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Recovering the spacetime metric from a

holographic dual

Netta Engelhardt and Gary T. Horowitz

We review our recent proposal to use certain spatial cross-sections
of the boundary at infinity — light-cone cuts — to recover the con-
formal metric in the bulk. We discuss some extensions of this work,
including how to obtain the conformal metric near the horizon of
a collapsing black hole. We also show how to obtain the conformal
factor under certain conditions.

1. Introduction

Any holographic theory of gravity must address the issue of how to recover
the spacetime metric from the dual theory. In the limit where the bulk
gravitational theory is classical gravity, we should be able to recover the
background spacetime metric as well as the matter fields propagating on it. A
large body of literature has been dedicated to addressing this question; most
of these prior attempts make use of quantum entanglement in the dual field
theory. This is an attractive approach since entanglement entropy is dual to
the area of bulk extremal surfaces [8, 21, 34]. It has been suggested that it
may be possible to reconstruct the bulk metric by adding and subtracting
the entanglement entropy for nearby boundary regions [1–4, 7, 18, 26]. This
approach, however, works best in low dimensions: in higher dimensions, it
needs a large number of symmetries; furthermore, the recovery of the metric
at a point in terms of its integral over a surface is an indirect reconstruction
at best. Other approaches to reconstruction, e.g. [15, 22] often assume the
bulk equations of motion.

We present a new approach that is more direct. It is covariant and well-
defined in any spacetime dimension; it applies to generic geometries; and it
assumes no energy conditions or bulk equations of motion. The technique
uses light-cone cuts: a special set of spacelike cross-sections of the boundary
of the asymptotically anti-de Sitter (AdS) bulk. The space of spatial slices
of the boundary is of course infinite-dimensional, but for a d-dimensional
boundary, there is a preferred (d+ 1)-dimensional space of cross-sections
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1636 N. Engelhardt and G. T. Horowitz

that can be thought of as the intersection of the past and future light cones
of a bulk point with the boundary at infinity. Newman and his collaborators
studied an analogous set of spatial cross-sections of null infinity in the 1970s
and 80s [16, 23, 27].

In the next section, we first define light-cone cuts precisely (to include
possible caustics on the light cone) and describe some of their properties.
We then show that the conformal metric of any point in causal contact with
the boundary can be recovered just from the location of the light-cone cuts.
Next we describe how to recover the cuts from singularities in Lorentzian
correlators in the dual field theory. However, this procedure breaks down
near a static black hole. In section 3 we present new results: we show how
one can obtain the light-cone cuts near the horizon of a collapsing black
hole, and describe procedures for obtaining the conformal factor when (1)
some information about the matter is known, or (2) the bulk is a general
small perturbation of pure AdS. The former works when we assume one
component of the Einstein Equation, and the latter relies on knowledge of
entanglement entropies of the dual field theory. A general reconstruction of
the conformal factor from first principles remains elusive.

2. Recovering the conformal bulk metric from
the dual theory

In this section, we review the proposal in [10] for recovering the conformal
bulk metric from the dual field theory. See [10] for more details.

Let M be an asymptotically AdS spacetime with (connected) asymptotic
boundary ∂M , and let p be a point in M . Consider the set of past-directed
null geodesics fired from p: this is the past light-cone of p. Gravitational
lensing can cause light rays from a bulk point p to focus, generically causing
them to intersect. Following an intersection, the light rays move into the
past of p. In order to obtain a light-cone cut as a distinguished spacelike
(achronal1) slice of ∂M , we must therefore restrict to a subset of the light-
cone, since the entire light-cone intersects ∂M on a chronal hypersurface.
This is achieved as follows.

Define the (causal) past of a bulk point p to be J−(p) = {all q such
that there is a future directed timelike or null curve from q to p}. Then the
boundary of J−(p) is a null hypersurface. In fact, it is the part of the light
cone that has not encountered intersections. The past light-cone cut (or past

1A surface (or curve) is achronal if no two points are timelike separated. Other-
wise, it is chronal.
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Recovering the spacetime metric 1637

cut) is defined to be C−(p) ≡ ∂J−(p) ∩ ∂M . The future cut of p is defined
similarly: C+(p) ≡ ∂J+(p) ∩ ∂M . Due to caustics and non-local intersec-
tions, the cut is not always differentiable, though it is always continuous.
There can be cusps on a set of measure zero2.

