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Integrable light-cone lattice
discretizations from
the universal R-matrix

C. MENEGHELLI AND J. TESCHNER

Our goal is to develop a more general scheme for constructing inte-
grable lattice regularisations of integrable quantum field theories.
Considering the affine Toda theories as examples, we show how
to construct such lattice regularisations using the representation
theory of quantum affine algebras. This requires us to clarify in
particular the relations between the light-cone approach to inte-
grable lattice models and the representation theory of quantum
affine algebras. Both are found to be related in a very natural
way, suggesting a general scheme for the construction of gener-
alised Baxter Q-operators. One of the main difficulties we need to
deal with is coming from the infinite-dimensionality of the relevant
families of representations. It is handled by means of suitable renor-
malisation prescriptions defining what may be called the modular
double of quantum affine algebras. This framework allows us to
give a representation-theoretic proof of finite-difference equations
generalising the Baxter equation.
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1. Introduction and conclusions
1.1. Motivation and background

Integrable quantum field theories offer a unique theoretical laboratory for the
exploration of several non-perturbative phenomena in quantum field theory.
Having full quantitative control about the spectrum or even expectation val-
ues in a quantum field theory paves the way towards detailed investigations
of non-perturbative effects like the existence of dual Lagrangian descriptions
in different regions of the parameter space.
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However, up to now there are only a few examples where this has been
realised. Many two-dimensional quantum field theories of interest are con-
jectured to be integrable, but this has rarely been fully demonstrated. Exact
results have been proposed on some of these quantum field theories, but in
most cases we do not know how to derive these results from first principles.
It would be desirable to have a more systematic framework for constructing
and solving integrable quantum field theories.

Exploiting integrability in a quantum field theoretical context is not
easy. One of the main problems is to regularise the UV-divergencies in such
a way that integrability is preserved. If this is possible, one may indeed hope
that the enhanced control provided by integrability can lead to a precise
understanding of the dependence of physical quantities on the cut-off, and
how to remove it in the end. Lattice regularisations have been used to reach
this goal with some success. Prominent examples are the massive Thirring
/ Sine-Gordon models for which some exact results have been obtained by
using the XXZ or the XYZ spin chains as a lattice regularisation.

Up to now there does not seem to exist a systematic procedure for con-
structing integrable lattice regularisations for a given Lagrangian field the-
ory. A proposal in this direction was made in [RiT]. This proposal was in-
spired by the well-known relations between integrable lattice models and the
representation theory of quantum groups. Possible hopes that relations of
this type may hold even in a quantum field theoretical context are supported
in particular by the works [Bal.Z3, BaHK] where beautiful relations between
the integrable structure of conformal field theory and quantum group repre-
sentation theory were found. Starting from a Lagrangian description of the
field theory of interest it was proposed in [RiT] to

e identify the relevant quantum group using the algebra of interaction
terms in the light-cone formulation of the dynamics,

e and construct the main ingredients of integrable lattice regularisations
like Lax-matrices and R-matrices from the representation theory of this
quantum group.

The feasibility of such a program was illustrated by constructing integrable
lattice regularisations of some Lagrangian field theories on the kinematical
level. Taking into account the form of the Lax matrices expressing integra-
bility on the classical level leads to almost unique answers for R- and Lax-
matrices defining the integrable lattice regularisation quantum-mechanically.
A more general approach to identifying the quantum algebraic structures
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behind integrable perturbations of conformal field theories was proposed in
[BuR].

Our goal in this paper is to illustrate how the crucial next steps in this
program can be performed: the definition of an integrable time-evolution
and the construction of Baxter Q-operators.

1.2. Approach

To reach our goals we will use the light-cone approach to integrable lattice
models introduced in [FaV92|, and further developed in [BaBR], see in par-
ticular [BaS15] for recent developments of this approach. It has been pointed
out in [RiT] that this approach is particularly well-suited for using quantum
group representation theory to construct integrable lattice regularisations of
more general Lagrangian field theories. A new feature introduced in [RiT] is
the possibility to have a natural relation between light-cone directions and
Borel sub-algebras of the relevant quantum groups. Previous versions of the
light-cone lattice formalism used a slightly different formulation in which
this is not manifestﬂ This feature is important for the further development
of the formalism as it leads in particular to a very natural relation between
the lattice time-evolution operators and the universal R-matrix.

For simplicity we will focus on the affine Toda theories where the relevant
quantum groups are the quantum affine algebras U, (slys), but we expect
the resulting scheme to be of much wider applicability. The integrable field
theories related to quantum affine super-algebras discussed in [RiT], for
example, should be within reach.

For the cases of our interest we will explain how to construct time-
evolution and Baxter Q-operators from the universal R-matrix of the rel-
evant quantum groups. Our main tool will be the product formula for the
universal R-matrix found in [KhT92]. The main difficulties in constructing
time-evolution and Baxter Q-operators from the universal R-matrix are due
to the fact that we need to evaluate the R-matrix in infinite-dimensional
representations. This feature appears to be inevitable if one wants to have
tailor-made lattice discretisations of field theories having non-compact target
space. The product formula represents the R-matrix as an infinite product
over factors which are infinite sums over powers of the generators of the
quantum affine algebra. It is therefore not obvious how to produce well-
defined operators from the product formula for the universal R-matrix if
the representations of interest are infinite-dimensional.

1See Remark [1|in Section for a comparison.
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Our approach to handle the resulting difficulties is based on two main
elements:

e We will observe that the representations needed to get light-cone Lax
matrices and evolution operators from the universal R-matrix have a
remarkable property: The infinite products resulting from the prod-
uct formulae for the universal R-matrix truncate automatically to
finite products. The use of the light-cone lattice approach therefore
allows us to solve one of the two problems coming from the infinite-
dimensionality of the relevant representations.

e The infinite-dimensional representations that we need for our goals
have the useful feature that the generators of the quantum affine al-
gebras are represented by positive self-adjoint operators. This feature
will allow us to replace the infinite sums over powers of the generators
appearing in the product formula by well-defined operator-functions.
We will demonstrate that this replacement preserves the validity of all
relevant relations satisfied by the universal R-matrix in the represen-
tations of our interest.

Our choice of representations is motivated by the fact that the positive
self-adjoint operators representing the quantum group generators correspond
to positive quantities in the affine Toda. theories.

1.3. Conclusions

The main conclusions we’d like to draw from our results are the following;:
Combining the light-cone lattice approach with the representation theory
of quantum affine algebras gives us a systematic way to construct inte-
grable lattice discretisations of the affine Toda theories. Non-compactness
of the space in which the fields take values motivates us to consider infinite-
dimensional representations of the relevant quantum affine algebras. How-
ever, we only need to consider the simplest nontrivial representations of
this type. Infinite-dimensionality can be handled by expressing the main ob-
jects (time evolution- and Q-operators) in terms of the non-compact quan-
tum dilogarithm function. One thereby gets a natural renormalisation of the
formal expressions obtained from the universal R-matrix, leading to fairly
simple explicit formulae for the time evolution- and Q-operators. The rele-
vant properties (commutativity, functional relations) all boil down to known
properties of the non-compact quantum dilogarithm. Verifying this in some
detail accounts for a fair amount of the work that went into this paper, but
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once this is understood in these cases it should be possible to generalise our
approach to wider classes of theories without excessive efforts.

1.4. Summary of main results

As our paper is quite long, we will now offer more detailed overviews over
the main results.

As indicated above, one of our main goals is to clarify the relation
between the universal R-matrix of U,(sly;) and the Baxter Q-operators
from which the evolution operators are recovered by specialising the spec-
tral parameter. It will be obtained by a variant of the scheme proposed in
[BaLZ3|. The necessary modifications are two-fold. The place of the infinite-
dimensional representations of the Borel sub-algebras U, (b*) of Uy(slys) of
g-oscillator type employed in [BaLZ3] in auxiliary space will be taken by
representations which are neither of highest nor lowest weight type. This
appears to be inevitable in order to get operators with favourablg\ analytic
properties. In quantum space we will use representations of Uy (slys) that
can be represented as tensor products of the same type of representations as
used in auxiliary space. The tensor products display a staggered structure
reflecting a factorisation of the monodromy matrix into factors associated
to light-like segments.

Our main results include a derivation of generalised Baxter T-Q-relations.
The Baxter equations are found to follow from the reducibility of certain
tensor products of representation at particular values of their parameters,
in this respect resembling previous derivations of functional equations for
transfer matrices from the representation theory of quantum affine algebras
given in [BalZ3l, [AF]. Two features of our derivation appear to be new.
Our derivation on the one hand uses an interesting finite-dimensional repre-
sentation constructed from fermionic oscillators. This allows us to leads to
simplify algebraic aspects of the derivation. We furthermore need to handle
the additional issues originating from the fact that our representations do
not have extremal weight vectors.

We furthermore find fairly simple explicit formulae for the kernels rep-
resenting the Baxter Q-operators. The formulae are simplest when a variant
of the quantum affine algebra U, (slys) is used for the construction of inte-
grable lattice models that differs from the standard one by a Drinfeld twist.
The resulting expressions resemble the formulae found in [BaKMS| [DJMM]
for the transfer-matrices of generalised Chiral Potts Models. Having explicit
formulae for the kernels of the Q-operators should allow us to determine the
analytic properties of these operators by generalising the results of [ByT1].
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Our results thereby lay the foundations for future analytic studies of the
spectrum of the affine Toda field theories.

1.5. Mathematical aspects

As indicated above, one of our main tasks is to give a sense to the formal
expressions obtained by evaluating the product formula for the universal R-
matrix in the infinite-dimensional representations of our interest. These rep-
resentations are in some respects similar to the representations of q-oscillator
type employed in [BalZ3, BaHK]. The terminology pre-fundamental rep-
resentations was introduced in [HJ] for a family of representations of the
Borel sub-algebras of quantum affine algebras generalising the represen-
tations of g-oscillator type considered in [BalLZ3l BaHK]|. As opposed to
[BaLZ3, BaHK] [HJ| we will here be interested in representations of the q-
oscillator algebra that have no extremal weight. This being understood we
will adopt the terminology “pre-fundamental” for the simple representations
of the Borel sub-algebras that will be used as building blocks for the class
of representations of our interest.

What will allow us to regain mathematical control in the absence of ex-
tremal weights is the fact that the generators are represented in terms of
positive self-adjoint operators. This implies that our representations behave
in some respects similar to the representations of the modular double of
Uy(slp) introduced in [PT99, [Fa99]. The terminology modular double refers
to the fact that these representations are simultaneously representations of
the algebra obtained by replacing the deformation parameter ¢ = e~ ™" by
the parameter § = e~ /%", Taking tensor products of pre-fundamental rep-
resentations will generate various other representations including evaluation
representations of modular double type.

We will observe that the special features of pre-fundamental representa-
tions of modular double type allow us to define a canonical renormalisation of
the formal expressions obtained by evaluating the universal R-matrix in such
representations. The infinite products representing the universal R-matrix
get automatically truncated to a finite product when evaluated on pre-
fundamental representations. Most of the remaining factors are expressed
in terms of the quantum exponential function. Replacing this function by
the non-compact quantum dilogarithm preserves the relevant algebraic prop-
erties and produces expressions that are well-defined in representations of
modular-double type. The most delicate aspect is to find renormalised ver-
sions of the contributions of the imaginary roots in the product formula.
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This is crucial in particular for giving representation-theoretic proofs of gen-
eralised Baxter equations. We will show that there is an essentially canonical
renormalisation for these contributions as well. In order to see this, it will
be necessary to study some aspects of the behaviour of the product formula
under the action of the co-product that do not seem to be discussed in the
literature.

1.6. Relations to previous work

The affine Toda theories have been extensively studied already. A lot is
known about the affine Toda theories in infinite volume including factorised
S-matrices [AFZ, BCDS, [CMI], [CM2] and form-factors [Lu97, [ALJP] This
can be used to predict the ground-state energy in the finite volume via the
thermodynamic Bethe ansatz [FrKS].

The full finite-volume spectrum is not easily accessible in this way, mo-
tivating the use of lattice regularisations. Lattice Lax-matrices and an inte-
grable lattice dynamics have been proposed in [KaR]. A Lie-theoretic frame-
work for constructing discrete versions of the Toda flow on the classical level
was presented in [HKKR]. R

The connection to the quantum affine algebra U, (sljs) implies relations
to spin chains of XXZ-type on the algebraic level. Operators that are sim-
ilar to the Q-operators constructed in our paper have been introduced in
the study of generalised chiral Potts model in [BaKMS, [DJMM]. The Q-
operators to be studied in our paper may be seen as non-compact analogs
of those from [BaKMS| [DJMM].

1.7. Perspectives

It should be possible to generalise the approach described in this paper to the
models related to quantum affine super-algebras studied in [RiT]. A product
formula for the universal R-matrices of these quantum groups is known
[Yal. We may furthermore note that the representations defined in [RiT]
are of a similar type as the prefundamental representations studied in this
paper. Renormalised versions of the universal R-matrix have been studied
for representations of modular double type of the quantum super-algebra
Uy(osp(1|2)) in [IpZ]. This work gives a first hint that the renormalisation

2To keep the length of the list of references within reasonable bounds we only
quote literature studying affine Toda theories of higher rank (M > 2) which are the
main objects of interest in our paper.
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of the universal R-matrices can be carried out for quantum affine super-
algebras in a similar way as done in this paper. This gives us hope that
evolution and Q-operators can be constructed for the lattice models defined
in [RiT] by using a generalisation of the techniques developed here.

We have found reasonably simple formulae for the kernel of the Baxter Q-
operator which are natural generalisations of the formulae found in [ByT1].
This should allow us to deduce the analytic properties of the Q-operators
by generalising the arguments from [ByT1]. The information on the analytic
properties of the Baxter Q-operator defines the space of all solutions to the
generalised Baxter equation which can correspond to eigenvalues of this
operator. Baxter equation and analytic properties represent the pieces of
information that completely characterise the spectrum. It should be possible
to translate this description of the spectrum into equivalent formulations
described either in terms of non-linear integral equations or using partial
differential equations, generalising the results known for the Sinh-Gordon
model [Z00, Lu00, ByT1, LuZ].

Our results finally suggest that the representation theory of quantum
affine algebras may have a mathematically rich and interesting extension
to certain categories of infinite-dimensional representations. In the finite-
dimensional case it was observed in [ByT3|] that the R-operator of the
modular double of U, (sl(2,R)) [Fa99] may be seen as a “more universal R-
matrix” in the following sense. The representations of the modular double
of Uy(sl(2,R)) considered in [PT99, [Fa99, ByT3] have dual representation
that are realised on certain spaces of distributions. The dual representations
contain highest weight representations as sub-representations. It was veri-
fied in [ByT3| that the action of the R-matrix defined in [Fa99] on tensor
products of the dual representations restricts to the action of the usual uni-
versal R-matrix on tensor products of highest weight representations. The
R-operator of the modular double is therefore “more universal” than the
universal R-matrix in the sense that it unifies the R-matrices defined on
finite- and certain infinite-dimensional representations. It would be interest-
ing to make this point of view more precise, and to extend it to the case of
quantum affine algebras.

1.8. Guide to the paper

The paper is quite long. However, there are some important parts of our
story that can be understood without having digested all of our paper. To
help the reader finding the parts of most immediate interest we will here
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offer a brief overview over the sections. The introduction of each section
contains a slightly more detailed description of its contents.

Section 2 reviews some basic background on the classical theory and
possible approaches to the quantisation of the affine Toda theories.

The following Section 3 develops the light-cone lattice approach intro-
duced in the pioneering papers [FaV92, [FaV94, [BaBR]. In order to have
manifest locality, we are working with a slightly redundant parameterisa-
tion of the degrees of freedom. A gauge symmetry is introduced allowing us
to identify the physical degrees of freedom as gauge-invariant combinations
of the basic variables.

Section 4 offers a review of the basic background on quantum affine
algebras together with a short summary of the available hints indicating
that the integrability of the affine Toda theories can be understood using
the representation theory of quantum affine algebras.

Section 5 describes first steps towards the definition and calculation of
Lax-matrices and R-operators based on the universal R-matrix of quantum
affine algebras. The main tool for this purpose are the formulae represent-
ing the universal R-matrix as an infinite product going back to Khoroshkin
and Tolstoy. We start explaining how to renormalise the formal expressions
obtained by evaluating the product formula in the infinite-dimensional rep-
resentations of our interest in the case of U, (sla).

This analysis is generalised in the next Section 6 for the case of U, (5A[ M)-
We describe how to obtain the fundamental R-operators for the lattice affine
Toda models from the representation theory of U, (slys). Different types of
explicit representations for the fundamental R-operators are derived. For a
twisted version of the quantum affine algebras we find a particularly con-
venient representation, leading to useful representations for the generalised
Baxter Q-operators constructed from the fundamental R-operators as inte-
gral operators.

For the derivation of functional relations satisfied by the Q-operators
like generalised Baxter equations it is crucial to analyse the contributions
coming from the factors in the product formula involving imaginary root
generators. Such an analysis is carried out in Section 7 for the case of of
Uy(slz). A uniform prescription is found for renormalising the contributions
associated to imaginary roots for a large family of representations including
the representations relevant for the lattice Sinh-Gordon model. We verify
the consistency of this prescription with taking co-products, and use all this
to give a derivation of the Baxter equation valid for the infinite-dimensional
representations of our interest.
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The generalisation of this analysis to the case of Z/lq(sA[M) is presented
in Section 8. We begin by describing a fairly simple representation-theoretic
proof of generalised Baxter equations which is valid provided the renor-
malisation prescription preserves the relevant properties of the R-operators
under the co-product. The fact that it does is verified afterwards, studying
the fairly intricate mixing between real and imaginary roots under the co-
product. Our results also allow us to derive functional relations of quantum
Wronskian type. Together with the analytic properties of the kernel of the
Q-operators we have thereby obtained all the information necessary to study
the spectrum of the lattice affine Toda theories generalising the case of the
Sinh-Gordon model studied in [ByT1].

Various more technical details are deferred to appendices. Appendix [G]
in particular contains a detailed comparison with previously known results
on the Sinh-Gordon model and to the Faddeev-Volkov model.
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2. Background

Our main example in this paper will be the affine slj;-Toda theories, which
are classically defined in the Hamiltonian formalism by introducing field
¢;i(x,t), canonical conjugate momenta IT;(x, t) and Poisson brackets

{pi(z,t), p;(2', 1)} = 0

(1) AT 0),0;(", 0 = moid(z =),y Ty =0,

The dynamics is generated by the Hamiltonian

M
22 m= [ 3 (G s ) o)

The resulting equations of motion for ¢; := ¢; — ¢;+1 can be represented in
the form

(2.3) (02 — %) p; = —27rbu(262b% — it _ ezb%*l).
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As the motion of ¢(z,t) = Zf\il ¢i(,t) decouples, (02 — 9%)¢ = 0, it is pos-
sible to impose the condition that ¢(x,t) = 0.

2.1. Classical integrability

The starting point is a zero curvature representation of the classical dynam-
ics, taken to be of the form

(2.4) (02 — Au(N), 0 — A4(N)] = 0.

We may here take A,(\) = A4 (A) — A_(N), Ay(N) = A (A) — A_(N), where

Ar(N)

o

s
I
—

(—b(a+¢z‘)Eii + meb(‘ﬁi’@“)Ei,iH) )
(2.5)
A =

'Mi

(—i—b(a_qﬁz) i — meb(‘ﬁif@“)EiH,i) )

=1

using the notations 0+ = %(& + 0;). The zero curvature condition will
reproduce the equation of motion provided that m? = wub?.

Integrability of the classical dynamics is closely related to the existence
of infinitely many conserved quantities which can be constructed from the
monodromy matrix

R
(2.6) M(\) = Pexp ( /O da Agc()\)) .
as the trace
(2.7) T(\) =Tr(M(N)).

The Poisson structure of the field theory implies Poisson bracket relations
of the form

(2.8) (MMM ()} = [r(N ), M(X) © M ()],

with r(\) being a certain numerical matrix. These relations imply
{T'(N\), T(n)} = 0. As the Hamiltonian H appears in the asymptotic expan-
sion of M(A) at infinity it follows that T'(\) is conserved for all values of
recC.
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2.2. Light-cone representation

It is also possible to take the values of the basic field restricted to the
light-like segments as Cauchy-data. Let us define the “saw-blade” contours
Cn = Uszl C;-uC,, where C,:CIE are the light-like segments

Ci={(kA+u,t+u) : 0<u<A/2},

2.9
(2:9) C, ={(kA+v,t+A—-v) : A/2<v <A}

(A := R/N).

In the light-cone picture for the classical dynamics, one takes the values
of the field ¢ on the two light-like segments of Cy,

(2.10) 67 (2u) = ¢i(u,u) and @7 (20) = (5 +v, & —v),

Ogu,vég,

as initial values for the time-evolution from which ¢;(z,t) can be found for
all z and ¢ by solving the equations of motion. The dynamics may still be
represented in the Hamiltonian form by using the Poisson structure

{61 (w), 6] ()} = Toijsenp(u—u),

(2.11) 2
{67 (0),67 ()} = Toyseng(v — o)

on the light-cone data qﬁj and ¢; defined on segments C,j and C,_, respec-
tively. The evolution of d4¢*(z4) in the x_-direction can now be repre-
sented in the Hamiltonian form as

(2.12) 0_(0y0,) = {H_,0,0]},
where
R M
(2.13) H —p / dey 3 A0
0 i=1

A very similar equation of motion obtained by exchanging the roles of qﬁj
and ¢; governs the evolution of 0_¢~ (z_) in the z-direction.

Vanishing of the curvature of the Lax-connection allows us to deform the
contour in definition of the monodromy matrix, leading to a representation
of M()) as an integral over light-like segments. The zero curvature condition
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(2.4) implies that

(2.14) M()\) = Pexp (/OR da Ag(a,t; A)) = Pexp (/C ds d;:Aa(A)> ,

for any contour C that can be deformed into Cp = {(z,t) : 0 < < R}, pre-
serving the start and end points. This allows us to rewrite M (A) as

(2.15) M(A) = Ly(NLy(A) -~ LT (NLT (),
where

- L (A) = Pexp </C day A+()\)>,

L, (\) :=Pexp </C

When A — 0, N — oo with R = NA finite one expects to be able to approx-
imate the fields by piecewise constant values along Cfgt. The representation
of M(\) suggests a natural lattice discretisation resembling a stag-
gered spin chain.

da_ A_()\)>.

k

2.3. Continuum approaches

A very useful approach to the quantisation of such an integrable system
is provided by the quantum inverse scattering method (QISM). A central
object in this approach is the so-called quantum monodromy matrix M(A),
the matrix formed from the operators that are obtained by quantising the
matrix elements of the classical monodromy matrix M (A). If it is possible
to construct a matrix M(\) out of the quantised degrees of freedom of the
field theory of interest in such a way that the Poisson bracket relations ([2.8)
get quantised into quadratic commutation relations of the form

(217)  RO/m)(MO) @ DI M) = (1 M) (M(A) © DR 1),
one would get the conserved quantities of the quantized field theory from
(2.18) T(A) = Tr(M(N)).

However, this dream is hard to realise in practise. In canonical quantisation
it is by no means straightforward to construct an operator-valued matrix
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M(A) out of the quantised local fields that would satisfy nice quadratic
relations of the form . It is furthermore not clear which numerical
matrices R()) could appear in the relations (2.17). Even though R(}) is
severely restricted by the Yang-Baxter relation

(2.19) Ria(M/ ) Ras(A\/v) Ras(p/v) = Ras(p/v)Ris(A/v) Riz(A/ ),

following from the consistency of with the associativity of operator
products, one still has a large supply of possible choices for R(\) to consider.

The situation appears to be slightly better in the light-cone represen-
tation. Following [Bal.Z4] let us note that the Poisson brackets are
those a massless free field. The quantization is therefore standard. Let us
write the expansion of ¢ (z4) into Fourier modes in the form

2
(2.20) @i(xi) =q; + fpiﬂfi + ¢f<($i) + ¢>f> (z4),
where
i o i o
(221) ii7<(xi) — Z Eafne 2 maﬂj:/R7 it>($i) _ Z Eafne 2 m:pi/R.
n<0 n>0

The modes af,, (e =4), q; and p; are required to satisfy the canonical
commutation relations

’

7 1
(222) [qia pj] = Zéijy [3f,m7 aj}n} = Zm(;m—ﬁ-n,oéij(sse’-

Quantum analogs of the exponential functions 2997 are then constructed
by normal ordering:

(2.23) 2097 (w2 ; = exp(2ai¢iﬁ< (xi))ezo”(qﬁz’rpi“m) exp (204¢q§;7t> (z4)).
The quantum Hamiltonians Hy and H_ corresponding to H; and H_, re-
spectively, will similarly be defined by normal ordering.The quantum equa-

tion of motion for an observable Oy built from 94 ¢ (r4) can then be rep-
resented in the form

M
(2.24) ~i0504 = [Hy,04],  Hy=u> QF
=1
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where the so-called screening charge operators Q are defined as
R € €
(2.25) Qf = / dx V(z), VS(z) = : (@i (@) =011 (2)) €=+,
0

If the parameter b =8 is purely imaginary, it should be possible to
define a natural candidate for the quantum monodromy matrix M(X) by
following the approach of Bazhanov, Lukyanov and Zamolodchikov. For
in a certain range of values it would allow us to define quantum monodromy
matrices associated to the segments C/,:Ct of the saw-blade contour as series of
ordered integrals over products of normal ordered exponentials of the free
fields.

Such an approach has not been developed in full detail yet. Even if it
were, it could not easily be generalised to the case b € R of our main inter-
est. The UV-problems are more delicate for b € R, causing serious problems
for the definition of the quantum monodromy matrices along the lines of
[BaLLZ1l, BaLLZ3| BaL.Z4].

2.4. Lattice regularization

Another method to treat these problems is the lattice discretization. The
initial values ¢'(z) = ¢*(x,t)|,_g, O’ (x) = O¥(x,t)|,_y of the fields at time
t = 0 are replaced by variables ¢!, I}, defined on a one-dimensional lattice
which has N sites labelled by the index n. The variables ¢¢, I, may be
thought of as averages of the initial values,

1 (n+1)A 1 (n+1)A

) d-x [ i@

= dx I ().
A A1 JoA (@)

The quantization of these variables will yield operators which satisfy the
commutation relations

(2.27) 61, 10,] = %ﬁjdnm.
The space of states of the regularized model may therefore be identified with
as L2(RMN),

A regularized version My () of the monodromy matrix M(\) may be
constructed as a product of local Lax matrices

(2.28) M\ = Ly(NLy—1(\) - L1(N),



Integrable light-cone lattice discretizations 1205

where the lattice Lax matrices £, (\) are to be constructed from the dis-
cretized variables (¢!, I1%). It will be shown that the matrices My (\) can
be constructed in such a way that they satisfy the algebra

(2.29) R/ )(My(N) @ )T @ My ()
= (I My (p)(Mn(A) @ DR/ 1),

with coefficients R(A/u) that are independent of N and A. If the continuum
limit N — oo of My()\) exists in a suitable sense, the relations will
ensure that the monodromy matrix M(\) defined by that limit satisfies the
crucial algebraic relations (2.17]).

In the case of the Sinh-Gordon model corresponding to M = 2 it was
shown in [ByTT], ByT3] that the lattice discretisation leads to exact results
for the energy spectrum. The excellent agreement with results from the
thermodynamic Bethe ansatz and from the existing relations with Liouville
theory [ByT3| indicates that the lattice approach is indeed suitable for the
construction and solution of the affine Toda theories.

3. Integrable light-cone lattice models — algebraic
framework

The use of the lattice light-cone approach is inspired by previous works
[FaRl [FaV92, [FaV94] BaBR] [KaR] on the lattice light-cone discretisation
of the Sine- and Sinh-Gordon models. In order to maintain manifest local-
ity it will be useful to parameterise the degrees of freedom in a somewhat
redundant way. The physical degrees of freedom can be identified using a
gauge-symmetry. We describe how to define a natural time-evolution for
gauge-invariant quantities.

3.1. Overview on the light-cone lattice approach

It turns out to be very useful to preserve a certain democracy in the treat-
ment of spacial and time-like directions by working on a rhombic space-time
lattice

(3.1) I'={(o,7)|c € Z/NZ,T € Z,0 + T even}.

This lattice is generated by the vectors vy = (1,1) and v_— = (—1,1) which
connect nearest neighbor sites, see Figure [3.1
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8558

(0,0) (2,0) (2N,0)
Figure 1: Light-cone lattice IT".

A collection of elements { Xfx,r}z:l,..., m of the quantum algebra of observables
Apr N to be defined below is attached to each vertex (o, 7) of the dual lattice
I'V defined by the condition o + 7 odd. For each vertex of I' a relation
between the variables Xé’,T associated to the neighbouring faces is required
to hold. Such relations are called quantum discrete equations of motion as
they reduce to the equations of motion in the classical continuum limit.

Let us describe the dynamics more explicitly. The algebra of observables
Apr,n will be generated by invertible elements

(3.2) Xim>» i € Z/MZ,m € Z/2NZ.
satisfying certain relations. The only non-trivial commutation relations are

_ +2c;
Xi2a—1Xj,2a = 4 " Xj,2aX4,2a—15

(3.3) o,
Xi,2aXj,2a+1 — 4 Xj,2a+1Xi,2a>

where ¢;; = — (0;; — 6;j4+1). In this paper we are mostly interested in the
case |g| = 1. In this case the generators x;,, will be realized as positive
self-adjoint operators.

We will introduce two automorphisms 7+ of the algebra 47,y such that
upon defining

(3.4) Xot1r41 =Tt (Xo.r) »

with initial conditions x’éa_w = Xi2a—1, Xéa,l ‘= Xi,2a, the following quan-
tum equations of motion are satisfied

i1 -
1+ q+1ﬁ2xg-t1ﬂ_ 1+ q+1H2XZa+11,T

(R VAR S

9 . ) .
(35) q XZO',T—IXZ',T-I—:[ = X2—1,7X3+1,T
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These equations allow to define the values of the variables XZ’T on the entire
lattice from the initial values associated to the faces nearest to the bold saw
in Figure It is easy to check that the evolution equation reproduces
the equation of motion if one identifies XfW with e20#i(A%A7) and takes
the limit ¢ = e~ — 1 and A — 0 with x = mA and y; fixed.

The equations of motion above will be shown to follow from the zero
curvature condition

(36) g;—f—lﬂ'-‘rl()\)g;-‘rl,T()\) = g;T—‘rl()\)ga_,T()‘) o+ T even

for certain operator valued matrixes attached to the edges of the lattice I'.
This is a quantum discrete analogue of encoding quantum integrability
of the time evolution defined above. The relation corresponding to each
face in the the lattice I', see Figure [3.1] can be depicted as follows

(o, 7+2)

(c—1,74+1) (c+1,741)

(o:7)

(0:74+2)

(e—1,741) (c+1,7+1)

(o,7)

Notice that the matrices g7 (X) and g, () represent parallel transport on
the lattice from (¢ —1,7) to (o,7+ 1) and (o,7) to (¢ — 1,7+ 1) respec-
tively. It follows that

9ar(N) is defined for o + 7 odd,

(3.7) _ .
9o r(N) is defined for o + 7 even.

The rule to associate an operator valued matrix to a path on the lat-
tice follows from the basic property of the path ordered exponential 2.,
i.e. Qy 44, = 2,9, when the final point of the path 7, coincides with the
initial point of ~s.
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The explicit form of the Lax operators of discretized affine gl,,-Toda
theory will be

M

gt(\) = Z (U;HEu' + qiéﬁ)\ilviEiH—l) ;
M

g (\) = Z (Ui_lEu' - qﬁﬁ)\HViEHu) ;

where E;; are the matrices having a non-vanishing matrix element equal
to one only in the i-th row and j-th column, x = mA and we suppressed
the explicit dependence of u;,v; on ¢ and 7. This choice of quantum Lax
operators is motivated by the form of the classical flat connection in light-
cone coordinates, compare to . We will later see that the matrices g™ (\)
satisfy quadratic relations of the form with M(\) replaced by g&(\)

relations iff the commutation relations of u;, v; are
Cij
(3.9 UsUj = Uju; ViVj = V;V; uv; = ¢“7v;ug,

where ¢;; = —(0;j — ;j41). We further impose [[, u; = [[, vi =1 as they are
central. We call W), the algebra generated by u;, v; and their inverses.

In this description, the quantum algebra of observables As n emerges
as a quotient of the enlarged algebra .AM N = (WM)®2N, associated to the
saw-blade contour in Figure by certain gauge transformations. One may
get rid of gauge redundancies at the price of giving up ultralocality, which
is the requirement that at fixed 7 the matrix entries of g5! . commute with
the matrix entries of g¢2 . when o1 # o2.

3.2. The monodromy matrices

3.2.1. An alternating spin-chain. The monodromy matrix M(\) of
the lattice model is constructed as a product of local Lax matrices as

(3.10) M) = Ly Ly 1(A) - L1 (V).
In the lightcone representation £,(\) takes the factorized form

(3.11) L,(\) = Ly (7T ML, (g2 s71N),
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where

(3.12) RECETDN :i ?j(A),

E_1 . N
L7 (q2rN) == (1= "AM) (g7 (V)
with g*()\) given in (3.8). The scalar factor multiplying (g_(>\))_1 in (3.12)

can be identified with the quantum determinant g-det(¢g~ (X)) as defined in
Appendix [Al The definition (3.12]) may be written more explicitly as

M -1
(3.13) L-(\) = (1—¢ '\ [Z (U "Bi — ¢ "AVEin) |
=1
M
(314) L+<)\) = Z (U,j_lE“ + )\_1ViE2‘Z‘+1) .
=1

The monodromy matrix (3.10|) is the operator-valued matrix associated to
the bold path in Figure upon setting 95271 = 95:171,0 and gy, 1= g, -
The index m on g denotes the embedding of Wy, in the m-th thensor
factor of (Wiy)®*V. It is thus clear that the matrix entries of quantum Lax
operators associated to different sites of the chain commute.

The algebra W), admits a simple realization in L?(RM) given as follows

(3.15) up = e 2Py = @A) ] = (2m0) L6y,
with ¢ = e~im™”  The quantum space on which the matrix entries of the
monodromy matrix act may be taken to be Hj, = L2(RNM) . Alterna-
tively one may impose the constraint Zf\i 1 P; = 0 for each spin-chain site,
leading to a representation of W in a subspace Hs,n of H?W n isomorphic
to L2(RN(M-1)),

Both Lax matrices LT()\) and L™ (\) satisfy relations of the form

(3.16) R\ w(ZNel)(1eLw) =1L w) (LN @1)R(\ ),

with the same auxilliary R-matrix R(\, p) given as

M
(3.17) R\ u) = Z Ei ®Ey +v Z Ei ® Ej; + Z K(i—j)u Eij @ Eji,
i=1 i# i#]
g =g M—ty¢
f_q—1MM_q+1>\M“ )

/~LM_>‘M

= g LM — g FINM

14 K
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where (i — j)as denotes (i — j) modulo M. The monodromy matrix con-
structed in (3.10|) therefore satisfies the relations (2.29)), as desired. This
implies in particular that the one-parameter family of operators T(\)

is mutually commutative
(3.19) T, T(1)] = 0.

The family of operators T(A) will represent conserved quantities for the
time-evolution defined above.

Remark 1. In the case of sly one has u; = uy; ' =u, v; = vy = v and the

definition (3.11)) reads

s vw= (b ) to=(h, )

ul u~l

Our formulation of the light-cone lattice approach is in this case similar to
the one described in [FaV92| [FaV94, BaBR]. An important difference is due
to the fact that L= () is taken to be equal to L ()\) in [FaV92, [FaV94], BaBR].
The two formulations are equivalent for even NN, as will be discussed in
Section[3.2.2]below. The relations with the representation theory of quantum
affine algebras appear to be more natural in our formulation.

Remark 2. The inverse of the matrix L~ (\) given in ([3.13)) can be written
more explicitly using the following observation: For any matrix of the form
F(CL) =1- Zf\il aiEZ’+1fL’, one has

(321)  (1—an--agar) (F(a)) ' = [ 14 (ai1ai2---a;)Ei
i#j

Norice that in order to derive (3.21)) no commutation relation between as
have been used.
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3.2.2. Relation to XXZ-type spin-chains. It will be useful to note
that there is a closely related Lax-matrix which is defined as

M
(3.22) LY“N) = L,NT,  T=) Eii
=1

The Lax matrix £3**(\) satisfies the same equation (3.16|) that is satisfied
by L,(A), as follows from the fact that R(A, ) commutes with T® T. It
furthermore has a dependence on the spectral parameter A of the form

M
(3.23) LN = Z Bii(Epui + )\Mgfz,n‘)
i1

+ Y AMYTIE € i + N TE i€aj)-

1<J

It follows from together with the form that the matrix ele-
ments &;; generate a representation of the quantum group U,(slyr), as will
be further discussed in Section below.

Note furthermore that

(3.24) TLEENT =7t £57()) - Q,

where () is the automorphism of the algebra of generated by the matrix
elements of £3**(\) defined as

(3.25) Q' Eaig Qo= Eajim1j-1.
The automorphism €, allows one to relate the monodromy matrix M(\) to
the monodromy matrix T~V M**%()),

(3.26) MPEN) = L NLRZ (A - LT4(N)

The automorphism €, has order M, (Q,)™ =id. If N is divisible by M,
the spectral problem for T(\) therefore becomes equivalent to the spectral
problem for T***()\) = Trea (MX*%(N)).

