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Local mirror symmetry and the sunset
Feynman integral

Spencer Bloch, Matt Kerr, and Pierre Vanhove

We study the sunset Feynman integral defined as the scalar two-
point self-energy at two-loop order in a two dimensional space-time.

We firstly compute the Feynman integral, for arbitrary internal
masses, in terms of the regulator of a class in the motivic coho-
mology of a 1-parameter family of open elliptic curves. Using an
Hodge theoretic (B-model) approach, we show that the integral is
given by a sum of elliptic dilogarithms evaluated at the divisors
determined by the punctures.

Secondly we associate to the sunset elliptic curve a local non-
compact Calabi-Yau 3-fold, obtained as a limit of elliptically fibered
compact Calabi-Yau 3-folds. By considering the limiting mixed
Hodge structure of the Batyrev dual A-model, we arrive at an
expression for the sunset Feynman integral in terms of the local
Gromov-Witten prepotential of the del Pezzo surface of degree 6.
This expression is obtained by proving a strong form of local mir-
ror symmetry which identifies this prepotential with the second
regulator period of the motivic cohomology class.
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Part I. Introduction

1. Overview and discussion

m1

m2

m3

KK

This work concerns the Feynman integral in two dimensional space-time
associated to the sunset graph in the above figure, given by

(1.1) I�(s) := s

ˆ
x≥0

y≥0

dxdy

s(ξ2
1x+ ξ2

2y + ξ2
3)(xy + x+ y)− xy

.

Here ξi = mi/µ (i = 1, 2, 3) are positive non vanishing real numbers, given by
the ratios of the internal masses by the arbitrary infrared scale µ, and s is the
inverse of the norm of the external momentumK2 = µ2/s. (See [BW, BV, Va]
for a derivation of (1.1) from the usual Feynman representation.)

This integral is a multivalued function of s on C\[(ξ1 + ξ2 + ξ3)−2,+∞[.
In general, the multivalueness of the Feynman integral plays an important
role in physics, as this is imposed by unitarity of quantum field theory [EH].
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Local mirror symmetry and the sunset Feynman integral 1375

A large class of Feynman integrals can be easily determined from their dif-
ferential equations [AM, RT, Henna, L, Hennb, T], and more generally are
associated to motivic period integrals [B1, B2].

The geometry of the graph hypersurface is a family of elliptic curves

E� := {xyz − s(ξ2
1x+ ξ2

2y + ξ2
3z)(xy + xz + yz)|(x, y, z) ∈ P2} .

The structure of the motive associated to (1.1), discussed in Sections 4
and 7.2, differs from the one given in the single masses case in [BV], be-
cause we now have a family of open elliptic curves, no longer modular, and
the motive has a Kummer extension quotient.

We show that the sunset Feynman integral is given by (see Section 3.3.2)1

(1.2)

I�(s) ≡ i$r

π

(
Ê2

(
x(P1)

x(P2)

)
+ Ê2

(
x(P2)

x(P3)

)
+ Ê2

(
x(P3)

x(P1)

))
mod periods ,

where Ê2(x) is the elliptic dilogarithm

Ê2(x) =
∑
n≥0

(Li2 (qnx)− Li2 (−qnx))(1.3)

−
∑
n≥1

(Li2 (qn/x)− Li2 (−qn/x)) .

In (1.2), Ê2 is evaluated at the ratios of the images of the points P1 := [1 : 0 :
0], P2 := [0 : 1 : 0] and P3 := [0 : 0 : 1] in C×/qZ, where log(q)/(2πi) is the
complex structure given by the period ratio of the elliptic curve; and $r is
the elliptic curve period which is real on the line s > (ξ1 + ξ2 + ξ3)−2.

The elliptic dilogarithm Ê2(x) is not invariant under x→ xq (see equa-
tion (3.70)), reflecting the multivalued nature of the Feynman integral. This
was already the case for elliptic polylogarithm expansions of the Feynman
integrals for the two-loop sunset [BV] and three-loop banana [BKV] with
equal masses. The result in (1.2) generalizes the expression for the all equal
masses case ξ1 = ξ2 = ξ3 = 1 given in terms of elliptic dilogarithm in [BV].

The motivic approach in Section 4 shows how the theory of motives can
yield information about Feynman integrals. In general, the motive associated
to a Feynman integral will depend on a family of hypersurfaces Xm,q ⊂ Pn
depending on masses m and external momenta q. The motive at (m, q) is as-
sociated to the cohomology group Hn(Pn −Xm,q,∆) where ∆ is the simplex

1It would be interesting to relate this expression to the one using multiple poly-
logarithm presented in [ABW2, ABW3, ABW4, ABW5].
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defined by the vanishing of the product of the homogeneous coordinates. A
general motivic analysis would begin by a study of Xm,q ∩∆. In simple cases
like the sunset, this intersection is manageable and we are able to prove a
duality

Hn(Pn −Xm,q,∆) ∼= Hn(Pn −∆, Xm,q)(n)∨.

The motive on the right is related to the Milnor symbol {x1, . . . , xn} on
Xm,q ∩Gn

m, where the xi are the Laurent coordinates on Pn −∆ = Gn
m. In

the sunset case, this approach identifies the amplitude with an elliptic dilog-
arithm. A similar attack may be possible for more general graphs, though the
above duality will no longer be perfect. The challenge will be to understand
the role played by the structure at infinity Xm,q ∩∆.

In Part III, we revisit the approach of [CKYZ] to local mirror symmetry,
by semi-stably degenerating a family of elliptically-fibered Calabi-Yau 3-
folds Xz0,z (defined by (5.1)) to a singular compactification X0,z of the local
Hori-Vafa 3-fold

Yz := {1− s(ξ2
1x+ ξ2

2y + ξ2
3)(1 + x−1 + y−1) + uv = 0} ⊂ (C∗)2 × C2 ,

and using the work of Iritani [Ir] to compare the asymptotic Hodge theory of
this B-model to that of the mirror (elliptically fibered) A-model Calabi-Yau
X◦.

The bulk of Section 5 is concerned with the proof of the isomorphism

H3
lim(Xz0,z) ⊇ ker(T0 − I) ∼= H3(Yz)(−3)

of mixed Hodge structures (Theorem 5.3), and the explicit construction of
bases for H3(Xz0,z) resp. H3(Yz). This allows us to invoke (in Section 5.7)
results of2 [DK, §5] to compute, in the z0 → 0 limit, the invariant periods of
X in terms of “regulator periods” R(i)

0 , R1 associated to a family of algebraic
K2-classes on the sunset elliptic curve family Ez.

In §6, we compute Iritani’s quantum Z-variation of Hodge structure on
the even cohomology of the Batyrev mirror X◦ of X, writing the periods
in terms of its Gromov-Witten invariants (Section 6.2) and the monodromy
transformations in terms of its intersection theory (Section 6.3). (The mon-
odromies Ti are computed in greater detail than we need, as they will be
used to provide geometric realizations of certain monodromy cones in the
forthcoming work [KPR].) Like X, X◦ is elliptically fibered, over a toric Fano

2The numbers of section, conjecture, theorem and equations refer to the pub-
lished version of [DK].
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Local mirror symmetry and the sunset Feynman integral 1377

surface P∆◦ , which (for the sunset case) is just the del Pezzo of degree 6. Un-
der the mirror map z 7→ q(z) = e2πiτ(z) (computed in Section 6.4), we have
the isomorphism of A- and B-model Z-variation of Hodge structure

H3(Xz0,z)
∼= Heven(X◦q0,q) ,

and taking (the invariant part of) limiting mixed Hodge structure on both
sides yields the relation

2πiR1 = R
(1)
0 R

(2)
0 +R

(2)
0 R

(3)
0 +R

(1)
0 R

(3)
0 −

∑
`1+`2+`3=`>0

(`1,`2,`3)∈N3\(0,0,0)

`N`1,`2,`3

3∏
i=1

Q`ii

between regulator periods and local Gromov-Witten numbers of P∆◦ (Corol-
lary 6.3). The expression is done with respect to the local Kähler moduli
Qi = eR

(i)
0 = ξ2

i Q̂ for i = 1, 2, 3 with Q̂ = exp(R̂0) and where R̂0 is the log-
arithmic Mahler measure
(1.4)

R̂0 = iπ −
ˆ
|x|=|y|=1

log(s−1 − (ξ2
1x+ ξ2

2y + ξ2
3)(x−1 + y−1 + 1))

d log xd log y

(2πi)2
.

That is, we prove thatR1 is the local Gromov-Witten prepotential of P∆◦ ,
which is Conjecture 5.12 of [DK]; this puts the observations on asymptotics
of the local Gromov-Witten invariants there (Corollary 5.3 of [DK]) on a
firm foundation at last.

All of what has just been described is carried out, in Sections 6-5, in a
greater level of generality so that the results described apply to other toric
families of elliptic curves in addition to the sunset family.

The connection of all this to the Feynman integral (1.1) is given in Sec-
tion 7: writing ωz for a family of holomorphic 1-forms on Ez, and R|Ez for
the family of 1-currents associated to the family of algebraic K2-classes, we
have the equality

I�(s) = −s
ˆ
Ez

R|Ez ∧ ωz.

Proposition 7.2 shows this leads to the inhomogeneous Picard-Fuchs equation
for I� derived explicitly in Section 3.3.

Remarkably we show that the sunset Feynman integral is given by the
Legendre transform of the regulator period R̂1 = R1 (see (7.27) and (7.41))

(1.5) I�(s) ' −s 2πiπ0

(
∂R̂1

∂R̂0

R̂0 − R̂1

)
,
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which implies the expansion of the Feynman integral in terms of Gromov-
Witten numbers (see Sections 7.3 and 7.4)
(1.6)

I�(s) = −s2∂R̂0

∂s

3R̂3
0 +

∑
`1+`2+`3=`>0

(`1,`2,`3)∈N3\(0,0,0)

`(1− ` log Q̂)N`1,`2,`3

3∏
i=1

Q̂`ii

 .

The local Gromov-Witten numbers N`1,`2,`3 can be expressed in terms of the
virtual integer number of degree ` rational curves by

N`1,`2,`3 =
∑

d|`1,`2,`3

1

d3
n `1

d
,
`2
d
,
`3
d

.

These numbers are tabulated in Sections 7.3 and 7.4. In the particular case
of the all equal masses case ξ1 = ξ2 = ξ3 = 1, the mirror map gives (see
Section 7.4)

(1.7) Q̂ = −q
∏
n≥1

(1− qn)nδ(n); δ(n) := (−1)n−1

(
−3

n

)
,

where
(−3
n

)
= 0, 1,−1 for n ≡ 0, 1, 2 mod 3. The modularity of the family

of sunset elliptic curves allows us to relates the sum of elliptic dilogarithms
in q of [BV] to the Gromov-Witten expansion in Q̂, and implies the Leg-
endre transform relation (1.5). Stienstra has already noticed in [St1, St2]
the similarity between the mirror symmetry transformation in (1.7) and the
ones between A-models of local Calabi-Yau and dimer models [ORV] for
the topological vertex description of the B-model [AKMV, ADKMV]. The-
orem 3.5 of [KOS] shows that the partition function of the dimer model is
the Mahler measure of the Laurent polynomial defining the local Calabi-Yau
model. In [St2] Stienstra constructed a dimer model associated to the all
equal masses sunset elliptic curve ξ1 = ξ2 = ξ3 = 1. In the case of unequal
masses there is no modularity, and it is surprising that an analytic contin-
uation of a sum of elliptic dilogarithms displays such relation to the local
Gromov-Witten prepotential.

Special type of Feynman integrals for topological strings have been used
to compute the local Gromov-Witten prepotential [Hor]. But our analysis
leads to a different kind of result, firstly because the sunset Feynman inte-
gral is the Legendre transform (1.5) of the local Gromov-Witten prepotential,
secondly because this Feynman graph is not obviously associated to world-
sheet graphs of a topological string. Our results extend to the three-loop
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Local mirror symmetry and the sunset Feynman integral 1379

banana graph and the four-loop banana graph, leading to 4-fold and 5-folds
Calabi-Yau respectively (cf. Section 5 of [DK]). The strong similarity of our
analysis with the dimer models suggests that one could expect more con-
nection between Gromov-Witten prepotential and (massive) quantum field
theory Feynman integrals. We expect that this approach to Feynman inte-
grals can shed some new light on the relation to string theory along the lines
of the results of [ABBF].

2. Plan of the paper

The plan of the paper is the following. In Part II, we analyse the sunset
Feynman integral (1.1). In Section 3.1 we describe the geometry of the sunset
family of elliptic curve and in Section 3.2 derive the Picard-Fuchs equation
following Griffiths’s approach in [Gri] for deriving the Picard-Fuchs equation
from the cohomology of smooth projective hyperspace defined by rational
form in P2. In Section 3.3 we derive the expression (1.2) of the sunset integral
in terms of elliptic dilogarithm. In Section 3.3.1 we show how to reproduce
the all equal masses result of [BV] and Section 3.3.2 contains numerical
verification of the three different masses case. We give a proof of these results
using a motivic approach in Section 4.

Part III of the paper deals with the mirror symmetry construction. In
Section 5 we describe the degeneration from a compact Calabi-Yau 3-fold X
to the local Hori-Vafa model Y, and show in Theorem 5.3 that the third ho-
mology of Y matches the invariant part of the limiting mixed Hodge structure
of H3(X). In Section 6 we describe the variation of Hodge structure arising
on the A-model obtained by considering the Batyrev mirror of X. By com-
paring the limiting mixed Hodge structures of the A-model and B-model,
we prove in Theorem 6.1 a strong form of local mirror symmetry – equality
of variations of Q-mixed Hodge structure. The particular case of the sunset
integral is discussed in Section 7.

In the appendix A we recall the main properties of Jacobi theta functions,
and in the appendix B we give the detailed coefficients entering the derivation
of the Picard-Fuchs equation in Section 3.2.
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Part II. The elliptic dilogarithm

3. The sunset Feynman integral

The sunset Feynman integral is

(3.1) I�(s) = −s
ˆ

∆
Ω�(s) .

where the domain of integration is

(3.2) ∆ = {(x, y, z) ∈ P2|x, y, z ≥ 0} ,

and

(3.3) Ω�(s) :=
xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

xyz (1− sφ�)
.

where we have set

(3.4) φ� = (ξ2
1x+ ξ2

2y + ξ2
3z)(x

−1 + y−1 + z−1) .

Where ξi = mi/µ for i = 1, 2, 3 are non-vanishing positive real numbers given
by the ratio of the internal masses parameters mi and an infrared scale
µ. In this work we assume that none of the masses vanish. As function of
1/s := K2/µ2 the integral is a multivalued function on the complex plane
minus a line C\[(ξ1 + ξ2 + ξ3)2,+∞[.

In this first part of the paper we show that this integral is an elliptic
dilogarithm. We give to derivations on by a direct computation and second
one based a motivic analysis.

3.1. The sunset open elliptic curve

For generic values of the parameters the polar part of Ω�(s) defines an open
with marked points elliptic curve

(3.5) E� :=
{
xyz − s(ξ2

1x+ ξ2
2y + ξ2

3z)(xy + xz + yz) = 0|(x, y, z) ∈ P2
}
.
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The discriminant is

(3.6) ∆ = 16 s−6M2
6

4∏
i=1

(1− sµ2
i ) ,

and the J-invariant is

(3.7) J = −
(
∏4
i=1(1− sµ2

i ) + 16s3
∏3
i=1 ξ

2
i )3

s6M2
6

∏4
i=1(1− sµ2

i )
,

with

µ1 := −ξ1 + ξ2 + ξ3, µ2 := ξ1 − ξ2 + ξ3,

µ3 := ξ1 + ξ2 − ξ3, µ4 := ξ1 + ξ2 + ξ3 ,(3.8)

and

(3.9) M2 := ξ2
1 + ξ2

2 + ξ2
3 , M4 := ξ2

1ξ
2
2 + ξ2

1ξ
2
3 + ξ2

2ξ
2
3 , M6 := ξ2

1ξ
2
2ξ

2
3 .

For generic values of the masses ξ1 6= ξ2 6= ξ3 there are six singular fibers:
at s = 0 of type I6, at s =∞ of type I2 and for 1 ≤ i ≤ 4 at s−1 = µi of
type I1.

We recall that for the all equal masses case ξ1 = ξ2 = ξ3 = 1 there are
only four singular fibers of type I2 for s =∞, I3 for s = 1, I9 for s = 1/9
and I6 for s = 0 [BV].

If we introduce the Hauptmodul u

(3.10) u :=
(1− sM2)2 − 4s2M4√

16s3M6

,

the J-invariant takes the form

(3.11) J := 256
(3− u2)3

4− u2
.

We introduce q = exp(2πiτ) with τ = $c/$r the ratio of the complex
period $c and period $r is the real period on the real axis s > (ξ1 + ξ2 +
ξ3)−2. We assume that $c has a positive imaginary part so that |q| < 1 and
τ is in the upper half-plane.

From the usual parametrization of the J-invariant in terms of theta-
functions (see Appendix A) we deduce that the Hauptmodul u is given by
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the three roots

(3.12) ua,b ∈
{
u3,4 =

θ4
3 + θ4

4

θ2
3θ

2
4

, u2,3 = −θ
4
3 + θ4

2

θ2
3θ

2
2

, u2,4 = i
θ4

2 − θ4
4

θ2
2θ

2
4

}
.

The action of SL(2,Z) leaves invariant the J-invariant but rotates the three
roots. The subgroup Γ of SL(2,Z) generated by τ → τ + 2 and τ → τ/(1−
2τ) (see [Chand])

(3.13) Γ =

{(
a b
c d

)
∈ SL(2,Z)|

(
a b
c d

)
=

(
1 0
0 1

)
mod 2

}
,

leaves invariant the square of each individual roots u2
a,b for given a, b.

For each pair (a, b) labelling the Hauptmodul in (3.12) the real period $r

is then given in terms of the theta constants (see Appendix A for definitions
and conventions)

(3.14) $r = π
θa θb

(s−1M6)
1

4

.

3.1.1. The points. The intersection of the elliptic curve and the domain
of integration ∆ are the three points

(3.15) ∂∆ ∩ E� = {P1 = [1, 0, 0], P2 = [0, 1, 0], P3 = [0, 0, 1]} .

We will consider as well the other three points

(3.16) Q1 = [0,−ξ2
3 , ξ

2
2 ], Q2 = [−ξ2

3 , 0, ξ
2
1 ], Q3 = [−ξ2

2 , ξ
2
1 , 0] ,

arising from the intersection of the sunset elliptic curve and the lines defining
the domain of integration ∆.

In order to map these points to E� ' C×/qZ where C× is the multiplica-
tive group of non-zero complex numbers, we use the following Weierstrass
model for the sunset elliptic curve

(3.17) ζ2η = σ (s−1M6η
2 + u

√
s−1M6 ση + σ2) .

For any choice of (a, b, c) = (3, 4, 2), (2, 3, 4), (2, 4, 3), a point on the el-
liptic curve with coordinates P = [σ, ζ, η] and η 6= 0 is parametrized by3

3We would like to thank Don Zagier for explaining how to perform this reduc-
tion, and for providing the key identities.
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σ

η
=
√
s−1M6 (Λa(x))2

ζ

η
= (s−1M6)

3

4 Λa(x)Ma,b,c(x) ,(3.18)

where x ∈ C×/qZ and Λa(x) and Ma,b,c(x) are expressed in terms of the
Jacobi theta functions defined in Appendix A

Λa(z) :=
θ1(x)

θa(x)

Ma,b,c(z) :=
θ2
c

θaθb

θa(x)θb(z)

(θc(x))2
,(3.19)

that satisfy the relation

(3.20) (Ma,b,c(x))2 = (Λc(x))4 + ua,b (Λc(x))2 + 1

which is consequence of the Jacobi relations in (A.5) and in (A.6).

The differences of Pij := Pi − Pj are mapped to

P2,1 =

[
ξ2

1ξ
2
2 ,−

ξ2
1ξ

2
2

2
(t− ξ2

1 − ξ2
2 + ξ2

3), 1

]
(3.21)

P3,2 =

[
ξ2

2ξ
2
3 ,−

ξ2
2ξ

2
3

2
(t+ ξ2

1 − ξ2
2 − ξ2

3), 1

]
(3.22)

P1,3 =

[
ξ2

1ξ
2
3 ,−

ξ2
1ξ

2
3

2
(t− ξ2

1 + ξ2
2 − ξ2

3), 1

]
,(3.23)

that implies that for (i, j, k) a permutation of (1, 2, 3) and c = 2, 3, 4

(3.24)
(
θ1(x(Pij))

θc(x(Pij))

)2

=
ξk
√
s−1

ξiξj

The differences Qij := Qi − Pj are mapped to

Q3,2 =

[
ξ2

1t,
ξ2

1t

2
(s−1 + ξ2

1 − ξ2
2 − ξ2

3), 1

]
(3.25)

Q1,3 =

[
ξ2

2t,
ξ2

2t

2
(s−1 − ξ2

1 + ξ2
2 − ξ2

3), 1

]
(3.26)

Q2,1 =

[
ξ2

3t,
ξ2

3t

2
(s−1 − ξ2

1 − ξ2
2 + ξ2

3), 1

]
.(3.27)
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We then deduce that for (i, j, k) a permutation of (1, 2, 3) and c = 2, 3, 4

(3.28)
(
θ1(x(Qij))

θc(x(Qij))

)2

=
ξiξj√
s−1ξk

.

