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Asymptotic symmetries of massless QED
in even dimensions

Daniel Kapec, Vyacheslav Lysov, and Andrew Strominger

We consider the scattering of massless particles coupled to an
abelian gauge field in 2n-dimensional Minkowski spacetime. Wein-
berg’s soft photon theorem is recast as Ward identities for infinitely
many new nontrivial symmetries of the massless QED S-matrix,
with one such identity arising for each propagation direction of
the soft photon. These symmetries are identified as large gauge
transformations with angle-dependent gauge parameters that are
constant along the null generators of null infinity. Almost all of
the symmetries are spontaneously broken in the standard vacuum
and the soft photons are the corresponding Goldstone bosons. Our
result establishes a relationship between soft theorems and asymp-
totic symmetry groups in any even dimension.

1. Introduction

Recent work [1–6] has connected long understood soft theorems [7–11] for
gauge theory and gravity scattering amplitudes to Ward identities for asymp-
totic symmetry groups of massless interacting theories coupled to gauge
theory and gravity in four dimensions. While several of the soft theorems
have been known and understood since the 1960’s, many of their associated
asymptotic symmetry groups have only recently drawn attention. Conjec-
tures stemming from the correspondence have led to the discovery and in-
vestigation of new soft theorems in four dimensions [12–20], many of which
were subsequently identified with asymptotic symmetry groups [4, 5, 21].
The leading and subleading soft theorems have been investigated at loop
level [22–25], in the context of string and (ambi)-twistor string theory [26–
30], and have been shown to hold in higher dimensions [31–34]. Some of the
asymptotic symmetry groups associated to these new soft theorems, such
as the extended BMS group, were previously conjectured [35–38], while the
nature of others [5] remains unknown.
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1748 D. Kapec, V. Lysov, and A. Strominger

Although much work has been done, many questions remain unanswered.
The tree-level leading soft-theorem is universal among all theories in arbi-
trary dimensions. Such striking universality can only be a reflection of an
underlying symmetry. Motivated by the established correspondence between
soft theorems and asymptotic symmetries in four dimensions and the exis-
tence of the soft theorems in higher dimensions, we are led to consider the
leading soft theorem in massless QED in even-dimensional Minkowski space-
time. The odd-dimensional case is of course also of interest but has additional
subtleties which require a separate investigation. We recast the soft theorem
in the form of a Ward identity for a new group of asymptotic symmetries.
The asymptotic symmetry group in d = 2m+ 2 dimensions is the subgroup
of the local U(1) large gauge transformations with a gauge parameter given
by an unconstrained function on the S2m. Our result generalizes the anal-
ysis performed in the four dimensional case [6], further strengthening the
relationship between soft theorems and asymptotic symmetries in all even
dimensions.

We work in the semiclassical limit and therefore prove the result only at
tree-level. However, given that the leading QED soft factor is not renormal-
ized in four dimensions, the result may be exact. Although massless QED
is not renormalizable in dimensions greater than four, we are interested in
infrared effects where two derivative theories minimally coupled to matter
fields serve as good low energy effective theories. The infrared structure of
gauge theories is simpler in d > 4 due to the absence of soft divergences, so
we hope that studying the soft theorems and associated asymptotic symme-
tries in higher dimensions will help to clarify the fate of the new symmetries
in the presence of loop corrections both in d = 4 and d > 4.

This paper is organized as follows. In Section 2 we review the structure
of massless QED in d = 2m+ 2 dimensions and establish our coordinates
and conventions. In Section 3 we restrict our attention to six dimensions for
illustrative purposes. We determine appropriate boundary conditions and
introduce the gauge field mode expansions and the relevant soft photon op-
erators. In Section 4 we rewrite Weinberg’s soft theorem as a Ward identity
for local charge operators involving the matter current and the soft photon
operators. In Section 5 we demonstrate that these charges generate a new
asymptotic symmetry group, which is a subgroup of the original U(1) gauge
group. In Section 6 we discuss how to generalize our result to the arbitrary
even-dimensional case.
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Asymptotic symmetries of massless QED 1749

2. Maxwell’s equations in even dimensional Minkowski
spacetime

Abelian gauge theory in d = 2m+ 2 dimensional flat Minkowski spacetime
is governed by Maxwell’s equations