The close relation between spin chains of XXZ-type and lattice regular-
isations of the affine Toda theories will make it natural and often useful to
discuss both of them in parallel.
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3.3. Light-cone time-evolution

We will now derive the quantum equations of motion . The derivation
will be based on an explicit construction of the light-cone evolution operators
Ut see . The latter will later be shown to belong to a large family of
commuting operators constructed as transfer matrices in Section [3.4]

Before proceeding to the derivation an important remark is in order.
The zero curvature condition can not specify by itself a unique time
evolution for the variables uﬁr’T, vi,,T. The reason is that if gng satisfy the
zero curvature condition, then also

l — —\/ — —
(327) (g;—,r) = Do'yT‘i’lg;":TDo'il,T’ (ga,T) = DO’*LTJrlgU,TDU,’lr’

do. In Dy - are taken to be diagonal matrices in order to preserve
the form of géfT given in . We refer to the transformations as
gauge transformations. The transformations reflect the transforma-
tion properties of the path order exponential €2, — D BQ«,DZI, where 7 is a
path connecting the point A to the point B. It will be shown that the zero
curvature condition specifies a unique time evolution for the gauge invariant
sub-algebra of (W),

3.3.1. Identification of physical observables. We first want to clarify
how the quantum algebra of observables Ay n emerges form the enlarged
algebra (WM)®2N generated by the operators u;,, v;,, ¢t =1,...,M, r=
1,...,2N.

Consider the products Ly, (u)L3,_;(v) and Lf, ,(v)Ly, (1), which may
be represented as

M -1
(8282) Ly (wlfy () = (1—g 'u™) (1 —p ZYuzaEz‘H,i)
=1
1 M
A al2a— 1 - Y+ E;
X (U2 uz 1)( +V; i,2a—1 z,z—&-l)

M
- 1 &
(3.28b) Lt (V)5 (p) = <1 +- E Y;fgaHEi,iJrl)A(UzaHUza)
i=1

M -1
x (1—q 'u™) <1 — ZYi,zaEiH,i)
=1
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where A(x) := Zf‘il x;E; and

- . ) + . -1
(3 29) Yi,r = Ui 1,0 Vi, Yi,r = U Vi
' Y= v Y o=v, u!
tr T VLR i, T Ve,rYi+lre

The group of gauge-transformations on a time slice is generated from the
transformations
(3.30)
a . L3, 1 (A) = Dy, (L3, 1 (A) G L3, 1(N) = L3, (M) Dy
2a—1 = = 2a * - —1i—
L2a(A) = Log(A) Doy s L3, (A) = Do, Ly, (V)

Using the factorised expressions it is easy to see that Y;rr and Y;T,
are invariant under Gy,_;, while \?Zr and \?Z_ . are invariant under G,,. Note
furthermore that the combinations Uj o au;21a_1 which are not invariant under
Gy, do mot appear in the product Ly, (A)L3, ;(\). A similar statement
holds for the combinations u, 5,1U; 5, which are not invariant under G,.
The next step will be to identify operators that implement the gauge
transformations G,,_; and G,, within the chosen Hilbert space representa-
tion of A/]\/[, n- To this aim let us introduce the operators
2

-1
Ci2a—1 = (U',z Vi2aVi2a—1Yi+1,2 1)
(3'31) 1,40 1,2Q "1,2a " 1,24 (3 a 17

_ -1 3
Ci2a = (Ui+1,2avi72avi,2a+1 ui,2a+1) 2.

It is easy to see that c

5,1~ This allows us to identify log Cjoq—1 @S an in-

commute with u; o,u; .
finitesimal generator for Gy,_;. By very similar reasoning one may identify
logc; 5, as an infinitesimal generator for G,,. Having related c; . with the
generators of the gauge symmetry motivates us to define the algebra A M.N
of “physical” observables to be the sub-algebra of A/M, n generated by the

operators commuting with all c; ,., more precisely

i 9a—1 commutes with Y;FT and Y, but it does not

(3.32) Ay = {0 € Ay n; (Ci,r)is -0~ (Ci,r)7i8 =0
Vi=1,...,M,Vr=1,...,2N, Vs R}.

It is easy to find an explicit set of generators for A, y: It is given by the
operators

—1
Xi2a—1 = Ui 24Vi2aVi2a—1Y541 24—1
(3.33) '

— -1
Xi,2a = Vi2aYi+1,2aY 20+1Vi,2a+1-
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One may easily check that the operators x;, defined in commute
with ¢;, for all allowed values of ¢ and r, and satisfy the commutation
relations .

One may note that the operators x; , and ¢;, With r = 2a — € either odd
(e =1) oreven (e = 0) generate commutative subalgebras of A); .. They can
therefore be simultaneously diagonalised, leading to representations where
states are represented by wave-functions ¢’(z, ¢), with 2 and ¢ being vectors
with components x;, and ¢;q for i =1,...,M and a=1,..., N, respec-
tively. The representations are defined such that

(3'34) Xi,2a—5¢,($a C) = xi,awl(xa 0)7 Ci,Qa—ew/($> C) = Cz‘,aw/(:ﬁ? C)'

Whenever a physical operators O’ can be represented as an integral operator,
one may assume that this representation takes the form

(3.35) (O%NXx¢ﬂ=i/dx’Kb(%aﬁvaw%%C)

The kernel Ko/ (z,2';v.) may depend on the values 7. of the central elements
that the algebra generated by the c; . has.

One may then define a natural projection sending v¢'(x,¢) to ¥(x) =
¢’ (x, 1), where 1 has components ¢;, = 1 fori =1,..., M anda=1,...,N.
Physical operators are projected to the operators

@%)(%Wb/mwmwwm,mwwzmmwm»

3.3.2. Hamiltonian formalism. In a Hamiltonian framework one may
describe the time evolution of arbitrary observables O, , by means of opera-
tors U, see , which generate the light-cone evolution by one time step
in the following sense:

(3 37) Or—l—lﬂ'—i—l = (U:)_l : OT,T : U/i_v

OT*LT#’I = (U )71 : OT,T : U/:
The corresponding discrete time evolution operator Uy is given as
(3.38) Us.=U, -Uf=Utl U,

Notice that this operator shifts the time variable 7 by two units. The main
ingredient to construct the light-cone evolution operators will be an operator
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r;j; (), v) that satisfies
(3.39) (b )L L VL) - b (A v) = L)L (M.

The motivation for introducing the notation — will become clear in the
following. Having such an operator we may construct UZ in the following
form

N .
= [H r2_a_f_2a—1(ﬂhu)] ’ Codd?
[HrQaQa (1, ] -C 1

where k2 = p~'ji. The operators C,,, and C..., are defined such that

(3.40)

Codd ' O2a+1 = OZafl : Codd7 Codd : O2a = O2a ' Codd7

(3.41)
Ceven : O2a—1 = 02(1—1 : Ceven? Ceven : 02(1 - OQQ—2 . Ceven?

for all operators O,, which act nontrivially only on the tensor factor with
label m in (WM)®2N It follows that (U;)~'UJ generates space-shift of two
lattice units, as it should. It is then easy to show that the zero curvature
condition will be satisfied in the time evolution generated by Ut:

Lo+t T+1(ﬂ)L;a,T+l(/"L)
(U+) Laar (A)L3q 1, (1) - U

Cf (rz_aJ,r2af1(ﬂa )t [2_a,T(ﬂ)L;afl,T(lJ’) : r;agafl(ﬂy w) - Coua
-c;d E e (DR

- Ly

@
ERE

2a+1, T( )[2_11,1' (ﬂ)

The fact that T(\) give in (3.18) generates quantities conserved in this time-
evolution,

(3.42) (U) 7T - Ug =T,

may now be checked directly using (3.39)), (3.41) and the cyclicity ot the
trace.
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3.3.3. Evolution of physical degrees of freedom. We will now derive
the evolution equations (3.5)) from the Hamiltonian point of view. To do so
we will use an explicit solution of ([3.39)):

(343) r2a+2a 1 :U’ M [H \.75 Xz 2a—1 ] t2a‘2a_17

where g¢'2e2¢-1 is the operator

M
1
(3.44) t24,2a-1 = 5 Z log(u; 2q) log(u;2q—1),

2
(mb?) —
while J,;(x) is a special function satisfying the functional relation

Te(q )

L L — 1 4 kP
Tx(qx)

(3.45)

Note that g'2e:2e-1 satisfies

t2q,2a—1 —t24,2a-1 __
q Vz2a 14 uz2a z+1 2a Z2CL 1

(346) t2q,2a—1 —t20,20-1 —

qa~ Vi,2aq uz+1 2a— 1uz 2a—1VYi 2a0

and commutes with u; 24, u; 2,—1. The fact that the operator defined in
satisfies can be verified by straightforward calculations. As we will see
in Sectionnthe functional relation (3.45)) supplemented by the requirement
that the time evolution is unitary w1ll determlne a solution Jy(z) of (3.45) -
almost uniquely. _

From the explicit form of r~* (i, ) given in ([3.43) it is easy to derive the
quantum discrete equations of motion. Let 74 (z) := (U%)™'- z- U£. Using
the definitions , , the algebra and the functional relation
one obtains

(3.47a) T4 (Xi2a—1) = T (Xi2a+1) = Xi,2a5
(3.47b) 71 (Xi2a) = 7 (Xi,2a+2)
= Xi,QaXi_,gla+1Xi,2a+2
14 gr%Xit1,20 1+ qr*Xi—1,20+42
1+ ¢ 62X 20 1+ ¢ K2 X0 2042
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which implies the discrete time-evolution (3.5)). Note furthermore that

(3.48) T4 (Ci2a—1) = T— (Ci2a+1) = Ci2as »
T4 (Ci2a) = T— (Ci2a42) = €i,2a%;,2041%i,2a+2

This means that the evolution of the unphysical degrees of freedom repre-
sented by the operators c;, decouples completely from the evolution of the
physical observables x; ..

One may notice that the equation does not specify r~" uniquely,
see Section [6] for more details. This is related to the fact that the zero
curvature condition does not specify a unique time evolution for the enlarged
algebra (W) ®*. However, the ambiguity left by equation does not
affect the time-evolution of the physical degrees of freedom.

3.4. Fundamental R-matrices and Q-operators

One of the simplest possible ways to make integrability manifest is realised
if the operators U for the light-cone evolution are obtained from a family
of commuting operators Q4 (), by specializing the parameter A to a certain
value, U* = [Q (AF)]T' for a certain A\* € C. This is achieved naturally
when the model is defined by an alternating spin chain as the one introduced
in Section see [FaRl [FaV92).

We will later see that the operators Q4 () are natural generalizations
of the Baxter Q-operators, as the notation anticipates.

3.4.1. Fundamental R-matrices. A standard tool for the construction
of local lattice Hamiltonians are the so-called fundamental?] R-matrices which
are defined by the commutation relations

(3.49) (Roap(fis 1 7,)) ™ Lol 1) L (7, )R g (i 13 7, v)
= L0, v)L A1, ).

In our case we are dealing with lattice Lax matrices that factorize as

(3.50) La(fi ) = L7 (R)Lg (1),

3The name fundamental refers to the fact that they play a fundamental role in the
integrability of the model. It should not be confuses with the adjective fundamental
attributed to the fundamental representation.
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where p = q%/ﬁ_l)\ and ji = q%/i’“l)\. This factorized form implies in partic-
ular that the fundamental R-matrices can be constructed as

(3.51) Rap(jis p1:7,v) = vl () ()5 (1, 9)r (),

€1,€2

provided that be operators ry,}; (i, v) satisfy the relations

(3.52a) L ()L, () () = 6 ()L, (V)L (),
(3.52b) L ()L (), v) = v (, v) L ()L (),
(3.52¢) Lo (1)L, ()5 (1, 2) = b (11, )L, () L (1),
(3.52d) Lo ()Lt ()0t (1, v) = 1, (1, )Lt () L ().

The regularity property for the fundamental R-operator, i.e. R ap (g, 14; i, )
= P4p, which is often used to construct local conserved charges from the
fundamental transfer matrix, will hold if the conditions

(3'53) r;’:j(/’l” U) =Py, r;;(ﬁ, ﬂ) =Py, rrt:(lula ﬂ)r;f(/j,,u) =1,

are satisfied, where IP;; is the operator of permutation of the tensor factors
with labels ¢ and j.

We will later discuss how operators r&S (i, v) satisfying (3.52) and (3.53)
can be constructed using the representation theory of quantum affine alge-
bras. It will turn out that the dependence on the spectral parameters is of
the form

(3.54) O v) = 1 ().

In Section we had introduced the Lax-matrices £3**(\). It is easy
to see that the fundamental R-operators

(355) REXB?(:U’ M v, V) - QA ’ RAB(Iaa M v, V) : lev

will satisfy the commutation relations With L replaced by £X**.

Our next goal is to show that the operators re<' (1, v) allow us to construct
generalized commuting transfer matrices which are conserved in the time
evolution.
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3.4.2. Q-operators. We may then use the fundamental R-matrices to
define generalised transfer matrices as

(356) T(ﬂ’ M Vs V) = TrH[;@HO* (RON(ﬂ7 i v, ’/) e ROl (,Dq u; v, V)) .

It follows from (3.51)) that (3.56) factorizes into the product of two more

fundamental transfer matrices as
(357) T(ﬂvu;ljvy): Q+(H§777V)‘Q—(ﬂ;777’/),

where

(3.58) Q- (v, v) = Tr (r02N(H» )ro;r]v (v) - "02(/% )rOl(,u, ))
(359) Q+(M;I7,V):Tr (rOQN(:U’J )ra_;N l(ruv ) rOZ(H’ )r(]l(:uv ))

Each of the operators Q¢(\; i, 1), € = = will generate a mutually com-
mutative family

(3.60) Qe (A1s i, 1) - Qey (A2; 1, 1) = Qe (N2 iy 1) - Qey (15 12, 1),

of operators provided that the constituent R-operators r1¢* satisfy the Yang-
Baxter equations

(3.61) r“e?()\u_l)rel€3()\1/—1)r5263 (,w/_l)

m,n m,p n,p
= v () v )
where we have used the so-called difference property (3.54]).

Recall that i~ = k? is a fixed parameter of the model. It follows from
the explicit definition (3.58)) and from the properties (3.53)), that the transfer
matrices Qc(\; i, ) for special value of the spectral parameter X\ satisfy

(3.62) Qi(wpm) = (U™, Q (map=U;,

where UL are given in (3.40). It follows from that Q.(v; i, 1) com-
mute with Uf, and therefore represent conserved quantities for the evolution
generated by them.

We will later see that the operators Qi (\) = Qi (\;fi, 1), defined in
satisfy finite difference equations constraining the A-dependence which
generalise the Baxter equations. This motivates us to call these operators
(generalised) Baxter Q-operators.
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It is useful to note, however, that multiplying the family of operators
Q.+ (M) by an operator that is not A-dependent will yield another solution of
the generalised Baxter equations. It may, for example, be useful to consider

(3.63) Qﬂﬁ,v()‘) =T (N v,v) = Q1 (Nv,v) - Q_ (i 7, v),

as an alternative definition of (generalised) Baxter Q-operators. The opera-
tors Qp,z,» () represent another useful family of conserved quantities. Some-
what surprisingly we will find kernels representing the operators Qg s, ()
that are simpler than those we could find for Q4 ().

4. Background on quantum affine algebras

This section first reviews the basic background on quantum affine algebras
used in this paper. We then summarise the available hints that this algebraic
structure is the one underlying the integrability of the affine Toda theories.

4.1. Quantum affine algebras

To begin with, let us briefly review the necessary background on quantum
affine Lie-algebras.

Let g be the (untwisted) affine Kac-Moody algebra associated to the
simple Lie algebra g. We let r denote the rank of g and assume, for simplicity,
that all the real roots of g have the same length (this is the only case that
will concern us). The quantum affine algebra U, (ﬁ) may then be defined
[Drll lJ] as the Hopf algebra generated by the elements 1 (the unit), e;, fi,
ki =q (i=0,1,...,7), and ¢”, subject to the following relations:

, A, ki — ki
(4.18)  kiej = q™eski,  kif;=q N fiki, eif;— fiei =6y -

_1 b
(4.1b) ¢Pe; = ¢"°eiq®,  kikj = kjki, q"ki = kig”, 4" fi=q" fid",

1-A,,
. n |1 =45 o 1-4,-n
(4.1¢) Z (-1) [ . ] ej'eje;
n=0 q
ey 1—-A
n - g n —Aij—n
= > (-1 [ } [T =0,
n=0 n q
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Here, A is the Cartan matrix of g and we use the standard g-number notation
(4.2)
q

el e e U TR L e

Equations (4.1c|) are known as the Serre relations. This is supplemented by
a coproduct A given by

(4.3a) Ale) =€k +1® ey, A (ki) = ki @ Ky,
(4.3b) A(f)=fiol+k o f;, A(”)=q"®¢".

There is also a counit and antipode, though their explicit forms are not
important for us, except in noting that there exist Hopf subalgebras U, (b™)
and U, (b~) generated by the e;, k;, ¢© and the fi, ki, g7, respectively. These
are the analogs of Borel subalgebras and we will refer to them as such. The
subalgebras Uy (n™) and Uy(n~) generated by the e; and the f;, respectively,
will be called the nilpotent subalgebras. They are not Hopf subalgebras.

As in the classical case (¢ = 1) above, we will generally be interested in
level 0 representations. Because of this, we will often denote a quantum affine
algebra by U, (ﬁo), understanding that the linear combination of Cartan
generators giving the level has been set to 0. As the level is dual to the
derivation D under the (extended) Killing form, it is therefore often also
permissible to ignore D in our computations.

The quantum affine algebra U, (s(ys), which will be the main focus of this
paper, is defined as above upon taking the Cartan matrix to be A;; = 26; ; —
di+1,j — 9ij+1, where indices are identified modulo M. The finite group Z,
is realized as automorphisms of the Dynkin diagram of f/;\[M. We denote
by € the corresponding generator. Due to their central role in the following
analysis we report the form of the Serre relations in this special case (M > 2)

(4.4) ereir — (@ +q Nejeie; +eue; =0,
(4.5) eiej = eje;, ifi #j+1,

and similarly for f;. Notice that the Serre relations are unchanged under
g — ¢~ '. The quantum affine algebra Uy(glys) can be defined introducing
the generators {¢% },—1 . related to k; in ([£.1]) as

(46) kz — qu — qu—EiJrl_
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The generator € := Zf\i | € is central. If it is set to zero we recover Z/{q(sA[M).
Notice that the simple roots of QIM, see Appendix satisfy H;(aj) =
A;;. This follows from €;(e;) = d;; and justifies the notation.

__ Finally, we remark that the automorphism 2 of the Dynkin diagram of
slys induces an automorphism of Uy (slr)

(4.7) Qo (e, fis ki) = (eaq) faw) kaw))

where Q(i) =i+ 1.
4.2. Universal R-matrix

The physical relevance of quantum affine algebras stems from the existence
[Dr86a] of the so-called universal R-matrix #. This is a formally invertible
infinite sum of tensor products of algebra elements

(48) %:Za’L@bZ? aiabi Euq(a>v

which must satisfy three properties:

4.9a) RN (x) = AP ()% for all z € Uy(g),
(4.9b) (A & id) (%) = H13%3 and (id ®A) (%) = RB13H12.

Here, A°P (z) denotes the “opposite” coproduct of U, (ﬁ), defined as A°P(x)
= o(A(x)), where the permutation o acts as

(4.10) ocr®y) =y

We have also used the standard shorthand Zi2 =) ,a;®@b;®1, %13 =
Ziai®1®bi and o3 = Zi1®ai®bi.

Quantum affine algebras have an abstract realisation in terms of a so-
called quantum double [Dr86a] which proves the existence of their universal
R-matrices. This realisation moreover shows that these R-matrices can be
factored so as to isolate the contribution from the Cartan generators:

(4.11) A=qR,  t=1 (A7), Hi®H:
i

Here, A denotes the non-degenerate extension of the Cartan matrix to the
entire Cartan subalgebra (including D). This is achieved by identifying
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this matrix with that of the (appropriately normalised) standard invari-
ant bilinear form on the Cartan subalgebra. The so-called reduced R-matrix
# is a formal linear combination of monomials of the form E; @ F; :=
ei, €, @ fj - fi, (I ={i1,...,ix}, J = {j1,...je}). It is worth noting
[KhT92] that Z is already uniquely defined up to a scalar multiple by

and (-1T).

We note that a second solution to the defining properties (4.9) is given
by [Dr86al

(4.12) % = (o (%),
This alternative universal R-matrix Z~ is then of the form
(4.13) R =R q ",

in which %~ is a formal series in monomials of the form F; ® E;. In order
to emphasise the symmetry between the two universal R-matrices we shall
also use the notation Z% := #Z. #* and #~ may also be related by the
anti-automorphism ¢ given by

(4.14) C(e) = fi, C(fi)=e, C(H)=H;, ((D)=D, ((q)=q "

This action can be continued to tensor products via ((z ® y) = ((z) ® ((y).
In terms of ¢, we can represent Z~ as Z~ = ((#7).

In order to get an idea how property determines the universal
R-matrix let us first note that ¢' satisfies the equations

(4.15) ¢ (fiol)=(fiok")d, dQef)=Fk"f)d,
(4.16) ¢ (e;®1) = (ei®k:i+1) q, ¢ (1®e) = (k:jl ®ei) q,

The intertwining property (4.9) implies the following relations for the re-
duced R-matrices #2+

(4.17) (%", fiol] = (ko f;) % — %" (k'@ fi),

(418) [%_,61‘@1] :(kh'@ei)%_*%?_ (k:;1®el)

These equations can be solved recursively in the order of the monomials
E; ®F;or F; ® Ej, the first few terms for 2~ beinglﬂ

4 We obtained this expansion for U, (g(A)), where g(A) is the Kac-Moody algebra
associated to the (symmetrizable) generalized Cartan matrix A. In this case the
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r T —1)2

%_214-2(%1—%)%@61')‘1'2%

i=0 i=0 (

ffee

—1 —1
qi — q; )(Qj — 4 ) —(ai,a;)
" ; g~ (@) — gt(aia;) (q fili = fjfl) ©eici+
i#j

Notice that the quadratic Serre relation e;e; = eje; for (o, a;) = 0 follows
as a necessary condition for the existence of the universal R-matrix.

For the case of Uy ( é\ [57) of our main interest we may note that introducing
the Cartan generators €; simplifies the expression for ¢ entering the universal
R-matrix as

M— M
(4.21) Z (H; ® Hj) Z é R E.

Note furthermore that in the case of Z/lq(gA[ ) the universal R-matrices %+
are Zps-symmetric,

(4.22) (Q®Q) o %t = %*.

as follows from the uniquenessﬂ of the universal R-matrix.
It finally follows from the defining properties (4.9) that Z* and %2~
satisfy the abstract Yang-Baxter equations

4.23a) %’ %’ %’23 = % % %12,
4.23b) %B%ﬁ 23 = %23%13%1% %23%13%f2 = %ﬁ%ﬁ%;?ﬂ
4.23c) %12%13%23 = % %13 125 %23%13%)12 = %) % 23
4.23d) RrogH 3Kz = RogH13%15-

relation (4.1al) generalizes to

- o f!
(419)  kiej = ¢ Dejky,  kify = ¢ 0 fiky, eify — fre —%ﬁ,

? %

where (o, a;) = (o, ;) and the Serre relations take the same form as in (4.1c)
with the Cartan Matrix given by A;; = 22’;?;
5The automorphism 2 does not alter the ansatz for the universal R-matrix that

enters the uniqueness theorem in [KhT92].
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The equations (4.23) will imply in particular the crucial relations (3.16)
when evaluated in suitable representations.

4.3. Drinfeld twist

One may modify the defining data of the quantum affine algebras by means
of Drinfeld twists, represented by invertible elements .7 € U, (ﬁ) ® Uy (ﬁ)

(4.24) Alz) = F'A@)F, YaeecA  Z=0(F H27.

We will only consider elements % preserving co-associativity of the co-
product (cocycles). For a very particular choice of # we will later find
useful simplifications in the expressions for the fundamental R-operators.
This choice is .F = o(¢~7), where

1. . 2,
(4.25) f=-5Xia @, Xij = M(l = J)mod M-
Useful properties of the coefficients X;; are
2
Xivrg — Xig =+57 — 20i11, P
(426) 9 Xi,j + Xj,i = M — 25’i,j-
Xijr1 — Xij = =57 +20i;

We may furthermore note that (4.26]) implies that
(4.27) o) =d"
This identity allows us to write 2 and %~ in the forms

(4.28) %t = o(") R o(q7 )],
(4.29) % =’ % g o).

These formulae, together with

(4.30) o(¢h)(e; ® f;)o(q™F) = e © qgﬁf‘?fi,

(4.31) I (fioe)g = fig" ™ @ ¢ e,

are useful for computing the Lax- and R-matrices from the twisted universal
R-matrices.
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Remark 3. Parts of the literature use conventions where Z 7 is factorised
as Y = #1'q', compare to ([4.11)). The factor 2 is constructed from the
generators e, = e;k; ' and f/ = k; fi. We have

(4.32) Ale) =i @ ¢5 3 +qvi S @,
(4.33) A(f)) = fl@ g 50 4 g5 7w @ f],

indicating that our choice . = a(q‘f ) is indeed a particularly natural one
to consider.

4.4. Relevance for affine Toda theories

Before we continue with more formal developments let us pause to review
some important hints indicating that the representation theory of quantum
affine algebras will be the proper framework for establishing and exploiting
the quantum integrability of the affine Toda theories.

4.4.1. Continuum approaches. One of the key observations [BoMP|
pointing in this direction is the fact that the screening charges Q;t generate
representations of the the nilpotent sub-algebras U, (n™), U, (n'),

(4.34) T (fi) = qzq_ 1Q;r’ Tep(€i) == a Q-

Indeed, it can be verified by direct calculations that the Serre-relations are
satisfied [BoMP) BalLZ3]. This observation relates the interaction terms
in the light-cone Hamiltonians to the representation theory of the quan-
tum affine algebra U, (slys). It can be used to construct the local con-
served charges of the affine Toda theories in the light-cone representation
[EeFTl [FeF2].

The representations 7, can be extended to representations of the Borel
sub-algebras U, (b7) U, (b™) by setting

2i _ 2i
(4.35) mee(ha) i= (i = pir1), () 1= =7 (pi = Pi1)-

A beautiful observation was made in [BaLZ3] and [BaHK] in the cases M = 2
and M = 3, respectively: It is indeed possible to evaluate the universal R-

matrix in the tensor product of representations Wf\ ® ., where 7 is the
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free-field representation defined above, and 77& is defined as
(4.36)  my(ei) = A "Eiip1, mA(fi) = ABiv1is  mA(Ri) = Eii — Eivripn;

the matrices E;; are the matrix units E;;Ex; = d;,E;. For a certain range of
imaginary values of the parameter b = i3, the matrix elements of

(4.37) M*t(\) == (ol @ 71 )(2),

represent well-defined operators on the Fock space underlying the represen-
tation " . The matrices M*(\) represent quantum versions of the mon-
odromy matrices representing the integrable structure of the massless limit
of the affine Toda theories. These results were later generalised to M > 3 in
[Ka].

The massless limit decouples left- and right-moving degrees of freedom.
By a careful analysis of the massless limit it was shown in [RiT] that the mon-
odromy matrices M*()) and M~ ()\) := (7} ® 7..)(#~) describe the decou-
pled integrable structures of the right- and left-moving degrees of freedom,
respectively. This means that there is a correspondence between light-cone
directions and Borel sub-algebras. This observation will be very useful for
us.

For the cases b = i it might be possible to define monodromy cases for
the massive theories by considering

(4.38) M(A) = M~ (A)MF(N),

as suggested by the representation of the classical monodromy matrix
for N = 1. Unfortunately it is not straightforward to generalise to the
cases of our interest, b € R. The short-distance singularities are more severe
in these cases. It may nevertheless be possible to define monodromy matrices
M(X) by using a renormalised version of the right hand side of (4.37). The
key observation that defines representations of Uy (n™), Uy (n™) remains
valid, after all. However, this approach has not been developed yet.

4.4.2. Lattice discretisation. In order to gain full control, we will in-
stead employ a lattice regularisation. As will be discussed in more detail
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below, it is then possible to obtain the lattice Lax matrices from the univer-
sal R-matrix in a way that is quite similar to (4.37)),

(4 39) L+()\) - 9+()\1/,L1) [(71'& ® 7T:)(‘%:t)]rena
. - ! -’
L ( ) B é_ ()\u_l) KW}‘ ® 7T/»‘ )(%i)]rena

where the representations 7 and 7~ are defined as

A _
(4.40) wj(ﬁ)zmui i, (k) = gl

(4.41) 77‘;(61') = mviuiﬂ, 7_1';(/%) = U,L-_IUi+1.

{Vi,u;}i=1,. M generate the algebra W, see . It is easy to verify that
(4.40) and satisfy, respectively, the defining relations of U, (b™) and
Uy(b7). The notation |[...],., indicates the application of a certain renormal-
isation procedure, which will be necessary to get well-defined results in the
cases where the representations 7% are infinite-dimensional. The normalisa-
tion factors (6t (A\p~1))~! and (6~ (A\p™1))~! in are proportional to
the identity operator and will be fixed later.

We get another strong hint that the representation theory of quantum
affine algebras is well-suited for our purpose by observing that it gives us
a very natural way to obtain the light-cone evolution operator from the
universal R-matrix. We had observed above in order to build an evolution
operator we need to find an operator r™~(u/\) satisfying

(4.42) (rt (/A7 LEOOL () 7 (/2) = L ()L * (V).

A solution to this equation in the sense of formal power series in the param-
eters p, A can be obtained from the universal R-matrix,

(4.43) (/) = (L @ 7)),

as follows by applying ﬂ{ ® 71':’\_,1 ® T, to the Yang-Baxter equation (4.23h)).
We will later discuss the renormalisation of (7}, ® T,-1)(#7) needed to

turn rt(u/)) into a well-defined operator. The definition realises
the link between light-cone directions and Borel sub-algebras of U, (;[ M) Ob-
served in [RiT] within the lattice discretisation. It is crucial for making the
relation between the evolution operator and the universal R-matrix as direct
as possible.
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5. R-operators from the universal R-matrix
— case of U,(sl)

5.1. Overview

We had observed in Section [3|that basic building blocks of the QISM are the

operators r&S (u, v) which are required to be solutions to the RLL-relations

(5.1) (reS (11, 2)) " L (LS W)rS (1, v) = LS (L (), €€ = .

The operators rr;;r()\, @) are in particular needed for the construction of an
integrable time-evolution.

The framework of quantum affine algebras will allow us to systematically
obtain solutions of the equations from the universal R-matrix of the
quantum affine algebra U, (slys). This fact is known in the case of spin chains
of XXZ-type, where it is sufficient to evaluate the universal R-matrices in
finite-dimensional or infinite-dimensional representations of highest or low-
est weight type. The main issue to be addressed in our case originates from
the fact that some of the relevant representations will not have a highest or
a lowest weight. On first sight this causes very serious problems: Evaluating
the universal R-matrices in infinite-dimensional representations will generi-
cally produce infinite series in monomials of the operators representing the
generators of Uy(slys). These series turn out not to be convergent in the
cases of our interest.

It will nevertheless be found that there exists an essentially canonical
renormalisation of the universal R-matrices. The main tool for establishing
this claim will be the product formulae for 2% found by Khoroshkin and
Tolstoy. The product formulae are particularly well-suited for our task: They
disentangle the infinity from the infinite extension of the root system from
the infinite summations over powers of the root generators. We will identify
simple representations such that only finitely many real root generators will
be represented nontrivially. More general representation of our interest can
be constructed by taking tensor products of the simple representations, cur-
ing the first type of problem. The second type of divergence can be dealt with
for representations in which the root generators are represented by positive
self-adjoint operators. Replacing the quantum exponential functions appear-
ing in the product formulae by a special function related to the non-compact
quantum dilogarithm produces well-defined operators which will satisfy all
relevant properties one would naively expect to get from the evaluation of
the universal R-matrices.
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A review of the product formulae will be given in Subsection below.
We then start discussing how to renormalise the expressions obtained by
evaluating the product formulae in the representations of our interest. In
order to disentangle difficulties of algebraic nature from analytic issues we
will begin discussing the necessary renormalisation for the case of U, (sl2).
The cases Uy, (;[M) will be discussed in the next section. Some of the factors
obtained by evaluating the product formulae will be proportional to the
identity operator. These contributions, associated to what are called the
imaginary roots, will be discussed later in Sections [7] and [§] below.

5.2. The product formula for the universal R-matrix

In this section we begin by reviewing the explicit formula for the universal R-
matrix obtained by Khoroshkin and Tolstoy. We will follow the conventions
in [KhT2]. A guide to the original literature can be found in Section
below.

5.2.1. Construction of root generators. Recall that A (g) = A¥(g) U
A™(g) where

(5.2) AT(@) = {y+ kd|ly € Ap(g),k € Z>o}
U{(6 =) +kdly € Ay(g),k € Z>o}
(5.3) A(g) = {ké|k € Zso}

The first step of the procedure is to choose a special ordering in A (g).
We say that an order < on A, (g) is normal (or convex) if it satisfy the
following condition:

(5.4) (v, B) € (A x AL) /(AT x AT,
a=<B,a+pe AL
>a<a+p=<p

This definition can be applied to any Kac-Moody Lie algebra. For finite di-
mensional Lie algebras there is a one to one correspondence between normal
orders and reduced expressions for the longest element of the Weyl group,
see e.g. [CP]. For untwisted affine Lie algebras a convex order splits the pos-
itive real roots in two parts: those that are greater than ¢ and those that
are smaller than §, see [[to] and appendix Without loss of generality,
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roughly up to the action of the Weyl group of g, we further impose
(5.5) Y+ Z>00 < Z>06 < (6 =) +Z=00, v € Ay(g).

In applications we will as well use the opposite ordering compared to .
From the definition it is clear that given a convex ordering the opposite
ordering is convex as well. This ordering reflects a triangular decomposition
of Uy(n™) =~ US (<) @US (~) @ U, () (see e.g. [Lus] 40.2.1), and is manifest
in the structure of the product formula for the universal R-matrix given
below.

The second step of the procedure is to construct the generators corre-
sponding to the positive roots of g, where imaginary roots are counted with
multiplicities, from the generators corresponding to the simple positive roots
€a, = €5—p and e,,. The procedure goes as follows

1. Let a, 8,y € A™(g) with vy = a+ 8 and @ < v < 3 be a minimal se-
quence, i.e. there are no other positive roots o/ and A’ between o and
B such that v = o/ + ', then we set

(5.6) ey = [eq, eﬁ]q,l = eqes — q_(a’ﬁ)eﬁea.

Notice that when, for a fixed normal order, the minimal sequence is
not unique, the root vector does not depend on the choice of mini-
mal sequence. This is ensured by the Serre relations. In this way one
construct all root vectors e, e5_~, for v € Ay (g).

2. Next, set
(5.7a) e(i) = [eq,, €5—ailg-1 5 i=1,...,rank(g),
(5.7b) Caitks = (i, )]y H( - AdJe( )) oy
(5.7¢c) €5 a1)+k6 [(ai, )]y (Adjef;)) €5—ais
(5.7d) ens = [Car+(i—1)6: €5 ail g -

In the case in which the Cartan matrix is symmetric one has (a;, a;) 1=

sym __
a; = 2.

3. Construct the remaining real root vectors ey s and e_)1ps for all
v € Ai(g), k> 1 using the same procedure as step one.
4. Define the imaginary root vectors e,(g from egg) as follows:

(5.8) Ei(z) =In(1+ Ej(2)),



1232 C. Meneghelli and J. Teschner

where
B = (¢ g) 3 e,
k=1

(5.9) -
B2 = (g7 —q™) Y e
k=1

The root vectors corresponding to the negative roots are obtained with the
help of Cartan anti-involution . Notice that once we fix the normal
ordering as in the root vectors 6((31)7 €oi+kds €(5—a;)+ks are independent
on the specific choice of root ordering, see [Dam2].

The constructed root vectors satisfy a number of remarkable properties.
Among others, the following property explains the attribute convezr associ-
ated to the constructed basis. For a < 3, «, f € A4 (g) one has

(5100 eaes—q @Pegea = 3 ey(k) ()" (ey)H
a=<y1 <=y =B

where ¢ (k) are rational function of ¢ non vanishing only for

¢
04+5:Zk‘z%-

i=1

An other important property of the imaginary root generators, see
[Dam?2], is the following

(5.11) A(Ei(2)) — Ei(2) @1 = 1® Ei(2) e UT (<) @ UUT (+).

