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Why the cosmological constant is so

small? A string theory perspective

S.-H. Henry Tye
(with Yoske Sumitomo and Sam Wong)

With no free parameter (except the string scale MS), dynami-
cal flux compactification in Type IIB string theory determines
both the cosmological constant (vacuum energy density) Λ and
the Planck mass MP in terms of MS , thus yielding their relation.
Following elementary probability theory, we find that a good frac-
tion of the meta-stable de Sitter vacua in the cosmic string theory
landscape tend to have an exponentially small cosmological con-
stant Λ compared to either the string scale MS or the Planck scale
MP , i.e., Λ�M4

S �M4
P . Here we illustrate the basic stringy idea

with a simple scalar field φ3 (or φ4) model coupled with fluxes
to show how this may happen and how the usual radiative insta-
bility problem is bypassed (since there are no parameters to be
fine-tuned). These low lying semi-classical de Sitter vacua tend to
be accompanied by light scalar bosons/axions, so the Higgs boson
mass hierarchy problem may be ameliorated as well.

1. Introduction

Cosmological data strongly indicates that our universe has a vanishingly
small positive cosmological constant Λ (or vacuum energy density) as the
dark energy,

(1.1) Λ ∼ 10−122M4
P

where the Planck mass MP = G
−1/2
N ' 1019 GeV. Such a small Λ is a major

puzzle in physics.1 In general relativity, Λ is a free arbitrary parameter one
can introduce, so its smallness can be accommodated but not explained
within quantum field theory. On the other hand, string theory has only a

1If the dark energy is due to some other mechanism, e.g., quintessence, then the
cosmological constant may have to be even smaller, or a more fine-tuned cancella-
tion/correlation must be present.
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1804 S.-H. Henry Tye

single parameter, namely the string scale MS = 1/
√

2πα′, so everything else
should be calculable for each string theory solution. String theory has 9
spatial dimensions, 6 of them must be dynamically compactified to describe
our universe. Since both MP and Λ are calculable, Λ can be determined in
terms of MP dynamically in each local minimum compactification solution.
This offers the possibility that we may find an explanation for a very small
positive Λ. This happens if a good fraction of the meta-stable deSitter (dS)
vacua in the landscape tend to have a very small Λ, as is the case in the recent
studies in flux compactification in string theory. Here, instead of reporting
the main result of our work in the past few years [1–5], I like to introduce
the basic stringy idea in a simple φ3 or φ4 quantum field theory model for
illustration.

Although string theory has no free parameter (i.e., masses and cou-
plings), it has fluxes and moduli in flux compactification from 10 spacetime
dimensions to 4 (or any lower than 10) spacetime dimensions. In low en-
ergies, the moduli (plus the dilaton) are scalar fields describing the shape
and size of the compactified manifold. Fluxes come from anti-symmetric
P-form field strengths Fµ1µ2,...,µP where µ0, µ1, µ2, µ3 are the 4-dimensional
spacetime indices and the rest stands for internal dimensions. (For P < 4,
consider its dual.) so the effective 4-dimensional Fi = F 0123

i , i = 1, 2, . . . , N
takes constant values in 4-dimensional spacetime. They contribute to the
vacuum energy density. Here i refers to the collection of internal indices.

Bousso and Polchinski show that each Fi takes only quantized values
at the local minima in string theory [6]. For enough number of such fluxes
(say N > 14), with each Fi sweeping through a range of discrete values, the
spacing between allowed vacuum energy density values is small enough so a
small Λ like that observed (1.1) can be one of the allowed values. They call
this ”dense discretuum”. Our approach is to include the moduli coupled to
the fluxes and find the vacuum energy density Λ at every local minimum.
Sweeping over all choices of the flux values, we then find the distribution
of the Λ values. Here, dynamics is brought in beyond a simple counting
exercise, since not all choices of fluxes have a local minimum, while some
flux choices yield multiple local minima.

