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Spacetime is locally inertial at points of

general relativistic shock wave interaction

between shocks from different

characteristic families

Moritz Reintjes

We prove that spacetime is locally inertial at points of shock wave
collision in General Relativity. The result applies for collisions be-
tween shock waves from different characteristic families in spher-
ically symmetric spacetimes. We give a constructive proof that
there exists coordinate transformations which raise the regularity
of the gravitational metric tensor from C0,1 to C1,1 in a neighbor-
hood of such points of shock wave interaction and a C1,1 metric
regularity suffices for locally inertial frames to exist. This result
was first announced in [16] and the proofs are presented here. This
result corrects an error in our earlier publication [15], which led
us to the wrong conclusion that such coordinate transformations,
which smooth the metric to C1,1, cannot exist. Our result here
proves that regularity singularities, (a type of mild singularity in-
troduced in [15]), do not exist at points of two interacting shock
waves from different families in spherically symmetric spacetimes,
and this generalizes Israel’s famous 1966 result to the case of such
shock wave interactions. The strategy of proof here is an extension
of the strategy outlined in [15], but differs fundamentally from the
method used by Israel. The question whether regularity singulari-
ties exist in more complicated shock wave solutions of the Einstein
Euler equations still remains open.
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1. Introduction

In Einstein’s theory of General Relativity (GR), the gravitational field is
accounted for by the curvature of space-time, and Special Relativity to-
gether with Newtonian Physics are recovered locally under the assumption
that space-time is locally inertial [4]. That is, locally, General Relativity
describes the physics of Special Relativity, perturbed by second order gravi-
tational effects due to spacetime curvature. But the assumption that space-
time is locally inertial is equivalent to assuming the metric g is smooth
enough at each point p to admit coordinates in a neighborhood of p, coor-
dinates in which g is exactly the Minkowski metric at p, such that all first
order derivatives of g vanish at p, and all second order derivatives of g are
bounded almost everywhere, (so-called locally inertial coordinate frames).
This requisite level of smoothness for the gravitational metric tensor is C1,1

(i.e., partial derivatives of the metric are Lipschitz continuous) [21]. How-
ever, the Einstein equations determine the smoothness of the gravitational
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Spacetime is locally inertial 1527

metric tensor by the evolution they impose. Therefore, regularity theorems
for the Einstein equations are required to determine whether space-time is
locally inertial.

In the presence of shock waves, it remains an open problem whether
space-time is always locally inertial, or whether there exists regularity sin-
gularities where the Einstein equations are satisfied weakly, but the space-
time metric is no smoother than Lipschitz continuous, (i.e., C0,1), in every
coordinate system. This issue comes into sharp focus given that interacting
shock wave solutions were proven in [7] to exist in C0,1, but it remains an
open problem as to whether coordinate transformations always exist that
smooth the metric to C1,1, the requisite level of smoothness for spacetime to
be locally inertial. At points on a single smooth shock wave, a famous result
of Israel shows that space-time is always locally inertial [10, 21], by prov-
ing that the metric is C1,1 in Gaussian normal coordinates. But, for more
complicated shock wave solutions, like those proven to exist in [7], which
can involve various types of shock wave interactions, it is unknown whether
the locally inertial nature of space-time is preserved under the evolution of
Einstein’s equations. Namely, at points of shock wave interaction, normal
vector fields of shock surfaces fail to be continuous, a basic requirement to
construct Gaussian normal coordinates, and Israel’s method fails in its very
first step.

The problem whether spacetime is locally inertial at points of shock
wave interaction was first laid out by the authors in [14, 15]. There, we
introduced the notion of a regularity singularity as a point in spacetime
where the gravitational metric is C0,1 regular, but cannot be mapped to
a C1,1 metric by any C1,1 coordinate transformation, (consistent with the
C0,1 shock wave solutions in [7]). We then addressed the existence question
for regularity singularities at points of shock wave interaction in spherically
symmetric spacetimes. However, there is an error in the analysis in [15] at
this point, and the announcement made regarding the proof of existence of
regularity singularities is not valid.

In this paper, we correct the error in [15]. By doing so, we develop a proof
that the gravitational metric can always be smoothed at points where shock
waves from different characteristic families interact in spherically symmetric
spacetimes, the case when neither rarefaction nor compression waves occur.
This result was first announced in [16] and we here present its complete
proofs. The strategies in [15] remain partially valid and provide the point of
departure for the present paper. Our new result does not resolve the open
problem whether regularity singularities exist in general shock wave solu-
tions of the Einstein Euler equations, but is a first and important step in



i
i

“3-Reintjes” — 2018/3/13 — 1:14 — page 1528 — #4 i
i

i
i

i
i

1528 Moritz Reintjes

extending Israel’s result to solutions containing shock wave interactions in
spherically symmetric spacetimes. In [18], we address a most general frame-
work for the problem of regularity singularities at shock waves and show
that the gravitational metric can be smoothed by a coordinate transforma-
tion if and only if the “Riemann-flat condition” holds, and this condition is
the point of departure in our work in progress [19].

The issue whether regularity singularities exist for the Einstein Euler
equations (and thus in the most basic relativistic matter models for the evo-
lution of stars, galaxies or the universe itself) is fundamental, since shock
waves form in the Euler equations out of smooth initial data whenever the
flow is sufficiently compressive [3, 12]. Moreover, the question whether one
can smooth the gravitational metric to C1,1 is basic for the problem as to
whether the Einstein Euler equations have a regular zero-gravity limit, at
the level of shock waves.1 Thus, without a proof that space-time is locally
inertial, it is unclear if the nature of shock wave interactions in GR is locally
the same as it is in Minkowski space, c.f. [23]. A regularity singularity, if it
exists, would be less severe than the well-known curvature singularities, but
can nevertheless have implications to the physics of space-time. In [17], the
authors explore the physical implications of the hypothetical structure of
regularity singularities to gravitational radiation by studying the linearized
Einstein equations in so-called approximate locally inertial coordinate sys-
tems.

Before we state the main result, we comment on our method of proof. In
[10], Israel showed that conservation of the (bounded) matter source across
a smooth shock wave is equivalent to the continuity of the second fundamen-
tal form across the surface, and using this, it follows that the gravitational
metric is C1,1 in Gaussian normal coordinates. But these coordinates fail
to exist at points of shock wave interaction, because the shock surface no
longer has the continuous normal vector field required for their construction.
In our argument here we make no connection between conservation and the
geometry of the shock surface through the second fundamental form, but
rather use conservation of the sources, in the form of the Rankine Hugoniot

1The gravitational potential enters the GR Euler equations through first order
metric derivatives, which, in a locally inertial frame, decrease linearly to zero as
one approaches the coordinate center. From this, at least in principal, we conclude
that, sufficiently close to the coordinate center, a given shock wave solutions of the
Euler equations in a background spacetime is close to the solution of the flat Euler
equation for the same initial data. However, if first order metric derivatives do not
vanish at the coordinate center, this procedure could fail.
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(RH) conditions, to directly construct the Jacobians of the sought after co-
ordinate systems. In more detail, instead of focusing on finding an explicit
coordinate system where the metric is C1,1, our new proof is based on con-
structing Jacobians that meet the so-called Smoothing Condition, and solve
the Integrability Condition, both introduced in [15]. (In fact, we construct
the class of all C0,1 Jacobians that have these properties, properties which
are necessary and sufficient to lift the metric regularity to C1,1.) To solve
the Integrability Condition, an existence theory is developed for a perculiar
system of non-local hyperbolic PDE’s. From this theory, we obtain a proof
that there exists coordinate systems in which the metric can be smoothed
to C1,1 in a neighborhood of the points of shock wave interaction between
shocks from different families, proving our main result.

To state our main result precisely, let gµν denote a spherically symmetric
spacetime metric in Standard Schwarzschild Coordinates (SSC), that is, the
metric takes the form

(1.1) ds2 = gµνdx
µdxν = −A(t, r)dt2 +B(t, r)dr2 + r2dΩ2,

where dΩ2 = dϑ2 + sin2(ϑ)dϕ2 is the line element on the unit 2-sphere, c.f.
[29]. In Section 3, we make precise the definition of a point of regular shock
wave interaction in SSC between shocks from different characteristic fami-
lies. Essentially, this is a point in (t, r)-space where two distinct shock waves
enter and leave a point p, such that the metric is Lipschitz continuous across
the shocks and smooth away from the shocks, the RH jump conditions hold
across each shock curve continuously up to the point of interaction p, deriva-
tives are continuous up to the shock boundaries, and the SSC Einstein equa-
tions hold weakly in a neighborhood of p and strongly away from the shocks.
The following theorem is the main result of the paper.

Theorem 1.1. Suppose that p is a point of regular shock wave interaction
in SSC between shocks from different families, in the sense that condition
(i)–(iv) of Definition 3.1 hold, for the SSC metric gµν . Then the following
are equivalent:

(i) There exists a C1,1 coordinate transformation xα ◦ (xµ)−1 in the (t, r)-
plane, with Jacobian Jµα , defined in a neighborhood N of p, such that
the metric components gαβ = JµαJνβgµν are C1,1 functions of the coor-
dinates xα.

(ii) The Rankine Hugoniot conditions, (3.4)–(3.5), hold across each shock
curve in the sense of (v) of Definition 3.1.
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Furthermore, the above equivalence also holds for the full atlas of C1,1 coor-
dinate transformations, not restricted to the (t, r)-plane.

In our proof of Theorem 1.1, for the construction of the Jacobians
smoothing the metric not to break down, several identities must be sat-
isfied sharply. Our conclusion in [15] was based on the (false) discovery that
one of those identities is violated, but the violation was due to the error of
neglected terms that should have been present in our ansatz for the Jaco-
bians meeting the Smoothing Condition. In our corrected proof presented
here, we can now verify that all these identities hold identically as a con-
sequence of the RH conditions, which serves us as a second check that all
terms have now been accounted for, and consequently as a second check on
the validity of the new argument. But, other than the proof, we have no
intuitive, heuristic or physical argument to support the claim of the above
Theorem or its opposite, which we take as an indication of the subtlety of
the problem whether the metric can be smoothed to C1,1, even in the sim-
plest setting we considered here. A further indication of this subtlety is that
our new method of proof indicates that smoothness of the metric, higher
than C1,1, must be given up away from the shocks in order to smooth the
metric to C1,1 in a neighborhood of a point of shock wave interaction, (c.f.
footnote 2 below).

Historically, the issue of the smoothness of the gravitational metric ten-
sor across interfaces began with the matching of the Schwarzschild solution
to the vacuum across an interface, followed by the celebrated work of Op-
penheimer and Snyder who gave the first dynamical model of gravitational
collapse by matching a pressure-less fluid sphere to the Schwarzschild vac-
uum spacetime across a dynamical interface [13]. In his celebrated 1966
paper [10], Israel gave the definitive conditions for regular matching of grav-
itational metrics at smooth interfaces, by showing that if the second fun-
damental form is continuous across a single smooth interface, then the RH
conditions also hold, and Gaussian normal coordinates provide a coordinate
system in which the metric is smoothed to C1,1. In [21], Smoller and Temple
extended the Oppenheimer-Snyder model to nonzero pressure by matching
the Friedmann metric to a static fluid sphere across an interface that mod-
eled a shock wave in GR. Groah and Temple then addressed these issues
rigorously in the first general existence theory for shock wave solutions of
the Einstein-Euler equations in spherically symmetric spacetimes [7], (see
also [1] for an extension to Gowdy spacetimes). Note that weak solutions
of the Einstein vacuum equation with a C1,1 metric regularity have been
constructed, without any symmetry assumptions on spacetime, c.f. [2] and
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references therein. However, these results only address the special case when
no matter fields are present and hence do not apply to shock wave solutions
of the Einstein Euler equations.

We now outline the content of this paper and our strategy of proof. In
Section 3, we motivate and make precise the structure we assume on the
shock wave interaction we consider in Theorem 1.1. Essentially this is the
same structure as in [15], except that we not only specify the structure of the
incoming shocks but also of the outgoing ones, which excludes rarefaction
waves from our analysis here. In the special case of a perfect fluid source,
this structure corresponds to the incoming shock waves to lie within differ-
ent characteristic families. (An outgoing shock and rarefaction wave would
correspond to an interaction of incoming shock waves in the same families.)

In Section 4 we discuss some properties of functions Lipschitz continuous
across some hypersurface but smooth elsewhere. In particular, we introduce
a canonical form all such functions can be represented in, c.f. Lemma 4.5,
which we apply in the proof of Theorem 1.1 to represent the Jacobians.
Moreover, we study the connection to the RH conditions, which leads to an
equivalent formulation of the RH conditions purely in terms of the jumps in
the derivatives of the SSC metric and the shock speed, c.f. (4.5), (4.6) and
(4.10). The results of this section were first stated in [15].

In Section 5, we derive a necessary condition on a Jacobian, Jµα , for
smoothing the metric regularity to C1 across a single shock surface. This
so-called smoothing condition was first introduced in [15] and is given by

[Jµα,σ]Jνβgµν + [Jνβ,σ]Jµαgµν = −JµαJνβ [gµν,σ],

where [·] denotes the jump across the shock surface, each comma between
indices denotes differentiation and gµν denotes the metric in SSC, c.f. (5.7).
We then proceed by solving the smoothing condition point-wise for [Jµα,σ],
c.f. Lemma 5.13, which is the first step in our construction of Jacobians
smoothing the metric to C1,1. In Section 6, we give an alternative proof
of Israel’s Theorem, regarding the metric smoothing across a single shock
curve, with our method of constructing Jacobians, which is a convenient
and rigorous way to introduce our method, since many technical issues of
the interacting shock case do not appear.

In the next step towards the construction, subject of Section 7, we de-
fine (ϕi)

µ
α = −1

2 [Jµα,r]i, where [Jµα,r]i is the value obtained from solving the
smoothing condition across the i-th shock curve, γi(t) = (t, xi(t)), and in-
troduce the C0,1 functions
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Jµα(t, r) =
∑
i=1,2

(ϕi)
µ
α(t) |xi(t)− r| + Φµ

α(t, r),

where Φµ
α denote some arbitrary smooth function, c.f. (7.2). This is our

canonical form for Jacobians. The key observation here is that the above
functions satisfy the smoothing conditions across each of the shock curves
if and only if the Rankine Hugoniot conditions hold, c.f. Lemma 6.1. The
error in [15] came from neglecting terms in the (ϕi)

µ
α.

For the Jµα introduced in the above equation to be actual Jacobians,
which are integrable to coordinates, we need to prove in the next step that
the integrability condition,

Jµα,β = Jµβ,α ,

holds. This is the subject of Section 8. From the definition of Jµα above, since
the (ϕi)

µ
α are completely determined, the integrability condition can only be

solved by the free functions Φµ
α. In fact, setting U = (Φt

0,Φ
r
0) and assuming

(Φt
1,Φ

r
1) to be fixed smooth functions, the above equation can be written as

a PDE for U of the form

Ut + cUr = F (U),

for some C0,1 scalar function c and for some F depending linearly on U ,
U ◦ γi and d

dt(U ◦ γi). The above equation were a strictly hyperbolic PDE,
if F would not depend on U ◦ γi and d

dt(U ◦ γi). Through this dependence,
the integrability conditions becomes a non-local system of PDE’s for U . We
develop a C0,1 existence theory for this type of PDE in Section 8.1. Once the
existence result is established, we use the RH conditions in Section 8.2 to
proof that the solution of the integrability condition is indeed C1,1 regular.
It is crucial to establish this level of regularity for the free function Φµ

α in
order to not interfere with the smoothing condition and to preserve the C1,1

metric regularity away from the shock curves.2

In principal, the above strategy suffices to obtain Jacobians defining co-
ordinates xα in which the metric gαβ = JµαJνβgµν is in C1,1. However, since
the shock speeds change discontinuously at the point of interaction p the
shock curves are only Lipschitz continuous at p. Therefore, we are forced

2Interestingly, there is an inherent loss of smoothness of Φµα across the character-
istic curve which passes through the point of shock wave interaction, even though
this characteristic curve lies within the region of smoothness of the original metric.
As a result, across this characteristic the metric in the constructed coordinates is
C1,1, but seems to be no smoother.
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to first pursue the above construction before and after the interaction sep-
arately and then match the resulting Jacobians across the (t = 0)-interface,
assuming that the interaction happens at t = 0. This final step in the con-
struction is achieved in Section 9. To ensure that the matching does not
lower the metric regularity across the (t = 0)-interface, the matching must
obey the so-called matching conditions. These conditions could lead to an
over-determined list of conditions on the Φµ

α, but, surprisingly, the RH con-
ditions prevent this from happening. In Section 10, we complete the proof
of Theorem 1.1 by proving that the constructed Jacobian indeed maps the
SSC metric gµν to a metric gαβ, which is C1,1 in a neighborhood of the shock
interaction with respect to the coordinates xα.

2. Preliminaries

Spacetime is a four dimensional Lorentz manifold, that is, a manifold M
endowed with a metric tensor gµν of signature (−1, 1, 1, 1), the so-called
Lorentz metric. Around each point p ∈ M there exists an open neighbor-
hood Np (called a patch) together with a homeomorphism x = (x0, . . . , x3) :
Np → R4, which defines coordinates on its image in R4. Np together with
the homeomorphism x are called a chart. The collection of all such charts
(covering the manifold) is called an atlas. If the intersection of two coordi-
nate patches is nonempty, x ◦ y−1 defines a mapping from an open set in R4

to another one (referred to as a coordinate transformation). If all coordinate
transformations in the atlas are Ck differentiable, the manifold M is called
a Ck-manifold and its atlas a Ck-atlas.

We use the Einstein summation convention, that is, we always sum over
repeated upper and lower indices, e.g. vµwµ = v0w0 + · · ·+ v3w3 for µ, ν ∈
{0, . . . , 3}. Moreover, we use the type of index to indicate in which coordi-
nates a tensor is expressed in, for instance, Tµν denotes a (1, 1)-tensor in
coordinates xµ and Tαβ denotes the same tensor in (different) coordinates
xα. Under a change of coordinates, tensors transform via contraction with
the Jacobian Jµα of the coordinate transformation, which is given by

(2.1) Jµα =
∂xµ

∂xα
.

For example, a vector transforms as vµ = Jµαvα and a one-form as vµ =
Jαµ vα, where Jαµ denotes the (point-wise) inverse of (2.1). The metric tensor
transforms according to

(2.2) gαβ = JµαJ
ν
βgµν ,
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which is crucial for our method here. gµν denotes the inverse of the metric,
defined via

(2.3) gµσgσν = δµν ,

for δµν being equal to 1 when µ = ν and 0 otherwise. By convention, we raise
and lower tensor indices with the metric, for example, Tµν = Tµσgνσ.

In (2.1), the Jacobian is defined for a given change of coordinates. Vice
versa, for a set of given functions Jµβ to be a Jacobian of a coordinate trans-
formation it is necessary and sufficient to satisfy (see Appendix A for de-
tails),

Jµα,β = Jµβ,α(2.4)

det (Jµα) 6= 0,(2.5)

where f,α = ∂f
∂xα denotes partial differentiation with respect to coordinates

xα. We henceforth refer to (2.4) as the integrability condition or as the curl
equations.

The Einstein equations, which govern the gravitational field, read

(2.6) Gµν = κTµν

in units where c = 1. Tµν denotes the energy-momentum-tensor, describing
the energy- and matter-content of spacetime, and

(2.7) Gµν = Rµν − 1

2
Rgµν + Λgµν

is the Einstein tensor [4]. Λ denotes the cosmological constant and κ =
8πG incorporates Newton’s gravitational constant G. (Our method applies
regardless the choice of Λ ∈ R.) The Ricci tensor Rµν is defined as the trace
of the Riemann tensor, Rµν = Rσµσν , and the scalar curvature is R = Rσσ.
The metric tensor gµν enters the Einstein equations through the Christoffel
symbols

(2.8) Γµνρ =
1

2
gµσ (gνσ,ρ + gρσ,ν − gνρ,σ) ,

since the Riemann curvature tensor is defined3 as

Rµνρσ = Γµνσ,ρ − Γµνρ,σ + ΓµλρΓ
λ
νσ − ΓµλσΓλνρ .

3The Riemann curvature tensor introduced in [29] differs from the one used by us
and in [9] by a factor of −1 which, in [29], is compensated for by setting κ = −8πG.
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By construction, due to the Bianchi identities of the Riemann curvature
tensor, the Einstein tensor is divergence free,

(2.9) divG = 0,

with respect to the covariant divergence of the metric gµν . Through (2.9),
the Einstein equations ensure conservation of energy in the matter source,
that is,

(2.10) divT = 0 ,

which was one of the guiding principles Einstein followed in the construction
of the Einstein tensor [4]. In the case of a perfect fluid, that is, when the
energy momentum tensor is given by

(2.11) Tµν = (p+ ρ)uµuν + pgµν ,

(2.10) are the general relativistic Euler equations, with ρ being the density,
p the pressure and uµ the tangent vector of the fluid flow normalized such
that uνuν = −1, (see for example [9, 23]). (2.6) and (2.10) are the coupled
Einstein Euler equations, a system of 14 partial differential equations which
closes once we prescribe a (barotropic) equation of state, p = p(ρ), leaving
14 unknowns to solve for: gµν , ρ and uν . In a locally inertial frame around a
point p, that is, in coordinates where the metric is the Minkowski metric up
to second order metric-corrections in coordinate-distance to p, (2.10) reduce
to the special relativistic Euler equations at p. For the Special Relativistic
Euler equations, it is well-known that shock waves form from smooth initial
data whenever the flow is sufficiently compressive,[3, 12, 20]. This makes the
study of shock waves inevitable for perfect fluid sources, arguing the result
of this paper being fundamental to General Relativity.

Being discontinuous, shock wave solutions satisfy the conservation law
(2.10) only in a weak sense, that is,

(2.12)

∫
M

Tµνϕ,νdµM = 0,

for all test-functions ϕ ∈ C∞0 (M), and where dµM denotes the volume ele-
ment of spacetime. Across the hypersurface of discontinuity Σ, the so-called

MAPLE uses the sign convention in [29] for the Riemann tensor, which is important
to keep in mind when computing the Einstein tensor for (2.16)–(2.19) below with
MAPLE.



i
i

“3-Reintjes” — 2018/3/13 — 1:14 — page 1536 — #12 i
i

i
i

i
i

1536 Moritz Reintjes

shock surface, the solution satisfies the Rankine Hugoniot conditions (RH
conditions),

(2.13) [Tµν ]Nν = 0,

where Nν is normal to the (time-like4) hypersurface Σ and [u] := uL − uR
for uL and uR denoting the left and right limit to Σ of some function u
respectively. [u] is referred to as the jump in u across Σ. One can bypass
the weak formalism and work instead with the RH conditions due to the
following basic fact: Suppose Tµν is a strong solution everywhere away from
Σ, then, Tµν is a weak solution in a neighborhood of the Σ if and only if the
RH conditions (2.13) hold everywhere on the surface, c.f. [20].

We now discuss spherically symmetric spacetimes, examples of which are
the Schwarzschild, the Oppenheimer Volkoff and the Friedmann Robertson
Walker spacetimes, c.f. [9, 29]. In a spherically symmetric spacetime, assum-
ing that one of the spaces of symmetry has constant scalar curvature equal
to 1, one can always introduce coordinates ϑ and ϕ such that the metric is
of the form

(2.14) ds2 = −Adt2 +Bdr2 + 2Edtdr + CdΩ2 ,

where

dΩ2 = dϕ2 + sin2 (ϑ) dϑ2

is the line element on the two-sphere and the metric coefficients A, B, C
and E only depend on t and r, [29]. For our purposes, it suffices to define
a spherically symmetric spacetime as a spacetime endowed with a metric
which can be represented as in (2.14). It follows that a spherically symmetric
metric is invariant under spatial rotation. The coordinate representation
(2.14) is preserved under coordinate transformations in the (t, r)-plane, that
is, transformations which keep the angular variables, ϑ and ϕ, fixed.