Light-cone cuts satisfy the following properties:

1) C±(q) is a complete spatial slice of the boundary.

2) There is a one-to-one correspondence between past light-cone cuts and
points in the future of the boundary, even inside black holes. (A similar
statement holds for future cuts.)

3) Two distinct cuts cannot agree on an open set.

To illustrate the first two points, consider matter collapsing to form a
black hole, as in Fig. 1. Even though p is inside the horizon, it has a well
defined past cut, but not, of course, a future cut. Now consider a point q
outside the horizon at late time, long after the black hole is formed. Even
though part of future light cone of q falls into the black hole, the future cut
is still a complete spatial slice passing through the point x0 shown in Fig. 1.
Future directed null geodesics coming out of the page are bent around and
reach infinity on the opposite side of the black hole. Now consider the past
cut of q. The outgoing radial null geodesic reaches infinity at late time on the
boundary, but the ingoing radial null geodesic goes back to before the black
hole formed. This geodesic, however, encounters intersections and reaches
the boundary at a point z0 timelike related to q: this point is not part of
C−(q).

The light-cone cuts in pure AdS may be found either by solving for the
geodesics or using symmetries. Let us work in a conformal frame in which
the boundary metric is a static cylinder, ds2 = −dt2 + dΩ2, and consider the
bulk point3 at t = 0, r = r0 displaced in a direction we will call θ = 0. Then

(1) tan t∞(θ) =

√
1 + r20 sin2 θ

r0 cos θ
,

2In [10], we assumed that the cusps were a set of measure zero. This assumption
is in fact a provable fact that follows from our assumption that the bulk has a
well-behaved causal structure (“AdS hyperbolic”, see [35] for a definition). In such
a spacetime, ∂J±(p) is an achronal topological Lipschitz manifold [17], and the
desired result follows by Rademacher’s theorem [32]. In fact, an even stronger result
holds: the set of cusps is not only measure zero, but its complement is open [30].

3We work in standard global coordinates with AdS radius set equal to one.
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p

C(p)

r=0

q
x0

z0

Figure 1: The point p lies inside the event horizon (dotted line) of a collaps-
ing star. It has a past cut, but no future cut. A radial null geodesic through
a point q outside the horizon (at late time) has a past endpoint, z0, which
is timelike related to q. The past cut of q lies to the future of z0 and does
not include it.

where t∞(θ) defines the light-cone cut: it is the time that the past or future
light cone hits the boundary. If r0 = 0, the right hand side diverges, which
implies t∞ = ±π/2. This is just what we expect: spherical symmetry implies
that the cut of a point at the origin will hit the boundary at constant t, and
it takes a coordinate time π/2 to get from the origin out to the boundary.
For nonzero r0, the light-cone cuts are tilted with respect to the constant t
slices. As r0 →∞ the right hand side becomes ± tan θ so t∞ = ±θ, which is
just the light cone on the boundary. Time translations and rotations yield a
(d+ 1)-dimensional family of cuts labeled by t0, r0, and d− 1 angles. There
is no gravitational lensing in AdS, so these cuts are all smooth, except for
the points on the boundary, where the light cone focuses at the antipodal
point on the sphere.

There is a direct connection between these cuts and causal relations be-
tween points in AdS: the cuts associated with two points p and q in AdS do
not intersect if and only if the points are timelike related; the cuts intersect
at one point if and only if p and q are null related; the cuts intersect in
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Recovering the spacetime metric 1639

more than one point if and only if p and q are spacelike related. This simple
relation does not extend to general asymptotically AdS spacetimes, however
a simple modification of the null separation result does hold in general:

Claim: If C(p) and C(q) intersect at precisely one point, and both cuts are
C1 at this point, then p and q are null-separated.

Here and in the following we use C(p) to denote either the future or past cut
of a bulk point p. This claim follows from the uniqueness of the orthogonal
inward directed null geodesic from any C1 point on a cut. If two cuts C(p)
and C(q) are tangent at a smooth point x, the null geodesic from x must go
through both p and q: the two points are null-separated. In fact, a stronger
result holds: there exists a cut tangent to C(p) for every bulk point along
an (achronal) null geodesic from p to the boundary.