(2.1) ∇µFµν = e2JMν ,

where Fµν = ∂µAν − ∂νAµ, JMν is the matter current density, and e is the
coupling constant of the theory. The equations (2.1) are invariant under local
gauge transformations of the form

(2.2) Aµ → Aµ + ∂µε, ΨQ → eiQεΨQ,

where ΨQ is a matter field with electric charge Q. It is useful to introduce
retarded coordinates (u, r, za) given by

(2.3) x0 = u+ r, xi = rx̂i(z),

where u is retarded time and x̂i(z) describes an embedding of the unit
S2m with coordinates za, a = 1, . . . , 2m into R2m+1 with coordinates xi, i =
1, . . . , 2m+ 1. The flat Minkowski metric then takes the form

(2.4) ds2 = −(dx0)2 + (dxi)2 = −du2 − 2dudr + r2γabdz
adzb.

Here γab is the metric on the unit radius S2m with covariant derivative Da.
In the conformal compactification of Minkowski spacetime, we can identify
future null infinity (I+) as the null surface (r =∞, u, za). We also employ
advanced coordinates

(2.5) x0 = v − r, xi = −rx̂i(z),

so that past null infinity (I−) is identified as the surface (r =∞, v, za) and

(2.6) ds2 = −dv2 + 2dvdr + r2γabdz
adzb.

The advanced S2m coordinate z is antipodally related to the retarded S2m

coordinate z in such a way that null generators of I passing through spatial
infinity are labeled by the same value of z on I+ and I−. We denote the
u = ±∞ boundaries of I+ as I+± , and the v = ±∞ boundaries of I− as I−± .
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Maxwell’s equations in retarded coordinates take the form

r−2m∂r
(
r2mFru

)
− ∂uFru + r−2DaFau = e2JMu ,

−r−2m∂r
(
r2mFur

)
+ r−2DaFar = e2JMr ,(2.7)

r−2m+2∂r
(
r2m−2 (Fra − Fua)

)
− ∂uFra + r−2DbFba = e2JMa .

Similar expressions hold for the advanced coordinates. The constraint equa-
tion for the hypersurface at future null infinity is

nµ∇νFνµ =
1

2
r−2m∂r

(
r2mFru

)
− ∂uFru + r−2Da

(
Fau −

1

2
Far

)
(2.8)

= e2nµJMµ ,

where the null normal vector is n = ∂u − 1
2∂r.

3. Six-dimensional Maxwell primer

In this section we consider six-dimensional abelian gauge theory at null infin-
ity,1 postponing the discussion of arbitrary even dimensions to Section 6. We
determine appropriate boundary conditions for the gauge fields, determine
matching conditions to link I− quantities to I+ quantities, and isolate the
gauge field zero-mode operators appearing in Weinberg’s soft theorem.

3.1. Asymptotic analysis at I+

We work in retarded radial gauge. The gauge-fixing conditions are

(3.1) Ar = 0, Au|I+ = 0.

This leaves unfixed a residual large gauge symmetry parameterized by an
unconstrained function ε(z) on the S4 at I+. Under such a large gauge
transformation

(3.2) δAa(z) = ∂aε(z).

1Janis and Newman studied the null Cauchy problem for Maxwell’s equations in
four dimensions in [39] with similar conclusions.
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Asymptotic symmetries of massless QED 1751

In order to analyze the field equations near I+ we assume an asymptotic
expansion for the gauge field:

(3.3) Aa =
∑
n=0

A
(n)
a

rn
, Au =

∑
n=1

A
(n)
u

rn
.

The O(r−2, r−3, r−4) orders of the constraint equation are (in the absence of
matter currents)

∂u(A(1)
u −DaA(0)

a ) = 0,(3.4)

(D2 − 1)A(1)
u + ∂u(2A(2)

u −DaA(1)
a ) = 0,(3.5)

−A(2)
u − ∂uF (4)

ru +Da(F (2)
au −

1

2
F (2)
ar ) = 0.(3.6)

In six dimensions, a plane wave has transverse field strength behaving as
Fab ∼ 1

r . Finiteness of the energy flux at each point on I+ and finiteness of
the total energy evaluated on a space-like Cauchy surface requires

(3.7) F
(0)
ab = ∂aA

(0)
b − ∂bA

(0)
a = 0,

F
(0)
ub = ∂uA

(0)
b = 0,

which implies

(3.8) A(0)
a = ∂aφ(z).

