lie group5 G and a representation ρ.
There are knot invariants that depend on the same data. To define them
at least formally, let M be a three-manifold, E →M a G-bundle, and A a
connection on G. Then one has the Chern-Simons function

(2.1) CS(A) =
1

4π

∫
M

Tr

(
AdA+

2

3
A ∧A ∧A

)
,

which was introduced in quantum field theory in [14, 15]. I have normalized
CS(A) so that, if G = SU(N) and Tr is the trace in the N -dimenisonal
representation, it is gauge-invariant mod 2πZ. For any G, we define Tr as an
invariant quadratic form on the Lie algebra of G normalized so that CS(A)
is gauge-invariant predcisely mod 2πZ. In quantum mechanics, the “action”
I must be well-defined mod 2πZ, so we can take

(2.2) I = kCS(A), k ∈ Z.

A quantum field theory with this action is a “topological quantum field
theory” (modulo some subtleties involving a framing anomaly), since there
is no metric tensor in sight. Let us just take the three-manifold M to be R3,
and let K ⊂ R3 be an embedded knot, such as the trefoil knot of Fig. 12.
We pick a representation ρ of G, and let

(2.3) Wρ(K) = TrρP exp

(∮
K
A

)
be the Wilson loop operator (the trace of the holonomy) in the representa-
tion ρ.

5In the following gauge theory construction, we take the compact form of G.
Also, we slightly simplify the exposition by assuming that G is connected and
simply-connected. This implies in particular that a G-bundle E →M , where M is
a three-manifold, is in fact trivial. Hence a connection A on E can be understood as
a Lie algebra valued 1-form, and CS(A) can be defined by the naive formula (2.1).
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Figure 12: The trefoil knot, projected to the plane.

The usual “quantum knot invariants,” of which the prototype is the
Jones polynomial of a knot, can be defined via the expectation value of the
Wilson operator, 〈Wρ(K)〉 =

〈
TrρP exp(

∮
K A)

〉
. One can make knot invari-

ants this way, but from them one cannot really extract the usual solutions
of the Yang-Baxter equation since one is missing the spectral parameter.
However (see [9], Eqn. (6.11)), in a sense from these knot invariants one
can extract a special case of the trigonometric solutions of the Yang-Baxter
equation in which the spectral parameter is taken to i∞.

How can we modify or generalize Chern-Simons gauge theory to include
the spectral parameter? A naive idea is to replace the finite-dimensional
gauge group G with its loop group LG. We parametrize the loop by an
angle θ. The loop group has “evaluation” representations that “live” at a
particular value θ = θ0 along the loop.6 We hope that this will be the spectral
parameter label θ0 carried by a particle in the solution of the Yang-Baxter
equation.

Taking the gauge group to be a loop group means that the gauge field
A =

∑
iAi(x)dxi now depends also on θ and so is A =

∑
iAi(x, θ)dx

i. Note
that there is no dθ term so this is not a full four-dimensional gauge field.

6It is important here that by LG we mean the loop group, not its central extension
that is encountered in conformal field theory. LG, unlike its central extension, has
homomorphisms to G that map a loop g(θ) to its value g(θ0) at some given θ0. By
composing this with an ordinary representation of G, we get a representation of
LG that informally “lives” at the point θ = θ0. These representations have no close
analog for the centrally extended loop group.
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Figure 13: In a naive Chern-Simons theory with gauge group LG, this loop
will come with a factor δ(θ − θ′)2 = δ(θ − θ′)δ(0) because of the two propa-
gators connecting the same two vertices.

The Chern-Simons action has a generalization to this situation:

(2.4) I =
k

4π

∫
M×S1

dθTr

(
AdA+

2

3
A ∧A ∧A

)
.

This is perfectly gauge-invariant.
What goes wrong is that because there is no ∂/∂θ in the action, the

“kinetic energy” of A is not elliptic and the perturbative expansion is not
well-behaved. The propagator is

(2.5)
〈
Ai(~x, θ)Aj(~x

′, θ′)
〉

=
2π

k

εijk(x− x′)k

|~x− ~x′|2
δ(θ − θ′)

with a delta function because of the missing ∂/∂θ. Because of the delta
function, every loop diagram will acquire a factor δ(0) (Fig. 13).