We can use this to reconstruct the bulk conformal metric at any bulk
point in causal contact with the boundary. By definition, the conformal
metric is the metric up to an overall constant: gab ≡ λ2gab. Clearly, two con-
formally related metrics have identical light cones. Conversely, the conformal
metric at a point is uniquely fixed by the light cone at that point. In fact,
an even stronger result is true: The conformal metric is uniquely fixed by
any open subset of the light cone (see [10] for a proof).

By property (2) above, the past cuts are a new representation of bulk
points in the future of the boundary. We now give a procedure for recon-
structing the conformal metric at such a bulk point p. Take C−(p) and a C1

point x on it (see Fig. 2). The set of all cuts tangent at x form a curve in the
space of cuts. We define it to be null, thus endowing the space of cuts with
a Lorentzian structure identical to that of the spacetime metric. Repeating
this for an open set of points near x yields an open subset of the light cone
of p; this is enough to fix the conformal metric at p.

We have been assuming that the asymptotic boundary of the space-
time is connected. When it is disconnected, one does not need the full set
of cuts to determine the conformal metric for all points in causal contact
with the boundary. For example, the interior of an eternal black hole can be
reconstructed using light-cone cuts of the left boundary, or independently
reconstructed using the light-cone cuts of the right boundary. It would be in-
teresting to determine in general the minimum set of light-cone cuts needed.

To find the light-cone cuts from the dual field theory, we rely heavily
on [24] (which was based on earlier work [14, 19, 28, 29, 31]). Consider any
local operator O in the large N , large coupling limit of the field theory; in
this limit, the field theory is dual to classical Einstein gravity. Consider a
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p

C0 x C(q)
C(p)

(a)

P
Q

(b)

Figure 2: Reproduced from [10]. (a) ∂J−(p) will generally have caustics and
some isolated C0 points on the cut C(p). At any regular point x, there is a
null achronal geodesic γ from p all the way to C(p). (b) In the space of cuts,
a point P corresponds to a cut C(p); the null curve γ of ∂J−(p) corresponds
to a null curve γ, where points Q on γ are cuts C(q) which are tangent to
C(p) at x.

(d+ 2)-point time-ordered Lorentzian correlator

(2) 〈O(z1)O(z2)O(x1) · · · O(xd)〉 ,
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z1

x1x3

x4

x2

x5

y

t>

z2

Figure 3: Reproduced from [10]: A Landau diagram of a bulk-point singu-
larity in a 7-point function: z1, z2, and the xi are all null-separated from
a bulk point y so that high energy test particles from z1, z2 scatter at y,
conserving energy and momentum. To find the past cut of y, we vary z1, z2
in a spatial direction while keeping the 7-point function singular.

where the two zi are in the past and the d xi’s are in the future (see Fig. 3).
This correlator is singular when (1) the {xi} and the {zi} are all null-
separated from a common vertex y, and (2) high energy quanta sent in from
zi and emerging at xi can scatter at y while conserving energy-momentum.
If the vertex y lies on the boundary, this is a conventional field theory sin-
gularity. When y lies in the bulk and there is no analogous boundary vertex,
however, this is a new type of singularity predicted by holography. Such
singularities are called “bulk-point singularities”.

The required number of points in the correlator (2) can be understood
as follows: in a (d+ 1)-dimensional bulk, the minimum number of bound-
ary points to uniquely fix a bulk point is d+ 1. This is because there is a
d-dimensional space of points null related to each boundary point. A set
of d+ 1 boundary points is therefore the requisite number to ensure that
the null surfaces intersect in a single point and not on some extended set.
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C(p)
C(q)

(a)

C (q)

+

C (p)

C (p)
+C (q)

(b)

C (q)+

C (q) -

C (p)+

C (p) -
A

(c)

Figure 4: (a) The light-cone cuts of p and q cross. (b) The light-cone cuts
of p and q are sandwiched globally. (c) The light-cone cuts of p and q are
sandwiched locally on the causal diamond of a boundary subregion A, but
cross globally. Figs. (a) and (b) are reproduced from [10], and (c) is from [9].

The conservation of energy-momentum at the vertex requires an additional
boundary point in the correlator (2).