We will discuss the coproduct of imaginary roots in greater details in Sec-
tion R3] R

For the case of Uy (gl;;) a distinguished normal order and the explicit
definition of some relevant root vector are presented in Appendix

5.2.2. Statement of the product formula. The expression for the uni-
versal R-matrix has the form

(5.12) R~ =R q " =R R H_s5q "

The quantity %~ is an infinite ordered product over the positive roots
A1 (g). The order of factors is the same as the convex order used in the
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definition of root vectors. The infinite product decomposes into three parts
as follows form ([5.5)) and enphasized in (5.12)) by the notation < §,~ §, > 4.
To each real positive root we associate the factor

(5.13) K, = exPpyr.y) ((qil - q)'g;lfw ® ev) v € A¥(9),
with exp,(z) the quantum exponential

q" -1
qg—1

(5.14) equ<w>=§j(nl),x", Fg=LL () = (1)42)q-+ (M)
n=0 7

The quantities s, in (5.13) are determined by the relation

g —q ™

ey, 1] =5 -
v Jry (P
where hy =), kih; if v = ), ki, In the case g = sl we simply have s, =
1.
The contribution of positive imaginary roots is given by

51 agmen (@ -0 T X malhe ).

MELy i,j=1

where r is the rank of the Lie algebra g, and the quantities w,,;;, m € Z4,
are the elements of the matrix u,, inverse to the matrix t,, with elements

(5.16) tm,ij = (=1)™ %) m ™ mayg],,
entering the commutation relations

(5.17) [Catmss €55) = tnijea,t (msms-

In the case g = slys, the coeflicients u,, ;; appearing in (5.15)) can be repre-
sented explicitly as

(5.18) Um,ij = m[M — max(i, j)]gm [mln(%J)]qm(—l)m(l 7,
where min(s, j), max(é, j) denotes the minimum and maximum value among
1 and j.

While the root generators and their algebra depend on the choice of
convex order, the universal R-matrix is independent of this choice. This is a
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non-trivial fact that follows from the uniqueness (under certain assumptions)
of the universal R-matrix, see e.g. [KhT92].

5.2.3. A guide to the literature on the product formula. In the
following we collect some references that should help the interested reader in
understanding the origin of the product formula for the universal R-matrix.

An explicit formula for the universal R-matrix of U, (sl2) was presented
by Drinfeld in [Dx86b]. Shortly after it was given for U,(slys) in [Ro], for any
finite dimensional simple Lie algebra in [KiR], [LS] and for finite dimensional
Lie super-algebras in [KhT91b] and [Y] . In the affine case, both twisted
and untwisted, an explicit expression for the universal R-matrix has first
been given by Khoroshkin and Tolstoy in [KhT9lal, [KhT92] and later in
[LSS] (for Uy(slz)) and [Dam2], [Dam3] using different techniques. Product
formulae for quantum affine super-algebras were presented in [Ya].

Using Drinfeld double construction [Dr86b|, the problem of finding ex-
plicit expressions for the universal R-matrix reduces to the determination of
basis of U, (b™) which are orthonormal with respect to the standard pairing
between U, (b™) and Uy (b7). The key idea is to find a convenient basis, with
simple properties under product and coproduct, that simplifies the calcu-
lation of the pairing. In parallel to the ¢ = 1 case, one construct so called
(convex) basis of Poincaré-Birkhoff-Witt (PBW) type as ordered product of
root vectors. Thus, one must first define analogues of root vectors associ-
ated to non-simple roots of g. There is an elegant construction of such root
vectors. If g is finite dimensional all roots are in the trajectory under the
Weyl group of a simple root. As the Weyl group can be be extended to a
braid group action on U, (g) [Lus| one can construct non-simple root vectors
from simple ones following this observation, see [CP|. In the affine case the
situation is more involved as imaginary roots, by definition [Kac|, are not in
the orbit of simple ones under the Weyl group. The construction of imagi-
nary root vectors in this case has been carried over in [Daml], [LSS], [Bell,
[Be2|, [Dam2]. While explicit proofs in the literature concerning properties
of PBW basis use techniques connected to the braid group action, in the
following we will use a different construction.

Convex bases in the affine case have also been constructed in [Toll,
[KhT91a], [KhT93a] [KhT93D]. In these references the braid group action is
not used and explicit proofs are mostly omitted. The construction of root
vectors, referred to as Cartan-Weyl basis, is guided by the authors experi-
ence with so called extremal projectors, see [Tol2]. This construction of root
vectors is convenient when dealing with representations and will be used in
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the following. We remark that the root vectors constructed by this proce-
dure are closely related to the quantum current type generators appearing
in the Drinfeld’s second realization of U,(g) [Dr87], see [KhT93al] and [Bell.

5.3. Simple representations of qu(;[z)

5.3.1. Evaluation representations. To begin with, let us recall that
there is a well-known way to get representations of the loop algebras U, (sl2)o
from representations of the quantum group U,(slz). It is based on the fol-
lowing homomorphism of algebras: Let U, (slz) be the algebra generated by
E, F and K*! with relations

KE = ¢ EK, K2 — K2
(5.19) L EF="—"1r,
KF = ¢~ "FK, q—q
then
(5.20) eva(er) = A2 KTIE,  eva(e) = A 12 KTIF,  evy(ky) = KT2,

eva(f1) = AT1gEKTIF,  eva(fo) = AT1gEKTE,  eva(ko) = K2,

satisfy the defining relations of uq(g[g)o. This claim can be verified by a
straightforward calculation. The center of U, (sl2) is generated by the Casimir
C defined as

qK2 4 q—lK—2 —_92 _ q2x 4 q—2:73 —9
(g—q71)? (¢—q1)?

The last equality in this equation is a convenient parametrization of the
Casimir C.

There are two types of representations of Uy (slz) that will be relevant for
us: The usual finite-dimensional representations labelled by j € %Zzo and
certain infinite-dimensional representations for which E, F and K are realized
by positive self-adjoint operators. Let us discuss them in more details.

(5.21) C:=FE+

Finite-dimensional evaluation representations. We denote the (25 +
1)-dimensional representation of U, (slz) by 7['§‘d' where j € 3Z>0. In this case
K has spectrum {¢=7,¢ 771 ... ¢!, ¢’} and the parameter j is related to
the Casimir C defined in as

GHT 4 %1 9
(g—q1)?

(5.22) rd(C) =
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We further define 7r)\ 7r§d oevy. Of particular importance will be the
fundamental representation 7r)\ corresponding to 7§"., j = 1/2, where we

may take
(5.23)

fd ey _ (01 fd oy _ (0 O td e (a2 0
1/2(E)—<0 0)7 Wl/Q(F)—<1 O)v 771/2(K)—<0 q;)-

The representations Wf\'g' for j > 1/2 can be generated from 77& by taking
tensor products and quotients.

Evaluation representations of modular double type. We Will also
be interested in infinite-dimensional evaluation representations 7T>\ i S € R,
of modular double type where E, F and K are realized by p081t1ve self-
adjoint operators. A representation P, of Uy (slz) can be constructed using
self-adjoint operators p and q satisfying [p,q] = (27i)~! as follows,

(5.24)

W?l'd' (E) = ey -|—7rbq cosh 7Tb( )e+7rbq’
sin mH?2 m.d. L . _wbp
cosh wb(p + s) e (K) = = e,
ﬂ_;n d. (F) — fs 7bq : p effrbq’
sin b2

These operators satisfy the relations with ¢ = e~ ™" The operators
es, fs and ks are unbounded. There is a canonical subspace Ps of LZ(]R)
representing a maximal domain of definition for U, (slz). The terminology
modular double type refers to the fact that positivity of the operators e, fs
and k; allows us to construct operators €g, f, and ks from es, s and ks which
generate a representation of Ug(sly) with §=-e —mi/b* see also Remarkl
below.
The Casimir C of Uy (slz) defined in is now represented as

(5.25) 74 (C) =

s

€+27rb(s+§'b*1) + 6727rb(s+gb*1) -9 B CoSh(ﬂ'bS) 2
(q—q 12 ~\_sin(7b?)

The middle equation makes it manifest that for this representation ¢=2* —
—e®2ms Notice that the operators in (5.20) are positive self-adjoint opera-
tors for A € R>o.

5.3.2. Prefundamental representations. For our physical application

we introduce representations 7 of the Borel-subalgebras U, (b¥) of U, (sly)



Integrable light-cone lattice discretizations 1237
such that

u IV:I:I
520 W= (jlm ) = el © T

where u, v are operators satisfying uv = ¢~'vu, and p*()\) is proportional
to the identity operator. The notation |[...],., indicates that the formal ex-
pressions following from the universal R-matrix will require a certain renor-
malization.

It is easy to see that we need to have

(5.27)

+ A -1 + A -1 + 2 +/7.—1
Ty (fl): q_q_lu V, Ty (fO): q_q_luv y o Ty (kl):u =Ty (ko )a
(5.28)

- At -1 - A - —2 (-1
7, (e1) = T qvu . (eo) = P qv u, m (k) =u =7 (ky ).

In order to see that these definitions are indeed necessary to get a relation of

the form (5.26)), let us first consider L~ (\) and remind ourselves that 2~ =
1+ Zj (q_l - q) (fi ® €;) + - - - up to higher order terms, which implies that

(5.29) (mf @) (%) = <Avi1 AV;“) <3 u01> +O2).

The case of LT()) is very similar.

The representations Wf will play a fundamental role for us. They are
analogs of what is called a prefundamental representation in [HJ]. To moti-
vate this terminology let us anticipate that all representations of our interest
will be found within the tensor products of such representations. We may
therefore regard the representations wf as elementary building blocks for
the category of representations we are interested in.

One of the most basic and fundamental observations is that the operators
f; == ﬂ';\r( fi), 1 = 0,1 satisfy the relations of a g-oscillator algebra,

A2
q—q b

(530) fgfl — q_2f1f0 =

This implies that the operator representing the imaginary root element f él)
is proportional to the identity operator. It follows immediately from the
iterative definition (5.7)), that the operators representing the higher real
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root generators f,, ks vanish identically. This observation will later be very
useful.

Remark 4. For |¢| < 1 one may consider representations of highest or low-
est weight type, as done in [BalLZ3|. In this paper we will mainly be inter-
ested in infinite-dimensional representations where u and v are realized by
positive-selfadjoint operators, for example

i

=5

The positive-selfadjointness of the operators u and v implies a remarkable
duality phenomenon: Using the operators u := Ub%, and v := Vb%, and re-
placing ¢ = e~ mib? by ¢ = e ™" one may use the formulae above to realise
representations of the Borel subalgebras By of U;(slz) on the same space on
which B4 are realised. This has profound consequences, as was first observed
in [PT99, [Fa99] for the similar case of Uy(slz). Representations exhibiting
this duality phenomenon will generally be referred to as representations of
modular double type.

(5.31) u=e™, v =2, [, ]

5.4. Evolution operators from the universal R-matrix

In order to build an evolution operator we need to find an operator r* = (u/\)
satisfying

(5.32) (= (a/A) ™" LFOOL () -7 (/A) = L ()L (V).

A formal solution to this equation is given by (7). ® T, )(Z7). Indeed,
formally applying W{ ®7T;\_,1 @7, to the Yang-Baxter equation
seems to indicate that (m) , ® T 1) (%) solves (5-32). However, it is far
from clear how to make sense out of (m)" , ® ﬂ;,l)(%_) due to the infinite
summations over monomials of generators defining the universal R-matrix.
Our main goal in this paper will be to generalise the definition of the univer-
sal R-matrix in such a way that evaluations like (7}, ® T ,-1)(%~) become
well-defined and satisfy all the relevant properties. The product formula will
be very useful for this aim. In this subsection we will describe a first step in
this direction.

We had observed in Section that 7} (fa,+rs) =0 for i =0, 1,

>
0. This implies immediately that the infinite products representingﬁ (mF ®

T+ o

To simplify the following formulae we rewrite (m), Q@m 1 )AT) = (m; ®

BYICaE

=t
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T (#=5) and (7)) @ ) (%) truncate to a single factor. We furthermore
observed after equation that the imaginary roots are represented by
central elements in the representations 77:[ and 7, . We conclude that the
product formula yields a well-defined formal series in powers of /A
of the form

(5.33) (o (1/A) = p(1/N)eq(—T7f1 @ e1)eq (=70 @ eo)a ™",
where f; := 7} (fi) and e; := m) (e;) for i = 0,1, ¢ *:= (7 @7, )(¢""), and

7, = q — ¢~ *. The function g,(w) is related to the quantum exponential as
eq(w) := exp,e((¢ — ¢ 1) ~tw) introduced in (5.14). It can be written as

e (_1)k+1 wk
(5.34) gq(w) 1= exp(bq(w)), Oq(w) == ; [ —

The factor p(p/A) in (5.33) is a central element collecting the contributions
coming from the imaginary roots,

(5.35) p(p/A) = (m @ T\ (%Z25).

By means of a straightforward calculation one may check that the expression
(5.33)) will satisfy (5.32)) in the sense of formal power series thanks to the
fact that e,(w) satisfies the functional relation

gq(qu)

(5.36) )

=1+ w.

Our ultimate goal, however, is to construct an operator representing
(mp @7y )(#7) on the vector space carrying the representation m,; @ 7y
of Uy(b7) ® Uy(bT). One of the main ingredients in the definition of the
product formula is the function e4(z) which is well-defined for |¢| # 1. We
are here interested in the case ¢ = e ™°, b € R. The function gq(x) can
not be used in this case: The series defining g4(x) is clearly singular
for all rational values of b?, and has bad convergence properties otherwise.
However, in order to preserve the most important properties of the universal
R-matrix after renormalisation it will be sufficient to replace the function
gq(x) by a new special function which is well-defined for ¢ = e ™ b e R,
and which has all the relevant properties ¢4(z) has.

5.4.1. Canonical solution. We had seen above that the functional equa-
tion (5.36)) plays a key role for ensuring that the product formula satisfies
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the defining properties of the universal R-matrix. We therefore need to find
a function &2 (w) that is well-defined for |g| = 1 and satisfies the functional
equation . The physical application we have in mind forces us to im-
pose another important requirement: We want that the operator r™—(u/\)
is unitary for real u/A, which is necessary to get a unitary time evolu-
tion operator. Unitarity will hold if the function & (w) replacing e4(w) in
satisfies |Ep2(w)| = 1 for real positive w. We are now going to explain
that unitarity fixes a unique solution to the functional relation when
lq] = 1.
It is by now pretty well-known how to find such a function & (w): A
good replacement for e,(w) will be the function & (w) defined as
(5.37)
) dt 6—2itw
Ep2(w) = exp (652 (ﬂ log(w))), Op2(z) := /]R+i0 @sinh(bt) Sh(/h)

The function &:(w) defined in is easily seen to fulfil the requirements
formulated above. It is closely related to the function e(z) := & (e2™®)
called non-compact quantum dilogarithm in [Fa99]. References containing
useful lists of properties and further references include [FaKVl, ByTT], V0.
The functional relation is equivalent to the following finite difference
equation for O (x),

(538) DOy (.7)) = Op2 (Qj‘ + ’Lb/2) — O2 (.%' — Zb/2) = — ]og(l + eQbe)’
which has a canonical solution obtained by Fourier-transformation

(539) @b2 (Jj) = _Db_l log(l + 627rbx) —

_Dl/ @ 6721'1‘,:1: _/ @ ef2it:1:
Y Jrgio 2t sinh(¢/b)  Jrio 4t sinh(bt) sinh(t/b)’

The second equality in the last equation can be verified by summing over
residues.

We will now argue that replacing e,(w) by &2 (w) is the essentially unique
choice that not only solves the functional relation , but is also unitary.

Note that is formally equivalent to (g4(u)) ™! - v2 - g4(u) = v + vuv
for any operators u, v satisfying the Weyl-algebra uv = ¢~ !'vu. We are going
to argue that &:(w) is essentially the unique function of w which satisfies
|Ep2 (w)] =1 for w € RT and

(5.40) (&2 (u) 71 v2 - & (u) = v + vy,
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for positive self-adjoint operators u, v satisfying the Weyl-algebra uv = ¢~ vu.

As the function &2 (u) defined in is unitary, it follows from that
vZ + vuv is self-adjoint. Working in a representation in which v is diagonal,
one may use & (u) to map v2 + vuv to diagonal form. Uniqueness of the
spectral decomposition of the self-adjoint operator v 4 vuv implies that the
most general operator which satisfies is the form D = ¢(v)&:2(u). The
only operators depending only on u which do this job are scalar multiples
of gbz (U)

5.4.2. Minimality of the renormalization. To round off the discus-
sion, we are going to argue that replacing e,(w) by & (w) is in a precise sense
the minimal subtraction of the divergencies e,(w) has when ¢ approaches the
unit circle.

Let us note that &:2(w) can be analytically continued to complex values
of b, allowing us to define it in the case where |¢| < 1. We may then compare
Ep2(w) to g4(w) in this regime. The integral defining O (w) may be evaluated
as a sum over residues in this case, giving

(5.41) Ep(w) = eg(w)eg(@),  G:=e ™Y = wir.

This means that &: (w) and ¢,(w) differ by quasi-constants, functions f(w) of
w which satisfy f(¢?w) = f(w). Such quasi-constants represent an ambiguity
in the solution of the difference equation that needs to be fixed by
additional requirements, in general.

The particular choice of quasi-constants appearing in can be seen
as the minimal modification of the function e4(w) which is needed to get a
function well-defined for all ¢ on the unit circle |¢g| = 1. In order to see this,
let us consider the function 6,(w) introduced in as function of the
complex parameter g. We will be interested in the behaviour of 6,(w) when
q=e™ b2 = k/l 4 ie. The terms with n = rl in the sum defining ,(w)
will be singular for ¢ — 0. They behave as

(_1)r(l+k)

(5.42) i

The terms with n = rk in the series defining 63(w) will similarly behave for
G=e" b2 =1/k + i¢ as

(_1)r(l+k) ok

(5.43) ~ R
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The divergent pieces in (5.42)) and (5.43)) will exactly cancel each other if @ =
w* and & = —el?/k?, as is necessary to have b? = b=2 4+ O(e?). We thereby
recognise the factor e5(w) in as a minimal choice of a quasi-constant
that cancels all the divergences that ¢,(w) develops when ¢ approaches the
unit circle.

Taken together, the observations above motivate us to call &y (w) the
canonical renormalisation of the function e,(w) which is defined for |¢| = 1.
The considerations above motivate us to regard the operator
(5.44) _

F) = pDF (), 1 (V) = B (M) 8 (A ) T B g

rs

1

where ff :=u-lv,v,u;!, as a renormalised version of the formal expres-

sion r}— (A/u). The definition of the scalar factor p,.,(\) will be discussed

later. And it is indeed straightforward to check that the evolution opera-

tor constructed from rf;~(\) reduces to the one constructed previously in
Section [3.3.3

5.5. Building R-operators

We've seen that the renormalization of the universal R-matrix provides
us with r"=(\/p), the main ingredient for the construction of the time-
evolution operator. In order to build the Q-operators we need a second in-
gredient, the operator r*(\/u). There is a fairly easy way to get r"(\/pu)
from rt=(\/u). Note that

(5.45) L (w) = F - p 'L (o - F

T

where o1 = ({}), and F, is the operator of Fourier-transformation which
maps

F=vpt Flov, - Fo=u

T T o T r T T

(5.46) Flou
Observing that oy L, (p)oy = F2 - L () - F,72 one may easily check that
(5.47) ROV w) = Foonll V) FFOL
will satisfy the defining relations .

It is furthermore not hard to show that the most general operator sat-

isfying (3.52) can be written in the form ¥ ;F(\/u)H(z),), where z}, :=
u,v, tveu,. The choice of the function H(z) will turn out to be irrelevant
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for our applications to the lattice Sinh-Gordon model, and may therefore be
fixed by the convenient normalisation condition r};" (1) = P,..

In order to get useful explicit formulae for r*=(\/u) and r™F(\/p) we
may start from . An alternative representation will be particularly
useful:

(5.48) n () =P oa(fgr) - FrFs,
and

py(w)  palw) = e” mE OE g () G (M)

5.49) py(w,z) = . .
(5.49)  py(w,2) e o

In order to derive ([5.48) one may use the identity

(5.50) ez logurlogus _ oz ((loggr)*—(logf)) . p . 7

which can be verified by computing the matrix elements.

By combining and one finds immediately that () =
P,.on(fi, zt) ,where £, := F,. - £ - F-t = u, v, u,v; L, noting that z/f, := F,. -
g - F.-L. We may now conclude that
(551) I’,;:—’_()\) = Prslo/\(f?j;)v
is the unique solution of which satisfies the normalisation condition
rit(1) = Pys. For the case of Uy(slz) we have thereby completed the calcu-
lation of the main ingredients needed to construct fundamental R-operators
and the corresponding transfer matrices. The development of the theory in
this case is continued in Appendix [G] where it is shown how to reproduce
the Q-operators for the lattice Sinh-Gordon model previously constructed in
[ByTT] by other methods from our formulae for r*= and r™* found above.
In the main text we shall continue with the generalisation of these results
for the case of Uy (slyr).

6. R-operators from the universal R-matrix
— case of U,(slpr)

We now generalise the discussion of the renormalisation of the real root
contributions to the cases of Uy(slys). To begin with, we explain how to
obtain the evolution operator from the universal R-matrix. One of the new
issues that arises for M > 2 is due to the fact that we will need to consider
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a slightly larger family of representations. Instead of the representations
t we will need to consider pairs of mutually conjugate representations
(7, 7") and (7, 7). In Subsection |6.3| we will explain how the factorised
representations for the fundamental R-operators like follow from the
representation theory of Uy (slys).

In the rest of this section we derive useful explicit representations for
the resulting R-operators, including a representation as an integral operator
with an explicit kernel. The kernel becomes simplest when we consider a
variant of the lattice model obtained from the twisted universal R-matrices
%* introduced in Section 4.3 The fundamental transfer matrix 7 is shown
to be a physical observable in the sense defined in Section and the
projection to the physical degrees of freedom is described precisely as an
integral operator with explicit kernel.

6.1. Representations in quantum space

The connection between the integrable model defined in Section [3] and the
representation theory of Uy (gls) is encoded in the following relations

ren

oy e (Rem) @]
L™ ()\,Lfl) =

1 f ~ —
m[(ﬂ D7) (Z7) Lien
where LT(X), L=(A) = L~ (A) were defined in Section F* are two uni-
versal R-matrices given in Section and 6% (x), 6~ (z) are certain scalar
factors. The relevant representations entering (6.1)) are defined as follows

(6.2)  mwh(e:) =A'Eiir1, mA(fi) = ABiprg,  ma(hi) = Eii — Eipaip1,

where E;; are the matrix units E;;Ex = d;1E; and

A _ _
(6.3) W;\“(fl) = mui v, Wj(k‘l) = UiUi+11a
. )\71 . 1
(6.4) ) (ei) = mviu’i+la my (ki) = u; uip.

{vi,u;}i=1,..m generate the algebra W, see (3.9)). It is easy to verify that
(6-3), (6.4) satisty, respectively, the defining relations of Uy (b™), U, (b™), see
(4.1). In particular the Serre relations (4.4]), (4.5)) follow from the exchange
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relations
+f Y — FGig1,—0541,4) + L.
(65) Tr;i (f’bf]) - q ( + + )Tr;i (fjfl)7
Ty 1

(eiej) — q*(5i+1,j*5j+1,z‘)ﬂ- (ejei) )

We postpone to Section the derivation of (6.1) by applying the
relevant representations to the infinite product formula for the universal R-

matrix given in Section A simple way to verify the identification (/6.1
is to notice that

(6.6) (7r§ ® 71':) (¢*") = ij: Eiiu; = (7r§ ® ﬁ;) (")

and check that the image of the reduced R-matrix satisfies the relations
, . As opposed to the direct evaluation of the product formula
for the universal R-matrix, this procedure does not allow to determine the
scalar factors 01 (z), 6~ (z).

The relations follow from the universal Yang-Baxter equation
upon noticing that the matrix R(x,y) is obtained from the univer-
sal R-matrix as explained in Appendix

6.2. Light-cone evolution operator from the universal R-matrix

After we have identified the relevant representations in quantum space, see
equations , , we will show how to obtain the operators r'¢z from
the product formula for the universal R-matrix. In order to clarify certain
features of such expression for the infinite dimensional representations we
are considering, we will focus our attention on

6 o= [(ren) (@)
(6.7) ) = s (e ) ()]
As in the previous section, the notation [...]en indicates the use of a cer-

tain prescription for defining the infinite sums in the definition of A*. The
operator r~* can be obtained in a similar way, or just using the relation
r*+a(r+*) = 1, where o exchanges the tensor factors. The case €] = €2 re-
quires further considerations as both tensor factors correspond to the same
Borel half. This case is considered in some details in Section [6.4l
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The expression (6.7)) provides us with a formal solution to the relations
(13.52)) which characterize the building block for the light-cone evolution op-
erator. The key relation (3.52) follows directly from the special case

Ry R R gy = Ry B3y

of the universal Yang-Baxter equations by applying #' ® W;\r_l &,
to this relation. In order to obtain the generators of the discrete time-
evolution for the lattice models from , it is crucial that LT and L™
are obtained via from #~ and ZT, respectively. This fact reflects the
respective orientations in the integration over light-like segments defining
the classical counterparts of L* and L™, as was observed in [RiT].

As summarized in Section the evaluation of the universal R-matrix
consists of the following three steps: fix a convex order in A (slys), evaluate
root vectors and finally substitute the root vectors in the product formula
. This procedure is straightforward upon following the instructions in

Section and Appendix We proceed performing the first step.

6.2.1. The image of root vectors under 7+ and #~. A key obser-
vation is that for the representations 7+, #~ most of the root vectors, for
a specific choice of convex order of positive roots, evaluate to zero. In the
case of 71, using the root ordering specified in Appendix the only
non-vanishing root vectors are given by

(68) 7r+(f€1‘,—€i+1) = f’L
k+1
(6.10) ey = G L

where ¢ := ¢ (¢ — ¢ H)Mfy;---f1 = MM is central. For 7, using the short-
hand notation &; = 7~ (e;), one obtains that the non-vanishing root vectors
are given by

(6.11) ﬁ_(eeifﬁj) = (q_l - q)j_i_léjfl ce 8, 1< 7,
(612) 7?7(65—(61—6]‘)) = (qil - q)MijéM toe éjv
k+1
), _ (=1 L
(6.13) T (eps) = [ qc_.
where ¢ :=q(¢7! —q)Mey ---&1 = A™M is central. Notice that we sup-

Jr

pressed the dependence on the spectral parameter from the notation 7™, 7.
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The equations above immediately follow from the exchange relations
(6.5) and the definition of root vectors given in Section and Ap-

pendix

6.2.2. The image of the universal R-matrix under 77 ® #~. The
representations 7, 7~ posses the remarkable feature that the imaginary
root vectors are central. As a consequence, the contribution from the positive
imaginary root to the universal R-matrix is a scalar factor given by

(6.14) PO = [(Wf ®7r;) (‘@55)]1«%

We postpone the discussion about the renormalisation of this expression for
q on the unit circle, which is the case of interest to this paper, to Section
Concerning the contribution of real positive roots v € A(gly,), compare

to (5.13)), the results of Section immediately imply

_ fiweg ify=q ie€{l,...,.M}
6.15 ™ ®7 ®ey) =4 " T
( ) ( A a ) (f®ey) 0 otherwise
Moreover, these operators commute among themselves

(6.16) XiXj = XjXis Xi=—(¢g—qg H®e.

It follows that

(6.17) (75 @) (#7)] o = 0"~ Q™ NEG) g
where
M
(6.18) (F(X))_l = Hgbz (Xl)’ qT — elogu@logu/iﬂbz,
i=1

where as in Section we took &pe(w) = [g¢(w)],o,, With &2 (w) given in
5.37) and e4(w) = exp,2((¢ — ¢~ ') 'w). Let us compare this expression with
3.43]). Using the definition (6.7) and the result (6.17]) one finds

(6.19) AT = [o (P Y)] T = FROd

where

(6.20) Xi =0 (" g ") = A" (uivi @ viu )
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The expression coincides with upon taking T (@) = [Ep2 (K22)]
The fact that the renormalized expression (|6 satisfies the intertwining
relation ) follows from the fact that {-D does. Notice that X} is a
positive self—adjomt operator for A\u~! positive.

6.3. Fundamental R-operator from the universal R-matrix

After having constructed the evolution operator, the next step is to construct
the fundamental R-operators. Our goal in this section will be to elaborate
on the representation-theoretic meaning of the factorised form for
the fundamental R-operators observed in Section [3.:4] It will be useful to
first consider Z*** which turns out to have the most direct relation to the
universal R-matrix. The fundamental R-operator Z*" can then be obtained

simply via (3.55)).

6.3.1. More Lax-matrices. First, let us note that £**%(\) admits a fac-
torisation similar to (3.11]). We shall represent the matrix L™ (\)T appearing
as a factor in £**(\) in the form

(6.21) LT \)T = A1 FL- (W) F
where T =3".E;41;, the automorphism F is defined via F~1(u;,v;)F =

(Vi—1,u;), and

(6.22) (u;Esi + AviEiv1i) .

Mz

=1

We note that the matrix T is the generator of the automorphism Zj; in the
fundamental representation. 2y := F?2 represents the same generator of Zys
on W.

Let us consider, a bit more generally

(6.23) L4 (i, p) = Lg (AL (1) € End(CY) @ W W,
€1,€2 € {_i_a —i_y e _}

where LT(A) and L=(\) = L™ (A) were defined in (3.14) and (3.13), respec-
tively, while and L= (\) and L™ (\) are introduced as

v -1
(6.24) LT\ = (1—gx™™) > (0B — A ViEiiga)

i=1
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The Lax operators L=(\) and LT(X) can be obtained from the universal
R-matrix as

+ -1y _ f + +
(625) L (A,U, ) - GJF()\M,l) [(TD\ ® Tr#)(‘@ )] ren’
_ 1 1 £ _ _
(626) L (A/Jf ) = m [(ﬂ-k ® ﬂ-,u)(’@ )] ren’
where
6.27 gy = Fky) = vy}
(6.27) T (fi) = ﬁuiﬂwa T (ki) = uzuiy,
)\—1
(628) 7'(';(61') = qfl _ qViUi_l, F;(kz) = LIZ-_1UH_1.

In order to find a relation between [,j+ and EZ_ let us note that

(6.29) T () =AF- LT\ - F Y
(6.30) L-(\)T = —gA ' F LT - F 2,

where F and F are the automorphisms of W defined as

Fou-F =y, Fou - F =yt

)

6.31 . .
( ) .7:'V/L".7:_1:U7;+1, f-vi-fflzu;rll.

It follows that Ejﬂﬂ, w) and EZ_ (i, p) are related by a similarity transfor-
mation,

(6.32) L5 (B p) = —qui " FaFa - L5 (1) - (FaFa) ™
This implies that R’ can be obtained from an operator R satisfying

(6.33) L ()L (2, v)RITH (s 3 7, v)
I1XX7Z - j

= AB (ﬂ’ﬂ; v, V)‘Cgi(lja V)LZXJF(/T%H)

simply by applying the similarity transformation F4 := FyzF,.
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6.3.2. Factorisation. As observed previously we may get operators R/**?
satisfying (6.33]) from the universal R-matrix in the following form

(6.34) R (fa, p v, v) ' .
= [pxe(/la i v, V)] ! [(77:71 ® 7'(';,1) ® (7;71 ® ﬂ-;il) (%_) ]

ren’
The product of Lax-matrices appearing in the factorisation ((6.23) repre-
sents the tensor product of representations 7, ® 7 of the Borel-subalgebra
Uy (b1). Tt then follows from (A ®id)(Z) = Z13%23 and (idRA) (%) =
H13%15 that the operator R'**# can be factorised as

(635  RGF(o,v) = (o) (o) (o), (),

)

with factors r**(u,v) all obtained from the universal R-matrix by evalua-
tion in suitable representations as

iy O 9 ()],

€1 € {+,+}, ee{-, -}

(6.36) r2(p,v) =

The factorised representation ([6.35]) for R’ implies similar representations
for R’{j; and R 45, as anticipated in (3.51)).

Remark 5. The representations 7~ and 7~ can the considered the conju-
gate of each other in the following sense:

(6.37) Tt () = (7 (L))"
where . is the antipode
(6.38) Sei) = —ekit,  L(f) =k, Sk) =k L

and the involution x* is the anti-automorphism of the algebra VW defined by
(ui,vi)* = (u;*,v;). Notice that in we introduced the representation
7T relevant for the following sections. In the case of L{q(sAIQ) one has 7, =
Ty, Ty = my . One may further notice that y (f;) = T -1z (€), nt (k) =
= (k7h).

)
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6.3.3. Decoupling. The representation 7, ® 7T; is reducible, as can be
formally expressed as

(6.39) (r @m ) Ade) = (7" @ T A(a),  a€ly(b"),

where 7™ and 7™V are defined via

) Pt
(6.40) m(ei) = ——V

1
2

(/{Ui + K_IU;l)Vi , ﬂﬁ\’f}f(qg") = U;l,

N =

1—q'¢
(641) 7_‘_tr1V(€i) =0, ﬂ_trN(qei) — Cz'_lv
provided that we define

(642) Ui =uyv;'®@uy;,  Vi=vi®@uis -Gl CF=uyv, @uyy

7
1

(6.43) A:=g? (up) "> ri=(Euh)3.

Note that the operators U;, V; satisfy the commutation relations of the
algebra W, wile C? are central in the algebra generated by UZZ, V? and CZZ.
The relation can be easily verified on the generators e;, ¢ using the
definition of the coproduct and the representations 7=, 7~ given in ,
(6.28)).

The factorisation can alternatively be shown in the language of
Lax matrices as follows. It is straightforward to see that £, (i, 1) can be

factorised as

(6.44) £ (i ) = L™ (1, 1) A(C),
where

-1
(6.45) L™, ) = (1— ¢~ ™) Z(En’ — j1U;ViEiy1)

%

X Z(Eiiui — uViEit1,),

using the definitions above. The fact that there exists p®(\) such that

K

(6.46) L™ (72, 1) = 1 @ T (2 7)) e

1
min [(
PR (A
can either be verified directly, or follows more elegantly from the observations
made below in Subsection Keeping in mind that matrix multiplication
represents the action of the co-product one may deduce (6.39) from (6.44)).
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The factorisation will be the representation theoretic root of the
decoupling of “unphysical” degrees of freedom observed in Section It
will imply that the operator R’} constructed in the factorised form (6.35)
admits a similar factorisation 1nto two factors acting nontrivially only in

Rmn and 7Y, respectively, as will be verified by explicit calculation below.

6.3.4. Relation to evaluation representation. It is useful to notice
that the representation 7™M can be extended to a representation of the full
affine algebra U,(gly;), as can be seen in the following way. Note that the
spectral parameter dependence of the matrix entries of L™ (fi, 1) takes the
following form

M
(6.47) L™ (i, 1) =Y Eii (Lis + AM L)
=1
+Z (NTIE Ly + M TTME L),
i>7

where L;;, Ly and L;; are operators independent of the spectral parameter
defined in (6.43)), and L;L;; is central. The fact that the representation ﬂ'gltin

extends from U, (b™) to a representation of U, (gA[ ) follows from the known
fact that Lax matrices satisfying (3 which have the form with
central ¢7 := LyL;; one may get a representatlon of U, (g[ u) by settmg

ev )‘_1 ev )‘ | —
(6.48)  mX'(eq) = P qu il (i) = ﬁl-iill-i-i-l,i,

—_— qi
(6.49) 7 (¢") =L;".

(22

The extension of the representation ﬂ'mm to all of U (g[ ) is thereby recog-
nised as a particular representation 7§ of evaluation type.

Remark 6. By a similar analysis as the one presented in Section [6.3.3] it
is easy to argue that

(6.50) (77;2 ®-® Wj\rM) AM) — (Wtriv ® TFil)_\}d. oev)A,

where V() =0 and 71{ } denotes a representation of Uy(slps) on
L2(RM(1VI 1)
resentation.

). If the parameters {\s} are generic, this is an irreducible rep-
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6.4. rtT from the universal R-matrix

In order to construct fundamental R-matrices and Q-operators, see Sec-
tion [3.4] we need to determine the other building blocks. We shall start
with

1
pr (A1)

appearing in the expression for the fundamental R-operator
R™5 (i, p; 7, v)

In the following we obtain a regularized version of (7+ ® 77)%~ from
the product formula for the universal R-matrix and show explicitly that
rt~(\) satisfies the intertwining property (3.52).

In the case of 7, using the root ordering specified in Appendix
the only non-vanishing root vectors are given by

(6.51) () = [(m} & W;)(%’_)]

ren ’

g mA!

