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Super Riemann surfaces, metrics
and gravitinos

Jürgen Jost, Enno Keßler, and Jürgen Tolksdorf

The underlying even manifold of a super Riemann surface is a Rie-
mann surface with a spinor valued differential form called gravitino.
Consequently infinitesimal deformations of super Riemann surfaces
are certain infinitesimal deformations of the Riemann surface and
the gravitino. Furthermore the action functional of non-linear super
symmetric sigma models, the action functional underlying string
theory, can be obtained from a geometric action functional on super
Riemann surfaces. All invariances of the super symmetric action
functional are explained in super geometric terms and the action
functional is a functional on the moduli space of super Riemann
surfaces.

Introduction

Let |M | be a compact closed two dimensional manifold. In super string theory
and super gravity one studies a super symmetric extension of the harmonic
action functional where both the field ϕ : |M | → R and the Riemannian met-
ric g on |M | get a super partner. See for example [1, 6]. Let S be a spinor
bundle on |M | with respect to a chosen spin structure and S∨ its dual bun-
dle. Let ψ be a section of S∨ and χ a spinor valued differential form, i.e. a
section of T∨|M | ⊗R S. The super symmetric action functional is

A(ϕ,ψ, g, χ) =

∫
|M |

(
‖ dϕ‖2g + 〈ψ,D/ ψ〉(∗)

+2〈γaγbχa, ψ〉∂xbϕ+
1

2
〈χa, γbγaχb〉〈ψ,ψ〉

)
dvolg.

This action is invariant under

• Diffeomorphisms of |M |: A(ϕ ◦ f, f∗ψ, f∗g, f∗χ) = A(ϕ,ψ, g, χ)

• Conformal transformations: A(ϕ,ψ, λ2g, χ) = A(ϕ,ψ, g, χ)

• Super Weyl transformations: A(ϕ,ψ, g, χ+ γs) = A(ϕ,ψ, g, χ)
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• Super symmetry, assuming that the fields ψ and χ are odd:

δϕ = 〈q, ψ〉 δψ = (∂xkϕ− 〈ψ, χk〉) γkq
δfa = −2〈γbq, χ(fa)〉fb δχa = ∇Sfaq

Here fa is a g-orthonormal frame and ∇S a particular spin connection
with torsion.

The aim of this paper is to clarify the relation of the action functional (∗)
to super Riemann surfaces. The invariances of the action functional arise
from geometric properties of super Riemann surfaces. Super Riemann sur-
faces are an analogue of Riemann surfaces in super geometry. This mathe-
matical theory was developed already in the seventies for the treatment of
super symmetric theories in high energy physics (see e.g. [16, 18, 19]). The
concept of a super Riemann surface appeared only a little later and their
moduli space was studied, see for example [4, 8, 9, 17, 21]. But the precise
connection between the super Riemann surfaces and the metric field g and
the gravitino χ remained unclear even though many conjectured a super
Teichmüller theory that would study the moduli space of super Riemann
surfaces (or a covering of it) in terms of the metric and the gravitino field.
The action functional (∗) was claimed to arise from a particular Berezin in-
tegral on a super Riemann surface (e.g. [7]). However, no explicit proof of
this claim seems to exist.

In this article we argue that the key ingredient to a geometric under-
standing of the relation between the action functional (∗) and super Riemann
surfaces is the underlying even manifold of a family of super manifolds. The
underlying even manifold is an intermediate concept between the concept of
super manifold and its reduced space. More specifically, for a family of super
manifolds M → B of (relative) dimension m|n the underlying even manifold
is a family |M | → B of (relative) dimensionm|0 together with a topologically
trivial embedding i : |M | →M over B. In contrast to the reduced spaceMred

the underlying even manifold |M | allows to define odd fields, such as χ and
ψ and different embeddings i : |M | →M .

The concept of underlying even manifolds for families of super manifold
will be introduced in the first section of this article. It will be shown that
such an underlying even manifold |M | exists for all super manifolds M . Any
Berezin integral on M can then be reduced to an integral on |M |.