If ∂rC 6= 0, one can simplify the metric further by introducing a new
“radial” variable r′ :=

√
C and removing the off-diagonal element through

an appropriate coordinate transformation in the (t, r′)-plane [29], denoting
the resulting coordinates again by t and r the new metric reads

(2.15) ds2 = −Adt2 +Bdr2 + r2dΩ2 .

Coordinates where the metric is given by (2.15) are called Standard Schwarz-
schild Coordinates (SSC). In SSC, the metric has only two free components

4Physical shock waves propagate slower than the speed of light.
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and the Einstein equations read

Br +B
B − 1

r
= κAB2r T 00(2.16)

Bt = −κAB2r T 01(2.17)

Ar −A
B − 1

r
= κAB2r T 11(2.18)

Btt −Arr + Φ = −2κABr2 T 22 ,(2.19)

with

Φ := −BAtBt
2AB

− B2
t

2B
− Ar

r
+
ABr
rB

+
A2
r

2A
+
ArBr
2B

.

Regarding the metric regularity in the presence of shock waves, recall
that a shock wave is a weak solution of the Euler equations (2.10), discon-
tinuous across a time-like hypersurface Σ and smooth away from Σ. Now,
by (2.16)–(2.18), if the Tµν are discontinuous, then the metric cannot be
any smoother than Lipschitz continuous. In fact, in a spherically symmetric
spacetime, as a consequence of the RH conditions, it is not possible that T 22

is discontinuous but all the remaining Tµν are continuous. Therefore, any
shock-discontinuity must be compensated for by a discontinuous first order
metric derivative and the fourth Einstein equation (2.19) can only hold in
a weak sense. In light of this, we henceforth assume that the gravitational
metric in SSC is Lipschitz continuous, providing us with a consistent frame-
work to address shock waves in General Relativity and agreeing in particular
with the solution proven to exist by Groah and Temple, [7]. Moreover, Lips-
chitz continuity arises naturally in the problem of matching two spacetimes
across an interface, c.f. [10] or [21].

For the Einstein tensor to be defined point-wise almost everywhere, a
C1,1 metric regularity is required, however, as we have just demonstrated, at
the level of shock waves only Lipschitz continuity of the metric is guaranteed.
For this low regularity the Einstein and Riemann curvature tensor can only
be introduced in a weak (distributional) sense, (see [21] for an definition of
a weak shock solution of the Einstein equations). Nevertheless, in his 1966
paper [10] Israel proved that, at a single shock surface, there exists coordi-
nates where the metric is C1,1 regular if and only if the energy momentum
tensor is bounded almost everywhere. Furthermore, if the metric is C1,1 in
some coordinates, then the second fundamental form is continuous across
the shock surface and the Rankine Hugoniot jump conditions are satisfied.
In fact, in a spherically symmetric spacetime, equivalence holds between the
RH conditions and the existence of coordinates where the metric is C1,1, as
proven in [21].
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At the heart of Israel’s method lies the choice of Gaussian Normal Co-
ordinates with respect to the shock surface Σ, which we now explain in
some more detail for a smooth shock surface in a n-dimensional Rieman-
nian manifold.5 One first arranges by a smooth coordinate transformation
that locally Σ = {p ∈M : xn(p) = 0} and then exchanges the n-th coordi-
nate function by the arc-length-parameter of geodesics normal to Σ. In more
detail, Gaussian Normal Coordinates are the mapping assigning the point
p ∈M (sufficiently close to Σ) to the point

xα(p) =
(
s, xn−1(q), . . . , x1(q)

)
∈ Rn,

where s is the arc-length parameter of a geodesic curve γ starting at the
point q ∈ Σ in the direction normal to Σ, with γ(s) = p, and xα(q) = xi(q)
for all α = i ∈ {1, . . . , n− 1}. Computing now the Einstein tensor in such
coordinates, one finds that each component of the resulting Einstein tensor
contains only a single second order normal derivative, ∂2

ngαβ, while all other
terms in the Einstein equations are in L∞ and thus ∂2

ngαβ ∈ L∞. Now,
since all other second order metric derivatives are bounded by assumption,
one arrives at the conclusion6 gαβ ∈ C1,1. Moreover, in Gaussian Normal
coordinates the second fundamental form is given by gαβ,n.

In Section 6, we give a new constructive proof of Israel’s result in spheri-
cally symmetric spacetimes, based on the method we introduce in Section 5.
It has remained an open problem whether or not such a theorem applies to
the more complicated C0,1-solutions containing shock wave interactions, for
example, the SSC solutions proven to exist by Groah and Temple [7]. Our
purpose here is to show that such solutions can be smoothed to C1,1 in a
neighborhood of a point of regular shock wave interaction in SSC between
shocks from different families, a notion we now make precise.

3. A point of regular shock wave interaction in SSC between
shocks from different characteristic families

In this section we set up our basic framework and give the definition of a
point of regular shock wave interaction in SSC, that is, a point p where
two radial shock waves enter or leave the point p with distinct speeds. We

5This construction generalizes easily to Lorentz manifolds, as long that Σ is non-
null.

6Note that Lipschitz continuity of a function is equivalent for it to be in the
Sobolev-space W 1,∞, consisting of the functions with weak derivatives in L∞. These
functions are differentiable almost everywhere [5].
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henceforth restrict attention to radial shock waves, that is, shock surfaces Σ
that can (locally) be parameterized by

(3.1) Σ(t, ϑ, ϕ) = (t, x(t), ϑ, ϕ),

and across which the stress-energy-momentum tensor, T , is discontinuous.
Said differently, for a fixed time t the shock surface is a two sphere (of
symmetry) with radius x(t). For simplicity, we assume Σ to be a timelike
surfaces, that is, the shock speed is smaller than the speed of light, ẋ(t)2 < A

B .
Nevertheless, Theorem 1.1 also applies to spacelike shock surfaces, since we
can assume the metric components A and B in (2.15) to be both negative.

For radial hypersurfaces in SSC, the angular variables play a passive
role, and the essential issue regarding smoothing the metric components lies
within the atlas of C1,1 coordinate transformations acting on the (t, r)-plane,
i.e., angular coordinates are kept fixed. Therefore, it suffices to work with
the so-called shock curve γ, that is, the shock surface Σ restricted to the
(t, r)-plane,

(3.2) γ(t) = (t, x(t)),

with normal 1-form

(3.3) nν = (ẋ,−1).

For radial shock surfaces (3.1) in SSC, the Rankine Hugoniot (RH) condi-
tions (2.13) take the simplified form[

T 00
]
ẋ =

[
T 01
]
,(3.4) [

T 10
]
ẋ =

[
T 11
]
.(3.5)

We now generalize the above framework to shock wave interactions (col-
lisions) between shocks from different families. At the point of collision,
shock waves typically change their speeds discontinuously, so that we can-
not assume the shock surfaces to be smooth in t at t = 0. In light of this, it
is useful to think of the incoming and outgoing branches of the two shock
waves as four distinct shocks, two of which are defined for t ≤ 0 and two for
t ≥ 0. In more detail, to establish our basic framework, suppose the timelike
shock surfaces Σ±i are parameterized in SSC by

(3.6) Σ+
i (t, θ, φ) = (t, x+

i (t), θ, φ), for t ≥ 0,
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and

(3.7) Σ−i (t, θ, φ) = (t, x−i (t), θ, φ), for t ≤ 0,

where i = 1, 2. Assume in addition that Σ±i intersect at t = 0, that is,

x±1 (0) = r0 = x±2 (0),

for some r0 > 0. Restricted to the (t, r)-plane, the above shock surfaces are
described by the shock curves

(3.8) γ±i (t) = (t, x±i (t)),

with normal 1-forms

(3.9) (n±i )ν = (ẋ±i ,−1).

We assume the γ±i are C3 with all derivatives extending to t = 0. Denoting
with [·]±i the jump across the shock curve γ±i the RH conditions read, in
correspondence to (3.4)–(3.5),[

T 00
]±
i
ẋ±i =

[
T 01
]±
i
,(3.10) [

T 10
]±
i
ẋ±i =

[
T 11
]±
i
.(3.11)

For the proof of Theorem 1.1, it often suffices to restrict attention to the
lower (t < 0) or upper (t > 0) part of a shock wave interaction that occurs
at t = 0. That is, it suffices to consider the lower or upper half plane in R2

separately,

(3.12) R2
− = {(t, r) : t < 0} or R2

+ = {(t, r) : t > 0} ,

respectively. (We denote with R2
± the closure of R2

±.) Whenever it is clear
that we restrict consideration to R2

− or R2
+, we drop the superscript ± on

the quantities introduced in (3.6)–(3.11).
We are now prepared to give the definition of what we call a point of

regular shock wave interaction in SSC between shocks from different families.
By this we mean a point7 p where two shock waves collide, resulting in
two outgoing shock waves, such that the metric is smooth away from the

7The intersection of the shock surfaces is a two sphere, but abusing language we
refer to it as a point, consistent with suppressing angular dependence.
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shock curves and Lipschitz continuous across each shock curve, allowing for
a discontinuous Tµν and the RH condition to hold. In case that Tµν is given
by a perfect fluid, this type of shock collision corresponds to an interaction
of shock waves in different characteristic families, c.f. [20]. However, we only
require the RH conditions to hold and do not explicitly assume a perfect
fluid source.

Definition 3.1. Let r0>0, and assume gµν to be an SSC metric in C0,1 (N ),
where N ⊂ R2 is a neighborhood of the point p = (0, r0) of intersection of
the timelike shock curves γ±i , i = 1, 2, introduced in (3.8). Let N̂ denote the
open set consisting of all points in N not in the image of any γ±i . Then,
we say that p is a “point of regular shock wave interaction in SSC between
shocks from different families” if:

(i) The pair (g, T ) is a strong solution of the SSC Einstein equations
(2.16)–(2.19) in N̂ , with Tµν ∈ C0(N̂ ) and gµν ∈ C2(N̂ ).

(ii) The limits of Tµν and of the metric derivatives gµν,σ exist on both sides
of each shock curve γ±i , including the point p.

(iii) The jumps in the metric derivatives [gµν,σ]±i (t) are C3 functions for all
t ∈ (−ε, 0), respectively, for all t ∈ (0, ε).

(iv) The (upper/lower)-limits

lim
t→0

[gµν,σ]±i (t) = [gµν,σ]±i (0)

exist and the (upper/lower)-limits for derivatives of [gµν,σ]±i up to third
order exist.8

(v) The stress tensor T is bounded on N and satisfies the RH conditions

[T νσ]±i (ni)σ = 0

at each point on γ±i (t), t ∈ (−ε, 0) or t ∈ (0, ε), and the limits of these
jumps exist up to p as t→ 0.

The structure assumed in Definition 3.1 reflects the regularity of generic
shock wave solutions of the coupled Einstein-Euler equations, for instance,
the shock interactions simulated in [28], and our assumptions are consistent
with the Groah-Temple existence-theory in [7]. We expect Definition 3.1 to

8These limits are discontinuous, in general.
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be a most natural way of introducing shock wave interactions, since our as-
sumptions are straightforward generalizations from either the flat case or the
case of single relativistic shock waves, for instance, as in [6, 21–26]. In more
detail, a typical shock wave solution of the compressible Euler equations
is bounded (in L∞) and smooth away from the shock discontinuity, (one
can actually assume C∞ as long that initial data is in C∞), consistent with
the local existence results for symmetric hyperbolic first order PDE’s [27,
Chapter 16.2]. Moreover, from the Euler equations holding in the weak sense
across the shock surface, one can show with Gauss divergence theorem that
limits of the fluid variables exist at the shock surface. Now, the regularity of
Tµν corresponds to the regularity of the fluid variables, so in Definition 3.1
we can assume that Tµν is smooth away from the shock surfaces and that
limits to the shock surfaces exist. Since the fourth Einstein equations in
SSC (2.19) contains second order derivatives of the metric, it is natural to
assume gµν to be two degrees more regular than Tµν . Moreover, since the
first three Einstein equations (2.16)–(2.18) only contain first order metric
derivatives, it follows that limits of metric derivatives exist on the shock
surfaces whenever these limits exist for Tµν . This is recorded in (i), (ii) and
(iv) of Definition 3.1. The C3 regularity assumed in (iii) is convenient for
the PDE existence theory in Section 8 and it should be possible to weaken
this assumption. For our method, it should also be possible to weaken the
assumption in (i) from a C2 to a C1,1 metric regularity. However, since we
can always assume more smoothness away from the shocks without essential
loss of generality, we are content with our assumptions in (i) and (iii) and
the slight loss of generality they might entail.

4. Functions C0,1 across a hypersurface

In this section we first define a function being C0,1 across a hypersurface.
We then study the relation of a metric being C0,1 across a hypersurface to
the Rankine Hugoniot jump condition through the Einstein equations and
derive a set of three equations central to our methods in Sections 5–10.
Finally we derive a canonical form functions C0,1 across a hypersurface can
be represented in, which is the starting point for the method in Section 7.

Definition 4.1. Let Σ be a smooth hypersurface in some open set N ⊂ Rd
with a normal vector-field nowhere lightlike. We call a function f ∈ C0,1(N )
“Lipschitz continuous across Σ”, (or C0,1 across Σ), if f is smooth in N \ Σ
and limits of derivatives of f to Σ exist on each side of Σ separately and
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are smooth functions. We call a metric gµν Lipschitz continuous across Σ in
coordinates xµ if all metric components are C0,1 across Σ.

For us, “smooth” means enough continuous derivatives so that regularity
is not an issue.9 The main point of the above definition is that we assume
smoothness of f away and tangential to the hypersurface Σ, but allow for
the normal derivative of f to be discontinuous, that is,

[f,σ]nσ 6= 0,

where nσ is normal to Σ with respect to some (Lorentz-) metric gµν defined
on N . Moreover, the continuity of f across Σ and the existence of derivatives
and their limits at each side of Σ imply that derivatives of f tangent to Σ
match-up continuously:

Lemma 4.2. Suppose f is C0,1 across Σ in the sense of Definition 4.1 and
let [·] denote the jump across Σ, then, for all vσ tangent to Σ,

(4.1) [f,σ]vσ = 0.

Proof. To prove (4.1), we first recall that the continuity of f across Σ implies

0 = [f ](q) = fL(q)− fR(q), ∀ q ∈ Σ,(4.2)

where fL/R denotes the left and right limit of f at Σ respectively. Now, fix
a point q ∈ Σ and let v be a vector tangent to Σ at q. Denote with c a C1

curve in Σ with c(0) = q and dc
ds(0) = v at q. Now, differentiating (4.2) along

c, yields

(4.3)
d

ds
fL ◦ c(s)−

d

ds
fR ◦ c(s) = 0, ∀ s.

To complete the proof, we now show that

(4.4)
d

ds
fL/R ◦ c(0) = (f,σ)L/R v

σ.

For this, let (cl)l∈R be a family of C1-curves lying entirely on the left of Σ
and converging uniformly in C1 to c as l approaches 0. Using our incom-
ing assumption that f ∈ C1(N \ Σ) with limits of derivatives existing at

9Throughout this paper, f ∈ C2(N \ Σ) with left-/right-limits of first and second
order derivatives existing suffices, with the exception of condition (iii) in Defini-
tion 3.1, for which f ∈ C4(N \ Σ) is sufficient.
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each side of Σ and that f is continuously differentiable tangential to Σ, we
conclude that the difference quotient

f ◦ cl(s+ h)− f ◦ cl(s)
h

is continuous in h and l, which implies limits in h and l commute and thus

d

ds
fL ◦ c =

d

ds

(
lim
l→0

f ◦ cl
)

= lim
l→0

(
d

ds
f ◦ cl

)
= lim

l→0

(
f,σ

dcσl
ds

)
= (f,σ)L v

σ.

The above equation, and thus (4.4), follows for the right-limit analogously.
Now, (4.3) together with (4.4) yield (4.1) and complete the proof. �

In the following we clarify the implications of equation (4.1) together
with the Einstein equations on the RH conditions (3.4), (3.5). For this,
consider a spherically symmetric spacetime metric in SSC (2.15) and assume
the first three Einstein equations (2.16)–(2.18) hold and the stress tensor T
is discontinuous across a smooth radial shock surface, described in the (t, r)-
plane by γ(t) as in (3.1)–(3.3). To this end, condition (4.1) applied to each
metric component gµν in SSC, c.f. (2.15), reads

[Bt] = −ẋ[Br],(4.5)

[At] = −ẋ[Ar].(4.6)

On the other hand, the first three Einstein equations in SSC (2.16)–(2.18)
imply

[Br] = κAB2r[T 00],(4.7)

[Bt] = −κAB2r[T 01],(4.8)

[Ar] = κAB2r[T 11].(4.9)

Now, multiplying the first Einstein equation (4.7) with ẋ, then using the
first RH-condition (3.4), that is,

[
T 00
]
ẋ =

[
T 01
]
,
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and finally applying the second Einstein equation (4.8), allows us the fol-
lowing computation:

[Br]ẋ = κAB2r[T 00]ẋ

= κAB2r[T 01]

= −[Bt].

We conclude that (4.5) is in fact equivalent to the first RH condition (3.4).
The second condition, (4.6), is independent of the RH-conditions, because
[At] does not appear in (4.7)–(4.9). Now, multiplying the second Einstein
equation (4.8) with ẋ, then using the second RH-condition (3.5), that is,[

T 10
]
ẋ =

[
T 11
]
,

and finally applying the third Einstein equation (4.9) gives us

[Bt]ẋ = −κAB2r[T 01]ẋ

= −κAB2r[T 11]

= −[Ar].

The result, then, is that in addition to the assumption that the metric be
C0,1 across the shock surface in SSC, the RH conditions (3.4) and (3.5)
together with the Einstein equations (4.7)–(4.9), yield only one additional
condition10 over and above (4.5) and (4.6), namely,

(4.10) [Ar] = −ẋ[Bt] .

Moreover, conditions (4.5) - (4.6) do not restrict the discontinuity in Tµν

beyond the RH conditions. The RH conditions together with the Einstein
equations will enter our method in Sections 5 - 10 only through equations
(4.5), (4.6) and (4.10). We summarize the above consideration in the follow-
ing lemma:

Lemma 4.3. Assume the SSC metric, gµν , is C0,1 across a hypersurface
Σ in the sense of Definition 4.1. Assume the Einstein equations hold in the
sense of (4.7)–(4.9). Then (4.5)–(4.6) hold and the RH conditions, (3.4)–
(3.5), are equivalent to (4.10).

10This observation is consistent with Lemma 9, page 286, of [21], where only one
jump condition need to be imposed to meet the full RH relations.
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The following lemma gives a canonical form for any function Lipschitz
continuous across a single shock curve γ in the (t, r)-plane, under the as-
sumption that the vector nµ, normal to γ, is obtained by raising the index
in (3.3) with respect to a Lorentzian metric C0,1 across γ. We later apply
this lemma for the construction of Jacobians smoothing the metric to C1,1.

Lemma 4.4. Given a function f which is C0,1 across a smooth curve γ(t) =
(t, x(t)) in the sense of Definition 4.1, t ∈ (−ε, ε), in an open subset N of
R2. Then there exists a function Φ ∈ C1(N ) such that

(4.11) f(t, r) = ϕ(t) |x(t)− r|+ Φ(t, r),

where

(4.12) ϕ(t) =
1

2

[f,µ]nµ

nσnσ
∈ C1(−ε, ε),

and nµ(t) = (ẋ(t),−1) is the 1-form normal to vµ(t) = γ̇µ(t) and indices are
raised and lowered by a Lorentzian metric gµν which is C0,1 across γ.

Proof. Suppose ϕ is defined by (4.12), then, by our assumptions, ϕ is C1

regular. To show the existence of Φ ∈ C1(N ) define X(t, r) = x(t)− r and
introduce

(4.13) Φ = f − ϕ |X| ,

then (4.11) holds and it remains to prove the C1 regularity of Φ. It suffices
to prove

[Φ,µ]nµ = 0 = [Φ,µ]vµ,

since Φ ∈ C1(N \ γ) follows immediately from (4.13) and the C1 regularity
of f and ϕ away from γ. By Lemma 4.2, f satisfies equation (4.1) and using
further that d

dX |X| = H(X) and [H(X)] = 2, we obtain that

[Φ,µ]vµ = −2ϕX,µv
µ.

But since vµ(t) = T(1, ẋ(t)), we have

X,µv
µ = 0

and thus [Φ,µ]vµ = 0. Finally, the definition of ϕ in (4.12) together with

X,µn
µ = nµn

µ
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show that

[Φ,µ]nµ = 2ϕnµn
µ − 2ϕX,µn

µ = 0,

which completes the proof. �

In words, the canonical form (4.11) separates off the C0,1 kink of f
across γ from its more regular C1 behavior. In more detail, the absolute
value function |x(t)− r| locates the kink to the shock curve, with ϕ giving
the strength of the jump, while Φ encodes the remaining C1 behavior of f .
In Section 7 we introduce a canonical form analogous to (4.11) for two shock
curves, but such that it allows for the Jacobian to be in the weaker regularity
class C0,1, away from the shock curves. To this end, suppose we are given
timelike shock surfaces described in the (t, r)-plane by γi(t) = (t, xi(t)), such
that (3.6)–(3.9) applies. To cover the generic case of shock wave interaction,
we assume each γi(t) is at least C2 away from t = 0, with the lower/upper-
limit of their derivatives existing up to t = 0. For our methods in Section 7,
it suffices to consider the upper (t > 0) or lower part (t < 0) of a shock wave
interaction at t = 0 separately. In the following lemma we restrict without
loss of generality to R2

+, the upper part of a shock wave interaction.

Lemma 4.5. Let γi(t) = (t, xi(t)) be two smooth curves defined on I =
(0, ε), for some ε > 0, such that (3.6)–(3.9) hold. Let N be an open neigh-
borhood of p = (0, r0) in R2 and suppose f is in C0,1(N ∩ R2

+), but such that
f is C2 tangential to each γi, limits of derivatives of f exist on each γi and
(4.1) holds on each γi. Then there exists a function Φ ∈ C0,1(N ∩ R2

+), such
that limits of its derivatives exist on each γi and match continuously, i.e.,

(4.14) [Φt]i = 0 = [Φr]i,

for i = 1, 2, and such that

(4.15) f(t, r) =
∑
i=1,2

ϕi(t) |xi(t)− r|+ Φ(t, r),

for all (t, r) in N ∩ R2
+, where

(4.16) ϕi(t) =
1

2

[f,µ]i(ni)
µ

(ni)µ(ni)µ
∈ C1(I).

here (ni)µ(t) = (ẋi(t),−1) is the 1-form normal to vµi (t) = γ̇µi (t), for i = 1, 2,
and indices are raised by a Lorentzian metric C0,1 across each γi.
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Proof. Suppose ϕi is given by (4.16). The regularity of ϕ follows immediately
from our assumptions on f . To show the existence of Φ ∈ C0,1(N ∩ R2

+),
define Xi(t, r) = xi(t)− r and

(4.17) Φ = f −
∑
i=1,2

ϕi |Xi| ,

then Φ is in C0,1(N ∩ R2
+) and (4.15) holds. Moreover, limits of derivatives

of Φ exist on each γi, since limits of derivatives of f are assumed to exist on
each γi. It remains to prove (4.14), for which it suffices to prove that

[Φ,µ]i (ni)
µ = 0 = [Φ,µ]i (vi)

µ.