Using that θ1(−x) = θ2(x) and θ3(−x) = θ4(x), we find that x(Qij) =
−x(Pij) for i = 1, 2, 3. Implying that for i = 1, 2, 3 we have x(Pi)/x(Qi) =
−1 ∈ C×/qZ, which shows that the divisors Qi − Pi are of torsion two. This
will play an important role when evaluating the elliptic dilogarithm in sec-
tion 3.3.

3.2. Derivation of the Picard-Fuchs equation

For completeness we give a short and explicit derivation of the differential
equation satisfied by the sunset integral

(3.29) L�

(
−1

s
I�(s)

)
= S�(s)

where L� is the Picard-Fuchs operator (with δs := sd/ds)

(3.30) L� = δ2
s + q1(s) δs + q0(s)

and S�(s) is the inhomogeneous term composed by the sum of the Yukawa
coupling Y�(s) and logarithmic contributions in the masses

(3.31) S�(s) = Y�(s) +

3∑
i=1

ci(s) log(ξ2
i ) .

The logarithms terms arises from the Kummer quotient extension of the
motive described in section 4 and in proposition 7.2.

This differential equation has already been derived in [RT, MSWZ]. We
follow Griffiths’ approach in [Gri] for deriving the Picard-Fuchs equation
from the cohomology of smooth projective hyperspace defined by rational
form in P2.

The action of the Picard-Fuchs operator on Ω�(s) is

(3.32) L�Ω�(s) =

(
2(xyz)2

Φ3
�
− (3− q1(s))xyz

Φ2
�

+
1− q1(s) + q0(s)

Φ�

)
Ω

with Ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy and where we have set Φ� =
xyz(1− sφ�).
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For Cx, Cy, Cz homogeneous polynomials of degree 4 in (x, y, z) the one-
form

(3.33) β1 =
yCz − zCy

Φ2
�

dx+
zCx − xCz

Φ2
�

dy +
xCy − yCx

Φ2
�

dz

satisfies4

(3.36) dβ1 = −2
(Cx∂x + Cy∂y + Cz∂z)Φ�

Φ3
�

Ω +
∂xCx + ∂yCy + ∂zCz

Φ2
�

Ω .

By choosing the polynomials Cx, Cy and Cz such that

(3.37) (xyz)2 = −(Cx∂x + Cy∂y + Cz∂z)Φ�

then

(3.38)
2(xyz)2

Φ3
�

Ω = −∂xCx + ∂yCy + ∂zCz
Φ2
�

Ω + dβ1 .

The expressions of the polynomials Cx, Cy, Cz are given in Appendix B. We
choose the coefficient q1(s) so that
(3.39)

(∂xCx + ∂yCy + ∂zCz) + (3− q1(s))xyz = (C̃x∂x + C̃y∂y + C̃z∂z) Φ�

where C̃x, C̃y, C̃z are at homogeneous polynomial of degree one in (x, y, z),
which detailed expressions are given in Appendix B. We find that q1(s) is
given by

(3.40) q1(s) = 2 +

4∑
i=1

1

µ2
i s− 1

− 2sM2 − 6

s2
∏4
i=1 µi − 2sM2 + 3

.

4In general if deg(Ci) = 3k − 2 with i = x, y, z the one-form

(3.34) β =
yCz − zCy

Φk
�

dx+
zCx − xCz

Φk
�

dy +
xCy − yCx

Φk
�

dz

satisfies

(3.35) dβ = −k (Cx∂x + Cy∂y + Cz∂z)Φ�

Φk+1
�

Ω +
∂xCx + ∂yCy + ∂zCz

Φk
�

Ω .
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The one-form

(3.41) β2 =
yC̃z − zC̃y

Φ�
dx+

zC̃x − xC̃z
Φ�

dy +
xC̃y − yC̃x

Φ�
dz ,

satisfies

dβ2 = −∂xCx + ∂yCy + ∂zCz + (3− q1(s))xyz

Φ2
�

Ω(3.42)

+
∂xC̃x + ∂yC̃y + ∂zC̃z

Φ�
Ω .

Finally choosing q0(s) such that

(3.43) q0(s) = −1 + q1(s) + ∂xC̃x + ∂yC̃y + ∂zC̃z

leads to

(3.44) L�Ω�(s) = d(β1 + β2) .

The expression for q0(s) is (see (3.9) for the definitions of M2, M4 and
M6)

q0(s) = − n0

(s2
∏4
i=1 µi − 2sM2 + 3)

∏4
i=1(µ2

i s− 1)

n0 = −µ3
1µ

3
2µ

3
3µ

3
4s

6(3.45)
+ s5µ1µ2µ3µ4

(
−3M3

2 + 12M2M4 + 12M6

)
+ s4

(
−18M4

2 + 108M2
2M4 − 120M2M6 − 144M2

4

)
+ s3

(
26M3

2 − 96M2M4 + 324M6

)
+ s2

(
24M4 − 15M2

2

)
+ 3M2s .

Acting with the Picard-Fuchs operator on the sunset integral gives

(3.46) S�(s) =

ˆ
∆
L�Ω� =

ˆ
∆
dβ ,

with β = β1 + β2 = βxdx+ βydy + βzdz.
For evaluating this integral we consider the blow-up ∆̃ of the domain of

integration ∆ = {[x : y : z] ∈ P2|x, y, z ≥ 0}, by putting a sphere of radius
ε > 0 around each of the points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1].
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Integration by part gives the boundary contributions

S�(s) = lim
ε→0

ˆ
∂∆̃|x=0

(βydy + βzdz)(3.47)

+ lim
ε→0

ˆ
∂∆̃|y=0

(βxdx+ βzdz)

+ lim
ε→0

ˆ
∂∆̃|z=0

(βxdx+ βydy) .

Where ∂∆̃|x=0 denote the boundary of the blown-up domain ∆̃ restricted to
the plane x = 0. Setting ζ = y/z in the first integral, setting ζ = z/x in the
second integral and ζ = x/y in the last integral we obtain

(3.48) S�(s) = lim
ε→0

ˆ 1

ε

ε
(zβy + xβz + yβx) dζ .

With zβy = (a1 + b1ζ)/(ζ (ξ2
3 + ξ2

2ζ)) and yβx = −(b1 + b2ζ)/(ζ(ξ2
2 + ξ2

1ζ))
and xβz = (−ξ2

1b2/2 + b3ζ − ξ2
3a1/2ζ

2)/(ζ(ξ2
1 + ξ2

3ζ)2) where a1, b1, b2, b3 are
polynomials in s reading

a1 = 4(ξ2
1 − ξ2

2)ξ2
3s
(

3− 3s
(
3ξ2

1 + 3ξ2
2 − 7ξ2

3

)
+ s2

(
9ξ4

1 − 10ξ2
1ξ

2
2 − 14ξ2

1ξ
2
3 + 9ξ4

2 − 14ξ2
2ξ

2
3 + 5ξ4

3

)
− 3s3µ1µ2µ3µ4

(
ξ2

1 + ξ2
2 − ξ2

3

) )
,

and b1 is obtained from a1 by exchanging ξ2 and ξ3, the coefficient b2 is
obtained from a1 by exchanging ξ1 and ξ3, and finally

b3 = 6ξ2
1ξ

2
3

(
9− s

(
13ξ2

1 + 10ξ2
2 + 13ξ2

3

)
+ s2

(
ξ4

1 + 27ξ2
1ξ

2
2 + 6ξ2

1ξ
2
3 − 8ξ4

2 + 27ξ2
2ξ

2
3 + ξ4

3

)
+ s3(ξ6

1 + 4ξ4
1ξ

2
2 − ξ4

1ξ
2
3 − 15ξ2

1ξ
4
2 − 24ξ2

1ξ
2
2ξ

2
3

− ξ2
1ξ

4
3 + 10ξ6

2 − 15ξ4
2ξ

2
3 + 4ξ2

2ξ
4
3 + ξ6

3)

+ s4µ1µ2µ3µ4

(
2ξ4

1 − ξ2
1ξ

2
2 − 4ξ2

1ξ
2
3 − ξ4

2 − ξ2
2ξ

2
3 + 2ξ4

3

) )
.

The integral has a finite limit when ε→ 0 given by

(3.49) S�(s) = Y�(s)−
2s
∑3

i=1 log(ξ2
i ) ci(s)∏4

i=1(sµ2
i − 1)(s2

∏4
i=1 µi + 2sM2 − 3)
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where the Yukawa coupling is given by5

(3.50) Y�(s) = 2
s2
∏4
i=1 µi − 2sM2 + 3∏4
i=1(µ2

i s− 1)
.

The coefficients satisfy c1(s) + c2(u) + c3(s) = 0 and are given by

c1(s) = −2ξ2
1 + ξ2

2 + ξ2
3(3.51)

+ s
(
6ξ4

1 − 7ξ2
1ξ

2
2 − 3ξ4

2 − 7ξ2
1ξ

2
3 + 14ξ2

2ξ
2
3 − 3ξ4

3

)
+ s2

(
− 6ξ6

1 + 11ξ4
1ξ

2
2 − 8ξ2

1xi
4
2 + 3ξ6

2 + 11ξ4
1ξ

2
3

− 3ξ4
2ξ

2
3 − 8ξ2

1ξ
4
3 − 3ξ2

2ξ
4
3 + 3ξ6

3

)
− s3µ1µ2µ3µ4

(
2ξ4

1 − ξ2
1ξ

2
2 − ξ4

2 − ξ2
1ξ

2
3 + 2ξ2

2ξ
2
3 − ξ4

3

)
and c2(s) is obtained from c1(s) by exchanging ξ1 and ξ2

c2(s) = ξ2
1 − 2ξ2

2 + ξ2
3(3.52)

+ s
(
6ξ4

2 − 7ξ2
1ξ

2
2 − 3ξ4

1 − 7ξ2
2ξ

2
3 + 14ξ2

1ξ
2
3 − 3ξ4

3

)
+ s2

(
− 6ξ6

2 + 11ξ4
2ξ

2
1 − 8ξ2

2xi
4
1 + 3ξ6

1 + 11ξ4
2ξ

2
3

− 3ξ4
1ξ

2
3 − 8ξ2

2ξ
4
3 − 3ξ2

1ξ
4
3 + 3ξ6

3

)
− s3µ1µ2µ3µ4(2ξ4

2 − ξ2
1ξ

2
2 − ξ4

1 − ξ2
2ξ

2
3 + 2ξ2

1ξ
2
3 − ξ4

3) .

Remark 3.1. In the all equal masses case ξ1 = ξ2 = ξ3 = 1 we immediately
have that yβz = 0 and yβx = 0 and

(3.53) xβy =
36

(s− 1)(9s− 1)(1 + ζ)2

leading to S�(s) = 6/((9s− 1)(s− 1)) which is the Yukawa coupling Y�(s).
The Picard-Fuchs operator reads (with δs := sd/ds)

(3.54) L� = δ2
s +

2s(9s− 5)

(s− 1)(9s− 1)
δs +

3s(3s− 1)

(s− 1)(9s− 1)
.

The sunset integral satisfies the differential equation

(3.55) L�

(
−1

s
I�(s)

)
=

6

(9s− 1)(s− 1)
,

5 By construction the Wronskian of the Picard-Fuchs operator is W�(s) =
s−1 Y�.
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which is equivalent to

(3.56) s(9s− 1)(s− 1)
d2I�(s)

ds2
+ (9s2 − 1)

dI�(s)

ds
+

1− 3s

s
I�(s) = −6 .

This differential equation has been presented in the following matrix form
in [Hennb, eq. (4.13)]

(3.57)
d

ds
~f(s) =

A0

s
+

A1

s− 1
+

A9

9s− 1
.

The poles are located at the singular fibers of the sunset elliptic curves family.
The residues are the monodromy matrices A0, A1 and A9 which are indepen-
dent of s. These squared matrices have size three which equal the (generic)
rank of the all equal masses sunset motive [BV]. This first order equation
arises from the flat Gauß-Manin connection for the coherent analytic sheaf
for which the section σ̃ leads to sunset Feynman integral according (4.2) as
proven in lemma 6.21 of [BV] for the all equal masses case.

3.3. The elliptic dilogarithm

For s ∈](ξ1 + ξ2 + ξ3)−2,+∞[ we provide an expression of the sunset integral
I�(s) in (3.1) in term of the elliptic dilogarithms. A derivation via motives
will given in section 4.

We start by considering the ratio of the coordinates on the sunset cubic
curve as functions on C×/qZ

X

Z
(x) =

θ1(x/x(Q1))θ1(x/x(P3))

θ1(x/x(P1))θ1(x/x(Q3))

Y

Z
(x) =

θ1(x/x(Q2))θ1(x/x(P3))

θ1(x/x(P2))θ1(x/x(Q3))
.(3.58)

where x(P ) is the representation of the point P in E� ' C×/qZ using the
map of section 3.1.1, and θ1(x) is the Jacobi theta function

(3.59) θ1(x) = q
1

8
x1/2 − x−1/2

i

∏
n≥1

(1− qn)(1− qnx)(1− qn/x) .

We evaluate the integral

(3.60) F (x) = −
ˆ x

x0

log

(
X

Z
(y)

)
d log y
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where x0 is an arbitrary origin that will cancel in the final answer. We find

F (x) = F (x0) + E2(x/x(P1)) + E2(x/x(Q3))(3.61)
− E2(x/x(P3))− E2(x/x(Q1))

where E2(x) is the elliptic dilogarithm

(3.62) E2(x) =
∑
n≥0

Li2 (qnx)−
∑
n≥1

Li2 (qn/x) +
1

4
(log(x))2 − iπ log(x)

Using the 2-torsion relations x(Qi) = −x(Pi) for i = 1, 2, 3 we can rewrite
F (x) as

(3.63) F (x) = Ê2(x/x(P1))− Ê2(x/x(P3)) +
iπ

2
log

(
x(P1)

x(P3)

)
+ F (x0) ,

where

Ê2(x) =
∑
n≥0

(Li2 (qnx)− Li2 (−qnx))(3.64)

−
∑
n≥1

(Li2 (qn/x)− Li2 (−qn/x)) .

With this we can evaluate on the zero or poles of Y/Z

(3.65) L2

{
X

Z
,
Y

Z

}
= F (x(P3)) + F (x(Q2))− F (x(P2))− F (x(Q3)) .

The origin of the integral F (x0) has cancelled in the expression. Using the
expression for F (x) in (3.63) one gets

L2

{
X

Z
,
Y

Z

}
= Ê2

(
−x(P2)

x(P1)

)
− Ê2

(
x(P2)

x(P1)

)
+ Ê2

(
x(P2)

x(P3)

)
(3.66)

− Ê2

(
−x(P2)

x(P3)

)
+ Ê2

(
x(P3)

x(P1)

)
− Ê2

(
−x(P3)

x(P1)

)
+ Ê2(−1)− Ê2(1) .

Noticing the following properties of the function Ê2(x)

Ê2(−x) = −Ê2(x)(3.67)

Ê2(1/x) = −Ê2(x) + Li2 (x)− Li2 (−x) + Li2
(

1

x

)
− Li2

(
−1

x

)
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together with the dilogarithm functional equation

(3.68) Li2 (x) + Li2 (1/x) = −π
2

6
− 1

2
log(−x)2

we can reduce the expression for L2{X/Z, Y/Z} to

L2

{
X

Z
,
Y

Z

}
= 2Ê2

(
x(P1)

x(P2)

)
+ 2Ê2

(
x(P2)

x(P3)

)
+ 2Ê2

(
x(P3)

x(P1)

)
(3.69)

+
π2

4
− iπ log

(
x(P1)

x(P2)

)
.

The elliptic dilogarithm Ê2(x) is not invariant under q-translation and trans-
forms according

Ê2(qx) = Ê2(x)− π2

2
+ iπ log(x)(3.70)

Ê2(x/q) = Ê2(x) +
π2

2
− iπ log(x/q) .(3.71)

This is because the Feynman integral we are studying is a multivalued func-
tion. Shifting the representative x(P ) of the point P in C×/qZ changes
the expression for L2

{
X
Z ,

Y
Z

}
modulo iπ log q, iπ log(x(P1)), iπ log(x(P2))

or iπ log(x(P3)).
In order to fix this ambiguity we symmetrize the computation by sum-

ming other all the other choices to get

L2 := L2

{
X

Z
,
Y

Z

}
+ L2

{
X

Y
,
Z

Y

}
+ L2

{
Y

X
,
Z

X

}
(3.72)

= 6Ê2

(
x(P1)

x(P2)

)
+ 6Ê2

(
x(P2)

x(P3)

)
+ 6Ê2

(
x(P3)

x(P1)

)
+

3π2

4
.

3.3.1. The all equal masses case . It was shown in [BV] that the all
equal masses case ξ1 = ξ2 = ξ3 = 1 sunset integral is given by

(3.73) I�(s�(q)) =
$r

π

(
iπ2 (1− 2τ) + E�(q)

)
where q = exp(2πiτ) with τ = $c/$r the period ratio and s� is the Haupt-
modul

(3.74) s�(q)−1 = 9 + 72
η(q2)

η(q3)

(
η(q6)

η(q)

)5
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and E�(q) is the elliptic dilogarithm evaluated that the sixth root of unity
ζ6 = e

iπ

3

E�(q) =
1

2i

∑
n≥1

(
Li2 (qnζ6) + Li2

(
qnζ2

6

)
− Li2(qnζ4

6 )− Li2
(
qnζ5

6

))
(3.75)

+
1

4i

(
Li2 (ζ6) + Li2(ζ2

6 )− Li2
(
ζ4

6

)
− Li2

(
ζ5

6

))
.

Noticing that

(3.76) 2iE�(q) = Ê2(ζ2
6 ) + ζ(2)

and since when all the masses are equal the image in C×/qZ of the points
x(Pi) = ζi6 with i = 1, 2, 3, we have

(3.77) L2

{
X

Z
,
Y

Z

}
= 2iE�(q) +

11π2

3
.

Showing that the all equal masses sunset integral is equal to the regula-
tor (3.77) modulo periods of the elliptic curves

(3.78) I� ≡
$r

2πi
L2

{
X

Z
,
Y

Z

}
mod periods .

3.3.2. Three masses case. In the three masses case the sunset integral
in (3.1) is given by
(3.79)

I�(s) ≡ i$r

π

(
Ê2

(
x(P1)

x(P2)

)
+ Ê2

(
x(P2)

x(P3)

)
+ Ê2

(
x(P3)

x(P1)

))
mod periods

An expression in terms of multiple polylogarithms has been presented in
[ABW2, ABW3, ABW4, ABW5]. It would be interesting to relate these
results.

A proof is given in section 4 using a motivic approach. In this section we
present numerical verification of this expression for the sunset integral.

According (3.70) the elliptic dilogarithm Ê2(x) is not invariant under the
change x(Pi)→ qx(Pi) therefore the expression in (3.79) shifts by iπ log q.
Therefore by changing the representative of P1, P2 and P3 in C×/qZ one can
change the coefficients of the periods of the elliptic curve freely.

3.3.3. Numerical checks. We have made some numerical checks (see
table 1 on page 1393) of this relation using PARI/GP [Pari]. For given values
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of the masses and s we have searched for an integer linear dependence of the
vector

(3.80) v =

[
I�(s)− i

$r

π
L2

{
X

Z
,
Y

Z

}
, iπ$r, iπ$c

]
using the lindep command of PARI/GP. The vector is composed of the sunset
integral evaluated using the Bessel integral representation [GKPa, BBDG,
GKPb, Va]

(3.81) I�(s) =

ˆ ∞
0

4xI0(
√
s−1x)

3∏
i=1

K0(ξix) dx ,

the regulator evaluated as

(3.82) L2

{
X

Z
,
Y

Z

}
= Ê2 (x12) + Ê2 (x23) + Ê2 (x31)

where xij = x(Pi)/x(Pj) in C×/qZ. Since we can easily follow the change of
the expression under a q-translation of the points, we have made some choices
such that the relation between the sunset integral and the regulator is modulo
periods of the elliptic curves with simple rational coefficients, keeping the
relation x12x23x31 = 1. For instance in table 1 for the case (ξ1, ξ2, ξ3, s

−1) =
(1, 2, 3, 3), we show how the q-translations (x12, x31)→ (qx12, x31/q) affect
the result modulo periods of the elliptic curve.