In the second section we will study the geometric structures induced on
manifolds underlying super Riemann surfaces. We will show that the ge-
ometry is completely determined by a metric g and a gravitino χ on an
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underlying even manifold |M |. This opens the possibility for a super differ-
ential geometric approach to the moduli of super Riemann surfaces, i.e. a
super Teichmüller theory in therms of metrics and gravitinos. As a first step
we study the tangent space to the moduli space of super Riemann surfaces,
using metrics and gravitinos.

The aim of the third section is to demonstrate how the action func-
tional (∗) arises from a Berezin integral on a super Riemann surface. The
formulation in terms of the Berezin integral leads to a very clear geomet-
rical interpretation of the symmetries of (∗). Consequently the action func-
tional (∗) is a functional on the moduli space of super Riemann surfaces. We
give an interpretation of its energy momentum tensor and super current in
terms of cotangent vectors to the moduli space.

In this paper, we present the main results of the second author’s the-
sis [15]. Some of the results in the last two sections rely on long and compli-
cated computations. In order not to overly burden the presentation we have
omitted those and refer instead to [15].

1. Super geometry

We use the ringed space approach to super geometry (see, for example, [18]).

Definition 1.1. A (smooth) super manifold is a locally ringed space
(‖M‖,OM ) that is locally isomorphic to Rm|n = (Rm, C∞(Rm,R)⊗R Λn).
Here Λn is a real Grassmann algebra generated by n elements. A map of
super manifolds f : M → N is a map of locally ringed spaces. That is, a
pair (‖f‖, f#) consisting of a continuous map ‖f‖ : ‖M‖ → ‖N‖ and a sheaf
homomorphisms f# : ON → OM . It follows that the sheaf of rings OM is a
super commutative Z2-graded sheaf of rings. The elements of OM will be
called functions.

Let xa, a = 1, . . . ,m be the standard coordinate functions on Rm and ηα,
α = 1, . . . , n be generators for Λn. Their lift to ORm|n will be called coordi-
nates for Rm|n. We write XA = (xa, ηα), using the convention that small
Latin letters refer to even objects, small Greek letters to odd ones and cap-
ital Latin indices refer to odd and even objects together. Any function on
Rm|n can be expanded as

f =
∑
α

ηαfα(x),
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where α is a Z2-multiindex and the fα are smooth functions that can be
expressed in the coordinates xa. According to [18, Theorem 2.17] any mor-
phism between super domains U ⊆ Rm|n and V ⊆ Rp|q can be given in terms
of coordinates.

Example 1.2. Let XA = (xa, ηα) be coordinates on R2|2. Any map ϕ :
R2|2 → R is determined by the pullback of the coordinate r on R:

ϕ#r = f0(x) + η2η1f21(x).

Here f0(x) and f21(x) are smooth functions depending only on xa. Note that
there is no term proportional to ηα because the ring homomorphisms ϕ#

preserve automatically the Z2-parity of the super functions.

For the applications we have in mind the full Taylor expansion is required.
Therefore we need to work with families of super manifolds.

Definition 1.3 ([18]). A submersion pM : M → B of super manifolds is
also called a family of super manifolds over B. A morphism f of families of
super manifolds from pM : M → B to pN : N → B is a morphism f : M → N
such that pN ◦ f = pM . Any super manifold is a family over R0|0. Any family
is locally a projection Rm|n ×B → B. We call m|n the dimension of the
family.

Example 1.4. Consider the trivial families of super manifolds given by
R2|2 ×B and R×B. A map ϕ : R2|2 ×B → R×B of families over B is now
again given by the pullback of the coordinate function r on R, the map on
the B-factor is determined by the properties of maps of families over B. But
this time all coefficients in the coordinate expansion can appear (using the
Einstein summation convention):

ϕ#r = f0(x) + ηµfµ(x) + η2η1f21(x).

Here f0(x), fµ(x) and f21(x) are functions on R2|0 ×B. For all open U the
ring homomorphisms ϕ#

∣∣
U

must be even. This implies that f0 and f21 are
even functions, whereas the functions fµ must be odd, but in contrast to
Example 1.2 not necessarily zero.

Lemma 1.5 (Existence of base change, e.g. [5, Remark 2.6.(v)]).
Let b : B′ → B a morphism of super manifolds and pM : M → B a family of
super manifolds over B. Then there exists a unique family of super manifolds
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pM ′ : M
′ → B′ and a morphism p : M ′ →M over b such that pM ◦ p = b ◦

pM ′ . We will also write M ′ = M ×B B′ and say that M ′ → B′ arises from
M → B by base change.