Start with the four-dimensional low energy (supergravity) effective po-
tential V (Fi, φj) obtained from flux compactification in string theory, where
Fi are the 4-form field strengths and φj are the complex moduli (and dila-
ton) describing the size and shape of the compactified manifold as well as
the couplings. In the search of classical minima, this flux quantization prop-
erty allows us to rewrite V (Fi, φj) as a function of the quantized values qini
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Why the cosmological constant is so small? 1805

of the fluxes present,

V (Fi, φj)→ V (qini, φj), i = 1, 2, . . . , N, j = 1, 2, . . . ,K

where the charges qi are determined by the compactification dynamics. (To
simplify the discussion, we shall suppress the qi so ni takes discrete instead
of integer values.) Since string theory has no continuous free parameter,
there is no arbitrary free parameter in V (ni, φj), though it does contain (in
principle) calculable quantities like α′ corrections, loop and non-perturbative
corrections, and geometric quantities like Euler index χ etc..

For a given set of discrete flux parameters {ni}, we can solve V (ni, φj) for
its meta-stable (classically stable) vacuum solutions via finding the values
φj,min(ni) at each solution and determine its vacuum energy density Λ =
Λ(ni, φj,min(ni)) = Λ(ni). Since we are considering the physical φj , it is the
physical Λ we are determining. Since a typical flux parameter ni can take a
large range of discrete values, we may simply treat each ni as an independent
random variable with some distribution Pi(ni). Collecting all such solutions,
we can next find the probability distribution P (Λ) of Λ of these meta-stable
solutions as we sweep through all the discrete flux values ni. That is putting
Pi(ni) and Λ(ni) together yields P (Λ),

(1.2) P (Λ) =
∑
ni

δ(Λ− Λ(ni))ΠiPi(ni)

so
∑

ni
Pi(ni) = 1 for each i implies that

∫
P (Λ)dΛ = 1. For large enough

ranges for ni, we may treat each Pi(ni) as a smooth continuous function
over an appropriate range of values.

Simple probability properties show that P (Λ) easily peaks and diverges
at Λ = 0 [1], implying that a small Λ is statistically preferred. For an expo-
nentially small Λ, the statistical preference for Λ ' 0 has to be overwhelm-
ingly strong, that is, P (Λ) has to diverge (i.e., peak) sharply at Λ = 0. Such
an analysis has been applied to the Kähler uplift scenario, where P (Λ) is so
peaked at Λ = 0 that the the median Λ matches the observed Λ (1.1) if the
number of complex structure moduli h2,1 ∼ O(100) [2]. Such a value for h2,1

is quite reasonable for a typical manifold considered in string theory. That
is, an overwhelmingly large number of meta-stable vacua have an exponen-
tially small Λ, so statistically, we should end up in one of them. In other
words, a very small Λ is quite natural. The preference for an exponentially
small Λ has also been observed in the racetrack Kähler uplift scenario [4].

In usual quantum field theory, the parameters of any model (masses,
couplings and Λ) that include the standard model of strong and electroweak
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interactions have to be fine-tuned to satisfy Eq.(1.1). However, quantum
corrections are typically orders-of-magnitude bigger than the observed value.
So the renormalized parameters have to be re-fine-tuned after each order of
radiative correction. This is the radiative instability problem. Since there are
no free parameters to be fine-tuned in string theory, the radiative instability
problem is simply absent here.

This leads us to conjecture that
Most meta-stable vacua in regions of the cosmic stringy landscape have

|Λ| �M4
P .

If true, this may (1) provide an explanation why the observed Λ is so
small, and (2) after inflation, why the universe is not trapped in a relatively
high Λ vacuum.

Instead of reviewing the string theory models, let us discuss in some
detail an illustrative φ3/φ4 model, where there is no uncoupled sector and
all couplings/parameters are treated as if they are flux parameters so they
will take random values within some reasonable ranges. There, the physical
(loop corrected) V (ni, φj) yields P (Λph) for the physical Λph while the tree
(or bare) V (ni, φj) yields P (Λ0) for the tree Λ0. We find that P (Λph) hardly
differs from P (Λ0). Both P (Λ)s peak (i.e., diverge) at Λ = 0, and the two
sets of statistical preferred flux values for Λ ∼ 0 are in general only slightly
different. In fact, up to two-loops, P (Λph) is essentially identical to the
tree P (Λ0). As a result, although radiative instability may be present for
any fixed flux choice, the statistical preference approach actually evades or
bypasses this radiative instability problem. We like to convince the readers
that this phenomenon of bypassing the radiative instability problem stays
true in more complicated models, as well as when applied to very light scalar
boson masses (if present).