ξ1, ξ2, ξ3, s
−1 x21 x32 q lindep(v) prec

1, 2, 8, 2 −0.00931124 + 0.0160094i 4.87147− 5.50124i 0.136089 [4, 3,−8] 2 10−36

1, 2, 8, 6 −0.00640431 + 0.00671999i 6.17736− 8.34052i 0.0963482 [4, 3,−8] 2 10−36

1, 2, 3, 2 0.0733690− 0.108597i 0.797236− 0.603668i −0.131059 [4, 1, 0] 6 10−37

1, 2, 3, 2 −0.00961565 + 0.0142326i −6.08304 + 4.60608i −0.131059 [4,−5, 8] 6 10−37

1, 2, 3, 3 −0.723282− 0.690553i −0.145143− 0.107284i −0.180489 [4, 3,−8] 5 10−37

1, 5, 7, 3 −0.481821 + 0.876270i −0.0416592 + 0.0163910i −0.0447678 [4,−5, 8] 10−37

1, 5, 7, 7 −0.766655 + 0.642059i −7.08429 + 2.58610i −0.132599 [4,−5, 8] 7 10−38

3, 5, 7, 3 0.199999 + 0.979796i −6.29720 + 3.35123i −0.140185 [4,−5, 8] 7 10−38

3, 5, 7, 7 −0.199528 + 0.979892i −5.76891 + 4.08260i −0.141495 [4,−5, 8] 5 10−38

Table 1: Results of linear dependence of vector v defined in (3.80) using the
PARI/GP command lindep(v). The last column gives the absolute value for
the numerical evaluation linear relations.
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4. Approach via Motives

The purpose of this section is to prove formula (3.79) for the sunset Feyn-
man integral in two dimensions with arbitrary masses. This is a beautiful
illustration how the theory of motives can yield information about Feynman
integrals. With an eye toward future applications, we will permit ourselves
to say a bit more than what is strictly necessary for the sunset case.

We fix masses and external momenta and just write E for the resulting
elliptic curve, which is an element in the family (3.5). We have E ↪→ P2

with homogeneous coordinates X,Y, Z, and E meets the coordinate triangle
XY Z = 0 in a set S of 6 points, S := {P1, P2, P3, Q1, Q2, Q3}. Let E0 :=
E − S. Following [BV, §6], let ρ : P → P2 be the blowup of the vertices of
the coordinate triangle, and let h ⊂ P be the resulting hexagon. We can lift
E ↪→ P and write h0 = h− E ∩ h.

Let σ ⊂ P2(R) be the positive real simplex which is the chain of integra-
tion for the Feynman integral. for general values of external momenta, σ will
not meet E, and we can lift to σ̃ ⊂ P − E. We have ∂σ̃ ⊂ h0, so

(4.1) σ̃ ∈ H2(P − E, h0;Q) = H2(P − E, h0;Q)∨.

The form Ω�, (3.3), represents a class in F 2H2(P − E, h0;C), and the Feyn-
man integral

(4.2) I� = 〈Ω�, σ̃〉.

The idea is to interpret I� as a quantity intrinsic to the Hodge structure
H2(P − E, h0;Q) together with the choice of Ω�. That way, whenever we
see the Hodge structure (and we will see it in two other guises below) we can
be sure that the sunset Feynman integral I� is involved.

To begin, we can invoke [BKV], lemma 6.1.4 to get

(4.3) H2(P − E, h0;Q) = H2(P − E, h0;Q)∨ ∼= H2(G2
m, E

0;Q(2)).

Here we identify

(4.4) G2
m = P2 − {XY Z = 0} = P − h.

We consider the long-exact sequence of Hodge structures

H1(G2
m,Q(2))

α−→ H1(E0,Q(2))→ H2(G2
m, E

0;Q(2))(4.5)
→ H2(G2

m,Q(2))→ 0.
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The image of α above is spanned by the logarithmic classes

d log(X/Z), d log(Y/Z).

We can avoid these by replacing G2
m by the relative space (Gm, {1})2. One

has

(4.6) H i((Gm, {1})n,Q) =

{
0 i 6= n

Q(−n) i = n

We now build a diagram

(4.7)

0 −→ H1(E0,Q(2)) −→H2((Gm, {1})2, E0;Q(2)) −→Q(0) −→0y ya ∥∥∥
0 −→H1(E0,Q(2))/Im(α) −→ H2(G2

m, E
0;Q(2)) −→Q(0) −→0

where the bottom line comes from truncating (4.5).
We are interested in the extensions of Hodge structures associated to

these sequences. Since the sequence on the bottom comes by pushout, it
will suffice to consider the top line. We consider splittings sQ ∈
H2((Gm, {1})2, E0;Q(2)) and sF ∈ F 0H2((Gm, {1})2, E0;C(2)) lifting 1 ∈
Q(0). The obstruction to splitting the sequence of Hodge structures (4.7) is

(4.8) sQ − sF ∈ H1(E0,C(2))/H1(E0,Q(2))

We can choose sQ so its image in H2(G2
m, E

0;Q(2)) coincides with σ̃ under
the identification (4.3). Indeed, the boundary ∂σ̃ = 1 ∈ H1(h0) ∼= Q(0). Also,
in (4.7) the dual to the map labeled a induces an isomorphism on F 2. (This
is because Im(α)∨ = Q(−1)2 and F 2C(−1) = (0).) In particular, Ω� lifts
canonically to an element

Ω ∈ F 2H2((Gm, {1})2, E0;C(2))∨.

Note that this element is orthogonal to F−1H2((Gm, {1})2, E0;C(2)) so in
particular it kills sF ∈ F 0 ⊂ F−1. We conclude

(4.9) I� = 〈Ω�, σ̃〉 = 〈Ω, sQ − sF 〉.
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Our objective now is to reinterpret I� in terms of elliptic dilogarithms.
Let � := P1 − {1} and write ∂� = {0,∞}. Poincaré duality yields an iden-
tification

(4.10) H∗((�, ∂�)n) ∼= H2n−∗((Gm, 1)n)(n)∨ ∼=

{
Z(0) ∗ = n

0 else.

Let Γ0 ⊂ E0 ×G2
m be the graph of the embedding E0 ↪→ G2

m. Note that
Γ0 is actually closed in E0 × (P1)2 and we may intersect to get a closed
codimension 2 cycle which we also call Γ0 on X × (P1 − {1})2. This cycle
doesn’t meet the loci where coordinates ∈ {0,∞}. The Gysin sequence yields

(4.11)

0 −→H3(E0 × (�, ∂�)2)(2) −→H3(E0 × (�, ∂�)2 − Γ0)(2) −→Z(0) −→ 0∥∥∥
H1(E0)(2)

Lemma 4.1. The sequence (4.11) and the top row of (4.7) agree as exten-
sions of Hodge structure.

Proof. Note that we can generalize the top row of (4.7) to an extension

(4.12) 0→ Hn−1(X)(n)→ Hn((Gm, {1})n, X)(n)→ Q(0)→ 0

for any f : X → Gn
m. (To avoid technicalities, we assume in the sequel that

X is smooth). We will construct a commutative diagram

(4.13)

0 −→ Hn−1(X)(n) −→ Hn((Gm, {1})n, X)(n) −→Q(0) −→ 0y∼=
y ∥∥∥

0 −→H2n−1(X × (�, ∂�)n)(n) −→H2n−1(X × (�, ∂�)n − Γf )(n) −→ Z(0) −→ 0

We consider the universal case X = Gn
m, f = id. Let Ξ ⊂ Gn

m ×�n be
the corresponding graph. Note Ξ ∼= (Gm − {1})n. We want to understand
H∗((Gm, {1})n × (�, ∂�)n − Ξ). Consider the projection

(4.14) p : (Gm, {1})n × (�, ∂�)n − Ξ→ Gn
m.

The cohomology on the left is calculated by the sheaf S which is the constant
sheaf with fibre Q on (Gm − {1})n × (�− ∂�)n extended by 0 to Gn

m ×�n
and then restricted to the complement of Ξ. For z = (z1, . . . , zn) ∈ Gn

m we
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have

(4.15) S|p−1(z) =

{
Q�n−{z} no zi = 1

(0) some zi = 1

The cohomology along the fibres of p is thus

(4.16) H∗(S|p−1(z)) =


(0) ∗ 6= n, 2n− 1; or some zi = 1

Z(0) ∗ = n; no zi = 1

Z(−n) ∗ = 2n− 1; no zi = 1.

Using again that H∗((Gm, {1})n) = (0) for ∗ 6= n, we conclude that in the
Leray spectral sequence associated to p, (4.14), one has

(4.17) Eab2 ⇒ Ha+b((Gm, {1})n × (�, ∂�)n − Ξ)

and Eab2 = (0) unless a = n and b = n, 2n− 1. In particular,

H2n−1((Gm, {1})n × (�, ∂�)n − Ξ) = (0).

The Gysin sequence yields

0→ H0(Ξ)(−n)
gysin−−−→ H2n((Gm, {1})n × (�, ∂�)n)(4.18)
restrict−−−−−→ H2n((Gm, {1})n × (�, ∂�)n − Ξ).

Both domain and target of the map labeled gysin are Q(−n). Since this map
is injective, it is an isomorphism, so the map labeled restrict is zero.

We now have a diagram (to shorten we write B = (�, ∂�)n)
(4.19)
0 −→ H2n−1(X ×B) −→ H2n(((Gm, {1})n, X)×B) −→ H2n((Gm, {1})n ×B)y a

y 0

y
0 −→H2n−1(X ×B − Γf ) −→H2n(((Gm, {1})n, X)×B − Ξ) −→H2n((Gm, {1})n ×B − Ξ).

As a consequence of the above calculations, the map on the lower left is
injective and the vertical map on the right is zero. It follows that the vertical
map labeled a lifts to ã fitting into a diagram
(4.20)
0 −→H2n−1(X ×B) −→H2n(((Gm, {1})n, X)×B) −→ H2n((Gm, {1})n ×B) −→ 0∥∥∥ ã

y ∼=
y

0 −→H2n−1(X ×B) −→ H2n−1(X ×B − Γf )
residue−−−−→ Q(−n) −→ 0
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After twisting by Z(n) we find (4.20) coincides with (4.13), proving the
lemma. �

We can now compute I� using (4.11). We have, again by lemma 6.1.4 in
[BKV] (writing S := E − E0)

(4.21) H3(E0 × (�, ∂�)2)(2)∨ = H3((E,S)× (Gm, {1})2)(1).

We fix coordinates x, y on G2
m and a holomorphic 1-form de on E. The role

of Ω in (4.9) will be played by

(4.22) η := de ∧ dx/x ∧ dy/y ∈ F 2(H3((E,S)× (Gm, {1})2)(1)).

Let S := E − E0. A homological interpretation of the top row of (4.7) is
rather tricky. We need to define the group H3((E,S)× (Gm, {1})2,Γ;Q)
where Γ ∼= E is the complete curve. To justify this, let

(4.23) Gm − {1}
`
↪→ Gm

k
↪→ P1; E0 j

↪→ E

be the open immersions. Let f : E ↪→ E × P1 × P1 extend the graph E0 ↪→
E0 ×G2

m. The point is that the natural map over E0 extends to

(4.24) f∗(j!QE0 � k∗`!QGm−{1} � k∗`!QGm−{1})→ QE .

This is because the points on E × P1 × P1 where Γ meets ({0,∞}× P1) ∪
(P1 × {0,∞}) are contained in S × P1 × P1 so the stalks of the sheaf j!QE0 �
k∗`!QGm−{1} � k∗`!QGm−{1} are zero.

We will integrate η over a relative homology 3-chain C on E × P2. An
argument (left to the reader) similar to the above will show that C represents
a class inH3((E,S)× (Gm, {1})2,Γ;Q) and that ∂C = Γ. Define (cf. [KLM])

(4.25) C := {(e, (1− v) + vx(e), y(e)) | e ∈ E, 0 ≤ v ≤ 1}

Cut E and C along the locus Ty := {e | y(e) ≤ 0}. On the cut chain we can
write dy(e)/y(e) = d(log y(e)) and apply Stokes theorem. (More precisely, Ty
is an infinitely thin strip with two sides. The value of log y differs by 2πi at
corresponding points on the two sides of Ty, so we find

(4.26)
ˆ
C
η = 2πi

ˆ
γ

log(x)de

where γ is a 1-chain with ∂γ = (y), the divisor of y = Y/Z on E. Using (4.9)
and lemma 4.1, we deduce
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Proposition 4.2. The sunset Feynman integral

(4.27) I� = κ

ˆ
γ

log(x) · η

where κη = Ω under the identification

(4.28) F 3H3((E,S)× (Gm, {1})2,C) = F 2H3(E × (Gm, {1})2,C(1)).

Remark 4.3. Note that the 2-chain σ̃ (4.1) defines (after reinterpretation
in terms of cohomology as explained above) a splitting of the bottom row
of (4.7). This chain does not lift to yield a splitting of the top row. This is
because the chain σ meets the lines X = Z and Y = Z in P2 and so does
not represent a class in H2(P2 − E − {X = Z} − {Y = Z}). The effect of
this is to introduce some elementary log terms corresponding to periods of
d(X/Z)/(X/Z) in (3.69).

Consider one last time the top sequence from (4.7). Writing M for the
middle group in this sequence, we see that the weight-graded pieces are

(4.29) WiMQ =


H1(E,Q(2)) i = −3⊕

5 Q(1) i = −2

Q(0) i = 0.

M should be viewed as a representation of a sort of generalized graded Lie
algebra with graded pieces the above pure Hodge structures (or pure mo-
tives). The Feynman integral is a period associated to the lower lefthand
corner of the representation matrix. In trying to generalize to more com-
plicated Feynman diagrams, two problems arise. Firstly, the pieces one sees
combinatorially by shrinking edges on the graph have Hodge structures which
are themselves mixed rather than pure. And secondly, it is not possible in
general to make the intersection between the polar locus X and the simplex
at infinity transverse by simply blowing up faces of the simplex. Presumably,
therefore, the analog of the duality used above

(4.30) H2(P − E, h0)∨ ∼= H2(G2
m, E

0)(2)

is not valid in general, which means that the link between the Feynman
integral and polylogarithms is more tenuous.

Remark 4.4. In section 7, formula (4.27) is rederived in terms of regulator
currents, as a byproduct of the K-theoretic approach to the inhomogeneous
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Picard-Fuchs equation. The relationship between these currents and C (in
(4.25)) is explained in [KLM].

Part III. The local mirror symmetry

In this part we revisit the approach of [CKYZ] to local mirror symmetry, by
semi-stably degenerating a family of elliptically-fibered Calabi-Yau 3-folds
Xz0,z (defined by (5.1)) to a singular compactification of the local Hori-Vafa
3-fold

Yz := {1− s(ξ2
1x+ ξ2

2y + ξ2
3)(1 + x−1 + y−1) + uv = 0} ⊂ (C∗)2 × C2

5. B-model

In this section we describe the degeneration from a compact Calabi-Yau 3-
fold X to the local Hori-Vafa model Y (which is a noncompact Calabi-Yau
3-fold) [HV]. The main point is that the third homology of Y matches the
invariant part of the limiting mixed Hodge structure ofH3(X) (Theorem 5.3).
Comparing with the limiting mixed Hodge structure of the A-model in the
next section will allow us to deduce a strong form of local mirror symmetry
— equality of variations of Q-mixed Hodge structure — which implies the
conjecture 5.16 from [DK], see Theorem 6.1.

5.1. Laurent polynomial

Choose a reflexive polytope ∆ ⊂ R2, with polar polytope ∆◦, and write
r = |∂∆ ∩ Z2|, r◦ = |∂∆◦ ∩ Z2|, and ν (≤ r, r◦) for the common number of
edges and vertices of both ∆ and ∆◦. The toric surface associated to ∆ is
constructed from the fan on (the vertices of) ∆◦, and has canonical desin-
gularization P∆ � P̌∆ arising from the fan on all integer points of ∂∆◦.
Writing ∂∆ ∩ Z2 = {m(j)}rj=1, the general Laurent polynomial with Newton
polytope ∆ is

fa(x, y) := a0 +

r∑
j=1

ajx
m

(j)
1 ym

(j)
2

(with aj ∈ C∗). The compactification of {fa(x, y) = 0} ⊂ G2
m in P∆ yields

(for general {aj}) a smooth elliptic curve Ea.

6The numbers of section, conjecture, theorem and equations refer to the pub-
lished version of [DK].
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Jumping up two dimensions, in coordinates (x1, x2, x3, x4) = (x, y, u, v)
on G4

m, we set

(5.1) F := a + bu2v−1 + cu−1v + u−1v−1fa(x, y)

(with a, b, c ∈ C∗). Its Newton polytope

∆̂ := ∆(F ) = hull {(0, 0, 2,−1), (0, 0,−1, 1), ∆× (−1,−1)}

is reflexive since its polar

∆̂◦ = hull {(0, 0, 1, 0), (0, 0, 0, 1), 6∆◦ × (−2,−3)}

is integral. Let P̌∆̂ be the toric 4-fold associated to ∆̂ (i.e. to the fan on ∆̂◦),
and P∆̂ � P̌∆̂ a maximal projective crepant partial (MPCP) desingulariza-
tion (arising from the fan on a maximal triangulation tr(∂∆̂◦)). For general
a, b, c, a, the compactification

XF := {F = 0} ⊂ P∆̂

is a smooth Calabi-Yau 3-fold.
To describe the coordinates about the large complex structure limit in the

simplified polynomial moduli space, consider the cone L of Z≥0-relations on
the {m(j)}. If it is simplicial and smooth with basis {`(i)}r−2

i=1 , the coordinates
are

(5.2) z0 :=
a0b

2c3

a6
and zi :=

∏r
j=1 a

`
(i)
j
j

a

∑
j `

(i)
j

0

(i = 1, . . . , r − 2).

Otherwise, there are more zi’s (with relations), though z0 remains the same;
we will explain how to deal with this complication for the sunset case at the
end of the section.

What follows is a study of the degeneration of XF as z0 → 0.

5.2. Maximal projective crepant partial desingularization

P∆̂ is not unique, and for an arbitrary choice of triangulation tr(∂∆̂◦) may
have isolated terminal singularities. We shall now describe (and fix) a trian-
gulation which results in a smooth P∆̂.



i
i

“1-Bloch” — 2018/3/13 — 0:35 — page 1402 — #30 i
i

i
i

i
i

1402 S. Bloch, M. Kerr, and P. Vanhove

The integral points on ∆̂◦ are

(0, 0, 1, 0), (0, 0, 0, 1), (6∆◦)Z × (−2,−3), (4∆◦)Z × (−1,−2),

(3∆◦)Z × (−1,−1), (2∆◦)Z × (0,−1), ∆◦Z × (0, 0).

It has ν facets of the form

hull{6e◦i × (−2,−3), (0, 0, 1, 0), (0, 0, 0, 1)} =: f◦a,i

where {e◦i }νi=1 are edges of ∆◦, and two of the form

hull{6∆◦ × (−2,−3), (0, 0, 1, 0)} =: f◦b

hull{6∆◦ × (−2,−3), (0, 0, 0, 1)} =: f◦c.

The decomposition of these facets into elementary tetrahedra proceeds in
four steps:

Step 1:. For each Z-point w ∈ (∂∆◦)Z, draw the half-space

Hw :=
−→
0.w × C2

u,v

through it. This subdivides the facets.

Step 2:. Up to unimodular transformation, the resulting “slices” of f◦b resp.
f◦c are

hull{(0, 0,−2,−3), (6, 0,−2,−3), (0, 6,−2,−3),
(0, 0, 1, 0)

resp. (0, 0, 0, 1)
}.

