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New symmetries of QED
Daniel Kapec, Monica Pate, and Andrew Strominger

The soft photon theorem in U(1) gauge theories with only massless
charged particles has recently been shown to be the Ward iden-
tity of an infinite-dimensional asymptotic symmetry group. This
symmetry group is comprised of gauge transformations which ap-
proach angle-dependent constants at null infinity. In this paper,
we extend the analysis to all U(1) theories, including those with
massive charged particles such as QED.

1. Introduction

The soft photon theorem [1–5] has played a ubiquitous role in the study of
QED and more general abelian gauge theories. For example, it is essential for
taming otherwise uncontrollable infrared divergences in the S-matrix and is
central to the analysis of jet substructure. Recent considerations [6–14] have
demonstrated that, in abelian gauge theories with only massless charged
particles, the soft theorem is a Ward identity of an infinite-dimensional
symmetry group comprised of certain ‘large’ gauge transformations which
do not die off at infinity. These symmetries are spontaneously broken and
the soft photons are the Goldstone bosons. This is but one instance of a
recently-discovered universal triangle connecting soft theorems, symmetries
and memory in gauge and gravitational theories [10–34].

Of course in the real world QED has massive, not massless, charged
particles. Hence, it is desirable to extend our results to the massive case.
That goal is achieved in this paper. As seen below, the massive case is rather
more subtle than the massless one and requires a careful analysis of timelike
infinity.

We hope that the identification given herein of the symmetry which con-
trols the electromagnetic soft behavior of QED and more generally, the Stan-
dard Model will have practical utility for organizing and predicting a variety
of physical phenomena.

The outline of the paper is as follows. In section 2, we establish con-
ventions and review relevant aspects of abelian gauge theories and their
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asymptotic symmetries. In section 3, we discuss the asymptotic states, de-
rive the Ward identity of the asymptotic symmetries, and demonstrate its
equivalence to the soft photon theorem.

A key ingredient of our analysis is that, in physical applications, the elec-
tromagnetic field is generically1 not smooth near spatial infinity i0. Rather
it obeys a matching condition near i0 which identifies its value at the future
of past null infinity (I−+ ) with its value at the antipodal point on the sphere
at the past of future null infinity (I+

− ). In the appendix, we show in detail
how this follows from the standard Lienard-Wiechert formulae.

After completion of this work, we received the eprint [35] by Campiglia
and Laddha who independently arrive at the same conclusions. They use an
elegant method involving a natural hyperbolic slicing of Minkowski space.

2. Abelian gauge theory with massive matter

We consider the theory of an abelian gauge field Aµ coupled to massive
matter fields Ψi with charges eQi, where Qi is an integer, in Minkowski
space. In retarded coordinates, the Minkowski metric reads

(2.1) ds2 = −dt2 + (dxi)2 = −du2 − 2dudr + 2r2γzz̄dzdz̄,

where u is retarded time and γzz̄ is the round metric on the unit radius
S2 with covariant derivative Dz. The S2 coordinates (z, z̄) are related to
standard Cartesian coordinates by

(2.2) r2 = xix
i, u = t− r, xi = rx̂i(z, z̄).

In retarded coordinates, future null infinity (I+) is the null hypersurface
(r =∞, u, z, z̄).

Near past null infinity (I−), we work in advanced coordinates (v, r, z, z̄)
with line element

(2.3) ds2 = −dv2 + 2dvdr + 2r2γzz̄dzdz̄.

Advanced coordinates are given by

(2.4) r2 = xix
i, v = t+ r, xi = −rx̂i(z, z̄),

1For instance when, as in electron-positron scattering, the dipole moment is not
constant in the far past or future.
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and I− corresponds to the null hypersurface (r =∞, v, z, z̄). Note in par-
ticular that the angular coordinates on I+ are antipodally related to those
on I− so that a light ray passing through the interior of Minkowski space
reaches the same value of z, z̄ at both I+ and I−. We denote the future
(past) boundary of I+ by I+

+ (I+
− ), and the future (past) boundary of I−

by I−+ (I−− ).
We consider theories with a U(1) gauge field strength F = dA subject to

the Maxwell equation

(2.5) ∇µFµν = e2Jν ,

where Jν is the matter charge current. This is invariant under the gauge
transformations

(2.6) Aµ(x)→ Aµ(x) + ∂µε(x), Ψi(x)→ eiQiε(x)Ψi(x),

where ε ∼ ε+ 2π and Ψi is a wavefunction or field. Gauge transformations
that vanish at infinity correspond to redundant descriptions of the same
physical state and can be eliminated by a choice of gauge. However, as in
the massless case [11], we are interested in certain angle-dependent large
gauge transformations which act non-trivially on physical states.