According to Lemma 1.5 it is not necessary to fix B. However B is
always supposed to be “big enough”, see Example 1.4. Henceforth, all super
manifolds and maps of super manifolds are implicitly to be understood as
families of super manifolds and morphisms of families of super manifolds. In
particular, also Rm|n is to be understood as the trivial family Rm|n ×B.

Many geometric concepts known from smooth manifolds carry over to
families of super manifolds and are functorial under base change. Examples
such as tangent bundles, vector bundles, differential forms and Lie groups can
be found in [5]. A construction that has no analogue in differential geometry
is that of the underlying even manifold.

Definition 1.6. Let M = (‖M‖,OM ) be a family of super manifolds of
dimension m|n over B. A family of super manifolds |M | = (‖M‖,O|M |) of
dimension m|0 together with an embedding of families of super manifolds
i : |M | →M that is the identity on the underlying topological space is called
an underlying even manifold.

Example 1.7. Let M = (‖M‖,OM ) be a super manifold over B = R0|0

of dimension m|n and Inil ⊂ OM be the ideal sheaf of nilpotent elements.
Then the underlying even manifold is given by the reduced space Mred =
(‖M‖,OM�Inil), a manifold of dimensionm. Indeed, the canonical projection
i# : OM → OM�Inil yields an embedding i : Mred →M which is the identity
on the underlying topological space ‖M‖. Any map from a reduced space
to M has to factor over i; hence the map i is unique as embedding of the
underlying even manifold.

Though the concept of reduced space was widely used for super man-
ifolds, it was to our knowledge never extended to families of super mani-
folds in a functorial way. Here by functorial we understand that for a su-
per manifoldM → B with embedded underlying even manifold i : |M | →M
and b : B′ → B, the manifold |M | ×B B′ is the underlying even manifold for
M ×B B′ and i×B idB′ : |M | ×B B′ →M ×B B′ is an embedding. However
in the case of families the uniqueness of the underlying manifold is lost, as
is already seen in the following example:

Example 1.8 (Underlying even manifolds for Rm|n). Consider an em-
bedding i : Rm|0 ×B → Rm|n ×B such that ‖i‖ is the identity. Denote the
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standard coordinates on Rm|0 by ya and the standard coordinates on Rm|n
by (xb, ηβ). Then i can be expressed in coordinates:

i#xb = gb(y), i#ηβ = gβ(y).

If one chooses coordinates LC = (lc, λγ) on B one can expand the even func-
tion gb(y) further

i#xb = gb(y) = yb +
∑
ν 6=0

λνg b
ν (y, l).

Here the zero order term is given by the fact that ‖i‖ should be the identity.
However, the functions g b

ν (y, l) and gβ(y) = gβ(y, l, λ) are arbitrary (with
the sole exception of prescribed parity). Consequently, underlying even man-
ifolds of the trivial family Rm|n ×B are not at all unique if B 6= Bred, in
contrast to the reduced space.

It is always possible to find coordinates (x̃b, η̃β) on Rm|n and coordi-
nates ỹa on Rm|0 such that

i#x̃a = ỹa, i#η̃β = 0.(1.9)

Indeed, using the coordinate transformation

ỹa = yb +
∑
ν 6=0

λνg b
ν (y, l)

on Rm|0 ×B and the coordinate change

x̃b = xb η̃β = −gβ(x) + ηβ

on Rm|n ×B assures the Equations (1.9). Put differently, there are diffeomor-
phisms ξ ∈ DiffB(Rm|0 ×B) and Ξ ∈ DiffB(Rm|n ×B) such that Ξ ◦ i ◦ ξ co-
incides with the standard underlying even manifold of Rm|n ×B given by
Equation (1.9).

There are automorphisms Ξ of Rm|n ×B such that i ◦ Ξ = i. Those can
best be expressed in the coordinates x̃b, η̃β as

Ξ#x̃b = x̃b + η̃µf bµ(x̃, η̃), Ξ#η̃β = η̃µfβµ (x̃, η̃).