Here φ(z) is a free, unconstrained function on S4 which will later be identified
as the Goldstone mode of the spontaneously broken large gauge symmetry.

The subleading term A
(1)
a (u, z) represents the free radiative data. Finite-

ness of the total radiated energy requires that at large values of |u|

(3.9) A(1)
a |I+± = 0.

Finiteness of the Coulombic energy and integration of (3.4) then imply

(3.10) A(1)
u = 0.

Demanding that the electric field fall off like 1
r4 near I+− together with (3.5)

then imply

(3.11) A(2)
u |I++ = 0,
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and interior values of A(2)
u are determined by integrating (3.5). At the next

order we must specify the boundary data for the electric field

(3.12) F (4)
ru |I+− = −3A(3)

u |I+− ≡ Er.

We are interested in scattering processes that revert to the vacuum at u =

∞, so we require F (4)
ru |I++ = 0. We additionally require A(2)

a |I+± = 0. A full
perturbative solution of course requires the equations of motion as well as
the constraints.

3.2. Asymptotic analysis at I−

Similar analysis can be applied to a Maxwell field Bµ in advanced coordinates
near I−. We label the corresponding field strength tensor Gµν = ∂µBν −
∂νBµ, and denote G(4)

rv |I−+ = E−r . Advanced radial gauge

(3.13) Ar = 0, Av|I− = 0

leaves unfixed a residual large gauge symmetry parameterized by an un-
constrained function ε−(z). The various finiteness conditions applied in the
previous section lead to a similar set of boundary conditions for Bµ. In
particular, we have B(0)

a (z) = ∂aψ(z), with ψ(z) an unconstrained function
on S4.

3.3. Scattering

Given asymptotic data Aµ on I+ and Bµ on I−, we must specify a matching
condition for the boundary values of the two gauge fields in order to properly
define the scattering problem. In doing so, we also single out a diagonal
subgroup of the large gauge transformations acting separately at I+ and
I−, which can then be interpreted as a symmetry of the S-matrix.

The boundary condition (3.9) provides a trivial matching condition for
the radiative data. The only nontrivial component of the gauge field strength
on the boundaries of I+ and I− are the quantities Er and E−r . As in four
dimensions [6], we impose the matching condition

(3.14) Er(z) = E−r (z).
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Asymptotic symmetries of massless QED 1753

Here z labels a null generator, so that the coordinate argument of E−r is
antipodally related to the argument of Er. The corresponding matching con-
dition for the Goldstone modes is

(3.15) φ(z) = ψ(z).

The diagonal subgroup of large gauge transformations acting at I+ and I−
is therefore obtained by imposing

(3.16) ε(z) = ε−(z).

3.4. Mode expansions

The radiative modes of the gauge field in the plane wave basis take the form

(3.17) Aµ(x) = e
∑
α

∫
d5q

(2π)5
1

2ωq

[
ε∗αµ (~q)aα(~q)eiqx + εαµ(~q)aα(~q)†e−iqx

]
,

where ωq = |~q |, εαµ are the four independent polarization vectors for the
photon in six dimensions, and

(3.18) [aα(~p), aβ(~q)†] = 2ωqδαβ(2π)5δ5(~p− ~q).

The free radiative data in this basis is of the form
(3.19)

A(1)
a (u, za) = − 2π2e

(2π)5
∂ax̂

i
∑
α

∫
ωqdωq[ε

∗α
i aα(ωqx̂)e−iωqu + εαi aα(ωqx̂)†eiωqu].

We can define a Fourier image for the radiative modes

Aω(1)a (z) = − eω

8π2
∂ax̂

i(z)
∑
α

ε∗αi aα(ωx̂(z)),

A−ω(1)a (z) = − eω

8π2
∂ax̂

i(z)
∑
α

εαi aα(ωx̂(z))†,
(3.20)

with ω > 0 assumed for both expressions. We can define the corresponding
zero mode operator

(3.21) A0(1)
a ≡ 1

2
lim
ω→0

(Aω(1)a +A−ω(1)a ).