(652&) 71—; (eei—e,;_H) =€ = q_l —q

-1
Yi Yit1s

_ _ i q
(6.52b) Ty (€s—(c,—en) = (a7 — )" Tever o1 = g MYe

Coreny _ (EDFT 1
(6.52¢) T (eps )= [ — qc,.

where c_ = q(g7! — ¢)Mey ---epr = A is central.
As in Section the contribution form the positive imaginary root to
the universal R-matrix is a scalar factor given by

(6.53) ptOwh) = (v @) (225)]

ren

The renormalization prescription and its explicit form are discussed in Sec-
tion [8 R

Concerning the contribution of real positive roots v € A'(gl,,) the re-
sult of Section together with immediately implies

(6.54)  (nf @m,)(fy®ey)
W; if’}/:ai,iE{l,...,M—l}
:—7[1_2 ql_ivaO-“VvVl',l if’)/:(sf(éi*GM),’L'G{1,...,M*1}

0 otherwise
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Where 7, = ¢ — ¢~ and W; := —Tqui ® e; satisfy the abelian current algebra

on the lattice, see e.g. [FaV93]

(6.55) Wi, = q2(5i+1,j*5i,j+1)

WW;
It follows that

M —1factors
(656) [(7[';_ & 7T;) (ﬁiﬂren = p+7 ()\Mil) 8b2 (Wl) s 552 (WM—l)
X Epe (q2_MW0 ce WM_Q) e Ep2 (Wo) q_T

-~

M —1factors

where ¢ is given in (6.17) and the renormalization prescription for the
quantum exponential is the same as in (6.17]). Notice that w; = )\,u_lui_lvi ®
v,u; L are positive self adjoint operator for A1 real and positive.

6.5. Intertwining properties and useful expressions for rt=+

We now consider the operator r**()) appearing in the factorised representa-
tion for R 4 5. The case of r™— () is very similar. We first introduce an
operator r' 7T (\) related to the operator r~ () constructed in the previous
subsection as

(6.57) PO = 1®F) rt() - (Qe F)

Our next goal will be to verify that our renormalisation prescription for the
universal R-matrix guarantees that the intertwining relations are sat-
isfied. To this aim we shall identify conditions that ensure that an operator
r:b+()\a, Ap) represents a solution of

1

(6.58) [t s A)] L Q)L () rfy " (has M) = L ()L (Ma),

where LT()) is defined in (3.14). It will then be easy to verify that the
operator r™T given by (6.57), (6.56) satisfies these conditions. It will be

convenient to introduce

(6.59) Fht =Pyt
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We temporarily suppress the dependence on the spectral parameters A, in
our notations. The intertwining relation (6.58)) implies the following com-
mutation relations

(6.60) [F;‘;, Vi+1,avi,b] =0, [F:f, “@aui,b] =0,
(6.61) (A;1Vi7bui+1,a + )\b_IULsz',a) F:;r = IV’;_b—F ()\b_lvi,bui+1,a + Aglulﬁbviﬂ) :

In order to solve we define

1 -1
(6.62) Wi 3=V p VialibUiyy g

~1 —1
(6.63) Mi = VibV; o UibU; g 4

One may put extra ab indices on w,7n, this will not be done here as no
ambiguity arises. These variables generate the subalgebra of W ® W that
commutes with v;y14v;p and u;4u;p, compare to . They give rise to
two mutually commutative copies of the U(1) current algebra on the lattice,
compare to , with opposite charge,

(6.64) wiwj = q_Q((Si’j“_(si“‘j)WjWi,
(6.65) miy = g RO gy,

Any function of the operators w;, ; will satisfy . Turning our attention
to the conditions (6.61]), let us note that these equations can be rewritten
as

(6.67) (VipUitt,a) iy (VipUitta) ' = (2 +qwy) T ELT (14 2qw)
where 2z := )\b)\ ! Notmg that (vipUiti,e) Wj (VipUitt, o)t = 200, J)w

one recognises as a difference equatlon restricting the dependence of
++ on the operators w;.

6.5.1. First formula for ¥t+. In this section we will show that any
expression of the form

- - —1
(6.68) i+ hlawy D) h(awis) h(zwy (1))
ab H(Wl) H(WLQ) H(WL(M—l))

X h(zM_le(M_l)) - h(Z*wi 9)h(2w1),
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will represent a solution of (6.67)) provided that the function h(z) satisfies
the relations

(6.69) h(g ) = hig tz) 1 + 2), 0(z) := h(z)h(z™1).

In (6.68]) we have been using the notations w; j := qi_jwiwiJrl ---w;. Notice
that the ¢ power in front of this expression is such that w; ; = eXk=i 108 W
One furthermore has 0(¢*'z) = 26(¢~'x). It is manifest that for z = 1 one
has F;f = 1. The fact that solves for ¢ =1 is immediately
verified by using the properties and observing that the products wy
are invariant under the conjugation in the left hand side of for2 <k <
M. In order to complete the proof that provides the desired solution
it is enough to show that it is cyclic invariant, i.e. it does not change upon

substituting w; with w;;1. In order to do so we find it convenient to rewrite

(6.70) EET = Twh(zwa)h(2ws) - - - h(zwar)
X h(zM_le(M_l)) - h(Z2wi2)h(2wy),
where
671) Ty e L1 I 11

O(w1) O(wio)  O(wiar 1)) Owar—1)  O(wa) O(wy)

The quantity Y,, is cyclic invariant by itself. This can be shown moving the
the last factor on the right of to the left and using basic properties
of the function 6(z). In order to show that the remaining factor in is
cyclic one uses the pentagon relation

(6.72) h(y)h(x) = h(x)h(g ' xy)h(y),  xy=q *yx.

Details are left to Appendix We have thus singled out and ((6.72])
as the properties of the special function h(z) necessary in order for (6.68) to

solve . These properties are satisfied by & (z) [Fa99, [FaKV], Vo], so we
will set h(x) = Ee (). The function ey(x) = &2 (e2™%) satisfies the inversion
relation

(673) eb(x)eb(_x) — Cbe’iﬂ'x27 Cb _ e%(b2+b72)7
which implies that 9(@2” bz) _ <be’i7r22.

6.5.2. rtt via the Universal R-matrix: comparison. One should
note, however that equation (6.58) can not determine rjlf uniquely. Recall
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that the variables n commute with the variables w and satisfy . They
furthermore commute with v; yu;11 4. Multiplying a given solution rjj of
by any function of the operators 7; will therefore give us another
solution of (|6.58]).

In Section we demonstrated that the operator r:bJr()\, w) defined
using in (6.59)) is a solution to . We expect that the operator
r'*+(uA~1) defined by a suitable renormalisation of the formal expression
following from the universal R-matrix in Section represents another so-
lution to . We shall now clarify the relation between the two operators.
It is expressed by the following formula

(6.74) (o (AT =L )Ty,

where T, takes the same form as T,,, defined in , with the function
O(z) replaced by its inverse #~!(x). It follows immediately from relation
that the operator r'** indeed solves the intertwining relation (6.58),
as expected. The presence of the factor T, reflects the ambiguity in the
solution of noted above.

Proof of - It follows from ((6.57)) and ) that
(675) Pab /++(:U)‘ ) NabS ( )S&)a
where

(6.76)  F(W) = & (W) -+ Ep2 (War—1)Ep2 (¢* Mg - Wasa) - - - E2 (Wo)
(6.77) Nap := PopFog T F 207 Sup = QuFog ™o,

and w; = M/\*lui_lvz- ® viui_l. In order to derive ) from we need
to take two simple steps: (i) Study the action of the snmlamty transform Sab,
and (ii) derive a useful expression for the operator Ng,. Concerning point
(i), it is easy to show that

(6.78) S WiS oyt = 2w,

where w; is defined in (6.62]), while z = uA~!. For taking the second step
(ii), it is useful to note the following identity

(6.79) Nap = T Ty,

where T, is defined in (6.71f) and T, takes the same form as Y,, with the
function 6(x) replaced by its inverse #~!(z). This identity can be shown by
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computing the matrix elements of both sides. One may further notice that
T, satisfy the relations

(6.80) Taw; Tyt = wi ’I‘an;l =1y
The relation (6.74)) simply follows from (6.75]), (6.78)), (6.79)) and (6.70)).

g

6.5.3. rT1 satisfies the Yang-Baxter equation. We have seen that
the intertwining relation does not fix ¥ uniquely. Here we adress
the natural question of whether the Yang-Baxter equation for ¥+ fixes this
ambiguity. A solution of is given by

(681) I’:bJr()\a, >\b) = Pabpz(wab)fz(nab)v = )‘;1>‘b'

Here wg, and 7, are defined in (6.62)), (6.63), moreover p,(w,y) is defined
by (6.70) and f,(n4) is any function of 1. The Yang-Baxter equation for

r™T can be brought to the braid-type form

(6’82) fz(nl)pz<wl)fzw (772)pzw(w2)fw (nl)pw(wl)
= fuw(n2) pw(W2) fou (M) p2w(W1) f2 (12) p2(W2),

where 11 = Npq, W1 = Wpg, M2 = 7Jeh, W2 = Wep. The important observation to
be made is that 1, ;wg; = wg jnai, where a, 8 =1,2. For this reason the
braid relation above can be disentangled into two relations

(683) fz(nl)fzw(n2)fw(771) = fw(n2)fzw(771)fz(772)a
(684) pz(Wl)pzw(WQ)pw(Wl) = Pw(WQ)pzw(Wl)pz (W2)-

We conclude that a solution to of the form satisfies the Yang-
Baxter equation provided that f, and p, satisfy the braid relations ,
. In the discussion above we took fy,(n) to be either 1 or proportional
to T,), see (6.80). One may observe that Y,, Y,, T, =T, T, T, . In Ap-
pendix we verify directly.

The considerations above imply in particular that the normalised R-
operator r™T satisfies the same Yang-Baxter equation as the R-operator
r'** coming from the universal R-matrix.

6.6. Another useful expression for ¥+

We are now going to derive another expression for the operator F:bJr that
will be very useful for deriving representations as integral operators. The
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operator F:lf can be represented as

M
(6.85) ¥t :/ds P (s)w(s),ds = §(stot) H ds;, w(s):=e Ly silogwi
i=1

where Stot = Z’f\il S, 2 = 6271'17”7 q= e—iﬂ'b2 and
M iy MM 1)
6.86) p; " (s)=N. H sp(ibSk p+1 — v + Cp) No=°
( . z z i Jk+1 ) z - Sb(cb — MU) ,

using the notations s;; = s; — 55, v = (27b)llog z. The special function
sp(x) is a close relative of ey(z) defined as
(6.87) sp(7) = ¢, e 2" ep().

In order to derive (6.85]), let us introduce the notation x; = (27b) ~tlog wy,
and xq_, := (27b) llogw; p = x1 + -+ x;. From the exchange relations
(6.64]) it follows that

1
(6.88) [xi, %] = Tm'(éiﬂ’j — 0ijt1),

where the indices are taken modulo M. Consider (6.68]) and rewrite each
term using [FaKV]

h(ZWl_}g) B €i71'112e—27rivx17k.
H(Wl,k) eb(xl,k — ’U)
=¢ / duys €™ (ey(v — up, — ¢p)) e 2T
R
(6.90) h(2Fwi k) = ep(kv + x1 1)

i o
— H/dvke v} eb(0b+vk)€ 27rwk(k'u+x17k),
R

(6.89)

where (o = em(1-4¢))/12 The next step is to group the non-commuting ex-

ponentials (using the relation e4eB = eA+Be:[45] when [A, B] is central) as
follows

(691) (6—27riX1L1 . 6—27T75X1,1\471LM71) (6—27T7;X1,1\471RM71 . e—?m’lel)

— 87271'17 Zﬁ/lzill ZiSi+I'MW(S)

)
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where z; = (L; — R;)/2 and L; + R; = ib(s; — s;+1) with Zf\il s; =0 and
sij = s; — sj. With this change of variables we rewrite
(6.92)

M-1

M
6.68 :/ ds;0(Stor)W(sS |:627rik:'u(akcb)/dzeb(ak_z)e%rizpk ,
(6:63) H1 (siot)w(s) [ A )

where

b b .
(6.93) ar =cp+ U5k ks b, =v — IgSkkr1 = Chy Pk = —ibs. v — kv.
Notice that the integration has decomposed into the integration over s and
the product of M — 1 integrals over the variable z. These integrals can be
done using [FaKVl, ByT]]

6 94 / d y e~ 2mivy _ Sb(v —u—- cb>sb(w + Cb) —miw(utv)
Yy —————~ = e .
sb(v—u—i-w—cb)

Note that the term in parenthesis in (6.92)) can be simplified by using the
identity

Sp(bsark+1 + ik + 1)v) ~ Sy(iMw)

M- . M
o(b +iv)Sp(bsar i + ik 1
(6.95) | | S’“ e 1 10)Sylbasr + k) [[ So(bsipsr +iv),

k=1
which holds for any function Sy(z). The relation (6.85)) immediately follows
upon setting Sy(z) := sp(ix + ¢p).

Let us ﬁnally note that ( - gives us a convenient way to re-prove that

ELT satisfies ). Inserting (6 into (6.67) one finds that will
hold if IC.(s) := ¢ 221 5 A”Sjpz ( ) satisfies

(6.96) 0=K.(s)(2t? — 1)+ K.(s — 6 +vo)(1 — 2¢*t2_), t;:= ¢ %+,
where vy = ﬁ(l, 1,...,1) and §; is a M-vector with zero everywhere except

at position i. In deriving we made use of the following property:
w(s + avg) = w(s) for an an arbitrary constant . This will be the case if

M
(6.97) Ka(s) =[] 1)
=1

provided that f,(z) satisfies f.(¢ 2x) = (1 — zx)f.(z), as is clearly the case
when f(z) is chosen as f(t?) = (Ep(—g2t?))
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6.7. The twisted story

We had previously observed the possibility to modify the universal R-
matrices by using Drinfeld twists. It is natural to ask what is the integrable
lattice model constructed from the twisted R-matriced] We will consider
the simple twist introduced in Section .3} Some remarkable simplifications
will later emerge in this case. .

Let us first consider (nf @ 77)(#), and (nf @ 77)(#). The resulting Lax
matrices are

M

I ~ M—-1 1
099 Ua00 =A@ (1445 L v ).
i=1
~ " M -1
(6.99) Lo () = (1 — ¢ 'i™) <1 - qMNZVi,QaEi+1i> AW,
i=1

where 0 and 0’ are defined as

(6.100) Gi2a-1 = [ [(Wjoam) ™, G50 = [ J(uj00) ™

J J

and X;; is given in (4.25)). The only non-trivial commutation relations in-
volving the variables above are given by

~ 2 _9§. . ~
U;2a—1Vj2a—1 = qM ““Vj2q-1U;2q—1,
(6.101)

26;541— !

~ 2 ~
0} 20Vj.2a = q MVj 2005 94
The algebra generated by the matrix elements of £(fi, 1) = I:;(/l) E+(,u) has
generators

\72 = U2 Vio Vo u,ﬁ2 _ ~
(6102) N;,a 4,2aV4,2aVi,2a—1%44+1,2a—1> Ui,a _ 0272a6i72a_1.
Cia = Vi2aVit1,2a-1>

The physical degrees of freedom are conveniently represented by

- - 2 -2
(6.103) Xi,2a = Vi2a+1Vi2as Xi,2a—1 = Ui 24V 24V52a—1Y41,2a— 1>

" The same twist has been used in [IS03].
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they satisfy the same algebra as x; . The light-cone evolution operators are
now found to be

N M

(6.104) Uf = Coua [[ >+ [] Fe(Ra). Uy =0fC,
a=1 =

where

(6.105) fap 1= — W Zlog uj,0) Xij log(ujp).-

The equations of motion are unchanged. This means that the integrable
lattice model constructed from the twisted universal R-matrices is as good
as a regularisation of the affine Toda theory as the original one.

In order to clarify how much replacing the universal R-matrix % by
# modifies the integrable lattice models constructed using these universal
R-matrices let us temporarily consider more general twist elements of the
form .% = o(¢~7) with matrix X;; appearing in left arbitrary. The
Lax matrices obtained from # always take the form
(6.106)

WE

LT (u) = Ay eA(yT) = (afEii + b/ Eiiv1),

i=1

i -1
L™ (7) = AGH)AE") = (1 — ¢ ') [Z (@) "Eii — biEiJrl,i)] ;

where

(6.107)

o -1
m-1 1 = _1_ 1
(=1+q *ZE“Ha (=(1—-q'a (16} M,LLZEz’+1,z'> :
i=1

The dependence on the twist is encoded in the form of the variables yZ»L , yZB,
yiL , yﬁ in terms of u;, v;. The explicit expressions will not be used in the
following. The gauge invariant combinations are

- 1 _ 1 _ _ 1
o (o) (i) <G ),
7 7 _ 3
(6.108) Vit 2a y+1 2a—1 2a Ay /20—t
1 1 1
=~ oL R — +
R T ~ b; ) (—b. > .
Xi,2a <Yz+1}—/iL>2a <yRyz+1>2a+l ( i1 % a;r i )9as1

()
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It is not hard to see that the algebraic relations and the discrete equation
of motion satisfied by the x; are independent of X;;. Let us furthermore
note that for generic X;; we have

(6.109) T\ = T(A)\W)z

where T()) is the monodromy matrix defined from L¢(x) in the same way
as T(\) is built from L*(u). In order to verify (6.109)) it suffices to note that

(6.110) M(N) = AyH)TM (MAGE),  M(N) = AonlAgn_10. .. AL,
where

(6.111) Aog := A(y5 1 1¥5,), Aoam1 == A(Y3hy5a_1).

Notice that the matrices Ay contain only gauge invariant combinations.
Moreover, one can verify that the effect of the similarity transform A(yft) on
the transfer matrix is the same for any value of the twist. We conclude that
the twist only modifies the way the variables y; » are constructed out of the
basic variables u; ; and v; ;. It will turn out, however, that some choices of
X;; are more convenient to work with than others.

6.8. Assembling the fundamental R-operators

6.8.1. Preparations. We had previously observed that the Lax-matrices
of our interest can be represented in a factorised form, £4(\) = L3 (@)L} (1).
We are using the notation A = (a,a) and will denote the Hilbert space the
matrix elements of £4(\) are realised on by Ha = H, ® Hg. It follows that
the corresponding fundamental R-operators can be obtained from

(6.112)  Rap(,p7,v) =l (/wrb v/wyry (7/m)ry (v/p).

Our goal is to find more explicit representations for the operators R 4. We
begin by displaying the structure of the ingredients in a convenient form:

W) = (0, () T () = Pl (wa),

(6.113&) o B
r;b+(y) = qtabﬁu(iﬁib% rab (V) = ]P)al_;pl/ (WELB)’

where Xap, Wap and w,; denote the collection of operators

wh, = (vu! vy, ;
= (i) s z)117)’_ Xa = (Ui1vi), (viui ), -
b?

(6.113b) e
Wiy = (Viui—I—l)a (Vi u;
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We may thereby represent R 4p in the following form:

(6.114)
_ -1 _
Rap(f, w7, v) =Pap - [9,,(zan)] - p, ! (xaB)p; 1 (YaB) - 0, (2aB),
where
XiAB =g 'WZb gt = (Vzuz+1) ( z'_+llui)a (Vz 'u; )bv
(6.115) . St i gt 1
YAB ‘=4 “Wap 4 = (ViuiJrl)& (Uz‘+1ui )b (Usz )
and ZaB = XL p- It will be useful to observe that the operators XAB, yAB and
7'y 5 can be expressed in terms of operators Uy, VZA, 5 and Y 5 defined as
(6. 1162
. 1 . S
(Uy)" = (uiv Ja (Vi) Vi = (C4) Vi,

. . Vi = Uj4+1,aUi+1,a-
(C%)Q ( ) ( H_1\/1‘)(1’ B _ (Cz—i—l) lsz’ A +1 +1

Notice that the operators Cf4 are central in the algebra generated by the
combinations (6.116]), while Uf4, Vf4 satisfy the defining relations of the al-
gebra Wyy.

The result is most conveniently expressed in the form

b = (24 5) 72 (Uf) T2 , , o .
Gary) s = @) 2 UDTES g gy

Yag = (Z4p) T2 (Up) *(24p) "z,

N = wh_.

This representation makes clear that the operator PR 2p commutes with

i, and C%. Noting that C, = C,,_, if A = (a,a) ~ (2a,2a — 1), it becomes
easy to see that the fundamental transfer matrices T(f, u;7,v) defined
as T(g, pu;v,v) = C-T(ia, u;v,v), where C is the shift operator, commute
with C4, ;.

In order to show that the fundamental transfer matrices T'(fi, u; 7, /) also
commute with C%, let us note that the cyclic symmetry of the trace allows
us to rewrite the definition of T (i, u; 7,v) in terms of the fundamental R-
operators R, 5 associated to the Lax-matrices £'y(A\) = L} (u)Lz (i1). The
corresponding fundamental R-operator R’y 5 may be represented as

(6.118) R (i, 150, 7) = vy () ety v/ wyr (2/ )y (v/ ).

A straightforward generalisation of the analysis above leads to the conclusion
that P4 BR;‘ p commutes with Cf:‘ and C’];, defined as

(6.119) U= (Viu), (Vi_lui—i-l)aa Cp = (viu;)y, (Vi_lui—l—l)B'
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Noting that Ci = Cb, if A= (a,a)~ (2a + 1,2a) leads to the conclusion
that T(fi, u; 7, v) commutes with Cj,. Taken together we have shown that
the fundamental transfer matrix is a physical observable.

XXZ-type chains. One may also consider R’ defined as

(6.120) REG (1 113 7,v) = oy (0 1)y (v/w)ry (9 )y (v/ 1),

with r_ ;= (1) = Pas, _b. (1) = IP;5. The operator R’} is related to the lattice
affine Toda fundamental R-operator R%'; = Rap v1aE|

(6.121) R (s 7,v) = Qg - (FaFo) ™V R (i 13 7, 0) - (FaF) - Q)

It follows that R} takes the form with

X7z

(6.122) (xaB,YAB; 2aB) ™ = S (xaB,yaB,zaB)" S,

8= (FuF) "

6.8.2. Twisted lattice affine Toda. One may easily carry out the same
analysis for the R-operators coming from the twisted universal R-matrices
H*, see ([£.28)). The formulae for the ingredients are very similar

F_t; v 9 -1 —2f5a7 ‘*++ v H:Da M ab),
iy = O ) = B ()
ng""(y) = q2 abﬁu (Xc_bb)7 ab (V) = ]P)E,BPV (Waf))7

where Xap, Wap and w,; are now given by the expressions

. Wi — U~_1V -1
(6.123b) Xab = ViaVip ab ( i+1Vi H—l)a b

i 1
Wep =V g (Uvu)p

The rest of the analysis proceeds as before. The resulting formula for the
operator Rap(f, p; 7,v) is very similar to formula (6.117]), the only changes

8 This equation differs from (3.55)) by a similarity transform originating form the
definition of £XX%, see (3.22)).
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being that one needs to replace the expression for z\; 5 in (6.117) by
(6.124) Zup = Va(Vy )™,
and that one now needs to define

(UY)? = (U?Vi)a (Viui_21)aa Vi) = Via

(6.125) 9 1 i
Cy)” = ViaVitl,a B= Vit1p:

This innocent-looking modification has important consequences. For appli-
cation to integrable lattice models it is helpful to have a formula for the
kernel of R 4p (i, u; 7, v) that is as simple as possible. Such a formula will be
derived shortly for the operator R AB([, u; v, v) obtained from the twisted
R-matrices 27, taking advantage of the fact that 2f4 g is diagonal in repre-
sentations where V4 and Vi are diagonal.

We may observe, on the other hand, that it is impossible to diago-
nalise the families of operators {U%V;i=1,..., M} and {(Vi)'US ;i =
1,... M} simultaneously as the operators in these families do not mutu-
ally commute for different values of the index 4. This means that it will be
much more convenient to work with integrable lattice models build from the
twisted universal R-matrices Z+ rather than the original ones.

6.8.3. Factorization from the universal R-matrix.. In all the cases
above were able to express the R-operators in terms of the operators U; g.
Vi.r, Cir, R = A, B generating a sub-algebra of the algebra of all operators
acting on H 4 ® Hp which has a center generated by the operators C; r. We
will now see that this phenomenon has a natural representation-theoretic
explanation. .

We had observed in Section that the tensor product 7, ®@m, 1is
isomorphic to the tensor product of a representation of evaluation type with
a trivial representation. A similar statement holds for the tensor product
77;\2 ® WL. The precise statement is

(6.126) (71‘;: ® Wi)A(&) = (WT}? ® Wtriv) Ala), a €Uy (b),

where mY"" and 7"V are defined via
9

A

(6.127) 7y (fi) = mvi (RUZH + 87UV ) = U,

(6.128) ﬂ_triv(fi) — 0, 7_rtriV(qéi) =C.

79

ME
ME
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provided that we define
(6.129) U? = ”ivi_—ll Quv;_y, V= Uz‘_l @V Cipqs CZZ =Uv; 1 @ UiVi__lp
(6.130) A:=q2 (MA2)? k= (A A Y)2.

The isomorphisms ((6.39)) and (6.126)) implies, upon assuming the validity

of (4.9b)), that the R-operator ’ ’X}?(,u w; v,v) has besides (/6.35)) another
factorisation of the schematic form

(6 13 1) ,};}XB? _ REAH;n) ®(min) RE:;H)@(U"W) RS;%V) ®(min) RS;\/)@(trlv) ‘

Rewriting R/ in the form (6.131) will allow us to extract R min)
from R"%%.

ThlS is done as follows. Let us start from (6.35)), repeated here for con-
venience:

(6.132) 5 = 0 (o) () (o) (),
Introducing the notation
(6.133) v (0 p) = P2z g, 20 = =72 (n% (fi) © 1 (e),

and moving the factors ¢~ *» to the right we see that R4 can indeed be

written in the form (6.131) with

(min)®(min) _ + +— (fte=) 7F— (fFa=) 7+ (fta—),—tas
(6 134) RAB ,u/ (f ) ru/u(fAeB) rﬂ/D(fAeB) r;j/u(fAeB)q '
where we used the notation
(6.135) fra =V, AU1+1 a fia = Ui aVia,
& p=VUpVip, €p:=V5Up,

and the relation

(6.136) q—(tag+tab+tag+tab) — q—tABRilmBjn)@(triv)Rggv)(@(min)Rng)@(triv)'
6.9. Representation as integral operators

The generalized Baxter equation to be derived in the next section becomes

an efficient tool for the calculation of the spectrum of the affine Toda the-
ories once it is supplemented by certain informations about the analytic



1268 C. Meneghelli and J. Teschner

properties of the Q-operators. In order to derive this information it will be
useful to represent the Q-operators as integral operators, which will allow
us to deduce the relevant information from the analytic properties of the
kernels representing Q(\), as was done in [ByT1] for the Sinh-Gordon case.

Our first goal is therefore to present a representation of the fundamental
R-operator R, 5(fi, 1; 7, v) as an integral operator.

6.9.1. Kernel of fundamental R-operator. We shall now compute the
kernel of Rj’jgz(u,,u, v,v). This operator may be represented as in (6.114)),

where now
(6.137) Zhp = Vi (Vy) L

Let R (i, 117, v) := P ARG (i, 11 7, v). As RS commutes with C?y and

'z it suffices to consider the operator R AB Obtalned from RXXZ by replacmg
the representatlon for the operators U, V Y and VZ followmg from
by a representation where these operators act on a Hilbert space
spanned by states (z, 2’| such that

(6.138) (@, y|Viy = (@,yle?™ o (@, gV = (@,yle?™Vom,

using the notations x; ; := x; — ;. Our task is thereby reduced to the cal-
culation of the matrix elements of the operator p:/t (X4p) pg/;(y Ap)s Where

I\JM—‘

(6.139) Xap = (Zap) > (V)P (Eap)

Vap = (Zap) T2 (UF) 2 (2hp) "2
It is useful to represent the operators p , (X4p5) and p, . (y,5) using a

non-commutative generalisation of the Fourier transformation in the form
(6.140)

s = [ ) AT X X = e ZszlongB>
i) = [0 @Y. Y0 = () thlogYAB)

using the notation du(s) = Hf\il dsid(zij\il si). Working in a representation
where UY and U’ are represented as operators generating shifts of = and y,
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respectively, leads to the following form for the matrix elements of X(s)Y(¢),

(6.141) (z,yX(s)Y )]z, o)
= Hfs(% — 8, —2)0(y; +t; — i)

x e_WiSi(z_y)i,i+l e—WiSi(Jfl—y,)z:,iJrl e+7riti(33_y)i—l,i€+7riti (@' =y")i1.

= Hfs(% + 8 — x)0(y; +t; — v;)

% e—Wi(ﬂc—w')i (T+x")i i1 eﬂ—i(y_yl)i(y“!‘y,)ifl‘i 2T Y, i1 o 2TITY] 0

rFhaunks to the delta-functions in (6.141), the kernel of the operator
Rap (@, p; 7, v), defined as

(6142) Rﬁ,u;ﬁ,l/(xa y‘wlv y/> = <$7 y‘RAB(ﬂa Wi v, V)‘:C/? y,>7
becomes fully factorised,

(6143) Rﬂ,y;f/,u(l‘umx/?y/)
=0z —2)6(y — )Wy, (2, )W, ), (2, 2" YW, 1 (0, YW, (2 o)),

using the notation z = Zf\il x; for the sum of the components of a vector
z € RM and

(6.144a) Wy (z,2') =W, (¢/,2) =@V (1 — 2,
. - -1 miP(x
(6.144Db) W/C(ac,y) = (Wf/k(a:,y)) = ™PEVY (1 —y);

We are using the notation P(z,y) = Zij‘il(xiyi_l'_l —yixiy1) and w =
2%1) log A. The explicit formulae for the functions appearing in these expres-
sions are

M

w2 1
6.145a V,(s) = e~z Mw S —
( ) (5) Zl_Il sp(Siir1 +w)
M
(6.145b) Voo(s) = No [ [ so(w = siis1 + ).
=1

The resulting expression resembles the one found for the generalised chiral
Potts models found in [BaKMS, IDJMM].
Using (3.55) it is easy to get the kernel of R ap(fi, p1; 7, v) from the kernel

Of ﬁ%(ﬂyﬂaﬁay)
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6.9.2. Fundamental transfer matrices. Having the kernel R4 g (1, u; 7, v)
it is straightforward to compute the kernel representing the fundamen-
tal transfer matrices 7 ([, u;7,v) in an auxiliary representation for H =
®£LV:1 Hoq ® Hoa_1 that is defined as follows. Let us introduce the oper-
ators U; o = U;2qU;2¢—1 commuting with Cz‘,a = G 9a-1- The operators U; ,
and V;, = (Xi,2a—1)% satisfy the defining relations of the algebra W. We may
furthermore introduce the operators D; , := (Uiyga)_luiga_l commuting with
Ui, and V; 4. The representation of Wy ® Wy defined on a Hilbert-space
H, ~ L?(R?M) in terms of the operators Ui2a, Vi2as Ui2a—1 and vjo.—1 is
then unitarily equivalent to a representation on a Hilbert space represented
by wave-functions 9 (yq, ca) € L*(R*M) such that U; 4, Via Ciq and D, , are
represented as

Ui7a1/}(ya7 ca) = w(ya + ibe;, Ca)>
Ci,aw(ym Ca) = Cz‘,aw(yaa Ca)7

(6‘146) _ o m(Yia—Yit1.a)
Vi,cﬂb(yaa Ca) =€ ' “Y(Yas Ca),
Di,aw(yav Ca) = l/J(ym Cq + ibei);

where ¢; is the vector in R™ with j-th component being 0ij — ﬁ The vec-
tors in H = ®i\7:1 Hoy ® Hog—1 will accordingly be represented by wave-
functions ¥(y, c) € L2(R?MN) where y = (y1,...,yn), ¢ = (c1,...,cN).

If R,—L,u;g,y(az, y|z’,y') is the kernel representing R(fi, u; 7, v) we may rep-
resent the fundamental transfer matrix 7 (i, u; 7, v) as an integral operator
of the form

(6.147) (T (i, 15 2,0)®) (y, ¢) = / dun (Y') Tpsow (4 ) (Y, ),

with duy (y) = Hivzl dp(ya), and the kernel T .5, (y,y') given as

N
(6.148) Trpow (YY) = /dMN(fU) HRﬂ,u;1771/($a+1’ya|maay:z)'
a=1

It is finally not hard to see that the same kernel T} .5, (y,y’) can be
used to represent the projection T(f, u;,v) of T ([, u;7,v) to the physi-
cal Hilbert space defined in Section Indeed, T (@1, j1; 7, v) is a physical
observable and there exists a representation of the form . Such a repre-
sentation is related to the representation defined above in by a gauge
transformation ¥/ (y, ¢) = ¥ WU(y, ¢), in general. Such a gauge transfor-
mation modifies the kernel Tj 5. (y,y") into Ty 0. (y,y')e W ) =n(w.e)),
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The projection defined in Section then has kernel

Ty o (y, y ) Y D=1 1)
The factor /¥ 1)=1:1) can be removed by another gauge-transformation,
if necessary.

7. Imaginary roots and functional relations I

Let us now consider the definition of the imaginary root contributions to
the R-matrices. This turns out to be more delicate than the case of the
real root contributions. The formula does not seem to have a natural
renormalized counterpart at first sight. We are going to argue that the deci-
sive requirement determining a canonical renormalisation of the imaginary
root contributions will be the consistency with taking tensor products, or
equivalently the validity of the conditions

RV1®V27V3 = RVuVs RV27V37

(7.1) Rvw = (mv ® 7w ) (%),

Ry, vaevs = Rvi vaRv, s

obtained by evaluating the representation 7y, ® my, ® my, on (A ® id)(Z) =
H13Ho3 and (id Q@A) () = H13%12, respectively.

Our renormalisation prescription can be directly applied to both sides in
whenever the infinite products representing the universal R-matrices
truncate to finite ones in the given representations. This happens when one
of the representations applied to the universal R-matrix is of prefundamental
type. A natural strategy to construct families of operators Ry satisfying
(7.1) is of course to start by identifying a class of basic representations from
which more general ones may be constructed by taking tensor products
and quotients. Having defined Ry for V, W taken from the class of basic
representations one may simply use ([7.1]) recursively to extend the definition
to more general representations. Whenever our renormalisation prescription
can be applied to define all representations appearing in (7.1]) one needs to
check explicitly that the relations following from are satisfied.

We will apply this strategy using as basic representations the prefun-
damental representations of modular double type on the one hand, and the
finite-dimensional representations on the other hand. It turns out, in par-
ticular, that the renormalisation prescriptions for the basic representations
are strongly constrained by the already chosen definitions for the real root
contributions. The co-product mixes real and imaginary roots. This implies
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that a part of the imaginary root contributions in Ry, gy, 1, is given by the
real root contributions in Ry, v, and Ry, v;, and similarly for Ry, y,¢v,. The
renormalisation prescriptions for real and imaginary roots must therefore
be related to each other. Consideration of tensor products of finite- and
infinite-dimensional representations similarly implies relations between the
prescriptions adopted in the two types of representations, respectively.

It may furthermore happen, for example, that the tensor product of
representations becomes reducible for certain values of the relevant param-
eters, containing basic representations in sub-representations or quotients.
Whenever this happens, it implies relations between the imaginary root con-
tributions to the respective R-matrices, as will be shown explicitly in some
relevant examples. These relations take the form of certain functional re-
lations restricting possible renormalisation prescriptions for the imaginary
root contributions considerably.

These considerations will lead us to a uniform and unambiguous pre-
scription for the renormalisation of the imaginary root contributions for
the whole family of representations of our interest. Most important for ap-
plications to integrable lattice models is the observation that the proper
treatment of the imaginary root contributions provides the basis for the
representation theoretic derivation of the Baxter equation, generalising the
approach of [BaLLZ3| [AF] to the case of representations without extremal
weight.

In order to make the overall logic transparent we will in this section
restrict attention to the case of Uy (sl2). In the general case of Uy (slys) one
is facing a higher algebraic complexity which will be dealt with in the next
section.

7.1. Imaginary roots for basic representations

To begin with, we shall compute the imaginary root contributions for the
basic representations of finite-dimensional or prefundamental type.

7.1.1. Prefundamental representations. As a warm-up, let us con-
sider the case M = 2, where the imaginary root contribution to the universal

R-matrix, see (5.15]), (5.18]), simplifies to the following form

— — . k
(7.2) R s = exp ( ~la—aH) [Qk]qféfs) ® 619)>7
k=1
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(1)

An important feature of the representations 7Tj\t is the fact that e, and f,%)
get represented by central elements. The corresponding currents take the
form

B L 1 ( 1)14:—&-1)\ 2k
B -1 k+1 )\+2k

These equations follow straightforwardly from the definitions (5.27)), (5.28
and the iterative construction of imaginary root vectors given in Section[5.2.1]
For |g| # 1 we therefore get

(7.5) P = (rf @ ﬂ’)(%;;)
k;—i—l A2\ *
—exp< qu% —2k< M2>>
= (e (=2*/A%)"

compare to (5.34]). Following the discussion in Section we can immedi-
ately suggest the following renormalized version of this special function,

(7.6)  pron ™) = [(7} @ 1, ) (225 heen = (€22 (=X /%)) 7,

where

(7.7) En(w) := exp (/R+w itesm(;iuws;ah(t)>

Note that & (w) is not single-valued in w, it is better understood as a func-
tion of log(w). The definition therefore needs to be supplemented by a
choice of the logarithm of —\2/u?. This is a subtle issue that will be resolved
in Section [Z.7 below.