This structure is very similar to that of our light-cone cuts: every point
in C±(p) is null related to a single bulk point p. To use bulk-point singu-
larities to find the cuts, we need two generalizations: first, we work in an
excited state which is asymptotically AdS rather than pure AdS itself. This
has the practical advantage that it makes it much easier to show that the
singularity cannot arise from a boundary vertex. To see this, recall that on
the boundary, points must be separated by ∆t ≤ π to be null connected
to a boundary vertex. In pure AdS, this is also true of the bulk vertex,
since boundary and bulk null geodesics travel equally fast in the vacuum.
However, in any asymptotically AdS geometry (satisfying the averaged null
curvature condition) null geodesics undergo gravitational time delay, thus
taking longer to get to the boundary[13]. Thus a correlator singularity with
∆t > π cannot be due to a boundary vertex: it must be due to a bulk vertex.

The second generalization that we need is the addition of one more
boundary point in the future, i.e. we will consider a (d+ 3)-point correlator
with (d+ 1) xi and two zi. We can now fix the d+ 1 points in the future
(which fixes the vertex y) and move the zi’s in spacelike directions while
keeping the correlator singular. This traces out the past cut.

This procedure only works for points in the causal wedge of the entire
boundary, i.e., in causal contact both to the future and past. It does not
work, e.g. for points inside a black hole. Also, since the cut corresponds to
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Recovering the spacetime metric 1643

only part of the light cone (due to intersections), momentum conservation
at the vertex may mean that only part of the cut can be reconstructed.
However, even a small subset of the light-cone is enough to recover the
conformal metric.

The set of cuts contains more information about the causal relations
between bulk points than we have used so far, where the focus was on null
separations. We conclude this section by describing some further results
on obtaining the causal separation of two points directly from their light-
cone cuts. Of course, the causal separation between any two points can be
determined from the conformal metric given by the procedure above; it is,
however, still interesting to ask if the causal separation between bulk points
can be determined from the light-cone cuts without first reconstructing the
conformal metric at every bulk point.

We will say that two cuts cross if each cut divides the other into two or
more connected pieces (see Fig. 4(a)). One can show that two bulk points
p and q are spacelike separated if C(p) and C(q) cross, or if C±(q) both
lie between C+(p) and C−(p), i.e. the C±(p) “sandwich” the C±(q) (see
Fig. 4(b)). In fact, although it was not mentioned in [10], it is easy to show
that it suffices for C±(q) to be sandwiched by C±(p) in any connected open
subset of the boundary to conclude that p and q are spacelike separated. It
does not have to hold globally (see Fig. 4(c)).

An example where the sandwich cut configuration does hold globally is
the AdS-Schwarzschild solution. If p is a point close to the horizon and q is a
point at larger radius on the same static time slice and at the same position
on the sphere, then the cuts will be sandwiched. This is illustrated in Fig. 5.
In fact, any geometry with an event horizon admits points whose light-cone
cuts are sandwiched globally [9].

Determining when two points p and q are timelike separated directly
from the cuts C±(p) and C±(q) (i.e. without first determining the conformal
metric) is more difficult. It is true in general that if q is to the past of p,
then C−(q) is to the past of C−(p), but the converse is false. In other words,
if C−(q) is to the past of C−(p) we learn nothing about the causal relation
between p and q without a pointwise reconstruction of the conformal metric.

3. Extensions

In this section we describe some extensions of the work in [10].
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p q

Figure 5: Reproduced from [9]: In Schwarzschild AdS, the light-cone cuts of
p sandwich the light-cone cuts of q globally when p is sufficiently close to
the event horizon.

3.1. The conformal metric near a black hole

As discussed above, the light-cone cuts of a bulk point p can be determined
from the singularities of boundary Lorentzian correlators whenever energy-
momentum can be conserved at p. While we intuitively expect that this is
the case for any point within the causal wedge since all such points have well-
defined cuts, the particular procedure of obtaining the cuts from Lorentzian
correlators described above in fact fails whenever p is too close to an event
horizon. Below we give a modification of the procedure outlined above for
recovering the light-cone cuts arbitrarily close to the event horizon of a
collapsing black hole. There is (yet) no analogous procedure for an eternal
black hole.