There are a vast number of very small Λ dS vacua in the cosmic string
landscape. Lest one may think the accumulation of Λ ' 0+ is due to ener-
getics (i.e., small positive Λs are energetically preferred over not so small
positive Λs), we note that the same accumulation happens for AdS vacua
as well; that is, P (Λ) peaks (diverges) as Λ→ 0− [3]. Our universe rolling
down the landscape after inflation is unlikely to be trapped by a relatively
high dS vacuum, since there is hardly any around. However, since it has to
pass through the positive Λ region first, it is likely to be trapped at a small
positive Λ vacuum (as there are many of them) before reaching the sea of
AdS vacua with small negative Λ.
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2. An illustrative φ3/φ4 toy model

The statistical preference for a small Λ follows if the low energy effective
potential has no continuous free parameter and all sectors are connected via
interactions, as is the case in string theory; that is, it is a function of only
scalar fields or moduli, quantized flux values, discrete values like topological
indices, and calculable quantities like loop and string corrections, with no
disconnected sectors. To get some feeling on some of these features, let us
review the single scalar field polynomial model discussed. In this model,
gravity and so MP is absent. So the statistical preference for a small Λ
shows up only as the (properly normalized) probability distribution P (Λ)
peaks at Λ = 0, in particular when P (Λ) diverges there, i.e.,

(2.1) lim
Λ→0+

P (Λ)→∞

The divergence of P (Λ = 0) in this toy model is rather mild here, so it is far
from enough to explain the very small observed value of Λ (1.1); but it does
allow us to explain a few properties that are relevant for later discussions.
Consider the tree level potential,

(2.2) V0(φ) = a1φ+
a2

2
φ2 +

a3

3!
φ3 +

a4

4!
φ4

where φ is a real field, mimicking a modulus.
Imposing the constraint that the tree level V0 has no continuous free

parameter except some scale Ms, the parameters a1, a2, a3 and a4 mimic the
flux parameters that take only discrete values of order of the Ms scale, thus
spanning a “mini-landscape”. Let them take only real values for simplicity.
We may also choose units so Ms = 1. For a dense enough discretuum for
each flux parameter, a flux parameter may be treated as a random variable
with continuous value over some range. Let us look for dS solutions with flux
parameters a1, a2, a3, a4 ∈ [−1, 1] or some other reasonable ranges. We start
with the tree-level properties and then discuss the multi-loop corrections.

Starting with the tree-level effective potential V0(φ) (2.2), we impose
the stability M2 = ∂2

φV0|v0 > 0 at the extremal points given by ∂φV0

∣∣
v0

= 0,
with each vacuum expectation value v0 yielding Λ0(v0) = V0(v0) and

(2.3) M2
0 =

∂2V0

∂φ2

∣∣∣
v0

= +a2 + a3v0 + a4v
2
0/2 > 0

where λ = ∂M2

∂v = a3 + a4v0. Not all choices of fluxes yield a local minimum,
while some choices yield more than one minimum. We study three case: the
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φ3 model with a3 = 1 and with random a3, and the φ4 case with random
flux parameters {ai}. Using Eq.(1.2), we find P (Λ). The φ4 case is shown in
Figure 1. P (Λ) clearly peaks (i.e, diverges logarithmically) at Λ = 0. (Similar
divergence of P (Λ) emerges for the φ3 case.)

A few comments are in order here:
• V0(φ) (2.2) has no free parameter, as demanded by string theory. Here

we have chosen a flat distribution for each flux parameter. We do expect
the distributions Pi(ai) to be smooth and include ai = 0, since zero flux
value must be permitted. Actually, the peaking of P (Λ) is independent of
the precise distributions of Pi(ai), as long as they are relatively smooth.
• We are not allowed to introduce a “constant” or an independent flux

parameter a0 term by itself in V0(φ) (2.2), since it will be disconnected to the
φ terms in V0(φ). In string theory, everything is coupled to everything else,
directly or indirectly, at least via the closed string sector, which includes
gravity. For example, the following possibility is dis-allowed (i.e., in the
swampland),

V (φ) = V1(φ1) + V2(φ2)

if V1 and V2 are totally uncoupled. Here we can minimize V2(φ2) (for fixed
flux values in V2(φ2)) to obtain Λ2 so

V (φ) = V (φ1) + Λ2

where Λ2 is simply a constant term in V (φ) un-connected to φ1 or the flux
parameters in V1(φ1). In this case (dis-allowed by string theory), even if
both P1(Λ1) and P2(Λ2) peak at their respective zeros, P (Λ) does not peak
at Λ = Λ1 + Λ2 = 0.
• It is easy to show that P (Λ) similarly peaks at Λ = 0 if we include

higher terms (e.g., up to a a6φ
6/6! term) in V0(φ) (2.2).