7.1.2. Evaluation representations. By means of straightforward com-
putations one may show that the image of imaginary root currents under
the evaluation map introduced in Section takes the form

(1 4 qul)\72q+21)(1 + qul)\quva)
(14 g 127X 2¢K2)(1 + ¢t 271N "2gK2)’
(1 + q—lz—l/\2q+2x)(1 + q—lz—l)\Qq—Qx)
(14 ¢ 272 TK=2)(1 + ¢tz N2 1K—2)"

(7.8a) evy(l+ Ef(z)) =

(7.8b) eva(l+ F{(2)) =



1274 C. Meneghelli and J. Teschner

We recall that ¢*, where z is defined up to a sign, parametrizes the U, (sl2)
Casimir as in (5.21)).

Considering finite dimensional representations of evaluation type one
may note that the imaginary root currents for 7r/\d take the form
with ¢** and K replaced by ¢¥T! and k; := diag (qJ d g JH,q*j)
respectively. Taking the second tensor factor to be 7, , one could proceed
along the lines of Section [7.1.1], leading to

82b2 (—q72k]-_2A2//L2) 8252 (—kj_2/\2/u2)
Ear (—0~ T 2N 2] Ear (N2 1)

If we further specialize ((7.9)) to the case of spin j = 1/2 we find

/,L Y

(7.9) (MG @ 1) (2 g)]ven =

. 6252( q:;\z/ 2) 0
(7.10) () @ T, W Zs))ven = ( 2b2(_q0 /e Ssz(—qlx\z/uz)>
Eapa (—q3A%/p?)

—00/0 (5 4y a2

Apart from defining the special function 6(z), the second equality in this
equation follows from the relation e (g%z) = (1 + 2)E2 (¢~ 2x) applied in
the case when z = —¢g~'A\?u 2. Let us observe that

(7.11) o()) = M

A
Pren ( /\)

where pi- (M) is given in (7.5). Another example that will be useful in the
following is

m\»—A I\J‘H

(7.12) (7 © V) (Z25))en
B 1— )\2’u72qK2 0
= Pev(An 1)( 0 (LoX2p2g+2) (1M —2g )
(1-X2p—2q~ 1Kz)
where

B 52112( )\2 -2 21)5%2( )\2 -2 72:1:)
1 (A1) =
(7.13) Pev(Ap ) Eopz (= A2 2¢2H20) Eqpa (— N2 22— 2%)

= 0(q= A )0(g= A ).

This result can be easily specialized to the modular double case as

W;n.d.<qim) — _eiﬂbs.
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7.1.3. L¥()\) from the renormalized universal R-matrix. Let us
now complete the derivation started in Section to obtain L*()\) from
the renormalized product formula for the universal R-matrix.

As explained in the following section, the real root contribution is not
affected by renormalization in this case as the corresponding root vectors
are realized by nilpotent operator in one tensor factor. The observations in
Section together with the calculation then gives

(7.14) [(wi @

For completeness let us recall the evaluation of the universal R-matrix for
7rf\ ® ev, and how it is affected by the regularization. The infinite product
of real root vectors gives

1 0
f ) = 1 1
(7.15) (T ®ev,)(Z_s) = <1A&2u(q2q_1({<)2q2K_lE 1> )
(7.16) (m\ ®evy)(Z_s) = . — ,\2u—2q+1K2

Together with (7.12)) this implies that

(7.17) (T3 ® ev,) (27 ))ren

e (KK N g = g
= Pev\AH /\N_l(q_l . q)q+%E K+ _ /\2M_2QK_1

where E = KLEK™!, F = KMFK*! and pey(Ap~?) is given in (7.13).
7.2. Rationality of currents

The examples above lead us to a useful observation: An important role is
played by the generating functions 1+ Ej(z) and 1+ F{(z) that will be
called currents. The currents generate a commutative algebra for the level
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zero representations we are considering. Whenever the currents get repre-
sented by rational functions of z there exists a natural prescription for turn-
ing the formal series following from into well-defined operators. We are
now going to show that the operators representing 1 + E}(z) and 1+ F|(z)
will be rational functions of z for all representations of our interest. More
precisely we shall show that for any tensor product #~ =m; ® - - - ® m of
basic representations of Uy (b*) we have

- /) — v (T4 271Ny
(7.18) (14 EL(2)) P i)

where N/, D, are mutually commutative operators. A very similar state-
ment holds for tensor products of basic representations of Uy (b™).
In order to derive ([7.18)), let us consider the monodromy matrix

(7.19) M) := (rf @ 77)(%7).

It follows from the product formula for Z~ that we may represent M(\) in
the form

(7.20) M(A):(Fé\) (1)> <K+O(A) K_O(A)> <(1) E?))('{ 2)

where K () are the eigenvalues of (7} ® 7w7)(%_;) on uy,

~

(7.21) Ki(A\) = exp ((q—l — gt Z um,llFTSg’iﬂ+(€£}Lg)),

m€Z+

where the numbers FTS(S) , are the eigenvalues of ﬂf\( fygll(g) on the two basis

vectors ut of C2, wf\( f (1g)ui =F (1(; yux. It follows straightforwardly from

(782) that

(7.22) FU)  —FU) = () T (gAY
This implies that

K_(A
(7.23) n (1+ Ej(—g\7?)) = ( )
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We may note, on the other hand, that for any basic representation 7 the
matrix L,(A) = (7} ® 7,)(%~) takes the form p, (\) L}, (A), with L'(X) poly-
nomial in . It follows that M(\) = M’()\) Hivﬂ pn(N), where

120 M=z 20 = () pa))

is a matrix of polynomials in A such that A(\) = k=! + O(\), D(A\) =k +
O(N), B(A) = O(XN), C(A) = O(N).

It remains to observe that both K4 (A) and K_(\) can be expressed as a
rational function of the matrix elements of M()\), leading to the expression

Ko(A)  a-det(M'(g2))) 2
Ke() — AMA(gN) -

(7.25)

where g-det(M’()\)) is defined as
(7.26) q-det(M’ (X)) = A(g 2 A)D(qzA) — C(q 2 A)B(qz \).

In order to obtain formula (7.25)) we used the commutation relations satis-
fied by the matrix entries of M’(\). Equations (7.25]) and ( 1mply that
7~ (1 + E’(z)) is a rational function of A of the form ciaimed in O

With these observations in mind, let us formulate the prescription: for
representation 7w+ of U, (b¥) such that
(7.27)

4 - (1 +27IN) - 1 (2)) — v (1+27'Ny)
(1+ Fi(2) = d+ ( —|—z—1D+) (14 Ei(2)) = j;1(1+z_1DZ)

let us set

(728) [ ( * @ 777) %_5i ren

Hr iy Ea2 (=D @ Np) T2, ef ) Ea2 (=N @ D)
H[:l Z’=1€2b2( N+®NZ’)H£ 1 Z/ 1821)2( +®D£_/)

9

where Eyp2 (w) is defined in below. Notice that the unrenormalized ver-
sion of is the same expression with £z (w) replaced by €42 (w). Above
we used the notation 7* in order to avoid confusion with the prefundamental
representations 7r)\ , which are a special case of ™

As we will see, after we fix a prescription of the form , - ) for
the prefundamental representations 7r)\ , the validity of the reiations following
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from ([7.1)) implies that the same prescription ([7.27)), ([7.28) needs to be used

for representations obtained by taking tensor products. The fact that thisis a
consistent prescription is not obvious. We will show in all relevant cases that
consistency follows from the basic functional relations satisfied by & (w).

7.3. Co-product of imaginary roots

We have proposed a definition for the imaginary root contributions to the
universal R-matrix for the basic representations of our interest. We will
now start analysing in some detail if this definition is compatible with the
relations . To this aim we will now derive useful identities, formulae
(7-30) and (7.41)) below, satisfied by a generating function for the imaginary
root generators from the basic relations (id ®A)(# ™) = H#3%#15 and (A ®
1d)(Z7) = K 13Kos.

As a useful generating function for the imaginary root generators let us
introduce .Z75(\) via

(7.29) 1@ .45 = (v} @id)(%Z,).

This definition makes sense as 7y ( f,g(ls)) are complex numbers. For the time
being we shall continue to work with formal series in A\. We are going to
prove the identity

(7.30)  A(ZI(N) = (1@ #15(N) eq((e0)2e1 @ eohr) (AI;(N) @ 1),

giving a useful representation of the co-product of the imaginary root gen-
erators. The contribution containing real root generators is clearly visible in
the argument of the function g4(x).

As a preparation let us note that ///jé()\) appears in

(7.31) (771 ®id)(Z™) = sq(—7q2f1 ®eq) (1 ® //ljé()\)) 5q(—7'(]2f0 & eo)A_l(u),

where A1 (u) = e~ l8u@@—%) f, .= 71 (f;), 7, = ¢ — ¢~!. This may be re-
written as

(7.32) (my ®1d)(27) = Aly) (L@ .4t (N) A~ (y)A ™ (u),

(7.33) M) = eg(Ne) A 5(N)eg(Ne)

where y := u"3vu"2, Ay) = ez 08Y2(E—8) and N = —qué)\. It seems re-
markable that there is a similarity transform A(y) so that the first tensor
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factor in (7.32)) is the identity. This follows from the identities
(7.34) (a—q "y (fi)) @ ei = Ag2Aly) (1@ e;) A (y).

The rewriting ((7.32) will be particularly useful in the higher rank case dis-
cussed in Section [8.21

Proof of ([7.30). The starting point of our derivation is the identity
(7.35) (T @ A)Z™) = (7 ® 1)(%13)(7y © 1)(%1).

Inserting the form ([7.32)) into this equation and simplifying the A factors we
obtain

(7.36) AT N)=QQ@aTN) ¢ (TN 1) g,

where we have cancelled the first tensor factor being proportional to the
identity. The contribution ¢! originates from reordering the factors of A. It
acts as ¢'(e; ® 1)¢~! = e; ® k;. The left hand side of contains terms
gq(NA(e)), i =0,1, Ale;)) = e; ® kj + 1 ® e; which may be further factor-
ized using

(7.37) c(U)eg(V) = 4(U + V),

if UV = ¢~2VU. Using (7.37) we rewrite (7.36) as

(7.38) AT (V) = 1 AL (N)O(AL(N) ©1),
where
(7.39) O ea(1® Neg)eg(Ner @ by ) ———

= €q<)\’€1 X /{?1) €q<)\/61 & /{71) '

This expression can be simplified using the pentagon relation
(7.40) £q(V)eq(U) = £4(U)eq(qUV )eq(V),

and noting that g1 (X)? = (A7,)?. The resulting formula is (7.30)), as claimed.
U
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Applying (id®m, ) to the second equation in (7.1)) a similar analysis
shows that
(7.41) A(A5(v) = (M ;(v) @ 1) eq((Tqv™ D2kofo® f1) Qo2 Wv)).

~ ~0

where

(7.42) M) @ 1= (id @m) ) (B,).

~

It is worth to observe that
(7.43) A = o1+ 10 1Y 4+ 720k fo © £,

where we have used the iterative definition fél) = fofi — q 2fifo given in
(5.7). Before regularization, can be considered as an equality of formal
power series in 2. In this interpretation corresponds to the term of
order v~2. It is remarkable that the coproduct of all the imaginary root
vectors can be brought to the simple form .

Let us finally note that our derivation of , was based on the
identities (7.37) and (7.40)). As noted earlier, these identities are satisfied by
the special function &:(w) whenever the arguments are replaced by positive
self-adjoint operators [Fa99l [FaKV| [Vo|. This observation may be used to
reduce the verification of to the verification of the consequences of
(7.30) and (7.41) in the representations of interest.

7.4. Consistency

The mixing between real and imaginary root generators under the action
of the co-product expressed in , implies that the renormalisa-
tion prescriptions adopted for the contributions of real and imaginary root
generators in the product formula must be related. Let us first state the
proposed renormalisation prescription of the real root contribution to the
universal R-matrix. We define

g4(x) if x is a nilpotent operator

Ep2(x) if x is a positive self-adjoint operator

(7.44) &4(x) := [eg()]sep = {

where these special functions are defined in (5.34) and (7.7)). We will now
verify that our proposed prescription for the renormalisation of the imag-
inary root contributions is compatible with the definition (7.44)) and the

consequences of ([7.30)), (7.41)).
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7.4.1. Check of compatibility for m, o, := (y, ® 7y, )A. Theim-
age of the left hand side of (7.30) under 7, o, can be computed using the
explicit form of the imaginary root currents

(1 + Z—1q2xp) (1 + Z—lq—pr)
(1 —=271¢™Zp) (1 = 27 1g=1Zp)’

(7.45) (my, ®my,)A (1+ Ei(2)) =

where ¢?* = A1/X2, p= (M)}, Z=vu" ! ® v lu~!. Following the pre-
scription outlined by equations ((7.27) and ((7.28) this implies

(7.46) (7Y @y o) Zos).. = (my, @ w3 )A (M5 (N))
_ & (0528w (' 557)
- 2)E

<‘32bz(—§*1 2b2(—§*§)

:| ren

On the other hand, applying 7, ® 7 to the right hand side of (7.30) and
using the definition ([7.44)) we obtain

Epe (ﬁz)

7.47 3 7y
(747) Eope (— %)5219(— i?)

The compatibility under tensor product, encoded in ([7.30)), states that (|7.46)
has to be equal to ([7.47). This is so provided that the functional relation

(748) Eop2 (qw)€2b2 (q_lw) = &2 (w),
holds. This is indeed a simple consequence of the integral representation ((7.7)).

7.4.2. Tensor products of finite- and infinite-dimensional represen-
tations, I. For the derivation of the Baxter equation we will also need to
consider tensor products of finite- and infinite-dimensional representations
such as 7r£, ® Trg. Let us first generalise our renormalisation prescription in
a way that will allow us to cover cases involving such mixed tensor products.
Let x be an operator on a Hilbert-space of the form H ® V with V being
n-dimensional that can be diagonalised by means of a similarity transform
S in the sense that x = S - diag(A\1x1, . . ., AnXn) - S71, where A\ € C* and xg,
k =1,...,n are positive-selfadjoint operators. For such operators x it is nat-
ural to define

(7.49) &(x) =S - diag(Ee (Ax1), - -+, Epz(Anxn)) - STL
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This definition allows us to define

ren

(7.50) oy (C50) = [(rt @xf @ 1)) (A 1)(%))] ...,

for v,w € {+,f}, keeping in mind that the infinite product over real root
contributions truncates to a finite product whenever my is applied to the
second tensor factor.

Important for the derivation of the Baxter equation will be the identities

- i3 (¢) = [(m¢ @7 )(Z7)] ..
(751) gy (€10 =rs (s (O, S

(123 B ry (¢) = [(n¢ @7y )(%7)]
The proof of these identities can follow almost literally the proof of (7.41))
provided that the identities ([7.37]), (7.40) used in this calculation are pre-
served by our renormalisation prescription. We need to verify that

ren

(7.52) gq(U)éaq(V) = éaq(U +V), éaq(v)ébq(u) = gq(U)gq(qUV)gq(V)a
when
(7.53) U=z(mem)(fi®l), V=zamen)k ' ef).

Let us start from the first equation in (7.52)) for ¢ = 1. The case i =0 is
similar. First notice that

-1 -1
o q T 0 . q T 0 -1 _ 1
(7.54) U+V—<Z)\ qu)_S( 0 qu)S — VS,

where 2 = zpr, 'ulv and S = (}9) with ¢t = —Ap~'v 'u. We thus have

that U+ V is similar to V which is self-adjoint and the prescription ([7.44)
gives

71.%'
(7.55) &(U+V) = S&:(V)S™ = (t (5b2<qib;§q_ EbZ(q“:c)) & (;Hx))’

On the other hand U is a nilpotent operator and the same prescription gives
&(U) = g4(U) = 1+ 7,'U so that

w56 a0 = ) (T g

q

The equality between (7.55) and (7.56|) follows from the functional relation
Ep(qTa) = (14 2)&: (¢~ x) and the identity zA7; ! = —ta.
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Let us turn to the second relation in ([7.52)). Using the nilpotency of U
and upon simplifying the the U° term it reduces to

(7.57) gbz (V)U = U(l + qV)5b2 (V)

Let us focus on the case i = 1. The matrix U is proportional to ((1] 8) so that
only the lower left entry of (7.57)) is non-trivial and reduses to the identity
Ep () = (1 + 2)Ee (¢ o). O

7.4.3. Tensor products of finite- and infinite-dimensional represen-
tations, II. In order to verify that the consistency condition holds
after we apply the representations 7r§\ ® 71':[ we first need to spell out the
form of the imaginary root vectors. Concerning 7! and 7, they are given
as a specialization of and respectively. The current of imaginary
roots for this tensor product on the other hand takes the compact form

(7.58) [(ﬁ§ ® w;) AL+ F{(z))}
—§! [wg (1+F()er (1+ F{(z))} s,

where S = SA~!(y) with S =1+ qéu)\_l(g §)- Moreover, according to the
definition below one has for the fundamental representation A(y) =
y% ((1) y(—)l ) The equality can be verified by lengthy calculations using
the iterative construction of root vectors given in Section The reader
might be satisfied checking the first order in z corresponding to the equality
. We will discuss in Section in more details.

The relation ([7.58)) with the renormalization prescription ([7.27)), ((7.28))
implies that the left hand side of (7.41f) reads

(7.59) [(ﬂf\ ® F;) A (///N_é(u))] =51 [71'£\ (M 5(v)) @ W: (//1_5(1/))] S.

~ ~

We are going to verify that this is equal to the right hand side of (|7.41))
given by

(7.60) (m (2500 21) (14 (§5)) L@t (#50))),

where t = qfé %y. This formula is simply obtained recalling that qulf (fr) =
q2 py and m (kofo) = ¢ *A(§ §)- Recall that the contribution mf (. 5(v)) is
given in (7.10)). As p; (x) in (7.10)) and 7~ (.#_5(v)) are central, the equality
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between (|7.59) and (|7.60) reduces to

<1 (1 0 s (1 0 1t
(7.61) S (0 1 —q—1A2u—2> S = <0 1 —q_l)\2y_2) (o 1) '

This is verified using the definition of t and S given above.

7.5. Reducibility of tensor products

Other issues arise whenever tensor products of representations contain sub-
representations or quotients isomorphic to one of the basic representations.
The renormalisation of the imaginary root contributions must be compatible
with the existence of such relations. This will be seen to imply functional
relations between the special functions appearing in the imaginary root con-
tributions.

7.5.1. Highest weight representations. As a warm-up let us consider
a representation of the Weyl-algebra uv = ¢~ !vu realised on vector spaces
with basis vj, j € Z by means of

(762) VU; = Vj41, uv; = qijvj.

It is possible to supplement the definition of 7T2_ by a lowest- or highest
weight condition, restricting the values of j to a semi-infinite subset of Z. It

was first noted in [AF] that the tensor product of representations 7rz.r ® 7r£~/

contains for ¢/ = q%C a subrepresentation isomorphic to 71(2, and that the
quotient TrC+ ® wg / 7T;r< is isomorphic to 7rq+_1 ¢

To see this, let us consider tensor products of the form 7TC+ ® 7r2,, and
look for a sub-representation 7727, generated by vectors of the form

(7.63) wj = a;vj—1 @ uy +bjv; u_,

using the standard basis uy = (§), u— = (9) for C?. A straightforward
calculation shows that such a sub-representation exists provided that ¢’ and
¢ are related as (' = q%( . The sub-representation 7'('2;, then has the parameter
¢" = qC. Tt is furthermore straightforward to check that the quotient wzr ®
772, / 7rZE, is isomorphic to 71;_1 ¢ in this case.

Picking representatives w; for the quotient 7er ® 7r£-/ / 7727/ one gets a basis
for H_ ® C? generated by vectors w; = (g; ). The action of U,(b™), and
therefore the representation of (A ® 1)(#~) will be represented by lower-
triangular matrices with respect to this basis.
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7.5.2. Representations of modular double type. We are now going
to argue that this derivation can be generalised to cases where the represen-
tation 7 is replaced by a representation of modular double type defined on
the space P of functions f(p) which are entire, and have a Fourier transfor-
mation that is entire as

(7.64) ug(p) = e "Pg(p),  vg(p) = g(p — ib).

The dual P’ of P contains the complexified delta-functionals §, defined by
(0p, f) = f(p) for all f € P and all p € C. The dual representation (77?)’ will
be realized on delta-functionals ¢, in terms of the transpose operators

(7.65) Wy =e P8, V', =5y i

We claim that the tensor product of representations 7 ® 71'2 exhibits
the same type of reducibility as observed in the previous subsection This
is fairly easy to see: We clalm that the representation 7rJr ® 774, on P ® C?
becomes reducible for ¢/ = qz ¢, containing the sub representatlon 7qu, and
that the quotient + ® 7TC,/7T is isomorphic to 7" g-1¢ in this case.

In order to verlfy this clalm let us note that the tensor product 7T+ ® 7TC
is realized on vector space P ® C2. Vectors in this space can be reahsed
as vector-valued functions v(p) = f1(p)uy + f—(p)u—, where f. € P, e =
and any basis {u;,u_} for C2. The dual (P ® C?)’ of P ® C? is spanned by
elements of the form d = diu/, +d_u’, with dy € P'. (P ® C?)’ contains
in particular elements of the form

(7.66) Wi (p) = alp)yrin ® g+ b(p)Sy © u_.

One may check that there exist a choice for the coefficient functions a(p)
and b(p) such that the action of ( ® 7T<,) on w4 (p) becomes equivalent to
(m q§) This boils down to the same calculation as outlined in Section |7.5.1

using the identifications ¢/ = e™ and vj = 0_;p;. It follows that elements of
P @ C? of the form [ dp g(p)w(p), g € P, represented by the vector valued
functions

(7.67) vl (p) = g(p —ib)a(p — ib)uy + g(p)b(p)u_,

will generate a sub-representation 7T+C in 71'2r ® 7r£, if (' = q%C . As before in
Section one may check that 7er ® 7T£-// 7732 ~ 7'[';__1 ¢ As representatives
for the quotient 7T2_ ® 7r2, / 7T;C one may take vectors of the form v, (p) =

e ™Ph(p)u_, h € P.
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Any vector v(p) in P ® C? can be represented in the form v (p) 4+ v}, (p)
for suitable g, h € P. This allows us to represent any operator on P ® C? in
terms of a matrix of operators acting on the column vector (Z) It follows
that the matrix representing [(Trzf ® 772, @7 ) (£7)),., will be lower triangu-
lar in such a representation,

(7.68) (nd @t @7 ) (A @ 1)(# ).

_ ([(qu &7 ) (%), 0 )
. (), ® 7 )@ ).o0)

if (' = q%g‘ . The existence of such a relation implies relations between the
imaginary root contributions to the R-matrices appearing in equation .
It is easy to see that the relations following from imply in particular
equation that was previously observed to be satisfied by our renor-
malisation prescription.

7.6. Relation to the Baxter equation

Let us consider the Q-operator defined as

(7.69) Q) 1=ty { (2 @1) [(7F @ 7% ], )

together with the transfer matrix in the fundamental representation given
by

(7.70) T(¢) = tr@{ (QZ ® 1) [(nf @ wq)%—]ren}.

The element 2, with ¢ € {0,1} corresponds to the Zy automorphism rep-
resented by the Pauil matrix o) for T(¢) and by F2 for Q(¢), see (6.21).
Introducing this factor is natural from the point of view of the quantum
affine algebra U, (slz) and it is necessary to discuss the modular X X Z mag-
net and lattice sinh-Gordon model on the same footing.

We are going to show that the validity of Z,3%55 = (A ® 1)(#~) within
representations of the form 7+ @ 7' ® 79 implies the Baxter equation

~

(7.71) T(¢20)Q(C) = Qg¢) + Qg 10).
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In order to derive (|7.71] - let us note that we may, on the one hand, represent
T(¢) and Q(¢) as

Q(C) = tryy, [roan(€) -+ ro1(Q)],
T(¢") = trge [Lon (¢) - LT (C)].
The right hand side of may be represented as

A~

(@ 0Q(0) = tryyec: | [loan(OLy()] -+ oaOL ], -
Using identity we may represent each factor rok(Q)L; (¢') in the
trace representing T(C )Q(¢) in terms of (7, T ® 7TC @) ((A® )(.@ ))]ren,
which was found to have a lower triangular matrix representation in ). It
follows that the matrix representation of [r072N(C)L2N (QIEX [ro’l(C)Ll_(C/)]
will also be lower triangular. The Baxter equation follows immediately from
this observation.

7.6.1. Baxter equation for XXZ-type spin chains. It remains to
show that the universal form of the Baxter equation reproduces pre-
vious forms of the Baxter equation appearing in the literature.

Let us look at the explicit form of (7.69) and (7.70). To do so, recall
that for each site of the spin-chain we have

(78 @ TR o = Pren (/NI (/)
(g @ TR ] = O(C/NLT(C/N),
The normalization pt-(z) and (z) are defined in and - ) respec-

tively and the remaining operators r*—(¢) and L™ (¢ ) are given in (5.44)) and
(5.26)), respectively. The definitions ([7.69) and (7.70) will then reduce to

(7.72)

(7.73) T(O) = 0.(OT(CQ), Q) = Z.(OQ(C),
where 0,,(C) = [T0_, 0(C/kn)0(C/Fn)s Ex(Q) = TTN_; o (C/Kn) pien (C/Rin)

and

T(() 1= tree [Lg (¢/RN)Ly (¢ /Bn) - - {(C/m) L (¢/k1)],
(7.74) Q*(() = try, [@ﬁ(C/RN)VE\?(C/“N) """ ror (C/R)rgr (¢/k1)].

We have set £=0 in and - Using - the Baxter equa-
tion is equivalent to

(7.75) T (g2 Q)Q () = Q™(4¢) + AR (g 1Q),
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where

(7.76)  A(Q) =

En(q_lC)
0x(g2¢)Z(0)

w-fi-90-5)

n=1

(11| [11

1]

This is essentially the form of the Baxter equation for integrable spin chains
of XXZ type, with A(¢) being the quantum determinant of the monodromy
matrix. Notice that in order to simplify A({) we used again ([7.11)) and the

functional relation pt. (¢"1¢/k) = (1 — (2/k?)pt, (¢1¢/K).

7.6.2. Baxter equation for the lattice Sinh-Gordon model. Let us
finally note that the Baxter equation for the lattice Sinh-Gordon model
studied in [ByT1] is an easy consequence of (7.75). Using the relations
and it is straightforward to deduce from that the operators

T9(C) = trea [Lig (L/CRILE(K/C) -+ - L (1/¢R)LT (r/Q)],
(7.77)  Q(C) = try, [riy (CR)GN (C/R) -+ - ro (Cr)rat (¢/m)]-

satisfy a Baxter equation of the form

(7.78) T (g2 Q)Q(C) = a™*(Q)Q(g7¢) + d**()Q™ (¢C),
where

. Q) = (@3¢/m) N (1= IRV - )Y
&(¢) = (q2¢/r) Y

The equation (7.78]) is equivalent to the Baxter equation derived previously

in [ByTT], as discussed in some detail in Appendix [G]

7.6.3. Relation with previous representation-theoretic construc-
tions of Q-operators. Our definition of Q-operators is in some re-
spects similar, but not quite identical to the definitions of Q-operators based
on representations of the g-oscillator algebra introduced in [BaLZ3]. The
most important difference is that the representations considered in [BaLZ3]
have extremal weight vectors, which is not the case for the representations
used in this paper. In the rest of this subsection we will compare the two
constructions in more detail.
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Both type of representations are constructed starting from the following
algebra homomorphism
(7.80) 7(')\(60) = /\_1a, 7T)\(€1) = )\_15, 7T,\(k1) = 7T)\(k0_1) = q2h

where a, a, ¢*2P satisfy the defining relations of the q-oscillator algebra

(7.81)
1
gad — ¢ laa = p— ghagh — 25 ¢ ha

¢ =g 2

If ¢ is not a root of unity this algebra admits only infinite dimensional
representations. As observed in Section the relations ([7.81)) imply that
ma(egs) is central, from which it quickly follows that

(7.82) 1+ E'(2) =1+wz"t, w = g\"2

Given any representation m we can obtain a new one as o {2 using the
automorphism Q(e1) = eg, Q(ep) = e1. Applying this procedure to the case
above we find

(1 + wz‘l)
(1+q1Cq2Pwz=1) (1 + ¢t Cq2hwz—1)’

(7.83) m\oQ(l+ E'(2)) =

where C generates the center of the g-oscillator algebra and is defined as
(7.84) C:=(q—q YH¢*"(aa — aa).

Notice that if C # 0 the imaginary root currents are not represented by
central elements.

The representation 7w~ used in this paper, see , corresponds to
C = 0. In this case a and a are inverse of each other up to a constant and
we conclude that for C = 0 the g-oscillator algebra is isomorphic to the Weyl
algebra generated by invertible elements u,v satisfying uv = ¢~ 'vu. In this
case the representations 7y and m) o {2 are equivalent.

The representations considered in [BalLZ3] are highest weight represen-
tations of the g-oscillator algebra generated from the Fock vacuum |0) sat-
isfying a|0) = 0. Upon introducing the notation

(7.85) TRLy = T, Mgy = T 0§,
we find that the eigenvalues of the currents (7.82)) (7.83) on the highest

weight state gives

(7.86) i, (1 + E(2)0) = (1+¢7A 21 o).
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In the equation above, as in [BaLLZ3] and [HJ|, the label + refers to simple
pole or simple zero for the eigenvalue of the current 1 + E’(z) on the highest
weight state. Such eigenvalues are rational expression in z~! for the category
of representations introduced in [HJ]. In our paper + labels representations
of the two Borel halves.

The representations considered in our paper do not have extremal weight
vectors. It is unknown to us if useful Q-operators can be constructed using
highest weight type representations in auxiliary space if the representations
used in quantum space are of modular double type.

7.7. Choice of branch

Let us finally return to the issue to fix a choice of branch for logarithm of the
argument of the special functions £ (w) used above to represent the imag-
inary root contributions. It will be fixed by the following reasoning: It was
shown in Section that the tensor product of two pre-fundamental rep-
resentations contains an evaluation representation of modular double type.
It will be observed below that the dual of such a representation contains
representations of highest weight type. The rational function representing
the eigenvalues of the current on the highest weight vector simplifies some-
what compared to the eigenvalues of a generic vector. We demand that
the eigenvalues of [(7)" ® WE'Sd')(%: )]en O the highest weight vectors of
these sub-representations coincide with what is obtained by applying our
renormalisation prescription to the eigenvalues of the current on the highest
weight vector. This gives a natural way to fix the choice of branch of log(w)
in the definition &, (w), as will now be described in more detail.

7.7.1. Highest weight representations in the dual of P;. The key
observation is that the highest weight representations of U, (slz) are con-
tained in the dual to the representations Ps. In order to see this, let us
note that by simple changes of notation one may rewrite the representation

defined in (5.24]) as

E .
7.87 !
(787) -

where p = —ibm, Ty f(m) = f(m £ 1), and the parameter j is related to s
via

(7.88) Jj= %(s — ), where c¢p:= %(b +b7h).
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The dual space P! contains complexified delta-distrbutions e7jﬂ = 0p. By
duality one gets

Elel = [j —m]ye , . .
(7.89) T [], b i Kiel, = q™el,.

Fiel, = [1 +mlqer, i1,

It follows that the distributions {efn;m =j,j+1,...} generate a Verma
submodule #; within the dual P, of P.

7.7.2. Eigenvalues of currents on the highest weight vector. The
form of the imaginary root currents for representations of modular double
type follows form the first equation in ([7.8a)) and the expression of the ({5.25))
to be

(1 _ qz—lu—2e+27rbs)(1 4 qz—lﬂ—26—27rbs)
(14 q 12 1pu2gk2) (1 + gtz 1u=2gk2)

(7.90)  ard(1+ Ej(2) =

The prescription ([7.27)), (7.28) with the currents as in ([7.3]), (7.90) then gives

Ep2 (—*kEN?/11?) Eqpe (—KEN? /%)

. 1 + m.d. - — .
(7 9 ) [(71')\ @ )(‘%N(S)]ren g2b2 (q€27rb5)\2/ﬂ2)52b2 (qe—Qﬂbs)\Q/MQ)

(2284

Let us now consider the dual action of WE'Sd'(]_ + E{(z)) on e;. Note that
(7.90) simplifies in this case, as a factor in the numerator can be canceled
against a factor in the denominator.

Requiring that our renormalisation prescription leading to is con-
sistent with this fact finally fixes the choice of the branch of the logarithm
in the definition of factors like Ex2(—w): It should be such that the same
cancellation takes place when is evaluated on e?-. This will be the case
when log(—w) = —7i + log(w).

7.8. Towards a “more universal” R-matrix

Our findings suggest that there should exist a generalisation of the universal
R-matrix that not only makes sense for |¢| = 1, but which also extends the
class of representations in which it can be evaluated by an interesting class
of infinite-dimensional representations. The representations of interest for us
can all be found in the tensor products of two types of representations, the
prefundamental representations of modular double type on the one hand,
and the finite-dimensional representations on the other hand. We have de-
fined renormalised versions of the image of the universal R-matrix for the
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basic examples of such representations from which more general representa-
tions can be constructed by taking tensor products.

Note that we have not defined the renormalisation of the product formula
for general tensor products yet. However, if we have a tensor product m;; :=
(m; ® mj) o A of two representation for which we have already defined the
image of the R-matrix, we may define the corresponding R-operators via
. One may thereby extend the definition of the renormalised universal
R-matrix to the whole category of representations generated by taking tensor
products of representations of prefundamental and finite-dimensional type.
This allows us, in particular, to construct

(7.92) Rouss (A1) = [(75%, @ T, ) (#7 )] en

from the product of four operators r™=(A/p) = [(7} @ 7, ) (£ ™)) en, as noted
previously.

We’d finally like to propose that the prescription for the renormalisation
in the case of finite-dimensional representations is related to the one for the
case of infinite-dimensional representations even more deeply. We are going
to argue that the latter implies the former.

In Section we discussed the dual of the representations Ps. It is
clear that the action of R, s, (A/p) on Ps, ® Ps, defines the dual action on
(Ps, ® Ps,). As the latter contains highest weight representations %;, ® %,
with j; related to s; via for i = 1,2, we get an action of (R, s, (A/u))
on #j, @ #j,. We are using the notation O for the transpose (dual) of an
operator O. We conjecture that this action coincides with the action of the
R-matrix obtained from the universal R-matrix using the renormalisation
prescription introduced above,

(793) (R3152 ()‘/M»t re1®eg = [(Wile ® Wz\,’jg (%_)]ren €1 ® ez,

where ey € %#;,, ea € #j,. A result in this direction was obtained in [ByT3]:
A formula like holds if Ry,s,(A/p) is replaced by the spectral pa-
rameter independent R-matrix Rs,5, acting on the tensor product of two
representations of the modular double. We believe that a proof should be
possible for example using the alternative representation of the operator
Rs,s, (A/p) derived in [ByTT, Appendix D].

The validity of the conjecture would underline in which sense
the renormalised version of the universal R-matrix is a “more universal”
R-matrix: It can not only be used for infinite-dimensional representations of
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modular double type, it also defines the action of the R-matrices on finite-
dimensional representations in a way that automatically ensures compatibil-
ity with the structure of the enlarged category of representation generated
from both finite-dimensional representations and the infinite-dimensional
representations of modular double type.

8. Imaginary roots and functional relations 11

In this section we shall begin by deriving a universal form of the Baxter
equation for models with U, (gly;) quantum group symmetry. A new feature
in our derivation is the use of a fermionic representation 77 containing
all fundamental representations of U,(gl,;) as sub-representations. Being
reducible, it admits a collection of spectral parameters u = (po, ..., ),
one for each fundamental representation V. contained in F. The Baxter
equation will follow from the reducibility of the tensor products 77 @ nt at
certain values of the spectral parameters.

The proof of the universal Baxter equation will be valid for the infinite-
dimensional representations of our interest if the renormalised R-matrices
satisfy the relations RV1®V27V3 = RV1,V3 RV27V3 and RVI,V2®V3 = RVth, RV1,V2‘
We verify that this is the case for the representations of our interest. This will
again follow from a delicate interplay between the contributions associated
to real and imaginary roots in the product formula.

8.1. Universal Baxter equation

We are now going to prove the following universal form of the Baxter equa-
tion:

M
(8.1) S ()P0 (g3 QT (—wg T ¢) =0,

k=0

where w is an M-th root of unity w™ = 1. This equation reduces to (7.71)
for M = 2. The “universal” Baxter operator Q1 (\) is defined as

(8.2) QT () = try { (2 2 1) [(wf @ m) #7],,,, -

The representation W;\— corresponding to the auxiliary space H is given in
(6.3). The trace is twisted by the ¢-th power of the Zj; automorphism
given in (4.7). The choice of the representation in the quantum space, de-
noted by m,, will only be restricted by the condition that the trace should
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exist. The (higher) transfer matrices T*)()\) are similarly defined as traces
(8.3) TH) =ty {(2 1) [(r)) © 1) 27, }-

over certain finite-dimensional irreducible representations V, that we de-
scribe in the following. It will be very useful for us to observe that the rep-
resentations 7T§\k) relevant for the formulation of the Baxter equation
appear as irreducible components in a reducible representation constructed
from fermionic creation- and annihiliation operators ¢;, ¢;, i =1,..., M
which satisfy

(8.4) {ci ¢} = diy, {ci,cit =0, {ci,c;} =0.
Let F denote the fermionic Fock space. The representation 7 is defined via
®5) () =A""eici,  w{(fi) = Acipiei,  w (ki) = gM T,

where n; := c¢;c;. Notice that this is a representation of the full Z/{q(gA[M).