In a similar way we can introduce the in-modes

(3.22) B(1)
a (v, z) ≡ lim

r→∞
r∂ax

i(r, z)Ai(v − r, rx̂i(z))
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so that

Bω(1)
a (z) = − eω

8π2
∂ax̂

i(z)
∑
α

ε∗αi aα(−ωx̂(z)),

B−ω(1)a (z) = − eω

8π2
∂ax̂

i(z)
∑
α

εαi aα(−ωx̂(z))†.
(3.23)

The corresponding zero mode operator is

(3.24) B0(1)
a ≡ 1

2
lim
ω→0

(Bω(1)
a +B−ω(1)a ).

4. Soft theorem as a Ward identity

In this section we recast Weinberg’s soft theorem as a Ward identity for
charges constructed out of the matter and gauge fields. In the following
section, we demonstrate that this Ward identity is associated to a new group
of asymptotic symmetries of massless QED.

4.1. Soft theorem

Weinberg’s soft theorem takes the same form in any dimension:

lim
ω→0

ω〈zn+1, . . . |aα(q)S|z1, . . .〉(4.1)

= eω

[
n+n′∑
k=n+1

Qk
pk · εα
pk · q

−
n∑
k=1

Qk
pk · εα
pk · q

]
〈zn+1, . . . |S|z1, . . .〉.

Here aα(q) is a creation operator for an outgoing on-shell photon with po-
larization εα and momentum q. A null momentum vector in 6 dimensions
is completely characterized by its energy ω and a point z on the S4. This
allows us to express the soft photon’s momenta as

(4.2) qµ = ω
[
1, x̂i(z)

]
.

Here x̂(z) is the embedding of the unit S4 into R5. We use the same parame-
trization for the momenta of the massless external particles:

(4.3) pµk = Ek
[
1, x̂i(zk)

]
.

In states and out states are then determined by the energy Ek, electric charge
Qk, and I-crossing point zk for each external particle. We denote the in and
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Asymptotic symmetries of massless QED 1755

out states by

(4.4) |z1, . . . , zn〉, 〈zn+1, . . . , zn+n′ |,

respectively. In what follows, we assume that the incoming and outgoing
states do not include soft photons.

Motivated by the expression for the radiative modes (3.20), we define the
function

F outa (z, z1, . . . , zn+n′)(4.5)

≡ ∂ax̂i(z)ω
∑
α

ε∗αi

[
n+n′∑
k=n+1

Qk
pk · εα
pk · q

−
n∑
k=1

Qk
pk · εα
pk · q

]

=

n+n′∑
k=n+1

Qk∂a log(1− P (z, zk))−
n∑
k=1

Qk∂a log(1− P (z, zk)).

Here we have used the completeness relation for polarization vectors

(4.6)
∑
α

ε∗iα (~q)εjα(~q) = δij − qiqj

~q2

and defined a function2

(4.7) P (z, zk) ≡ x̂i(z)x̂i(zk).

F outa (z, z1, . . . , zn+n′) (abbreviated Fa(z; zk)) is simply related to the zero
mode insertion:

(4.8) 〈zn+1, . . . |A0(1)
a (z)S|z1, . . . 〉 = − e2

(4π)2
F outa (z; zk)〈zn+1, . . . |S|z1, . . . 〉.

Straightforward algebra reveals that F outa (z; zk) obeys the differential equa-
tion

√
γ(D2 − 2)DaF outa (z; zk)(4.9)

= −(4π)2

[
n+n′∑
k=n+1

Qk δ4(z − zk)−
n∑
k=1

Qk δ4(z − zk)

]
.

2P is known as the invariant distance on the S4, and is related to the cosine of
the geodesic distance.
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We may also consider Weinberg’s soft theorem for an incoming soft photon,
which reads

lim
ω→0

ω〈zn+1, . . . |Saα(q)†|z1, . . .〉(4.10)

= −eω

[
n+n′∑
k=n+1

Qk
pk · ε∗α
pk · q

−
n∑
k=1

Qk
pk · ε∗α
pk · q

]
〈zn+1, . . . |S|z1, . . .〉.

We similarly define

F ina (z, z1, . . . , zn+n′)(4.11)

≡ ∂ax̂i(z)ω
∑
α

εαi

[
n+n′∑
k=n+1

Qk
pk · ε∗α
pk · q

−
n∑
k=1

Qk
pk · ε∗α
pk · q

]

= −

[
n+n′∑
k=n+1

Qk∂a log(1 + P (z, zk))−
n∑
k=1

Qk∂a log(1 + P (z, zk))

]
,

which is in turn related to the zero mode insertion

(4.12) 〈zn+1, . . . |SB0(1)
a (z)|z1, . . . 〉 =

e2

(4π)2
F ina (z; zk)〈zn+1, . . . |S|z1, . . . 〉.