The functions fBµ are arbitrary functions on Rm|n ×B with appropriate par-
ity.
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Theorem 1.10 (Existence of underlying even manifolds). Let M =
(‖M‖,OM ) be a family of super manifolds over B. Also, let ‖U1‖ ⊆ ‖M‖ be
a subset (which might also be empty) such that there is an underlying even
manifold |U1| with given embedding iU : |U1| → U1 and ‖U2‖ ⊂ ‖U1‖ an open
subset such that its closure is contained in U1. There exists an underlying
manifold |M | and an embedding i : |M | →M such that |U1| coincides with
|M | and i with iU over ‖U2‖.

Proof. Let Vk be an open cover of the family bM : M → B by adapted coor-
dinate charts Vk. As M is paracompact, we may assume that Vk is a count-
able cover, hence k = 1, . . .. Let us write Vk = Fk × bM (Vk) with coordinates
XA
k = (xak, η

α
k ) on Fk. We will denote the coordinate changes as follows:

f#
klX

A
l = fAkl (Xk) =

∑
ν

η
ν
kf

A
νkl (xk) .

Here the sum runs over all Z2-multi-indices ν including zero. The mani-
fold |M | that we are going to construct is covered by the same open sets
‖Vk‖ = ‖Fk‖ × ‖bM (Vk)‖ and have adapted coordinates yak such that
(yak)red = (xak)red. Notice that the coordinate changes h#

kly
a
l = hakl(yk) need

to be constructed in the proof.
We construct a family b|M | : |M | → B of relative dimension m|0 and a

map i : |M | →M over B inductively. To start the induction we may assume
without loss of generality that U1 is covered by the first j open sets, that is

U1 =

j⋃
k=1

Vk.

Furthermore, we assume that

U2 ∩
⋃
k>j

Vk = ∅.

If U1 = ∅ choose an arbitrary embedding i|V1
: |V1| → V1 over bM (V1) as in

Example 1.8.
Suppose now that we have the structure of an underlying even manifold

together with the embedding i for
⋃m−1
k=0 Vk. We assume that i is given in

the coordinates XA
k and yak by

i#xak = yak + gak(yk), i#ηαk = gαk (yk),
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where gak are even nilpotent functions and gαk odd nilpotent functions. We
will show that we can extend the underlying even manifold structure and the
embedding i to

⋃m
k=0 Vk. In order to extend the manifold structure we have

to give the coordinate changes hkm. For gAm to describe an extension of the
given i we need that the following compatibility conditions hold on Vk ∩ Vm
for all k < m:

i#f#
kmX

A
m = h#

kmi
#XA

m(1.11)

By what has been discussed in Example 1.8, we may assume that gAk = 0 for
all k < m. Hence the compatibility conditions (1.11) read

i#f#
kmx

a
m = h#

kmi
#xam = h#

km (yam + gam(ym)) ,

i#f#
kmη

α = h#
kmi

#ηα = h#
kmg

α
m(ym).

For gam = 0 the first equation can be read as a definition of hkm, whereas the
second equation specifies gαm on Vm ∩ Vk. However, the function gαm may not
extend to the whole of Vm because it may be unbounded. Let {σ, τ} be a
partition of unity subordinate to {

⋃m−1
k=0 Vk, Vm}, see [3, Proposition 4.2.7].

The function tαm = σgαm defined on the set Vm ∩
⋃m−1
k=0 Vk can be extended

to Vm by zero. We will now construct h̃kl and an embedding j that coincide
with hkl and i respectively on

⋃m−1
k=0 Vk \ Vm such that

j#xam = yam, j#ηαm = tαm.(1.12)

Hence the manifold structure and the embedding j extend to
⋃m
k=0 Vk.

Let j be in the coordinates XA
k be given by

j#xak = yak , j#ηαk = g̃αk (yk).