• For vacuum energy, we may choose to introduce F 2
i /2 terms to V0(φ)

(2.2); for example,

E = V (φ) +
a2

1

2
in the φ3 case. We see that P (Λ) again peaks at Λ = 0. Notice that such flux
terms are coupled to φ. In actual string theory models, Fi = qini where, al-
though ni is an integer, the ”charge qi” is determined by dynamics, probably
some function of the moduli. So a pure F 2

i implies that some (presumably
heavier) moduli have already been stabilized to yield the charge qi. Adding
more flux terms into E may destroy the peaking behavior.
• Here we find the accumulation of vacua with Λ ' 0+. We note that

P (Λ) also peaks (diverges) as Λ→ 0− in this toy model. In fact, typical AdS
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solutions of V (ni, φj) involve 2 branches: supersymmetric vacua and non-
supersymmetric vacua, where the latter set mirrors the dS solutions (see
e.g., [3]). So for a given range of small |Λ|, we expect more AdS vacua than
dS vacua; that happens even before we relax the constraint to allow light
tachyons which do not destabilize the AdS vacua.
• Let us discuss the multi-loop contributions to the effective potential

V (φ). We see that the n-th loop contribution to V (φ), namely Vn(φ), is a
function of M2(φ), λ(φ) (2.3), and a4 only. At the one-loop level, V1(φ) is a
function of M2(φ) only. Simple dimensional reasoning yields

V (φ) = V0 +
∑
n≥1

Vn = M4F

(
λ2

M2
, ln(M2), a4

)
,

M2(φ) = V ′′0 (φ), λ(φ) = V ′′′0 (φ), a4(φ) = V ′′′′0 (φ),(2.4)

where each prime stands for a derivative with respect to φ and F (λ2/M2,
ln(M2), a4) is a polynomial in the dimensionless parameters λ2/M2, ln(M2)
and a4. More precisely, for n ≥ 1,

Vn =
M4

(4π)2n
fn
(
λ2/M2, ln(M2), a4

)
where fn is a polynomial up to n-th power in ln(M2), and (n− 1)-th (com-
bined) power in λ2/M2 and a4, with n-dependent coefficients which grow
much slower than the (4π)2n factor.

The key of a naturally small Λph depends on its functional dependence
on the flux values, which is different from that for Λ0. Here we consider
explicitly the one- and two-loop contributions to Λ and find the P (Λph) for
the one- and two-loop corrected cases, namely P (Λ1) and P (Λ2). At least
up to two-loops, P (Λph) continues to peak (diverge) at Λph = 0. In fact, the
loop corrected P (Λ) are essentially indistinguishable from the tree P (Λ0),
as shown in FIG 1. This is despite the fact that, for a specific choice of {ai}
that yields Λ0 = 0, Λ1 6= 0 and Λ2 6= 0 in general.

To summarize, the statistical preference for Λ = 0 is robust, for either
the tree-level Λ0 or the loop-corrected Λph. Although the functional depen-
dence of Λ on the flux parameters are different for Λ0 and Λph, nevertheless,
given the same probability distributions for the flux parameters, we see that
P (Λph) is essentially the same as P (Λ0). It will be nice to investigate the
above properties for more general quantum field theory models that satisfy
the stringy conditions: no free parameters except flux parameters and no
uncoupled sectors. Of course, the cases we are really interested in are the
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Figure 1: Probability distribution P (Λ) for the φ4 model (similar behaviors
for the φ3 model) for the tree-level and the one- and two-loop corrected
cases. The blue solid curve is for the tree-level P (Λ0), the red dashed curve
is for the one-loop corrected P (Λ1) and the green dot-dash curve is for the
two-loop corrected P (Λ2). We see that the loop-corrected and the tree P (Λ)s
are essentially on top of each other, showing that loop corrections have little
impact on the distribution P (Λ). In particular, the peaking behavior of P (Λ)
at Λ = 0 remains intact.

flux compactifications in string theory. However, we do gain some intuitive
understanding from examining this relatively simple model.