Combining equations (3.16), (4.8), (4.9), and (4.12), we obtain the relation

1

2e2

∫
d4z
√
γ ε(z)(D2 − 2)Da〈zn+1, . . . |A0(1)

a (z)S|z1, . . . 〉(4.13)

+
1

2e2

∫
d4z
√
γ ε−(z)(D2 − 2)Da〈zn+1, . . . |SB0(1)

a (z)|z1, . . . 〉

=

[
n+n′∑
k=n+1

Qkε(zk)−
n∑
k=1

Qkε(zk)

]
〈zn+1, . . . |S|z1, . . . 〉.

We can rewrite this expression as a Ward identity

(4.14) 〈zn+1, . . . |
(
Q+
ε S − SQ−ε

)
|z1, . . . 〉 = 0,

where Q±ε are charges acting on I± states. Q±ε can be decomposed into a
hard charge and a soft charge:

(4.15) Q±ε = Q±H +Q±S .
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Asymptotic symmetries of massless QED 1757

The hard charges Q±H are defined so that

Q−H |z1, . . . 〉 =

n∑
k=1

Qk ε(zk)|z1, . . . 〉,

〈zn+1, . . . |Q+
H = 〈zn+1, . . . |

n+n′∑
k=n+1

Qk ε(zk).(4.16)

The soft charges are given by

Q+
S = − 1

2e2

∫
d4z
√
γ ε(z) [D2 − 2]DaA0(1)

a (z),

Q−S =
1

2e2

∫
d4z
√
γ ε−(z) [D2 − 2]DaB0(1)

a (z).

(4.17)

5. From Ward identity to asymptotic symmetry

We would now like to interpret the Ward identity (4.14) in terms of symmetry
transformations on the matter and gauge fields and to identify the asymptotic
symmetry group of six dimensional massless QED.

5.1. Action on matter fields

Equation (4.16) indicates that the charges Q±H generate a gauge transforma-
tion on the matter fields. We can express Q±H in terms of the gauge current:

Q+
H = lim

r→∞

∫
I+
r4
√
γdud4z ε(z) JMu (u, r, z),

Q−H = lim
r→∞

∫
I−
r4
√
γdvd4z ε−(z) JMv (v, r, z).

(5.1)

For a matter field ΨQ of charge Q we have

[
Q+
H ,ΨQ(u, r, z)

]
=

[
lim
r→∞

∫
I+
r4
√
γ εJMu ,ΨQ(u, r, z)

]
(5.2)

= −ε(z)QΨQ(u, r, z).

The soft charges Q±S commute with ΨQ, so we see that the total charges Q±ε
generate gauge transformations on the matter fields with gauge parameter
ε(z).
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5.2. Action on gauge fields

Since the full theory is invariant only under combined gauge transformations
of the matter and gauge fields, it is intuitively obvious that Q±S must generate
a large gauge transformation for the gauge fields Aa and Ba. In order to make
this relationship precise, we can use the constraint equation (2.8) along with
the boundary conditions from Section 3.1 to rewrite the total charge as a
boundary integral

Q+
ε =

1

e2
lim
r→∞

∫
I+−
r4
√
γ d4z ε(z) Fru(u, r, z)(5.3)

=
1

e2

∫
I+−

√
γ d4z ε(z) Er(z),

Q−ε =
1

e2
lim
r→∞

∫
I−+
r4
√
γ d4z ε−(z) Grv(v, r, z)(5.4)

=
1

e2

∫
I−+

√
γ d4z ε−(z) E−r (z).

At this point several comments are in order. For ε(z) = 1 these expres-
sions reduce to the familiar expressions for total electric charge at I+− and
I−+ . For non-constant ε(z) they are the natural generalization of the asymp-
totic symmetry generators in the four dimensional case [6]. Both charges are
written as pure boundary integrals of the free data Er and E−r , allowing
for a canonical identification of asymptotic symmetry transformations at I+
and I−. In the next subsection we demonstrate that it is possible to define
a symplectic structure on the phase space of the theory so that the charges
do in fact generate large gauge transformations on the gauge fields.