By assumption, f satisfies equation (4.1) with respect to each γi and thus

[Φ,µ]i (vi)
µ = −

∑
j=1,2

ϕj [H(Xj)]i (Xj),µ(vi)
µ

= −2ϕi (Xi),µ(vi)
µ,

where we used that [H(Xj)]i = 2δji to obtain the last equality. Now, since
(vi)

µ(t) = T(1, ẋi(t)), we find that Xi,µ(vi)
µ = 0 and thus

[Φ,µ]i (vi)
µ = 0.

Finally, the definition of ϕi in (4.16) together with [H(Xj)]i = 2δji and

Xi,µ(ni)
µ = (ni)µ(ni)

µ

show that

[Φ,µ]i (ni)
µ = 2ϕi (ni)µ(ni)

µ − 2ϕiXi,µ(ni)
µ = 0,

which completes the proof. �

In Section 7, we use the canonical form (4.15) to characterize all Jaco-
bians in the (t, r)-plane capable to lift the metric regularity from C0,1 to
C1,1, unique up to addition of C1 functions.

5. The smoothing condition

In this section we derive a point-wise condition on the Jacobians of a coor-
dinate transformation, necessary and sufficient for the Jacobians to lift the
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metric regularity from C0,1 to C1,1 in a neighborhood of a point on a single
shock surface Σ. This condition is the starting point for our strategy and
lies at the heart of the proofs in Sections 6–10.

We begin with the covariant transformation law

(5.1) gαβ = JµαJ
ν
βgµν ,

for the metric components at a point on a hypersurface Σ for a general
C1,1 coordinate transformation xµ → xα, where, as customary, the indices
indicate the coordinate system. Let Jµα denote the Jacobian of the transfor-
mation, that is,

(5.2) Jµα =
∂xµ

∂xα
.

Now, assume Jµα and the metric components gµν are Lipschitz continuous
across Σ, in the sense of Definition 4.1, with respect to coordinates xµ. Then,
differentiating (5.1) with respect to ∂

∂xγ and taking the jump across Σ we
obtain

(5.3) [gαβ,γ ] = JµαJ
ν
β [gµν,γ ] + gµνJ

µ
α [Jνβ,γ ] + gµνJ

ν
β [Jµα,γ ] ,

where [f ] = fL − fR denotes the jump in the quantity f across the shock
surface Σ, c.f. (2.13). Since both gµν and Jµα are C0,1 across Σ, the jumps
are only on the derivative-terms. Now, gαβ is C1 across Σ if and only if

(5.4) [gαβ,γ ] = 0

for all α, β, γ ∈ {0, . . . , 3}, and (5.3) implies that (5.4) holds if and only if

(5.5) [Jµα,γ ]Jνβgµν + [Jνβ,γ ]Jµαgµν + JµαJ
ν
β [gµν,γ ] = 0.

(5.5) is a necessary and sufficient condition on the Jacobian for smoothing
the metric from C0,1 to C1, in fact, even smoothing to C1,1 regularity as
shown in Lemma 5.3. We refer to (5.5) as the Smoothing Condition.

(5.5) is an inhomogeneous linear system with unknowns [Jµα,γ ], where we
consider the Jµα -factors as given (free) parameters. A solution of (5.5) alone
does not ensure the existence of a Jacobian, since (5.5) does not yet ensure
the existence of C0,1 functions Jµα that take on the values [Jµα,γ ] and satisfy
the integrability condition (2.4), necessary for integrating Jµα to coordinates.
It is therefore crucial to impose an appropriate integrability condition at the
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shock surface, namely

(5.6) [Jµα,β] = [Jµβ,α].

In the following we solve the linear system obtained from (5.5) and (5.6)
for [Jµα,γ ]. We subsequently restrict to spherically symmetric spacetimes and
assume that gµν denotes the metric in Standard Schwarzschild coordinates,
(2.15). (From now on, indices µ, ν and σ refer to SSC.) To implement our
proof strategy of Theorem 1.1, we write (5.5) in its equivalent form in SSC,

(5.7) [Jµα,σ]Jνβgµν + [Jνβ,σ]Jµαgµν = −JµαJνβ [gµν,σ],

by using the chain rule and that Jσγ is point-wise an invertible matrix. Sim-
ilarly, we express (5.6) in its equivalent SSC-form, c.f. Appendix A,

(5.8) [Jµα,σ]Jσβ − [Jµβ,σ]Jσα = 0.

To simplify (5.7), suppose we are given a single radial shock surface Σ
in SSC locally parameterized by

(5.9) Σ(t, θ, φ) = (t, x(t), θ, φ),

described in the (t, r)-plane by the corresponding shock curve

(5.10) γ(t) = (t, x(t)).

For such a hypersurface in SSC, the angular variables play a passive role, and
the essential issue regarding smoothing the metric components by C1,1 coor-
dinate transformations, lies in the atlas of (t, r)-coordinate transformations.
Thus we restrict to the atlas of (t, r)-coordinate transformations, which keep
the SSC angular coordinates fixed, c.f. (2.15). Then

(5.11) (Jµα) =


J t0 J t1 0 0
Jr0 Jr1 0 0
0 0 1 0
0 0 0 1

 ,

with the coefficients just depending on the SSC t and r, which implies
[Jµα,β] = 0 whenever µ ∈ {ϕ, ϑ} or α ∈ {2, 3} or β ∈ {2, 3}. Now, (5.7)
and (5.8) form a linear inhomogeneous 8× 8 system for the eight unknowns
[Jµα,σ], where µ, σ ∈ {t, r} and α ∈ {0, 1}. The following lemma states its
unique solution. (To avoid confusion in later sections, it is convenient to
denote its solution with J µασ instead of [Jµα,σ].)
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Lemma 5.1. Consider a metric in SSC,

(5.12) gµνdx
µdxν = −A(t, r)dt2 +B(t, r)dr2 + r2dΩ2 ,

let Σ denote a single radial hypersurface, as in (5.9), across which gµν is
Lipschitz continuous and assume (5.11). Then, defining

J µασ := [Jµα,σ],

the unique solution to the linear system (5.7) and (5.8) is given by

J t0t = −1

2

(
[At]

A
J t0 +

[Ar]

A
Jr0

)
; J t0r = −1

2

(
[Ar]

A
J t0 +

[Bt]

A
Jr0

)
;

J t1t = −1

2

(
[At]

A
J t1 +

[Ar]

A
Jr1

)
; J t1r = −1

2

(
[Ar]

A
J t1 +

[Bt]

A
Jr1

)
;

J r0t = −1

2

(
[Ar]

B
J t0 +

[Bt]

B
Jr0

)
; J r0r = −1

2

(
[Bt]

B
J t0 +

[Br]

B
Jr0

)
;

J r1t = −1

2

(
[Ar]

B
J t1 +

[Bt]

B
Jr1

)
; J r1r = −1

2

(
[Bt]

B
J t1 +

[Br]

B
Jr1

)
.(5.13)

Proof. Substituting (5.13) into (5.7) and (5.8), a straightforward compu-
tation proves the existence. The uniqueness follows from the fact that the
determinant of the linear system formed by (5.7) and (5.8) has the non-zero
value −16det(Jµα)3AB. This completes the proof. �

The above solution for coordinate transformations in the (t, r)-plane suf-
fices for the construction of the Jacobians smoothing the metric in Section
7–10. However, to prove that the existence of such a transformation implies
the RH conditions, we have to study the solution of the smoothing condi-
tion for general coordinate transformations, that is, transformations which
change angular variables as well. The solution is recorded in the following
Lemma.

Lemma 5.2. Consider a metric in SSC, (5.12), and let Σ denote a single
radial hypersurface, (5.9), across which gµν is Lipschitz continuous. Then
there exists a unique solution J µασ := [Jµα,σ] of the linear system formed by
(5.7) and (5.8). The non-zero components of the solution are given by:

J t0t = −1

2

(
[At]

A
J t0 +

[Ar]

A
Jr0

)
; J t0r = −1

2

(
[Ar]

A
J t0 +

[Bt]

A
Jr0

)
;

J r0t = −1

2

(
[Ar]

B
J t0 +

[Bt]

B
Jr0

)
; J r0r = −1

2

(
[Bt]

B
J t0 +

[Br]

B
Jr0

)
;
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J t1t = −1

2

(
[At]

A
J t1 +

[Ar]

A
Jr1

)
; J t1r = −1

2

(
[Ar]

A
J t1 +

[Bt]

A
Jr1

)
;

J r1t = −1

2

(
[Ar]

B
J t1 +

[Bt]

B
Jr1

)
; J r1r = −1

2

(
[Bt]

B
J t1 +

[Br]

B
Jr1

)
;

J t2t = −1

2

(
[At]

A
J t2 +

[Ar]

A
Jr2

)
; J t2r = −1

2

(
[Ar]

A
J t2 +

[Bt]

A
Jr2

)
;

J r2t = −1

2

(
[Ar]

B
J t2 +

[Bt]

B
Jr2

)
; J r2r = −1

2

(
[Bt]

B
J t2 +

[Br]

B
Jr2

)
;

J t3t = −1

2

(
[At]

A
J t3 +

[Ar]

A
Jr3

)
; J t3r = −1

2

(
[Ar]

A
J t3 +

[Bt]

A
Jr3

)
;

J r3t = −1

2

(
[Ar]

B
J t3 +

[Bt]

B
Jr3

)
; J r3r = −1

2

(
[Bt]

B
J t3 +

[Br]

B
Jr3

)
.(5.14)

Proof. The existence follows by inspections of (5.14) and uniqueness fol-
lows from the fact that the determinant of the left hand side of the lin-
ear system formed by (5.7) and (5.8) is non-zero, in fact, it is given by
220 det (gµν)10 det (Jµα)

16
. �

(5.14) is a necessary and sufficient condition for [gαβ,γ ] = 0, since it solves
(5.7) and (5.8) uniquely. In fact, assuming the [Jµα,σ]-terms come from an
actual Jacobian of a coordinate transformation, c.f. (5.2), then (5.14) is
necessary and sufficient for raising the metric regularity to C1,1 in a neigh-
borhood of a point on a single shock surface, as we prove in the following
lemma. An analogous result holds for Jacobians restricted to the (t, r)-plane.

Lemma 5.3. Let p be a point on a single smooth shock curve γ, and let gµν
be the metric in SSC, C0,1 across γ in the sense of Definition 4.1. Let Jµα be
the Jacobian of a coordinate transformation defined on a neighborhood N of
p and assume Jµα is C0,1 across γ. Then the metric in the new coordinates,
gαβ, is in C1,1(N ) if and only if Jµα satisfies (5.14).

Proof. We first prove that gαβ ∈ C1,1(N ) implies (5.5). Suppose there exist
coordinates xα such that the metric in the new coordinates gαβ is C1,1

regular, then

[gαβ,γ ] = 0 ∀α, β, γ ∈ {0, . . . , 3}.
This directly implies (5.5) and since Jµα are the Jacobians of an actual coor-
dinate transformation they satisfy the integrability condition (5.6) as well.
By Lemma 5.2 the jumps in the derivatives of the Jacobian [Jµα,γ ] then satisfy
(5.14).

We now prove the opposite direction. Suppose the Jacobians Jµα satisfy
(5.14), by Lemma 5.2, they then meet the smoothing condition (5.5), which
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implies all metric derivatives gαβ,γ to match continuously across the shock
curve γ, that is, [gαβ,γ ] = 0 for all α, β, γ ∈ {0, . . . , 3}. Since gµν and Jµα
are assumed to be smooth away from γ, it follows that gαβ ∈ C1(N ). More-
over, one-sided limits of all first and second order metric derivatives exist
at γ, which already implies gαβ ∈ C1,1(N ). Namely, since the first order
derivatives match continuously across γ, it is straight forward to verify that
the second order derivatives away from γ agree with the weak second order
derivatives almost everywhere11. Now, given q1, q2 ∈ N , define c to be a C1

curve lying in N such that c(0) = q1 and c(1) = q2, we obtain the Lipschitz
bound

|gαβ,γ(q2)− gαβ,γ(q1)| ≤
∣∣∣∣∫ 1

0

d

ds
gαβ,γ ◦ c(s)ds

∣∣∣∣(5.15)

≤
4∑
δ=0

(
sup
q∈N\γ

|gαβ,γδ(q)|

)∣∣∣∣∫ 1

0

dc

ds
ds

∣∣∣∣
≤

4∑
δ=0

(
sup
q∈N\γ

|gαβ,γδ(q)|

)
|q2 − q1| .

�

It is instructive at this point to discuss why a C1,1 atlas is generic for
addressing the metric regularity across shock surfaces: For raising the met-
ric regularity to C1 across a shock curve, that is, arranging for [gαβ,γ ] = 0,
(5.14) requires the Jacobian to “mirror” the C0,1 metric regularity compen-
sating for all discontinuous first order metric derivatives. If the coordinate
transformation is C2, the jumps in Jµα,β vanish, and (5.5) reduces to

0 = JµαJ
ν
β [gµν,γ ].

But this contradicts the Jacobians being non-singular. We conclude that it
is precisely the lack of covariance in (5.5) for C1,1 transformations, providing
the necessary degrees of freedom, (namely [Jµα,γ ]), allowing for a C0,1 metric
to be smoothed across a single shock surface. This illustrates that there is no
hope of lifting the metric regularity within a C2 atlas. Also, lowering the atlas
regularity to Hölder continuous Jacobians, we again lack free parameters to
meet (5.5) point-wise, since derivatives of Hölder continuous functions are

11Without the continuous matching of lower order derivatives, partial integration
would lead to boundary terms, so that the weak derivative would generally differ
from the derivatives away from γ.
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not bounded. From this, we conclude that a C1,1 atlas is generic to address
shock waves in GR.

Before we close this section, we need to address a technical issue for prov-
ing the reverse implication of Theorem 1.1: So far we addressed Jacobians
which are smooth along Σ, which suffices for the construction of Jacobian
smoothing the metric in Sections 6–10, however, in order to specify all such
Jacobian it is important to show that the above regularity already exhausts
the choice of all possible C0,1 Jacobians. Namely, in general, Lipschitz con-
tinuous Jacobians could also have discontinuous derivatives along Σ, which
might not match up continuously across Σ. In order to address such Jaco-
bians, we assume that limits of Jacobian derivatives along curves transversal
to Σ exist. For such Jacobians one can then define the jump across Σ as

(5.16) [u]c = lim
s↘0

u ◦ c(s)− lim
s↗0

u ◦ c(s)

for some continuous curve c(·) transversal to Σ such that c(0) ∈ Σ, and
for u ≡ Jµα,σ being assumed regular enough for the above limits to exist. We
expect that C0,1 regular Jacobians for which the above limits fail to exist are
not capable of raising the metric regularity, since the smoothing condition
cannot be made sense of. We therefore deem such Jacobians irrelevant for the
purpose of metric smoothing. The following Lemma proves that Jacobians
smoothing the metric regularity have a well-defined jump and that [Jµα,σ]
meet (4.1).

Lemma 5.4. Let gµν be a SSC-metric C0,1 across a single smooth shock
curve γ. Let Jµα be C0,1 regular functions which meet (5.7) and (5.8) with
limits assumed to exist in the sense of (5.16) for any smooth curve c transver-
sal to γ. Then the value [Jµα,σ]c is independent of the choice of the curve c,
the Jµα are C1 along γ, and (4.1) holds, that is,

[Jµα,σ]γ̇σ = 0.

Proof. Assume [Jµα,σ]c satisfy (5.7) and (5.8) for any curve c(·) transversal to
γ, where [·] is defined by (5.16). Lemma 5.2 also applies for the jump being
defined via (5.16), thus [Jµα,σ]c is given by (5.14). Now, the right hand side of
(5.14) depends on the undifferentiated Jacobian and [gµν,σ]c only, and since
the metric is assumed to be smooth along the shock curves, we conclude
that [gµν,σ]c = [gµν,σ] for any curve c(·). Thus [Jµα,σ]c = [Jµα,σ] is independent
of the choice of c.

To prove the regularity along γ and that [Jµα,σ] satisfy (4.1), assume
for contradiction that (Jµα,σ)L/R is discontinuous at t0 and assume without
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loss of generality that γ(t) = (t, 0). Now, consider two smooth curves, s 7→
c1(s) and s 7→ c2(s), which intersect γ in γ(t0) = c1(0) = c2(0), such that the
image of c1 lies entirely below the line {t = t0}, while the image of c2 lies
below {t = t0} for s < 0 and above {t = t0} for s > 0. Then [Jµα,t]c1 = 0 and
[Jµα,t]c2 6= 0, which contradicts [Jµα,σ]c being independent of the choice of the
curve c. Thus Jµα is C1 along γ which also implies (4.1), by Lemma 4.2. �

To close this section, we discuss how our method proceeds from here
on. Lemma 5.1 establishes the remarkable result that there is no algebraic
obstruction to lifting the metric regularity. Namely, the smoothing condi-
tion (5.7) has the solution (5.14), and its solvability is neither connected
to the RH conditions (3.4)–(3.5) nor the Einstein equations. However, by
[10, 21], the RH conditions must be imposed for coordinate transformations
smoothing the metric to exist. The point here is that to prove the existence
of coordinate transformations lifting the regularity of SSC metrics to C1,1

at p ∈ Σ, one must prove that there exists a set of functions Jµα defined in
a neighborhood of p, such that (5.14) holds at p, and such that the integra-
bility condition (2.4), necessary for Jµα to be the Jacobian of a coordinate
transformation, holds in a neighborhood of p. The RH conditions are the
necessary and sufficient condition for the existence of such functions.

6. The single-shock-case: A new proof of Israel’s Theorem

We have shown in Lemma 5.3 that (5.14) is a necessary and sufficient condi-
tion on [Jµα,σ] for lifting the SSC metric regularity to C1,1 in a neighborhood
of a shock curve, provided the value [Jµα,σ] comes from an actual Jacobian
Jµα . We now address the issue of how to construct such Jacobians in a neigh-
borhood of a single shock curve, that is, we study how to construct a set
of functions Jµα , acting on the (t, r)-plane and satisfying the smoothing con-
dition (5.13) on the shock curve, such that the integrability condition (2.4)
holds in a neighborhood of the curve. The goal of this section is to prove the
following version of Israel’s Theorem, which is a special case of Theorem 1.1,
but, in order to give an easy and rigorous introduction to our method, it is
instructive to prove this special case first.

Theorem 6.1. (Israel’s Theorem) Suppose gµν is an SSC metric that is
C0,1 across a radial shock surface Σ in the sense of Definition 4.1, such
that it solves the Einstein equations (2.16)–(2.19) strongly away from Σ for
a Tµν which is continuous away from Σ. Let p be a point on Σ. Then the
following are equivalent:
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(i) There exists a C1,1 coordinate transformation of the (t, r)-plane, de-
fined in some neighborhood N of p, such that the transformed metric
components are C1,1 functions of the new coordinates.

(ii) The RH conditions, (3.4)–(3.5), hold on Σ ∩N ′ for some N ′ ⊃ N .

Furthermore, the above equivalence also holds for the full atlas of C1,1 coor-
dinate transformations, not restricted to the (t, r)-plane.

The first step in the proof of Theorem 6.1 is to construct function Jµα
that satisfy the smoothing condition (5.14) on the shock curve, that is, the
condition guaranteeing [gαβ,γ ] = 0. The next lemma shows that the RH con-
ditions are necessary and sufficient for such functions to exist. In fact, to
prove sufficiency, it suffices to restrict attention to coordinate transforma-
tions in the (t, r)-plane, that is, to functions Jµα of the form (5.11).

Lemma 6.2. Let N be a neighborhood of a point p, for p lying on a single
shock curve γ across which the SSC metric gµν is Lipschitz continuous in
the sense of Definition 4.1, and let gµν be defined on N . Then, there ex-
ists functions Jµα ∈ C0,1(N ) of the form (5.11), which satisfy the smoothing
condition (5.13) on γ ∩N , if and only if the RH conditions (4.10) hold on
γ ∩N . Furthermore, any such function Jµα is of the “canonical form”

Jµα(t, r) = ϕµα(t) |x(t)− r|+ Φµ
α(t, r)(6.1)

with

(6.2) ϕµα(t) = −1

2
J µα r(t),

where J µαr is given in (5.13), µ ∈ {t, r}, α ∈ {0, 1}, and Φµ
α ∈ C0,1(N ) sat-

isfy

(6.3) [∂rΦ
µ
α] = 0 = [∂tΦ

µ
α].

Explicitly, the Jacobian coefficients are given by

ϕt0(t) =
[Ar]φ(t) + [Bt]ω(t)

4A ◦ γ(t)

ϕt1(t) =
[Ar]ν(t) + [Bt]ζ(t)

4A ◦ γ(t)

ϕr0(t) =
[Bt]φ(t) + [Br]ω(t)

4B ◦ γ(t)
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ϕr1(t) =
[Bt]ν(t) + [Br]ζ(t)

4B ◦ γ(t)
,(6.4)

where

(6.5) φ = Φt
0 ◦ γ, ω = Φr

0 ◦ γ, ν = Φt
1 ◦ γ, ζ = Φr

1 ◦ γ .

Furthermore, the above equivalence also holds for the full atlas of C0,1 coor-
dinate transformations, not restricted to the (t, r)-plane, with corresponding
canonical form, (6.1)–(6.2), for J µαr given by (5.14).

Proof. Suppose there exists a set of C0,1 functions Jµα satisfying (5.14), then
Lemma 5.4 implies

(6.6) [Jµα,t] = −ẋ[Jµα,r]

for all µ ∈ {t, r} and α ∈ {0, 1}. Combining (6.6) for the special case µ = t
and α = 0 with the right hand side in (5.14) leads to

−1

2

(
[At]

A
J t0 +

[Ar]

A
Jr0

)
=
ẋ

2

(
[Ar]

A
J t0 +

[Bt]

A
Jr0

)
.

Using now the jump relations for the metric tensor, (4.5)–(4.6), which hold
by the assumed smoothness of gµν along Σ, c.f. Lemma 4.3, we conclude

(6.7) [Ar] = −ẋ[Bt]

holds or J t0 = 0. However, combining (6.6) with the right hand side in (5.14)
for the remaining cases (µ 6= t and α 6= 0), we find that (6.7) indeed holds,
since otherwise Jµα = 0 for all µ ∈ {t, r} and for all α ∈ {0, . . . , 3} and such
Jacobians would lead to a singular metric tensor. Equation (6.7) is the non-
trivial RH condition (4.10) and it follows by Lemma 4.3 that the RH con-
ditions are satisfied.

For proving the opposite direction, as a consequence of Lemma 5.1, it
suffices to show that all t- and r-derivatives of the functions Jµα , defined in
(6.1), satisfy (5.13) for all µ ∈ {t, r} and α ∈ {0, 1}. Observing that (6.5)
implies the identities

φ = J t0 ◦ γ, ν = J t1 ◦ γ, ω = Jr0 ◦ γ, ζ = Jr1 ◦ γ,

and using the C1 matching of the functions Φµ
α, (6.3), as well as the RH

conditions in the form (4.5), (4.6) and (4.10), it follows immediately that the
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Jacobian ansatz (6.1) satisfies (5.13). This proves the existence of functions
Jµα satisfying the smoothing condition (5.13). Clearly, these functions then
also meet the full smoothing condition, (5.14). Finally, applying Lemma 4.4,
it follows that all functions satisfying (5.13) assume the canonical form (6.1).

�

To complete the proof of Israel’s Theorem, we need to make sure that
the functions Jµα , defined in (6.1), are integrable to coordinates, by showing
that they solve the integrability condition, (2.4), that is,

Jµα,β = Jµβ,α.