Let us first present the problem posed by a black hole event horizon.
Generically, only a subset of the null geodesics fired from p generate the
light-cone cut; this is due to intersections of geodesics, as discussed above.
The immediate implication is that only a partial angle of the past and future
light cones at p generate the light-cone cuts. When the angles for the past
and future cut are too small and point in the same direction, high energy
quanta coming from the past cuts cannot scatter at p and emerge at the
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Recovering the spacetime metric 1645

future cut, without violating momentum conservation. This is precisely the
case near a static black hole4.

In a collapsing black hole geometry, or more generally in a spacetime in
which the past and future horizons do not intersect on a mutual bifurcation
surface, the procedure of obtaining the cuts from correlators can be success-
fully modified to obtain the light-cone cuts. The crux of the idea is that there
exist chronal null geodesics that reach the conformal boundary and allow
for the conservation of energy-momentum at p. Fortunately, the chronality
of null geodesics is not an issue insofar as singularities in the correlators are
concerned: the correlators are singular at any null separation, achronal or
not. The light-cone cut is, of course, generated by achronal geodesics: we
must recover the achronal geodesics from the chronal ones.

We begin with two boundary points that are null-separated through the
bulk. This may be diagnosed via the bulk-cone singularity of [20]: the two-
point correlator 〈O(z0)O(x0)〉, for points z0, x0 on the boundary, is singular
when z0 and x0 are null-separated (see Fig. 1). The correlator in question
is clearly singular when z0 and x0 are separated by a null geodesic on the
boundary; [20] argued that this is also the case when they are null-separated
by a null bulk geodesic.

We now look for bulk-cone singularities where there is a large time sep-
aration between the two points. This corresponds to some chronal null bulk
geodesic. The requirement that there is a large time difference between the
two points guarantees that the null geodesic in question lies close to the event
horizon. Clearly two quanta starting near z0 can scatter at a bulk point q
on this geodesic and emit d+ 1 quanta that reach the boundary near x0.
We therefore proceed to look for d points xi spacelike-separated from x0
and two points, z1, z2 near (and spacelike-separated from) z0 such that the
time-ordered correlator 〈O(z1)O(z2)O(x0) · · · O(xd)〉 is singular. This then
corresponds to a set of (d+ 1) points on the future light cone of some bulk
point q and two points on the past light cone of q.

In the unlikely event that there is more than one bulk point null sepa-
rated from the (d+ 1) points x0, · · ·xd, we want to consider the latest one.
This can be achieved by keeping the xi’s fixed and seeing if the correlator
is singular if z1, z2 are moved toward the future. If it is, we keep the latest
points z1, z2 for which the correlator is singular.

4In three dimensions the problem is worse: one cannot use singularities of
Lorentzian correlators to obtain the cuts for any point outside a static BTZ black
hole.
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Now we address the fact that the null geodesics connecting q to xi need
not be achronal. Holding z1, z2 and (d− 1) xi fixed uniquely fixes the bulk
point q, leaving us free to move two points around. We use this freedom
to deform the points xi on the future light cone one by one into their own
past, while using the additional free point to ensure that energy-momentum
is conserved at q. We deform each point into the past (maintaining ∆t > π)
until we reach the pastmost point at which the (d+ 3)-point correlator is
singular.

Repeating this somewhat arduous procedure for each of the (d+ 1)
points in the future light cone, we ensure that the xi lie on C+(q). We
can now move two of these points in spacelike directions, keeping the corre-
lator singular, to recover the entire light-cone cut of a bulk point arbitrarily
close to the event horizon.

It is clear that this procedure fails in spacetimes where the past and fu-
ture event horizons intersect: in such cases, chronal null geodesics near the
black hole event horizon eventually enter the white whole region, and sim-
ply never make it to the asymptotic boundary. They thus cannot be used to
conserve energy-momentum at the vertex. We note, however, that when the
Einstein-Rosen bridge in the eternal black is opened to a traversable worm-
hole, as constructed in [12] via a double-trace deformation on the boundary,
we can recover the light cone cuts using the procedure above, with the past
points on the left boundary and the future points on the right boundary.