It is easy to see that the total fermion number operator n:=5.",n; is
M

in the center of the representation 7. The eigenspaces Vj ~ c(i) of n

associated to the eigenvalue k are irreducible. Each V} corresponds to the

k-th fundamental representation.

Remark 7. The M-th root of unity w appearing explicitly in will turn
out to play an important role for the integrable model studied in this paper.
It is not hard to see from the definition above that T®*)(w¢) = T®)(¢), so
that the Baxter equation posses a Zj); symmetry. We will see in Section [8.5
that this symmetry acts non-trivially on the solution Q(¢) for the choice of
quantum space relevant for this paper.

Remark 8. In Section we introduced two Q-operators Q*()), they
correspond to the two Q-operators Q*(\), QT (\). These are constructed

using the representations 7y and 7} given in (8-13) and (8.36) and the
renormalized universal R-matrix. The operator QT ()) satisfies the Baxter

equation (8.37))

8.1.1. Preliminaries. In order to show (8.1]), let us start with a simple
observation: Operators as the one appearing in (8.1)) can be represented as
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traces over the tensor product F ® H in the following way

M

(8.6) D (DFT® () QT ()

k=0
— trren {(Q‘ ® 1) [(—1)" (e ﬂ—q)‘%_]ren}'

where the operators A, on F @ H are for given (A, ..., A\pr) € CMF! defined
as the operators multiplying each vector in Vi, by A, respectively. The tensor
product of representations is defined using the coproduct as

(8.7) w_‘}‘é;‘{“ = (7#“ ® wi“) A.

The action of 2 € End (F ® H) in auxiliary space is understood. The iden-
tity follows from the decomposition of the fermionic representation wx
into irreducible finite-dimensional representations and from the following
property of the universal R-matrix:

(8.8) (7 © 1® 7g) %13 0 [(1 R Wq) '%5?’} ren
~[(om en)@ena]

ren

This relation is crucial for the derivation of the Baxter equation. We will
show in Section R.4.1] that the renormalization of the universal R-matrix
proposed in this paper preserves this property.

8.1.2. Block triangular structure of 7’2" ® wj‘_" . The following obser-
vation will be the key to the derivation of the Baxter equation ({8.1]). There
exist special values of the spectral parameter

2k—M

A . & 2mi
(89) A = )\k,g = —wyq M (, P = iy 1= qv(, wp=¢e M",

such that the tensor product representation (8.7)) has the following triangular
structure: For any x € Uy(b_) there exist orthogonal projectors Hgg)’ H(Qe)
and an operator Tpew () such that

(8.10a) 1 (xhr @ i) ALY = 0,
(8.10b) 1) (zh @ 13" ) AQOIL = Faew () 11,

(8.10¢) I (72 @ 72 Y ACOTTY) = Fpew (x) TS
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The projectors ng) and Hg) determine a (¢ dependent) decomposition
(8.11) FOH~V oV, =C20V,

where in order to write the second equality we used Vi ~ Vo ~ V. We will
show that Tnew(X) 2 () ® Tnew(x) and (=1)" = (§ %) ® (=1)" with re-
spect to the decomposition C? ® V. The relation can thus be rewritten
in block matrix form as

(8.12) (=1)" ( fin ®7r+ )A(X) ~ ((—1)“ gnew(X) —(—l)njkﬂnew(X)> .

This is an operator acting on C?> ® V where each block acts on V.

Proof of (8.10). To prove this fact it is enough to show that it holds for the
generators f;, k;. To do so, it is convenient to rewrite the representation 771

in terms of new variables y; that are defined such that

M—-1
A -1 q ™ -1 A
qg—q 1 u; Vvi= qg—q 1 Yi Yi+1 7T+(ki) = uzuz—i—l

(8.13)  m(fi) =

It is not hard to see that (8.13) will hold provided that
1
(8.14) logy; = 1 Z Xijlog (u; 'viur ),

where X;; was defined in (4.25). The variables y; satisfy the following ex-
change relations
(8.15) yiyi = 4"y5¥i, uiyj = ¢ Myju;,

where Y;; = 6;5 — 1+ %(z — J)mod-nm- One of the advantages of introducing
yi’s is that they will allow us to simplify the study of tensor products in-
volving 74 by use of the following formulas

810 (19m) A = A0 (it S @ v A0,

(817) (1@m}) A(®) = A7} y) - a7 @ u;- Aly),

where € = €01, fi = ¢z @ f; and A(y) := X GBlosy: O
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Proof of (8.16)). It is straightforward to check that

(8.18) AN y) - (i@ 1) - Aly) = figt 2P @yl
where
(8.19) Bim(G4am—1)+2(1—¢

. i = (€ + €41 — )+M( —6)-

It is furthermore easy to verify that A(y)~'(1 ®y;)A(y) = ¢~ TiniaYe @y,
Noting that

)

2
(8.20) Yij— Y1 =——, if j #£d,i+1,
M
one finds that
(821) ATy (1@yiy ) Aly) = ¢ m79g Eten D g yrly, .
The identity - ) follows easily by combining (8.18)) and (8.21] - O

For the fermionic Fock space representation (8.5), using ¢! = (¢ —
g )n; + ¢!, the identity (8.16]) can be rewritten in the following way

(8.22) (v @) A(fi)
<éi+1(ci — gnCit1) — q2gil> & yi+1y;1 - Ay),

= AN Y) - png

where g, := —quv%n gt A, The triangular structure (8.10) will follow easily
from (8.22)). This is best seen by performing a discrete Fourier transform
along the affine Dynkin diagram as follows

1 &L Mo,
(8.23) c(p)i=——= en'e = Z e
M (=1 Z

This transformation preserves the anti-commutation relations (8.4]). We are
going to show that (8.10) holds with projectors

(8.24) Y = A ()N(OAy), I = A~ (y)N(A(y),
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where N(p) = ¢(p)c(p) and N(p) = c(p)c(p). Indeed, using (8.22) and (8.24)),
the relation (8.10) for x = f; is rewritten as

(8.25a) N(0) [ej41(e; — weej1) | N(£) = 0,
(8.25b) N(0) [¢j+1(cj — weej+1)| N(£) = My ;N(0),
(8-25¢) N(0) [€j11(cj — weejr1)|N(£) = My

where wy = e ! and M, ; is the same in the last two lines. Notice that
the term proportional to the identity in the first tensor factor of has
already been simplified. The interested reader can find the specialization of
the formulae above to the case M = 2 in Appendix

In order to prove let us rewrite the relevant combination entering
in terms of momentum space oscillators as

M—
(8.26) éj+1( gncj_H Z p R)G+1) ( ;V}lp_gn)é(k)c(p)'
p,k=0

The projectors N(¢), N(¢) act in a simple way on Fourier transformed
fermionic oscillators

e]l

(8.27a) N(l)e(k)e(p)N(€) = dgyp (1 — de) e(k)e(p),
(8.27b) N(£)e(k)e(p)N(0) = (1 — dep) (1 — de) e(k)e(p)N(0),
(8.27¢) N({)c(k)c(p)N(¢) = [ (1-— 5(1, (1-— 5Z,k) + 5g’k547p]6(k)c(p)N(£).

Applying these relations to (8.26)) with g, = wy, relation (8.25)) follows with
My ; given as

(8.28) M, = 7 Z ot (=k)(j+1) (e
p,k#L

—WP —wp)e(k)e(p).

Notice that the oscillator of “momentum” ¢ does not appear in this
expression. We have thereby completed the proof of the triangular structure
(®.10). O

It is worth to emphasize that while for m to hold it is enough to
have g, = wy, the relatlons m m 8.10c)) further require that g™ 3 S in-
dependent of k, see . The values (8.9)) follows from these requirements.
From the explicit form of the projectors the decomposition is easy to
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interpret: up to the similarity transform A(y) one has
(8.29) V1 ~ .Fl & H, V2 ~ ]:2 & H,

where F; and Fy corresponds to the subspaces of the Fock space F where
the /-th mode oscillators is respectively absent or present. They are clearly
isomorphic and their total number operator n differs by one unit.

It is clear that the Baxter equation will immediately follow from
our preliminary observation combined with the triangular structure
. This is so as the operators appearing in the diagonal elements of the
matrix in coincide up to a sign, from which the vanishing of traces
over F @ H follows.

Remark 9. The form of projectors (8.24)), the similarity transform A(y)
and the introduction of the fermionic oscillators in is motivated by the
study of (77 ® %)% ~. Indeed, the triangular structure of (7+ ® 77)A for
special values of the spectral parameter is related to values of the spectral
parameter for which the operator (77 ® 77)%~ has a non-trivial kernel.

Remark 10. A form of the Baxter equation similar to was derived
in [Hi01] for M = 3 using different techniques. In the language of this paper
the model considered in [Hi0I] corresponds to the quantum space to be
(T @ ®@75) AW

Remark 11. One may notice that for any a € U, (b™) there exist ¥(a) such
that

(830) (v @) Ala) = AL y){E(0) @ 1, W(a) IAT(y),

where {a,b} := ab + ba. The explicit form of ¥U(¢%) and U(f;) is easily ob-
tained from the discussion above, the existence of ¥(a) follows.

8.1.3. Tensor products and Drinfeld’s currents. It is instructive to
spell out explicitly what happens to the imaginary root vectors when taking
the tensor product (71'?_—" ® Wi“)A as in . We will use these observations
in Section to show that holds for the choice of quantum space
studied in this paper.

The imaginary root vectors are encoded in the generating currents 1 +
F/(z), i=1,...,M —1 defined in (5.9). Their image under 7z and 7 is

)
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given by
1 _ /—{/Z*qu(l’h*ﬂl*,l)
p /() = ‘
(8.31a) T (1+ F(2)) — :
(8.31b) ™ (1+ F/(2)) =1+ 6y MMz

The first expression is derived in Appendix the second is equivalent
to (6.10). These are rational expressions in z. An important feature of the
imaginary root currents is that in many cases their (generalized) eigenval-
ues behave multiplicatively under tensor product. We will return to this
observation in Section where we will also present some new interesting
counter examples. For now, let us see explicitly how this works in the case
relevant for the Baxter equation.

The form of the imaginary root currents for the tensor product of these
representation is encoded in the following relation

(8.32) Ay) [ (g em) A1+ F(2) | Ay)™
=57 [ (14 Fi() @ mi (14 F(2))] 8
where

(833) S = (1 — gnéM_ch) s (1 — gn6203) (1 — gnélcg)
o= —Maktn g T

Notice that S is invertible for any value of g,. The equality can
be verified by lengthy calculations using the iterative construction of root
vectors given in Section It also follows from Theorem 8.1 of [KhT94].

It is manifest from (8.32) and (8.31)) that the tensor product (77 ®
7+)A(1 + F/(z)) is a rational expression in z. If we rewrite for i =
M —1 as follows

) 1 _unnZnM1nM)Zl
(8.34) e (14 Fiyoa(2) = = +(—¢ ) pn) Mgz

9

it is then clear that for

(8.35) O™ = (=g )",

the zero of 71 (1 + F},;_,(z)) cancels with the pole of mx(1 + F},;_,(2)). This
mechanism signals the reducibility of the tensor product. Indeed, the condi-

tion (8.35) follows from (8.9).
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8.1.4. The representation 7, and the Baxter equation. There is
a second representation that can be used in auxiliary space to construct
Baxter Q-operators:

A A
8.36 TNfi) = —— v =
(8.36) 2 (i) Rt -

1 __q_
—qMY; Vit
Following similar steps as the one given above for 7, we can show that

M

(8.37) > (=)FT® (g

k=0

—2k

g 7 ) =0,

)Q" (w

where T®) are the same as in (8-1). For M =2, 7™ = 7" and one can show

that the two Baxter equations and are indeed equivalent by

noticing that T (\) = TM)(X) = 1 and —w squares to one when w does.
We collect some of the relevant formulae used in the derivation

(8.38) (1 ® fri) A(f)
=A1(Y)q <ﬂ Aqulql‘%) ® ity ' AY),

where f; = q_%(éiJrgi*l_l) fi. From the equality above the analog of (8.22))
follows

(8.39) (7 @ad)A(f)

=A"! (y) - anﬁ <(Ci+1 — gnCi)Ci + 9nd

) ® y’L+1y7, A(V)?

where g, := q% iy ! An. The tensor product representation exhibit triangular
structure for g, = wy. Together withMt}QT? condition th%ﬁi/jnq% is indepen-
dent of n this implies that A\, = wpq™ ¥ ( and p, =g o (.

Let us finally quote the formulae for the Drinfeld currents relevant for
this case. We have

(8.40a) (L+F/(2)) = 148 AM2!
1 +/J: q q2(!117ﬂ2)271

A
+
(8.40b) T (14 Fi(2)) = R e

The poles in the tensor product (7%" ® ﬁj\r“)A cancels under the condition
that (Ay)™ = ¢ (un)™. In the special case M = 2 the representations 7
and 74 are manifestly the same and the current (8.34)) coincides with (8.40bj).
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8.2. Renormalization of the imaginary root contribution to the
universal R-matrix

We had previously observed that the imaginary root contributions play a
key role for the validity of the identity underlying the derivation of
the Baxter equation presented in Section As a preparation for the
verification of we shall now introduce a prescription for renormalising
the imaginary root contribution to the universal R-matrix

8.2.1. Renormalization prescription for the imaginary root contri-
butions . In order to formulate our prescription it is necessary to spell out
the structure of the imaginary root currents first. As in the case of Uy(gly)
imaginary root currents form a commutative algebra. We will restrict our at-
tention to representations in which the currents are represented by rational
functions of the form

(8.41)

It will be shown in Section below that this condition holds for a large
class of representation including the ones we are interested in. Moreover this
property is preserved by taking tensor products.

Next notice that the coefficients u,, ;; given in that enter the imag-
inary root contributions to the universal R-matrix , can be rewritten
using

(8.42) (=)™ [M — max(i, j)]gn [min(i, j)]gn

ki]
= (—1)™ Y (gL ),
s=1

where k;j :== M —|i —j| — 1, and 7.(8.) = Zi\/[:_lmax(i’j) znzhi(i’j) 0s.atb—1- In

2,
order to derive this relation one rewrijtes n]g=>0_ ¢"25th

With this observations in mind it is clear that, before renormalization,
the contribution of imaginary roots for given representations takes the form
of a finite product [], g4 (wa), where g4(w) is defined in (5.34)). Our renor-

malization prescriptions consists in replacing e m (w) with Eppe (w) defined
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in ([7.7). For convenience we report the definition here

(8.43) Enmpz (W) 1= ex / di !
' Mp2\W) == P R-+i0 4t Sinh( b2t) Slnh(t) '

The prescription above can be formulated more explicitly as follows

(8.44) [( *@ﬂ‘)«%:a}

ren

H Z/ 1g1]( ®Ne' j nHHe' 1gZJ(N£z®DZ’ )
H@’inl gl](NZz ® NK’,j) Hg gzg( ® Dgl’j)

i,7=1

where the image of the imaginary root currents under 7w is given in (8.41))
and

ki ()
Vij
(845) gZ] H <5Mb2 ( — M—l(_q)2ps(k:i_7~)1:> ) ,
s=1
using the notation py(k) := E=2+L,

8.2.2. Examples of renormalized imaginary root contributions. In
this section we calculate the currents and formulate the resulting prescrip-
tion for the renormalization of imaginary root contributions for the
basic representations of our interest. Let us start recalling the form of imag-
inary root currents for prefundamental representations

(8.46a) (14 F/(2)) = 1+ 6y A2,
(8.46b) (L4 F/(2) =1+ 62270
(8.46¢) T (L4 Ej(2)) = 1+ 6 A Mz,
(8.46d) 7y L+ Ej(2) =1+ 60 Mt

These equations are collected from (8.31)), (8.40]), (6.52c]) and (6.13)). Let us
define

(8.47) P AT = [(W§+® sz)%:(;] ot e {£, £},

ren’
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compare to (6.36]). Following the prescription given in (8.44)) one obtains

(8.48a) P =p(0) =

(8.48b) P =p"(0)

Notice that for M = 2, these two expressions coincide and are equal to (7.6)).
The next example is the renormalization of (77 ® 77)%_;. In this case,
the prescription (8.44) for the currents (8.31]), and (8.46¢) gives

o Enpz (—gM2gM)
(849) [(ﬂ/{n @ m, ) %N(;] ren gsz (_quyq*QMﬂnf) ’
g = =g et

This equality results after a cancellation of terms in . The simplifica-
tion does not rely on any special property of the function &2 (w) and uses
the fact that each n; takes the values {0,1}. At this point one can use the
property Exne (¢ Mx) = (1 + 2)Evp2 (¢ M2) to rewrite

(8.50) [(zr ©m) #2] = 07(9-) (1= g nur),
Enme (— M—2n y
07(9-) = ng( o )

A similar analysis gives

(8.51) (i @ 7,) %), = 07(5-) (1—gMi),
- Enpe (—¢M ")
0 - = )
#(9-) Eme (—gMg")
where
(8.52) g_ = qﬁfTM,unlfl, n:=»M —n, n,:=1-—n;.

More examples of renormalization of imaginary root contributions are pre-

sented in the following section and Appendix



Integrable light-cone lattice discretizations 1305

Lax operators for T(A). Using the results (8.50) (8.51) we can write
down the explicit expression obtained from the renormalized universal R-

matrix for the Lax operators entering the tranfer matrices (8.3|) with quan-

tum space (8.95)).

(8.53) ] ]
M .
(@) 27 = 07(9)0A0) | TT (1= 9-¢ 5 Nw)) | A7 (A W),
p=1 ]
(8.54) i _
— M 2Tip ——
[ @7) 27,0 = 073 9M@) |TT (1= 5-¢FNw)) | A7 (5)A ).
p=1 ]

The variables y; and y; entering the expressions above are introduced in
, (equivalently in , ) and the fermionic number op-
erators N(p) = ¢(p)c(p) and N(p) = c(p)c(p) are defined in terms of the
fermionic oscillators in “momentum space” conjugated to the Dynkin
diagram circle. The main steps of the dervation are left to Appendix [E.2]
The Lax operators , can be recovered from these expressions
upon acting on the subspace of the fermionic Fock space where the total
number operator n has eigenvalue 1.

8.2.3. Rationality of the imaginary root currents. It remains to
show that the currents are indeed represented by rational functions of the
form in the representations of our interest. To this aim we need to
generalise the proof of the rationality of the currents described in Section 7.2
for the case of U,(gly) to Uy(gly,). This turns out to be somewhat more
involved. We will outline the proof below, leaving some technical details to
appendices.
It will be useful to consider the so-called universal Lax matrix

(8.55) L) = (7r§ ® 1) %

where 7§ is the fundamental representation of Z/lq(sAlM) defined in (6.2). It
follows from the universal Yang-Baxter equation that £ (\) satisfies
the quadratic relations . The product formula for the universal R-
matrices yields a triangular decomposition of the form

M
(8:56) Z(N) = |1+> Li(ME; (Zai()‘)EM) L+ 4i(NE; |
=1

i>j i<j
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where E;; are the matrix units, as before. It can be shown, see Appendix @
for details, that for any matrix £ (\) that satisfies the relations (3.16]) the
following relations hold

Ap(g™ ")) M

(8.57) ap()\):m, Ap(\) == gedet (LPI(N)),  Ag(N) =1,
.

where pp = %’“H and the p x p matrices ZPI(\) are defined as

(8.58) (L), =27 (20, hi=12p
The quantum determinant g-det (Z'(\)) in (8.57) is defined by an expression
of the form

(8.59) q-det (Z(N) = Y co () Ly (1)1 (45PN L2
UEG]M 2 2
X (q P2 N) - Ly (g MM N),

The summation in is extended over all permutations o of M elements.
An explicit formula for the coefficients ¢, (¢) in can be found in (A.7)).
Note that [A,(X), Ag(pn)] = 0.

We are interested in the contributions of the imaginary root generators
to the universal Lax matrix contained in generating functions k;(\) defined
via

M
(8.60) (w& ® 1) A5 =3 ki(\Eq.

The explicit form of k;(\) can be obtained using the definition Z_;,
see (5.15) with (5.18), and the explicit formula for 7r§\( fﬁ%) given in Ap-
pendix . One can verify by direct comparison that k;(\) satisfy the
following relations

M
(8.61) kkai?) =1+ E((-¢x™M), [k x =1,
7 =1

where 1+ E/(z) is defined in (5.9)) and p; = % are the components of
the Weyl vector. Combining this observation with (8.57)) and

M
(8.62) (wg ® 1) =Y Ei@qn.
i=1
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we obtain

Air1 (M) Ai—1(N)
Ai(qg N Ai(gT )

€i41—€;
)

(8.63) 14+ El((-1)AxM) =

where A;(\) are defined in . Notice that this combination remains
unchanged if we rescale the matrix £ (\) by an overall function of \. For-
mula allows us to complete the proof of rationality of the currents for
the representations of interest along the lines of Section[7.2] It suffices to note
that the generating functions A;(\) get represented, up to an i-independent
factor proportional to the identity, by polynomials in A. We have checked
this fact explicitly for the basic representations of our interest, and it will
continue to hold for any tensor product of these representations.

Remark 12. In Section [{.1I] we presented a realization of the quantum
affine algebra U,(g) in terms of 3r generators. This presentation is due to
Drinfeld and Jimbo [Dr1l [J]. There is an other realization known as Drinfeld
second realization [Dr87]. This realization involves certain currents which,
as explained in [KhT2], are directly connected to the root vectors defined
in Section [5.2.1] The isomorphism between the realization of Drinfeld and
Jimbo and the Drinfeld second realization has been proven in [Bel].

In the case g = sly; there is yet an other presentation of the quantum
affine algebra following the Leningrad school, see [FaRT) [ReSe]. The iso-
morphism between this realization and the Drinfeld second realization was
establshed in [DE]. We may note that the universal Lax matrix introduced
above contains (half) of the generators of Uy(sljs) in the presentation of
[FaRT] [ReSe]. The proof above therefore combines elements of all three re-
alisations.

8.3. Co-product of imaginary root generators

In Section we had found the useful identity expressing the mixing
between real and imaginary roots under co-product in the case of U, (sl2). It
allowed us to analyse possible consistency conditions on the renormalisation
of the imaginary root contributions that might arise from this mixing. We
shall now describe the generalisation of the identity to the case of
Uy(slpr). As a useful generating function we shall again consider

(8.64) M ()@ 1= (1@m, ) (Zs),

~
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The explicit expression of .#_5(v) follows from the definitions (8.68)), (5.15))
and the form of the imaginary root vectors given in ((6.52c]):

- o (DT e
(8.65) M_5(v) = exp (mzl m g — g md T )
with
M—1
(8.66) FO = (™ — 7MY N i £,
=1

and U, ;; given in (5.18). We are going to show that the co-product of
M _5(v) takes the form

(8.67) A (M 5(v) = (M 5(v) @1) eq (vME) (Lo.25(v)),
generalising ((7.30)) to the cases with M > 2. We are using the notation 7, =
g—¢q ' and

M-1
(8.68) Ee=me > 0™ s e @ F s

j=1

is the combination of real root generators appearing in the co-product of
M _5(v). In the definition of = the terms in the second tensor factor fy* are
constructed using the opposite root ordering compared to the one defined
in Appendix which is used for the construction of f,. Their explicit

expression can be found in (E.50)).
In the following we will report the main ideas that enter the derivation

of leaving most of the technical details to Appendix The first
observation is the following

(8.69) (1lem) (@) =Ay) (4 (v)@1) A~ Y(y),
Aly) == it @®logy:

where €; are the Cartan generators and the variables y; are introduced
in . Notice that we have already used the operators y; and the similarity
transform A(y) to simplify the study of tensor products involving 74 in
Section . The explicit expression of .# ~ (v) follows from the product
formula of the universal R-matrix (5.12)) and the form of (1 ® 77)(fy ® e;)
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for v a real root given in (E.7)). It takes the form
(8.70)

_ _ _ _ M2 (V) :Eq(xf)"'gq(x&—ﬂa
M) =M (V)M (V) (), _
WS AL ) = K1) 200X,
where
(8.71) Xf = quflfi, X? = Tqﬁii[- .. [fo, fl], e, f;‘—l],

fi=q 2 @tEn g

with o = Vq% and 7, = ¢ — ¢~ *. The fact that only finitely many real roots
contribute to the product formula is due to the special property of
7~ spelled out in Section Notice that the nested commutator in the
definition of X is

(8.72) [ [fos fils o fia] = ¢ D@ Dgma@tan g

The commutation relations and coproduct formulae for the elements
are collected in Appendix

The second ingredient used in derivation of are certain identi-
ties satisfied by e4(X). In addition to the relations (7.37), used in
Section [7.3]in the case M = 2, the following generalized pentagon equation
holds

VU -UV
8.73) 24V )ey(0) = 2, (0ea (LB Y v,
if
(8.74) T VU + (q+qg HVUV + ¢ UV =0,
(8.75) ¢V + (q+ ¢ HUVU + ¢ VU2 = 0.

Notice that the identity (7.40) is a special case of (8.73)) for UV = ¢ 2V U.
The two basic identities (7.37)) and (8.73|) are known to be satisfied by ¢,(z).
The last important observation used in the derivation is that

(8.76) 5, FM D=0,  forj=1,...,M -2,

where f™1 are defined in (8.66). This follow from the definition (8.66)
Y| (5.

and the commutation relationg 17)).

Tt is actually obtained by applying the Cartan anti-involution (4.14)) to (5.17)
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Remark 13. For future use let us note that the relations obtained from
by replacing e4(x) by &(x) and U, V' by positive self-adjoint oper-
ators are also satisfied, see e.g. [[p12] for a derivation. The identities ob-
tained by using our renormalisation prescription to define the evaluation of
A (/%:5(V)) in representations of modular double type will therefore also
be valid.

Remark 14. The identity (8.67)) is understood as an equality of formal
power series in the spectral parameter. One may notice that the the first
non-trivial term in this expansion reads

(8.77) A(FMDY — FMD 1 1@ FMTY = (M,

Within this interpretation, the relation provides a compact expression
for the coproduct of imaginary root vectors. This should be compared with
known expressions in the literature from [Dam2| and [KhT94]. In [KhT94] an
explicit twist that maps the coproduct defined in this paper, to the so-called
Drinfeld coproduct, with respect to which imaginary roots are primitive
elements, is constructed. This form is not of direct use when both tensor
factors correspond to representations of U, (b, ) that cannot be extended to
representations of the full U, (;[M)

Remark 15. The quantity .#_; defined in (8.68)) appeared also in [FrH]
(Section 7.2), where it is called Tj—pr—1(2).

8.4. Checks of compatibility

In the previous section we had verified in the case of U, (5A[2) that the pro-
posed renormalisation prescription preserves all the basic properties of the
universal R-matrices. This was found to be a consequence of the fact that
the function &(z) used to define the renormalisation of the real root con-
tributions satisfies the same functional relations , , and
as are satisfied by the function ¢,(x) appearing in the product formula. In
the following we will outline how to generalise this discussion to the case of
Z/[q (5 [M)

It will furthermore be explained how the consequences of the identity
are consistent with the renormalisation prescription

M—1 y7di.+ ~Mby
11,27 Gim—1(v=YDy;)

8.78 7t (M) = . >

( ) ( N(S( )) H E;T gi’M_l(VfMNZi)

=1
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This will again be a consequence of the functional equations satisfied by the
special function &(x).

8.4.1. The case of mr ® w4 and the Baxter equation . In the follow-
ing we verify when the first two tensor factors are chosen as 7r ® m.
We leave the proof of the identity involving real root contributions, general-
izing the one presented in Section[7.4.3] to Appendix[E.4] This is a prototyp-
ical example of tensor products involving finite dimensional representations
and modular double type representations. This verification, supplemented
with a similar analysis where 7~ is replaced by 7~ that goes along the same
lines, allows to complete the proof of the Baxter equation.

Explicit verification of 7% ® nT applied to (8.67). The verification
of in this case is greatly simplified by the analysis of imaginary root
currents given in Section More specifically, the relation (8.32) implies
that the left hand side of (8.67) can be rewritten using

(8.79) Aly) [(m], @7 ) A (A 5(v)] Aly) ™

~

=s! [wi‘ (///:5(1/)) ® TI')t‘ (///;5@))] S.

where S is given in (8.33)). Concerning the right hand side, the following
holds:

(8.80) wr (M 5(v) = 07(9-) (1 — gMnur)
(8.81) Aly) [(71";_-“ ® 7'(';“) E] Ay t=2®1,

M-1

—/ M -k

E = —TgAy E 9n Ck | CM,
k=1

where 0 (z) is defined in (8.50) and the operator 7, (.# ;) is central. The

~

equality (8.81]) follows from (E.105|) and the definition (8.68]).
It follows from these observations and the prescription (7.44) for

&(v~™MZ="® 1) that (8:67) reduces to

(8.82) SH(1=g"ny)S=(1—g"npy) 1+ 7, v V).

This simple equality of operators acting on the fermionic Fock space holds
as a consequence of

M-1
(8.83) SleyS=cy+ > g e
k=1
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In order to reduce ([8.82)) to (8.83]), one can use the explicit form of Z’ and the
following relations: nyscps = 0, S commutes with ¢y and v=M (A,)M (g_)~M
= (ga)™. The identity (8.83) is easy to show. O

8.4.2. Checks of evaluated on prefundamental representa-
tions. This section contains an explicit verification of the identity that
follows from after applying 7+ @ 77 or 7T @ 7T to it. The verifi-
cation requires a careful study of the the image of imaginary root currents
under the tensor product representations (77 @ 71)A or (7 ® 77)A. These
are representations of U, (b™). We will see that in this case the (generalized)
eigenvalues of imaginary root currents do not behave multiplicatively under
tensor product, see (8.84]) and (8.89)) below. This should be compared to a
rather general result, which is a corollary of Theorem 8.1 of [KhT94], which
states the following:

Let 7 be a representation of U, (g) and 7" a representation of Uy, (b7),
then the generalized eigenvalues of (mwpy @ o)A (14 F/(2)) and (7t ®
) A (1 + F/(z)) are equal to the eigenvalues of

7 (14 F(2)) x 7 (14 F}(2)) -

Notice that this result, once supplemented by the information that any finite
dimensional representation of U, (b™) can be extended to a finite dimensional
representation of Uy (g), implies the result of Proposition 1 in [FrR].

Explicit verification of 7+ ® w1 applied to . As in the example
in Section in order to verify , we need to evaluate two basic
quantities: (1) the coproduct of imaginary root currents, (2) the element =
defined in . Let us proceed in order. On the one hand the currents
of imaginary root vectors for the tensor product of two prefundamental
representations 71 take a particularly simple form

(8.84)

1 1#EM—-2,M—1
(ﬂ)t ®7T>Z)A(1+Fi'(z)): 1+rz! i=M-2

AN )Y
(1—gtrz=1)(1—q—'rz—1) i=M-1

where 7, = q — ¢~ ! and the operator r is given below. The result
follows from a straightforward but lengthy calculation. The form is not
too surprising if we recall that, in the special case of Uy(slys), the imaginary
root currents can be computed using the formula with .Z replaced by
LTL™. It follows from that the linear combination of imaginary roots



Integrable light-cone lattice discretizations 1313

defined in (8.66) satisfies the relation

F(M—1 A(M—1 F(M—1
(8.85) (nf, @mf) [N ) = T e1-1e [l Y] = Ml
The result (8.84]) with the definition (8.68|) implies that

(71':\"1 ® ﬂ'j\;)A (///:5(1/))
(my, @ m3,) (A 25(v) @ A Z5(v))

(8.86) =&z (v M)

In writing the left hand side of this expression we have used the fact that
the denominator is represented by central elements. The identity is
then obtained by first computing and then applying the renormaliza—
tion prescription to the expression . It is instructive to rederive
from the general formula with 7% — (7} ® 7r)\ )A. From this pomt
of view ) holds as a consequence of the followmg identity

(8.87)

1

Gt o1 (— g ) Gar1 211 (—g~ ') M )
| ’ — T e (027 MD0) = €42 (),
Gr—2,m—-1(w) [1€m(q w) = &Ep(w)

s=1

with w = r. The first equality in follows from the definition of G;;(x)
given in and does not use any property of Eyzp2 (). The second equality
in is a simple consequence of the definition .

In order to complete the verification that (8.67)) holds when we apply
the representation 7+ ® 7+, we need to evaluate the image of Z defined
in . A simple calculation shows that

(8.88) (ny, @nf)E
M-1
(@—q HM D upuj? - fifo) @ (-1 -+ figafy) =,
7j=1
with 7 (f5_(c,—e,)) and 7t (f2 ) given in and below (E.104) re-

specively. Above we used the by now standard notation (71';: ® 7rj{2)( fi®
fj) =fi ® f;. The operator r is the same as the one appearing in the cur-
rents (8.84)). This conclude the check in this case.

Explicit verification of 74 ® w1 applied to (8.67). The steps are the
same as in the previous paragraph with important structural differences.
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The imaginary root currents take the form

(1 + Z_IXi_l) (1 + Z_IXZ‘_H)
(1—q1271X) (1 — ¢gtz71X;)’

(8.89) (7f @l ) A(L+ F{(2)) =
where
(890) Xi = )\]1\/[_1/\12 (tl . -ti)_l (tz‘+1 e tM) tz‘ = (quivi X Vi_lui)g .

Notice that ¢; are commuting operators and satisfy ¢1 - - - t3y = 1. The linear
combination of imaginary roots defined in (8.66|) satisfies the relation

(8.91) (7 o) AU ) -y Ve1-1e Y

méd m. m

= [M]gm (/\1/\34_1t?\4>m

To obtain this expression it is useful to observe that most of the terms
in the sum cancel with each other due to the form and the
identity [i + 1], + [i — 1] — [ilg (¢ + ¢7%) = 0. By a similar mechanism
as in , this implies that

(73, @™, A (A1)

B9 G e (o0 e,

Ol & (V—MAlA%%) .

It is instructive to rederive ([8.92) from the general formula ([8.78) with =+
(7‘1’§\r1 ® W)J;)A. From this point of view (8.92)) holds as a consequence of

M-1

H Giv—1(—q *wi)Ginr—1(—qw;)

Giri—1(wit1)Ginvr—1(wit1)

(8.93)
=1
_ Hf\il Emp (qQPS(M)WM—l) . Ep2(Wpr—1)

o ptwot(wa) T (wo)pt (war)

with w; = v™X; and p©(w) defined in (8.48). The first equality in (8.93))
does not uses any property of the special function Epsp2(w). The second

equality is the same as in (8.87)). For the right hand side of (8.67) one finds
that

(8:94) (7 @) E=(g—q¢ HYMupur o ® (Faror---foft) = WAy 'R,
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where Z is defined in (8.68]) The form of 7_T+(f5_(€j_eM)) = §;1fo follows from
the definition (8.36]) and the iterative construction of root vectors, the sec-
ond tensor factor 7t (fP . ) is given below (E.104). This concludes the

€ —€EM

verification of (8.67) in this case.
8.5. Modular duality and quantum Wronskian relations

By dividing the Q-operators by the scalar factors coming from the imaginary
roots one obtains Q-operators that are manifestly self-dual under b — b1,
We are now going to show that this has important consequences, leading to
functional relations among the Q-operators of quantum Wronskian type. In
the case M = 2 it has been observed in [Z00] that such functional relations
can be solved to express the eigenvalues of Q-operators in terms of solutions
to certain nonlinear difference equations of thermodynamic Bethe ansatz
(TBA) type.

8.5.1. Rewriting the Baxter equations. When the quantum space is
taken as

(8.95)  my(a) = (mp, ® 75, © - @m, @7 ) APV (@) a € Uy(b7).

the transfer matrices entering the Baxter equation (8.1]) can be rewritten as
follows

(8.96) QT(Q)=Z(Q)a" (), TH(EQ)=0W(Ot(), k=1,....M -1,

where
(8.97)
2(Q) =[] " (Cra et (R, OW(Q) =[] 05 (Cra MO, (CRL).
a=1 a=1

The function p©©(() are given in (8.48]) and the form of 67, (¢) follows from
E50), (E51) to be

((—1)M—1,—k M
B9) 00 = s 8O =00

The remaining transfer matrices involved in are simply given by
T (¢) = TM)(¢) = 1. The rewriting above is convenient because the trans-
fer matrices tx(¢) and q*(¢) have simpler analytic properties as functions of
the spectral parameter compared to their ancestors.
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Inserting (§8.96) in the Baxter equation (8.1) and dividing by Z(—¢() we
obtain

(8.99) > D) e(Otr(g Ot (—wg i ¢)

where
(8.100)
2(-¢7'Q) T [ M Ml( 2 M)]
A(Q) = = = 1— > 1— .5 7
2(—q*10) 13 ( 2 ) 1] < %)
(8.101) k
¢ — M (k) (g7 ) = T M1 Mfzsg
k(C) . E(_q+1<—) 6 (q C) g g <1 + ( 1) q Ké”) .

Notice that compared to (8.1)) we reabsorbed the M-th root of unity w in
the definition of {. In order to derive (8.100)) it is useful to notice that

| M—1 )
(8.102a) z:_gz]ﬁ_l:\\; = H (1 + qM—ZS)\M) _ q—det(L_()\)),
s=1
-1
(8.102b) Z:EZHX = (14 (=)™ IAM) = g-det (L™ (V).