2.1. Asymptotics

We now analyze the behavior of the theory near I+ in retarded radial gauge

(2.7) Ar = 0, Au|I+ = 0.

This gauge choice leaves unfixed a class of residual large gauge transfor-
mations parameterized by an arbitrary function ε+(z, z̄) on S2. These gauge
transformations change boundary data at I+ and are to be regarded as phys-
ical symmetries of the theory. Near I+, we assume the asymptotic expansion

(2.8) Au =

∞∑
n=1

A
(n)
u (u, z, z̄)

rn
, Az =

∞∑
n=0

A
(n)
z (u, z, z̄)

rn
.

A similar asymptotic expansion holds for fields near I−.
We are interested in scattering processes for which the initial and final

states consist of non-interacting massive charges moving at constant veloci-
ties. Hence, we require that the only contribution to the electric and magnetic
fields at future/past timelike infinity (i±, t→ ±∞) are those fields sourced
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by the constant velocity massive charges, and that the magnetic fields vanish
at spatial infinity:

(2.9) Fzz̄|I+− = 0, Fzz̄|I−+ = 0.

In retarded coordinates, Maxwell’s equations read

r−2∂r(r
2Fru)− ∂uFru + r−2(DzFzu +Dz̄Fz̄u) = e2Ju,(2.10)

r−2∂r(r
2Fru) + r−2(DzFzr +Dz̄Fz̄r) = e2Jr,(2.11)

∂r(Frz − Fuz)− ∂uFrz + r−2Dz̄Fz̄z = e2Jz.(2.12)

Massive particles with finite energy cannot reach I, so the matter current
vanishes at this surface:

(2.13) Jµ|I = 0.

The leading order equation for the evolution of the gauge field along I+ is
then given by

(2.14) ∂uF
(2)
ru + ∂u(DzA(0)

z +Dz̄A
(0)
z̄ ) = 0.

The free data at this order includes the boundary data F (2)
ru |I+− along with

the radiative mode A(0)
z (u, z, z̄).

In advanced coordinates, we can perform the analogous large-r expansion
near I− and obtain the leading order equation

(2.15) ∂vF
(2)
rv − ∂v(DzA(0)

z +Dz̄A
(0)
z̄ ) = 0.

The free data at this boundary includes the field strength boundary data
F

(2)
rv |I−+ along with the radiative mode A(0)

z (v, z, z̄). The residual large gauge
symmetry is parameterized by an arbitrary function ε−(z, z̄) on S2.

2.2. Matching near spatial infinity

The above discussion treats the asymptotic dynamics at I+ and I− sepa-
rately. However, to study the semiclassical scattering problem, we must first
specify how to relate free data and symmetry transformations at I+ to their



i
i

“7-Strominger” — 2018/3/14 — 0:04 — page 1773 — #5 i
i

i
i

i
i

New symmetries of QED 1773

counterparts at I−. Generic solutions to the sourced Maxwell equations sat-
isfy2

(2.16) F (2)
ru (z, z̄)|I+− = F (2)

rv (z, z̄)|I−+ .

Recalling that, according to (2.2) and (2.4), the points labelled by the same
(z, z̄) in retarded and advanced coordinates are antipodally related, this
equates the boundary values of past and future fields at antipodal points
near spatial infinity i0. As discussed in [11, 31], a CPT and Lorentz-invariant
matching condition for the gauge field is given by

Az(z, z̄)
∣∣
I+−

= Az(z, z̄)
∣∣
I−+
.(2.17)

Requiring that the large gauge transformations preserve this matching con-
dition gives:

ε+(z, z̄) = ε−(z, z̄).(2.18)

This matching condition singles out a canonical diagonal subgroup of the
large gauge transformations at I+ and I−. The corresponding gauge pa-
rameters are constant along the null generators of I and generate nontrivial
physical symmetries of the S-matrix.