The coordinate changes h̃kl are then determined by the compatibility condi-
tions (1.11): ∑

ν

g̃
ν
k(yk)f

a
νkl(yk) = j#f#

klx
a = h̃#

klj
#xa = h̃#

kly
a

Notice that h̃kl differs from hkl only by a nilpotent term dependent on gαk .
Furthermore, the functions h̃kl satisfy the cocycle conditions because fkl
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satisfy them:

h̃#
klh̃

#
lpy

a
p = h̃klj

#f#
lpx

a
p = j#f#

klf
#
lpx

a
p = j#f#

kpx
a
p = h̃#

kpy
a
p

It remains to see that Equation (1.12) determines g̃αk for k < m uniquely. We
have to expand h̃#

km

(
j#ηαm − tαm

)
with respect to coordinates LAk = (lak, λ

α
k )

of the base:

0 = h̃#
km

(
j#ηαm − tαm

)
= j#f#

kmη
α
m − h̃

#
kmt

α
m =

∑
ν

g̃
ν
kf

α
νkm − h̃

#
kmt

α
m(1.13)

=
∑
κ6=0

λκ
(

(fα0km)κ + (g̃ ν
k )κ(fανkm)0 − (σfα0km)κ +R α

κ

)
=
∑
κ6=0

λκ
(

(g̃ ν
k )κ(fανkm)0 + (τfα0km)κ +R α

κ

)
Here the additional bracket and indices around fα0km, g̃

ν
k and σ indicate the λ-

dependence. The term R α
κ contains all terms containing g̃ α

πk of order lower
than κ. The matrix (fανkm)0 is invertible because the coordinate change fkm
is invertible. Hence the Equation (1.13) is solvable by recursion. The support
of g̃αk is contained in the support of τ . Consequently j and h̃kl coincide with i
and hkl outside of Vm. �

Remark 1.14. Let N and N ′ be families of super manifolds with odd
dimension zero. It is shown in [15, Proposition 3.3.11] that any diffeomor-
phism Nred → N ′red can be extended to a diffeomorphism N → N ′. Conse-
quently, for two embeddings of underlying even manifolds i1 : |M |1 →M and
i2 : |M |2 →M we have that |M |1 and |M |2 are diffeomorphic. Furthermore,
for any diffeomorphism Ξ: M →M and i : |M | →M there exists a diffeo-
morphism ξ : |M | → |M | and an embedding of the underlying even manifold
j : |M | →M such that

Ξ ◦ i = j ◦ ξ.

The theory of integration for families of super manifolds is sketched in [5,
§3.10], building upon the framework of [18]. For fiberwise compact, oriented
families of super manifolds integration is an OB-linear functional∫

M
: BerT∨M → OB

from the Berezinian of the cotangent bundle to the functions on B. The
Berezinian is the generalization of the determinant bundle to super geometry.
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Integration is given in local coordinates (xa, ηα) by∫
Rm|n

g(x, η)[dx1 · · · dxm dη1 · · · dηn] =

∫
Rm|0

gtop(x) dx1 · · · dxm

where gtop is the B-dependent coefficient of ηn · · · η1 of in the coordinate
expansion of g(x, η). The integral on the right-hand side is defined by OB-
linearity and the classical integral over the fibers of Rm ×B → B. The local
expressions are then shown to be coordinate invariant and glued to a global
expression on a super manifold with the help of a partition of unity.

An alternative definition of the Berezin integral for B = {pt} is given
in [11, 20]. There the Berezin integral is reduced to an integral over Mred

via the unique embedding i : Mred →M of Example 1.7 as follows: De-
note by P = Ωm(M)⊗DernR(OM ) the R-linear differential operators of or-
der at most n with values in m-forms on M . Here M is of dimension m|n
and DernR(OM ) is considered as a right module over OM . For any function
f ∈ OM and any Q ∈ P we denote by Q[f ] the differential form obtained by
applying the differential operator to f . Define an R-linear functional on P
by

L(Q) =

∫
Mred

i∗ (Q[1]) .

Here i∗ (Q[1]) denotes the top-form on M obtained from Q[1] by pullback
along the embedding i.

Let K ⊂ P be the OM -right module containing all Q ∈ P such that
i∗Q[f ] is exact for all f ∈ OM . Obviously K ⊂ kerL. In [11, Theorem 2.2] it
has been shown that

(1.15) BerT∨M = P�K.

According to [11, 20], for any pre-image Q ∈ P of b ∈ BerT∨M it holds that

(1.16) L(Q) =

∫
M
b.

In the statements (1.15) and (1.16) the R-linearity can be replaced by
OB-linearity for general B. Therefore, Mred can be replaced by |M | which
proves the following statement:

Proposition 1.17. Let i : |M | →M be the embedding of an underlying even
manifold for a family M of fiberwise compact, orientable super manifolds
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over B. For any section b of BerT∨M there exists a top form |b| on |M |
such that ∫

M
b =

∫
|M |
|b|.