The only way for the Jµα to meet (2.4) is through the free functions Φµ
α. To

accomplish this, we consider Φt
1 and Φr

1 as given C2 functions and introduce
U := (Φt

0,Φ
r
0) as the unknowns of the PDE resulting from (2.4). The goal

then is to prove we can solve the integrability condition for U ∈ C1(N ) ∩
C2(N \ γ). The first step is to write (2.4) as a meaningful PDE in U . To
begin with, using that the integrability conditions (2.4) are equivalent to

Jµα,σJ
σ
β − J

µ
β,σJ

σ
α = 0,

according to Lemma A.2. Assuming further Φt
1 is such that J t1 6= 0, we obtain

the equivalent equation

Jµ0,t + Jµ0,r
Jr1
J t1

=
Jµ1,t
J t1

J t0 +
Jµ1,r
J t1

Jr0 ,

which in matrix notation is given by

∂

∂t

(
J t0
Jr0

)
+
Jr1
J t1

∂

∂r

(
J t0
Jr0

)
=

1

J t1

(
J t1,t J t1,r
Jr1,t Jr1,r

)(
J t0
Jr0

)
.

Now, it is straightforward to verify that (2.4), for Jµα defined in (6.1) and
U := (Φt

0,Φ
r
0), is equivalent to

∂tU + c ∂rU −MU(6.8)

=
(
|X|M−H(X) (ẋ− c)

)( ϕt0
ϕr0

)
− |X|

(
ϕ̇t0
ϕ̇r0

)
,

where the coefficients are given by

c =
Jr1
J t1
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and

M =
1

J t1

(
J t1,t J t1,r
Jr1,t Jr1,r

)
.

(6.8) is a system of non-local PDEs, since the right hand side of (6.8)
contains the Jacobian coefficients ϕt0 and ϕr0 which depend on U ◦ γ itself,
and standard existence theory cannot be applied in general. However, the
resolution to this problem is to prescribe initial data on the shock curve, since
the right hand side of (6.8) then turns into a given source term. Then (6.8) is,
in fact, a linear strictly hyperbolic system of first order differential equation,
to which standard existence theory can be applied, c.f. [11], provided we
choose

(6.9) ζ 6= ẋν,

which ensures that the shock curve is non-characteristic. Thus (6.8) can be
solved along characteristic curves, yielding a solution U ∈ C0,1(N ) which is
smooth away from γ, and the only obstacle to a solution U with the nec-
essary C1 regularity, (6.3), is the presence of the (discontinuous) Heaviside
functions H(X) in (6.8). However, the coefficients of H(X) in (6.8) vanish
on the shock curve precisely when the RH jump conditions hold, as stated
in the next lemma, which then yields the desired C1 regularity across γ.

Lemma 6.3. Assume the assumptions of Theorem 6.1 and denote with f
and h the coefficient functions of the Heaviside function H(X) in the first
and second component of (6.8), respectively. Then,

(6.10) f ◦ γ = 0 = h ◦ γ

if and only if the RH conditions, (3.4)–(3.5), hold on γ.

Proof. To derive an explicit expression for the coefficients to H(X) in (6.8),
note that the matrixM contains Heaviside functions as well. Then, collect-
ing all terms containing H(X) and using X ◦ γ = 0 and (6.5), we find

f ◦ γ = ϕt0 ẋ ν − ϕt1 ẋ φ+ ϕt1 ω − ϕt0 ζ ,
h ◦ γ = ϕr0 ẋ ν − ϕr1 ẋ φ+ ϕr1 ω − ϕr0 ζ.(6.11)

Now, replace ϕt0 and ϕt1 by their definition, (6.4), then a straightforward
computation shows that

f ◦ γ = 0
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is equivalent to

(6.12) ([Ar] + ẋ[Bt]) (φζ − νω) = 0.

Now, using

(6.13) (φζ − νω) = det (Jµα ◦ γ) 6= 0,

we conclude that f ◦ γ = 0 if and only if [Ar] + ẋ[Bt] = 0, that is, (4.10),
holds, which is equivalent to the second RH condition, (3.5). Similarly, re-
placing ϕr0 and ϕr1 in (6.11) by their definition, (6.4), a straightforward com-
putation shows the equivalence of h ◦ γ = 0 and

(6.14) ([Bt] + ẋ[Br]) (φζ − νω) = 0.

Now, using again (6.13), it follows that h ◦ γ = 0 if and only if (4.6) holds,
which is equivalent to the first RH condition (3.4). This completes the proof.

�

Proof of Theorem 6.1: We begin by showing that (i) implies (ii). Assume
there exist coordinates xα such that gαβ = JµαJνβgµν is in C1,1. The C1,1

regularity of gαβ implies that the Jacobian Jµα satisfies (5.14) on γ. Now,
Lemma 6.2 implies that the RH condition hold.

We now show that (ii) implies (i). Suppose the RH conditions, (3.4)–
(3.5), and thus (4.10) hold on γ ∩N ′. By Lemma 6.2, the functions Jµα
defined in (6.1) satisfy the smoothing condition (5.13) and thus lift the met-
ric regularity from C0,1 to C1,1. To ensure the existence of coordinates xα,
such that Jµα = ∂xµ

∂xα , we need to prove the existence of a C1 regular func-
tion U = (Φt

0,Φ
r
0) that satisfy the integrability condition (6.8), c.f. Lemma

(A.1). However, to make sure that the C2 metric regularity is preserved
away from the shock curve, we must prove that U is C2 away from γ. For
this, we choose Φt

1 and Φr
1 to be smooth non-zero functions such that (6.9)

holds, which is the condition that the shock curve is not characteristic. Now,
imposing smooth initial data on the shock curve, (6.8) is a strictly hyper-
bolic system of linear first order PDE’s. The standard existence theory in
[11], Chapter 2.5, then yields a solution U ∈ C0,1(N ), which is smooth away
from the shock curve, for some neighborhood N ⊂ N ′ of γ. Moreover, we
pick the initial data such that det J 6= 0 everywhere on the shock curve and,
by continuity of the solution, det J is thus non-vanishing in some neighbor-
hood of γ, which we again denote by N .

Now, for the Jacobian (6.1) to satisfy the smoothing condition (5.13), it
remains to prove a C1 regularity of U across the shock curve, that is, (6.3).



i
i

“3-Reintjes” — 2018/3/13 — 1:14 — page 1561 — #37 i
i

i
i

i
i

Spacetime is locally inertial 1561

For this, take the jump of (6.8) across γ and use the vanishing of f and h
in (6.10) and the continuity of U to conclude that

[∂tU ] ν + [∂rU ] ζ = 0.(6.15)

In addition, U being C0,1 across γ implies (4.1), that is,

[∂tU ] 1 + [∂rU ] ẋ = 0.(6.16)

Now, since (ν, ζ) is tangent to the characteristic curves of (6.8), and since
(6.9) ensures that the shock curve is non-characteristic, that is, (ν, ζ) 6= (1, ẋ)
at γ, (6.15) and (6.16) are independent conditions, which then yields the
desired C1 regularity across γ, (6.3). We conclude that the Jµα constructed
meet the smoothing condition (5.13) and are integrable to coordinates, c.f.
Lemma (A.1). By Lemma 5.3, we conclude that the metric in the resulting
coordinates, gαβ, is C1,1 regular. This completes the proof of Theorem 6. �

7. The shock-collision-case: The canonical Jacobian

In Section 6, we have shown how to construct Jacobians smoothing the
metric tensor across a single shock surface. We now proceed proving Theo-
rem 1.1, which concerns the metric smoothing in a neighborhood of a point
of shock wave interaction. In principal, we follow the constructive proof of
Theorem 6.1: We first extend our Jacobian ansatz (6.1) to the case of two
interacting shock waves and then show that this set of functions can be
integrated to coordinates. However, in contrast to the single shock case ad-
dressed in the previous section, we have to pursue the construction on the
upper and lower half-plane, R2

±, separately and then show that the resulting
functions can be “glued” together in a way appropriate to smooth the met-
ric. In more detail, we have to pursue three major steps. The first one is to
apply the canonical form (4.15) of Lemma 4.5 to construct the Jacobians Jµα
on R2

± separately, such that Jµα meet the smoothing condition (5.13) across
each of the shock curves, which is the subject of this section. The second
step is to show that there exists a choice of free functions Φµ

α, such that the
Jµα constructed in this section solve the integrability condition on R2

± sepa-
rately, which is achieved in Section 8. Finally, in Section 9, we demonstrate
how to match the Jµα , constructed on the upper and lower half-plane, across
the {t = 0}-interface in a way preserving the C1,1 metric regularity, by first
deriving so-called “matching conditions” and then proving these conditions
are met by the Jµα constructed in Sections 7–8.
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The subsequent proposition gives the canonical form of Jacobians that
meet the smoothing condition (5.7) across each shock curve in either R2

+ or
R2
−, and act on the (t, r)-plane only, that is, they are of the form (5.11).

Without loss of generality we formulate the proposition for R2
+. An addi-

tional obstacle in the case of shock interactions is that, in contrast to the
single shock case, the restriction Jµα ◦ γi does not only depend on the (free)
functions Φµ

α but also on the Jacobian coefficients from the other shock
curve, that is,

(7.1) Jµα ◦ γ1 = (ϕ2)µα
∣∣x1(·)− x2(·)

∣∣+ Φµ
α ◦ γ1.

Thus, since the smoothing conditions (5.13) depend on Jµα ◦ γi itself, we
have to make sure that the smoothing condition indeed lead to an (implicit)
definition of the Jacobian coefficients (ϕi)

µ
α, in the sense that the coefficients

only depend on the free functions Φµ
α.

Proposition 7.1. Let p be a point of regular shock wave interaction in SSC
between shocks from different families, in the sense of Definition 3.1 with
(i)–(iv) being met, with corresponding SSC metric, gµν , defined on N ∩ R2

+.
Then the following is equivalent:

(i) There exists a set of functions Jµα ∈ C0,1
(
N ∩ R2

+

)
of the form (5.11)

which satisfies the smoothing condition (5.13) on γi ∩N ∩ R2
+, for i =

1, 2.

(ii) The RH condition (4.10) holds on each shock curve γi ∩N ∩ R2
+, for

i = 1, 2, as in Definition 3.1, (v).

Furthermore, any such set of functions Jµα satisfying (5.13) is of the “canon-
ical form”

(7.2) Jµα(t, r) =
∑
i=1,2

(ϕi)
µ
α(t) |xi(t)− r|+ Φµ

α(t, r),

where Φµ
α ∈ C0,1

(
N ∩ R2

+

)
have matching derivatives across each shock

curve γi(t), for t > 0, that is,

(7.3) [Φµ
α, r]i = 0 = [Φµ

α, t]i ∀µ ∈ {t, r}, ∀α ∈ {0, 1},

and where (ϕi)
µ
α is defined implicitly through

(7.4) (ϕi)
µ
α = −1

2
(Ji)µαr
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with (Ji)µαr denoting the values J µαr in (5.13) with respect to γi. Explicitly,
the values for (ϕi)

µ
α are given by

(ϕi)
t
0 = −Bi

Ai
ẋi (ϕi)

r
0,(7.5)

(ϕi)
t
1 = −Bi

Ai
ẋi (ϕi)

r
1,(7.6)

(ϕi)
r
0 =

1
4Bi

(
[Bt]i Φt

0|i + [Br]i Φr
0|i
)

+ 1
4Bj

(
[Bt]j Φt

0|j + [Br]j Φr
0|j
)
Bij

1− BijBji

(7.7)

(ϕi)
r
1 =

1
4Bi

(
[Bt]i Φt

1|i + [Br]i Φr
1|i
)

+ 1
4Bj

(
[Bt]j Φt

1|j + [Br]j Φr
1|j
)
Bij

1− BijBji
,

(7.8)

with j 6= i in (7.7) and (7.8), and where we define Ai = A ◦ γi, Bi = B ◦ γi,

(7.9) Φµ
α|i = Φµ

α ◦ γi

and

(7.10) Bij =
|x1(·)− x2(·)|

4Bi

(
[Br]i −

Bj
Aj
ẋj [Bt]i

)
.

Furthermore, the above equivalence also holds for the full atlas of C1,1 coor-
dinate transformations, not restricted to the (t, r)-plane, with corresponding
canonical form, (7.2)–(7.4), for (Ji)µαr given by (5.14).

The error in [15], was to falsely omit the term (ϕj)
µ
α

∣∣x1(·)− x2(·)
∣∣ in

(7.1), which we correct here. The effect on the Jacobian coefficients (7.7)–
(7.8) is precisely the appearance of the non-zero function Bij , and (7.7)–(7.8)
reduce to the (incorrect) formulas in [15] upon setting Bij = 0.

Proof. We first prove that (i) implies (ii). For this, suppose that there exist

C0,1 functions Jµα , defined on N ∩ R2
+, that meet the smoothing condition

(5.14) on each γi(t), for t > 0. By Lemma 5.4, Jµα satisfies (4.1), that is,

(7.11) [Jµα,t]i = −ẋi[Jµα,r]i.

Substituting into (7.11) the expressions for [Jµα,ν ]i from the smoothing con-
dition (5.14) with respect to γi, and using that gµν is C0,1 across γi, in the
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sense of (4.5)–(4.6), we find that

([Ar]i + ẋi[Bt]i) J
µ
α ◦ γi = 0 ∀µ ∈ {t, r}, ∀α ∈ {0, 1, 2, 3}.

Since not all of the above Jµα can vanish simultaneously, while maintaining
a non-vanishing determinant, we conclude that (7.11) implies (4.10) on γi.
By Lemma 4.3, (4.5) together with (4.10) imply the RH conditions on γi,
which proves that (i) implies (ii).

We now prove that (ii) implies (i). Suppose that the RH conditions hold
on each γi, i = 1, 2, then, by Lemma 4.3 and since gµν is C0,1 across each
γi, (4.5), (4.6) and (4.10) hold on each shock curve. We first need to show
that Jµα , as defined in (7.2)–(7.4), satisfies in fact the smoothing condition,
(5.13). However, this does not yet imply the existence of functions Jµα which
meet (5.13), since the coefficients (ϕi)

µ
α in (7.4) depend, through (5.13), on

the Jµα themselves. We thus have to prove that (7.4) indeed gives us an
implicit definition of the coefficients (ϕi)

µ
α. We do this, by showing that

(7.4) is indeed equal to the explicit expressions (7.5)–(7.8) for (ϕi)
µ
α. Then,

since the (ϕi)
µ
α depend on the metric and the (free) functions Φµ

α alone, the
claimed existence follows.

To begin, we prove that the Jµα defined in (7.2) satisfy the smoothing
condition. For this, differentiate (7.2) with respect to r and take the jump
across γi of the resulting expression, then, using (7.3), this leads to

[Jµα,r]i(t) = −
∑
j=1,2

(ϕj)
µ
α(t)[H(xj(t)− r)]i(7.12)

= −2(ϕi)
µ
α(t),

where we used for the last equality the identity for the Heaviside function

(7.13) [H(xj(t)− r)]i = 2δji.

Now, since (ϕi)
µ
α is defined in (7.4) in terms of the value (Ji)µαr of the

smoothing conditions (5.13), we conclude that (7.12) implies the smoothing
conditions to hold for the r-derivative of Jµα . Now, take the t-derivative of
(7.2) and the jump across γi of the resulting expression. Using again (7.3)
and (7.13), we obtain

[Jµα,t]i = 2(ϕi)
µ
α ẋi(7.14)

= −ẋi(Ji)µαr,
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where we used the implicit definition of (ϕi)
µ
α, (7.4), for the last equality.

Now, inserting the values for (Ji)µαr from (5.13) and using the RH-condition,
(4.5), (4.6) and (4.10), to eliminate ẋi on the right hand side of (7.14) and
comparing the resulting expression with the expressions for (Ji)µαt from the
smoothing condition, (5.13), finally proves

(7.15) − ẋi(Ji)µαr = (Ji)µαt,

which, by (7.14), implies that Jµα defined in (7.2) satisfies the smoothing
condition.

To complete the existence proof, it remains to prove the explicit expres-
sion for (ϕi)

µ
α. To begin with, we first derive the identities (7.5) and (7.6).

For this, consider the smoothing conditions (5.13) and use the RH condition
in the form (4.5), (4.6) and (4.10), to derive the following straighforward
relations,

(Ji)t0r = −Bi
Ai

ẋi (Ji)r0r,(7.16)

(Ji)t1r = −Bi
Ai

ẋi (Ji)r1r.(7.17)

(7.5) and (7.6) then already follow from the above identities together with
the implicit expression of the Jacobian coefficients, (7.4).

It remains to prove (7.7) and (7.8). For this, observe that the restriction
of the Jacobian as introduced by (7.2) is given by

(7.18) Jµα ◦ γi = (ϕj)
µ
αf + Φµ

α|i, for j 6= i,

with Φµ
α|i introduced in (7.9) and where we define

f(t) = |x1(t)− x2(t)| .

Now, starting with the implicit expression for (ϕi)
r
0 in (7.4), and substituting

first (5.13) and then (7.18), we obtain

(ϕi)
r
0 =

1

4Bi

(
[Bt]i

(
(ϕj)

t
0 f + Φt

0|i
)

+ [Br]i ((ϕj)
r
0 f + Φr

0|i)
)

for j 6= i.

Applying (7.5) to eliminate (ϕj)
t
0, the above equation becomes

(7.19) (ϕi)
r
0 =

1

4Bi

(
[Bt]i Φt

0|i + [Br]i Φr
0|i
)

+ Bij (ϕj)
r
0 ,
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for j 6= i, where Bij is defined by (7.10), that is,

Bij =
f

4Bi

(
[Br]i −

Bj
Aj
ẋj [Bt]i

)
.

Exchanging i and j in (7.19), we get

(7.20) (ϕj)
r
0 =

1

4Bj

(
[Bt]j Φt

0|j + [Br]j Φr
0|j
)

+ Bji (ϕi)
r
0.

Substituting (7.20) into (7.19) and solving the resulting expression for (ϕi)
r
0,

we finally obtain
(7.21)

(ϕi)
r
0 =

1
4Bi

(
[Bt]iΦ

t
0|i + [Br]iΦ

r
0|i
)

+ 1
4Bj

(
[Bt]j Φt

0|j + [Br]j Φr
0|j
)
Bij

1− BijBji
.

Note that 1− BijBji 6= 0 for t sufficiently close to 0, since f(t) = |x1(t)−
x2(t)| vanishes at t = 0 and thus Bij converges to 0 as t approaches 0, c.f.
(7.10). This proves (7.7).

To prove (7.8), we substitute (5.13) and (7.18) into the implicit expres-
sion for (ϕi)

r
1 in (7.4), which yields

(7.22)

(ϕi)
r
1 =

1

4Bi

(
[Bt]i

(
(ϕj)

t
1 f + Φt

1|i
)

+ [Br]i ((ϕj)
r
1 f + Φr

1|i)
)
, j 6= i.

Applying (7.6) to eliminate (ϕj)
t
1, (7.22) becomes

(7.23) (ϕi)
r
1 =

1

4Bi

(
[Bt]i Φt

1|i + [Br]i Φr
1|i
)

+ Bij (ϕj)
r
1 ,

for j 6= i and Bij defined in (7.10). Exchanging i and j in (7.23), gives

(7.24) (ϕj)
r
1 =

1

4Bj

(
[Bt]j Φt

1|j + [Br]j Φr
1|j
)

+ Bji (ϕi)
r
1.

Substituting (7.24) into (7.23) and solving the resulting expression for (ϕi)
r
1,

we finally obtain
(7.25)

(ϕi)
r
1 =

1
4Bi

(
[Bt]iΦ

t
1|i + [Br]iΦ

r
1|i
)

+ 1
4Bj

(
[Bt]j Φt

1|j + [Br]j Φr
1|j
)
Bij

(1− BijBji)
,

which proves (7.8).
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We finally prove that any set of Lipschitz continuous functions Jµα
which satisfies the smoothing condition is of the canonical form (7.2). By
Lemma 5.4, any such function Jµα is C0,1 across each of the shock curves,
γi(t) for t > 0, and satisfies in particular (4.1). Thus, applying Lemma 4.5
for fixed µ and α, there exists a function Φµ

α ∈ C0,1(N ∩ R2
+) which satisfies

(7.3) and which meets the canonical form (7.2) for the coefficient

(7.26) (ϕi)
µ
α =

1

2

[Jµα,σ]i (ni)
σ

(ni)σ(ni)σ
=

1

2

(Ji)µασ (ni)
σ

(ni)σ(ni)σ
,

where we used in the last equality that the Jµα are assumed to satisfy the
smoothing condition. Using that the normal 1-form for γi is given by (ni)σ =
(ẋi,−1) and thus (ni)

σ = T (− ẋi
A ,−

1
B ) and (ni)σ(ni)

σ = A−Bẋ2

AB , we find that
(7.26) yields

(7.27) (ϕi)
µ
α = −1

2

Bẋi(Ji)µαt +A(Ji)µαr
A−Bẋ2

.

Finally using that Jµα satisfies (4.1) in the form (Ji)µαt = −ẋi(Ji)µαr, we find
that (ϕi)

µ
α in (7.27) agrees with (7.4), that is, (ϕi)

µ
α = −1

2(Ji)µαr. In summary,
we conclude that Jµα assumes the canonical form (7.2), which completes the
proof. �

8. The shock-collision-case: The integrability condition

From Proposition 7.1, we conclude that choosing four arbitrary C1,1 func-
tions Φµ

α, (with a non-vanishing determinant), the construction (7.2)–(7.10)
yields four C0,1 functions Jµα which satisfy the smoothing condition on γ+

1

and γ+
2 . However, for Jµα to be proper Jacobians, integrable to a coordinate

system, we must use the free functions Φµ
α to meet the integrability condi-

tion (2.4), c.f. Lemma A.1. For this, we rewrite (2.4) as a system of first
order differential equation in the unknowns U := T (Φt

0,Φ
r
0) and we consider

Φt
1 and Φr

1 as arbitrary given smooth functions, (at least in C3). The result-
ing equations are a special case of a non-local system of partial differential
equations for which we prove the existence of solutions in Section 8.1.

To begin with, we write the integrability conditions,

Jµα,β = Jµβ,α,

in their equivalent form

(8.1) Jµα,σJ
σ
β = Jµβ,σJ

σ
α ,
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c.f. Lemma A.2. Without loss of generality, suppose α = 0 and β = 1, then,
assuming Φt

1 is such that J t1 6= 0, we write (8.1) in its equivalent form

Jµ0,t +
Jr1
J t1

Jµ0,r =
Jµ1,t
J t1

J t0 +
Jµ1,r
J t1

Jr0 ,

which in matrix notation is given by

(8.2)
∂

∂t

(
J t0
Jr0

)
+
Jr1
J t1

∂

∂r

(
J t0
Jr0

)
=

1

J t1

(
J t1,t J t1,r
Jr1,t Jr1,r

)(
J t0
Jr0

)
.

Now, it is straightforward to verify that (2.4) for Jµα defined in (7.2) assumes
the form

(8.3) ∂tU + c ∂rU = F (U),

where

(8.4) c =
Jr1
J t1
,

and
(8.5)

F =MU +
∑
i=1,2

{(
|Xi|M−H(Xi) (ẋi − c)

)( (ϕi)
t
0

(ϕi)
r
0

)
− |Xi|

(
(ϕ̇i)

t
0

(ϕ̇i)
r
0

)}
with

(8.6) M =
1

J t1

(
J t1,t J t1,r
Jr1,t Jr1,r

)
.

The goal of this section is the following proposition, which proves existence
of a C1,1 solution in the region

(8.7) N+ = N ∩ R2
+,

whereN is some neighborhood of p = (0, r0) in the (t, r)-plane. An analogous

result holds for the set N− = N ∩ R2
−.