Actually we are interested only in the preferred values of the physical
Λ. However, including quantum effects fully is in general a very challeng-
ing problem in any theory. Fortunately, if one can argue that the peaking
behavior of P (Λ) is hardly modified by quantum corrections, as this model
suggests, a simpler tree-level result provides valuable information on the sta-
tistical preference of a small physical Λ. For ground states in string theory,
an effective potential description may be sufficient to capture the physics of
the value of Λ in some region of the landscape. We may hope that stringy
corrections will not qualitatively disrupt the statistical preference approach
adopted here.

2.1. Scalar masses in the toy model

We also like to propose that
A dS vacuum with a naturally small Λ tends to be accompanied by very

light scalar bosons.
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Consider the 4-dimensional effective action

(2.5) S =

∫
dx4√−g

[
−Λ +

M2
P

16π
R−

m2
H

2
Φ2
H + · · ·

]
where we have displayed all the relevant operators that are known to be
present in nature. If we ignore the Λ (the most relevant operator) term, then
we have two scales, MP � mH . Why the Higgs mass mH is so much smaller
than the Planck mass MP poses the well-known mass hierarchy problem.
Now knowing that a very small Λ is present in nature, we like to know its
origin. If its value arises via fine-tuning or by pure accident, we have to
consider MP as more fundamental and so are led back to the original mass
hierarchy problem. However, if the smallness of Λ arises naturally, in that
most of the de Sitter vacua in string theory tend to have a very small Λ, we
should expect some scalar masses comparable to the Λ scale, as is the case
in the string models examined. Following this viewpoint, we may instead
wonder why the Higgs mass is so much bigger than Λ, i.e., m2

H � Λ/M2
P

(an inverted mass hierarchy problem). Surely, we should re-examine the mass
hierarchy problem in this new light.

Along this direction, we show that the following scenario can easily hap-
pen: the physical mass-squared probability distribution Pj(m

2
j ) for some

scalar field φj may be peaked at m2
j = 0 but the peaking is less strong than

that for Λ. If the Higgs boson is such a particle, i.e., ΦH = φj , then it is
natural for

(2.6) Λ/M2
P � m2

H �M2
S �M2

P

This statistical preference approach allows us to circumvent the original
mass hierarchy problem; that is, a small Higgs mass is natural, not just
technically natural.

It is straightforward to find that P (m2) does not peak at m2 = 0 in the
above φ3/φ4 model, in every case considered, loop corrected or not. In more
realistic models, P (Λph) has to diverge at Λph = 0 much more sharply than
the logarithmical divergence shown in this model. In the non-trivial models
in string theory studied so far, we see that both P (Λph) for Λph and P (m2

ph)
for the some bosons prefer small values, while the peaking in P (Λph) is much
stronger than that in P (m2

ph). If one applies this to the Higgs boson in a
phenomenological model, the observed situation (2.6) can follow from their
statistical preferences.

The way of bypassing the radiative instability problem should also apply
to the masses as well when the probability distribution P (m2) for some
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scalar mass also peaks at m2 = 0. Furthermore, one may convince oneself
that this statistical preference for a small Λ also bypasses the disruptions
caused by phase transitions during the evolution of the early universe, as
the universe rolls down the landscape in search of a meta-stable minimum.
(See Discussion below.)

3. A Kähler uplift model of flux compactification

Here we summarize the results of a flux compactification model where the
AdS vacua are Kähler uplifted to dS vacua via the presence of an α′3 correc-
tion plus a non-perturbative term. Using reasonable probability distributions
for the flux values, it has been shown that the probability distribution P (Λ)
peaks sharply at Λ = 0, resulting in a median Λ comparable to the observed
value if the number of complex structure moduli h2,1 ∼ O(100).