Costello cured this problem via a very simple deformation. Take our
three-manifold to be R3, and write x, y, t for the three coordinates of R3,
so overall we have x, y, t, and θ. Costello combined t and θ into a complex
variable

(2.6) z = εt+ iθ.

Here ε is a real parameter. The theory will reduce to the bad case that I
just described if ε = 0. As soon as ε 6= 0, its value does not matter, since it
can be eliminated by rescaling t or θ, and one can set ε = 1. The purpose
of including ε in Eqn. (2.6) was simply to explain in what sense we will be
making an infinitesimal deformation away from the ill-defined Chern-Simons
theory of the loop group.
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One replaces dθ (or (ik/4π)dθ) in the naive theory (2.4) with dz (or
dz/~, where ~ is a parameter7 that plays the role of 1/k in the usual Chern-
Simons theory) and one now regards A as a partial connection on R3 × S1

that is missing a dz term (rather than missing dθ, as before). The action is
now

(2.7) I =
1

~

∫
R3×S1

dzTr

(
AdA+

2

3
A ∧A ∧A

)
.

We have lost the three-dimensional symmetry of standard Chern-Simons
theory, because of splitting away one of the three coordinates of R3 and com-
bining it with θ. We still have two-dimensional diffeomorphism symmetry.
However, as we discussed in comparing Yang-Baxter theory to knot the-
ory, Yang-Baxter theory does not have three-dimensional symmetry, but
only two-dimensional symmetry. Modifying standard Chern-Simons theory
in this fashion turns out to be just right to give Yang-Baxter theory rather
than knot theory: the three-dimensional diffeomorphism invariance is re-
duced to two-dimensional diffeomorphism invariance, but on the other hand,
now there is a complex variable z that will turn out to be the (complexified)
spectral parameter.

I have described the action so far on R2 × C∗ where C∗ = R× S1 (para-
metrized by z = t+ iθ) is endowed with the complex 1-form dz. The classical
action makes sense more generally on8 Σ× C, where Σ is any smooth (ori-
ented) two-manifold and C is a complex Riemann surface endowed with a
holomorphic 1-form ω:

(2.8) I =
1

~

∫
Σ×C

ω ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
.

7One should think of ~ as a formal complex parameter, since there is in general
no natural reality condition that it might obey. We return to this point at the end
of these notes.

8 Quantum mechanically, one runs into an analog of the framing anomaly of
Chern-Simons theory, such that Σ has to be framed (its tangent bundle has to be
trivialized) in order to define the quantum theory. This is very restrictive, since
a compact two-manifold that can be framed is topologically a two-torus T 2. The
example Σ = T 2 with a periodic array of Wilson lines is used in [1] in constructing
integrable lattice models with periodic boundary conditions. There is also an analog
in this theory of the usual framing anomaly for knots in Chern-Simons theory; this
anomaly markedly restricts the class of Wilson operators that can be considered.
For example, a Wilson operator supported on a simple closed loop in Σ = R2, at a
point in C, is anomalous. There is no problem for the “straight” Wilson lines that
are used in constructing integrable lattice models.
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It turns out, however, that to get a quantum theory, one wants ω to have no
zeroes. Intuitively this is because a zero of ω is equivalent to a point at which
~→∞. (More technically, if ω has a zero, the kinetic energy of the theory is
not elliptic and one runs into a difficulty in quantization somewhat similar
to the problem with the naive theory of Eqn. (2.4). One can resolve the
problem by modifying the theory near a zero of ω, but then two-dimensional
symmetry is lost.) By contrast, there is no problem with poles of ω, where
effectively ~→ 0.

So C has to be a complex Riemann surface that has a differential ω with
possible poles, but with no zeroes. The only three options are C, C/Z ∼= C∗,
and C/(Z + τZ), which (with τ a complex number of positive imaginary
part) is a Riemann surface of genus 1. It turns out that these three cases
correspond to the three traditional classes of solutions of the Yang-Baxter
equation – rational, trigonometric, and elliptic.