Proposition 8.1. Assume C2 regular initial data U0(r) and assume Φt
1

and Φr
1 are given C3 functions. Then, there exist a neighborhood N of

p and there exist a C1,1 regular function U = T (Φt
0,Φ

r
0) which solves the

integrability condition, (8.3)–(8.6), in the region N+ = N ∩ R2
+, such that

U(0, r) = U0(r) for all (0, r) ∈ N+.
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The difficulty of proving existence of solutions to (8.3)–(8.6) is that F (U)
contains terms which depend on U ◦ γi and its derivatives. The presence of
these terms turn (8.3)–(8.6) into a system of non-local PDE’s, for which one
cannot apply standard existence theory of hyperbolic PDE’s. To overcome
these difficulties, we study in Section 8.1 a system of PDE’s generalizing
(8.3)–(8.6) in a way suitable for isolating the non-local structure, and we
prove existence of C0,1 solutions for these non-local PDE’s. In Section 8.2,
we use this existence result and the explicit structure of the integrability
condition (8.3) for a bootstrapping argument which yields the C1,1 regularity
claimed in Proposition 8.1. Note that, to pursue the construction of the
Jacobian smoothing the metric tensor from C0,1 to C1,1, the C1,1 regularity
of U := T (Φt

0,Φ
r
0) is fundamental, c.f. Proposition 7.1.

8.1. Existence theory for a non-local first order PDE

To introduce the system of non-local PDE’s generalizing the integrability
condition (8.3), we first introduce a suitable function space. We start with
conditions assumed in the set N+, introduced in (8.7), and seek solutions
in a smaller set of similar shape. Moreover, let N c

+ denote the union of the
three open sets in the upper half plane obtained by taking the complement
of the three curves {(t, r)|t = 0}, γ1 and γ2, in N+. We denote these three
open sets in R2

+ , which are the connected components of N c
+, by NL, NM

and NR. Here NL denotes the left most region, between t = 0 and γ1, NM is
the middle region between γ1 and γ2, and NR denotes the right most region
between γ1 and t = 0.

We now work with functions that are Lipschitz continuous across the
shocks γi, i = 1, 2, and are in C l(N̄p) for each p = L,M,R and for l ≥ 2,12

where N̄p denotes the closure of Np. That is, C l(N̄p) is the space of functions
whose derivatives up to order l exist and are bounded in Np, and have
continuous extensions to the boundary curves. Now define

C0,1
l (N+) = C0,1(N+) ∩p=L,M,R C

l(N̄p).(8.8)

In particular, the restriction of a function in C0,1
l (N+) to one of the boundary

curves t = 0, or γi, i = 1, 2, is a C l function whose first l derivatives are limits
of the C l derivatives in the open sets on each side, and hence are bounded
by their norms, (c.f. (4.4) and the subsequent argument in the proof of
Lemma 4.2).

12To prove the main Theorem of this section, l ≥ 1 suffices, but for the issue of
metric smoothing addressed in this paper the case l ≥ 2 is relevant.
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We consider now the following initial value problem which is basic to
our analysis:

∂tU + c ∂rU = F (U)(8.9)

U(0, r) = U0(r),(8.10)

where U(t, r) ∈ R2, c = c(t, r) is a given scalar real valued function in
C0,1
l (N+), and

(8.11) F (U) =MU +
∑
i=1,2

(
Ai · (U ◦ γi) + Bi |Xi| ·

d

dt
(U ◦ γi)

)
with

M =
∑
i=1,2

MiH(Xi) +M,(8.12)

Ai =
∑
j=1,2

AijH(Xj) +Ai,(8.13)

and M,Mi, Ai,Aij ,Bi are given 2× 2 matrix valued functions of (t, r) in
C0,1
l (N+), H denotes the Heaviside step function, defined by H(x) = −1 for

x < 0 and H(x) = 1 for x > 0, and

Xi(t, r) = xi(t)− r.(8.14)

Our goal now is to prove that solutions U(t, r) ∈ C0,1(N+) of (8.9)–
(8.10) exist for smooth initial data U0, such that these solutions are more
regular away from the shock curves, as specified in (8.23) below. For this
we introduce the following iteration scheme which we define inductively. For
the induction, start with U0 = 0, and define Uk for k ≥ 1 in terms of Uk−1

by

∂tU
k + c ∂rU

k = F k−1,
Uk(0, r) = U0(r),(8.15)

where we set F k−1 = F (Uk−1).
Observe that the PDEs in (8.9) are coupled through the right hand side,

but the iteration scheme (8.15) is an uncoupled system of equations for Uk

once Uk−1 (and hence F k−1) is a given function, because c(t, r) is scalar. The
problem then is how to prove convergence of the above scheme, for which we
have to overcome two major difficulties: The first one is the low regularity
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in F k−1, containing Heaviside and absolute value functions, which can be
handled by a careful analysis. The second difficulty is the presence of leading
order derivatives in F k−1, which we overcome thanks to the factor |Xi| in
each term in F k−1 containing a derivative of Uk−1, since |Xi| = |xi(t)− r|
can be bounded by t up to some constant, which then suffices to prove local
existence for t sufficiently small.

The Cauchy problem for the k-th iterate in (8.15) is well-posed and the
solution can be computed explicitly through the method of characteristics.
To see this, we start by introducing the characteristic curves t 7→ (t,X (t, r′))
for (8.15), where X is defined to be the solution of the ODE

d

dt
X (t, r′) = c

(
t,X (t, r′)

)
,(8.16)

X (0, r′) = r′,

in which r′ is treated as a parameter. Note, the solution X (t, r′) of (8.16)
gives the r-position at time t of the characteristic emanating from (0, r′).

The next Lemma proves that if c ∈ C0,1
l (N+), then a solution r = X (t, r′)

of (8.16) and its inverse r′ = Y(t, r) exist and both functions are C1,1 regular,
but with a loss of C l regularity across the unique characteristic emanating
from r′ = r0, which we subsequently denote by γ0.13 We make the basic
assumption that the characteristic speed c ∈ C0,1

l (N+) is bounded away from
both shock speeds,

c(t, r) 6= ẋi(t),

for i = 1, 2. For convenience, and without loss of generality, we now assume
that c lies between the two shock speeds throughout N+,

ẋ1(t) < c(t, r) < ẋ2(t).(8.17)

(8.17) implies that characteristics intersect one and only one of the shock
curves within finite time, which allows us to define τ(r′) to be the time
at which the characteristic starting at (0, r′) intersects a shock curve: γ1 if
r′ < r0, γ2 if r′ > r0 and with τ(r0) = 0. In fact, the function τ exists for
r′ sufficiently close to r0, because the shock curves γ1 and γ2 both emanate
from (0, r0). Up until the time of intersection of the characteristics with a γi,
the function c is C l by assumption, and X must be a C l function of (t, r′)
for all t < τ(r′) and all r′ 6= r0, by continuous dependence of solutions of
(8.16) on its parameters. It follows that the function r′ 7→ τ(r′) is defined

13In (t, r′)-coordinates γ0 coincides with the line r′ = r0.
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in a neighborhood of (0, r0) and is C l regular for r′ 6= r0, because the γi
are smooth away from r′ = r0. We are now prepared to state and prove
the following lemma about the existence and regularity of the characteristic
curves.

Lemma 8.2. The solution X (t, r′) of the ODE (8.16) exists in N+ = N ∩
R2

+ for a sufficiently small neighborhood N of (0, r0), it is C1,1 through-
out N+, is C l at each point (t, r′) ∈ N+ where t 6= τ(r′) and r′ 6= r0, and
its derivatives up to order l extend continuously to each side of the curves
t 6= τ(r′) and r′ 6= r0. Moreover, X has an inverse Y(t, r) ∈ C1,1(N+) which
solves

(8.18) r = X (t,Y(t, r)).

Y is C l away from the shock curves and γ0, with its derivatives (up to order
l) extending continuously to each side of the boundary curves γi, i = 0, 1, 2.

Proof. Since c is Lipschitz continuous, it follows from the standard exis-
tence and uniqueness theory for ODE’s, (the Picard-Lindelöff Theorem),
that there exists a unique solution X (t, r′) of (8.16), and X will be C1,1 reg-
ular in t and C0,1 regular in r′ in some neighborhoodN+ of (0, r0). Moreover,
regular dependence of X on c(·,X ), by the basic theory of ODE’s, implies
that X is C l regular in the regions where t < τ(r′), since c is C l regular
away from the shock curves. To prove the C l regularity in the region where
t > τ(r′) and r′ 6= r0, compute X at the line t = τ(r′). Considering the re-
sulting C l regular function as initial data at t = τ(r′) and applying again
the ODE-theorem of regular dependence, we find that X is C l regular in
the region where t > τ(r′) and r′ 6= r0. By the same theorem we find that
X and derivatives up to order l extend smoothly to each side of the curves
t = τ(r′) and r′ = r0.

It remains to prove the C1,1 regularity of X with respect to differentiation
in r′. For this, differentiate the ODE (8.16) with respect to r′. Solving the
resulting linear equation leads to

∂r′X (t, r′) = exp

 t∫
0

∂X c
(
s,X (s, r′)

)
ds

 ,
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and for t > τ(r′) we write the above equation as

∂r′X (t, r′) = exp

 τ(r′)∫
0

∂X c
(
s,X (s, r′)

)
ds+

t∫
τ(r′)

∂X c
(
s,X (s, r′)

)
ds

 .

From the above two equations and the continuity of τ(·), it is immediate
that the jumps of ∂r′X across the shock curves t = τ(r′) as well as the
line r′ = r0 vanish and thus ∂r′X ∈ C0(N+). Now, since X is C l in the
region where t 6= τ(r′) and r′ 6= r0 with derivatives of order up to l extend
to the boundary lines t = τ(r′) and r′ = r0, and since derivatives of X are
continuous in all of N+, we conclude that second order weak derivatives are
in L∞(N+) and therefore X ∈ C1,1(N+), c.f. [5].14 (Observe that X is in
general not C l regular across the line r′ = r0, since τ(r′) is only Lipschitz
continuous at r′ = r0.)

We now show the existence of a function Y which satisfies (8.18). For
this, define the C1 function

f(t, r, r′) = X (t, r′)− r,

then, by the choice of initial data in (8.16), it follows that

f(0, r0, r0) = 0,
∂r′f(0, r0, r0) = 1.

Thus, by the Implicit Function Theorem, there exist a neighborhood N of
p = (0, r0) and a function Y ∈ C1(N+) which satisfies

f(t, r,Y(t, r)) = 0

for all (t, r) ∈ N+. This proves the existence of Y satisfying (8.18).
We now prove the claimed regularity of Y. Using that Y is C1 and

differentiating (8.18) with respect to ∂r and ∂t, we obtain

14In the above reasoning, we use that for a function f which is C1 away from
some hypersurface, its weak derivative agrees with its strong derivative almost
everywhere, provided f is continuous across the hypersurface. Note that, if f fails
to be continuous, partial integration leads to boundary terms so that its weak
derivative differs from its strong derivative and is generally not a function in some
Lp space but a true distribution, as can easily be verified by direct computation
from the definition of weak derivative in, e.g., [5].
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1 = ∂YX (t,Y)∂rY(t, r)

0 = ∂tX (t,Y) + ∂YX (t,Y)∂tY
= c (t,X (t,Y)) + ∂YX (t,Y)∂tY,

where we use (8.16) for the last equality. By the ODE (8.16), ∂tX and ∂r′X
are non-vanishing for r′ close to r0 and t ≥ 0 sufficiently small. Now, solving
the above system for ∂tY and ∂rY, we obtain

(8.19) ∂tY = −c (·,X (·,Y))

∂YX (·,Y)
and ∂rY =

1

∂YX (·,Y)
.

Since the right hand sides in (8.19) are Lipschitz continuous, we conclude
that Y ∈ C1,1(N+). Moreover, since Y maps the region away from the shock
curves and γ0 to the regions of C l regularity of X , (that is, where t 6= τ(r′)
and r′ 6= r0), and since X maps the regions of its C l regularity to the region of
C l regularity of c, we find from (8.19) that Y is C l away from the shock curves
and γ0, with its derivatives up to order l being continuously extendable to
the boundary curves. This proves the claimed regularity of Y and concludes
the proof. �

We now compute the explicit solution of the iterative scheme (8.15) using
the method of characteristics. Treating r′ as fixed along the characteristic
curves, our iteration scheme (8.15) takes the form

d

dt
Uk
(
t,X (t, r′)

)
= F k−1

(
t,X (t, r′)

)
,

Uk(0, r) = U0(r).(8.20)

Integrating (8.20) gives

(8.21) Uk(t,X (t, r′)) = U0(r′) +

∫ t

0
F k−1

(
s,X (s, r′)

)
ds.

Substituting r = X (t, r′) and r′ = Y(t, r) into (8.21) we obtain the following
exact expression for the solution Uk of (8.15):

(8.22) Uk(t, r) = U0(Y(t, r)) +

∫ t

0
F k−1

(
s,X

(
s,Y(t, r)

))
ds.

Using (8.19), one can verify directly that (8.22) solves (8.15).
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Our main problem in deducing the regularity of Uk is the problem of
determining the regularity of

∫ t
0 F

k−1 (s,X (s, r′)) ds. One difficulty is that
X is in C l only away from γi and the line r′ = r0, according to Lemma 8.2.
Thus, we must account for the fact that both X and Y introduce an addi-
tional lower C1,1 regularity across γ0, the unique characteristic emanating
from the initial point (0, r0). Furthermore, by (8.11)–(8.14), the coefficients
of the Uk−1 in F k−1 involve functions that are either in C0,1

l or else Heav-

iside functions times functions in C0,1
l and a careful analysis (done in the

subsequent lemma) shows that the integral over F k−1 in (8.22) generally
suffers from a lack of regularity across γ0, similar to the one identified for
X . This does not affect the convergence proof, but we must account for it
in the function spaces used to prove convergence as we do in the following.

To begin with, we define a modification Ĉ0,1
l (N+) of C0,1

l (N+). We need
only modify the space C l(N̄M ) to allow for a loss of C1 regularity across the
single characteristic emanating from (0, r0). For this purpose, define NL

M as
the open region in NM to the left of γ0, and NR

M as the open region in NM
to the right of γ0. Now, our modification Ĉ0,1

l (N+) of C0,1
l (N+) is given by

(8.23) Ĉ0,1
l (N+) = C0,1(N+) ∩ C l(N̄L) ∩ C l(N̄L

M ) ∩ C l(N̄R
M ) ∩ C l(N̄R).

In correspondence with our definition above, c.f. (8.8), C l(N̄L
M ) and C l(N̄R

M )
denote the space of functions whose derivatives exist up to order l, are
bounded, and are continuously extendable to the boundaries.

We now introduce a norm on Ĉ0,1
l (N+). For this, define the C l norm on

the closure of Np as

‖f‖Cl(N̄p) =
∑

m=0,...,l

‖∂mf‖C0(N̄p),

where Np denotes NL, NL
M , NR

M or NR, and ‖ · ‖C0(N̄p) denotes the
supremums-norm, c.f. [5]. Here ∂m denotes either an m-th order deriva-
tive in the interior, or a one-sided m-th order derivative on the boundary
of Np. The natural norm that makes Ĉ0,1

l (N+) into a Banach space is then
given by

(8.24) ‖ · ‖Ĉ0,1
l (N+) = ‖ · ‖C0,1(N+) + ‖ · ‖Ĉl(N+),

where we define, for l ≥ 0,

(8.25) ‖ · ‖Ĉl(N+) = ‖ · ‖Cl(N̄L) + ‖ · ‖Cl(N̄L
M ) + ‖ · ‖Cl(N̄R

M ) + ‖ · ‖Cl(N̄R).
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Essentially, functions bounded in the norm (8.24) are C l away from the
shocks and the characteristic γ0, Lipschitz continuous across them, such
that the restriction of the function to the shock curves and γ0 are C l func-
tions that inherit bounds on derivatives from the bounds on each side.15 In
particular, for i = 0, 1, 2, we immediately obtain the estimate

‖f ◦ γi‖Cl ≤ ‖f‖Ĉ0,1
l (N+).

It follows that functions in Ĉ0,1
l (N+) have the property that their restriction

to one of the boundary curves t = 0, or γi, i = 1, 2, or γ0, is a C l function
whose first l derivatives are limits of the C l derivatives in the open sets
on each side, and hence are bounded by their norms. In fact, functions in
Ĉ0,1
l (N+) agree with functions in C0,1

l (N+) except that they may be only
C0,1 across γ0.

Finally, we note that the regularity of the map r = X (t, r′) implies that
if f ∈ Ĉ0,1

l (N+), and f(t, r) is replaced by f̂(t, r′) = f(t,X (t, r′)), then f̂ is

in a space equivalent to Ĉ0,1
l (N+), obtained by substituting for the sets Np

in (t, r)-coordinates, their images N ′p in (t, r′)-coordinates, that is,

N ′p =
{

(t, r′) ∈ R2
+ | (t,X (t, r′)) ∈ Np

}
.

We denote this space by Ĉ0,1
l (N ′+). The space Ĉ0,1

l (N ′+) equipped with the
norm

‖f̂‖Ĉ0,1
l (N ′+) ≡ ‖f‖Ĉ0,1

l (N+),(8.26)

is again a Banach space. Note, by Lemma 8.2, we have X ∈ Ĉ0,1
l (N ′+) ∩

C1,1(N ′+) and Y ∈ Ĉ0,1
l (N+) ∩ C1,1(N+). For simplicity, we subsequently of-

ten drop the dependence of the domain, N+ or N ′+, in the norms considered
and write instead

‖ · ‖C0 = ‖ · ‖C0(N ′+), ‖ · ‖Ĉl = ‖ · ‖Ĉl(N ′+), and ‖ · ‖Ĉ0,1
l

= ‖ · ‖Ĉ0,1
l (N ′+).

15Note that γ0 is a Cl curve, as can be seen as follows: By Lemma 8.2, X is Cl

regular away from the shock curves and γ0, with all its derivatives extending to the
boundaries, including γ0, so that X is Cl tangential to γ0. But all derivatives of X
tangential to γ0 are in fact the derivatives of γ0, from which we conclude that γ0
itself is in Cl.
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We subsequently assume, without loss of generality, that the set N ′+ is
of the form

N ′+ = [0, T )× (r0 −R, r0 +R),(8.27)

for some R > 0 with R ≤ T . One can indeed assume (8.27) without loss of
generality, since one can always restrict the domain of definition of the Uk to
arrange for (8.27). Note that T is also the upper temporal boundary of N+.
We now state our main lemma for the regularity of Uk and the convergence
of our iterative scheme.

Lemma 8.3. Consider functions of the forms

ψ(t, r′) =

∫ t

0
H
(
xi(s)−X (s, r′)

)
f(s,X (s, r′))ds,(8.28)

φ(t, r′) =

∫ t

0
f(s,X (s, r′))ds,(8.29)

where H(x) is the Heaviside function, and we assume that

f ∈ Ĉ0,1
l (N+)

for some l ≥ 2, then

φ, ψ ∈ Ĉ0,1
l (N ′+).

Furthermore, ∂tφ and ∂tψ are continuous across γ0, but ∂r′φ and ∂r′ψ are
in general discontinuous. Denoting with [·]0 the jump across γ0, we have

[∂r′φ]0(t) =

∫ t

0

[
∂r′f ◦ X

]
0
(s)ds,(8.30)

[∂r′ψ]0(t) = 2f(0, r0) (∂r′τ)i −
∫ t

0

[
∂r′f ◦ X

]
0
(s)ds,(8.31)

where (∂r′τ)i denotes the left-limit of ∂r′τ(r′) as r′ approaches r0 for i = 1 in
(8.28) and the right-limit for i = 2. Assuming further ‖f ◦ X‖Ĉl(N+) < ∞,

for ‖·‖Ĉl defined by (8.25) and (f ◦ X )(t, r′) ≡ f(t,X (t, r′)), then, for 1 ≤
k ≤ l, we obtain the estimates

‖ψ‖Ĉk(N ′+) ≤ α ‖f ◦ X‖Ĉk−1(N ′+) + β T ‖f ◦ X‖Ĉk(N ′+),(8.32)

‖φ‖Ĉk(N ′+) ≤ α ‖f ◦ X‖Ĉk−1(N ′+) + β T ‖f ◦ X‖Ĉk(N ′+),(8.33)

where α, β are constants depending on X and τ , and T is determined by N ′+
through (8.27).
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Proof. It suffices here to prove ψ ∈ Ĉ0,1
l (N ′+) together with the bound (8.32)

and (8.31) only, as the case for φ ∈ Ĉ0,1
l (N ′+) with (8.33) is a straightfor-

ward consequence and (8.30) follows analogously to (8.31). Without loss of
generality, we assume i = 1 in (8.28).

To begin, we derive formulas for ψ in the different regions, formulas from
which the respective regularity easily follows. Let us consider the case r′ > r0

first, for which the Heaviside function is equal to −1, since x1(s)−X (s, r′) <
0 for all s ≥ 0. Thus, we obtain for (t, r′) ∈ N ′R that

(8.34) ψ
∣∣∣
N ′R

(t, r′) = −
∫ t

0
f(s,X (s, r′))ds,

while for (t, r′) ∈ N ′RM we get

(8.35) ψ
∣∣∣
N ′RM

(t, r′) = −
∫ τ(r′)

0
f(s,X (s, r′))ds−

∫ t

τ(r′)
f(s,X (s, r′))ds.

In the case r′ < r0, since x1(s)−X (s, r′) > 0 whenever s < τ(r′), we con-
clude for (t, r′) ∈ N ′L that

(8.36) ψ
∣∣∣
N ′L

(t, r′) =

∫ t

0
f(s,X (s, r′))ds.

It is only in N ′LM that we integrate across the discontinuity of the Heaviside
function, and using that the Heaviside function is identical 1 whenever s <
τ(r′) and −1 for s > τ(r′), we finally obtain

(8.37) ψ
∣∣∣
N ′LM

(t, r′) =

∫ τ(r′)

0
f(s,X (s, r′))ds−

∫ t

τ(r′)
f(s,X (s, r′))ds.

Now, from (8.34) and (8.36), since the region of integration lies in the
regions where f(·,X (·, ·)) is C l regular, that is, in N ′L and N ′R, it follows
immediately that ψ ∈ C l(N̄ ′R) and ψ ∈ C l(N̄ ′L). To prove the C l regularity
in N̄ ′LM and N̄ ′RM , first observe that in (8.35) and (8.37) we have r′ 6= r0 which
implies that τ is C l regular, moreover, left- and right-limits of τ and of all
its derivatives exist at r′ = r0. In addition, the regions of integration of both
integrals in (8.35) and of both integrals in (8.37) lie in the regions where
f(·,X (·, ·)) is C l regular. Using in addition that derivatives of f extends
continuously to the shocks and γ0 and that the restriction of f to any shock
curve or γ0 is in C l, it follows that ψ ∈ C l(N̄ ′LM ) and ψ ∈ C l(N̄ ′RM ).
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We next prove ψ ∈ C0,1(N ′+), for which we first prove continuity. Tak-
ing the limit t↗ τ(r′) in (8.36) and t↘ τ(r′) in (8.37), we find that ψ
matches continuously across γ1. Computing the respective limits in (8.34)–
(8.35) gives continuity across γ2. Taking the limit r′ ↗ r0 in (8.37) and
r′ ↘ r0 in (8.35), and using that τ(r0) = 0, we find that ψ matches continu-
ously across the characteristic γ0, which then proves ψ ∈ C0(N ′+). Now, since
in addition first order derivatives exist in N ′L, N ′LM , N ′RM and N ′R, and extend
continuously to the boundaries, it follows that ψ is Lipschitz continuous on
N ′+, (c.f. the footnote in the proof of Lemma 8.2).