5.3. Bracket for the free data

In order to claim that the Q±ε generate gauge transformations we need to
define the symplectic structure on the phase space of the theory. The bracket
for the radiative modes is unambiguous [40, 41] and can be deduced from
the mode expansion:

(5.5) [A(1)
a (u, z), ∂u′A

(1)
b (u′, z′)] = i

e2

2
γab δ(u− u′)

δ4(z − z′)
√
γ

.
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Asymptotic symmetries of massless QED 1759

The bracket for the zero modes can then be defined so that the charge Q±ε
generates the correct gauge transformation. The correct bracket is given by

(5.6) [Er(z), φ(z′)] = ie2
δ4(z − z′)
√
γ

.

The bracket (5.6) resembles that of the constant modes in [6]. Similar ex-
pressions hold for I− quantities. It follows that

(5.7) [Q+
ε , Aa(z)] = i∂aε(z),

and we conclude that the charges Q±ε generate large gauge transformations
on the matter fields and gauge fields of the theory.

As we have seen, Q±S does not annihilate the conventional vacuum of
the theory. In fact, when Q±S acts on the vacuum it creates a soft photon,
indicating that the large gauge symmetries are spontaneously broken. Un-
der a large gauge transformation with parameter ε(z), the free data φ(z)
transforms as a Goldstone boson:

(5.8) φ(z)→ φ(z) + ε(z).

6. Generalization to arbitrary even dimensional spacetime

The results of the preceding sections can be straightforwardly generalized
to arbitrary even dimensional flat spacetimes. In this section, we sketch the
derivation of the Ward identity for d = 2m+ 2 dimensional spacetime, omit-
ting a detailed discussion of the boundary conditions and symplectic form.

The plane wave expansion of the gauge field in d = 2m+ 2 dimensions
is given by
(6.1)

Aµ(u, r, z) = e
∑
α

∫
d2m+1q

(2π)2m+1

1

2ωq

[
ε∗αµ (~q)aα(~q)eiqx + εαµ(~q)aα(~q)†e−iqx

]
.

Here ωq = |~q | and α labels the 2m polarizations of the photon with corre-
sponding polarization vectors εαµ(~q). The operator aα(~q)† is a photon creation
operator normalized so that

(6.2) [aα(~p), aβ(~q)†] = 2ωqδαβ(2π)2m+1δ2m+1(~p− ~q).

We can evaluate the leading term in the large r expansion of (6.1) using the
saddle point approximation, yielding an expression for the radiative degrees
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of freedom of the Maxwell field in d = 2m+ 2 dimensions near I+. The
expression for the Fourier image is

Aω(m−1)a (z) =
(−i)mωm−1e

2(2π)m
∂ax̂

j(z)
∑
α

ε∗αj aα(ωx̂(z)),(6.3)

A−ω(m−1)a (z) =
imωm−1e

2(2π)m
∂ax̂

j(z)
∑
α

εαj aα(ωx̂(z))†,(6.4)

where x̂i(z) is an embedding of S2m into R2m+1. We can define a generalized
zero mode operator

(6.5) A0(m−1)
a =

1

2
lim
ω→0

(iω)2−m
[
Aω(m−1)a + (−1)mA−ω(m−1)a

]
.

Using the conventions (4.2)–(4.4), we can rewrite Weinberg’s soft theorem
(4.1) in the form

〈zn+1, . . . |A0(m−1)
a (z)S|z1, . . . 〉(6.6)

= −(−1)me2

4(2π)m
F outa (z; zk)〈zn+1, . . . |S|z1, . . . 〉.

Here the soft factor

F outa (z, z1, . . . , zn+n′)(6.7)

≡ ∂ax̂i(z)ω
∑
α

ε∗αi

[
n+n′∑
k=n+1

Qk
pk · εα
pk · q

−
n∑
k=1

Qk
pk · εα
pk · q

]

=

n+n′∑
k=n+1

Qk∂a log(1− P (z, zk))−
n∑
k=1

Qk∂a log(1− P (z, zk))

satisfies the differential equation

(−1)m+1√γ
2m−1∏
l=m+1

[D2 − (2m− l)(l − 1)]DaF outa(6.8)

= Γ(m)2m(2π)m

[
n∑
k=1

Qkδ2m(z − zk)−
n+n′∑
k=n+1

Qkδ2m(z − zk)

]
.