To triangulate the first one (second is similar): first decompose it into

fA = hull{ (3, 0,−1,−1), (0, 3,−1,−1), (0, 0,−1,−1),︸ ︷︷ ︸ (0, 0, 0, 1)

hull =: pA

}

and

fB = hull{pA, (6, 0,−2,−3), (0, 6,−2,−3), (0, 0,−2,−3)︸ ︷︷ ︸
hull =: pB

};

on pA and pB, draw all the integral horizontal, vertical, and anti-diagonal
(x+ y = k) lines; then for fA, complete the resulting triangles to tetrahedra
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with vertex at (0, 0, 0, 1); for fB, further subdivide into the 4 tetrahedra

hull{(0, 0,−1,−1), (0, 0,−2,−3), (3,−,−2,−3), (0, 3,−2,−3)}
hull{(0, 3,−1,−1), (0, 3,−2,−3), (3, 3,−2,−3), (0, 6,−2,−3)}
hull{(3, 0,−1,−1), (3, 0,−2,−3), (6, 0,−2,−3), (3, 3,−2,−3)}
hull{(0, 0,−1,−1), (3, 0,−1,−1), (0, 3,−1,−1), (3, 3,−2,−3)}

(treating these as with fA) and the 2 “skew” tetrahedra

hull{(0, 0,−1,−1), (0, 3,−1,−1), (0, 3,−2,−3), (3, 3,−2,−3)}
hull{(0, 0,−1,−1), (3, 0,−1,−1), (3, 0,−2,−3), (3, 3,−2,−3)}

(which get subdivided into elementary tetrahedra of the form

hull{(a, 0,−1,−1), (a+ 1, 0,−1,−1), (3, b,−2,−3), (3, b+ 1,−2,−3)}).

Step 3:. For the f◦a,i, it will not matter which triangulation we choose. Two
of the 2-faces of f◦a,i already receive a triangulation from Step 2. The other
2 may be star-triangulated with centers of the form v × (0, 0), v ∈ ∆◦Z. Any
3-triangulation completing this will do.

Step 4:. One checks that all of the tetrahedra in this triangulation are
regular, i.e. the determinants of their vertices are ±1. This is not always
possible for a general 4-dimensional reflexive polytope, and shows that P∆̂
is smooth.

5.3. Elliptic fibration

Write Σ∆ (resp. Σ∆̂) for the fan on ∂∆◦Z (resp. on the triangulation tr(∂∆̂◦)).
By Step 1 in §5.2, we have a map of fans Σ∆̂ → Σ∆ hence a diagram

P̌∆̂ P∆̂
oooo

P
����

(x, y, u, v)
_

(generically)
��

P∆ (x, y)

with P a morphism. The components of D∆̂ := P∆̂\G
4
m not lying over a

component of D∆ = P∆\G2
m, are the ones dual to Z-points of ∆̂◦ with first
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two coordinates 0 (except the origin). These are (0, 0)×

(1, 0), (0, 1), (−2,−3), (−1,−2), (−1,−1), (0,−1),

the fan on which produces the toric surface PW , which is a desingulariza-
tion of WP(1, 2, 3). So the “generic” fiber of P is PW , the “correct” toric
surface in which to compactify the (generalized) Weierstrass elliptic curve
F (x0, y0, u, v) = 0 (where x0, y0 ∈ C∗).

We now describe the induced elliptic fibration

XF
ρ→ P∆.

Write

(5.3) E∗a = {fa(x, y) = 0} ∩G2
m,

with compactification Ea ⊂ P∆; and

(5.4) D∗a,z0
= {fa(x, y) = a0

2·63z0
} ∩G2

m,

with compactification Da,z0
⊂ P∆. We have Ea ∩Da,z0

= Ea ∩ D∆ = Da,z0
∩

D∆ =: B∆,a (which consists of r points) for the base locus of the pencil
fa(x, y) = λ, λ ∈ P1(C). The 1-dimensional fibers of ρ are:

• over G2
m\{D∗a,z0

∪ E∗a}, a smooth elliptic curve “E”;

• over E∗a, type I1 (nodal rational curve) with node at (u, v) = (0, 0);

• over D∗a,z0
, type I1 with node at (u, v) =

(
−a3

12bc2 ,
a2

6bc

)
; and

• over D∆\{sing(D∆) ∪ B∆}, type II∗ (E8 configuration).

Indeed, the local system onG2
m\{E∗a ∪D∗a,z0

} is the pullback (by λ = fa(x, y) ·
2 · 63b2c3/a6) of the fibered wise first homology group H1 of the family

λa6

2 · 63b2c3
+ auv + bu3 + cv2 = 0

in PW , with singular fibers at 0 of type I1, 1 of type I1, ∞ of type II∗. On
C\{(−∞, 0] ∪ [1,∞)}, we have a basis {α, β} of 1-cycles (for the local sys-
tem) with monodromies

(
1 1
0 1

)
[resp.

(
1 0
−1 1

)
,
(

0 −1
1 1

)
] about 0 [resp.

1, ∞]; accordingly, we shall write α resp. β for the vanishing cycles of the
pullback local system at E∗a resp. D∗a,z0

.
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Over B∆,a and S∆ := sing(D∆), the fibers of ρ have dimension 2. The
components are obtained by taking preimages of solutions to edge- and 2-
face-polynomials of F under the blowups used to produce P∆̂ from P̌∆̂. These
preimages are hypersurfaces in components of D∆̂ corresponding to integer
points of ∆̂◦ (not in its interior or that of its facets) lying in one of the open
half-spaces Hw (for B∆,a) or in between two of them (for S∆).

For B∆,a, the sole contribution comes from the points of the form v ×
(0, 0) where v is a vertex of ∆◦ (dual to an edge ev of ∆). These belong
to the interior of a 2-face hull{6v × (−2,−3), (0, 0, 1, 0), (0, 0, 0, 1)} which is
dual to the edge ev × (−1,−1) of ∆̂. When the corresponding 1-dimensional
subspace of P̌∆̂ is blown up to a 3-dimensional one in P∆̂, the equation is
inherited from the edge polynomial of F , which cuts out a point (or points)
of B∆,a. Since this blowup arises from the star subdivision of Step 3 from
§5.2, we conclude that the fiber over said point is a copy of PW .

For S∆, there are contributions from all the points of the form

(2∂∆◦)Z\2∂∆◦Z × (0,−1), (2∂∆◦)Z\3∂∆◦Z × (−1,−1),

(2∂∆◦)Z\4∂∆◦Z × (−1,−2), (6∆◦)Z\6∆◦Z × (−2,−3).

Unimodular transformation maps any edge of tr(∂∆◦) to [(0, 1), (1, 0)], hence
for a given point p ∈ S∆ (dual to that edge), one easily sees that ρ−1(p)
consists of 21 rational surfaces.

Remark 5.1. The fibration ρ has an obvious section, given by the intersec-
tion of XF with the component of D∆̂ indexed by the point (0, 0,−2,−3) ∈
∆̂◦Z. In a generic fiber this is the usual “point at∞” in the Weierstrass elliptic
curve.

5.4. Middle homology of XF

We shall work henceforth under the assumption that ai>0 and z0 are suffi-
ciently small. Write `(θ) resp. `∗(θ) for the number of integral points in a
polytope θ resp. its interior. We have

h3,0(XF ) = `∗(∆̂) = 1

since ∆̂ is reflexive, with the (unique up to scale) holomorphic 3-form given
by

ΩF =
1

(2πi)3
ResXF

(
dx/x ∧ dy/y ∧ du/u ∧ dv/v

F

)
∈ Ω3(XF ).
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We have also the Batyrev formula [Bat]

h2,1(XF ) = `(∆̂)−
∑
σ facet
of ∆̂

`∗(σ) +
∑
θ 2-face
of ∆̂

`∗(θ)`∗(θ◦)− 5

= {`(∆) + 6} − 1 + 2 + 0− 5

= `(∆)− 2

= r − 1.

Now we shall use the structure of the elliptic fibration to exhibit a basis of
H3(XF ,Q). (In what follows we often drop subscripts a, z0, F , etc.; moreover,
some steps are only sketched).

The basic observation is that

KE := ker{H1(E∗)→ H1(G2
m)} = ker{H1(E∗)→ H1(G2

m\D∗)}

and

KD := ker{H1(D∗)→ H1(G2
m)} = ker{H1(D∗)→ H1(G2

m\E∗)}

are (r − 1)-dimensional spaces. (For instance, to see the second equality for
KE , take z0 small enough that D lies inside an ε-neighborhood U of D∆, and
replace E∗ by E\{E ∩ U}.) Moreover, we have two obvious 3-cycles Tα and
Tβ consisting of parallel translates of α resp. β over T := {|x| = |y| = 1}. We
will show that, together with these, certain cycles built from KE and KD
yield 2r independent 3-cycles on XF .

To construct these cycles, let {ϕ} =
{
{ϕ(i)

0 }
r−2
i=1 , ϕ1

}
⊂ KE be a basis

(with {ϕ(i)
0 } all being homologous to one ϕ0 on E). Choose for each ϕ a

2-chain Γϕ ⊂ G2
m\D∗ with ∂Γϕ = ϕ; and letMα(ϕ) be a continuous family

of 1-cycles of class [α] over Γϕ collapsing to a point over p. We take ΦE ⊂
H3(π−1(G2

m\D∗)) to be the span of the {[Mα(ϕ)]}, and similarly ΦD =
span{[Mβ(ϕ)]}ϕ∈KD ⊂ H3(ρ−1(G2

m\E∗)).
We may compute HD

3 := H3(ρ−1(G2
m\D∗)) via the relative homology

sequence

· · · → H3(ρ−1E∗)
ψE→ HD

3 → H3

(
ρ−1(G2

m \D∗), π−1E∗
)

(5.5)
θE→ H2(ρ−1E∗)→ · · · ,

in which

im(ψE) ∼= im
{
H1(E∗)→ H1(G2

m\D∗)
}
⊗ [E ] ∼=

n.c.
H1(G2

m).
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The second isomorphism is not canonical. Writing H1 for (R1ρ∗Q)∨, the
Leray spectral sequence yields

0→ H1(G2
m \D∗, E∗)⊗ [E ](5.6)

→ ker(θE)→ H2(G2
m \D∗, E∗;H1)

θ′E→ H1(E∗,H1/〈α〉)

so that (5.5) becomes

(5.7) 0→ H1(G2
m \D∗)⊗ [E ]→ HD

3 → ker(θ′E)→ 0.

Using the exact sequences

0→ H2(Gm\D∗)→ H2(G2
m\D∗, E∗)→ KE → 0

0→ H1(D∗)
Tube→ H2(G2

m\D∗)→ H2(G2
m)→ 0,

and writing T := Q〈[Tα], [Tβ]〉 ⊂ HD
3 and ΨD := Tube(H1(D∗))⊗ [β], one

can then show (with some work) that T⊕ΨD ⊕ ΦE maps isomorphically to
ker(θ′E). Repeat this whole argument with D and E (and α and β) swapped
to compute HE

3 .
Next, one explicitly checks that H2(ρ−1(G2

m\{D∗ ∪ E∗})) =: HDE
2 in-

jects into HD
2 ⊕HE

2 , so that

(5.8) H3(ρ−1G2
m) ∼=

HD
3 ⊕HE

3

im{HDE
3 }

.

The Leray spectral sequence for ρ yields

0→ H1(G2
m \ {D∗ ∪ E∗})⊗ [E ](5.9)

→ HDE
3 → H2(G2

m \ {D∗ ∪ E∗};H1)→ 0,

which (comparing with (5.7)) breaks the computation of the quotient (5.8)
into two pieces: for the “left-hand” piece, we have

H1(G2
m\D∗)⊕H1(G2

m\E∗)
im{H1(G2

m\{D∗ ∪ E∗})}
⊗ [E ] ∼= H1(G2

m)⊗ [E ].

For the “right-hand” piece, the quotient of ker(θ′E) by the right-hand term
of (5.9), which is an extension

0→ ΨD ⊕ΨE → H2(G2
m\{D∗ ∪ E∗};H1)→ T→ 0,

is evidently isomorphic to ΦE ⊕ ΦD ⊕ T.



i
i

“1-Bloch” — 2018/3/13 — 0:35 — page 1408 — #36 i
i

i
i

i
i

1408 S. Bloch, M. Kerr, and P. Vanhove

Finally, we consider the cohomology of the normal crossing divisor
ρ−1D∆ = ∪Ri; here the Ri are rational surfaces (meeting along P1’s) in-
dexed by Z-points of ∆̂◦ with (x, y) 6= (0, 0) and not in the interior of a facet.
By studying the part of the 2-skeleton of tr(∂∆̂◦) meeting these points, we
compute the spectral sequence converging to H∗(ρ−1D∆), with E1 page∣∣∣∣∣∣∣∣∣∣∣

⊕H4(Ri)
0

⊕H2(Ri)
ε→ ⊕H2(Rij)

0 0
⊕H0(Ri) → ⊕H0(Rij) → ⊕H0(Rijk).

The cohomology ranks of the bottom row are just the Betti numbers 1, 1, 0 of
the 2-skeleton, so that H1(D)→ H1(ρ−1D)

Tube→ H4(X\ρ−1D∆) are isomor-
phisms (all of rank 1, with Tube hitting T⊗ [E ]). One also deduces from
this that ker{⊕H2(Rij)→ ⊕H4(Ri)}, hence coker(ε) and H3(ρ−1D∆), have
rank 1; it follows that H3(ρ−1D∆)

Tube→ H2(X\ρ−1D∆) is injective, with Tube
hitting T⊗ [pt.]. Moreover, we have

rank(⊕H4(Ri)) = 30r◦ + ν

rank(⊕H2(Ri)) = 120r◦ + 5ν

rank(⊕H2(Rij)) = 90r◦ + 4ν

and so conclude that h2(π−1D∆) = 120r◦ + 5ν − (90r◦ + 4ν) + 1 = 30r◦ +
ν + 1. Now by Batyrev [Bat]

h4(X) = h2(X) = `(∆̂◦)−
∑

σ◦ facet
of ∆̂◦

`∗(σ◦) +
∑

θ◦ 2-face
of ∆̂◦

`∗(θ◦)`∗(θ)− 5

= (31r◦ + 7)− (r◦ − ν + 3)− 5

= 30r◦ + ν − 1.

By the exact sequence

0→ H4(X)→ H2(ρ−1D∆)
Tube→ H3(X\ρ−1D∆)→ H3(X)→ 0

we now have rank(Tube) = h2(ρ−1D∆)− h4(X) = 2. Since H1(G2
m)⊗ [E ] is

evidently in the image of Tube, this is im(Tube) and thus

(5.10) H3(X) = ΦD ⊕ ΦE ⊕ T.
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5.5. Degeneration as z0 → 0

We shall need to replace z0 by t, which amounts to pullback by t 7→ t5.
Set b = c = t, a = 1 in (5.1). Write Xa,t (or just Xt) for the corresponding
Calabi-Yau 3-fold; fix an a and disk � about 0, such that Xa → � (with fibers
Xa,t) is smooth away from {0}. For the singular fibers write

Xa,0 = ∪i≥0Wi,

where
W0 = Y :=

{
fa(x, y) + uv = 0

}
⊂ P∆̂

and Wi>0 are the components of D∆̂ corresponding to integer points of ∆̂◦

contained in the interiors of the 2-face 6∆◦ × (−2,−3) and of the facets f◦b
and f◦c. Write I∆◦ for the index (sub)set corresponding just to the interior
points of 6∆◦ × (−2,−3).

The singular locus of the total space is contained in Xa,0; more pre-
cisely, it consists of the intersections Wi ∩Wj ∩Xa,t6=0

∼= P1 with i, j ∈ I∆◦ .

Let P′
∆̂

B
� P∆̂ denote the blow-up along the smooth rational surfaces {Wi ∩

Xa,t6=0}i∈I∆◦ , in any order, and X ′ � X the proper transform under B × id�.
Note that X ′ is smooth, with fibers over �∗ unchanged, and X′a,0 = ∪W ′i hav-
ing no additional irreducible components. Indeed, the only change is that
some irreducible components of X0 have been blown up along some P1’s.
Write D′

∆̂
, Y ′, etc. for proper transforms.

Furthermore, X0 and X′0 are smooth normal crossing divisors in P∆̂ and
P′

∆̂
respectively, and X′0 is a reduced strict normal crossing divisors in X ′

— i.e. X ′ → � is a semistable degeneration. Because this is a “partial” toric
degeneration (i.e. X0 6= D∆̂), these facts are not automatic. The normal cross-
ing divisors property is checked by computations in local coordinate systems
associated to the individual tetrahedra in tr(f◦b) and tr(f◦c); it holds for the
triangulation described in §5.2, but not for another triangulation we consid-
ered. Also visible in these local coordinates is the fact that the equation of X ′
takes the form t =

∏M
i=1 fi(X) (M ≤ 4) where the ~∇fi(X) are independent

along intersections of the respective components. (Since these computations
are both lengthy and straightforward, we omit them.)

We describe the degenerated elliptic fibration X0
ρ→ P∆, noting that

as t→ 0 (z0 → 0), Da,z0
→ Da,0 = D∆. Over P∆, there are 5 components

(including Y ), forming an I5 over G2
m\E∗ and an I6 over E∗. Over each

P1 ⊂ D∆, X0 has 11 components; while over each point in S∆, there are 14.
Y itself is generically a P1-bundle, whose fiber breaks into 2 P1’s (joined at
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(u, v) = (0, 0)) over E∗ and 8 P1’s over D∆\{S∆ ∪ B∆}, while ρ−1(B∆) ∩ Y
is a configuration of 5 rational surfaces (in addtion to the 11 which lie over
every point of D∆\S∆). This description does not change for X′0.

5.6. Middle cohomology of X0

By Clemens-Schmid [C, Sc] we have an exact sequence of mixed Hodge struc-
ture

H5(X′0)(−4)→ H3(X′0)→ H3
lim(Xt)

N→ H3
lim(Xt)(−1)

since X ′ → � is a semistable degeneration. Using the combinatorics of tr(∆̂◦)
one shows that ⊕H4(W ′i )� ⊕H4(W ′ij), and clearly ⊕H5(W ′i ) = H5(Y

′
) =

H1(Y
′
)(−3) which we shall show is zero (see below). So H5(X′0), hence

H5(X′0), is zero; writing H3
inv(Xt) for the mixed Hodge structure ker(T −

I) = ker(N) ⊂ H3
lim(Xt), we have

H3(X′0) ∼= H3
inv(Xt).

Remark 5.2. The only possible discrepancy between H3(X′0) and H3(X0)
is in GrW2 , for which we have the diagram

⊕H2(Wi)� _

B∗

��

δ // ⊕H2(Wij)� _

B∗

��

δ // ⊕H2(Wijk)

⊕H2(W ′i )
δ // ⊕H2(W ′ij)

δ // ⊕H2(W ′ijk).

Any topological cycle Z with [Z] ∈ ker(δ) ⊂ ⊕H2(Wij) can be moved to
avoid the blowup points. As a consequence, ifB−1(Z) = δZ then Z = δ(B(Z)),
showing H3(X0) ↪→ H3(X′0).

Recalling that Y ′a = W ′0, set

Ya := Y a ∩ (G2
m × A2) = Y

′
a ∩ (G2

m × A2) ⊂ Y ′a\{Y
′
a ∩ (⊕i≥1W

′
i )},

the solution set of fa(x, y) + uv = 0 with x, y ∈ C∗ and u, v ∈ C. It is a Gm-
bundle over G2

m\Ea which degenerates to two affine lines meeting at (u, v) =
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0 over Ea. As in [DK, §5.1] we have exact sequences of mixed Hodge structure

Hk−1(E∗a)(1)
(I∗,0)→ Hk−1(G2

m)(1)⊕Hk(G2
m)(5.11)

→ Hk(Ya)→ Hk−2(E∗a)(1)→ Hk−2(G2
m)(1).

Setting k = 1 gives H1(Y ) = H1(G2
m)⊗ [pt.], which evidently maps to 0 in

H1(Y
′
), so that H1(Y

′
) = {0}.

For k = 3, (5.11) becomes

(5.12) 0→ H2(G2
m)(1)

⊗[S1]→ H3(Ya)
ξ→ KE(1)→ 0.

The cycles {Mα(ϕ)}ϕ∈KE and Tα evidently limit (with t→ 0) to cycles
{M(ϕ)}ϕ∈KE and T on Ya, with the S1 on the Gm-fibers replacing α. Clearly
[T ] = im(⊗[S1]), and span{[M(ϕ)]} maps isomorphically to KE(1) (cf. the
construction of the right-inverse7 “M ” to ξ in[DK, §5.1] So as a Q-vector
space,H3(Ya) ∼= ΦE ⊕ 〈T 〉; as a mixed Hodge structure,H3(Ya)(−3) is an ex-
tension ofKE(−2) (which has type (2, 1) + (1, 2) + (1, 1)) by aQ(0) (spanned
by T ).