2.3. Mode expansions

The standard mode expansion for the gauge field in the plane wave basis
takes the form

(2.19) Aµ(u, r, z, z̄) = e
∑
α

∫
d3q

(2π)3

1

2ωq
[ε∗αµ (~q)aα(~q)eiq·x + εαµ(~q)aα(~q)†e−iq·x].

The free data is contained in the O(r0) term in this expansion, which we
may isolate using the saddle point approximation:

A(0)
z (u, z, z̄) = − ie

2(2π)2
∂zx̂

i(2.20)

×
∑
α

∫ ∞
0

dωq[ε
∗α
i aα(ωqx̂)e−iωqu − εαi aα(ωqx̂)†eiωqu].

2See appendix for an expanded discussion of this matching condition.
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To extract the contribution from the zero modes, we define the following
operator:

Fωuz(z, z̄) ≡
∫ ∞
−∞

du eiωu∂uA
(0)
z (u, z, z̄)(2.21)

= − e

4π
∂zx̂

i
∑
α

∫ ∞
0

dωq ωq

[
ε∗αi aα(ωqx̂)δ(ω − ωq)

+ εαi aα(ωqx̂)†δ(ω + ωq)
]
.

We can separate this operator into its positive and negative frequency com-
ponents

(2.22)

Fωuz(z, z̄) = −eω
4π
∂zx̂

i
∑
α

ε∗αi aα(ωx̂),

F−ωuz (z, z̄) = −eω
4π
∂zx̂

i
∑
α

εαi aα(ωx̂)†,

with ω > 0 in both expressions. The zero mode is then given by

F 0
uz(z, z̄) ≡ 1

2 lim
ω→0

(
Fωuz + F−ωuz

)
(2.23)

= − e

8π
∂zx̂

i lim
ω→0

∑
α

[
ωε∗αi aα(ωx̂) + ωεαi aα(ωx̂)†

]
,

and creates/annihilates soft photons. An analogous construction holds at I−
with the incoming soft photon operator given by

F 0
vz(z, z̄) =

e

8π
∂zx̂

i lim
ω→0

∑
α

[
ωε∗αi aα(−ωx̂) + ωεαi aα(−ωx̂)†

]
.(2.24)

2.4. Lienard-Wiechert fields

In the analysis that follows, we will need expressions for the electric field
due to moving point charges, commonly known as Lienard-Wiechert fields.
The radial electric field due to a single particle of charge eQ, moving with
constant velocity ~β and passing through the origin at t = 0 is given by

(2.25) Er(t, r, z, z̄) =
Qe2

4π

γ(r − tx̂(z, z̄) · ~β)

|γ2[t− rx̂(z, z̄) · ~β]2 − t2 + r2|3/2
.

Here x̂(z, z̄) is a unit vector specifying a point on the sphere and γ−2 =
1− β2.
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The Lienard-Wiechert field near I+ due to a set of particles, each with
charge eQk and moving with constant velocity ~βk is derived by taking a
superposition of the single-particle fields (2.25), writing them in retarded
coordinates, and taking the large-r limit with u = t− r held fixed

(2.26) E+
r (z, z̄) =

∑
k

Qke
2

4πγ2
kr

2

1

[1− x̂(z, z̄) · ~βk]2
.

Likewise, the field near I− is derived by taking the large-r limit of the field
(2.25) in advanced coordinates with fixed v

(2.27) E−r (z, z̄) =
∑
k

Qke
2

4πγ2
kr

2

1

[1 + x̂(z, z̄) · ~βk]2
.

Importantly, the Lienard-Wiechert formula (2.25) implies that the value
of Er near spatial infinity i0 depends on how it is approached. In particular,
E+
r and E−r at a fixed angle from the origin are not in general equal near i0:

rather they obey the antipodal matching condition (2.16).3

For unaccelerated charges, the asymptotic electric field and the asymp-
totic magnetic field ~B = x̂× ~E are time-independent. Since the “hard” radia-
tive photons involved in the scattering process exit/enter I± at finite values
of retarded/advanced time, the electromagnetic fields at I+

+ and I−− arise
solely from the collection of charged particles long after/before the scatter-
ing process occurs and thus are of the form given above.

3. Symmetries of the S-matrix

In this section we determine the phase associated to a large gauge transfor-
mation on an asymptotic massive charged particle state, find the S-matrix
Ward identity and finally demonstrate its equivalence to the soft photon
theorem.