To be specific, consider a Calabi-Yau-like three-fold M with a single
(h1,1 = 1) Kähler modulus and a relatively large h2,1 number of complex
structure moduli, so the manifold M has Euler number χ(M) = 2(h1,1 −
h2,1) < 0. The simplified model of interest was first studied in Ref[7], where
earlier references can be found. Setting MP = 1,

V = eK
(
KIJ̄DIWDJ̄W − 3 |W |2

)
,(3.1)

K = KK +Kd +Kcs

= −2 ln

(
V +

ξ̂

2

)
− ln

(
S + S̄

)
−

h2,1∑
i=1

ln
(
Ui + Ūi

)
,

V ≡ vol

α′3
= (T + T̄ )3/2, ξ̂ = − ζ(3)

4
√

2(2π)3
χ(M)

(
S + S̄

)3/2
> 0,

W = W0(Ui, S) +Ae−aT ,

W0(Ui, S) = c1 +

h2,1∑
i=1

biUi − S

(
c2 +

h2,1∑
i=1

diUi

)
+

h2,1∑
i,j

αijUiUj ,

The original model has h2,1 = 3 complex structure moduli. We simply take
this form and straight-forwardly generalize it to an arbitrary number of
complex structure moduli. In known models for h2,1 > 3, the potential is
actually somewhat different. However, this straightforward generalization,
though naive, allows us to solve the model semi-analytically, which is crucial
to obtain any numerical properties when h2,1 is large [4]. In this sense, our
model is at best semi-realistic.
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The flux contribution toW0(Ui, S) depends on the dilation S and the h2,1

complex structure moduli Ui (i = 1, 2, . . . , h2,1), while the non-perturbative
term for the Kähler modulus T is introduced in the superpotential W . The
dependence of A on Ui, S are suppressed. The model also includes the α′-
correction (the ξ̂ term) to the Kähler potential where ci, bi, di and the non-
geometric αij = αji are (real) flux parameters that may be treated as inde-
pendent random variables with smooth probability distributions that allow
the zero values. Here we are interested in the physical Λ (instead of, say,
the bare Λ), so the model should include all appropriate non-perturbative
effects, α′ corrections as well as radiative corrections. We see that the above
simplified model (3.1) includes a non-perturbative A term to stabilize the
Kähler modulus and the α′ correction ξ̂ term to lift the solution to de-Sitter
space. In the same spirit, all parameters in the model, in particular the cou-
pling parameters ci, bi, di and αij in W0 (3.1), should be treated as physical
parameters that have included all relevant corrections.

Now we sweep through the flux values ci, bi and di treating them as
independent random variables to find the probability distribution P (Λ). The
ranges of flux values are constrained by our weak coupling approximation
(i.e., s > 1) et. al.. For any reasonable probability distributions Pi(ci), Pi(bi)
and Pi(di), we find that P (Λ) peaks (and diverges) at Λ = 0. To quantify
this peaking behavior, it is convenient to summarize the result by looking
at ΛY%. That is, there is Y% probability that ΛY% ≥ Λ ≥ 0. So Λ50% is
simply the median. In Ref.[2], we find that (with αij = 0), as a function of
the number h2,1 of complex structure moduli, for h2,1 > 5 and Λ ≥ 0,

Λ50% ' 10−h
2,1−2M4

P

Λ10% ' 10−1.3h2,1−3M4
P

〈Λ〉 ' 10−0.03h2,1−6M4
P(3.2)

where we have also given Λ10%. We see that the average 〈Λ〉 does not drop
much, since a few relatively large Λs dominate the average value. A typical
flux compactification can have dozens or even hundreds of h2,1, so we see
that a Λ as small as that observed in nature can be dynamically preferred.
Scaler masses are of order [5],

m2M2
P /Λ ∼ O(1)

while axions are massless before non-perturbative interactions are included.
Presumably there are heavier scalar bosons that have been integrated out
in this model. Although their masses are by definition much heavier than
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the moduli masses just discussed, some of them can easily have masses that
are much smaller than the string scale MS .

4. Modulus masses in Racetrack Kähler uplift

The Kähler uplift model studied in the last section has a single non-
perturbative term in the superpotential W . To relax the constraint on the
volume size, we generalize the model to include two non-perturbative terms
in W , i.e., the racetrack model. (See Ref.[4] for details.) Unlike the Kähler
uplift model studied previously, the α′-correction is more controllable for
the meta-stable de-Sitter vacua in the racetrack case since the constraint
on the compactified volume size is very much relaxed. So the model admits
solutions with a large adjustable volume.