Now consider the composite morphism

Θ′ : H3(Ya)(−3) ∼= H3(Y
′
, Y
′\Y )→ H3(W ′0,∪W ′0i)

= H3(X′0,∪i≥1W
′
i )→ H3(X′0)

of mixed Hodge structure (one defines Θ similarly). On the level of closed
chains, Θ′ is induced by

Θ̃′ : Ztop3 (Y )→ ker
{
Ztop3 (Y

′
)# → ⊕iZtopi (W ′0i)

}
↪→ ker

{
δ : ⊕iZ3

top(W
′
i )# → ⊕i,jZ3

top(W
′
ij)
}

→ ker
{
D : ⊕IZ3−|I|

top (W ′I)# → ⊕JZ
4−|J |
top (W ′J)

}
where # denotes intersection conditions and D is the total differential for
the complex computing H∗(X′0). The main point here is that the Clemens
retraction map r : H3(X′0)→ H3(Xt) is given (on ker(δ), hence im(Θ̃′)) by
simple preimage under r : Xt � X′0. Since this obviously sends T 7→ Tα and

7as morphism of Q-vector spaces, not mixed Hodge structure
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M(ϕ) 7→ Mα(ϕ), the composite MHS morphism

H3(Ya)(−3)

Θ′

33
Θ // H3(X0) �

� B∗ // H3(X′0)

r∗

33
∼= // H3

inv(Xt)
� � // H3

lim(Xt)

sends [T ] 7→ [Tα] and [M(ϕ)] 7→ [Mα(ϕ)]. Since these classes remain inde-
pendent in H3(Xt),8 Θ and Θ′ are injective. Consequently H3

lim(Xt) has
I0,0 ⊇ I0,0(H3(Y )(−3)) of rank at least 1, I1,1 ⊇ N+(I0,0)⊕ I1,1(H3(Y )(−3))
of rank at least 1 + (r − 3) = r − 2, and I2,1 ∼= I1,2 ⊃ I1,2(H3(Y )(−3)) of
rank at least 1. The only possible limiting mixed Hodge structure type,
given that H3

lim(Xt) has GriF ranks 1, r − 1, r − 1, 1, is

N

p

q

N

N

1 = rk(I0,0) = rk(I2,1) = rk(I1,2) = rk(I3,3)

r − 2 = rk(I1,1) = rk(I2,2)

(all others zero)

This implies at once that (the image of) H3(Ya)(−3) is all of ker(N) =
H3
inv(Xt), and so Θ, Θ′, and B∗ are all isomorphisms:

Theorem 5.3. We have isomorphisms of Q-variation of mixed Hodge struc-
ture

H3(Ya)(−3) ∼= H3(Xa,0) ∼= H3(X′a,0) ∼= H3
inv(Xa,t).

5.7. Monodromy and asymptotics of periods

We begin by addressing the nature of the limiting periods (i.e., by Theo-
rem 5.3, periods on Ya). Set

ηa :=
1

(2πi)3
ResYa

(
dx/x ∧ dy/y ∧ du ∧ dv

fa(x, y) + uv

)
=

1

(2πi)3

dx

x
∧ dy
y
∧ du
u

∣∣∣∣
Ya

∈ Ω3
(
Ya
)
.

8either by the computation of the basis in §5.4, or by the Remark below



i
i

“1-Bloch” — 2018/3/13 — 0:35 — page 1413 — #41 i
i

i
i

i
i

Local mirror symmetry and the sunset Feynman integral 1413

Write

(5.13) R{x, y} := log(x)
dy

y
− 2πi log(y)δTx

for the 1-current on G2
m, where log(x) is the (discontinuous) branch with

argument in (−π, π), and Tx = x−1(R−) (with R− oriented from −∞ to 0).
For any invariant 3-cycle κ,

lim
t→0

ˆ
κ

Ωa,t =

ˆ
κ
ηa

which for κ = T is 1 and for κ =M(ϕ) is (according to [DK, §5.1])

(5.14)
1

(2πi)2

ˆ
Γϕ

dx

x
∧ dy
y

=
1

(2πi)2

ˆ
ϕ
R{x, y}|E∗a =:

1

2πi
Rϕ(a).

These “regulator periods” were computed in [DK, §5.2] for a specific choice9

of ν − 2 {ϕ(i)
0 } and with only those {aj} attached to vertices nonzero. If

∆ has ν = r (no interior integral points on edges), then these {ϕ(i)
0 } are

“enough” (we need r − 2) and no aj are set equal to 0.
In that case, and with that choice of basis — to both of which we shall

restrict for the moment — we get an alternate proof of the independence of
the r invariant cycles

{
Mα(ϕ1), {Mα(ϕ

(i)
0 )}r−2

i=1 , τα

}
in H3

(lim)(Xt), which is
simpler than constructing the full basis of H3(Xt). Namely, observe (cf. [DK,
§5.2]) that

(5.15)

Rϕ(i)
0

(a) ∼ log(zi) (i = 1, . . . , r − 2)

Rϕ1
(a) ∼ 1

2πiQ (log(z1), . . . , log(zr−2))
(

Q quadratic,
with Q-coeffs.

)
are independent functions as a varies; therefore, so are the

´
Mα(ϕ) Ωa,t and´

τα
Ωa,t, and independence of the cycle classes follows.
From (5.15) we also obtain information on the asymptotics of periods of

H3(XF ) which will be key for defining the mirror map in §6.4. Writing Tj
for the monodromy about zj = 0 (and Nj = log(Tj)), Tα is the cycle whose
“Tube” (for all |zi| � ε) is ∩r−2

i=1 {|zi| = ε}, hence is invariant by all Tj . (In

9cf. p. 487 of [DK, §5.2], where these “distinguished vanishing cycles” are denoted
ϕ
[i]
0 . Also see [BKV, §4.1-2] for a brief introduction to regulator currents in the

context of Feynman integrals.
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particular, we have limt→0

´
Tα ΩF = 1.) Putting

Ω̃F :=
ΩF´
τα

ΩF
,

we define normalized B-model periods by

ΠB
γ (z) :=

ˆ
γ

Ω̃F (γ ∈ H3(XF ,Z)).

Obviously ΠB
Tα is identically 1 whilst (using (5.14) and (5.15))

(5.16) ΠMB
α(ϕ

(i)
0 ) ∼

1

2πi
log(zi) (i > 0).

Now when we take all {ai}i>0, hence all {zi}i>0, to zero, the equation
for X becomes

bu3 + cv2 + auv + a0 = 0.

That is, we are left with an isotrivial family of elliptic curves ∼=: Ez0
over G2

m

(as ρ−1E and ρ−1D have both collapsed to ρ−1D), with ρ−1D consisting of
all 3-fold components of D∆̂ associated to points of ∆̂◦Z dual to an edge or
vertex of ∆× (−1,−1). Clearly Tα and Tβ remain in the cohomology of this
singular 3-fold, so Tβ is invariant under all {Tj}j>0. Taking $z0

∈ Ω1(Ez0
) to

be normalized so that
´
α$z0

= 1, the limiting period

ΠB
Tβ(z0, 0) =

1

(2πi)2

ˆ
Tβ

dx

x
∧ dy
y
∧$z0

=

ˆ
β
$z0

is asymptotic to 5
2πi log t (since Ez0

limits to an I5 at t = 0); therefore

(5.17) ΠB
Tβ ∼

1

2πi
log(z0).

Remark that by (5.16), the {Mα(ϕ
(i)
0 )}i 6=j are invariant under Tj for

j > 0; equivalently, the membrane in G2
m\D∗ bounding on each ϕ

(i)
0 ⊂ E∗

(i 6= j) behaves well in the zj → 0 limit (under which E and D become
nodal rational curves in the same linear system). Symmetrically, there are
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′ϕ
(i)
0 ⊂ D∗ with the same properties. So for j > 0,

ker(Tj − I) = ker(Nj) = 〈Tα, Tβ, {Mα(ϕ
(i)
0 )}i 6=j , {Mβ(′ϕ

(i)
0 )}i 6=j〉,

while as previously remarked ker(N0) = 〈Tα, {Mα(ϕ
(i)
0 )}r−2

i=1 ,Mα(ϕ1)〉. Com-
bining this with the fact that Mβ(ϕ1) is the only cycle in our basis pair-
ing nontrivially with Tα (e.g., consider the above z1, . . . , zr−2 → 0 limit),
we can compute a basis for W 0

• := W (N0)•. Writing {ψI}r−3
i=1 for a basis of

ker{KE → H1(E)}, so that KE = 〈{ψi}, ϕ(1)
0 〉, we have

W 0
0 = 〈Tα〉, W 0

2 = W 0
0 + 〈{Mα(ψi)}r−3

i=1 , Tβ〉,

W 0
3 = W 0

2 + 〈Mα(ϕ
(1)
0 ),Mα(ϕ1)〉,

W 0
4 = W 0

3 + 〈{Mβ(ϕ
(i)
0 )}r−2

i=1 〉, W 0
6 = W 0

4 + 〈Mβ(ϕ1)〉.

For the (Hodge-Tate) limit at z=0, we have (for W•=W (N0+· · ·+Nr−2)•)

W0 = 〈Tα〉, W2 = W0 + 〈Tβ, {Mα(ϕ
(i)
0 )}r−2

i=1 〉,

W4 = W2 + 〈{Mβ(′ϕ
(i)
0 )}r−2

i=1 ,Mα(ϕ1)〉, W6 = W4 + 〈Mβ(′ϕ1)〉.
The otherW (Nj)•’s are more difficult and will be computed via the A-model
in §6.3.

We will say more about the specialization to the sunset case, where

fa = a0 + a1x+ a2y + a3x
−1y + a4x

−1 + a5y
−1 + a6xy

−1,

in the next section, but some preliminary remarks are in order. Writing
ϕ̂

(i)
0 for the vanishing cycle in H1(E∗a) for ai → 0, we have (with indices

modulo 6) ϕ(j)
0 = −ϕ̂(j)

0 + ϕ̂
(j−1)
0 + ϕ̂

(j+1)
0 , which all map to the same cycle

ϕ0 ∈ H1(Ea), and

zj =
aj+1aj−1

aja0
, j = 1, . . . , 6.

The apparent obstacle here is that although r=r◦=ν=6, the 4-dimensional
cone spanned by the vectors `(j) of [DK] (`(j)j = −1, `(j)j−1 = `

(j)
j+1 = 1, `(j)other =

0) is not simplicial. Hence z1 thru z4 do not suffice to parametrize the re-
sulting singular local parameter 4-space, and ϕ1, {ϕ(j)

0 }4j=1 span KE ratio-
nally but not integrally. (We need all 6 {zi} and all 6 {ϕ(j)

0 }, and the re-
lations on the {zi} produce the singularity.) Writing R(m) ⊆ Z6 for the set
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of “relations vectors” (`1, . . . , `6) with
∑
`j = m ∈ N,

∑
`jm

(j) = 0, we have
(j = 1, . . . , 6)

lim
z0→0

2πi ·ΠB
Mα(ϕ

(j)
0

= Rϕ(i)
0

(a) = log(zj) +H(a)

= log(zj) +
∑
m≥1

1

m

∑
`∈R(m)

m!

`1! · · · `6!
· a

`1
1 · · · a

`6
6

(−a0)m

for the limiting periods (cf. [DK, eqn (5.4)]).
Upon specializing to the “Feynman locus” where

(5.18) fa = 1− sφ�, φ� := (−ξ2
1x− ξ2

2y + ξ2
3)(1− x−1 − y−1),

a small miracle occurs. The resulting substitutions a = (ξ1, ξ2, ξ3, s) yield

(5.19) z1 = −ξ
2
2s

a0
= z4, z2 = −ξ

2
1s

a0
= z5, z3 = −ξ

2
3s

a0
= z6,

where a0 = 1− s
∑
ξ2
i , and R

(j)
0 := Rϕ(i)

0
(a) =

(5.20) log(zj) +
∑
m≥1

1

m

∑
`∈R(m)

(−1)`3+`6m!

`1! · · · `6!
z`2+`3

1 z`1+`6
2 z`4+`5

3 ,

which will be considered as a function of (z1, z2, z3). In particular, we have

(5.21) R
(1)
0 = R

(4)
0 , R

(2)
0 = R

(5)
0 , R

(3)
0 = R

(6)
0 ;

in effect, the specialization has replaced a singular 4-fold local parameter
space by a smooth 3-dimensional slice. From the standpoint of periods (of
R{x, y} on E∗, or η on Y ), the class

(5.22) − ϕ(1)
0 + ϕ

(4)
0 = ϕ

(2)
0 − ϕ

(5)
0 = −ϕ(3)

0 + ϕ
(4)
0

in KE is now “trivial”, and the quotient KE of KE by (5.22) is integrally
spanned by ϕ(1)

0 , ϕ
(2)
0 , ϕ

(3)
0 . Recalling that ker(N0) ⊂ H3

lim(X) is an extension

Q(0)→ ker(N0)→ KE(−2),

the immediate consequence is that the Q(−1) ⊂ KE(−2) spanned by (5.22)
lifts to a Q(−1) ⊂ ker(N0). It is the quotient ker(N0) by this constant sub-
variation of mixed Hodge structure which we will be interested in when
comparing with the A-model.
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It will be useful in the sequel to denote by VB the Z-variation of Hodge
structure H3(XF ) considered over a product of punctured disks with param-
eters z0, . . . , zr−2.

6. A-model

We now turn to the (integral) variation of Hodge structure arising from the
quantum product on Heven(X◦), where X◦ ⊂ P∆̂◦ is the Batyrev mirror of X.
Its equivalence to the B-model variation of Hodge structure H3(X) allows us
to compute all monodromies of the latter (about the hyperplanes {zi = 0})
and relate its z0 → 0 limiting mixed Hodge structure to local Gromov-Witten
data for P∆◦ . In order to make use of the computations in [DK, §5], we shall
work under the assumption that ν = r (so that (∂∆)Z consists of vertices).

6.1. Elliptic fibration and even cohomology

As in the B-model case, triangulating ∂∆̂ produces a resolution of singular-
ities P∆̂◦ � P̌∆̂◦ . The desired triangulation is achieved by:

• inserting the 1
2 -planes Hw (w ∈ (∂∆)Z) as in Step 1 of §5.2, which

subdivides the 2-face ∆× (−1,−1) and each of the facets

f1 = hull{∆× (−1,−1), (0, 0,−1, 1)},
f2 = hull{∆× (−1,−1), (0, 0, 2,−1)}

into r pieces; and

• further subdividing the facet-pieces by inserting 2-planes through the
edges of ∆× (−1,−1) and (0, 0, 1,−1), (0, 0, 0,−1), resp. (0, 0,−1, 0).

The first step guarantees a morphism P∆̂◦
P◦
� P∆◦ , with generic fiber PW .

Its restriction to an anticanonical (Calabi-Yau) hypersurface X◦
ı
⊂ P∆̂◦ , cut

out by a generic Laurent polynomial (with Newton polytope ∆̂◦), produces
a Weierstrass elliptic fibration ρ◦ : X◦ � P∆◦ . The discriminant locus of ρ◦

(over which the fiber is I1) is a higher-genus curve meeting D∆◦ properly;
in particular, (ρ◦)−1 of components of D∆◦ (and of their intersections) are
smooth.

Let D0
∼= P∆◦ denote the (zero-)section of ρ◦ given by intersecting X◦

with the component of D∆̂◦ dual to (0, 0,−1,−1) ∈ (∂∆̂)Z. Writing D∆◦ =
∪ri=1Ci (with the counterclockwise ordering), the divisors Di := (ρ◦)−1(Ci)
are the intersections with X◦ of components dual to the {vi × (−1,−1)}
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(where {vi} are the vertices of ∆).

C

C

C

D

D
D

1
3

2

3

0

2

1

D

(In the sequel, Ci will mean D0 ∩Di ⊂ X◦.) There are five more components
of D∆̂◦ : those dual to (0, 0, 1,−1), (0, 0, 0,−1), and (0, 0,−1, 0) do not meet
X◦; and we denote by D′, D′′ the intersections with X◦ of those dual to
(0, 0, 2,−1) resp. (0, 0,−1, 1).

The divisors of the toric coordinates {Xi}4i=1 restricted to X◦ are then
given by

(6.1)

{
(X1) =

∑r
i=1 v

(1)
i Di, (X2) =

∑r
i=1 v

(2)
i Di,

(X3) = 2D′ −D′′ −
∑r

i=0Di, (X4) = D′′ −D′ −
∑r

i=0Di

so that in CH1(X◦) ∼= H2(X◦,Z) we have D′ ≡ 2
∑r

i=0Di, D′′ ≡ 3
∑r

i=0Di,
and Dr−1, Dr ∈ span〈{Di}r−2

i=1 〉. Now D′ ∩D0 and D′′ ∩D0 are empty (as
the corresponding faces of ∆̂◦ meet in vertices), and so in CH2(X◦) (hence
H4(X◦,Z))10

(6.2) D0 ·D0 ≡ −
r∑
i=1

D0 ·Di = −
r∑
i=1

Ci ≡ −E◦

where E◦ is a general anticanonical (elliptic) curve in D0
∼= P∆◦ . Writing di

for `(ith edge of ∂∆◦), so that r◦ =
∑r

i=1 di, we therefore have

(6.3) (D0 · Ci) = (D0 ·D0 ·Di) = −(E◦ ·Di) = −(E◦ · Ci)D0
= −di

for i = 1, . . . , r.
From the first line of (6.1), we also have Cr−1, Cr ∈ span〈{Ci}r−2

i=1 〉 so that
{Ci}r−2

i=1 spanH2(D0), and [(Ci · Cj)D0
]r−2
i,j=1 = [(Ci ·Dj)X◦ ]

r−2
i,j=1 is nondegen-

erate. Since a general fiber C0 of ρ◦ satisfies (C0 ·D0) = 1 and (C0 ·Di) = 0

10We shall use · and often nothing as cup product on Heven.
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(i > 0), [(Ci ·Dj)X◦ ]
r−2
i,j=0 is in fact nondegenerate. Using that H1,1(X◦) =

h2,1(X) = r − 1, it follows that a basis for

V = Heven(X◦,C) = ⊕3
k=0H

k,k(X◦)

is given by {X◦;D0, . . . , Dr−2;C0, . . . , Cr−2; p} where p ∈ X◦ is a point. Write

(6.4) Jj =

r−2∑
k=0

αkjDk (αkj ∈ Q; j = 0, . . . , r − 2)

for the basis of H2(X◦,Q) Poincaré-dual to the {Cj}r−2
j=0 ⊂ H4(X◦,Q).

Clearly all the α0
i = 0 for i > 0, so using (6.3) we find that

(6.5)

{
J0 = D0 + (π◦)−1E◦ = D0 +D1 + · · ·+Dr = D0 +

∑r−2
i=1 α

i
0Di

D0 = J0 −
∑r−2

i=1 diJi

hence (by (6.2))

(6.6) J2
0 = r◦C0 + C1 + · · ·+ Cr = r◦C0 +

r−2∑
i=1

αi0Ci.

For the triple-products, we evidently have J3
0 = r◦ (dropping the class of the

point“p”), and JiJjJk = 0 if i, j, k > 0. For j > 0 we find (by (6.6)

(6.7) J2
0Jj =

r−2∑
i=1

αi0(Ci · Jj) = αj0,

while for i, j > 0

(6.8) J0JiJj =

r−2∑
k=1

αkjJ0JiDk =
∑
k

αkjD0JiDk =
∑
k

αkj (Ji · Ck) = αij .

In particular, [αij ]
r−2
i,j=1 is symmetric, which reflects the fact that it is the

inverse of [(Ci · Cj)D0
]r−2
i,j=1 (which can be computed from the `-vectors of

[DK, §5]).



i
i

“1-Bloch” — 2018/3/13 — 0:35 — page 1420 — #48 i
i

i
i

i
i

1420 S. Bloch, M. Kerr, and P. Vanhove

From (6.7) and (6.8) we also have

(6.9) JiJj = αijC0 and J0Jj =

r−2∑
i=0

αjiCi.

Since D0 · J0 = −E◦ + E◦ = 0 by (6.2) and (6.5), using (6.3) and (6.9) to
evaluate (0 =)D0 · J0 · Jj yields the intriguing relations

(6.10)

{
αj0 =

∑r−2
i=1 diα

i
j (j = 1, . . . , r − 2)

r◦ =
∑r−2

i=1 diα
i
0.

For the sequel we set α̃ij = J0JiJj , which allows us to rewrite (6.10) as α̃0
j =∑r−2

i=1 diα̃
i
j for j = 0, . . . , r − 2.