The first point is that this theory has a sensible propagator and a sensible
perturbation expansion. The basic reason for a sensible propagator is that on
R× R or R× S1 parametrized by t and θ, the operator ∂/∂t that appeared
in the naive action (2.4) is not elliptic, but the operator ∂/∂z that appears in
the deformed version is elliptic. After a suitable gauge-fixing, the propagator
(for the rational model, i.e. on R2 × C with C = C ∼= R2) is

〈Ai(x, y, z)Aj(x′, y′, z′)〉(2.9)

= ~εijkzgkl
∂

∂xl

(
1

(x− x′)2 + (z − z′)2 + |z − z′|2

)
,

where εijkm is the four-dimensional antisymmetric tensor (but in the formula
we set m = z, so that i, j, k take the values x, y, z), and the metric on R4 =
R2 × C is dx2 + dy2 + |dz|2.

With this propagator, the perturbative expansion is well-defined, as
shown in [1]. This is a tricky point. The theory is actually unrenormalizable
by power counting, so on that basis, one would not expect a well-behaved
quantum theory. However, it has no possible counterterms, because all local
gauge-invariant operators vanish by the classical equations of motion. Any-
way, using a fairly elaborate algebraic machinery of BV quantization, it is
shown in [1] that the theory has a well-defined perturbation expansion.

Now we consider Wilson operators, that is holonomy operators

(2.10) TrρP exp

∮
`
A
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Figure 14: Three lines crossing in the plane, now labeled by the value of a
complexified spectral parameter z. The equivalence of the two pictures is
the Yang-Baxter equation.

where ` is a loop in Σ× C. As before, Σ is a topological two-manifold, and
C is a complex Riemann surface with the differential ω = dz. But we have
only a partial connection

(2.11) A = Axdx+Aydy +Azdz

so we would not know how to do any parallel transport in the z direction.
(We cannot interpret A as a gauge field with Az = 0 because this condition
would not be gauge-invariant, and quantizing the theory requires gauge-
invariance. We have to interpret it as a theory with Az undefined, so we
cannot do parallel transport in the z direction.) This means that we must
take ` to be a loop that lies in Σ, at a particular value of z.

But this is what we wanted to explain Yang-Baxter theory. It means
that ` is labeled by some constant value z = z0 of the (complexified) spectral
parameter z.

Now let us consider some lines that meet in Σ in the familiar configu-
ration associated to the Yang-Baxter equation (Fig. 14). Two-dimensional
diffeomorphism invariance means that we are free to move the lines around
as long as we do not change the topology of the configuration. But assuming
that z1, z2, and z3 are all distinct, it is manifest that there is no discon-
tinuity when we move the middle line from left to right even when we do
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Figure 15: The configuration of Wilson lines associated to the integrable
lattice models. The vertical and horizontal lines are labeled by points in C
and by representations of G (the representations are not indicated in the
figure).

cross between the two pictures, because the Feynman diagrams in four di-
mensions have no singularity when this occurs. Thus two configurations of
Wilson operators that differ by what we might call a Yang-Baxter move are
equivalent.

Likewise, in the configuration associated to integrable lattice models
(Fig. 15), we can move the horizontal lines up and down at will.

But why is there as elementary a picture as in the usual integrable lattice
models, where one can evaluate the path integral by labeling each line by
a basis element of the representation ρ and each crossing by a local factor
Rij,kl(z)? This is a little tricky and depends on picking the right boundary
conditions so that the only classical solution of the equations of motion is
the trivial solution A = 0, and it has no automorphisms (unbroken gauge
symmetries). There is a way to achieve this for each of the three choices
of C, corresponding to rational, trigonometric, and elliptic solutions of the
Yang-Baxter equation.