Here the integrand |b| coincides with i∗Q[1] up to a global exact term and
depends on the embedding i : |M | →M .

2. Super Riemann surfaces

Definition 2.1 (see [17]). A super Riemann surface is a 1|1-dimensional
complex super manifold M with a 0|1-dimensional distribution D ⊂ TM
such that the commutator of vector fields induces an isomorphism

1

2
[·, ·] : D ⊗C D → TM�D.

Example 2.2. Let (z, θ) be the standard coordinates on C1|1 and define
D ⊂ TC1|1 by D = 〈∂θ + θ∂z〉. The isomorphism D ⊗D ' TM�D is explic-
itly given by

[∂θ + θ∂z, ∂θ + θ∂z] = 2∂z.

This example is generic since any super Riemann surface is locally of this
form, see [17, Lemma 1.2].

Theorem 2.3 ([9]). A super Riemann surface is a 2|2-dimensional real
super manifold with a reduction of the structure group to

G =

{(
A2 B
0 A

) ∣∣∣∣ A,B ∈ C} ⊂ GLC(1|1) ⊂ GLR(2|2)

together with the following integrability conditions. Remember that C is to
be understood as the trivial family C×B. Denote the G-frames by Fz and
F+. Their decomposition in real and imaginary part yields frames Fa, Fα for
a = 1, 2, α = 3, 4 as follows:

Fz =
1

2
(F1 − iF2) , F+ =

1

2
(F3 − iF4) ,

Fz = Fz, F− = F+.
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Let us denote the structure coefficients by tCAB:

[FA, FB] = tCABFC .

Then the integrability conditions in terms of the complex frames are given by
the following G-invariant equations:

tzz+ = t−z+ = tz++ = t−++ = tz+− = tz+z = 0,(2.4)
tz++ = 2.

The vanishing of the first four structure coefficients guarantees an integrable
holomorphic structure and the vanishing of the last two that D is a holomor-
phic distribution. Furthermore, tz++ = 2 gives the complete non-integrability
of D.

Theorem 2.3 leads to two observations. First, since the orthonormal
group O(2|2) is not contained in G it is not possible to describe the ge-
ometry of super Riemann surfaces in terms of super Riemannian metrics
on M . Second, a further reduction to U(1) is always possible via

U(1)→ G

U 7→
(
U2 0
0 U

)
.

Consider now such a U(1)-structure on M . It induces a non-degenerate,
super symmetric bilinear form m on TM , given in the U(1)-frames by

m(Fa, Fb) = δab, m(Fa, Fβ) = 0, m(Fα, Fβ) = εαβ.

The projector on D gives a splitting of the following short exact sequence:

(2.5)
0 D TM = D⊥ ⊕D TM�D 0.

p

The pullback of the short exact sequence (2.5) along an embedding i : |M | →
M

0 S i∗TM T |M | 0
p̃

di

possesses a second splitting given by di.
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Definition 2.6 (Metric g, spinor bundle S and gravitino χ). By the
identification T |M | = i∗D⊥, the tangent bundle of |M | gets equipped with
a metric g.

The bundle S = i∗D is a spinor bundle of the metric g because i∗D ⊗C
i∗D = i∗

(
TM�D

)
= T |M |. The identification S = i∗D induces a non degen-

erate bilinear form gS on S that is given in the frames sα = i∗Fα by

gS(sα, sβ) = εαβ.

The difference of the splittings p̃ and di is a section of T∨|M | ⊗ S which
we call gravitino χ:

(2.7) χ(v) = pS (p̃− di) v

Here pS : i∗TM → S is the projector given by the splitting of the short exact
sequence by p̃.

Keep in mind that the vector bundle S is of real rank 0|2 and the
frames sα are odd. Consequently, the coefficients of χ(fb) = χαb sα are odd
functions on |M |. Also notice that in general the embedding i : |M | →M is
not holomorphic with respect to the complex structure on |M | induced by g
(cf. the construction in the proof of the Theorem 1.10).