6.2. The quantum Z-variation of Hodge structure

Following [CK, §8] and [Ir, §5], we now introduce a weight 3 variation of
Hodge structure on VO = V ⊗O((∆∗)r−1), where the ∆∗ are punctured disks
with coordinates qj = e2πiτj , j = 0, . . . , r − 2. (Write κ : Hr−1 → (∆∗)r−1 for
the obvious map sending τ 7→ q.) The Hodge filtration is straightforward,
given by

F pVO := ⊕a≥pH3−a,3−a(X◦)O,

so that 1X◦ = [X◦](⊗1) generates F 3. The polarization is just (A, B) :=
(−1)

1

2
deg A
´

X◦ A · B.
Let Ñk̂ denote the genus-zero Gromov-Witten invariant for the class

Ck̂ :=
∑r−2

`=0 k`C` ∈ H2(X◦,Z), for any k̂ = (k0, k) ∈ Zr−1
≥0 . Using the Gromov-

Witten prepotential

(6.11) Φ :=
(2πi)3

6

ˆ
X◦

r−2∑
j=0

τjJj

3

+
∑
k 6=0

Ñk̂q
k̂,

we define the quantum product “∗” on VO to be cup product on the last
subsection’s basis (⊗1) except for

Ji ∗ Jj :=
1

(2πi)3

r−2∑
`=0

Φ′′′ij`C` = Ji · Jj + h.o.t.(q).

where h.o.t.(q) denote higher order term in the q expansion. Here Φ′′′ij` =

∂i∂j∂`Φ, where ∂i := ∂
∂qi

.
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The (C-)local system VC ⊂ VO is then given by the kernel of

∇ := idV ⊗ d+

r−2∑
i=0

(Ji∗)⊗ dτi,

with monodromy logarithms

(6.12) Ni = log(Ti) = −2πiResqi=0(∇) = −Ji · ( )

about the coordinate axes. A basis of ∇-flat sections is given by the map

σ : B → Γ(Hr−1, κ∗VC)

sending

(6.13)



p 7→ p

Ci 7→ Ci − τip
Ji 7→ Ji − 1

(2πi)3

∑
j Φ′′ijCj + 1

(2πi)3 Φ′ip

X◦ 7→ X◦ −
∑

i τiJi −
1

(2πi)3

∑
i

(
Φ′i −

∑
j τjΦ

′′
ij

)
Ci

+ 1
(2πi)3

(
2Φ−

∑
j τjΦ

′
j

)
p.

To define Iritani’s integral local system VZ ⊂ VC, we will need his “square
root of the Todd class”

Γ̂(X◦) := exp

(
− 1

24
ch2(X◦)− 2ζ(3)

(2πi)3
ch3(X◦)

)
∈ K0(X◦).

In general, for a toric variety PΣ defined by a simplicial fan Σ,

ci(PΣ) =
∑
τ∈Σ(i)

Zτ

where Σ(i) denotes the i-dimensional cones of Σ and Zτ is the (codimension-
i) intersection of the divisors of PΣ dual to the generators of τ . Applying
this to P∆̂ and pulling back to X◦,

ı∗c(P∆̂) = 1 +

(
D′ +D′′ +

r∑
i=0

Di

)

+

(
(11r◦ + r)C0 + 12

r∑
i=1

Ci

)
+ 6(r + r◦)p
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while

ı∗c(O(X◦)−1) = 1− 6

r∑
i=0

Di + 36

(
r◦C0 +

r∑
i=1

Ci

)
− 216r◦p.

(Remark that
∑r

i=1Ci =
∑r−2

i=1 α
i
0Ci by (6.6).) This yields

c(X◦) = ı∗c(P∆̂) · c(O(X◦))−1 = 1 +

(
(11r◦ + r)C0 + 12

r∑
i=1

Ci

)
− 60r◦p,

hence

(6.14)


ch(X◦) = 3− (12

∑r
i=1Ci + (11r◦ + r)C0)− 30r◦p

td(X◦) = 1 +
(∑r

i=1Ci + 1
12(11r◦ + r)C0

)
Γ̂(X◦) = 1 +

(
1
2

∑r
i=1Ci + 1

24(11r◦ + r)C0

)
+ 60ζ(3)

(2πi)3 r
◦p.

The Z-local system (or rather its κ∗-pullback) is then defined by the
image of

(6.15)
γ : Knum

0 (X◦) → Γ(Hr−1, κ∗VC)

ξ 7→ σ(Γ̂(X◦) · ch(ξ)).

The role of the Γ̂-class is tied to the Mukai pairing 〈 , 〉 : Knum
0 (X◦)×

Knum
0 (X◦)→ Z, defined (on the level of vector bundles) by

(6.16) 〈ξ, ξ′〉 :=

ˆ
X
ch(ξ∨ ⊗ ξ′) · td(X◦).

Iritani’s result that

(6.17) (γ(ξ), γ(ξ′)) = 〈ξ, ξ′〉

implies the integrality of ( , ) on VZ, and the integrality of monodromy
follows from

(6.18) Ti(γ(ξ)) = γ(O(−Ji)⊗ ξ).

The “period” of the (3, 0)-section [X◦]⊗ 1 against the integral class γ(ξ) is

(6.19) ΠA
ξ (q) := 〈1X◦ , γ(ξ)〉 = coefficient of [p] in γ(ξ).
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To compute γ or the Mukai pairing, we first find the Chern characters
of various skyscraper sheaves by resolving them by vector bundles, e.g.

OJi = O −O(−Ji), OCi = O −O(−Di)−O(−D0) +O(−(D0 +Di)),

and using ch(O(D)) = eD for any divisor D. Writing `ij := (Ci ·Dj) (i, j =

0, . . . , r),11 this gives

ch(Op) = p, ch(OX◦) = X◦,

ch(OC0
) = C0, ch(OCj ) = Cj + 1

2(dj − `jj)p,
ch(OJ0

) = J0 − 1
2(r◦C0 + Σr

i=1Ci) + r◦

6 p, ch(OJj ) = Jj − 1
2α

j
jC0,

ch(OD0
) = D0 + 1

2Σr
i=1Ci + p, ch(ODj ) = Dj + 1

2C0.

In particular, we find that a Mukai-symplecitic basis {ξk}2rk=1 of Knum
0 (X◦)Q

(hence, applying γ, a symplectic basis of VQ), with12

(6.20) 〈ξk, ξk′〉 =

( 0 1
δij

−δij
−1

0

)
,

is given by

(6.21)



ξ1 = OX◦

ξ2 = OJ0
+ 1

4

∑r−2
j=1(αj0 − α

j
j)OCj

−
(

13r◦+r
12 + 1

2

∑r−2
j=1(αj0 − α

j
j)(dj − `

j
j)
)
Op

ξ2+j = OJj + 1
4(αjj − α

j
0)OC0

− αj0Op (j = 1, . . . , r − 2)

ξr+1 = −OC0

ξr+j+1 = −OCj + 1
2(dj − `jj)Op (j = 1, . . . , r − 2)

ξ2r = Op.

However, the basis given by the skyscraper sheaves themselves is adequate
for purposes of analyzing monodromy. We shall also have use for the partial

11note `i0 = di
12in the matrix, i and j run from 0 to r − 2
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basis

(6.22)


ξ̂D0

= OD0
+ 1

2

∑r−2
j=1 α

j
0Cj +

(
−15r◦+r

24 + 1
4

∑r−2
j=1 α

j
0(`jj + dj)

)
Op

−ξ̂Cj = ξr+j+1 (j = 0, . . . , r = 2)

ξ̂p = Op

later on. It satisfies

ch(ξ̂D0
) · Γ̂ = D0, ch(ξ̂Cj ) · Γ̂ = −Cj , ch(ξ̂p) · Γ̂ = p,

which implies

(6.23) γ(ξ̂D0
) = σ(D0), γ(ξ̂Cj ) = −σ(Cj), γ(ξ̂p) = σ(p).

In particular, we have

(6.24) ΠA
ξ̂Cj

= τj and ΠA
ξ̂p
≡ 1.

In the sequel the Z-variation of Hodge structure (VZ, VO, F
•) constructed

above will be denoted VA.

6.3. Monodromy types

We shall compute monodromy directly on the level of Knum
0 (X◦)Q, by ap-

plying O(−Jj)⊗ to the basis

OX◦ ; OJ0
, . . . ,OJr−2

; OC0
, . . . ,OCr−2

; Op.

Writing i resp. k for the rows resp. columns of the various blocks, this gives

Tj =


1 0 0 0

−δji δki 0 0
0 −JiJjJk δki 0
0 0 −δkj 1

 ,

where we note that JiJjJk is

α̃ki =

(
r◦ αk0
αi0 αki

)
resp.

(
αj0 αjk
αji 0

)
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if j = 0 resp. 1, . . . , r − 2. So

Nj = (Tj − I)− 1
2(Tj − I)2 + 1

3(Tj − I)3

=


0 0 0 0

−δji 0 0 0
−1

2J
2
j Ji −JiJjJk 0 0

−1
3J

3
j −1

2J
2
j Jk −δkj 0


and the ensuing monodromy weight filtrations W (Nj)• are rather different
in these two cases,13 which we denote type “I” resp. “II”.

For W• = W (N0)• (type I), we determine the following generators for
the GrW` :

W0 = 〈Op〉
W2 = W0 + 〈{Σr−2

k=1(αi0α
k
i+1 − αi+1

0 αki )OCk}r−3
i=1 , r

◦OC0
+ Σr−2

k=1α
k
0OCk〉

W3 = W2 + 〈OD0
, Σr−2

k,i=1diα
i
kOCk〉

W4 = W3 + 〈{αi+1
0 OJi − αi0OJi+1

}r−3
i=1 , OJ0

〉
W6 = W4 + 〈OX◦〉.

The T0-invariants ker(T0 − I) = ker(N0) are spanned by

(6.25) Op, {OCk}r−2
k=1, and OD0

.

A key point here is that because the “ζ(3)” in Γ̂(X◦) only appears in γ(OX◦),
it does not appear in any T0-invariant A-model periods.

For W• = W (Nj)• (j > 0), the situation bifurcates according to whether
αjj 6= 0 (type IIa) or αjj = 0 (type IIb). If αjj 6= 0 then we have W0 = {0},

W1 = 〈Op, OC0
〉,

W3 = W1 + 〈Σr−2
k=0α

j
kOCk , OJj , {OCi}i 6=j,0, {α

j
i+1OJi − α

j
iOJi+1

}r−3
i=1 〉,

W5 = W3 + 〈OJ0
, OX◦〉.

In particular, Nj sends OJ0
7→ −

∑
αjkOCk 7→ αjjOp and OX◦ 7→ −OJj 7→

αjjOC0
. A basis for the Tj-invariants in this case (type IIa) is14

(6.26) Op, {OCi}i 6=j , and {α
j
i+1OJi − α

j
iOJi+1

}r−3
i=1 .

13We remind the reader that if j > 0, J2
j Ji = αj

jδ
0
i and J3

j = 0, while if j = 0
then J2

0Ji = αi
0 and J3

0 = r◦.
14{OCi}i 6=j includes OC0
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If αjj = 0, let j′ 6= j, 0 be such that αjj′ 6= 0; this exists because {αk` }
r−2
k,`=1 is

nondegenerate. The type IIb weight filtration is then W1 = {0},

W2 = 〈Op, OC0
, Σr−2

k=1α
j
kOCk , OJj 〉

W3 = W2 + 〈{OCi}i 6=0,j,j′ , {αjiOJj′ − α
j
j′OJi}i 6=0,j,j′〉

W4 = W3 + 〈OX◦ , OJ0
, OJj′ , OCj 〉,

with Tj-invariants

(6.27) Op, {OCi}i 6=j , OJj , {α
j
iOJj′ − α

j
j′OJi}i 6=0,j,j′ .

The three types of limiting mixed Hodge structure ψqjVA (arising along
the hyperplanes {qj = 0}) can be displayed pictorially by placing a bullet in
the (p, q) spot if (ψqjVA)p,q 6= {0} (and indicating its rank). Arrows denote
the action of Nj , with ranks of these maps indicated:

(I)

p

q

p

q

p

q

1

r−2

1

1

1 1

1

1

2

1

1

1
r−2

1

r−2

1

1

r−2

1

1

r−2

1

1

1
r−4 2

2 1

1

r−4

(IIa) (IIb)

Note that the space ofinvariants (i.e. ker(N)) has rank r for type I but
rank 2r − 4 for both types IIa and IIb. Bases forthese invariant spaces may
obviously be obtained by applying γ to (6.25)–(6.27), and changing basis
where convenient. For type I, we find immediately that (6.23) is a basis for
(κ∗ of) ker(N0) ⊂ VQ. For both types II, one deduces that

σ(p), {σ(Ci)}i 6=j (incl. σ(C0)), and
r − 3 Q-linear combinations of the {σ(Ji)}r−2

i=1

span ker(Nj).
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6.4. Mirror map

Let � ⊂ Rn be a reflexive polytope, F =
∑m+n

i=0 bix
v(i) a general �-regular

Laurent polynomial (with v(0) = 0), and assume none of the {v(i)}m+n
i=0 = � ∩

Zn lie on the relative interior of a facet of �. If V denotes the Q-vector space
formally generated by the {v(i)}m+n

i=1 , let R := ker{V→ Qn} be the relations
subspace, with Q-basis {r(j) =

∑m+n
i=1 r

(j)
i v(i)}mj=1, and set (for j = 1, . . . ,m)

wj := b
−

∑
i r

(j)
i

0

∏
i

b
r

(j)
i

i =
∏
i

(
bi
b0

)r(j)
i

.

Write X ⊂ P� for the zero locus of F and X ◦ ⊂ P�◦ for a general anti-
canonical hypersurface. We have the exact sequence

0→ (Qn)∨ → V∨ → R∨ → 0

where R∨ ∼= H2(X ◦,Q). A basis of V∨ is given by the divisors Di ⊂ X ◦ dual
to the v(i). Choose {βk` } ∈ Qm(m+n) such that

∑m+n
k=1 βk` r

(j)
k = δj` (`, j =

1, . . . ,m), and put

J` :=

m+n∑
k=1

βk` [Dk] ∈ H2(X ◦).

This gives a basis dual to {r(j)}, since

r(j)(J`) =
∑
i,k

βk` r
(j)
i v(i)(Dk) =

∑
i,k

βk` r
(j)
i δik =

∑
k

βk` r
(j)
k = δj` .

Now the mirror map sends the complex structure parameter b of X to a
Kähler parameter in H2(X ◦,C), of the form τ(w) =

=

m∑
j=1

τj(w)Jj =
1

2πi

m+n∑
i=1

log
(
bi
b0

)
[Di] +O

({
bi
b0

})
,

where τj(b) are (B-model) periods. We compute

r(j)

(∑
i

log
(
bi
b0

)
[Di]

)
=
∑
i,k

r
(j)
k log

(
bi
b0

)
v(k)(Di)

=
∑
i

r
(j)
i log

(
bi
b0

)
= log(wj),

which shows τj(w) ∼ 1
2πi log(wj).
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Applying this to our situation (n = 4, m = r − 1), with α, β, γ, {ai} re-
placing the {bi}, withD′, D′′, D0, . . . , Dr replacing the {Di}, and with z0, . . . ,
zr−2 replacing w1, . . . , wm, we recover (5.2) and (6.4), and find that the co-
efficients {τj(z)} of the {Jj} in τ(z) are asymptotic to 1

2πi log(zj). By §5.7
(especially (5.16)–(5.17)), the mirror map is therefore exactly

(6.28) τ(z) =

r−2∑
j=0

τj(z)Jj = ΠB
τβ(z)J0 +

r−2∑
j=1

ΠB
Mα(ϕ

(j)
0 )

(z)Jj .

Writing Q(z0, . . . , zr−2) := (q0(z), . . . , qr−2(z)), we note that the B-model
coordinate axes zj = 0 map to the A-model axes qj = 0.

Now [Ir, Thm. 5.9] provides an isomorphism Θ : Q∗VA
∼=→ VB of Z-

variation of Hodge structure sending 1X◦ 7→ [Ω̃]. Since (6.24) and (6.28) iden-
tify the periods

ΠB
Tβ(z) ≡ ΠA

ξ̂C0

(Q(z)) and ΠB
Mα(ϕ

(j)
0 )

(z) ≡ ΠA
ξ̂Cj

(Q(z))

modulo Z, and obviously ΠB
Tα(z) = 1 = ΠA

ξ̂p
(Q(z)), we deduce that (up to

changing Tβ andMα(ϕ
(j)
0 ) by integer multiples of Tα)

Θ(σ(p)) = Tα, Θ(−σ(C0)) = Tβ, Θ(−σ(Cj)) =Mα(ϕ
(j)
0 ).

By considering W (N0)• on ker(N0) on the A and B sides (cf. §5.6 and §6.3),
we find in addition that (after modifying ϕ1 by Z〈{ϕ(i)

0 }〉 and Mα(ϕ1) by
Z〈Tα〉 if necessary)

(6.29) Θ(σ(D0)) = Θ(γ(ξ̂D0
)) =Mα(ϕ1).

(More precisely, if we look atW (N0)3 ∩ ker(T0 − I) in H3(X,Z) (⊂ VB) resp.
VZ (⊂ VA), this is generated byMα(ϕ1) mod Z〈Tα, {Mα(ϕ

(i)
0 )}〉 resp. γ(ξ̂D0

)
mod Z〈γ(ξ̂p), {γ(ξ̂Ci)}r−2

i=1 〉.) Heuristically, we obviously have some matching
as well between the {Mβ(ϕ

(i)
0 )} and {γ(OJj )}, and between Mβ(ϕ1) and

γ(OX◦); but we will not dissect this further, as (6.29) shall now yield the
local mirror symmetry identity we seek.

Recalling that k̂ = (k0, k), write Ñk for Ñk̂ when k0 = 0; and referring

to §5.7, write R1 := Rϕ1
(z) resp. R(i)

0 := Rϕ(i)
0

(z), where z = (z1, . . . , zr−2)

omits z0. Accordingly, we shall change notation for (z0, . . . , zr−2) to ẑ =

(z0, z). Define local Kähler parameters Qi := eR
(i)
0 (for i = 1, . . . , r − 2).
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Theorem 6.1. On the universal cover of (∆∗)r−2 we have

(6.30) (2πi)R1 =
1

2

r−2∑
i,j=1

αijR
(i)
0 R

(j)
0 −

∑
k 6=0

(Σr−2
i=1diki)ÑkQ

k.

Remark 6.2. This is Conjecture 5.1 in [DK]; also see [CKYZ, Hos].

Proof. Taking periods of (6.29) on both sides (with respect to Ω̃ resp. 1X◦)
yields

ΠB
Mα(ϕ1)(ẑ) = ΠA

ξ̂D0

(Q(ẑ)) = 〈1X◦ , σ(D0)〉(Q(ẑ)).

By (6.5),

σ(D0) = σ(J0)−
r−2∑
i=1

diσ(Ji)

which by (6.13)

= D0 −
1

(2πi)3

∑
j

(
Φ′′0j − ΣidiΦ

′′
ij

)
Cj +

1

(2πi)3

(
Φ′0 − ΣidiΦ

′
i

)
p.

Writing ∂D0
:= ∂0 −

∑
di∂i, the A-model period is then

〈1X◦ , σ(D0)〉 =
1

(2πi)3
∂D0

Φ = ∂D0

(
Σr−2
j=0τjJj

)3
+

1

(2πi)3
∂D0

∑
k̂ 6=0

Ñk̂Q̃
k̂
.

For the first term, ∂D0
of

r◦

6
τ3

0 +
1

2
τ2

0

r−2∑
j=1

αj0τj +
1

2
τ0

r−2∑
i,j=1

αijτiτj

is

1

2

(
r◦ − Σidiα

i
0

)
τ2

0 + τ0

r−2∑
j=1

(
αj0 − Σidiα

i
j

)
τj +

1

2

r−2∑
i,j=1

αijτiτj =
1

2

∑
i,j

αijτiτj

by (6.10); for the second we have 1
(2πi)2

∑
k̂ 6=0(k0 −

∑
diki)Ñk̂q

k̂. Pulling back
by Q therefore gives (as multivalued functions of ẑ)
(6.31)

ΠB
Mα(ϕ1) =

1

2

∑
i,j

αijΠ
B
Mα(ϕ

(i)
0 )

ΠB
Mα(ϕ

(j)
0 )

+
1

(2πi)2

∑
k̂ 6=0

(k0 − Σdiki)Ñk̂q(ẑ)
k̂,
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where qj(ẑ) = e
2πi

∏B

Mα(ϕ
(i)
0

) and q0(ẑ) = e
2πi

∏B
Tβ ∼ z0.

Now we pass to the limit z0 → 0, where (6.31) essentially becomes an
equality of extension classes of A- and B-model limiting mixed Hodge struc-
ture. (In particular, the limit on both sides is finite since these are periods
of T0-invariant cycles; this is also clear from the absence of τ0 = ΠB

Tβ in any
term.) Since limz0→0 q0(ẑ) = 0, the

∑
k̂ becomes a

∑
k, while by §5.7

lim
z0→0

ΠB
Mα(ϕ1)(z0, z) =

1

2πi
R1(z) , lim

z0→0
ΠB
Mα(ϕ

(i)
0 )

(z0, z) =
1

2πi
R

(i)
0 (z) ,

hence limz0→0 qi(z0, z) = Qi(z). So (2πi)2 · (6.31)|z0=0 indeed yields our main
result (6.30). �

The Gromov-Witten invariants Ñk “counting”15 genus-0 curves of class∑r−2
i=1 ki[Ci] on X◦, may also be interpreted as local Gromov-Witten invari-

ants ofD0
∼= P∆◦ , or equivalently as (usual) Gromov-Witten invariants of the

3-fold P(O ⊕KP∆◦ ). With this interpretation, the right-hand-side of (6.30)
(perhaps replacing R(i)

0 by (2πi)τi) is the local Gromov-Witten prepotential
Φloc of P∆◦ .