For simplicity I will here only explain the rational case, in which the
Riemann surface is C = C, the complex z-plane, with 1-form dz. We require
that the gauge field A on Σ× C goes to 0 at infinity in the C direction, and
likewise in quantizing we divide only by gauge transformations that approach
1 at infinity along C. With these conditions, it is indeed true that A = 0 is
the only classical solution, and that it has no unbroken gauge symmetries.
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However, G still exists as a group of global symmetries (corresponding to
gauge transformations that are constant at infinity along C, rather than
equaling 1). That will explain, from this point of view, why the rational
solutions of the Yang-Baxter equation, which arise from this construction,
are G-invariant.9

When we expand around the trivial solution A = 0, the absence of de-
formations or automorphisms of this solution makes the perturbative expan-
sion straightforward. Moreover, perturbation theory gives a simple answer
because the theory is infrared-trivial, which is the flip side of the fact that
it is unrenormalizable by power-counting. That means that effects at “long
distances” in the topological space are negligible.

I put the phrase “long distances” in quotes because two-dimensional
diffeomorphism invariance means that there is no natural notion of distance
on the topological two-manifold Σ. A metric on Σ× C entered only when
we fixed the gauge to pick a propagator. Recall that we used the metric
dx2 + dy2 + |dz|2. We could equally well scale up the metric along Σ by any
factor and use instead eB(dx2 + dy2) + |dz|2 for very large B.

That means that when one looks at the picture of Fig. 15 associated to
the integrable lattice systems, one can consider the vertical lines and likewise
the horizontal lines to be very far apart (compared to z − zi or zi − zj). In
such a situation, in an infrared-free theory, effects that involve a gauge boson
exchange between two nonintersecting lines, as in Fig. 16, are negligible.

One should worry about gauge boson exchange from one line to itself, as
in Fig. 17, because in this case the distance |a− b| need not be large. Such
effects correspond roughly to “mass renormalization” in standard quantum
field theory. In the present problem, in the case of a straight Wilson line such
as those of Fig. 15, the symmetries do not allow any interesting effect anal-
ogous to mass renormalization. (For more general Wilson lines, the “mass
renormalization” diagram leads to a framing anomaly that was mentioned
in footnote 8.)

What about gauge boson exchange between two Wilson lines with dis-
tinct spectral parameters z, z′ that do cross in Σ? The lowest order example
with exchange of a single gauge boson is depicted in Fig. 18. To evaluate
the contribution of this diagram, we have to integrate over the points a, b

9For the other choices of C, boundary conditions that allow a unique classical
solution that is free of unbroken gauge symmetries do exist (for any G if C = C∗ and
for G = PSU(N) if C is a curve of genus 1), but lack the full global G symmetry.
This explains from the present point of view why the trigonometric and elliptic
solutions of Yang-Baxter are not G-invariant, and why elliptic solutions only exist
for the special linear group.
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Figure 16: Because the deformed Chern-Simons theory is defined with no
choice of metric on Σ, we can always use a gauge such that nonintersecting
Wilson lines are very far apart. Gauge boson exchanges between noninter-
secting Wilson lines, as depicted here, vanish in this limit.

Figure 17: Exchange of a gluon from one Wilson line to itself would corre-
spond to mass renormalization (of an external probe charge) in conventional
quantum field theory. In the framework that leads to the integrable lattice
models, the symmetries do not allow any nontrivial effect analogous to mass
renormalization.
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Figure 18: The lowest order diagram with gauge boson exchange between
two lines that cross in Σ. The two lines have spectral parameters z, z′. To
evaluate the contribution of this diagram, we have to integrate over a and
b. The integral converges and is dominated by the region |a|, |b| . |z − z′|.

at which the gauge boson is attached to the two Wilson lines. The resulting
integral converges and is dominated by the region |a|, |b| . |z − z′|. What it
converges to will be discussed shortly.

Now when we study a general configuration such as the one related to
the integrable lattice models we can draw very complicated diagrams, as in
Fig. 19, but the complications are all localized near one crossing point or
another. The diagrams localized near one crossing point simply build up an
R-matrix associated to that crossing, and the discussion makes it obvious
that the R-matrix obeys the Yang-Baxter relation of Fig. 14.