3.2. The conformal factor

The construction in the previous section does not make use of any bulk
field equations. It produces a conformal metric, but says nothing about
the conformal factor needed to reproduce the complete bulk metric. We
do not yet know of an analogous procedure for recovering the conformal
factor in general. However, if we use a subset of the field equations, we
can determine the conformal factor in some cases. For example, since we
know the conformal metric, we know the Weyl curvature of the bulk. If no
bulk matter fields are turned on, (i.e. the only nonzero one point function
in the dual theory is the stress tensor) the field equation fixes the Ricci
curvature. The entire bulk geometry is then fixed, including the conformal
factor. However, we can do better: since we only need to determine one
function and not the entire metric, we only need one component of the field
equation.

If the bulk stress tensor is traceless, we can use just the trace of Einstein’s
equation, which states that the scalar curvature must be constant. This can
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Recovering the spacetime metric 1647

be satisfied by solving a wave equation. Pick any metric g̃ab in the conformal
class, and solve

(3)

(
∇̃2 − d− 1

4d
R̃

)
ψ = −c ψ

d+3

d−1

where R̃ is the scalar curvature of g̃ab (which will not be constant in general),
and c is a constant. The left hand side is the conformally invariant wave op-
erator in d+ 1 dimensions. The right hand side is the unique nonlinear term
that preserves the conformal invariance of the equation. Given a solution to
Eq. (3), the rescaled metric

(4) gab = ψ
4

d−1 g̃ab

has constant scalar curvature, R = 4d c/(d− 1), and hence solves the trace of
Einstein’s equation (for appropriate choice of c). It is clear that the equation
for the conformal factor must always be conformally invariant: since we are
writing the physical metric as gab = Ω2g̃ab, we can always rescale g̃ab and
rescale Ω without changing gab.

Assuming that g̃ab is chosen to be asymptotically AdS, we can set ψ = 1
on the boundary at infinity. The conformal factor is thus determined in terms
of initial data for the wave equation. There are some situations where this
initial data is also known. For example, suppose that the dual field theory
state is created by starting with the vacuum and acting with time dependent
external sources. Then the bulk spacetime is pure AdS in the past. Choosing
g̃ab to be pure AdS in the past, we can take ψ = 1 and ψ̇ = 0 on a static
slice in the AdS region, and uniquely determine the conformal factor. In this
way, we can recover the entire bulk metric satisfying the four-dimensional
Einstein-Maxwell equations with a time dependent vector potential specified
on the boundary. (Note that we do not need to know anything about the
form of the vector potential on the boundary.) Similarly, in any dimension,
we can obtain the vacuum solution where the boundary metric is a static
cylinder for t < t0, but has arbitrary time dependence in the future.

This result has an interesting consequence. Once we have the spacetime
metric, we can compute the bulk (d+ 3)-point time-ordered Lorentzian cor-
relator of any bulk field that does not couple to the matter (if it is present).
By taking the limit as the points approach the boundary, we obtain the
boundary correlator. Since we have only used the singularities in this corre-
lator to obtain the conformal metric, it appears that the entire field theory
correlator, in any state produced by time dependent sources, is determined
by its singularities (and the trace of the bulk field equation).
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One can also determine the conformal factor for general small perturba-
tions of pure AdS using the entanglement entropy of boundary subregions.
This does not require any assumptions about the matter; we assume only
the Ryu-Takayangi prescription and its covariant generalization [21, 34]: re-
call that in the classical gravity limit, the vacuum entanglement entropy of a
spherical region A in the boundary is given by the (appropriately regulated)
area of a minimal surfaceX on a static slice in AdS with boundary ∂X = ∂A.
Let us now consider an asymptotically AdS spacetime whose metric may be
written:

(5) gab = g
(AdS)
ab + δgab,

where δgab is an infinitesimal perturbation of global AdS. The entanglement
entropy of the same spherical boundary region A is then given by the area

of the same bulk surface X in the new metric5. Letting gij = g
(AdS)
ij + δgij

be the induced metric on X,

(6) SEE(A) =
A(X)

4
=

1

4

∫
X

det(g
(AdS)
ij + δgij)

1/2,

where we are working in Planck units.
We will now suppose that we have executed the procedures in previous

section to determine the location of the light-cone cuts as well as the con-
formal metric. Pick a representative g̃ab of the conformal class and write the
physical metric, gab = Ω2g̃ab, with an unknown conformal factor Ω. For a

perturbation of AdS: δgab = 2δΩg
(AdS)
ab + δg̃ab. The first order change in the

entanglement entropy is then

δSEE(A) =
δA(X)