6.5. The sunset case

Specializing to the diagram

curves on the Fano surface

P

a

a

a

23

6

4

a

a
0

a
1

C

C

C

C

C

C

1

2

3

4

6

5

∆
o

∆
= D0

a
5

coefficients of Laurent polynomial

15These are rational and possibly negative numbers, so only “count” anything in
the sense of excess intersection number.



i
i

“1-Bloch” — 2018/3/13 — 0:35 — page 1431 — #59 i
i

i
i

i
i

Local mirror symmetry and the sunset Feynman integral 1431

we have r = r◦ = ν = 6, di = 1, and

`ij =


−1, i = j

1, i ≡
(6)
j ± 1

0, otherwise.

From this we deduce that

J1 = −D1 +D3 +D4 (= D6) , J2 = D3 +D4 ,

J3 = D1 +D2 , J4 = D1 +D2 −D4 (= D5) ,

and (using (6.10)) that

α̃ij =


6 1 2 2 1

1 −1 0 1 1
2 0 0 1 1
2 1 1 0 0
1 1 1 0 −1

 .

In (6.14) and (6.22) we have for example

Γ̂(X◦) = 1 +
1

2

∑
Ci + 3C0 +

360ζ(3)

(2πi)3
p ,

ξ̂D0
= OD0

+ 1
2OC1

+OC2
+OC3

+ 1
2OC4

− 4Op ,
−ξ̂Cj = OCj −Op = OCj (−1) ;

notice that ξ̂D0
is not quite integral. One easily reads off the Nj from α̃ij :

type invariants
N0 I Op, {OCk}k 6=0, OD0

N1 IIa Op, {OCk}k 6=1, OJ1
+OJ3

, OJ1
+OJ4

, OJ2

N2 IIb Op, {OCk}k 6=2, OJ1
, OJ2

, OJ3
−OJ4

N3 IIb Op, {OCk}k 6=3, OJ1
−OJ2

, OJ3
, OJ4

N4 IIa Op, {OCk}k 6=4, OJ1
+OJ4

, OJ2
+OJ4

, OJ3

where k runs from 0 to 4.
This is in some sense incomplete, as the nonsimplicial nature of the

Mori cone R≥0〈C1, . . . , C6〉 ⊂ H2(P∆◦ ,R) (and the dual “Kähler” cone in
H2(P∆◦ ,R)) forces us to use all 6 {zi} to parametrize the singular 4-
dimensional domain of the B-model VHS, as described in §5.6. But this
will not matter as we presently restrict to the Feynman locus, where zi =
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zi+3 (i = 1, 2, 3) and R(1)
0 = R

(4)
0 (cf. (5.19)–(5.18)), so that the mirror map

zends z 7→ R
(1)
0 (J1 + J4) +R

(2)
0 J2 +R

(3)
0 J3. This specialization therefore re-

places Kähler by the 3-dimensional simplicial “slice” R≥0〈J1 + J4, J2, J3〉 =
R≥0〈D2 +D3, D3 +D4, D1 +D2〉, and Mori by the 3-dimensional simpli-
cial quotient R≥0〈C1, C2, C3〉 inH2 := H2(P∆◦)/〈C1 − C4〉. (Note that C1 ≡
C4 =⇒ C2 = C5 and C3 = C6; and that working modulo this equivalence,
γ(ξ̂D0

) becomes integral.) It also replaces N1 and N4 in the table by their
sum N1 +N4, which we compute to be (like N2 and N3) of type IIb, with
invariants

Op, OC0
, OC1

−OC4
, OC2

, OC3
, OJ1

, OJ2
−OJ3

, OJ4
.

We shall also have to define local Gromov-Witten invariants for classes
`1C1 + `2C2 + `3C3 ∈ H2, writing

(6.32) N` :=
∑

k1+k4=`1

Ñk1,`2,`3,k4
∈ Q.

Now the statement of Theorem 6.1 for the sunset reads (2πi)R1 =

=
(
R

(1)
0 +R

(2)
0

)(
R

(3)
0 +R

(4)
0

)
− 1

2

(
R

(1)
0

)2
− 1

2

(
R

(4)
0

)2
−
∑
k 6=0

|k|ÑkQ
k,

where |k| :=
∑4

i=1 ki. The Feynman specialization gives R(1)
0 = R

(4)
0 and

Q1 = Q4, and so writing Q` = Q`11 Q
`2
2 Q

`3 and |`| =
∑3

i=1 `i, we have the

Corollary 6.3. On the Feynman locus (∼= (∆∗)3) parametrizing the general-
mass sunset family, we have

(6.33) (2πi)R1 = R
(1)
0 R

(2)
0 +R

(2)
0 R

(3)
0 +R

(1)
0 R

(3)
0 −

∑
`∈N3\0

|`|N`Q
`.

A computation of the local Gromov-Witten invariant is given in section 7.3.

7. The multiparameter sunset integral

In this section we use regulators (see §5.7) to derive the inhomogeneous
Picard-Fuchs equation (Prop. 7.2) for the sunset integral, and also to relate
it to the elliptic dilogarithm (Remark 7.5). This analysis complements the
derivation of the Picard-Fuchs equation given in section 3.2 and the evalu-
ation of the sunset integral in section 3.3. Using Corollary 6.3, we are able
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to derive an expression for the integral in terms of the local Gromov-Witten
numbers, and to compute these numbers (Prop. 7.6ff).

7.1. Degeneration of the Yukawa coupling

Let B denote the symplectic basis for the B-model Q-local system given by
applying Θ ◦ γ to (6.21). According to §§6.2,6.4 (esp. (6.13)) we find

t[Ω]B =

(
1, τ0, . . . , τr−2,

Φ′0
(2πi)3

+O(τ), . . . ,
Φ′r−2

(2πi)3
+O(τ),(7.1)

1

(2πi)3

{
2Φ−

r−2∑
`=0

τ`Φ
′
`

}
+O(τ)

)

There are two ways to define Yukawa coupling: while (with δz := z∂z)

(7.2) Ỹijk :=

ˆ
X

Ω̃ ∧∇3
δziδzj δzk

Ω̃,

makes sense “globally” (in z0,, . . . , zk), we consider instead (referring to (6.28)
for τ(z))

(7.3) Yijk :=

ˆ
X

Ω ∧∇3
∂τi∂τj∂τk

Ω,

which is defined “locally” about the large complex structure limit (in q0, . . . ,
qk). Since [Q]B is given by (6.20), (7.3) is easily computed to be

(7.4) = t[Ω]B[Q]B[Ω]B = 1
(2πi)3 Φ

(3)
ijk.

Motivated by the fact that the unique combination of first derivatives of
Φ remaining finite in the q0 → 0 (z0 → 0) limit is Φ′0 −

∑r−2
i=1 diΦ

′
i (see the

proof of Theorem 6.1), we look at

Y loc
jk := lim

q0→0

(
Y0jk −

r−2∑
i=1

diYijk

)

= αjk −
∑
κ6=0

Ñκ

(
r−2∑
i=1

diκi

)
κjκkQ

κ

= 1
(2πi)2 Φ′′loc,jk = 1

2πi∂
2
R

(j)
0 R

(k)
0

R1.



i
i

“1-Bloch” — 2018/3/13 — 0:35 — page 1434 — #62 i
i

i
i

i
i

1434 S. Bloch, M. Kerr, and P. Vanhove

To relate these to a Yukawa coupling on the elliptic curve family {Ea}, write
(cf. (5.1),(5.3))

(7.5) ωa :=
1

2πi
ResEa

(
dx
x ∧

dy
y

fa(x, y)

)
∈ Ω1(Ea),

and π0 =
´
ϕ0
ω, π1 =

´
ϕ1
ω. Now pass to the “diagonal slice” subfamily of

[DK, §5.4], specializing fa to 1− sφ� where φ�(x, y) is a specific tempered
∆-regular Laurent polynomial; by [DK, §5.4] we have zi(s)/sdi a root of 1

(∀i) and R
(1)
0 /d1 ≡ · · · ≡ R(r−2)

0 /dr−2 ≡: R0 mod Q(1). Moreover, one has
δsRi = πi (i = 1, 2), and an easy computation reveals that

2πi
∑
j,k

djdkY
loc
jk |∆ = ∂2

R0
R1 =

YE

π3
0

,

where

YE(s) :=

ˆ
Es

ωs ∧∇δsωs = π0δsπ1 − π1δsπ0

is the Yukawa coupling for {Es} := {E{a(s)}.

Remark 7.1. In general, if X is replaced by a family of elliptically-fibered
Calabi-Yau (n+ 1)-folds, and E by a family of (n− 1)-dimensional Calabi-
Yaus W with rank n Picard-Fuchs equation along ∆, a heuristic Hodge-
theoretic argument shows that a (z0 → 0) limit of Yukawa couplings for X
yields YW /πn+1

0 along ∆.

For the rest of this section, we specialize to the sunset case. However, to
treat the three-mass situation, we shall need to consider “arbitrary slices” of
the Feynman locus, given by (the vanishing of)

fa(s;ξ)(x, y) := f�s (x, y) := 1− sφ�(x, y),

φ�(x, y) := (1− x−1 − y−1)(ξ2
3 − ξ2

2x− ξ2
1y).

(Note that φ� is no longer tempered.) We write Eξ ε→ P1
s for the family with

fibers

E�s = {f�s (x, y) = 0} ⊂ P∆,

and ωs := ωa(s; ξ) (cf. (7.5)) for the section of ε∗ωE/P1
∼= O(1) with a simple

zero at s =∞. Note that this family is semistable.
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The Yukawa coupling (with δs := s∂s)

(7.6) Y�(s) := 2πi

ˆ
E�
s

ωs ∧∇δsωs ∈ C(P1)∗ ∼= C(s)∗

can be determined up to scale by the properties:

• Y� has a double zero at ∞;

• Y�(0) ∈ C∗;

• at other singular fibers, Y�(s) has a simple pole;

• Y�(s) has a zero of order m− 1 at branch points of order m for the
J-invariant J(s); and

• Y�(0) = 6, by (7.25) below.

This yields the function

(7.7) Y�(s) =
2µ1µ2µ3µ4s

2 − 4(ξ2
1 + ξ2

2 + ξ2
3)s+ 6∏4

i=1(1− µ2
i s)

,

where µ1 = −ξ1 + ξ2 + ξ3, µ2 = ξ1 − ξ2 + ξ3, µ3 = ξ1 + ξ2 − ξ3, µ4 = ξ1 +
ξ2 + ξ3. This of course reproduces the expression for the Yukawa coupling
in (3.50) derived in section 3.2.

We shall use this below to compute the local Gromov-Witten invariants
N`, for simplicity of notation suppressing most “�” subscripts in what fol-
lows.

7.2. Inhomogeneous equation for the sunset integral

Continuing an analysis of the 1-parameter family E�
ε→ P1, we write as

usual {{ϕ(i)
0 }6i=1, ϕ1} ⊂ KE (cf. §5.4), and recall that on the Feynman lo-

cus, {{ϕ(i)
0 }3i=1, ϕ1} furnish a basis for K̄E (cf. §5.6). For the holomorphic

period (about s = 0), the usual residue computation yields

π0 =

ˆ
ϕ0

ω =

ˆ
ϕ

(i)
0

ω (i = 1, 2, 3)(7.8)

=
∑
m≥0

sm

∑
|b|=m

ξb
(
m

b

)2
 =:

∑
m≥0

smβm,
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where
(
m
b

)
= m!

b1!b2!b3! and the coefficients βm are generalized Apéry numbers.
Writing R = 1

2πiR{x, y} = 1
2πi log(x)dyy − log(y)δTx for the regulator current

on E∗s , (5.20) gives for i = 1, 2, 3

(7.9) R
(i)
0 =

ˆ
ϕ

(i)
0

R = log
(
−ξ2

i s
1−s

∑
ξ2
i

)
+H(s),

where H is holomorphic (about s = 0) and vanishes at s = 0. Write Li :=
2 log(ξi).

Interpreted as a 1-current on E\E0, R has coboundary

(7.10) d[R] = 1
2πi

dx
x ∧

dy
y − (2πi)δTx∩Ty −

3∑
i=1

log
(

m2
i

m2
i−1

)
δqi×P1\{0},

where q1, q2, q3, p1, p2, p3 constitute the base locus of {Es}:

v

q

q

p

q

p

1

1 2

2 3

3

p

v

v

v

v

v

1

23

5

6

4

Es

So locally over any small disk U ⊂ P1 avoiding the discriminant locus of ε,
writing P ij → U for the 3-chain with boundary qj × U − qi × U (and fibers
P ij), we may construct the 1-current

(7.11) R̂ := R− {L1δP23 + L2δP12 + L3δP31} − (2πi)δ∂−1(Tx∩Ty),

which has d[R̂] = (2πi)−1dx/x ∧ dy/y. Notice that its restriction to fibers Es
is closed.16

For ξi all 1 (equal masses) and s /∈ [0, 1
9 ], we have Tx ∩ Ty ∩ Es = ∅; mov-

ing the ξi in a small neighborhood of 1, the “bad set” [0, 1
9 ] thickens slightly.

16The resulting family of classes in H1(Es,C) are lifts of regulator classes in
H1(Es,C/Z(2)) for an element of CH2(Es, 2) precisely when the ratios ξi/ξi−1 are
roots of unity, but we will not need this.
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Taking U in the complement, we may ignore the last term of (7.11) for pur-
poses of integrating over ϕ(i)

0 . Recall from [DK] that if ϕi0 are the cycles that
(at s = 0) get pinched to vi,

s

ϕϕ

ϕ

ϕ ϕ

ϕ
0

ϕ

2
3

4

5
6

1

1

0
0

0

0
0

P
P

P

12

23

31

q

q
q

1

2

3

E

then

ϕ
(i)
0 = −ϕi0 + ϕi+1

0 + ϕi−1
0 .

Together with (7.11), the resulting intersection numbers17 ϕ
(1)
0 · P 23 = ϕ

(2)
0 ·

P 12 = ϕ
(3)
0 · P 31 = 1 (all others zero) yield

(7.12)
ˆ
ϕ

(i)
0

R̂ = R
(i)
0 − Li =: R̂0,

which according to (7.9) (or the closedness of R̂|Es) is independent of i. As
suggested by the picture, we can also choose the P ij to avoid ϕ1, and so

(7.13) R̂1 :=

ˆ
ϕ1

R̂ = R1.

Next consider the interior product of d[R̂] with a lift of s dds : working over
U ,

2πi · d[R̂]ys̃ dds = dx
x ∧

dy
y ys̃

d
ds

= −ResE
(
dx
x ∧

dy
y ∧ dlog(s−1 − φ�)

)
ys̃ dds

17Here we are pairing H1(E∗) ∼= H1(E, {pi, qi}3i=1) and H1(E∗).
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restricts on fibers to

−ResEs
(
dx
x ∧

dy
y ∧

−ds/s2

s−1−φ�
ys̃ dds

)
= ResEs

(
dx
x ∧

dy
y

1− sφ�

)
= (2πi)ωs.

It follows that

(7.14) ∇δs [R̂|Es ] = [ωs],

which along with (7.12) implies that

(7.15) R
(i)
0 − Li (= R̂0) = log(−s) +

∑
m>0

sm

m βm

up to an additive constant. This constant is obviously zero by (7.9).
Now recall that the Feynman integral is given by I�(s) := −sV�(s)

(7.16) V�(s) =

ˆ
Tx∩Ty

dx
x ∧

dy
y

1− sφ�
=:

ˆ
Tx∩Ty

ω̂s.

Writing ıs : Es ↪→ P∆, and R = 1
2πiR{x, y} as above, we note that d[ω̂s] =

(2πi)2ıs∗ωs as a current, and that (on P∆)

d[ 1
2πiR] = 1

(2πi)2
dx
x ∧

dy
y − δTx∩Ty + {residue terms supported on D∆}.

Using integration by parts (for currents), we get that (7.16) becomes

(7.17) 1
2πi

ˆ
P∆

R ∧ d[ω̂s] = 2πi

ˆ
P∆

R ∧ ıs∗ωs = 2πi

ˆ
Es

R|Es ∧ ωs.

(Note that (7.17) is not a truncated higher normal function in the sense of
[DK], and neither is 〈R̂|Es , ωs〉 in (7.18) below.) Since ∂−1(Tx ∩ Ty) in (7.11)
avoids ε−1(U) (and s ∈ U), we conclude that18

(7.18) V�(s) = 〈R̂|Es , ω̃s〉+

3∑
i=1

Lπ̃(i)
1 (s; ξ),

where ω̃s := (2πi)ωs, and

(7.19) π̃
(1)
1 :=

ˆ q3

q2

ω̃s, π̃
(2)
1 :=

ˆ q2

q1

ω̃s, π̃
(3)
1 :=

ˆ q1

q3

ω̃s.

18Of course 〈R̂, ω〉 means
´
Es
R̂ ∧ ω; we write it this way to emphasize that fact

that two cohomology classes are being paired.
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Note that the {qi} depend on ξ, and that
∑3

j=1 π̃
(j)
1 = π̃1(= 2πiπ1).

Let θ = δ2
s + q1(s)δs + q0(s) be the Picard-Fuchs operator associated to

{ωs}, so that ∇2
δs

+ f(s)∇δs + g(s) kills [ωs]. Using (7.14) and (7.6), we find
δs〈R̂, ω〉 = 〈R̂,∇δsω〉 and δ2

s〈R̂, ω〉 = (2πi)−1Y�(s) + 〈R̂,∇2
δs
ω〉, which leads

at once to the inhomogeneous Picard-Fuchs equation:

Proposition 7.2. We have

(7.20) θ (V�(s)) = θ

(
−1

s
I�(s)

)
= Y�(s) +

3∑
j=1

log(ξ2
j )νj(s),

where

(7.21) νi(s) := θ
(
π̃

(i)
1 (s; ξ)

)
satisfy

∑3
i=1 νi = 0.

Remark 7.3. (i) The functions in (7.21) belong to Q̄(s)∗, since the partial
elliptic integrals in (7.19) are the normal functions associated to globally well-
defined algebraic 0-cycles [qj+1]− [qj ] on the family {Es}, and the section
{ω̃s} of the relative canonical bundle is defined over Q̄.

(ii) The right-hand-side of (7.20) only depends on s and the mass ratios,
since this is true for νj and Y�; and we have

∑3
j=1 Ljνj = log(m2

2/m
2
3)ν1 +

log(m2
1/m

2
3)ν2.

Remark 7.4. The coefficients q1(s) and q0(s) are respectively given in (3.40)
and (3.45). An explicit expression for the νi(s) in some coordinate system
is given in section (3.49). In particular

∏4
i=1(sµ2

i − 1)(s2
∏4
i=1 µi − 2s(ξ2

1 +
ξ2

2 + ξ2
3) + 3)νi(s) = 12s ci(s) with c1(s) given in (3.51) and c2(s) given

in (3.52).

Remark 7.5. One can also relate (7.17) directly to the elliptic dilogarithm.
Noting that up to coboundary −(2πi)R|Es ≡ log(y)dxx − (2πi) log(x)δTy , we
get

(7.22) I�(s) = −s
ˆ
Ty(∩Es)

log(x)ω̃s.

Recalling that ∂Ty = (y), this connects at once to the expression for the
sunset integral in (4.27) hence (3.79).
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7.3. On the local Gromov-Witten numbers

Turning to the numbers N` = N`1,`2,`3 (cf. (6.32)), note first that symmetries
of P∆ immediately imply that for any σ ∈ S3,

N` = Nσ(`).

We also know that

N100 +N010 +N001 = 6,

as this is the number of “anticanonical-degree-one” rational curves on P∆

(the six toric boundary components).
The symmetries also force the prepotential Φloc = (2πi)R1 to be sym-

metric in the τi = (2πi)R
(i)
0 (i = 1, 2, 3). Indeed, this is already recorded in

(6.33), which combined with (7.12) and (7.13) becomes

(7.23) (2πi)R̂1 = 3R̂2
0 + 2

(∑
Li
)
R̂0 −

∑
`>0

`N`Q̂
`,

where Q̂ = eR̂0 , and

(7.24) N` :=
∑
|`|=`

N`ξ
2`.