Moreover, this makes it clear that the path integral in the presence of
the configuration of Wilson operators (Fig. 15) associated to the integrable
lattice models can be evaluated by the standard rules: label each vertical or
horizontal line segment by a basis vector of the representation ρ and include
the appropriate R-matrix element at each crossing; then sum over all such
labelings.

But why is the R-matrix obtained this way the standard rational solu-
tion of the Yang-Baxter equation? (And similarly, with a different choice
of C, why would we get the standard trigonometric and elliptic solutions of
Yang-Baxter?) In his paper [1], Costello explicitly evaluates the lowest order
correction in

(2.12) R = 1 + ~r +O(~2)
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Figure 19: Evaluating in perturbation theory the configuration of Wilson
operators associated to the integrable lattice models, we run into very com-
plicated Feynman diagrams. But after scaling up the metric of Σ, we can
assume that these diagrams are built from decoupled diagrams each of which
is associated to just one crossing point.

from the lowest order non-trivial diagram of Fig. 18, and and gets the stan-
dard answer

(2.13) r =

∑
a tat

′
a

z − z′

(where ta, t
′
a, a = 1, . . . ,dimG are the generators of the Lie algebra of G

acting in the two representations). Once the first order deformation is known,
the full answer for the R-matrix, up to a change of variables, follows from
general arguments (see p. 814 in [16] and p. 418 in [17]).

I conclude with a few final comments. Costello’s theorem is purely about
perturbation theory, but his theorem shows that, in this particular theory
(and rather exceptionally), perturbation theory converges. As a physicist,
one would want to give an a priori “nonperturbative definition” of the the-
ory, which would have the claimed perturbative expansion. At first sight,
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there are some difficulties in doing this. The action of conventional Chern-
Simons theory is gauge-invariant mod 2πZ if the coupling parameter k is an
integer, as one wishes for a quantum system that will be well-defined beyond
perturbation theory. But there is no choice of the analogous parameter ~ in
Eqn. (2.7) or (2.8) that makes the action gauge-invariant mod 2πZ. Also,
the path integral of conventional Chern-Simons gauge theory is an oscilla-
tory path integral, like that of any unitary quantum system, because the
action is real.10 The real and imaginary parts of the generalized action in
Eqn. (2.7) or (2.8) are unbounded above and below, so naively the path
integral is exponentially divergent, no matter what we assume for ~.

Because of such considerations, to get a convergent, nonperturbative
path integral in this theory, one will have to consider an analytically con-
tinued version of the theory, in a sense that for conventional Chern-Simons
theory was described in [18]. This analytic continuation is achieved by com-
plexifying all variables and then constructing a different integration cycle
on which the path integral converges. For ordinary Chern-Simons theory,
such analytic continuation is optional; the theory at integer k is perfectly
well-defined without any analytic continuation. But in the four-dimensional
theory that is under discussion here, only an analytically-continued version
of the path integral will make sense beyond perturbation theory. To con-
struct this analytic continuation, one can consider the D4-NS5 system of
string theory, and proceed via the same arguments that were used in [18]
to relate ordinary Chern-Simons theory and the Jones polynomial to the
D3-NS5 system.

An interesting goal for the future is to somehow link the story that has
been reviewed here to the work of Nekrasov and Shatashvili, who developed
a seemingly quite different relationship between integrable quantum spin
systems and supersymmetric gauge theory [2, 3].

Another natural question is whether models such as the chiral Potts
model (see for example [19–22]) can be placed in the gauge theory frame-
work. The chiral Potts model is an integrable lattice model in which the
spectral parameter takes values in a curve of genus greater than 1. Perhaps
surprisingly (given the genus of its spectral curve), the chiral Potts model can
be related to a trigonometric solution of Yang-Baxter for the group SU(2)
(or SL2), and this viewpoint has also been used to develop an analog for
SU(N) [23, 24]. But such models are not yet understood in the framework
described in the present lecture.

10With CS(A) defined as in Eqn. (2.1), the argument of the path integral is
exp(ikCS(A)).
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