We proceed by proving [∂tψ]0 = 0 and (8.31). Taking the t- and r′-
derivatives of (8.35) and (8.37), we get

∂tψ(t, r′) = −f
(
t,X (t, r′)

)
,

∂r′ψ(t, r′) =
(
∂r′τ(r′)± ∂r′τ(r′)

)
f
(
τ(r′),X (τ(r′), r′)

)
,(8.38)

±
∫ τ(r′)

0
∂r′f(s,X (s, r′))ds−

∫ t

τ(r′)
∂r′f(s,X (s, r′))ds,

where, in the expression for ∂r′ψ, the + sign corresponds to differentiation of
(8.37) and the − sign comes from (8.35). Taking the left/right-limit of (8.38)
to r0, it is immediate that ∂tψ is continuous across γ0. To prove (8.31), take
the right-limit of ∂r′ψ in (8.38), that is, compute r′ ↘ r0 for the expression
containing the − sign, and use τ(r0) = 0, which leads to

(∂r′ψ)R (t) = −
∫ t

0
(∂r′f)R(s,X (s, r0))ds,

where (·)L/R denotes the left/right-limit at r0 respectively. Similarly, taking
the left-limit of ∂r′ψ in (8.38) gives

(∂r′ψ)L (t) = 2f(0, r0)

(
∂τ

∂r′

)
L

(r0)−
∫ t

0
(∂r′f)L(s,X (s, r0))ds.

Now, computing [∂r′ψ]0 = (∂r′ψ)L − (∂r′ψ)R immediately gives (8.31).
We now prove the estimate (8.32). Consider first the regions N ′L and

N ′R, where it is immediate from (8.34) and (8.36) that we can bound all
terms in ‖ψ‖Ck(N̄ ′p) containing a t-derivative by ‖f ◦ X‖Ck−1(N̄ ′p), while T ‖f ◦
X‖Ck(N̄ ′p) bounds the term ∂lr′ψ. This proves, for p = L,R, the estimate

(8.39) ‖ψ‖Ck(N̄ ′p) ≤ α ‖f ◦ X‖Ĉk−1(N ′+) + β T ‖f ◦ X‖Ĉk(N ′+),
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for 1 ≤ k ≤ l and some combinatorial constants α and β only depending on k.
It remains to derive suitable estimates on ‖ψ‖Ck in the intermediate regions,
N ′LM and N ′RM . For this, observe that the expression for the t-derivative in
(8.38) implies that all derivatives of ∂tψ, up to order k − 1, can be bounded
by α‖f ◦ X‖Ck−1(N ′pM ), p = L,R. Furthermore, this implies that all deriva-
tives of ∂r′ψ of order up to k are bounded by α‖f ◦ X‖Ck−1(N ′pM ), as long as
they include at least one time derivative, since partial derivatives commute.
It remains to estimate ∂kr′ψ, for 1 ≤ k ≤ l. We begin with k = 1. By the
above equation we have

|∂r′ψ(t, r′)| ≤ 2
∣∣∂r′τ(r′)

∣∣ ∣∣f(τ(r′),X (τ(r′), r′)
)∣∣

+

∫ τ(r′)

0
|∂r′f(s,X (s, r′))|ds+

∫ t

τ(r′)
|∂r′f(s,X (s, r′))|ds,

and thus, for p = L,R,

‖∂r′ψ‖C0(N ′pM ) ≤ α‖f ◦ X‖C0(N ′pM ) + β T ‖f ◦ X‖Ĉ1(N+),

where α depends only on the C0-norm of ∂r′τ(r′) for r′ 6= r0. Proceeding in
a similar way, we find that ∂kr′ψ for k ≤ l is bounded by

‖∂kr′ψ‖C0(N ′pM ) ≤ α ‖f ◦ X‖Ĉk−1(N ′+) + T β ‖f ◦ X‖Ĉk(N ′+),

where α and β depends only on τ and X . Combining the above estimates
with (8.39) finally proves (8.32). The estimate (8.33) follows analogously. �

We now prove the existence of a solution to the non-local Cauchy prob-
lem (8.9)–(8.10), by proving the convergence of the iteration scheme (8.15).
In more detail, consider the iteration scheme (8.15) with its iterates Uk(t, r),
defined in (8.21), which solve (8.15) for C l initial data U0 defined in a
neighborhood of r = r0, for l ≥ 2. We prove there exists a neighborhood
N of (0, r0) in R2, such that the Uk lie in Ĉ0,1

l (N+), for N+ = N ∩ R2
+.

We then prove there exists a smaller neighborhood Ñ ⊂ N of (0, r0), such
that a subsequence of

(
Uk
)
k∈N converges to a function U in C0,1(Ñ+), for

Ñ+ = Ñ ∩ R2
+, which is C1,1 away from γ0, γ1 and γ2, and solves the non-

local Cauchy problem, (8.9)–(8.10), with initial data U0. We formulate and
prove the theorem in the special case l = 2, the case relevant for the metric
smoothing.

Theorem 8.4. For any C2 function U0, defined in an interval contain-
ing r = r0, there exists a function U in C0,1(N+) which solves the Cauchy
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Problem (8.9)–(8.10) almost everywhere in N+, for initial data U0, where

N+ = N ∩ R2
+ for some neighborhood N of (0, r0) in R2. Moreover, U |N̄p ∈

C1,1(N̄p), i.e., derivatives of U are in C0,1(N̄p), for Np being any of the
regions NL, NL

M , NR
M and NR. Furthermore, ∂tU is continuous across γ0

and the jump in ∂rU across γ0 satisfies

(8.40)
∥∥[∂rU ]0

∥∥
C0([0,T ])

≤ C
∑
i=1,2

∣∣∣∣∣∣
Mi(0, r0) +

∑
j=1,2

Aji(0, r0)

U0(r0)

∣∣∣∣∣∣ ,
for some constant C > 0 which is finite for T > 0 sufficiently small, where
T denotes the upper temporal boundary of N+, c.f. (8.27).

Proof. The proof is comprised of the following six steps. In Step 1, we show
that Uk ∈ Ĉ0,1

l (N ′+) for all k ∈ N, as long that the first iterate is of this
regularity. In Step 2, we derive the estimate
(8.41)∥∥Uk∥∥

Ĉ0,1
1 (N ′+)

≤ α
∥∥U0

∥∥
C1 + T β

(∥∥Uk−1
∥∥
Ĉ0,1

1 (N ′+)
+
∥∥Uk−2

∥∥
Ĉ0,1

1 (N ′+)

)
,

for constants α and β. Note that the factor T on the right hand side can
only be achieved because the additional derivative term U̇k is weighted by
|Xi(t, r)|, (and |Xi(t, r)| is bounded by βT ), a peculiar and important struc-
ture of the non-local PDE (8.9). In Step 3, we built on estimate (8.41) to
derive an analogous estimate with respect to ‖ · ‖Ĉ0,1

2 (N ′+) in which the pre-

vious iterates are weighted by a factor T . From this estimate, in Step 4,
we derive a k-independent upper bound on ‖Uk‖Ĉ0,1

2 (N ′+) assuming that T is

sufficiently small. To obtain this bound, it is crucial to get the factor T on
the right hand side in (8.41). As explained in Step 5, suitable convergence
of a subsequence in C1,1 now follows by the Arzelà-Ascoli Theorem. In Step
6, we derive (8.40) which then concludes the proof.

Step 1: We first prove the regularity of the iterates, Uk. For simplicity, we
work in (t, r′)-coordinates and assume N ′+ is of the form (8.27) and we often
write Uk instead of Uk(·,X (·, ·)). To begin with, recall the expression for the
k-th iterate, in (8.22),

Uk(t,X (t, r′)) = U0(r′) +

∫ t

0
F k−1

(
s,X (s, r′)

)
ds,
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where F k−1 = F (Uk−1), and by (8.11),

F (U) =MU +
∑
i=1,2

(
Ai · (U ◦ γi) + Bi |Xi| U̇i

)
,

where we define U̇i = d
dt (U ◦ γi). Recall further that Ai and M contain

Heaviside functions with coefficients in C0,1
l , while Bi is in C0,1

l , c.f. (8.12)–

(8.14). Assume for the moment that Uk−1 ∈ Ĉ0,1
l (N ′+) for some k ∈ N. Then,

since X is in Ĉ0,1
l (N ′+) for some neighborhood N ′+, and since

∫ t

0

F k−1 −
∑
i=1,2

Bi |Xi| U̇k−1
i

 ds

is a sum of terms of the form (8.28)–(8.29), Lemma 8.3 implies that the
previous integral is in Ĉ0,1

l (N ′+). In addition, the integral over Bi |Xi| U̇k−1
i

compensates the derivative U̇k−1
i ≡ d

dtU
k−1 ◦ γi, so that applying Lemma 8.3

for derivatives higher than first order in t (i.e., higher derivatives in t and r′

containing at least one derivative in t) gives∫ t

0
Bi |Xi| U̇k−1

i ds ∈ Ĉ0,1
l (N ′+).

Combining these two regularity results, we conclude that Uk−1 ∈ Ĉ0,1
l (N ′+)

implies Uk ∈ Ĉ0,1
l (N ′+). Therefore, choosing U0 = 0 as the first iterate, we

conclude that

Uk ∈ Ĉ0,1
l (N ′+) ∀ k ∈ N.

Step 2: We proceed by deriving a k-independent upper bound on the Ĉ0,1
l -

norm of Uk for all k ≥ 0. Once this is achieved, the Arzela Ascoli Theorem
yields convergence of our iterative scheme. For this, let α > 0 and β > 0
denote universal constants (changing from estimate to estimate) which only
depend on X , τ , M, Ai, Bi and xi, for i = 1, 2, and the volume of N+. To
begin, we derive estimates of the supremums-norm of Uk over N ′+. From the
expression (8.22) for the iterate Uk, using that the region of integration is
given by 0 ≤ t ≤ T , (where T is the upper time boundary of N ′+, c.f. (8.27)),
we conclude with the estimate16

16‖ · ‖C0 applied to a Heaviside function should be understood in an almost ev-
erywhere sense, which corresponds to the L∞ norm, c.f. [5].



i
i

“3-Reintjes” — 2018/3/13 — 1:14 — page 1583 — #59 i
i

i
i

i
i

Spacetime is locally inertial 1583

‖Uk‖C0(N ′+) ≤ ‖U0‖C0 + T ‖F k−1‖C0(8.42)

≤ ‖U0‖C0 + T β

‖Uk−1‖C0 +
∑
i=1,2

‖U̇k−1
i ‖C0


≤ ‖U0‖C0(N ′+) + T β ‖Uk−1‖Ĉ1(N ′+).

(Recall that ‖ · ‖Ĉl(N ′+) is defined as the C l-norm over the regions in between

the shock curves, γ0 and the line t = 0, including the values of derivatives
on these boundary curves, c.f. (8.25).) To derive higher derivative estimates,
separate the dependence of F k−1 on Uk−1 and on the tangential derivatives
U̇k−1
i , (i = 1, 2), by writing

(8.43) F k−1 = f0(Uk−1) + f i1(Uk−1)H(Xi) + f i2 U̇
k−1
i ,

where from (8.11)–(8.13), omitting the dependence on X , we have

f0(Uk−1) = M · Uk−1 +
∑
i=1,2

Ai · Uk−1 ◦ γi

f i1(Uk−1)H(Xi) =
∑
i=1,2

Mi · Uk−1 +
∑
j=1,2

Aji · Uk−1 ◦ γj

H(Xi)

f i2 U̇
k−1
i =

∑
i=1,2

Bi |Xi| U̇k−1
i .

Observe that f0(Uk−1), f i1(Uk−1) and f i2 are in Ĉ0,1
l (N ′+) and linear in Uk−1.

From the explicit expression for Uk, (8.22), we now obtain that

‖Uk‖Ĉ1 ≤ ‖U0‖C1 +

∥∥∥∥∫ t

0
F k−1

(
s,X (s, r′)

)
ds

∥∥∥∥
Ĉ1

(8.44)

≤ ‖U0‖C1 +

∥∥∥∥∫ t

0
f0(Uk−1)ds

∥∥∥∥
Ĉ1

+

∥∥∥∥∫ t

0
f i1(Uk−1)H(Xi)ds

∥∥∥∥
Ĉ1

+

∥∥∥∥∫ t

0
f i2 U̇

k−1
i ds

∥∥∥∥
Ĉ1

.

The second term is of the form (8.29) and the third term is of the form
(8.28). Thus, (8.33) of Lemma 8.3 implies for the second term that



i
i

“3-Reintjes” — 2018/3/13 — 1:14 — page 1584 — #60 i
i

i
i

i
i

1584 Moritz Reintjes

∥∥∥∥∫ t

0
f0(Uk−1)ds

∥∥∥∥
Ĉ1

≤ α
∥∥∥f0(Uk−1)

∥∥∥
C0

+ T β
∥∥∥f0(Uk−1)

∥∥∥
Ĉ1

(8.45)

≤ α
∥∥∥Uk−1

∥∥∥
C0

+ T β
∥∥∥Uk−1

∥∥∥
Ĉ1
,

where we absorb ‖f0‖C0 and ‖f0‖Ĉ1 into the universal constants α and β
in the last line. Similarly, (8.32) of Lemma 8.3 implies for the third term in
(8.44) the estimate

∥∥∥∥∫ t

0
f i1(Uk−1)H(Xi)ds

∥∥∥∥
Ĉ1

≤ α
∥∥∥f i1(Uk−1)

∥∥∥
C0

+ T β
∥∥∥f i1(Uk−1)

∥∥∥
Ĉ1

(8.46)

≤ α
∥∥∥Uk−1

∥∥∥
C0

+ T β
∥∥∥Uk−1

∥∥∥
Ĉ1
.

Using that U̇k−1
i is independent of r′ and that the integrand is independent

of t, we estimate the fourth term in (8.44) as

∥∥∥∥∫ t

0
f i2 U̇

k−1
i ds

∥∥∥∥
Ĉ1

≤
(
T
∥∥f i2∥∥C0 + T

∥∥∂r′f i2∥∥C0 +
∥∥f i2∥∥C0

) ∥∥∥U̇k−1
i

∥∥∥
C0

(8.47)

≤ βT
∥∥∥Uk−1

∥∥∥
Ĉ1
,

where we used for the last inequality that

(8.48)
∥∥f i2∥∥C0 ≤ ‖Bi‖C0 ‖Xi‖C0 ≤ β T,

since Xi(t, r) = xi(t)− r is bounded by βT , as is shown in the following
estimate

|Xi(t, r)| = |xi(t)− r|(8.49)

≤ |xi(t)− xi(0)|+ |r0 − r|
≤ β|t|+R

≤ β T,

for which we used that xi(0) = r0, R ≤ T (c.f. (8.27)) and β is taken to
be some constant bounding the Lipschitz constant of xi. Substituting the
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estimates (8.45)–(8.47) into (8.44) leads to

‖Uk‖Ĉ1 ≤ ‖U0‖C1 + α
∥∥∥Uk−1

∥∥∥
C0

+ T β
∥∥∥Uk−1

∥∥∥
Ĉ1
,

and substituting (8.42) for
∥∥Uk−1

∥∥
C0 in the above inequality finally gives

(8.50) ‖Uk‖Ĉ1(N ′+) ≤ α ‖U0‖C1 + T β

(∥∥∥Uk−1
∥∥∥
Ĉ1(N ′+)

+
∥∥∥Uk−2

∥∥∥
Ĉ1(N ′+)

)
.

Estimate (8.50) implies the sought after estimate (8.41) of Step 2.
Namely, the C0,1-norm of a function f , defined on a bounded region with
a boundary that is piece-wise C1, can always be bounded by the C0-norm
of the weak derivative of f , applied in an almost everywhere sense, c.f.
[5]. Thus ‖ · ‖C0,1(N ′+) and ‖ · ‖Ĉ1(N ′+) are equivalent norms on Ĉ0,1

l (N ′+), for

l = 1. (Note also that estimate (8.41) is sufficient to conclude convergence of
a subsequence in C0,1(N ′+) as a result of the Arcela Ascoli Theorem.) Nev-
ertheless, to get the crucial C1,1 regularity away from the boundary curves
t = 0 and γi, for i = 0, 1, 2, we extend the above estimates to ‖ · ‖Ĉ0,1

l
, for

l = 2, in the next step.

Step 3: From the explicit expression for Uk, (8.22), with F k−1 decomposed
as in (8.43), we obtain that

‖Uk‖Ĉ2 ≤ ‖U0‖C2 +

∥∥∥∥∫ t

0
f i2 U̇

k−1
i ds

∥∥∥∥
Ĉ2

(8.51)

+

∥∥∥∥∫ t

0
f0(Uk−1)ds

∥∥∥∥
Ĉ2

+

∥∥∥∥∫ t

0
f i1(Uk−1)H(Xi)ds

∥∥∥∥
Ĉ2

.

The third and fourth term are each a sum of terms of the form (8.28)–(8.29),
so that (8.32)–(8.33) of Lemma 8.3 imply that∥∥∥∥∫ t

0
f0(Uk−1)ds

∥∥∥∥
Ĉ2

+

∥∥∥∥∫ t

0
f i1(Uk−1)H(Xi)ds

∥∥∥∥
Ĉ2

(8.52)

≤ α
∥∥∥Uk−1

∥∥∥
Ĉ1

+ T β
∥∥∥Uk−1

∥∥∥
Ĉ2
,

where, similarly to the Ĉ1-estimates, we absorb again the Ĉ1- and Ĉ2-norms
of f0 and f i1 into α and β. Using that U̇k−1

i is independent of r′ and that
the integrand is independent of t, we estimate the second term in (8.51) as
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∥∥∥∥∫ t

0
f i2 U̇

k−1
i

∥∥∥∥
Ĉ2

≤
∥∥∥∥∫ t

0
f i2 U̇

k−1
i

∥∥∥∥
Ĉ1

+

∥∥∥∥∫ t

0
∂2
r′f

i
2 U̇

k−1
i

∥∥∥∥
Ĉ0

+
∥∥∥∂r′f i2 U̇k−1

i

∥∥∥
Ĉ0

+
∥∥∥∂t (f i2) U̇k−1

i

∥∥∥
Ĉ0

+
∥∥∥f i2 Ük−1

i

∥∥∥
Ĉ0
.

The first term is bounded by (8.47), the second one by∥∥∥∥∫ t

0
∂2
r′f

i
2 U̇

k−1
i

∥∥∥∥
Ĉ0

≤ T
∥∥f i2∥∥Ĉ2

∥∥∥U̇k−1
i

∥∥∥
C0

≤ T β
∥∥∥Uk−1

∥∥∥
Ĉ1
,

while the third and fourth term are bounded by∥∥∥∂r′f i2 U̇k−1
i

∥∥∥
Ĉ0

+
∥∥∥∂t (f i2) U̇k−1

i

∥∥∥
Ĉ0
≤
∥∥f i2∥∥Ĉ1

∥∥∥U̇k−1
i

∥∥∥
C0
,

≤ α
∥∥∥Uk−1

∥∥∥
Ĉ1

and the fifth term has the bound∥∥∥f i2 Ük−1
i

∥∥∥
Ĉ0
≤
∥∥f i2∥∥Ĉ0

∥∥∥Ük−1
i

∥∥∥
C0

≤ T β
∥∥∥Uk−1

∥∥∥
Ĉ2
,

where we use (8.48) to obtain the last inequality. Combining the above
estimates and bounding all Ĉ1-norms by the Ĉ2-norm whenever the term
contains a factor T , we obtain the following bound on the second term in
(8.51),

(8.53)

∥∥∥∥∫ t

0
f i2 U̇

k−1
i

∥∥∥∥
Ĉ2

≤ α
∥∥∥Uk−1

∥∥∥
Ĉ1

+ T β
∥∥∥Uk−1

∥∥∥
Ĉ2
.

Substituting (8.52) and (8.53) into (8.51), we obtain

‖Uk‖Ĉ2 ≤ ‖U0‖C2 + α
∥∥∥Uk−1

∥∥∥
Ĉ1

+ T β
∥∥∥Uk−1

∥∥∥
Ĉ2
.(8.54)

Finally, using (8.50) to substitute for
∥∥Uk−1

∥∥
Ĉ1 and bounding all Ĉ1-norms

in the resulting expressions with Ĉ2-norms, leads to our final Ĉ2-estimate:

(8.55) ‖Uk‖Ĉ2 ≤ α ‖U0‖C2 + T β
(∥∥∥Uk−1

∥∥∥
Ĉ2

+
∥∥∥Uk−2

∥∥∥
Ĉ2

+
∥∥∥Uk−3

∥∥∥
Ĉ2

)
.
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To conclude with the corresponding estimate in the C0,1
l -norm, for l = 2,

compute the norm ‖Uk‖Ĉ0,1
l (N ′+), as introduced in (8.24), as follows: Substi-

tute on the right hand side of (8.24) for the C0,1-norm the estimate (8.50)
and for the Ĉ2-norm the estimate (8.55), we obtain for k ≥ 3 that
(8.56)

‖Uk‖Ĉ0,1
2
≤ α‖U0‖Ĉ2 + T β

(∥∥∥Uk−1
∥∥∥
Ĉ0,1

2

+
∥∥∥Uk−2

∥∥∥
Ĉ0,1

2

+
∥∥∥Uk−3

∥∥∥
Ĉ0,1

2

)
.

Step 4: We now show that there exists a constant C independent of k which
bounds ‖Uk‖C0,1

2
for all k ≥ 0. To begin, we prove by induction that (8.56)

implies

(8.57) ‖Uk‖C0,1
2
≤ α‖U0‖C0,1

2

k−1∑
l=0

(3Tβ)l, ∀ k ≥ 1,

for α and β from (8.56). For simplicity, introduce the notation

yk = ‖Uk‖C0,1
2
, a = α‖U0‖C0,1

2
and x = Tβ.

Before we pursue the induction step, we verify (8.57) for k = 1, 2, 3, explic-
itly. For this, using the formula for the iterates, (8.22), and recalling that the
first iterate is given by U0 ≡ 0, we conclude that U1(t, r′) = U0(r′), which
leads to

y1 = ‖U0‖C0,1
2
≤ a,

where we assume, without loss of generality, that α ≥ 1. To prove (8.57) for
k = 2, observe that U1 = U0 together with (8.54) imply

‖U2‖Ĉ2 ≤ α‖U0‖C0,1
2

(1 + Tβ),

and since the Ĉ1-norm is equivalent to the C0,1-norm, we conclude

y2 ≤ a (1 + 3x).

For k = 3, since y0 = 0, (8.56) implies

y3 ≤ a+ x(y2 + y1),

and using the above inequalities on y2 and y1, we get

y3 ≤ a
(
1 + 3x+ 9x2

)
.
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We conclude that (8.57) holds for k = 1, k = 2 and k = 3. For the induction
step, assume that (8.57) holds for k − 1, k − 2 and k − 3. Then, we find from
(8.56) and our induction assumption that

yk ≤ a+ x
(
yk−1 + yk−2 + yk−3

)
≤ a+ x

(
a

k−2∑
l=0

(3x)l + a

k−3∑
l=0

(3x)l + a

k−4∑
l=0

(3x)l

)

≤ a
k−1∑
l=0

(3x)l,

which completes the induction proof and shows (8.57). We continue to prove
the existence of the k independent constant, by choosing T > 0 to satisfy
the upper bound

(8.58) T <
1

3β
.

(This choice is possible since in the above estimates β only depends on X ,
Y, τ and the coefficients of the PDE (8.9), which are quantities defined in
the ambient region N+ on which (8.56) holds, so that restricting T to even
smaller values leaves β unchanged.) We now define

C = α‖U0‖C0,1
2

∞∑
l=0

(3Tβ)l,

which is the sought after k-independent upper bound for ‖Uk‖C0,1
2

, that is,

(8.59) ‖Uk‖Ĉ0,1
2 (N ′+) ≤ C ∀ k ≥ 0.