3.1. Gauge transformations of asymptotic states

Outgoing massless particles of charge eQ and momentum p, as considered
in [11], pierce I+ at a definite point (z(p), z̄(p)). The associated out-state

3The constant-velocity trajectory considered in this section gives rise to a
Lienard-Wiechert field that is insensitive to the choice of Green’s function. In the
appendix, we consider slightly more complicated trajectories to demonstrate that
this matching condition holds for a generic Green’s function.
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therefore acquires a phase

(3.1) |p〉out → eiQε(z(p),z̄(p))|p〉out

under a large gauge transformation. Here we are interested in massive parti-
cles that never reach I+, so determining the associated phase is more subtle.
There is no canonical point on the S2 associated to a massive particle in
the plane wave basis.4 Indeed a massive particle with zero three-momentum
is rotationally invariant. In this subsection, we use the Lienard-Wiechert
formula to determine the analog of the phase (3.1).

The asymptotic states associated to the QED S-matrix are typically
taken to be free photons and “bare” non-interacting charged particles. How-
ever, the “bare” electron states are not strictly speaking bare (nor are they
non-interacting) in the sense that they source non-vanishing electromagnetic
fields. These long-range fields accompanying the scattering states are re-
sponsible for the infrared divergences in the loop-level matrix elements: even
widely separated electrons experience a non-zero acceleration, causing them
to bremsstrahlung radiate infinite numbers of low-energy photons. Physi-
cally, it is impossible to separate a charged particle from its electromagnetic
field. Mathematically, the ability to do so would violate Gauss’s law, which
is a constraint in the quantum theory in physical gauges:

(3.2)
[
∇ · ~E(x, t)− e2ρ(x, t)

]
|phys〉 = 0.

This sourced electromagnetic field can be treated as a classical background,
while the transverse photons describe excitations of the quantized, unsourced
electromagnetic field. Since outgoing charged particle states with momentum
pµ = γm[1, ~β] source Lienard-Wiechert fields, the action of the electric field
at I+

+ is non-trivial and given by

(3.3) Er(r, z, z̄)|p〉out =

[
Qe2

4πγ2r2

1

[1− x̂(z, z̄) · ~β]2

]
|p〉out.

4Since plane waves of massless particles localize to points on the conformal sphere
at null infinity, they are related to local operator insertions on that sphere. Likewise,
massive particles in boost eigenstates are also associated to local points on the
sphere.
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Then, since gauge transformations are generated by the electric charge op-
erator, under a large gauge transformation, such a state acquires a phase

|p〉out → exp

[
i

1

e2

∫
I++
d2z γzz̄ε

+F (2)
ru

]
|p〉out(3.4)

= exp

[
i

∫
I++
d2zγzz̄ε

+

(
1

4πγ2

Q

[1− x̂(z, z̄) · ~β]2

)]
|p〉out.

Similarly, in-states transform as

(3.5) |p〉in → exp

[
i

∫
I−−
d2zγzz̄ε

−

(
1

4πγ2

Q

[1 + x̂(z, z̄) · ~β]2

)]
|p〉in.

For an n-particle state, the phase will be a sum of n such terms. This phase
replaces the much simpler expression (3.1) for massless particles but never-
theless, as will be seen shortly, precisely reproduces the soft factor for massive
particles.

3.2. Ward identity

We are now in a position to discuss the symmetries of the S-matrix. The
symmetry transformations (2.6) for massless matter fields have already been
analyzed in [11], where it was demonstrated that the charge

(3.6) Q+
ε =

1

e2

∫
I+−
d2zγzz̄ε

+(z, z̄)F (2)
ru (z, z̄)

generates the correct I+ symmetry transformation on the gauge field and
matter fields. The form of this charge is essentially fixed by the transforma-
tion law for the gauge field. We can use the leading order Maxwell equation
(2.14) to turn this expression into an integral over I+. As discussed in section
2.4, the existence of massive particles generates charge flux through future
timelike infinity, so the local charge operator takes the form

Q+
ε =

1

e2

∫
I+
γzz̄dud

2z ε+∂u(DzA(0)
z +Dz̄A

(0)
z̄ ) +

1

e2

∫
I++
d2z γzz̄ε

+F (2)
ru

≡ 1

e2

∫
S2

γzz̄d
2z ε+(DzF 0

uz +Dz̄F 0
uz̄) +

1

e2

∫
I++
d2z γzz̄ε

+F (2)
ru .(3.7)

The first piece of the charge is written in terms of the soft photon operator
and will be referred to as the soft charge Q+

S . If we consider the fixed-angle
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charge by choosing ε(z, z̄) = δ2(z − w), then the second term is simply the
radial electric field in the direction (w, w̄) resulting from the charged particles
in the final state at i+. We label this term the hard charge Q+

H . It differs
from the expression for the hard charge in the massless case which involves
an integral over I+.