4
=

1

8

∫
X
δgii det(g

(AdS)
ij )1/2(7)

=
1

8

∫
X

[2(d− 1)δΩ + δg̃ii] det(g
(AdS)
ij )1/2

We have a scalar function integrated over known, spherically symmetric
surfaces in pure AdS; our problem now is finding the unknown function given
the δSEE(A) for all spherical A. At this point, we note that this is precisely
the inverse Radon transform [33]. Since the Radon transform is known to be
invertible for symmetric surfaces on a constant time slice of pure AdS [5], we

5The minimal surface can change to first order, but its area does not. To compute
the area to first order, we can use the unperturbed minimal surface.
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may thus invert Eq. (7) to solve for the unknown conformal factor δΩ to first
order. For a general asymptotically AdS metric that is not everywhere close
to pure AdS, SEE gives some integrated information about the conformal
factor, but it is not known how to invert it to recover the function locally.

There has been earlier work recovering perturbations of AdS from the
entanglement entropy. For example, [11] showed that the linearized Einstein
equation follows from the first law of entanglement entropy. However, they
assumed that no matter was linearly coupled to the metric, so the metric
perturbations always satisfied the vacuum field equation. General metric
perturbations were discussed in [6] in terms of a tensor Radon transform, but
the invertibility was not proven. Since we only need to recover the conformal
factor, we can recover a general metric perturbation using the standard
Radon transform.

3.3. The matter fields

We do not yet know of a general procedure for recovering matter fields in the
bulk. However this can again be done in special cases. Misner and Wheeler
showed in 1957 [25] that given a metric satisfying the four-dimensional
Einstein-Maxwell equations, one can recover the Maxwell field (up to an
electromagnetic duality rotation) from the metric6. One cannot recover Fab

uniquely since the stress tensor is invariant under rotations of Fab into ∗Fab,
so if Fab satisfies the Einstein-Maxwell equations with a given metric, so will
any duality rotation of it.

Their idea is the following: if FabF
ab 6= 0, there is a duality frame where

Fab is purely electric. Choosing an orthonormal basis which includes the
electric field as the first spatial basis vector, the only nonzero component
of Fab is F01 = E. From the Einstein-Maxwell equations, it is then easy to
show that

(8) Ra
mRm

b =
1

4
RmnR

mn δa
b.

This equation, together with R = 0 and R00 ≥ 0, is in fact equivalent to
the Einstein-Maxwell equations. Equation (8), together with R = 0 imply
that the diagonalization of the Ricci tensor must take the form Ra

b =
E2 diag(−1,−1, 1, 1). This allows us to determine the electric field, E, at

6We thank J. Hartle for informing us of this reference. Note that four-dimensional
Einstein-Maxwell theory is one of the cases where we know how to determine the
conformal factor.
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each point. We can then set F01 = E and the remaining components of F to
zero. This can be extended to include the case FabF

ab = 0, and can all be
formulated covariantly [25]. To apply this to our case of interest, we need to
include a cosmological constant Λ in the Einstein-Maxwell equations. This
can be done by simply replacing Rab with Rab − Λgab in the formulae above.

4. Summary

We now summarize the main points: (1) there is a light-cone cut for every
point in causal contact with the boundary; (2) these cuts can be determined
from singularities in field theory correlators; (3) the conformal metric in the
bulk can be reconstructed just from the location of these cuts.

We emphasize that these results do not assume any bulk equations of
motion. This works for any asymptotically AdS metric. If we do use the
equations of motion, we can determine the complete metric in some cases.
For any small perturbation of pure AdS, we can recover the metric using
entanglement entropies of boundary subregions. The space of light-cone cuts
provides a new way to represent the bulk in holography. We view it as
a promising new direction to extend the known gauge/gravity dictionary.
For example, in [9], light-cone cuts were used to give a covariant definition
of bulk depth, and subsequently to provide a precise connection between
the holographic dimension and energy scale in the dual field theory. The
program of research of light-cone cut holography is very much a work in
progress whose full range of applications is yet to be discovered.
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