Step 5: We now prove convergence of a sub-sequence. Since (8.59) im-
plies that

(
Uk
)
k∈N is bounded by C with respect to the Lipschitz norm, the

Arzelà-Ascoli Theorem yields that there exists a sub-sequence (which we
again denote by

(
Uk
)
k∈N) that converges to some function U ∈ C0,1(N ′+)

as k →∞. Furthermore, since the Uk are in C0,1
2 (N ′+) with uniform bound

(8.59), the Uk are in particular in C1,1(N ′p), so that the Arzelà-Ascoli The-

orem gives us uniform convergence of some sub-sequence of
(
Uk
)
k∈N to

some function U ′ in C1,1(N ′p), and the uniqueness of limits implies that

U |N ′p ≡ U
′|N ′p . Moreover, Uk ∈ C0,1

2 (N ′+) together with (8.59) implies that

derivatives of Uk are in C0,1(N̄ ′p) and bounded by C in the Lipschitz norm
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over the closure N̄ ′p. Thus, the Arzelà-Ascoli Theorem implies convergence

of a sub-sequence of
(
∂µU

k
)
k∈N to some Lipschitz continuous function Ψµ.

By uniqueness of limits we have ∂µU = Ψµ on the interior regions N ′p, while
lim
n→∞

∂µU(qn) = Ψµ(q) for each q in the boundary of N̄ ′p with qn → q follows

from the inequality

∣∣Ψµ(q)− ∂µU(qn)
∣∣ ≤ ∣∣Ψµ(q)−Ψµ(qn)

∣∣+
∣∣Ψµ(qn)− ∂µUk(qn)

∣∣
+
∣∣∂µUk(qn)− ∂µU(qn)

∣∣
together with a diagonal sequence argument in k, n ∈ N. In summary, we
proved that a sub-sequence of the iterates Uk converges uniformly to some
function U ∈ C0,1(N ′+) which is in C1,1(N̄ ′p), where N ′p can be any of the

regions N ′L, N ′LM , N ′RM or N ′R.
Transforming to (t, r)-coordinates by the replacement r′ = Y(t, r) yields

that U has the claimed regularity in (t, r)-coordinates. Finally, since uni-
form convergence implies point-wise convergence, and since we proved the
existence of a sub-sequence of the Uk such that its elements and their deriva-
tives both converge uniformly to U and ∂µU respectively, we conclude that
U solves the original Cauchy problem (8.9)–(8.10) point-wise almost every-
where (and point-wise away from the shocks and γ0) for initial data U0.

Step 6: To complete the proof, it remains to show that ∂tU ∈ C0(N̄ ′M )
and that the jump of its r′-derivative satisfies (8.40). For this, recall that
the integral over F k−1 in the formula for the k-th iterate, (8.22), is a sum
of terms of the form (8.28) and (8.29). Thus, by Lemma 8.3, we obtain
∂tU

k ∈ C0(N̄M ), and the convergence of Uk in C1,1(N̄ ′LM ) and C1,1(N̄ ′RM )
implies that ∂tU ∈ C0(N̄M ), as claimed in the theorem. Regarding the jump
of ∂r′U

k across γ0, we again (8.30)–(8.31). For this, observing that only
the coefficients in (8.11) multiplied to a Heaviside function contribute to
the constant f(0, r0) in (8.31), that is, Mi and Aji, and using that both
coefficients are C1 across γ0, we conclude that

(8.60) [∂r′U
k]0(t) = c0 −

∫ t

0
L
∣∣
γ0

(s)[∂r′U
k−1]0(s)ds,

where L denotes some linear combination of the C0,1
l -coefficients in (8.11)

and c0 denotes the constant given by
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c0 = 2
∑
i=1,2

(∂r′τ)i

Mi(0, r0) +
∑
j=1,2

Aji(0, r0)

U0(r0),

and (∂r′τ)1 denotes the left-limit of ∂r′τ(r′) and (∂r′τ)2 the right-limit as r′

approaches r0. From (8.60), we now find that

(8.61) ‖[∂r′Uk]0‖C0([0,T ]) ≤ |c0|+ Tc1 ‖[∂r′Uk−1]0‖C0([0,T ]),

for c1 = ‖L‖C0(N ′+) and it follows by induction that

(8.62) ‖[∂r′Uk]0‖C0([0,T )) ≤ |c0|
k−1∑
l=0

(Tc1)l .

Choosing, in addition to (8.58), T > 0 small enough for the above sum to
converge in the limit k →∞ and defining C to be the value of this limit
multiplied with 2 max

i=1,2
|(∂r′τ)i|, then (8.62) implies in the limit k →∞ that

∥∥[∂r′U ]0
∥∥
C0([0,T ])

≤ C
∑
i=1,2

∣∣∣∣∣∣
Mi(0, r0) +

∑
j=1,2

Aji(0, r0)

U0(r0)

∣∣∣∣∣∣ .
Changing to (t, r)-coordinates on the left hand side of the above equation
and absorbing

∥∥∂rY∥∥C0(N+)
in the constant C, finally yields (8.40). This

completes the proof. �

8.2. Bootstrapping to C1-regularity

We now proceed with the proof of Proposition 8.1. In more detail, to show
the existence of a C1,1 regular solution of the integrability condition, (8.3),
we consider the C0,1 solutions proven to exist in Theorem 8.4 and then use
a bootstrap argument, which uses the specific structure of (8.3) and the RH
conditions, to prove that any solution of the form asserted by Theorem 8.4
is in fact C1,1 regular. The bootstrapping is accomplished in the following
lemma.

Lemma 8.5. Assume U ∈ C0,1(N+) solves (8.3), and that U has the reg-
ularity asserted in Theorem (8.4), in particular, that [∂rU ]0 satisfies (8.40)
across the characteristic line emanating from (0, r0). Assume the jump con-
ditions, (4.5)–(4.6) and (4.10). Then U is in C1,1(N+).
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Proof. Since U ∈ C0,1(N+) is assumed to be in C1,1(N̄p), for Np being any
of the regions NL, NL

M , NR
M or NR, it suffices to prove that ∂tU and ∂rU

match continuously across the shock curves and the characteristic curve γ0.
We begin by proving the C1 matching across the shock curves, γ1 and

γ2. Since the above assumptions imply that U is C0,1 across γ1 and γ2,
Lemma 4.2 yields that

(8.63) [∂tU ]i + ẋi [∂rU ]i = 0,

c.f. (4.1). On the other hand, taking the jump [·]i of the integrability condi-
tion (8.3) yields

[∂tU ]i + c [∂rU ]i = [F (U)]i ,

where we use that c and U are continuous. In the following we prove that
the right hand side vanishes, that is,

(8.64) [∂tU ]i + c [∂rU ]i = 0.

(8.63) together with (8.64) suffice to prove the C1 matching of U across the
shock curves, since the shock speed is assumed to be non-characteristic so
that (8.63) and (8.64) impose two linearly independent conditions on [∂tU ]i
and [∂rU ]i.

We now prove [F (U)]i = 0. From (8.5) and the continuity of U , (ϕj)
t
0

and (ϕ̇j)
t
0, we obtain

[F (U)]i = [M]i U +
∑
j=1,2

(
[M]i|Xj |+ (c− ẋj) [H(Xj)]i

)( (ϕj)
t
0

(ϕj)
r
0

)
,

where U , c and Xj in the above equation shall be understood to be restricted
to γi. Using [H(Xj)]i = 2δji, (where δji = 1 if i = j and δji = 0 otherwise),
U = T (Φt

0,Φ
r
0) and(

J t0
Jr0

)
=
∑
j=1,2

(
(ϕj)

t
0

(ϕj)
r
0

)
|Xj | +

(
Φt

0

Φr
0

)
,

the above equation leads to

(8.65) [F (U)]i = 2 (c− ẋi)
(

(ϕi)
t
0

(ϕi)
r
0

)
+ [M]i

(
J t0 ◦ γi
Jr0 ◦ γi

)
.
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From (8.6), we now obtain

[M]i =
1

J t1

(
[J t1,t]i [J t1,r]i
[Jr1,t]i [Jr1,r]i

)
=

1

J t1

(
(Ji)t1t (Ji)t1r
(Ji)r1t (Ji)r1r

)
,

where we used that the jumps in the Jacobian derivatives satisfy the smooth-
ing condition (5.13). Furthermore, multiplying (8.65) with J t1 and substitut-
ing (7.4), that is, (ϕi)

µ
0 = −1

2(Ji)µ0r, (8.65) becomes

J t1 [F (U)]i = −
(
Jr1 − J t1 ẋi

) ( (Ji)t0r
(Ji)r0r

)
+

(
(Ji)t1t (Ji)t1r
(Ji)r1t (Ji)r1r

)(
J t0
Jr0

)
.

Now, as shown in the proof of Lemma 7.2, the RH conditions imply that

−ẋi (Ji)µ0r = (Ji)µ0t,

and using this identity above gives

J t1 [F (U)]i = −Jr1
(

(Ji)t0r
(Ji)r0r

)
− J t1

(
(Ji)t0t
(Ji)r0t

)
+ J t0

(
(Ji)t1t
(Ji)r1t

)
+ Jr0

(
(Ji)t1r
(Ji)r1r

)
.

Substituting the identity (5.13) for (Ji)µασ, we find that the terms on the
right hand side mutually cancel which implies that [F (U)]i = 0 for i = 1, 2.
In more detail, substituting the identity (5.13) for (Ji)µασ, we compute the
first component as, (subsequently dropping the index i),

2
(
−Jr1 (Ji)t0r − J t1 (Ji)t0t + J t0 (Ji)t1t + Jr0 (Ji)t1r

)
= Jr1

(
[Ar]

A
J t0 +

[Bt]

A
Jr0

)
+ J t1

(
[At]

A
J t0 +

[Ar]

A
Jr0

)
− J t0

(
[At]

A
J t1 +

[Ar]

A
Jr1

)
− Jr0

(
[Ar]

A
J t1 +

[Bt]

A
Jr1

)
= 0,

and the second component vanishes by a similar cancellation. This proves
the C1 matching across the shock curves.

It remains to prove that U is C1 across the characteristic curve γ0. Since
∂tU is assumed to be continuous across γ0, we only need to address the jump
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in ∂rU , which is assumed to satisfy (8.40), that is,

(8.66)
∥∥[∂rU ]0

∥∥
C0([0,T ))

≤ C

∣∣∣∣∣∣
∑
i=1,2

Mi(0, r0) +
∑
j=1,2

Aji(0, r0)

U0(r0)

∣∣∣∣∣∣ .
We now prove that the right hand side of (8.66) vanishes by the same can-
cellation leading to (8.64). For convenience, we subsequently often omit that
all quantities are evaluated at the point (0, r0) or at t = 0 respectively. To
begin, by comparison of (8.5) with (8.11)–(8.13), collecting the coefficients
of Heaviside functions, we find that

Mi(0, r0) =
1

J t1

(
(ϕi)

t
1ẋi −(ϕi)

t
1

(ϕi)
r
1ẋi −(ϕi)

r
1

)
,

since, according to (7.2), the part in Jµ1,σ multiplied to a Heaviside function
is either ẋi(ϕi)

µ
1 or −(ϕi)

µ
1 . Moreover, by the same comparison and since

Xi(0, r0) = 0, we find that∑
j=1,2

Aji(0, r0)U0(r0) =
(
c− ẋi

)( (ϕi)
t
0

(ϕi)
r
0

)
=

1

J t1

(
Jr1 − J t1ẋi

)( (ϕi)
t
0

(ϕi)
r
0

)
.

Combining the above two equations, multiplying through with J t1, and using
Jµα(0, r0) = Φµ

α(0, r0) and U = (Φt
0,Φ

r
0), we obtain

f0 := J t1(0, r0)

Mi(0, r0) +
∑
j=1,2

Aji(0, r0)

U0(r0)

=

(
(ϕi)

t
1ẋiΦ

t
0 − (ϕi)

t
1Φr

0

(ϕi)
r
1ẋiΦ

t
0 − (ϕi)

r
1Φr

0

)
+
(
Φr

1 − ẋiΦt
1

)( (ϕi)
t
0

(ϕi)
r
0

)
=
(
ẋiΦ

t
0 − Φr

0

)( (ϕi)
t
1

(ϕi)
r
1

)
+
(
Φr

1 − ẋiΦt
1

)( (ϕi)
t
0

(ϕi)
r
0

)
.

To proceed, observe that Bij(0) = 0, so that (7.5)–(7.8) reduces at the point
(0, r0) to

(ϕi)
t
0(0, r0) =

[Ar]i
4Ai

Φt
0 +

[Bt]i
4Ai

Φr
0,

(ϕi)
t
1(0, r0) =

[Ar]i
4Ai

Φt
1 +

[Bt]i
4Ai

Φr
1,
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(ϕi)
r
0(0, r0) =

[Bt]i
4Bi

Φt
0 +

[Br]i
4Bi

Φr
0,

(ϕi)
r
1(0, r0) =

[Bt]i
4Bi

Φt
1 +

[Br]i
4Bi

Φr
1,

where all quantities shall be understood to be evaluated at (0, r0). Substi-
tuting the above identities, we obtain

f0 =
(
ẋiΦ

t
0 − Φr

0

)( [Ar]i
4Ai

Φt
1 + [Bt]i

4Ai
Φr

1
[Bt]i
4Bi

Φt
1 + [Br]i

4Bi
Φr

1

)
+
(
Φr

1 − ẋiΦt
1

)( [Ar]i
4Ai

Φt
0 + [Bt]i

4Ai
Φr

0
[Bt]i
4Bi

Φt
0 + [Br]i

4Bi
Φr

0

)
,

and, by mutual cancellation of terms, a straightforward computation gives

f0 =
(
Φt

0Φr
1 − Φt

1Φr
0

){( [Ar]i
4Ai
[Bt]i
4Bi

)
+ ẋi

(
[Bt]i
4Ai
[Br]i
4Bi

)}
= 0,

where we used the RH condition (4.5) and (4.10) to obtain the the last line.
Thus, it follows by (8.66) that the jump in ∂rU across γ0 vanishes, from
which we finally conclude that U ∈ C1,1(N+). �

8.3. Proof of Proposition 8.1

We now complete the proof of Proposition 8.1. In Theorem 8.4, we proved
existence of a C0,1 solution of the non-local PDE (8.11), with C1,1 regularity
away from the shock curves and γ0. In Lemma 8.5, we then showed that any
such solution of the integrability condition (8.3) is C1,1 regular throughout
N+, which is the regularity claimed in Proposition 8.1. Moreover, it follows
that the C0,1 solution is in fact a C1 solution which solves (8.11) point-wise
(everywhere). The proof of Proposition 8.1 is complete, once we show that
(8.3) is indeed a special case of (8.9)–(8.13), the system of non-local PDE’s
addressed in Theorem 8.4, which is achieved in the following lemma.

Lemma 8.6. The integrability conditions, (8.3), under the regularity as-
sumptions in Proposition 8.1, are a special case of the non-local system of
PDE’s (8.9)–(8.13).

Proof. To begin, the characteristic speed c = J t1/J
r
1 , given in (8.4), is a func-

tion in C0,1
2 (N+), as becomes clear from the canonical form of the Jacobian,

(7.2). It thus remains to show that F (U) in the integrability conditions is a
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special case of the corresponding term in (8.9), which we here denote with
F̃ (U), to avoid confusion. For this, recall that

(8.67) F̃ (U) = M̃U +
∑
i=1,2

(
Ai · (U ◦ γi) + Bi |Xi| ·

d

dt
(U ◦ γi)

)
,

according to (8.11)–(8.13), with

M̃ =
∑
i=1,2

MiH(Xi) +M,(8.68)

Ai =
∑
j=1,2

AijH(Xj) +Ai,(8.69)

where Bi, Mi, M , Aij and Ai are matrix valued functions with components
in C0,1

2 (N+). On the other hand, the term F (U) in the integrability condition
is given by
(8.70)

F (U) =MU +
∑
i=1,2

{(
|Xi|M−H(Xi) (ẋi − c)

)((ϕi)
t
0

(ϕi)
r
0

)
− |Xi|

(
(ϕ̇i)

t
0

(ϕ̇i)
r
0

)}
,

c.f. (8.5), with

M =
1

J t1

(
J t1,t J t1,r
Jr1,t Jr1,r

)
.

Now, from the canonical form of the Jacobian, (7.2), it is straightforward
to conclude that M is a special case of the matrix M̃, where the C0,1

2 (N+)
regularity holds due to our assumption that the jump in the metric deriva-
tives are C3 functions along the shock curves in Definition 3.1 and our choice
of Φt

1 and Φr
1 in C3.

We next consider the term in (8.70) containing T ((ϕi)
t
0, (ϕi)

r
0), since

the Jacobian coefficients (ϕi)
µ
0 depend on U ◦ γj , j = 1, 2, the jumps in the

metric derivatives and the metric restricted to γi, we conclude that this term
is a special case of Ai · (U ◦ γi). Note that the C0,1

2 regularity again follows
from our regularity assumptions for the metric (in Definition 3.1) and for
the free functions Φt

1 and Φr
1.

We finally consider the term |Xi| T
(
(ϕ̇i)

t
0, (ϕ̇i)

r
0

)
in (8.70). Since (ϕi)

µ
0

depend on U ◦ γj itself, the above term is either of the form
∑

i=1,2Ai ·
(U ◦ γi), namely whenever the derivative on (ϕi)

µ
0 does not act on U ◦ γj ,

or else, it is of the form Bi |Xi| · ddt (U ◦ γi). In summary, we proved that the
integrability condition (8.3) is a special case of the non-local PDE (8.9)–
(8.13), which completes the proof. �
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9. The shock-collision-case: The matching conditions

So far we constructed Jacobians which satisfy the smoothing conditions
at the shock curves and are integrable to coordinates on the closed upper
half-plane, R2

+. A simultaneous construction gives us such Jacobians on the

closed lower half plane, R2
−. To proceed with the proof of Theorem 1.1, we

now “glue” these two Jacobians at the (t = 0)-interface in a way appropriate
to maintain the smoothness of the resulting metric gαβ.

For the pursue of this gluing, let us introduce some notation. We subse-
quently denote all objects in (7.2)–(7.10) with an additional index “+” or
“−” to indicate whether they originate from the Jacobian construction on
R2

+ or R2
−, respectively. That is,

Jµ±α (t, r) =
∑
i=1,2

(ϕ±i )µα(t)
∣∣x±i (t)− r

∣∣+ Φµ±
α (t, r),

is the canonical form of the Jacobian on N± = N ∩ R2
±. Moreover, we denote

with {·} the jump across the (t = 0)-interface, that is,

(9.1) {u}(r) = lim
t↗0

u(t, r)− lim
t↘0

u(t, r),

where u is some function for which the above limits are well-defined. Subse-
quently, we only apply (9.1) for either the metric derivatives, the Jacobian
or its derivatives. For those functions the limits in (9.1) are well-defined
whenever r 6= r0, however, at r = r0 this is no longer the case. Nevertheless,
for our purposes it suffices to define {·} at r = r0 as follows: Assume without
loss of generality that x+

1 (t) ≤ x+
2 (t) and x−1 (t) ≤ x−2 (t). We now partition

N ⊂ R2 into the four regions L, R, M− and M+, where L ⊂ N denotes
the open region on the left of γ±1 , R ⊂ N denotes the open region to the
right of γ±2 , M− ⊂ N− denotes the open region in between γ−1 and γ−2 , and
M+ ⊂ N+ denotes the open region in between γ+

1 and γ+
2 . Then, for some

L∞-function u which is continuous on L, R, M− and M+, we define uL,
uR, uM− and uM+ to be the limit of u(q) as q approaches p with q being
restricted to the respective region, that is,

uL = lim
q→p
q∈L

u(q), uR = lim
q→p
q∈R

u(q),

uM− = lim
q→p
q∈M−

u(q) and uM+ = lim
q→p
q∈M+

u(q).
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Finally we define {u}(r0) as

(9.2) {u}(r0) = uM− − uM+ .

With the notation introduced above, we now derive the conditions for
the matching of Jµ±α , conditions which are necessary and sufficient for the
metric in the new coordinates, gαβ = JµαJνβgµν , to be C1,1 regular on some
neighborhood of the shock interaction. We refer to these conditions as match-
ing conditions. To begin with, for the Jacobian to be in the C1,1 atlas, it
must match continuously across the (t = 0)-interface, that is,

(9.3) {Jµα}(r) ≡ Jµ−α (0, r)− Jµ+
α (0, r) = 0,

for all r. These are the C0-matching conditions.
To determine the matching of the Jacobian derivatives, we follow the

reasoning in Section 5, (which led to the smoothing condition, (5.7)), but
now with respect to the (t = 0)-interface. In more detail, the condition that
gαβ is continuously differentiable across the (t = 0)-interface is given by

(9.4) {gαβ,σ} = 0.

Substituting gαβ = JµαJνβgµν into (9.4) and using (9.3) as well as the SSC-

metric being C1 regular away from the shocks, that is, {gµν,σ}(r) = 0 for all
r 6= r0, we conclude that the C1-matching conditions are given by

(9.5)
(
{Jµα,σ}Jνβ + {Jνβ,σ}Jµα

)
gµν = 0, ∀ r 6= r0,

and by

(9.6)
(
{Jµα,σ}Jνβ + {Jνβ,σ}Jµα

)
gµν = −JµαJνβ{gµν,σ}, at r = r0.

It remains to prove that the above matching conditions can be met for
the Jacobian in (7.2), by appropriately matching the free functions Φµ+

α and
Φµ−
α as well as their derivatives. A potential obstacle for the pursue of this

matching is that the functions Φt±
0,t and Φr±

0,t are not free to assign, since
they are prescribed by the integrability conditions (8.3). Nevertheless, the
RH conditions and the integrability conditions imply exactly the matching
of Φµ+

α and Φµ−
α , which is required for (9.5) and (9.6) to hold. All this is

achieved in the next lemma.
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Lemma 9.1. Let Jµ±α be two Jacobians of the canonical form (7.2), defined

on N± = N ∩ R2
± respectively, with corresponding free functions Φµ±

α . As-
sume the integrability condition (2.4) and the jump conditions, (4.5)–(4.6)
and (4.10), hold, and assume that J t1(0, r) 6= 0 by an appropriate choice of
Φt

1(0, r). If the Φµ±
α match at t = 0, such that

{Φµ
α}(r) = 0,(9.7)

{∂tΦt
1}(r) = −

(
(ϕ̇−1 )t1 + (ϕ̇−2 )t1 − (ϕ̇+

1 )t1 − (ϕ̇+
2 )t1

)
|r − r0|,(9.8)

{∂tΦr
1}(r) = −

(
(ϕ̇−1 )r1 + (ϕ̇−2 )r1 − (ϕ̇+

1 )r1 − (ϕ̇+
2 )r1

)
|r − r0|(9.9)

hold for all (0, r) ∈ N , then Jµ±α satisfies the matching conditions (9.3),
(9.5) and (9.6).

Proof. We first address the C0-matching conditions, (9.3). Taking the jump
across the (t = 0)-interface of the canonical form for the Jacobian, (7.2),
gives us

{Jµα}(r) =
(

(ϕ−1 )µα + (ϕ−2 )µα − (ϕ+
1 )µα − (ϕ+

2 )µα

)
|r − r0| + {Φµ

α}(r)

and assuming that (9.7) holds, the above equation reduces to

(9.10) {Jµα}(r) =
(

(ϕ−1 )µα + (ϕ−2 )µα − (ϕ+
1 )µα − (ϕ+

2 )µα

)
|r − r0|

In the following we show that

(9.11) (ϕ−1 )µα + (ϕ−2 )µα − (ϕ+
1 )µα − (ϕ+

2 )µα = 0.