An analogous computation can be performed at I−, where the hard
charge encodes the radial electric field of the charged particles in the initial
state at i−. The charge is given by

Q−ε =
1

e2

∫
S2

γzz̄d
2z ε−(DzF 0

vz +Dz̄F 0
vz̄) +

1

e2

∫
I−−
d2z γzz̄ε

−F (2)
rv(3.8)

≡ Q−S +Q−H .

The statement that the transformations (2.6) are symmetries of the S-
matrix is equivalent to the statement that the charges (3.7) and (3.8) com-
mute with the S-matrix:

〈out|
(
Q+
ε S − SQ−ε

)
|in〉 = 0.(3.9)

In order to facilitate comparison with the soft theorem, we separate the hard
and soft contributions and rearrange the Ward identity:

〈out|
(
Q+
SS − SQ

−
S

)
|in〉 = −〈out|

(
Q+
HS − SQ

−
H

)
|in〉.(3.10)

3.3. Soft theorem → Ward identity

The soft photon theorem for the emission of an outgoing photon in a scat-
tering process with m incoming hard particles and (n−m) outgoing hard
particles reads

lim
ω→0

ω〈pm+1, . . . |aα(q)S|p1, . . . 〉(3.11)

= eω

[
n∑

k=m+1

Qk
pk · εα
pk · q

−
m∑
k=1

Qk
pk · εα
pk · q

]
〈pm+1, . . . |S|p1, . . . 〉.

A null momentum vector is uniquely specified by an energy and a point z on
the asymptotic sphere, and so we parameterize the photon’s momentum as

(3.12) qµ = ω[1, x̂(z, z̄)] ≡ ωq̂µ(z, z̄),

where x̂ : S2 → R3 is an embedding of the sphere into flat three-dimensional
space.
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We parameterize a massive particle’s momentum as

(3.13) pµk = γkmk[1, ~βk],

where m is the rest mass of the particle, ~β is the particle’s velocity and γ is
the relativistic factor γ−2 = 1− β2.

We can relate the left-hand side of equation (3.11) to the zero mode oper-
ator defined in equation (2.23) by taking a weighted sum over polarizations.
If we perform the analogous operation on the right-hand side and use the
identity

∂zx̂
i(z, z̄)

∑
α

ε∗αi
pk · εα

pk · q̂(z, z̄)
= ∂z log(pk · q̂),(3.14)

the soft theorem can be written

〈pm+1, . . . |F 0
uzS|p1, . . .〉(3.15)

= − e
2

8π

[
n∑

k=m+1

Qk ∂z log(pk · q̂)−
m∑
k=1

Qk ∂z log(pk · q̂)

]
× 〈pm+1, . . . |S|p1, . . .〉.

The soft photon theorem for an incoming soft photon reads

lim
ω→0

ω〈pm+1, . . . |Saα(q)†|p1, . . . 〉(3.16)

= −eω

[
n∑

k=m+1

Qk
pk · ε∗α
pk · q

−
m∑
k=1

Qk
pk · ε∗α
pk · q

]
〈pm+1, . . . |S|p1, . . . 〉.

An identical calculation yields

〈pm+1, . . . |SF 0
vz|p1, . . .〉(3.17)

=
e2

8π

[
n∑

k=m+1

Qk ∂z log(pk · q̂′)−
m∑
k=1

Qk ∂z log(pk · q̂′)

]
× 〈pm+1, . . . |S|p1, . . .〉,

where q̂′ = [1,−x̂i(z, z̄)]. Taking the divergence of each equation, using global
charge conservation, and integrating against the respective gauge parameter,
we find
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〈pm+1, . . . |
(∫

S2

d2zγzz̄ε
+(DzF 0

uz +Dz̄F 0
uz̄)

)
S|p1, . . .〉(3.18)

= −1

2

∫
S2

d2zγzz̄ε
+r2
(

[E+
r ]out − [E+

r ]in

)
〈pm+1, . . . |S|p1, . . .〉

and

〈pm+1, . . . |S
(∫

S2

d2zγzz̄ε
−(DzF 0

vz +Dz̄F 0
vz̄)

)
|p1, . . .〉(3.19)

=
1

2

∫
S2

d2zγzz̄ε
−r2
(

[E−r ]out − [E−r ]in

)
〈pm+1, . . . |S|p1, . . .〉.