Interestingly, in this Racetrack Kähler uplift model, the stability con-
dition for both the real and imaginary sectors requires that the minima of
the potential V always exist for Λ ≥ 0 at large volumes. Further, the cos-
mological constant Λ is naturally exponentially suppressed as a function of
the volume size, and the resultant probability distribution P (Λ) for Λ gets a
sharply peaked behavior toward Λ→ 0, which can be highly divergent. This
peaked behavior of P (Λ) can be much sharper than that of the previous
Kähler Uplift model with a single non-perturbative term studied in [2]. So
an exponentially small median for Λ is natural.

The racetrack Kähler uplift model is similar to the above Kähler Uplift
model, but with one major addition. The super-potential W now has two
non-perturbative terms for the Kähler modulus T = t+ iτ instead of one,

(4.1) W = W0(Ui, S) +WNP = W0(Ui, S) +Ae−aT +Be−bT

where the coefficients a = 2π/N1 for SU(N1) gauge symmetry and b = 2π/N2

for SU(N2) gauge symmetry. In the large volume region and in units where
MP = 1, the resulting potential may be approximated to

V '
(
−a

3AW0

2

)
λ(x, y),(4.2)

λ(x, y) = −e
−x

x2
cos y − β

z

e−βx

x2
cos(βy) +

Ĉ

x9/2
,

x = at, y = aτ, z = A/B,

β = b/a = N1/N2 > 1, Ĉ = −3a3/2W0 ξ

32
√

2A
,
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The extremal conditions ∂tV = ∂τV = 0 may be solved. The typical values
of a, β and x are O(2π/16), O(1) and O(100) respectively, and the e−x factor
suggests very small Λ as well as moduli masses. After randomizing W0, A
and B, we collect the solutions and find that the probability distribution
P (Λ) for small positive Λ is approximately given by [4],

(4.3) P (Λ)
Λ→0∼ 243β1/2

16(β − 1)

1

Λ
β+1

2β (− ln Λ)5/2
.

So for β & 1, we see that the diverging behavior of P (Λ) is very peaked as
Λ→ 0. Since (β + 1)/2β < 1, P (Λ) is normalizable, i.e.,

∫
P (Λ)dΛ = 1. For

illustration, we have

β = 1.10 : Λ50 = 7.08× 10−10, Λ10 = 3.61× 10−24(4.4)

β = 1.04 : Λ50 = 5.47× 10−19, Λ10 = 2.83× 10−54(4.5)

where β = N!/N2 = 26/25 = 1.04. Choosing a gauge group larger than N2 =
25, β = N!/N2 = (N2 + 1)/N2 is closer to unity and the median Λ will take
values much closer to the the observed value (1.1). We also see that both t
and τ masses are exponentially suppressed. By using the small value of Λ,
we can obtain bounds on both masses [5],

m2
t

Λ
=

∂2
t V

2KT T̄Λ
≤ 9βx+ 30(β + 1)

a4(2βx− 5(β + 1))
,

m2
τ

Λ
=

∂2
τV

2KT T̄Λ
≤ 6x(3βx+ 10(β + 1))

a4 (4βx2 − 10(β + 1)x+ 35)
.(4.6)

Solving for x ∼ O(100), we see that the Kähler modulus masses are expo-
nentially small unless one fine-tunes one of the denominating factor to a
very small value. Presumably there are heavier scalar bosons that have been
integrated out in this simple model. Although their masses are much heavier
than t and τ , some of them can easily have masses that are much smaller
than the string or Planck scale.

5. Discussions

So far, we have a few looks at the global picture of some corners of the string
landscape. As illustrated by the Kähler uplift models and the racetrack
model discussed, we see hints that, of the meta-stable solutions, most of
them have very small Λ, while each such vacuum has very light bosons.
Here we like to discuss a few issues related to this property.
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Since P (Λ) is properly normaiized, even with a devregent P (Λ = 0) =
∞, the probability of having a universe with Λ ≡ 0 is zero. Furthermore,
the flux values are discrete, so the probability distribution P (a) of flux a is
non-zero only at discrete values of a. So Λ can be exponentially small, but
not exactly zero.