But since ∇δs [R̂] = [ω], we have immediately δsR̂1 = π1 and δsR̂0 = π0, so
that

(7.25) (2πi)
∂2R̂1

∂R̂2
0

= (2πi)
∂

∂R̂0

π1

π0
=
Y�
π3

0

.

Putting together the expressions of the Yukawa coupling (7.7), the period
π0 and the coefficients βm in (7.8), for R̂0 in (7.15), the expansion of R̂1

in (7.23) and (7.25) now yields the

Proposition 7.6. In a neighborhood of s = 0 (Q̂ = 0), we have

6−
∑
`>0

`3N`Q̂
` =

6− 4(ξ2
1 + ξ2

2 + ξ2
3)s+ 2µ1µ2µ3µ4s

2(
1 +

∑
m>0 βms

m
)3∏4

i=1(1− µ2
i s)

,

where Q̂ = −s exp
{∑

m>0
βmsm

m

}
.
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We may use Proposition 7.6 to recover the N`, as well as the local “in-
stanton numbers” n` defined by the Aspinwall-Morrison formula [AM, Vo]

N`1,`2,`3 =
∑

d|`1,`2,`3

1

d3
n `1

d
,
`2
d
,
`3
d

.

As far as we computed, the latter are integers:

` (100)
k>0

(k00) (110) (210) (111) (310) (220) (211) (221)

N` 2 2/k3 −2 0 6 0 −1/4 −4 10

n` 2 0 −2 0 6 0 0 −4 10

` (410) (320) (311) (510) (420) (411) (330) (321) (222)

N` 0 0 0 0 0 0 −2/27 −1 −189/4

n` 0 0 0 0 0 0 0 −1 −48

Finally, we note that the Gromov-Witten invariants appear directly in the
Feynman integral, as follows. Write −s−1I� = −s−1Ĩ� +

∑3
i=1 Liπ̃

(i)
1 , and

apply ∂R̂0
to (7.23) to have

(2πi)
π1

π0
= 6R̂0 + 2

3∑
i=1

Li −
∑
`>0

`2N`Q̂
`.

The contribution Ĩ� to the Feynman integral read

−s−1Ĩ�(s) = 2πi〈R̂, ω〉 = 2πi(π1R̂0 − π0R̂1)(7.26)

= π0

(
2πi

π1

π0
R̂0 − 2πiR̂1

)
,

which using π1/π0 = δsR̂1/δsR̂0 = ∂R̂1/∂R0 leads to the expression as a Leg-
endre transform of R̂1

(7.27) Ĩ�(s) = −s 2πiπ0

(
∂R̂1

∂R̂0

R̂0 − R̂1

)
.

This expression has the expansion

(7.28) Ĩ�(s) = −s π0

{
3R̂2

0 +
∑
`>0

`(1− `R̂0)N`Q̂
`

}
,
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The occurrence of the Gromov-Witten numbers in this Feynman integral
seems to be novel.

7.4. The local Gromov-Witten numbers in the
all equal masses case

In this subsection we compute the local Gromov-Witten invariants for the
all equal masses case. The family of elliptic curves E� := {xyz − s(x+ y +
z)(xy + xz + yz) = 0|(x, y, z) ∈ P2} defines a pencil of elliptic curves in P2

corresponding to a modular family of elliptic curves f : E� → X1(6) = {τ ∈
C|=m(τ) > 0}/Γ1(6) (see [BV]).

7.4.1. The local Gromov-Witten numbers. In this case Proposition 7.6
applied to the case ξ1 = ξ2 = ξ3 = 1 implies that

(7.29) 6−
∑
`≥1

`3N`Q̂
` =

6

(9s− 1)(s− 1)π3
0

,

where the holomorphic period (about s = 0) of (7.8) reads

(7.30) π0 =
∑
`≥0

s`
∑

p1+p2+p3=`

(
`!

p1!p2!p3!

)2

.

and Q̂ = exp(R̂0) where R̂0 in (7.12) satisfies sdR0/ds = π0 and reads

(7.31) R0 = iπ + log s+
∑
`>0

s`

`

∑
p1+p2+p3=`

(
`!

p1!p2!p3!

)2

.

Taking for s the Hauptmodul used in [BV]

(7.32) s�(q)−1 = 9 + 72
η(q2)

η(q3)

(
η(q6)

η(q)

)5

we have

(7.33) π0(q) =
1

4

θ3
2(q)

θ2(q3)

and

(7.34) R̂0(q) = iπ + log q −
∑
n≥1

(−1)n−1

(
−3

n

)
nLi1 (qn) ,
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where
(−3
n

)
= 0, 1,−1 for n ≡ 0, 1, 2 mod 3.

From (7.29) we compute the local Gromov-Witten numbers N`

N`/6 = 1,−7

8
,
28

27
,−135

64
,
626

125
,−751

54
,
14407

343
,−69767

512
,
339013

729
,−827191

500
,

(7.35)

8096474

1331
,−367837

16
,
195328680

2197
,−137447647

392
,
4746482528

3375
,

− 23447146631

4096
,
115962310342

4913
,−574107546859

5832
,
2844914597656

6859
,

− 1410921149451

800
,
10003681368433

1323
, . . .

or introducing n` the virtual number of degree ` rational curves using the
Aspinwall-Morrison multiple cover formula [AM, Vo]

(7.36) N` =
∑
d|`

1

d3
n `

d

we have

nk/6 = 1,−1, 1,−2, 5,−14, 42,−136, 465,−1655, 6083,−22988,(7.37)
88907,−350637, 1406365,−5724384, 23603157,−98440995,

414771045,−1763651230, 7561361577,−32661478080,

142046490441,−621629198960, 2736004885450,

− 12105740577346, 53824690388016, . . .

7.4.2. Comparing the two expansions. We will show how to relate the
q and Q expansions using a Γ1(6) modular transformation. In the all equal
masses case the sunset integral was given by [BV]

(7.38) I�(s) ≡ $r

π
E�(q) mod period ,

with E�(q) given in (3.75). The expression is modulo periods of the elliptic
curve, and $r is the real period on the real axis s > (ξ1 + ξ2 + ξ3)−2 given
in (3.14).

The all equal masses case the sunset integral is equal to Ĩ� in (7.28)

(7.39) I�(s) ≡ −s
(
π0R̂1 − π1R̂0

)
mod period
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where π0 is the holomorphic period around s = 0 and π1 is the other non-
holomorphic period in (7.19), and R̂1 is such that sdR̂1/ds = π1 of (7.23).
The modular transformations τ → −1/(6τ) maps the periods as

(7.40)
$r(−1/(6τ)) = −6s�(τ)(2iπτ)π0(τ);

π1(−1/6τ) =
3τ − 1

6
s�(τ)−1$r(τ) .

The same modular transformation applied to the sunset integral leads to the
relation between the elliptic dilogarithm E�(q) and the regulator period

(7.41) 36iτ E�(−1/(6τ)) = π2 + 3iπ log(−q) + 3

(
R̂1(τ)− ∂R̂1

∂R̂0

R̂0

)
.

This shows that E�(q) is the Legendre transform of R̂1(q) as expected from
the general different masses case in (7.27). Using the q-expansion given above
and using that ∂R̂1/∂R̂0 = log(−q) we have

R̂1(q)− ∂R̂1

∂R̂0

R̂0 = −1

2
log(−q)2(7.42)

+
∑
n≥1

∑
d|n

(−1)dd2

(
−3

d

)Li2 (qn) .

Part IV. Appendices

Appendix A. Theta functions

In this appendix we recall standard results on Jacobi theta functions that
are used in the text. We use the notation q = e2πiτ with τ the period ratio
chosen to lie in the upper-half-plane, and x ∈ C×/qZ

(A.1) θ1(x) :=
q

1

8

i

(
x

1

2 − x−
1

2

) ∞∏
n=1

(1− qn)(1− qnx)(1− qn/x) ,

and

(A.2) θ2(x) := q
1

8

(
x

1

2 + x−
1

2

) ∞∏
n=1

(1− qn)(1 + qnx)(1 + qn/x) ,
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and

(A.3) θ3(x) :=

∞∏
n=1

(1− qn)(1 + qn−1/2x)(1 + qn−1/2/x) ,

and finally

(A.4) θ4(x) :=

∞∏
n=1

(1− qn)(1− qn−1/2x)(1− qn−1/2/x) .

We will use the shorthand notation θa := θa(1) for a = 2, 3, 4, or θα(q) when
needed. A particular case of the Jacobi identity is

(A.5) θ2
3(v)θ2

3(u) + θ2
1(v)θ2

1(u) = θ2
2(v)θ2

2(u) + θ2
4(v)θ2

4(u) .

Applying this identity for v = exp(iπ(a+ bτ)) with a, b ∈ {0, 1} one obtains
the following quadratic relations satisfied by the theta functions

(A.6)


0 θ2

2 −θ2
3 θ2

4

θ2
2 0 θ2

4 −θ2
3

θ2
3 θ2

4 0 −θ2
2

θ2
4 θ2

3 −θ2
2 0



θ2

1(u)
θ2

2(u)
θ2

3(u)
θ2

4(u)

 =


0
0
0
0

 .

Appendix B. The coefficients of the Picard-Fuchs equation

In this appendix we give the explicit expressions for the coefficients of the
homogeneous polynomials used when deriving the sunset Picard-Fuchs equa-
tion.

B.1. The coefficients Cx, Cy and Cz

The coefficients Cx, Cy and Cz are homogeneous polynomials of degree 4 in
(x, y, z) of the form

Cx = xy2zC1,2,1
x + x2z2C2,0,2

x + x2yzC2,1,1
x + x3zC3,0,1

x ,

Cy = xyz2C1,1,2
y + xy2zC1,2,1

y + x2z2C2,0,2
y + x2yzC2,1,1

y ,(B.1)

Cz = xz3C1,0,3
z + xyz2C1,1,2

z + xy2zC1,2,1
z + x2z2C2,0,2

z + x2yzC2,1,1
z .
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Their detailed expressions are given by for Cx

6

4∏
i=1

(sµ2
i − 1)Cx

= sxz
(
m2

1x(9x+ 20y) + 3m2
2y(6x+ y) + 2m2

3x(10y − 3z)
)

+ s4xz
(
m4

1 − 2m2
1

(
m2

2 +m2
3

)
+
(
m2

2 −m2
3

)2)
×
(
m4

1x(x+ y) +m2
1

(
m2

2

(
5x2 + 8xy + 3y2

)
−m2

3x(5x+ 2(y + z))
)

+
(
m2

2 −m2
3

) (
3m2

2y(x+ y)−m2
3x(y − 2z)

))
− s2xz

(
m4

1x(17x+ 18y)

+m2
1

(
m2

2

(
13x2 + 46xy + 3y2

)
+ 3m2

3x(−3x+ 4y + 2z)
)

+ 3m4
2y(4x+ y) +m2

2m
2
3

(
10xy − 14xz + 9y2

)
+ 2m4

3x(9y − 5z)
)

+ s3xz
(
m6

1x(7x+ 4y)

+m4
1

(
m2

2

(
18x2 + 22xy − 3y2

)
− 2m2

3x(5x+ 2y − 7z)
)

−m2
1

(
m4

2

(
x2 − 24xy − 30y2

)
+ 2m2

2m
2
3

(
−7x2 − 22xy + 2xz + 3y2

)
+ m4

3x(13x+ 4y + 28z)
)

−
(
m2

2 −m2
3

) (
m4

2y(2x+ 3y) +m2
2m

2
3

(
2x(y + 5z) + 9y2

)
+ 2m4

3x(2y − z)
))
− 7x2yz ,

for Cy

3

4∏
i=1

(sµ2
i − 1)Cy

= −2sxyz
(
m2

1(3x+ 2y) + 3m2
2y +m2

3(2y + 3z)
)

− 2s4xz
(
m4

1 − 2m2
1

(
m2

2 +m2
3

)
+
(
m2

2 −m2
3

)2)
×
(
m4

1y(x+ y)−m2
1

(
m2

2y(x+ y) +m2
3

(
5xy + 6xz + 2y2 + 5yz

))
+ m2

3y
(
m2

3 −m2
2

)
(y + z)

)
+ 2s2xz

(
5m4

1xy +m2
1

(
m2

2y(7x+ y)− 3m2
3(7xy + 6xz + 7yz)

)
+ y

(
3m4

2y +m2
2m

2
3(y + 7z) + 5m4

3z
))

− 2s3xz
(
m6

1y(x− 2y) +m4
1

(
m2

2y(y − 6x) +m2
3(2x(y − 6z) + y(2y − 19z))

)
+m2

1

(
5m4

2xy − 2m2
2m

2
3(x(5y + 6z) + 5y(y + z))

+m4
3(2y(y + z)− x(19y + 12z))

)
+ y

(
m6

2y + 5m4
2m

2
3z +m2

2m
4
3(y − 6z) +m6

3(z − 2y)
))

+ 2xy2z ,
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and for Cz

6

4∏
i=1

(sµ2
i − 1)Cz

= sxz
(
−2m2

1(6xy + 9xz − yz)− 3m2
2y(y − 2z) +m2

3z(2y + 3z)
)

+ s4xz
(
−
(
m4

1 − 2m2
1

(
m2

2 +m2
3

)
+
(
m2

2 −m2
3

)2))
×
(
m4

1z(2x− y)

+m2
1

(
m2

2

(
12xy + 10xz + 3y2 + 10yz

)
+m2

3z(2x+ 2y + 5z)
)

+
(
m2

2 −m2
3

)
(y + z)

(
3m2

2y +m2
3z
))

+ s2xz
(
m4

1x(24y + 34z)

+m2
1

(
m2

2

(
12xy + 26xz + 3y2 + 32yz

)
+ 3m2

3

(
8xy + 6xz + 7z2

))
+ 3m4

2y(y − 4z) +m2
2m

2
3

(
9y2 − 4yz − 7z2

)
− 5m4

3z
2
)

− s3xz
(
2m6

1(6xy + 7xz + yz)

+m4
1

(
m2

2

(
48xy + 36xz − 3y2 + 26yz

)
+ m2

3(4x(z − 6y) + z(19z − 2y))
)

− 2m2
1

(
m4

2(x(6y + z)− 15y(y + z))

−m2
2m

2
3

(
24xy + 26xz − 3y2 + 2yz + 5z2

)
+m4

3(x(z − 6y) + z(y + z))
)

−
(
m2

2 −m2
3

) (
m4

2y(3y + 10z) +m2
2m

2
3

(
9y2 + 4yz + 5z2

)
+m4

3z(2y − z)
))
− xyz2 .

B.2. The coefficients C̃x, C̃y and C̃z

The coefficients C̃x, C̃y and C̃z are homogeneous polynomials of degree one
in (x, y, z) with the detailed expressions given below.

Setting N = 3(s2
∏4
i=1 µi − 2sM2 + 3)

∏4
i=1(µ2

i s− 1) we have for C̃x

2NC̃x = −sx
(
55m2

1 + 43m2
2 + 49m2

3

)
+ 2s2

(
21m4

1x+m2
1

(
m2

2(52x+ 6y) + 6m2
3(6x+ z)

)
+m4

2x

+ 2m2
2m

2
3(35x− 3(y + z)) + 9m4

3x
)

+ s5
(
−
(
m4

1 − 2m2
1

(
m2

2 +m2
3

)
+
(
m2

2 −m2
3

)2))
×
(
3m6

1x+m4
1

(
m2

2(5x+ 12y) + 3m2
3(x+ 4z)

)
− m2

1

(
m4

2(7x+ 12y) + 22m2
2m

2
3x+ 3m4

3(x+ 4z)
)

−
(
m2

2 −m2
3

) (
m4

2x+ 2m2
2m

2
3(x− 6y + 6z)− 3m4

3x
))
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− 2s3
(
3m6

1x+m4
1

(
m2

2(23x+ 18y) +m2
3(13x+ 18z)

)
+m2

1

(
7m4

2(5x− 6y) + 70m2
2m

2
3x+m4

3(23x− 42z)
)
− 21m6

2x

+ 3m4
2m

2
3(17x+ 14y − 6z) +m2

2m
4
3(49x− 18y + 42z)− 15m6

3x
)

+ s4
(
m8

1x− 4m6
1

(
m2

2(4x− 9y)− 9m2
3z
)

+ 2m4
1

(
m4

2(11x− 28y)

+ 2m2
2m

2
3(5x− 19(y + z))−m4

3(5x+ 28z)
)

+ 4m2
1

(
m6

2(4x+ 5y)

+ m4
2m

2
3(32x+ 19z) +m2

2m
4
3(20x+ 19y) +m6

3(8x+ 5z)
)

−
(
m2

2 −m2
3

) (
23m6

2x+m4
2m

2
3(11x+ 20y + 36z)

− m2
2m

4
3(11x+ 36y + 20z)− 23m6

3x
))

+ 21x,

for C̃y

NC̃y = 7sy
(
m2

1 +m2
2 +m2

3

)
+ s2

(
−6m4

1y + 2m2
1

(
m2

2(3x− 7y)− 3m2
3(x+ 2y + z)

)
− 2

(
m4

2y +m2
2m

2
3(7y − 3z) + 3m4

3y
))

+ s5
(
m4

1 − 2m2
1

(
m2

2 +m2
3

)
+
(
m2

2 −m2
3

)2)
×
(
3m6

1y +m4
1

(
m2

2(6x− y)− 3m2
3(2x+ y − 2z)

)
−m2

1

(
m4

2(6x+ y)− 2m2
2m

2
3y + 3m4

3(−2x+ y + 2z)
)

−
(
m2

2 −m2
3

) (
m4

2y + 2m2
2m

2
3(y + 3z) + 3m4

3y
))

+ s3
(
6m6

1y + 6m4
1

(
7m2

2x−m2
3(7x+ y − 3z)

)
− 2m2

1

(
m4

2(9x− 4y)− 28m2
2m

2
3y + 3m4

3(−3x+ y + 7z)
)

− 6m6
2y + 2m4

2m
2
3(4y − 9z) + 42m2

2m
4
3z + 6m6

3y
)

+ s4
(
−7m8

1y + 2m6
1

(
m2

2(5x+ 7y) +m2
3(−5x+ 10y − 9z)

)
− 2m4

1

(
m4

2(14x+ 5y) +m2
2m

2
3(7y − 19z)

+m4
3(−14x+ 13y − 14z)

)
+ 2m2

1

(
m6

2(9x− y)−m4
2m

2
3(19x+ 10y + 19z)

+m2
2m

4
3(19x− 7y) +m6

3(−9x+ 10y − 5z)
)

+
(
m2

2 −m2
3

) (
5m6

2y + 3m4
2m

2
3(y + 6z)−m2

2m
4
3(7y + 10z)

+7m6
3y
))
− 3y,

and for C̃z

2NC̃z = −sz
(
m2

1 + 13m2
2 + 7m2

3

)
− 2s2

(
9m4

1z + 2m2
1

(
m2

2(3x+ 3y − 5z)− 3m2
3(x+ 4z)

)
−7m4

2z + 2m2
2m

2
3(4z − 3y)− 3m4

3z
)
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+ s5
(
m4

1 − 2m2
1

(
m2

2 +m2
3

)
+
(
m2

2 −m2
3

)2)
×
(
3m6

1z +m4
1

(
m2

2(−12x+ 12y + z) + 3m2
3(4x+ z)

)
+m2

1

(
m4

2(12x− 12y − 11z) + 10m2
2m

2
3z − 3m4

3(4x+ z)
)

+
(
m2

2 −m2
3

) (
7m4

2z + 2m2
2m

2
3(6y + z) + 3m4

3z
))

+ 2s3
(
15m6

1z +m4
1

(
m2

2(−42x+ 18y − 19z) +m2
3(42x− 23z)

)
+m2

1

(
3m4

2(6x− 14y − 5z) + 14m2
2m

2
3z −m4

3(18x+ 13z)
)

+3m6
2z +m4

2m
2
3(42y + z) +m2

2m
4
3(7z − 18y)− 3m6

3z
)

+ s4
(
−17m8

1z − 4m6
1

(
m2

2(5x+ 9y − 9z)−m2
3(5x+ 2z)

)
+m4

1

(
m4

2(56x+ 56y − 38z) + 4m2
2m

2
3(19y + 14z) + 2m4

3(13z − 28x)
)

− 4m2
1

(
m6

2(9x+ 5y − 9z) +m4
2m

2
3(10z − 19x)

+m2
2m

4
3(19x+ 19y + z) + 3m6

3(2z − 3x)
)

−
(
m2

2 −m2
3

) (
17m6

2z −m4
2m

2
3(20y + 23z)

+3m2
2m

4
3(12y + 5z) + 7m6

3z
))

+ 3z .
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