We first derive simplified expressions for the (ϕ±i )µα. Since x±1 (0) = r0 = x±2 (0),
we conclude from (7.10) that Bij = 0, and thus, we find from (7.7)–(7.8) that

(ϕ±i )r0 =
1

4B

(
[Bt]

±
i Φt±

0 |i + [Br]
±
i Φr±

0 |i
)

(ϕ±i )r1 =
1

4B

(
[Bt]

±
i Φt±

1 |i + [Br]
±
i Φr±

1 |i
)
,(9.12)

where we write B instead of B(p) and Φµ±
α |i instead of Φµ±

α ◦ γi(0). Using
again the hypothesis (9.7), we conclude that the Φµ±

α |i match continuously,
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that is, there exist a value φµα such that

Φµ+
α |i(0) = Φµ−

α |i(0) = φµα ∀ i = 1, 2.

Thus, (9.12) simplyfies to

(ϕ±i )r0 =
1

4B

(
[Bt]

±
i φ

t
0 + [Br]

±
i φ

r
0

)
(ϕ±i )r1 =

1

4B

(
[Bt]

±
i φ

t
1 + [Br]

±
i φ

r
1

)
.(9.13)

The expressions for the remaining coefficients follow again from (7.5)–(7.6),
that is,

(ϕ±i )t0 = −B
A
ẋ±i (ϕ±i )r0 =

1

4A

(
[Ar]

±
i φ

t
0 + [Bt]

±
i φ

r
0

)
,

(ϕ±i )t1 = −B
A
ẋ±i (ϕ±i )r1 =

1

4A

(
[Ar]

±
i φ

t
1 + [Bt]

±
i φ

r
1

)
,(9.14)

where we used the RH conditions (4.5)–(4.6) and (4.10), that is,

(9.15) [Bt] = −ẋ[Br], [At] = −ẋ[Ar] and [Ar] = −ẋ[Bt],

to eliminate the shock speeds ẋ±i in (9.14). To prove that the sums in (9.11)
vanishes, we now compute them for the different cases µ ∈ {t, r} and α ∈
{0, 1} separately. From (9.13) we obtain

4B
(
(ϕ−1 )r0 + (ϕ−2 )r0 − (ϕ+

1 )r0 − (ϕ+
2 )r0
)

(9.16)

=
(
[Bt]

−
1 + [Bt]

−
2 − [Bt]

+
1 − [Bt]

+
2

)
φt0

+
(
[Br]

−
1 + [Br]

−
2 − [Br]

+
1 − [Br]

+
2

)
φr0.

But now it holds in general for the metric that sums of the above form
mutually cancel. In more detail, at t = 0 we have

[gµν,σ]±1 (0) + [gµν,σ]±2 (0) = (gµν,σ)L − (gµν,σ)M± + (gµν,σ)M± − (gµν,σ)R
= (gµν,σ)L − (gµν,σ)R ,

from which we conclude that at t = 0

(9.17) [gµν,σ]−1 + [gµν,σ]−2 − [gµν,σ]+1 − [gµν,σ]+2 = 0.

Now, (9.17) together with (9.16) imply that

(ϕ−1 )r0 + (ϕ−2 )r0 − (ϕ+
1 )r0 − (ϕ+

2 )r0 = 0,
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which together with (9.10) proves the C0-matching conditions (9.3), for µ =
r and α = 0. Similarly, starting from the expressions (9.13) and (9.14) for
the (ϕ±i )µα and applying (9.17), we obtain (9.11) for the remaining cases.
This proves the C0-matching conditions (9.3).

We now address the C1-matching for r 6= r0, that is, (9.5). Since the left
hand side of (9.5) is the same linear system as (5.7) but with a vanishing
right hand side, we conclude, in light of Lemma 5.1, that a solution of (9.5)
is given by

(9.18) {Jµα,σ}(r) = 0 ∀ r 6= r0.

Furthermore, assuming the Jµ±α satisfying the integrability condition, (2.4),
the above solution is, in fact, the unique solution of (9.5), c.f. Lemma 5.1.

We first prove that (9.7) implies (9.18) for σ = r. Observe that (9.7)
implies that {∂rΦµ

α}(r) = 0 for all (0, r) ∈ N . Differentiating the canonical
form of the Jacobian (7.2) with respect to r and taking the jump across the
(t = 0)-interface, we get

{Jµα,r}(r) = −
(

(ϕ−1 )µα + (ϕ−2 )µα − (ϕ+
1 )µα − (ϕ+

2 )µα

)
H(r − r0)(9.19)

+ {Φµ
α,r}(r)

= −
(

(ϕ−1 )µα + (ϕ−2 )µα − (ϕ+
1 )µα − (ϕ+

2 )µα

)
H(r − r0),

where we applied (9.7) to compute the last equality. By (9.11), the above
sum in (ϕ±i )µα vanishes and thus (9.19) yields

(9.20) {Jµα,r}(r) = 0 ∀ r 6= r0,

which proves (9.18) for σ = r.
To prove (9.18) for σ = t, take the t-derivative of the canonical form

(7.2) and take the jump {·} of the resulting expression, which leads to

{Jµα,t}(r) =
(

(ϕ−1 )µαẋ
−
1 + (ϕ−2 )µαẋ

−
2 − (ϕ+

1 )µαẋ
+
1 − (ϕ+

2 )µαẋ
+
2

)
H(r − r0)

+
(

(ϕ̇−1 )µα + (ϕ̇−2 )µα − (ϕ̇+
1 )µα − (ϕ̇+

2 )µα

)
|r − r0|+ {Φµ

α,t}(r).

Using the RH conditions (9.15) to absorb the shock speeds, we can write
the term in the previous equation containing the step function as sums of
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the form (9.17) and therefore conclude that it vanishes, leaving us with

(9.21) {Jµα,t}(r) =
(

(ϕ̇−1 )µα + (ϕ̇−2 )µα − (ϕ̇+
1 )µα − (ϕ̇+

2 )µα

)
|r − r0|+ {Φµ

α,t}(r).

Applying now our initial assumption on {Φt
1,t} and {Φr

1,t}, (9.8) and (9.9),
we find that (9.21) implies

(9.22) {J t1,t}(r) = 0 = {Jr1,t}(r), ∀ r 6= r0.

To prove the remaining two cases of (9.18), we make use of the integrability
condition in SSC, that is,

Jµ0,σJ
σ
1 − J

µ
1,σJ

σ
0 = 0,

c.f. (A.5). Taking {·}, then yields

{J t0,σ}Jσ1 − {J t1,σ}Jσ0 = 0,

{Jr0,σ}Jσ1 − {Jr1,σ}Jσ0 = 0,(9.23)

where we used (9.3) to pull the undifferentiated Jacobian out of the curly
brackets. Moreover, using (9.22) and the continuous matching of Jµ±α,r , that
is (9.20), equations (9.23) simplify further to

{J t0,t}J t1 = 0,

{Jr0,t}J t1 = 0,(9.24)

and since by assumption Φt
1 is such that J t1(0, r) 6= 0, we conclude that

(9.25) {Jµα,t}(r) = 0 ∀ r 6= r0.

This proves the C1-matching conditions for r 6= r0, that is, (9.5).
We now prove the C1-matching conditions at r = r0, that is, (9.6). We

first derive the value of {gµν,σ}(r0), where {·}(r0) is defined in (9.2). For
this, compute

{gµν,σ}(r0) = (gµν,σ)M− − (gµν,σ)M+(9.26)

= (gµν,σ)L − (gµν,σ)M+ −
(
(gµν,σ)L − (gµν,σ)M−

)
= [gµν,σ]+1 (0)− [gµν,σ]−1 (0),

or equivalently

(9.27) {gµν,σ}(r0) = −[gµν,σ]+2 (0) + [gµν,σ]−2 (0).
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Now, since (9.6) is the same linear system as the smoothing conditions (5.7)
but with the right hand side being a linear combination of the right hand side
in (5.7), we conclude that the unique solution of (9.6) is given by the corre-
sponding linear combination of the solutions to (5.7), stated in Lemma 5.1,
namely

(9.28) {Jµα,σ} = [Jµα,σ]+1 (0)− [Jµα,σ]−1 (0) = (J +
1 )µασ(0)− (J −1 )µασ(0)

or equivalently

(9.29) {Jµα,σ} = −[Jµα,σ]+2 (0) + [Jµα,σ]−2 (0) = −(J +
2 )µασ(0) + (J −2 )µασ(0),

which we combine to

(9.30) {Jµα,σ} =
1

2

(
(J +

1 )µασ(0)− (J −1 )µασ(0)− (J +
2 )µασ(0) + (J −2 )µασ(0)

)
,

with the right hand side given by (5.13). (9.30) is equivalent to the C1

matching condition at r = r0, (9.28).
We now prove that the Jacobian in the canonical form (7.2) satisfies

(9.30) and thus meets the C1 matching conditions at r = r0. For this, observe
that17

{Φµ
α,σ}(r0) =

(
Φµ
α,σ

)
M−
−
(
Φµ
α,σ

)
M+(9.31)

=
(
Φµ
α,σ

)
M−
−
(
Φµ
α,σ

)
R
−
((

Φµ
α,σ

)
M+ −

(
Φµ
α,σ

)
R

)
= [Φµ

α,σ]−2 − [Φµ
α,σ]+2

= 0,

where we used (7.3) to conclude the last equality. Taking {·} of the r-
derivative of the Jacobian in (7.2) and applying (9.31), we obtain

{Jµα,r} =
(
Jµα,r

)
M−
−
(
Jµα,r

)
M+

= −
(
−(ϕ−1 )µα + (ϕ−2 )µα + (ϕ+

1 )µα − (ϕ+
2 )µα
)

since for r ∈M± we have H(x±1 (t)− r) = −1 and H(x±2 (t)− r) = 1. Thus,
recalling the implicit definition of the Jacobian coefficients, (7.4), the above
equations implies (9.30) at r = r0 for the case that σ = r.

17Even though Φµ±α,t do not match up continuously, (9.8)–(9.9) imply that

{Φµα,t}(r) vanishes as r approaches r0, and thus
(
Φµ±1,t

)
L

and
(
Φµ±1,t

)
R

are well-
defined. Likewise, using (9.25), the RH conditions (9.15) and (9.11), we find that(
Φµ±0,t

)
L

and
(
Φµ±1,t

)
R

are well-defined.
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We complete the proof by showing that the canonical Jacobian satisfies
(9.30), at r = r0, for the case σ = t. Taking {·} of the t-derivative of the
Jacobian in (7.2), applying (9.31), and using that terms of the form

ϕ̇µ±α; i |r − x
±
i (t)|

vanish in the limit to p, we obtain

{Jµα,t} =
(
Jµα,t

)
M−
−
(
Jµα,t

)
M+

= −(ϕ−1 )µα ẋ
−
1 + (ϕ−2 )µα ẋ

−
2 + (ϕ+

1 )µα ẋ
+
1 − (ϕ+

2 )µα ẋ
+
2 ,

since for r ∈M± we have H(x±1 (t)− r) = −1 and H(x±2 (t)− r) = 1. Using
again the implicit definition of the Jacobian coefficient, (7.4), we obtain

{Jµα,t} = −1

2

(
−(J −1 )µαr ẋ

−
1 + (J −2 )µαr ẋ

−
2 + (J +

1 )µαr ẋ
+
1 − (J +

2 )µαr ẋ
+
2

)
=

1

2

(
−(J −1 )µαt + (J −2 )µαt + (J +

1 )µαt − (J +
2 )µαt

)
,

where we used the relation −ẋJ µαr = J µαt, (which follows from the RH condi-
tion, c.f. (7.15)), to obtain the last equality. This proves (9.30) and concludes
the proof of Lemma 9.1. �

10. The shock-collision-case: The Proof of Theorem 1.1

We now use the construction of Section 7–9 to prove Theorem 1.1. To begin
with, recall our main theorem:

Theorem 1.1 Suppose that p is a point of regular shock wave interaction in
SSC between shocks from different families, in the sense that condition (i) -
(iv) of Definition 3.1 hold, for the SSC metric gµν . Then the following are
equivalent:

(i) There exists a C1,1 coordinate transformation xα ◦ (xµ)−1 in the (t, r)-
plane, with Jacobian Jµα , defined in a neighborhood N of p, such that the
metric components gαβ = JµαJνβgµν are C1,1 functions of the coordinates
xα.

(ii) The Rankine Hugoniot conditions, (3.4)–(3.5), hold across each shock
curve in the sense of (v) of Definition 3.1.

Furthermore, the above equivalence also holds for the full atlas of C1,1 coor-
dinate transformations, not restricted to the (t, r)-plane.
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Proof. By Proposition 7.1, it is immediate that (i) implies (ii). The extension
of the equivalence to the full atlas of C0,1 coordinate transformations follows
from Proposition 7.1 as well.

We now prove that (ii) implies (i), which then completes the proof. To
construct the coordinate transformations asserted in (i), we use the canonical
form of the Jacobian, (7.2), such that the free functions Φµ±

α satisfy the
integrability condition, (8.3), and the matching conditions, (9.3)–(9.9). In
more detail, choose two functions

Φt
1, Φr

1 ∈ C0,1(N ) ∩ C3
(
N ∩ R2

−

)
∩ C3

(
N ∩ R2

+

)
,

such that they match across the (t = 0)-interface according to (9.7)–(9.9),
and pick Φt

1 such that J t1 6= 0 on N ∩ {t = 0}, where J t1 is related to Φt
1

through the canonical form (7.2).
Before we continue with the proof, let us first elaborate on why one can

choose such functions Φt
1 and Φr

1. Observe that the right hand side of (9.8)–
(9.9) vanishes at r = r0. Thus, (9.8)–(9.9) simply requires Φµ

1,t to match
continuously at r = r0, (for µ = t, r). Moreover, the coefficient of |r − r0|
on the right hand side of (9.8)–(9.9) depends only on the values of Φµ

1 and
Φµ

1,σ at the point of interaction p = (0, r0). Thus, choosing for Φt
1 and Φr

1

Lipschitz continuous functions for which first derivatives exist continuously
at p = (0, r0), the right hand side of (9.8)–(9.9) is determined explicitly and
condition (9.8)–(9.9) is satisfied at p = (0, r0). To satisfy (9.8)–(9.9) for r 6=
r0, we modify the value of Φµ

1 on R2
+ ∩N , without affecting the (fixed) right

hand side of (9.8)–(9.9), by adding two functions Ψµ
1 ∈ C3(R2

+ ∩N ) with the
properties Ψµ

1 (0, r) = 0 and Ψµ
1,σ(0, r0) = 0, while the value of ∂tΨ

µ
α(0, r) is

given by the right hand side of (9.8)–(9.9). Denoting the resulting function
again by Φµ

1 , the conditions (9.8)–(9.9) are satisfied.
To continue, choose a non-vanishing function

U0 = T (U1
0 , U

2
0 ) ∈ C2(N ∩ {t = 0},R2),

such that

(10.1) U1
0 (r0)Φr

1(p)− U2
0 (r0)Φt

1(p) 6= 0,

which is the condition that the resulting Jacobian has a non-vanishing deter-
minant. Now, in light of the existence theory for the integrability conditions,
(8.3), given in Proposition 8.1, we define the functions Φt+

0 and Φr+
0 to be

the solutions of (8.3) on R2
+ for initial data U0, and likewise, we define Φt−

0
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and Φr−
0 to be the solutions of (8.3) on R2

− for the same initial data U0.

In particular, the functions Φt±
0 and Φr±

0 are then in C1,1
(
N ∩ R2

±

)
and

satisfy the matching conditions (9.7) and (9.7), since Φµ+
0 and Φµ+

0 have the
same initial data.

Now, define Jµ±α to be the Jacobian in the canonical form (7.2), on

N ∩ R2
±, with the free functions Φµ±

α introduced above, that is,

Jµ±α (t, r) =
∑
i=1,2

(ϕ±i )µα(t)|x±i (t)− r|+ Φµ±
α (t, r).

Then Jµα satisfies the integrability conditions, (8.3), and thus also the original
integrability condition, (2.4), c.f. Appendix A, so that Jµα can be integrated
to coordinates xα defined on N . In particular, by the continuity of the Jµα
and the initial condition (10.1), it follows that the Jacobian determinant is
non-vanishing in some neighborhood of p. Furthermore, by Proposition 7.1,
Jµα satisfies the smoothing conditions (5.13) across each of the shock curves
and in the limit to t = 0. From this we conclude that the transformed metric

gαβ = JµαJ
ν
βgµν

is C1 across each shock curve with respect to the new coordinates, that is,

[gαβ,γ ]±i = 0 for i = 1, 2.

By Lemma 9.1, Jµα satisfies the C0- and C1-matching conditions, (9.3)–(9.6),
from which we conclude that gαβ is C1 across the (t = 0)-interface,

{gαβ,γ}(r) = 0 ∀ r ∈ (r0 − ε, r0 + ε).

From the above two equations, we conclude that all directional derivatives
of gαβ vanish across each of the shock curves and, in particular, at p, and
the C1 matching of gαβ implies that gαβ ∈ C1,1(N ), (c.f. argument in the
proof of Lemma 5.4). In summary, we constructed coordinates xα in which
the metric is C1,1 regular, which completes the proof of Theorem 1.1. �

11. Conclusion

The result of this paper shows that one can extend Israel’s result to shock
wave solutions of the Einstein equations containing points of shock wave
interactions in spherical symmetry between shocks from different character-
istic families, by using a new constructive method to construct Jacobians
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(integrable to coordinates) which raise the C0,1 metric regularity to C1,1.
Our method differs drastically from Israel’s approach, the latter being based
on choosing a special coordinate system (Gaussian Normal coordinates) in
which the metric is in C1,1. In our method it is possible to characterize all
Jacobians capable of smoothing the metric and it seems possible to extend
our method to more complicated shock wave solutions.

Our result here shows that no regularity singularities exist at points of
shock wave interactions between shocks from different characteristic fami-
lies, which corrects our wrong conclusion in [15]. Nevertheless, our result here
still does not resolve the question whether such regularity singularities exist
in more complicated shock wave interactions, neither in spherical symmetry
nor in spacetimes without any symmetries. We believe that resolving this
open question is fundamental to General Relativity, since perfect fluid mat-
ter models are basic to describe many astrophysical phenomena, and since
one cannot avoid the formation of shock waves in the compressible Euler
equations which describe such fluid models [3, 12]. Moreover, if regularity
singularities exists, it begs the question as to whether there are new general
relativistic gravitational effects. In [17], we propose a mechanism by which
the hypothetical structure of a regularity singularity could cause scattering
effects in gravitational radiation. In summary, our work here is a first step
in resolving the problem we proposed in [15], as to whether or not regularity
singularities can be created by GR shock wave interactions, but, in general,
the existence of regularity singularities remains an interesting open problem
which lies at the very basis of GR fluid models.

Appendix A. The integrability condition

In this section, we review the equivalence of the integrability condition for
Jαµ , (2.4), and the existence of an integrating factor xα, such that Jαµ is
indeed the Jacobian of the coordinate transformation from xµ to xα, that
is,

(A.1) Jαµ =
∂xα

∂xµ
,

with indices α ∈ {0, 1} and µ ∈ {t, r}. In particular we also show that this
equivalence holds for Lipschitz continuous Jαµ . For simplicity, we only dis-
cuss this issue on R2 and for a single surface across which Jαµ is Lipschitz
continuous.
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Lemma A.1. Let Ω be an open set in R2 with coordinates xν = (t, r). Sup-
pose we are given a set of functions Jαµ (xν) in C0,1(Ω), C1 away from some
curve γ(t) = (t, x(t)), satisfying det(Jαµ ) 6= 0. Then the following is equiva-
lent:

(i) There exist locally invertible functions xα(t, r) ∈ C1,1(Ω), for α = 0, 1,
such that (A.1) holds.

(ii) The set of functions Jαµ ∈ C0,1(Ω) satisfy the integrability condition

(A.2) Jαµ,ν = Jαν,µ .

Proof. The implication from (i) to (ii) is trivial, since (weak) partial deriva-
tives commute. We now prove that (ii) implies (i). Without loss of generality,
we assume that Ω is the square region (a, b)2 ⊂ R2. For (t, r) ∈ Ω, intro-
duce

(A.3) xα(t, r) =

∫ r

a
Jαr (t, x)dx+

∫ t

a
Jαt (τ, a)dτ ,

then ∂rx
α(t, r) = Jαr (t, r) follows immediately. Furthermore, using A.2 we

get

∂xα

∂t
(t, r) =

∫ r

a
Jαr,t(t, x)dx+ Jαt (t, a)

=

∫ x(t)

a
Jαt,rdx+

∫ r

x(t)
Jαt,rdx+ Jαt (t, a) ,

where x(t) ∈ (a, r) is the point of discontinuity of Jαt,r. We apply the fun-
damental theorem of calculus to each of the above integrals separately and
finally obtain ∂tx

α(t, r) = Jαt (t, r). Moreover, the Inverse Function Theorem
implies that the function xα is bijective on some open set, since we assumed
det
(
Jαµ
)
6= 0. �

Given the existence of coordinates xα(t, r), the integrability condition,

(A.4) Jµα,β = Jµβ,α,

holds and implies, by the chain rule,

(A.5) Jµα,νJ
ν
β = Jµβ,νJ

ν
α .

We now prove that the reverse implications hold true as well, which is funda-
mental for our construction of coordinates where the metric is C1,1 regular.
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Lemma A.2. Assume we are given C0,1 functions Jµα which satisfy det Jµα 6=
0 and (A.5). Then, the linear algebraic inverse of Jµα , Jαµ , satisfies (A.2) and
there exist a bijective C1,1 function xα(t, r) which satisfies (A.1). Moreover,
differentiating with respect to xα, (A.4) holds.

Proof. We begin by proving that (A.5) implies the integrability condition
on the inverse Jacobian Jαµ , that is,

(A.6) Jαµ,ν = Jαν,µ .

To begin with, suppose A.5 holds, which is equivalent to

Jr1J
t
0,r − Jr0J t1,r = J t0J

t
1,t − J t1J t0,t(A.7)

Jr1J
r
0,r − Jr0Jr1,r = J t0J

r
1,t − J t1Jr0,t .(A.8)

The linear algebraic inverse of Jµα , Jαµ , is given by

(A.9)

(
J0
t J0

r

J1
t J1

r

)
=

1

|J |

(
Jr1 −J t1
−Jr0 J t0

)
,

where |J | denotes the determinant of Jµα . Now, taking the r-derivative of J0
t

in (A.9) gives

J0
t,r =

J t1
|J |2

(
Jr1J

r
0,r − Jr0Jr1,r

)
− Jr1
|J |2

(
Jr1J

t
0,r − Jr0J t1,r

)
.

Exchanging the first term using (A.8) and the second term using (A.7), we
get

J0
t,r =

J t1
|J |2

(
J t0J

r
1,t − J t1Jr0,t

)
− Jr1
|J |2

(
J t0J

t
1,t − J t1J t0,t

)
= J0

r,t ,

but the right hand side in the equation is exactly what one get when taking
the t-derivative of J0

r in (A.9). We thus conclude that

J0
t,r = J0

r,t

holds true. A similar computation verifies the remaining equation in (A.6),
that is,

J1
t,r = J1

r,t.

This shows that (A.5) implies (A.6).
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Lemma A.1 now implies the existence of coordinates xα such that ∂xα

∂xµ =
Jαµ holds and such that the mapping (xµ) 7→ (xα) is bijective. Since the co-
ordinate mapping is bijective, we conclude by the Inverse Function theorem
that Jµα is indeed the Jacobian of the coordinate transformation, that is,

Jµα =
∂xµ

∂xα
,

which also implies that Jµα,β = Jµβ,α holds. �
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