The string theory models studied in this paper are admittedly relatively
simple. Nonetheless, they incorporate known stringy properties in a consis-
tent fashion so they are non-trivial enough for us to learn about the structure
and dynamics of flux compactification in string theory. They clearly illus-
trate that a statistical preference for a very small physical Λ in the cosmic
landscape as a solution to the cosmological constant problem is a distinct
possibility. This way to solve the cosmological constant problem bypasses
the radiative instability problem. Associated with the very small Λ are very
light moduli masses. So this offers the possibility of having light bosons via
statistical preference as well. It is important to point out that this solution
or explanation is possible because of the existence of the landscape. Com-
paring to the earlier works [6] where explicit interactions among the moduli
and fluxes are not taken into account, we see that the statistical preference
for a small Λ (and at times some scalar masses) emerges only when cou-
plings are included. Intuitively, in examining the models studied (albeit a
rather limited sample), more fluxes and moduli with more couplings among
them tend to enhance or at least maintain the divergence of P (Λ) at Λ = 0.
This is encouraging, since higher order corrections and more realistic (and
so more complicated) models are very challenging to study.

What happens when finite temperature and phase transition appear?
Suppose the Universe starts out at a random point somewhere high up in the
landscape, at zero temperature (for zero temperature, we mean zero thermal
temperature, not the Gibbons-Hawking temperature H/2π =

√
2V/3π/MP ,

which is assumed to be negligible here). It rolls down and ends up in a local
minimum. Because it starts from a random point, this minimum may be
considered to be randomly chosen. If most of the vacua have a small Λ, it is
likely that this minimum is one of these small Λ vacua. What happens if we
turn on a finite temperature T? We have essentially the same landscape, but
is starting from a different point up in the landscape, so the evolution of the
Universe will be different and possibly ending at a different local minimum,
also randomly chosen. As temperature T → 0, we find that the chosen local
vacuum at T probably turns out to have a small Λ at T = 0, because most
vacua at T = 0 have a small Λ. If the chosen local vacuum has a critical
temperature Tc < T , phase transition happens as T drops below Tc. If this
is a second order phase transition, then the Universe will roll away to another
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local minimum, which is likely to have a small Λ as T → 0, because most
vacua at T = 0 have a small Λ. If it is a first order phase transition, the
Universe will stay at this vacuum as T → 0 (before tunneling). This vacuum
should have a small ?, because most vacua at T = 0 have a small ?. In all
cases, we see that the Universe most likely end up in a vacuum with a small
Λ. It is possible that this same vacuum has a relatively large Λ at finite T .

In terms of cosmology, one may wonder why the dark energy is so large,
contributing to about 70% of the content of our universe. However, from the
fundamental physics point of view, the puzzle is why it is so small, when we
assume that the scale of gravity is dictated by the Planck scale MP which
is so much bigger. In our new picture, once we are willing to accept that the
smallness of Λ has a fundamental explanation like the statistical preference
employed here, the question is again reversed. For example, in the viewpoint
adopted here, we see that typical moduli mass scales are guided by Λ, not
MP . That is, some of the bosonic/axionic masses are small enough to play
the role of fuzzy dark matter.

Once we accept that both Λ and MP have their respective places in
the theory (that is, generated by string theory dynamics ,with string scale
MS , not via fine-tuning), the presence of some intermediate mass scales
such as the Higgs boson mass should not be so surprising. We see that the
probability distribution P (m2) of bosonic mass m2 does not peak at m2 = 0
in the φ3/φ4 model. In the string theory models, one envisions scenarios
where some bosonic masses have a statistical preference for small values, but
such preference is not as strong as that for Λ. So the Higgs mass mH = 125
GeV may fit in in such a scenario, thus evading the usual mass hierarchy
problem for the Higgs boson. The scenario also offers the possibility that
very light bosons can be present as the dark matter in our universe. In
fact, any small number (e.g., the θ angle, light quark or neutrino masses in
the standard electroweak model) in nature may be due to some level of a
statistical preference without fine-tuning. Of course, we expect that heavier
scalar bosons are generically present in a realistic string model, but they
may have been integrated out in the low energy effective theory studied in
the literature. One can imagine that some of these ”heavy” scalar bosons
have masses order-of-magnitude smaller than the string or the Planck scales.

The string theory models considered so far are necessarily relatively
simple, to allow semi-analytic studies. It will be important to consider more
realistic versions (for example, the form of the Kähler potential and couplings
among moduli) to see if such statistical preference for small Λ and small
bosonic masses are robust. In the search for the standard model within string
theory, it may be fruitful to narrow the search of the three family standard
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model only in the region of the landscape where order of magnitude mass
scales as well as Λ come out in the correct range.
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