8.5.2. Elementary properties of functional difference equations.
Consider the M-th order functional difference equation for ¢(\)

(8.103) S -DFrgHR) = o,

k=0

where fI¥]()\) means to shift the argument of f(\) in certain units, e.g.
L) == f(pPN). We set to(\) = tpr(A) = 1. This is the generic situation
as they can be reintroduced by rescaling the equation with to(A)
and by redefining ¢(\). Let us recall two elementary facts about functional
difference relations:
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1. Let ¢1(A),...,qm(A) be M solutions of (8.103) then the quantum Wron-

skian

— [a—1]
(8.104) W)= det (g 0).

is a quasiconstant, i.e. W(\) = WH(X).
2. Let ¢1(A),...,qm—1(A) be M — 1 solutions of (8.103)) then

(8.105) g(N) = det (@“‘”(A)) :

C1<ab<M—1

satisfies the conjugate Baxter equation

(8.106) SV =0, 8O =t 0.
k=0

The statements can strengthened considerable provided one is dealing
with Q-operators that are self-dual under b — b~1.

8.5.3. Modular duality. It is manifest from its explicit expression that
gt (¢) is invariant upon replacing b with b=!. This means that q*({) satisfies
a dual Baxter equation obtained by replacing b with b~!. In order to make
the behaviour under b — b~! more visible let us introduce u := %logg
along with s, := % log kq and 5, := % log ko. Multiplication by ¢~ and

—T

e~ ™31 in the (-plane translates into shifts by —ibt! and —ib~! in the u-
plane.

We have already observed in the remark below that one can obtain
M solutions to the Baxter equation by shifting the argument of the
Q-operator as follows Q* (we() with wy = €2™/™_ The dual Baxter equation
guarantees that these are linear independent. It will be argued that the
following relations hold

1 det qt(u—i(kb™ +0b™ 1)) =Flu— M
(8.107) et 9 (u — i + 07 1) (u Cp),

where the operator F(u) is determined up to a u-independent operator as

N M-1
(8.108) F(u) = Fyg H [eb(u — 54— Cp) H ep(u— 5.+ (2s — M — 1)) |.
a=1 s=1
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We had noted above that the Baxter equation implies quasi-constancy of
F(u), more precisely we find in our case the functional equation

(8.109) Flu— Mcy) = A(—qe s “YF(u+ib— Mcy).

The dual Baxter equation obtained by replacing b — b~! in the coefficients
implies that F'(u) must satisfy a very similar difference equation with b
replaced by b~!. These equations posses the manifestly self-dual solution
(8.108)). Taken together these two difference equations determine F(u) up
to a constant operator Fy. This operator can be determined by studying
the asymptotics of q*(¢) for ¢ — oo, as was done for M = 2 in [ByT1]. We
intend to return to this question elsewhere.

Remark 16. It was observed in Remark [6] above that the tensor product
7Tj\_1 R ® 7Tj\_M contains for generic values of {\s} an irreducible represen-
tations of evaluation type, as expressed more precisely in equation .
Formal reasoning indicates that for certain values of {\s} there may exist in-
variant subspaces in the dual of ﬂ';: Q& ﬂ;\LM. In particular for A\s = q%)\
there seems to exist a sub-representation isomorphic to the trivial represen-
tation. Similar observations have been used in the case of highest weight
representations to derive functional relations similar to using reso-
lutions of the identity representation of Bernstein-Gelfand-Gelfand (BGG)-
type [BaL.Z3, BaHK]| BaFLMS| [DM]. It would be interesting to know if a sim-
ilar approach can be used to derive functional equations in the case of repre-
sentations that do not have extremal weight vectors as considered in our pa-
per. A more systematic analysis of the tensor products (7T;r1 R ® W;)A(@
and their connections with the functional relations involving Q-operators
may be an interesting project for the future.

Appendices

Appendix A. Quantum minors and triangular
decomposition of .Z(x)

The quantum determininant. In this appendix we introduce the quan-
tum determinant, see [KuSk81], [Mo], [Tar92]. It follows from the relation

(3.16) that

(A1) My o Zi(q 5PN - Lo(q 37 N)
= ZLlg 5PN - AP Ny s
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where

(A-Q) H1_2...m = (Rm—l,m) (Rm—2,m n_z—z,m—1> T (Rl,m e R1_,2)
€ End ((CM)®m) |

and

—1)\M _ )\M .
%R“’bo‘m ), Aa=q N,

with R(A, 1) given in and p, = % The indices a,b in R, and
Za()\) entering denotes the a-th (b-th) copy of CM in (CM)®™. One
can show that II}, . projects into the totally antisymmetric part of CM in
(CM)®m_ The case m = M plays a distinguished role. On the one hand

(A?’) Ra,b =

(Ad) T g 57 N) - Lar(g P Ny = aedet (L) Ty,
where g-det ((Z()\)) acts as a scalar in (CM)®M and takes the form

(A5)  adet (L) = D co(9)Logryala " N)

O'EGJV[

X 30(2),2@_%’)2)\) - 'ga(M),M(q_%pM)‘)a

M—2k+1
2

where pp = . The coefficients ¢, (q) are determined by the relation

(A6) Ty 4 (€o(1) ® eo(2) @ () = o@Dy gy (1 @ €2 @ enr),

where e; denote the canonical basis of CM | see [Mo]. With a little inspection
one finds that where

M
AT eol) = (0, o) =~ S (k= 1)k~ o(k).
k=1

One the other hand one can show via the fusion procedure that
[a-det (£ (X)), Z ()] = 0.

Examples. The definition above produce

(A.8) q-det(L=(\) = 1+ (—1)M~1\M

where L™ (\) is defined in (6.22)). Notice that only two permutation con-
tributes to the expression for the quantum determinant given above: o = id
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and 0 =w:=(2,3,...,M,1). The coefficient in the quantum determinant
are computed recalling that {(w) = M — 1 and f(w) =1—- M.
An other relevant example is

(Ag) 77;:1 (AZ(A)) =ug--- Ui(l - 51'7M,1)\M(—1)M),
i—1

(A.10) Ty (Ai(N) = up-u; [T = AMg™29)
s=1

where A;()\) are defined in (8.57). Notice that for M = 2 the two expressions
above coincide.

Definition. It is convenient to define

A1) (ZV0D)) = AT (20, =12

ij
This definition is motivated by the fact that .ZIP/(\) satisfies the same re-
lations as .Z(\) with M replaced by p. The expression for the quantum
determinant of .ZP!()) is understood as (A.5) with M replaced by k.

The quantum comatrix. Let us define the quantum comatrix Z()\) of
Z(X) by

M-—1

(A.12) L(g 7 N Z(qg v A) = g-det (Z(N)).

The matrix entries of -Z()\) can be expressed in terms of quantum minors
of Z(A). In the following we will need only the last diagonal elements given
by

(A.13) (Z(N) det (X[M—”()\%))

MM = Q-

where .ZIP/()\) is defined in (8.58)

Triangular decomposition of £ (x). Consider the triangular decompo-
sition of the type (8.56) of a matrix X with non-commutative entries X;.
One has

(A.14) apz(((x[pl)_l) >_1, (X[P}),j::XU, Bi=1,...,p.
pp E

The derivation of this fact is elementary, see e.g. [Ioh| for its application in
a similar context. If X is replaced by Z(\), one finds a simple expression

for (A.14]) as follows from (A.12]) combined with (A.13]). The relation ({8.57))

follows.
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Appendix B. On the evaluation representation

In this appendix we review the definition of evaluation representation. Along
the way we will obtain explicit formulae for the image of imaginary root
currents under the evaluation homomorphism. We could not find such ex-
pressions in the literature. These formulae allow to compute the image of the
universal R-matrix under 7t ® ev, filling an apparent gap in the literature.

B.1. Jimbo evaluation homomorphism

In [J85] Jimbo introduced an homomorphism, usually called evaluation ho-
momorphism and denoted by ev, from Uy (gly;) to Uy(glys). This homomor-
phism can be given in terms of the generators {e;, fi,¢5} of L{q(g/;\[M) and
Uy (glys) respectively, see e.g. [CP]. For the purposes of this section it is
more convenient to exploit this homomorphism using

(B.1) Ley()) :

— pevl()\) (wg\ Q ev> X~

It can be shown that, upon choosing the scalar factor pe,(\) appropriately
(see below), one has

M
(B2) LoV =D Ea® (¢ + Mg ) + 3 AIVE; @ g
i=1 i#j

It follows from the universal Yang-Baxter equation that this Lax
operator satisfies the quadratic relations . These relations, together
with the specific dependence of Ley () on the spectral parameter A, provides
a definition of U, (gly,) in terms of the generators {q" Yiet,...M5 {&ij iz The
fact that the definition (B.1)) gives rise to a Lax operator of the form
follows from the interwining property of the universal R-matrix. It is
shown in Appendix [B.2] that this is the case upon defining

1 . 1 —
(B.3) ev(e;) = mgz’,iﬂq ", ev(f;) = —q 1 ¢ TE

(B.4) ev (qa_ﬁg) =g

A direct calculation of (B.1]) using the infinite product formula for the
universal R-matrix has been done for U, (gl,) in [KhST94], see also Sec-
tion and U,(gl3) in [Ral3]. As opposed to the derivation based on
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, the direct calculation of the product formula determines the scalar
factor peyv(A) as well. In the following section we determine the image of
the imaginary root vectors under the evaluation homomorphism and, as a
byproduct, the factor pey(X).

Remark 17. One may consider fixing the spectral parameter dependence
of some Lax operator to be that of a degree k polynomial in A~! for k <
M. The case k = M corresponds to . An identification of the type
would then provide an homomorphisms form U, (b,) to some algebra
whose commutation relations are dictated by the . The case k = 1 will
produce L™ () defined in ([6.22)).

Remark 18. The R-matrix in (3.17) is related to (B.2)) as follows

(B.5) ot (Lev(V) = ¢ (7" = ¢TAM)R(A, 1),

upon setting ¢7 = —q% in the left hand side. Moreover, the expression ([7.17))
coincide with (B.2) in the special case M = 2, upon identifying ¢7 = —q.

B.2. Intertwining properties for Ley ()

It follows from the definition that Ley(A) satisfies the intertwining
property
(B.6)

Loy () (ng ® ev) Ala) = (wg ® ev) AP(a)Ley(N),  Va € Uy(slyr).

In the following we will study the implications of where Ly, () is taken
to be of the form

M
(B.?) Lev()\) = Z E;i® (qN’ + )\Mqﬁi> + Z )\(i_j)M Eij & gjz

i=1 i#j

One can argue that the solution of is unique up to multiplication by
an element of the form 1 ® p(\) where p(\) belongs to the center of U, (gly).

In order for this to be the case it is important that ( - ) holds for the full
U, (5[M) and not just a Borel half. The fact that we can find a solution of
the interwining property of the form ) thus provides a proof of (B.1] .
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Let us proceed with the analysis. Using the form (B.7) and taking a =
¢%, the intertwining property implies
B8)  dMev(g?) =ev(g™)d™,  dMev(g) = ev(g¥)d"",
(B.9) Eijev(q™) = ¢ O ev(¢™)Ey,

Next, consider the intertwining property for a = f;. The AM+1 term of these
equations immediately implies that

(B.10) ev (¢) = ¢"¢V",

for some constant z. Using this identification and , the MM terms of
the same equations give

(B.11) Eivri = (a—q )V ev(f).

Let us turn to the case a =e; in . A similar analysis applied to the
terms of order A~! and \° shows that

(B.12) ev (%) = "N Eiiv = (a7 — @ev(e)dV,

for some constant z. The equations (B.10), (B.11), (B.12)) give the identifi-
cation between the generators of U, (gl,,) and U, (gl,s). The constants = and
Z correspond to the freedom of overall rescaling of Le, and introducing the
spectral parameter for ev. To obtain we demand that the leading term
in the A\ expansion is

M
(B.13) (' @ev)g =Y Eii@d™,
=1

where ¢! is given in ,mt(¢%) = ¢F and ¢~ = ev(qg"_jg). Notice that
IL ¢~ " = 1. This requirement implies that qN = ¢’ and qN i = ¢V Mi The
remaining equation contained in prescribe how to express &;; in terms
of these generators. The equivalence between different looking expressions
for &;; is equivalent to the Serre relations.

B.2.1. Image of imaginary root vectors and Gelfand-Tsetlin alge-
bra. The image of the imaginary root vectors under the evaluation ho-
momorphism can be obtained by applying the procedure explained in Sec-
tion As this procedure is quite involved we will use a shortcut based
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on the observations presented in Section The expression for the
imaginary root currents 1+ E!(z) in terms of quantum minors is indepen-
dent of a rescaling of .Z(\) by an arbitrary function of A. For this reason
the quantum minors of Le,(A) given in (B.2) can be directly used to obtain
ev (14 El(z)). It is not hard to see that the relevant quantum minors take
the form

p
(B.14)  Gy(\Y) = qrdetLE (Ar) = == ™ [T (1 4+ AMg?ret7)
s=1

with Y7 vy s = —>.P_| Hs. These quantum minors commute

[Gp(A); Go(r)] =0

and generate a maximally commutative subalgebra of U, (gl;;) known as
Gelfand-Tsetlin algebra, see e.g. [NaTa]. This algebra can be described as
follows. Let Z (Uy(glss)) be the center of U, (gly,) and Uy(gl,) be the sub-
algebra generated by {q’*};i=1,_p, {€ij}1<izj<p. The subalgebra of Uy, (gly,)
generated by Z (U, (gly)), Z (Uy(gls)), ..., Z Uy(glys)) is evidently commu-
tative. This is what is called Gelfand-Tsetlin algebra. From ([B.14)) and (8.63))
we conclude that

(B.15) ev (14 E,((-1)Pz))
HPH (1 + 2 Lg2e, s+7) H’Fl (1 + z_lqz’/p—l.s-Fv)
(e @) [T (1 71 T )

or equivalently

1 ((=1)ptigy k
(B.16) ev (e]({g)) = k‘(q—ql) ( ;’21 + t(k,)1 - [2]q"’t1(7k)> ’

p
— § :q2kupvs'
s=1

Using this formula for the imaginary root vectors we can obtain the scalar

factor in (B.1]) to be
0o m t(m) ) M ng(QQZ’M’Sfl.ﬁ)

(B.17) pev(A) = exp (Z m :Hm
s=1 49

1

where z := ¢"AM and ¢,(z) is defined in (5.34).
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Appendix C. Evaluation of the Universal R-matrix
C.1. Cartan-Weyl basis for qu(sA[M)

C.1.1. Choice of convex order for U, (slar). Recall that the simple
roots of sly; are a; = ¢; — €41 withi=1,..., M — 1 and

(C.1) Ay(sly) ={e —€,1 <i<j< M}

The higAhest root 0 =ay+---+ QM-—1 = €1 — €M and the remaining simple
root of slyr is ag = & — 6. The set Ay (slpr) is given in (5.2)), (5.3). We endow
this set with a convex (normal) order, see (5.4]) for the definition, as follows

(C2) &1%1&2%"'%1&]\/1_1<Z>05<ﬁM_1<@M_2<"'<@1,

compare to ([5.5)). The ordered sets of real positive roots .& and I@, are defined
as

©3) A=Ay <A +6<A+26<---,

A==€ — €41 <6 — €42 < <€ — €M,
(C4) Bii=-<B;+25 <B; +6 < B,

B :=0— (e —€iy1) < - <0 — (e —em),

A similar root ordering appears in relation to the universal R-matrix for the
Yangian in [Stu]. We remark that the ordering above can be obtained in the
framework of [Ito], as an ordering of ”M-raw type“, using the action of the
extended affine Weyl group. According to theorem 2.3 in [Tol2] any convex
order can be obtained form any other by composition of so called elementary
inversions.

C.1.2. Explicit construction of root vectors for qu(;[M).
Root vectors e, where v € A (slpr).

(C5) ea,-—l—oz”l = [eai7eai+l]q—1 ’

(06) Ca;tairitaiie = [eai’eai+1+ai+2]q71 3
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Root vectors es_, where v € A (slpr). There are M — 1 steps in the
construction. One has the following M — 1 definitions (first step)

(C.7) €5—6 ‘= €ay,

(08) €5—0+an—1 = [ealu—1766*9:| P

(09) €—0+an—2tan—1 T [eOéMfw 65—9-"-041»1—1](1—1 ’
(C]'O) €5—0+an—_stay—2tap—1 = [eaM—S’ 65—9-&-061\4724-0&1\/171](171 ’
(Cll) 6(5*041 = [ea27 65*041*&2](1*1 Y
One has the following M — 2 definitions

(C12) €6+, —0 = [60117 65*9]11_1 ’

(013) €6+ar1—O+an—1 T [6061»1717654-041—9] g1
(C.14) €5 = [Cas €5—ar—aslg-1 ;

One has the following M — 3 definitions

(C.15) Es+antas—0 = [€ay; €o4ar—0lg—1 5

(016) €6+a1ton—0+an_1 *— [ealw—l7 e5+041+062—9] g1
(017) €5—az ‘= [ea47 657043*014]q*1 )

One has the following final definition ( step M — 1)
(018) elgfaMfl = [6061\/1727 eéfoéMfl*CMMfQ]q—l :
C.2. Fermionic Fock space representation

C.2.1. Fermionic Fock space representation: definition.

(C.19) T Uy(star) — Fu
(C.20) mhe(er) = p~'Ciciyr T(fi) = peipaci (k) = ¢m
(C.Ql) Fu e {Ci, éj} = 51']' {Ci,Cj} =0 {EZ‘,(_ZJ‘} =0 n;:=cic



Integrable light-cone lattice discretizations 1327

where the indices i, j, k, ... are subject to cyclic identification: ¢ + M ~ i.
This representation is not irreducible as nyo is central. The fundamental
representation corresponds to ny,; = 1. In this case

(C.22) mu(e)) = p 'Eijs1,  mu(fi) = pEiv14,  mu(hi) = Eii — Eip141,
and
(023) EijEkl = jkEz’l'

C.2.2. Fermionic Fock space representation: evaluation of root
vectors. Using the explicit definitions in Section[5.2.1]and Appendix[C.1.2]
one obtains

(024) Wf(eeqz—ej) = szjélch(ch;hl nk)
(025) 7T-7:(€5—(ei—ej)) = (_Q)i_llﬁ] - MC Clq(zk =j+1 1 ) (22;11 "k>.

2.
(C.26) mr(el)) = kg™ M iy — g,
(c27) 7p(Ca1s) = (50)* 75 (e,
(C.28) TF(e(5—ai)+ks) = (K ) r(e (6—ai))s
(C.29) (eké ) = (’%) - 77}‘(6((5))-
(C.30) e M (= q)ig(Thiea ne)~(Sizh m)

3. In the case of interest we do not need these generators.

4. Tt follows that

1— Kiz 1q2(ni+1—ni)

(C.31) Tr (14 Ei(2)) =

Y

1 —kiz~1

which upon Taylor expansion gives

i 1 —
(C.32) mrefg) = 1 (k) g (ngy — ).
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Remark. From the formulas above one can easly obtain root vectors for the
fundamental representation (and further include step 3):

(C.33) T ((ere;)hs) = 7 (—qt:)* Eij,

(C.34) T (€5 (r—e,)) ko) = it " (—qti)" Ejy,

C.35 ():tﬂk E.. — o2FE. ..

( . ) 7T (ekg) k [ ]q ) q i+1,04+1 )

where i < j and t; = u~M(—q)"~L.

C.2.3. Fermionic Cartan-Weyl basis: second Borel half.

(C'36) Wf(fei—ej) = Mj_iéjc,;q_(zi;iﬂ n’“)7
(C37) 7 (fs—(er—e)) = (=g M0 D05~ (Tt m)+(Eid ).

2.
(C.38) (f g ) = Riq" M i — nylg,
(C.39) TF(faitks) = (R Z)kﬁ}‘( fa)s
(C.40) 7r(f5— a)+k) (7)) 77 (fl5—a)s
(C.41) (fka ) = (K i 17TF(f5 )-
(C.42) Ri = M (—gV)igm (Tl ) +(Eih )

3. In the case of interest we do not need these generators.

1

4. Finally, notice that we just need to replace ¢ with ¢~ and z with 2!

so that

1 _ sz 1q2(ni—n7~,+1)

(C.43) mr (14 Fj(2)) =

Y

1-— Riz_l

which upon Taylor expansion gives

(C.44) mr(FD) = 1 (R O ey — )l
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C.3. Minimal representations of U(gly;)

Let us define the following representation of U,(n™)

(C.45) (e;) = qj; qwiw;ll (tZ,+ 721,
where
(C.46) WiZj = ¢ Z;W,,  WiW; = W,W,, 2,75 = Z,Z;,

with [ [, Z; = [[; W; = 1 and s; and t are complex numbers. The goal of this
appendix is to compute the image of the Cartan-Weyl generators under .
We will see that image of infinitely many real roots is non zero. Using the
explicit iterative contruction presented in Section and Appendix
one obtains

1.
Si g
(C.47) T (ec,—¢,) = — H atseZi | WW; (tZ; + 71271,
779 (S
. i1
CA48) ml(es_(c_cy) = —2— t 1 spZ
( ) ( 0 (l 7)) qfl_q [kl;[l k
M
< | T atswzi| Wyw;? (tzj + t—lz;1> ,
k=j+1

where 1 <1 <3< M.

2. Once we have constructed 7(es_q,), we may notice that for each node
i we have an evaluation type representation of U (slz). To make this
observation explicit we write

(.49 r(e) = P @kt (6 +07).

where

ki =712, ¢ = qt? 244 Z;,

i—1 M
(C.50) Di = @Stot [H t_lzgll [ H thk] .

k=1 k=i+2
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It is easy to verify that p; and ¢*** commute with 7(eq, ), 7(es_qa,) for
fixed ¢. With this observation in mind we evaluate the remaining root
vectors associated to the node 7 to be

(C51)  m(easns) = (a "piki)  mlea,),
k
T(e(5—ai)+ks) = (€7 piki)" (€s—a,);
. Nk
(C.52) (D) = (’f)_q(ki)“

([F + 1gk? + [Klg (6 + a7 ) ki + [k = 1]y) ,
1427 q"2ip) (1427175 py)
1 — 27 tqTkpy) (1 — 2TtgTtkpy)

q
(C53) 7 (14 Ej(2)) = E

Comparison with the general form of the currents (B.15). The
imaginary root currents ((C.53)) can be rewritten as

(1 + Z_lXi_l) (1 + Z_IXH_l)

(C.54) T+ EG) = ) (LX)

The comparison with (B.15) follows from the formula

(C.55) (H (1+ tq2”’”s+7)> =g,(t) (1 = (-1)PtX,), m=noev,
s=1
where
p—1
(C.56) wt) =] (1 - t/\qup—25> .
s=1

Notice that the contribution from g,()) cancel out (for p > 1) in the combi-
nation leaving a rational function with two zeroes and two poles in
MM We conclude that for these representations of U, (gl,,), the image of the
Gelfand-Tsetlin algebra coincides with the image of the Cartan subalgebra.
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Appendix D. Triangular decomposition of (ﬂ'l‘f & 71';;) A
for M =2

It can be useful to present the main formulae of Section in a more
explicit form for the case of M = 2. The relation in this case reads
(D.1)

Ao 0 0

0
1,-2 -1
1 a2y 0 ¢ M 0 0
(Wf@ﬂ;\'n)A(ﬁ) = A(y) 1( _1) 0 - 0 A(y)
q
0

qa—4q

(D.2)
Ao 0 0 0
0 ¢\ q_%Tq,u 0
A
0o 0 g otV
0 0 0 Ao

(ﬂ'f @7y ) A(fo) = Aly)™ (qqiy;_i)

where y, = y;l =yandr,=q¢—q L. Ifp= q%)\l one finds a block triangu-
lar Structure{T_U] given by

(D.3) PoAw)| (7,071, ) A] A6 P =0
(D.4) Paaw)| (7,075, ) A | A P
1 o0 0
B q5y+20i 0 qilAl 0 0 p
“\g—q )0 0 N oo F
0 0 0
where 01 = —1,09 = +1 and
1 0 0 0
o 12 12 o) /1 0\ _ (1 0\] o
D5) Pei=14 19 172 0 _SKO 0>®<0 1)}8 ’
00 0 o0
P_ 3:1—P+.

10 The terminology refers to the following fact: For an operator O, we say that
it has a block triangular structure if P, OP_ =0 and P_OP # 0 for orthogonal
projectors P .
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Where ® refers to the Kronecker product and the matrix S is easily worked
out. These relations reduce to (8.10) with Iy = A(y) ‘P, A(y) and Iy =
A(y)"'P_A(y). Using the similarity transform S we rewrite (D.4) as

(D.6) STPLAG) | (7, @ 7,) AU A6 P
sy 20
(256 D= (o)
0.) sP-aw)| (<71, @L.) A )P

giyt2i\ (0 0 A0
“\o—/\o 1)®\ o i
q—4q 2

The statement expressed by (8.12)) is actually stronger then (D.3) and (D.6)),
(D.7) as it states that the 2 x 2 matrix in the right hand side of (D.6|) and

(D.7) as to be the same, up to a similarity transform. This implies, up to
exchange of \g with A, that A\g = ¢ !A; and Ay = ¢ T )\y.
1
A similar analysis can be done in the case of u = —q2 \y.

Appendix E. Form of (1@ 7w~ )%~ and (1 ® @~ ) #~ and
action of the coproduct on the first
tensor factor
E.1. Image of the universal R-matrix under 1 ® 7~ and 1 ® &~

For the following analysis it is convenient to rewrite

-1

(E.1) W;(ei) = viu, = ﬁyiﬂyf, W;(k‘l) = Ui_luz‘—i-l-
The exchange relations of these variables are given in (8.15)).

1 ® 7~ on combinations of root vectors entering the universal
R-matrix. Let v € A%(sly), the relations (8.18]), (8.21), together with
[652a), imply
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(E.2) AT ) [A @ m)(f @ eq)] Aly)

. p—1 q7%(€i+€i+1*1)fﬂy ® 1) V=€ —€i41
== 7 iaEbgsEta g @ 1) v =6—(ei—em)
otherwise

I —gand v~ = q% v~ 1. The contribution of the imaginary

root to the universal R-matrix is left unchanged by the action of A(y). We
conclude that the image of the reduced universal R-matrix can be written
as

where 7, := ¢~

(E.3) (ter) %], =Ay) (4 (v)21) A7 (y).

ren

The explicit expression for (8.70]) follows from the from (E.2)) and the prod-
uct formula (5.12), upon recalling that & (74z) = [exp,.(z)]

ren’

Intertwining relation for .#~. The property (4.18)) of the universal
R-matrix implies

(E4) [~ (v),&] = v g

)

e q ol (v) — M (v)g
¢ t—q

_lieae
éi =gq 2(67,+Eq,+1 l)ei-

The form of (1 ® ﬁ'_) Z~. Introduce y; via

_ et
(E.5) T (e) =€ = m}’i-ﬁ-lyi L

The variables y; satisfy the same exchange relations as y; with ¢ replaced by
q~!. We can rewrite (6.11]) and (6.12) as
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In analogy with (E.2)) we obtain

(E.7) A7) [A @ 77)(f; ® ey)] A)
5\1'7.]' (qu;iﬂ Ekq%(g’i+€j_l)fry ® 1) fy — 6i_€j
1 N M & L(g,4+e —
= 7_71 )\J—M_l(qZk=j+1 qu( 171€; 1)f’y®1> "}/:(5—(61—6]')
0 otherwise

where 7, = g ' —qand A= /\qﬁ. The asymmetry between 7~ and 7~ is a

consequence of the fact that we choose the same root ordering.

In analogy with
(E.8) (ler )% | =Ay) (4 @1)A7(y),

satisfy the interwining relation

(E9) ['%__> éz] =aQ : ) i = q+%(€i+€i+l_1)ei7

where & = —q¢~ " A_q™

E.2. Some steps for the evaluation of (7r7: ® ﬂ'_) Z~ and

(nF Q7)) %~
Computation of (71-7" R 7r_) Z~. Applying 7 to (E.2) and using (C.36]),
(C.37) one obtains
(E.10)
AY) (Feime) AT y) v =e— e
(mr, @) (fr @ ) = § AW (7=reion ) AHY), 7 =6 (e — en)
0 otherwise

where v € AT (5A[M) and and ¢_ is defined in (8.50]). Next, one obtains

(E.11) (7r]: ®7-r*) R = 0= (1 _ My ) 0= — (qu2M§q2M)oo
. B v ~5 T YF g-_nyp), Ur= (gM 2 —n), 20 __
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This calculation is the same as in (8.50]) before regularization. The last non-
trivial identity used in the derivation of (8.53)) is

M-1

(B12)  (1-g-&xc1)- - (1—96MCM_11(1—9]_”11M)<1— > g’_f:l'CM)
=1

fron:r%H;

from Z s

M
U(l g-e” MN(p)).

In particular notice that the cyclicity property, i.e. the fact that it commutes
with the internal shift operator, of this object is obscure in the left hand
side and totally manifest in the right hand side.

Computation of (71"7: ® 7'1'_) Z~. Applying 7 to (E.7) and using ((C.36]),

(C.37) one obtains
(E.13)
AG) (See) A G v =a—g
—— _M—j+1
(m @ 7) (f @) = CAG) (L) ANE), v =0 (a1 —¢))

0 otherwise

where g_ is given in (8.51]). The contribution of the imaginary roots is

. (quQM q2M)

(E14) (n] @7, % =07 (1—g"m), 07= >
(7, v ) # s =0%( ) F T (G, M)
compare to (8.51) The last identity we use to prove (8.54)) is
M
(E.15) (1+Blcl) oo (1+BM71CM,1)(1*§J_V151) 1+Z gM chlc]
fromv%<5 J=2
from %, s

M
U (1-9- 5 Nw)) .

where B; = ijlﬂg ‘c; and m;=1—mn;=cc. As (1 —am)(l—an;) =
1 — « this is the inverse matrix of | -
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E.2.1. Check of the Jimbo equation. Let us verify that (E.12)) satisfies
the relations (E.4)) via an explicit calculation. We can rewrite (E.4) as

(E.16) [nF (A7) Cicin] = —g- (nmr (A7) —7F (A7) ),

where we have used ¢~ =1 —n;qg (¢ — ¢~') to simplify the right hand

side and introduced g_ as in (8.50)). It is easy to check that the relation
(E.16|) is satisfied if

(El?) TF (.//_) C;, = (éi—g,éi+1)ﬂ']—‘ (%_) ,
(E.18) Ci+1TF (%7) =TF (e//i) (Ci+1 - g_ci) .
These equations are easy to solve upon Fourier transformation in the index

i and give the solution (EI2). mr (.#/~) satisfies the same equations as
-1 _
wr ()~ with g_ replaced by g_.

E.3. Derivation of (8.67))

E.3.1. From (A ® id) (Z) = Z#13%23 to A(# ). Applying (1®1®
7w~ ) to (4.9b) and using (E.3), one obtains

(E.19) A (™) = (TRt F1a) (400 TFratly T3 a3))
where
(E.20) Frg = q 3 D @GV g = R (EeR)

This claim can be easily derived using (1 ® 7~ )¢t = A(u) and
(E21) A(A(y) ™ Aily) = Fpp'Aa(y),

(E.22) As(y) "Aa(w)A (A(y) 'A(u)) " = ¢ 3 @I (u) Ay (y) 710 0
(E23) Aa(y)Ax(y) M Ar(u)Aa(y)Ar(u) " As(y) = ¢T3 (9o 7.

1

These relations are derived using (8.15)).
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E.3.2. Preliminaries.

Commutation relations involving Xf, X:’ defined in (8.71). The
following relations hold

(E.24) X7X5 = q2<6i<j—5i>j>xj>x;, i,j=1,...,M —1.
(E.25)
Vit X2XZ >
Xpxz<=392 ~ Nt L forl<i#j<M-—1.
X7 X i<j#FM-—-1
The case i = j corresponds to the iterative definition X7, = 7, ' [X7, X5],

where 7, = ¢ — ¢! (compare to (8.71))).

Proof. One may verify the relations above by direct calculations and induc-
tive arguments. In the following we will show how these relations arise as

a consequence of ([5.10) and the definitions (8.71)), (8.72). This is a simple
corollary of (5.10]):

Let o, 8 € Ay(g) with a < 3 be such that the decomposition o + =
>k Yk with ng € Zso and v, € AL (g) is unique. Then

(E.26) fots =a" @ fafa.

As an illustrative example let us show how this corollary implies .
The identity is shown similarly. It is easy to see that & = 0 — (¢; — €pr)
and 3 =6 — (¢j — epr) for i > j satisfy the conditions for to hold. We
conclude that

(E27) f(s—(ei—eM)f(i—(ej—eM) = q_lfd—(ej—eM)f(S—(ei—eM)a 1> .

The relation (E.24) easily follows from this identity together with the defi-
nitions (8.71), (8.72) and the relation ¢" f, = ¢~ f.¢". O

Coproducts of Xf, X? defined in (8.71). A simple calculation using
the definition of the coproduct shows that

(E.28) A (XF) = XA (1) + X7(2),
where

(E29) XZ(1):=XZ®a;, X3(2):=ak; ' @X5*, a; =qucq 3E+a),
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The coproduct of X! defined in (8.71)) is more complicated. Set

(E.30) §; = AXT) = X7 (1) = X7 (2).
where
(E.31) XZ(1) ==X @by,  X7(2) = big” @) @ X7,

bi — qﬁgtot Zk 1Ekq Q(EM‘FE«L)'

Notice that b; commutes with fs_(c,_e,,). The explicit expression of ¢; is
given below.

Remark.

(E.32) F5 (XF®1) Fia=X3(1), g2 (1@X]) Fnlat =X3(2),
(E.33) 75 (X7 ®1) Fio =X (1), ¢oF12 (1@X7) Frla = X7 (2).

More commutation relations. It is a simple exercise to show that the
combinations defined in (E.29), (E.31]) satisfy the following relations

2(51.1—5i+1,j)x<(2)x (1)

(E.34) X DXF(2) = ¢

(E.35) XZ ()X (2) = g*0m =0 0XE (2)XE(1)
(E.36) X7 (1)X5(2) = ¢*9 X (2)X7 (1)

(E.37) X7 (1)X7(2) = ¢~ 2= X5 (2)X7 (1)

The exchange relations involving X#(a), X% (a) with a fixed are the same as

J
(E24) and (E25).
Explicit form of §;. It follows from the definition (E.30|) that
-1
(E38)  de=q) "I () XG0 @] X (21X (1),

where 7, = ¢ — gl
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Proof. Upon applying the coproduct to the inductive definition XZH =
14[X7, X3¥] and using (E.36), (E.35]) one easily obtains

(E.39) Gip1 = aXT(2)X7 (1) + 77180, X7 (1) + X7 (2)].

Further observe that

(E.40) 6, X7 (1)] =0, k=di+1,...,M—2.

This can be easily shown by induction using (E.39) and the exchange prop-
erties given in the previous paragraph. Equation (E.39) thus reduces to

(E41) Siv1 = X (2)XT (1) + 7,7 [0, X7 (2)],

from which the explicit form of §; given above follows. O

We notice that while §; was originally defined for ¢ =1,..., M — 1, we
extend the definition to i = M using the explicit formula (E.38)).

Some commutation relations involving §;. We collect the following
relations

E.42
E.43
E.44
E.45

6X7(1) =X (D&, 0XG(2) = ¢ PXE ()6, k>
8X5(2) = X7(2)d;, k=i+1,...,M—1.
[0, X7 (2)IX7 (1) = X (1)[d5, X5 (2)]

(
(
(
( [6:, X7 (2)] (XF(2)X7 (1)) = ¢ (XF(2)X] (1)) [6:, X7 (2)]

— — — ~—

The last identity follows from the Serre relations (4.4) (). Finally

(E.46) V =4y, U :=X;(2),
satisfy the (twisted) Serre relations (8.74)), (8.75).

The relation , which is linear in J;, can be shown easily using the
exchange relations collected above and the fact that X;* ,(2), X;*(2) satisfy
the (twisted) Serre relations (8.75). Showing requires a bit of work. It
is not hard to see, using the explicit expression for J, given in , that
the equality

(E'47> q_l(wmwn + wnwm)fe + q+lf€(wmwn + Wy Wi, )
= (q + q_l) (wmfﬂwn + wnféwm) )
where n # m < £ and wy, = [+ [fn, fus1l, - .., fr—1] implies (8.75). The re-

lations (E.47)) can be shown as follows. Let m > n and notice that w, =
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[z, w,,] where [z, f] = 0 is satisfied if the same equation holds for
Wy, — Wiy, The relation for m = n is a consequence of this eleLnen—
tary fact: If (f1,..., fi, fz‘+1, ..., fu) satisfy the Serre relations of Uy (gl;y),
then for any ¢ € Z/MZ and choice of sign o, the elements (f1,--os fifir1 —
q° fix1fi, .., far) satisfy the Serre relations of Uy (gly,_1).