Taking the difference and using the matching conditions (2.16)–(2.18), we
obtain

〈pm+1, . . . |Q+
SS − SQ

−
S |p1, . . .〉(3.20)

= − 1

e2

∫
S2

d2zγzz̄r
2
(
ε+Er

∣∣
I++
− ε−Er

∣∣
I−−

)
〈pm+1, . . . |S|p1, . . .〉

= −〈pm+1, . . . |Q+
HS − SQ

−
H |p1, . . .〉.

This precisely reproduces the Ward identity (3.10).
In conclusion, while the details are more intricate than the massless

case, the soft photon theorem is the Ward identity of an infinite-dimensional
asymptotic symmetry group for abelian gauge theories with massive par-
ticles. We expect similar conclusions apply to other contexts such as non-
abelian gauge theory and gravity.
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Appendix A. Gauge field strength near i0

In this section, we consider an idealized semiclassical scattering process in
which m incoming massive particles with constant velocities {~β1, . . . , ~βm}
scatter to (n−m) outgoing massive particles with constant velocities
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{~βm+1, . . . , ~βn}. For scattering occurring at the origin at t = 0, the semiclas-
sical electromagnetic current is given by

jµ(x) =

m∑
k=1

Qk

∫
dτUkµΘ(−τ)δ(4)(x− Ukτ)(A.1)

+

n∑
k=m+1

Qk

∫
dτUkµΘ(τ)δ(4)(x− Ukτ),

where Ukµ = γk[1, ~βk] is the 4-velocity of the kth particle. Ignoring the ra-
diative contributions arising from the infinite acceleration of particles at the
origin, the field strength sourced by this current takes the form

Frt(x) =
e2

4π

m∑
k=1

g(x; ~βk) Qkγk(r − tx̂ · ~βk)
|γ2
k [t− rx̂ · ~βk]2 − t2 + r2|3/2

(A.2)

+
e2

4π

n∑
k=m+1

h(x; ~βk) Qkγk(r − tx̂ · ~βk)
|γ2
k [t− rx̂ · ~βk]2 − t2 + r2|3/2

,

where the functional form of g and h depends on the choice of Green’s
function.

For the retarded solution, the asymptotic behavior of g and h is given by

g(r =∞, u, x̂; ~βk) = Θ(−u), h(r =∞, u, x̂; ~βk) = Θ(u),(A.3)

g(r =∞, v, x̂; ~βk) = 1, h(r =∞, v, x̂; ~βk) = 0.(A.4)

The electric field at I+
− is obtained by working in retarded coordinates and

taking the limit r →∞, followed by the limit u→ −∞. This electric field
will be of the form (2.26), but only receives contributions from the incoming
particles. On the other hand, the electric field at I−+ is obtained by working
in advanced coordinates and taking the limit r →∞, followed by the limit
v → +∞. The electric field measured at I−+ will be of the form (2.27), but will
also only receive contributions from the incoming particles, thereby satisfying
the matching condition (2.16).

Likewise, for the advanced solution, the asymptotic behavior of g and h
is given by

g(r =∞, u, x̂; ~βk) = 0, h(r =∞, u, x̂; ~βk) = 1,(A.5)

g(r =∞, v, x̂; ~βk) = Θ(−v), h(r =∞, v, x̂; ~βk) = Θ(v).(A.6)
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Hence, the advanced solution also obeys the matching condition (2.16) near
i0, but in contrast to the retarded solution, only receives contributions from
the outgoing particles. Moreover, linear combinations of the advanced and
retarded solutions evaluated near i0 will obey the matching condition and
receive contributions from both outgoing and incoming particles.

Of course, one could always add a homogeneous solution to the free
Maxwell equations which does not obey the matching condition. However,
we do not know of any physical application in which it is natural to do so:
finite energy wave packets die off at i0. Hence, we conclude that the antipodal
matching condition (2.16) holds in generic physical applications.
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