We can similarly introduce the in-modes

(6.9) Bω(m−1)
a (z) =

imωm−1e

2(2π)m
∂ax̂

j(z)
∑
α

ε∗αj aα(−ωx̂(z)),
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(6.10) B−ω(m−1)a (z) =
(−i)mωm−1e

2(2π)m
∂ax̂

j(z)
∑
α

εαj aα(−ωx̂(z))†,

and the associated zero mode operator

(6.11) B0(m−1)
a =

1

2
lim
ω→0

(iω)2−m
[
Bω(m−1)
a + (−1)mB−ω(m−1)a

]
.

We then have

〈zn+1, . . . |SB0(m−1)
a (z)|z1, . . . 〉(6.12)

=
e2

4(2π)m
F ina (z; zk)〈zn+1, . . . |S|z1, . . . 〉,

where

F ina (z, z1, . . . , zn+n′)(6.13)

= −

[
n+n′∑
k=n+1

Qk∂a log(1 + P (z, zk))−
n∑
k=1

Qk∂a log(1 + P (z, zk))

]
.

Combining equations (3.16), (6.6), (6.8), and (6.12), we can rewrite the
soft theorem as the Ward identity

(6.14) 〈zn+1, . . . |
(
Q+
ε S − SQ−ε

)
|z1, . . . 〉 = 0.

The charges Q±ε = Q±H +Q±S act on I± states, with the action of Q±H defined
so that

Q−H |z1, . . . 〉 =

n∑
k=1

Qk ε(zk)|z1, . . . 〉,

〈zn+1, . . . |Q+
H = 〈zn+1, . . . |

n+n′∑
k=n+1

Qk ε(zk).(6.15)

The soft charges take the form
(6.16)

Q+
S = − 1

2e2
22−m

Γ(m)

∫
d2mz

√
γ ε(z)

2m−1∏
l=m+1

(D2 − (2m− l)(l − 1))DaA0(m−1)
a ,

(6.17)

Q−S =
(−1)m

2e2
22−m

Γ(m)

∫
d2mz

√
γ ε−(z)

2m−1∏
l=m+1

(D2 − (2m− l)(l − 1))DaB0(m−1)
a .
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Note that the careful limiting procedure of section four may still be applied
to Aωa near ω = 0. The charges Q±H can be written in terms of the gauge
current

Q+
H = lim

r→∞
r2m

∫
I+

√
γ ε(z) JMu (u, r, z),

Q−H = lim
r→∞

r2m
∫
I−

√
γ ε−(z) JMv (v, r, z).(6.18)

This operator generates a gauge transformation with parameter ε(z) when
acting on the matter fields. Assuming a natural generalization of the bound-
ary conditions from Section 3 and using Maxwell’s equations (2.7), we can
write the total charge Q±ε = Q±H +Q±S as a boundary integral

Q+
ε =

1

e2
lim
r→∞

r2m
∫
I+−
d2mz

√
γ ε(z) Fru(u, r, z),

Q−ε =
1

e2
lim
r→∞

r2m
∫
I−+
d2mz

√
γ ε−(z) Grv(v, r, z).(6.19)

We can introduce an extended phase space for the modes on I+ and I−
to include φ(z) and Er(z). The symplectic form of Section 5.3 can then be
used to demonstrate that (6.19) generates large gauge transformations on
the matter fields and gauge fields. These large gauge transformations are the
asymptotic symmetries for even dimensional massless QED.

7. Open questions and relations to subsequent work

Our analysis has been restricted to the case of massless matter fields. It
would be interesting to extend the analysis to include massive particles,
along the lines of [42, 43]. Since this work first appeared, there have been a
number of papers which analyze the action of large gauge symmetries in four-
dimensional QED in a basis of infrared safe states [44–46]. Since the QED S-
matrix is infrared finite for D > 4, it is unclear whether or not such analyses
are relevant to the questions considered in this paper, but the issue deserves
further consideration. In four dimensions, the soft theorems and asymptotic
symmetries of QED have been related to so-called electromagnetic memory
effects [47–49]. The soft theorems, asymptotic symmetries [50] and memory
effects [51, 52] have been separately analyzed in the higher dimensional case.
These are outstanding problems for future investigations.
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