0; and the opposite root ordering. Let fgp_ej be root vectors con-
structed using the opposite root ordering, explicitly

(E48) fe —€; flfeJrl € q e+1 e]fla ]:Z+27>M1
with f6 “eip, = Ji- It is easy to inductively show that

i+l 1 Nx~i—lg= | = _ . -
(E.49) fole =a 2 q> i@tV ([ fial],. . ol

1<i<j <M.

In the special case of j = M it may be rewritten as

(E50) feop—eM = q2k=;+l(€k71)q%(€i+€Mil) [ ce [[flu fi+l]7 fi+2]7 s ]7 fM*l]'
E.3.3. From A(Z7) to A(4_y).
On coproduct of .7, . The following identity holds

(E.51) A(az) = (Ju M7 1/12> (qmﬁlz///;,Qﬁl‘glq;ol>,

Proof. Recall the form of .~ from (8.70)). It follows from (7.37)) and the
exchange relation (E.34) that
(E.52) A (6(X7)) = &4 (AXT)) = &,(X (1)) 6,(X7(2)).

(2 7 (2

The identity (E.51)) follows from this relation together with (E.32)) and the
exchange relations (E.34)). O

On coproduct of .Z_ . Let us define % as follows
(E.53) A(aZ)=2" (qoofm/// 2“12 Goo ) :

More explicitly, using the form of .Z~ given in and (| -

(E.54) 2 = [6,(X5_1(2) ... &(XT (2))] [g’q(Al(XT)) "'éaq(A(j%_l))] '

In order to simplify this expression we will use the following lemma.
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Lemma. This identity holds

(E.55) A (&(X7)) = &4 (AXT)) = (X7 (1)64(0:)64(X(2),

(3 K3 K3

where A(X7) = X7 (1) + X7 (2) + d;, compare to (E.30).
Proof. (E.55)) is derived using two simple observations

(i)
(E.56) &E(U+V+W) = &,(U)E,(W)E,(V),
if
(E.57) UV = ¢ 2VU, UW = ¢2WU, VW = ¢M2WV.

(i) The exchange relations (E.57)) are satisfied by
(E.58) U=X7(1), V=X(2), W=d.

Point (1) is derived using (7.37)) twice. Point (7i) uses the exchange relations

(E.36) and (E.42]). |

By applying this lemma to and rearranging terms using the ex-

change relations and we obtain

(E.59)

7 <éz<x§<1>>) (a«;,(laz) @@q(xé(l))) - (@Eamom):

The second tensor factors of ¢; and X7 (1) are written in terms of
{ fk}ke{l,‘..,ifl and Cartan generators only. This fact, combined with the
observation (8.76)) and the explicit form (E.59)), makes it manifest that

(E.60) 1@ Mos5) B =B (1R Ms).

Using this relation and the explicit form of %, we rewrite (E.19) as

(E.61) A= (M 521) dB (1M 5),
where

1
(B62) o = (é;(xxm '”éz<><f<2>>>

x (K5 (1) -+ (X7 (1)) ((XT(2) -+ €4(X514(2)))
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To derive this expression we also used the fact that </ and (.Z_; ® 1) com-
mute.

Completing the derivation. In the following we will show that
(E.63) A RB = Ziby(60)%, {=1,..., M.

where

(E.65) %= (gq(X?(Q)) - & (XM 1(2)))

' K@@q(law £q<><1><1>> <@@q<£\4—1> ffq(xz@l_l(l»ﬂ
and &; are given in (E.38).

Proof. For £ = 1 the identity trivially follows from the explicit form of &7, £

given in (E.62), (E.59)) and the fact that &,(d; = 0) = 1. For £ = M one has

2y = %y = 1 and the identity (E.63)) implies (8.67). We will prove (E.63))
by induction on £. First notice that

(E.66) Xy = %+15q(qxé<(2)xe>(1))gq(x?(U)m
(B6T) = O ey

The first identity easily follows from the exchange relations (E.36) and the
pentagon relation ((7.40). The second identity follows from the exchange
relations (E.43|) and (E.36)). The crucial observation is that as a consequence

of (E.46) one can use (8.73)) to rewrite

1 - 1 - .
W‘WWXZ ()55 = Gals e XF ).

Finally (E.44]) and ( with (7.37)) imply the result. (|

E.4. For mixed pentagon

The goal of this appendix it to show that (E.52), (E.55) and (E.68) are

satisfied when we apply 77 @ 7.

(E.68)
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E.4.1. Preliminaries. The first step is to provide explicit expressions for

the arguments of the special functions entering, (E.52)), (E.55) and (E.68))

when we apply 77 ® 7t.

Action of 1® 7T on X;(1) and X;*(2). Consider X;(1) and X;(2)
defined in (E.29) and (8.71]). They satisfy the following relations

(E.69) AW [(18 ) XFW] A ) = A g fr @ my,
(E.70) Aly) [(1 @ 7)) XF(©2)] A y) = 2E—37) @ my,
where

(E.71) m; = g g A (ag)ye s

1

and fg = qE(EHEPU, compare to the definition below (8.16)). These rela-

tion follows from (8-13), and A(y) [(1®@ 7 (¢%))] A~ y) = gt ®

 (4%).

Applying ‘TFZ: to the first tensor factor. From the identities above it
follows that

(B.72)  Aly) [(7] @70) XF ()] A (y) = 7qpA~"q ¥ erricr @ my,
(E.73) Aly) [(m] @ mf ) XF(@2)] A~ Hy) = A=) @ m7.

Rewriting of d; defined in (E.38). One can rewrite J; defined in ([E.38))
as
(E.74)

~

-1

0 = q%Tqu/_Z 0" 0eq T i (pmer) ® ¢S fs Frosa] s foalba,
1

where by are defined in (E.31)).
Derivation: It follows form the definitions (E.29) and (8.71) thadﬂ

(E.76) [ XE (), X (2)] - X (2)]
= 2" Pbb g @ q(%k[' e frer] - el

>
Il

1 To derive this identity one may notice that

-1
(E.75) byby ! = ¢ fq~ Timin fgm @) [T ..
s=k
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where z = ¢ 17,1 If follows from the definitions (E.31)), (8.71) and the
observation (8.72]) that

(E.77) X7 (1) = a7 27 b s (e —enr) @ bi

Action of 1 ® T on &g, X7 (1) and X (2).

(E.78) Aly) [A @) 8] A7X(y)
/—1
= (Z )\_kqu_gkq_;b[2bkjf6—(€k—€M)> X m?,
k=1
(E.79) Aly) [(Qe ) XF (W] A y)
= Tineqiabg_lf(Ff(eefeM) ® m??
(E.80) Aly) [(T@ ) X7 (2)] A™Hy) = b, 2¢" ™ @ m],
where
(E.81) m; = q2q w Nv i (b)yaya)

Derivation: The relation (E.78|) is obtained from (E.74) by applying the
following

M+1

([ U fea] -5 fea]) = q_%Tq—l (q " A)H my (beby Vyeyi s

(E.82)

(E.83) o (b yeyi 'l (be) = a7 2y

(E84)  AWY) (fio(ercr) ® ) ATHY) = 47209 f5_(p—cry b @ VY-
(E.85) Aly) (1@ ) A Hy) = b b " @ ygy;

( ) Aly) (1@ 7 (b)) A y) = b, ' @ 7 (by).

The relation (E.79) follows from (E.77) with (E.84) and (E.86). The rela-
tion ([E.80|) follows from

q
(E87) ﬂ-;\‘r(féf(wfeM)) = q— q,lyZyM :

with (E-85) and (E-86).

Applying 7% to the first tensor factor. We can apply ﬂi to the first
tensor factor of (E.78]), (E.79)), (E.80) and use the expressions collected in
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Appendix to obtain

-1
(E88)  Aly) [(z} @) 6] AN (y) = —1gq 't (Z gnkék) cv ®@my,
k=1

—~
o0
Nej

~

[(Tr @) X7 (D] AT (y) = 744 Mtegy teers @ m;
(E.90) A( ) [(Tr ®7T)\)X (2 )] Liy) =t ®@my,

" and g, := —qMA;" ~I)\. To derive these relations

n—

vecall that 77 (¢ 3by f5— (e —cu) = —(—a"7 j)Ferear.

where tp = q 5 QZZ =1

Action of 1 ® 71 on Tq_l[(sg, X;(2)]. The following holds

(E.91) A(y) [(T@ ) 7[00, XF ()] AH(Y)
-1
=Tq (Z )‘_kq€[+1_gk_;bfflbkfls—(Ek—EM)) & mZ_Jrl.
k=1

Derivation: The starting pomt is with (| - and (| - It

follows from the definitions and - ) that m = qmé m; .

Applying wlf to the first tensor factor.
(E.92) AY) [(m @) 74 (80, X7 ()] AH(y)

= —q '7gtrn (Z gn’“ék> cp @My,
k=1
E.4.2. Verifications of 77 @ 1 on (E.52), (E.55) and (E.68).

Verification of 77 @ 71 on (E.52). In order to verify (E.52) using the
prescription ((7.44)), let us first observe that the image of the sum A(X}) =
X (1) + X (2) can be rewritten as

(B.93) Aly) [(7f @ 7) AXH)]A N y) = (S®1) (¢* " @ 1) w (S®1) 7,

where wy :=q 2% ® me To obtain this expression we used the relations

(E.72) and (E.73]), and the identity

(E.94) S ST = e 4 2T¢C+1Cp, S=1- q_lwégﬂc@,
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where x = ,u)\_lqﬁ. Form these relations and recalling that &,(7,x) =1+ x
when x? = 0, it follows that the identity (E.52) reduces to

(E.95) S®1) & ((¢* ®1)w) (S® 1)~
= (14 2wy (Cppr1cr @ 1)) Epe ((an”l ® 1) Wg) .

The only non trivial term in this identity is the one linear in x, which can
be rewritten as

(E.96) Ee ((¢* @ 1) wy) (€100 ® 1)
= (1 + q+1wZ) ((_Zg+1Cg X 1) Epe (((]21‘1’“rl X 1) Wg) .

et — C¢+1 We obtain

Recalling that q2"“*+1(_:g+1 = q2<_:g+1 and Cpy1q
(E97) gbz (qQWg) = (1 + q+1OJz) Ebz (Wg) .
This is the basic property of &y2(x) defined in (5.37).

Verification of 7 ® #t on (E.55). The image of the three operators

entering (E.55) is given in (E.88)), (E.89) and (E.90). Their sum is A(X) =
X7 (1) + X7 (2) + &;, compare to (E.30)). Its image can be rewritten as

(E98) Aly) [(n] @7y ) AXD] AN y) = (S®1) (tr@m)) (S e1).

This equality follows form
M—-1

(E.99) SteS'=t,(1-q¢ '7,Crenr), S=1+ (Z g;’“ck> e,
k=1

where Cp := Zi:l g Fey. Following the prescription given in (7.44) and the
relations above, the identity (E.55) reduces to

(E.100) S®D)&: (ttom)) (S®1)™!
= (1 — q_lthch & m;) Epe (tg & m?) .

Notice that to simplify the right hand side we used the following: for x? = 0
we have &,(7,x) = 1 + x. The term proportional to g, * in (E.I00) is given
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by
(E.101) & (te®@my) (Cpem ® 1)
= (1+q 'ty @m]) (eyer ®1) Epe (L, @my).
To derive this relation we also used that ¢s with s=¢+4+1,..., M — 1 com-

mute with t,. The final observation is that t,Ccicp = q2tg7kéch and
CrCarty = tg pCrcpr where 1y, commutes with ¢y, so that (E.101) reduces
to

(E.102) Epe (q2t47k ® m?) (ckenr ® 1)
= (1 + q+1tg’k ® m?) (éch & 1) Epe (tgyk ® m?) .

This relation follows the basic property of &y(z), see (5.37)).

Verification of 7 @ 1 on (E.68). Inserting (E.88), (E.73) and (E.92)
in (E.68) and using the prescription ((7.44]), we obtain, after simple manip-
ulations

(E.103) (1 & mZ) Ep2(z0) — Ep2(20) (1 X m?) = &2 (20)qze (1 & mZ) ,

where zy := q2("”1_ﬁ) ® my*. To derive this equation we also used my, ; =
gm;m;. Upon observing that (1®m) )z =¢?2(1®m]) the relations
(E.103)) reduces to the basic property of &:(x), see (5.37)).

E.4.3. Auxiliary for check of A(.#s). The following relation holds

(E.104) AY) [Fs—er—ery @ 7 (£ )] A1)
)\Mfi i
= = (Q2 bi f5—(e;—ers) @ 1) .

Dem’valtion: The relations (E.50) and (E.82) imply that 73 (fF, ) =
T,l_l(qﬁ)\)M_’yMyZI. The relation (E.104]) follows upon implementing the

action of A(y) as given in (E.84) and (E.85). O
Applying 7 to the first tensor factor, (E.104]) reduces to

(E105) A(y) [ﬂ/i (f‘s*(ﬁi*GM)) ® 7T;'\_n (fecjp—EM)] A_l(y)
M i
- _ ()\n) - <<_an Mn) qcicp X 1) .

q9—q
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E.5. The R-matrix in the fundamental representation from the
universal R-matrix

Using ((C.33)), a simple calculation shows that

-3)
(®106) (@) H A | =140 Z ( ) Eij @ Eji,

vER; Jj=i+1
B qfl _ q+1
I
1= (z/y)

Recall that %’* is given in wirh 57 = 1 and the ordered set 1& is de-
fined in . The simple result in ) follows from the fact that, for
the fundamental representation, the root Vectors associated to the set A
are nilpotent and commute among themselves. Moreover, the simple depen-
dence on k in is responsible for turning infinite products over k into
geometric series giving rise to the denominator of o. Multiplying the factors

(E.106|) according to the order ((C.2|) one finds

(i—4)
(E.107) (71' ® )%Jr(s— 1+UZ < > Eij ® Eji.
i>]
Similarly
i—j)—M
(E.108) (7T£®7Tf) s = 1—1—02 ( ) Ei; ® Ej;.
1<J

The evaluation of Z1; defined in (5.15)) gives

M —26;5;

f £ y —xq
(E].Og) (Trz KT ) Z .fL‘Mq+25i<j E” X E]]7
1,j= 1
where
(E.110) p(z) = (g 22,72 M) o (P 2M 2y g—2M)

(25q72M) oo (q72M 2; ¢ 72M )
_egu(—q™M2)egu (=g Mz)
- 8(1M(*qM 2Z)€qM(—q27MZ)’
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where z = (y/2)M, (2;¢) 0 := 1150 (1 — 2¢*) and 4(x) is defined in (5.34).
To obtain (E.109) one uses (5.18)), (C.35|) and their Cartan-conjugated ana-
logues. Finally the evaluation of (4.21]) gives

(E.111) (e @ my) gt =g Zq VE; @ Ej;.
i,j=1

Assembling the pieces together one obtains
(E.112) (xf o) 2+ = ¢"F p()R(z.y),
where

(E.113) R(z,y) Z Ei ®Eii+v ) Ei®Ejj+ > K jymody Eij ® Eji,

i#] i#]
M _ M ~1
ym = g t—q" —0
E.114 V= , Ke = y ,
( ) g tyM — gtlaM g tyM — q“l’M

One can verify that (E.112)) satisfies the intertwining relations (4.9)). Finally
one observes that

(E.115) Riz2(z,y)Rai(y,x) =1L

and (crossing symmetry)

1\ T
€10 (R @)") ) — IR ),
B el
1= T g

where 77 means transposition in the first tensor factor. Notice that according
to the properties of the projection of the universal R-matrix on evaluation
representations, see e.g. chapter 9 of [EFK] one has p(z) = [],~, n(g72M*2).
For M = 2,3 the calculation presented in this appendix can be found in
[BrZG| and [BoGKNR].
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Appendix F. Supplementary material for Section 6
F.1. On the cyclicity of ¥+
Let
(F.1) Z:= h(zwa)h(zws)--- h(sz)h(szle(M,l)) - h(Z2wi2)h(2wy),

and recall w;w; 11 = q_QCWZ’Jeri. In order to show that = is cyclic we apply
the following procedure

1. Apply pentagon (2 — 3) to the last two terms on the left of Z, i.e.
(F.Q) h(ng)h(ZWg) = h(ZWg)h(ZZng)h(ZWQ),

2. Move h(zws) all the way to the right before meeting the last two terms
in the product formula for =. This is done without problems since
wiwo = wowy, for 4 < k < M and wy jwo = wowq j for 3 <1 < M — 1.

3. Use pentagon again (3 — 2) on the three terms on the right, i.e.

(F.3) h(zwa)h(2°w1 2)h(zw1) = h(zwi)h(zws),
4. Rewrite
(F.4) = = h(zws)Zh(2wy),

and apply the three steps above to = to obtain
(F.5) = = h(zws)h(2wa)Eh(22ws.5)h(2ws),
and so on. In the last steps one uses
(F.6) h(szlwlM)h(zwl) = h(zwl)h(szlwsz).
F.2. rt1 satisfies the YBE
In this appendix we prove that p,(w), related to r** via , satisfies
the relation . The proof we present uses only the identity and

is in some respect similar to the proof of the star-star relation for elliptic
Boltzmann weights given in [BaKS13].
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The braid relation (6.84) for p,(w) , upon inserting

_ M
(F7)  palw) = / du(s)K.(s)w(s),  dp(s) = 8(seor) [ dsi
=1

can be rewritten as
(F.8)
/ dpu(x)q2E2O@- DO DR (1) 4 1) K, (2) Koy (11 — )
(F.9)
= / dp(x) g~ 2@20=E DA QT =D0) C (1) 4 )KL, (20) Ks, (B2 — ).

Above we used the notation (a,b) = Zf\il a;b; and (Qa); = a;+1, see below

for the derivation of (F.8) from (6.84). Next, set

(F.10)
oa(t1,12) = [ g2 Ealh L0 P 20),
v 7 K:Z122 (2t1)

It follows from the cyclicity of K. (o), namely K.(o) = K.(Q0), that the
identity (F.8) is equivalent to

(F.11) Ay, (1, 1) = oy o, (ta, Q7).

As explained below one can show that

M

$b(a%k — A) rix(wa—u1)

I\ TT 302 = A) mirwa—os)
kl_Il sy(Br —

(F.12) ey 2 (B, t2) = / \)

R

where

(F13)  a=2Q(m — )+ ”1;“)2 Mvy, p=2(1—Qmn)— ”1;“’2 Mvy.

and v; = ﬁlogzi, Ta = ibt, and vg = ﬁ(l,l,...,l). It is clear from the
definition of «, B that is equivalent to the fact that is invari-
ant if o, — —3, B — —Q ' and v; and vy are exchanged. This is manifest
from recalling that sy(z)sp(—2) = 1 and changing integration variable from
A to —A. The calculations omitted in the derivation above are given in the
following.
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From (6.84]) to (F.8). We start from the braid relation (6.84]) and insert
pz(w) as above. Next, reorder the non-commuting exponentials as follows

(F.14) W1(81)W2(32)W1 (53) — q*a(81,52,33)e(log(wl),51+33)+(log(w2)732)
(F15)  wals s (s () = om0 om0 5 o) )
where
F.16) «af(sy, s2, s3 :25—7Q—182+ Q_l—QS : Si:81i83.
( ) !

/ :l: /
(A7) Blsrsz,83) = 2L, (1= Q7)sh + (@71 = Q)sfy), o = 17

These relations follow from wi wa ; = q2(5i=1*5i+1v-f)W27jW17i, which in turns
follows from the definitions below (6.82)). The next step is to take the “co-
efficient” of e2(tilogwi)+2(t2,logw2) 6 we set

(F.18) 254 = 2t = s, s.=x=5"_, s9 = 2ty = 25/,
The rewriting (F.8) follows. O

Simplifying <7, .,(t1,t2). Set y =ib(2— 1)z and 7, = ibt,. The expo-
nential in the definition of o7, ., (t1,%t2) can be rewritten as

(F.19) g 2@2Q- DO =0)h) _ 2ri(y7),

where 7 =207 — (1 4+ Q)7;. Inserting the delta function in the from
§(Ytot) ~ [ d\e?™ et one then finds

M
(F.20) Ay, o (t,t2) = / dA T V),
R k=1
where
(F.21)

)

I o Sb(Tiyk1 — ¥ — 01+ 6)So(Fr+1 T Y — V24 ) oriy(7ot0)
k()\) = dy - e
R Sb(27—k,k+l — V1 — V2 + Cb)

where 7 =7 and v, = ﬁ log(z,). This integration can be done explicitly
as
(F.22)

/ dysy(u — y)sp(v + )T =
R

sp(u +v — cp)sp(—w — U5° + )

s eiﬂ'w(ufv)
sb(—w + =5 - Cb)

Y
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which follows from ((6.94). We thus conclude that

Sb(ak — )‘) miX(ve—v;) Jlinear in T
F.23 Iy(\) = ———=e 2T e ,

where a and 8 are given in (F.13) and the terms linear in 7 cancel out in
the product over k.

Appendix G. Comparison with the literature

In the case M = 2 closely related models have been studied in the literature
by other techniques, see in particular [ByT1, [ByT3] and [BaMS|. The pur-
pose of this appendix is to clarify the relation between the representation
theoretic constructions described in this paper and the objects constructed
in [ByT1), ByT3] and [BaMS§].

G.1. Projection to the lattice-Sinh Gordon model I
— Lax operators

As a preparation for some of the following discussions let us clarify the
relation between the approach to the lattice Sinh-Gordon model described
in [ByT1], ByT3| and the formalism used in this paper in some detail.

Abstractly, one may define the lattice Sinh-Gordon model on the kine-
matical level by defining its *-algebra of observables A in terms of gener-
ators fi, k=1,...,2N and relations

(G.1) fonfont1 = @ fant1 fon, Trfuort = frwifr for |1 > 1.

The time evolution is represented by the automorphism 7 of Ay,

LR g1 KR4 qfen
1+ gr?fr—1 1+ gr? fra

(G.2) T(fe) = fi,

The generators fi represent initial values for the time-evolution 7 that are
naturally associated with the vertices of the saw-blade contour C depicted
in Figure Equally natural appears to be the contour C related to C by
means of a spacial translation with length %A. The half-shift o> defined by
os (fx) = fr+1 alone is not an automorphism of Ag.. Let us instead introduce
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-

the related automorphism 62 by

(G.3) 5% (fan-1) = fons 6% (fon) = fonpa-

The lattice Sinh-Gordon model was defined in [ByT1] by means of the
Lax matrix

(GA4)  Li(u) = 7™ < isnrb’Ben K S_Wb“Ks,n>

4 wbu _ —mbup—1 . 2 2
e™K,,, —e Ksn tsinwb*F,

This description is associated to the following representation of the algebra
of observables,

(G-5) T (fan1) = €72 w6 (fyy) = €2V,

where x, and p, generate the usual Schrodinger representation of the
Heisenberg-algebra [pp, xm] = (271) 16,,.m on wave-functions ¢(x) = (x|¢),
x = (21,...,ZN).

Another natural representatlon 75¢ is obtained by composing 7°¢ with
the automorphism 52. It is naturally associated to the contour C. The op-
erator Y, with kernel

N N
(G6) <X/|Yoo‘x> = H 6277i$;1($n+90n+1) - H 2mi(x), _+a),)Tn ’
n=1 n=1

is easily seen to satisfy

(G7) Pn - Yoo = Yoo : (Xn + Xn+1)> (Xn + Xn+1) : Yoo = _Yoo * Pn+1,

which implies that Y., implements the automorphism 57 in the representa-
tion 7%¢

We are now going to explain how to associate natural representations
of the algebra of observables to these two contours. To this aim let us note
that the monodromy matrix M()) associated to C will be represented as

(G-8) M(X) := L, (\/8) L3, 1 (Ak) - Ly (\/8) L (Ak).
Considering the contour C leads to the definition of the monodromy matrix
(G.9) M(X) := L3, (Ak) Ly, 1 (A/K) - - Ly (Ak) Ly (A/ k).

In the first case it is natural to regard L4 (\) = Ly, (A/k) L3, (Ax) as the
Lax-matrix associated to parallel transport along one physical lattice site,
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and to compare it with L3¢(\). To simplify notation we will temporarily
restrict attention to a specific value of k, and drop the subscript k& in the
notations. The Lax-matrix £(\) can be represented as

K,,—1
L,(A) =L, (A\k)LS, 1 (Ak) = <u2n )\V2n> ( u2”:11 /\fiv%n_1>

Svan U, ARVg, 1 Ugp g
iT,E n ()\A + >\_1A_1)
G.10) = o n\A o "
(G10) =~ (77;1 (AT +ATTA) im4Fn ’

N

using the notations 7, = (v;rbluznu;;_lv%_l) , ity =i(q — ¢ ') = sinwb?,

and
@.11) iTFn = Bn 2 (KA, + kAL )B, 2 An = (V2nU2pU2n—1V2n—1)2,
' . +3— “1\pts - —1 N1
iTgEn = Bn? (K A, + K,Anl) B * By = (Vo Uy, Uoy_ Vot 1)2.

There is a natural representation of the algebra A, associated to this set-up,
defined by setting

(G.12) fon—1 = T(fone1) = AL, fop = 7(fon) :== B, 'B 1.
This representation is reducible. One could project onto the eigenspaces of
the the central elements 7,,. A convenient explicit description of the projec-
tion may be given in the representation where the operators (uk)évgl(uk)é
are diagonal with eigenvalues e™*. Let |y, ys) be a delta-function normal-
ized vector satisfying

ﬂ—byT|yT7yS>’ / / / /
Yrs Yslyrs ys) = 0(yr — 4,)0 (Y5 — Ys)-
yrays>7

(ur)2 vyt (ur)2 [y, ys) = €
- by
S

Let us furthermore use the shorthand notation
N
ly) = Q) lyzn, yon-1), ¥ = (y1,- -, v2n).
n=1

nn is diagonal in this representation with eigenvalue e™(2n—¥2n-1) The
projection II is then defined by simply setting yo, = yon—1 = x, for n =
1,..., N, which is equivalent to setting the eigenvalue of 7, to one. It is
clear that II maps 7' to 7°¢. The projection of £()\) will coincide with
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k2L3%(u) if the parameters are related respectively as
(G.13) K =mA =™ A = —ie™,

It is equally natural to regard L(\) = L;kﬂ()\/n)[/;k(/\n) as the Lax-
matrix associated to parallel transport along one physical lattice site. This
Lax-matrix can be represented by a formula similar to , but with A,,,
B, and 7, replaced by A,, B,, and Mn, defined respectively as

A,=Cz-B;!.Cs,
(G.14) , , )
B,=C: A, -Cs,

1
2

_ —1 -1
M = (V2n+1u2n+lv2n Uzn) )
n

where C3 is the operator representing the translation by one-half of a physi-
cal lattice site, satisfying C s O, - C: = Oy,41 for each local observable O,,.
There is another natural representation 7€ of the algebra Ag. associated
to this set-up, defined by replacing in the operators A, and B, by
A,, B, respectively. The representation 7'° is naturally defined in such a
way that the operators (uk)%vk(uk)% are diagonal with eigenvalues ™%+, for
k=1,...,2N, respectively. The natural analog of the projection Il will be
denoted TII.

G.2. Projection to the lattice Sinh-Gordon model II
— Q-operators

Let us recall that the Q-operators have been defined as

(G-15) QA fi 1) = = Ty, (rg o (N )G ay—1 (A1) -+ 1g 2 (Mg (A 1))

Our goal in this subsection is to demonstrate that the projection of Q(A; fi, 1)
to the physical subspace, denoted as Q(\; fi, 1) can be represented in the
form

(G16) Q(ewbw; ewbm’ ewbm) _ 6%((17m)2+(lfm)2)Y(l; m, m) Yoo,
where the operator Y., has been defined above via (G.6), and Y(I;m,m) is
an integral operator with the kernel

N
(G.17) Y (G m,m)lx) = [T Vinoalar, + @ 40) Vi (e, — 2,)-

n=1
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The special function V,,(x) appearing in (G.17)) is defined as

sp(r — 5)

(G.18) Vu(z) == P

We may note that the projection of the Q-operator onto the physical sub-
space is equal to the operator Q_ constructed in [ByT1].

In order to derive |) let us start from 1' and insert the ex-
pressions (5.48) for r};"(A) and (5.51) for r,;"(A). It is useful to represent
++
T () as

(G.19) Rt () = F - Popa(gl) - Fe,

using the notation g, := u,v,u,v,. By moving all operators F,, to the right

one may represent Q(\; i, 1) in the form

2N

(G.20) Q. iz v) = V(p isv) - C2 - [ Fo,

n=1

where Y 1_C 3. zi[l]:k,

(G.21) Y\ i, p) = Try,, [PO,QNP)\/[L (fanN, gagN) P0,2N71P>\/u(g8L72N,1) T
o Po,sz/ﬁ(fafw g&2)P0,1ﬂA/u(g3r,1)} - Co.
The strategy will be to evaluate the matrix elements of the operator

(y'|Y(p, fi;v)]y) in the representation introduced in the previous subsection.
We claim that

(G.22) (y' V(™ ™™, ™™ y)
— (2N % (my? )

N
. P
H y2n+1 +92n) m— l( —x,)e Ti(Yznt1—=Y5n) 7

where 2, = 3 (Y25, + y2n—1). The function V,,(z) is the Fourier-transformation
of Vi, (x), which may be expressed as

V_u—2¢,(7)

7
=—(b+b71).
sp(u+cp) @ 2( +07)

(G23) Vi(z) = / dy 2TV, (1) =

In order to prove ((G.22)), let us insert the identity operator in the form
[ dyryr)(yr| in front of each operator P, in (G.21)), and let us furthermore
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, , , ,
X2n Xon-1 Xop-2  Xon-3

Xr Xon Xon-1 Xon-2 Xon-3

Figure G1: Diagrammatic representations for the kernels defined in equa-
tions (G.24a)), (G.24b) and (G.24c), respectively. The labels correspond to
the variables appearing in the formulae (G.24)).

insert id = [ T[3", dyy|y!)(y!| in front of C~2. This produces an integral
representation for the matrix element on the left hand side of (G.22)). The
building blocks of the integrand are

(G-24a) (., Ys|Prslyr, ys) = 6(yr — y5)0 (s — vy,
(G-24b) (Y1, YuIPrsPertn (&) |Yrs Ys) = 0(21s + 20) Vo (Thg — 1),
(G24C) <y7/“7 y;‘Prspe"b“’ (f;rm gri@)’yra ys> = 6(3/7/" - ys)(s(yg - yr)v—w (xrs)ewzzfs7

where
(e +0s), 2 =Y — Ys
(y'r + y3)7 Zrs = Yr — Ys-

Equation (G.24b)) follows easily from the identity

1
— 2
-1

2

(G25)  (|F(p)z) = F(' —z),  Flz) = / dy F(y)e*™,

where x, p satisfy [p,x] = 1/2mi, while |x) and (2/| are eigenvectors of x with
eigenvalues z and x’, respectively. The delta-distributions allow us to carry
out all the appearing integrations. In order to keep track of the resulting
identifications of variables it may be helpful to use the diagrammatic rep-
resentations of the building blocks and of the matrix element

given in Figure [GI]
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Let Y(\; @i, pu) be the projection of Y(A, fi, 1) onto the physical subspace
defined by setting all z,, to zero. It easily follows from that Y(\; i, )
can be represented as integral operator with the matrix elements .

The operator )V, satisfies the relations

yozl 'f2n71 : yoo - f2_n17

G.26
( ) yo_ol'f2n'yoo:f2n+1’

yotalnnyoo:ﬁn

This means that Vs, intertwines the representations 7' and 7' respectively.
It follows easily that the projection of V., onto the physical subspace can be
identified with the operator denoted Y, in the sense that IT- Voo = Yoo - IL

G.3. Comparison with alternative definitions of the Baxter
Q-operator

A Baxter Q-operator Q" (u) was constructed in [ByT1] in such a way that
it satisfies a Baxter-equation of the form

(G.27) T (w)Q%" (u) = a®" (w)Q"" (u — ib) + d°" (u) Q" (u + ib).

The coefficient functions a”*(u) and d®" (u) on the right hand sider of (G.27))
are given explicitly as

(G.28) a"" (u) = d°"(—u) = e V™[ cosh(mb(u — s — %b))]N

The operator Q®"(u) constructed in [ByT1] can be represented as the prod-
uct Q°"(u) = Y(u) - Z, with Y(u) and Z being represented by the kernels

N
(XY (u)|x) = H Va—s—c, (T + T 1) Voums—a, (27 — 2,),
(G.29) v
(x|Z|x) = [ Voas(a} — ).
r=1

Our aim is to compare Q®"(u) with the Q-operators obtained from the
universal R-matrix within the formalism developed in this paper. Using for-

mulae (5.51]) and (5.48)), and following the discussion given in Sections
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and [6.9] it is straightforward to find

(G.30) RS\/\ (xK,fUL|$K»~’UL)
=% (-m ) Vinoi(ahe + 27)e T V(o — ag)
x 5 (=M’ Vo i@y —xp)e” F(-m) Vo_ilex + 1),

where V,,(x) was defined in (G.23)). It follows that the fundamental transfer
matrix has the kernel

(G.?)l) < ’T( TI'bZ 71'bl ﬂbm 7r )’ >
— T (U=m)? +(l m) (f m)?—(I—m)?)
N —
X /dy1 e dyn H Vinet(Yr1 + ) Vi (2. — y,.)
r=1

X Vi _t(yr — 2e)Vo (yr + xr+1)'

Setting I = m in (G.31]), for example, one gets Q(\; i, 1) := T (1, X; i, o) with
kernel

(G32) (x| Q% (™ ™™, ™) |x)
— 5 (I=m)>+(1=m)*+(m—m)?)

N
X /dy1 < dyn H Vm—l(yr+1 + a:;)f/m,,(x; — yr)

r=1

X mem(errl - xr)-

This expression can now easily be compared with the formulae for the kernel
of the lattice-Sinh-Gordon Q-operator Q®"(u) constructed in [ByTI]. We
have

(G:33) Q(q2¢) = Qg7 ¢ i p) = G e ™ (™55 (uy (w4 )V QI (w),

if the parameters are related respectively as

eﬂbm — k= mA = eT(bS,

G.34 _
( ) ﬂ _ ewbm — H_l _ (mA)_l _ e—nbs7

=
I

C _ efrbl — Z‘eiﬂ-bu7

It follows from ((G.27) that Q({) satisfies a Baxter-type equation of the form

(G35) TSG(q%C)QSG(C) — aSG(C)QSG(q—].C) + dSG(C)QSG(q<)7



Integrable light-cone lattice discretizations 1361

where
(G.36) a*(¢) = q = (¢/r) N (1= /DN (1= K2V,
d*(() (¢/r)~N.

The Baxter equation (G.35|) coincides with the equation derived using the
representation theory of quantum affine algebras in the main text.

wlz ez

g
g

G.4. Connection with the Faddeev-Volkov model

We are now going to show how the 141-dimensional lattice model studied in
this paper is related to the two-dimensional model of statistical mechanics
called Faddeev-Volkov model, defined and studied in [BaMS]. To this aim
it will be useful to introduce the Boltzmann weights W, (x) related to the
special function D, (z) by multiplication with a u-dependent factor,

(G.37) Wy(x) := Z(u)Vy(x),

2

where Z(u) := e%(2x2+1+m(1+b4))<1>(u), and ®(u) is defined as

dt 6—27th
. log ®(u) := 7 '
(G.38) 0g ®(u) / 8t sinh(bt) sinh(b=1t) cosh((b + b=1)t)
R+:0

The special function ®(u) satisfies the functional equations

(G.39) Z(u+ cp)Z(u — ¢p) = (wy(u)) ™,

[1]

(u)2(—u) = 1.

Together with (G.23) one finds that W, (x) is self-dual under Fourier-
transformation in the sense that

(G.40) Wu(z) := /dy XYW, (2) = Weu_26, (2).

Other useful properties noted in [BaM§S| are

(G.41) Wo(x) =1, Wolz —y) =d(z —v).

Let us denote the operator obtained from T by the replacement Vu(z) —
Wy (z) and V,,(z) = Wy (x) by T'.

It then follows easily from our formula (G.31)) above that for even num-
ber of lattice sites one may identify the kernels representing products of
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fundamental transfer matrices
(G42) T‘)ST/(,;W;S(XN+17 XO)

= <XN+1‘QoddTi‘§(u_]M7 wyy) - Tfs*(U_/u w1)Q6q4/%0),

where Quqq = ny:l Qop,—1; we are using the notations w = (wy,...,wy),
w = (W1,...,wp) and s = (s1,...,8x). Let us temporarily restrict atten-
tion to the case that N is even. It is easy to see that

(G43) T‘%C,;W;S(XN+17 XO) = ng\,/w;s(xN+17 XO)

where Zg',.<(Xn+1,%0) is the partition function of the Faddeev-Volkov

model on a rectangular lattice which may be explicitly represented as

(G.44) 25 wis(XN41:X0)

W,W;S

N M
:: / H H Ay W=, (Un'1 — yzl+1)Ww7n+syL (?/:{L—H L)

n=lm=1 17 m m—1 i m m—1
X mefsn (yn —Yn )me+sn (yn - xn+1 )

Note that the range of values of the parameters considered in [BaMS| (mo-
tivated by positivity of the Boltzmann weights) corresponds to imaginary
values of u, v and s.
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