Different choices of U(1)-structure lead to metrics and gravitinos which
differ from g and χ only by a conformal and super Weyl transformation.
Every matrix of G can be decomposed as

(2.8)
(
A2 B
0 A

)
=

(
U2 0
0 U

)(
R2 0
0 R

)(
1 T
0 1

)
where U ∈ U(1), R ∈ R+ and T ∈ C. The first matrix preserves the U(1)-
structure on M . Consequently the bilinear forms m, g and gS are preserved.
The second matrix in the decomposition (2.8) rescales the frames FA and
changes the U(1) structure. As a result the bilinear form g is rescaled by i#R2

and gS is rescaled by i#R. The third matrix in the decomposition (2.8)
changes the splitting TM = D ⊕D⊥. It is easy to see that the induced
change on χ is indeed a super Weyl transformation. However only the func-
tions i#U , i#R and i#T effect the metric g and the gravitino. The higher
order terms of R and T leave g and χ invariant.

Having constructed a metric and gravitino on a 2-dimensional surface |M |
from a super Riemann surface M , we now consider the opposite question.
Given a 2|0-dimensional manifold |M | and a metric g and a gravitino χ, is
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there a unique super Riemann surface M with an embedding i : |M | →M
such that the above construction gives the same metric and gravitino back?
In order to affirmatively answer the question, one has to take into account all
geometrical degrees of freedom on M that are not fixed by the metric g and
the gravitino χ on |M |. An example for such geometrical degree of freedom
is given by the higher order terms in the decomposition (2.8).

Definition 2.9 (Wess–Zumino frames). A G-frame FA is called Wess–
Zumino frame if the following commutator relations hold in addition to the
integrability conditions (2.4):

i#t++− = 0, i#F+t
+
+− = 0, t+++ = 0.(2.10)

Lemma 2.11. Let FA be a U(1)-frame. There is a unique Wess–Zumino
frame F̃A in the same G-class such that i∗FA = i∗F̃A.

Proof. Apply a transformation h ∈ G to FA such that i∗h = id. The condi-
tions (2.10) fix the higher order terms of U , R and T in (2.8). �

Definition 2.12 (Wess–Zumino coordinates). The coordinates XA =
(xa, ηα) are called Wess–Zumino coordinates of the frame FA if i#ηα = 0
and the coordinate expression of the frame Fα is given by

(2.13) Fα =
(
ηµF b

µα (x) + η2η1 · · ·
)
∂xb +

(
δβα + ηµF β

µα + η2η1 · · ·
)
∂ηβ .

Here the degree one coefficients are symmetric with respect to the lower
indices, i.e.

εµαF C
µα = 0.

Lemma 2.14. Given a G-frame FA and coordinates X̃A = (x̃a, η̃α) there
are unique Wess–Zumino coordinates XA = (xa, ηα) for FA such that i#x̃a =
i#xa.

The notions of “Wess–Zumino frames” and “Wess–Zumino coordinates” are
derived from the notion of “Wess–Zumino gauge” used in [7]. They have at
least two purposes. The first one is that they reduce the freedom in the
local description of super Riemann surfaces. Instead of all super coordinate
systems and all G-frames, we now only need to consider the Wess–Zumino
frames and Wess–Zumino coordinates. As was shown in Lemma 2.11 and
Lemma 2.14 they are unique up to a choice of i#xa and i∗Fα. Second they
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relate the odd coordinates on M to spinors on |M |, as the frames sα =
i∗Fα = i∗∂ηα are frames for S.

Let now FA be a U(1)-frame on U ⊂M . Consider the coordinate expan-
sion in Wess–Zumino coordinates XA = (xa, ηα) for FA.

Fa =
(
F b

0a + ηµF b
µa + η2η1F b

21a

)
∂xb

+
(
F β

0a + ηµF β
µa + η2η1F β

21a

)
∂ηβ

Fα =
(
ηµF b

µα + η2η1F b
21α

)
∂xb

+
(
δβα + ηµF β

µα + η2η1F β
21α

)
∂ηβ

(2.15)

The frames sα = i∗Fα are U(1)-frames for S. Furthermore the frame Fa can
be expanded

i∗Fa = F b
0a i

∗∂xb + F β
0a sβ

Then by formula (2.7) we know that fa = F b
0a ∂yb is a g-orthonormal frame

and the gravitino is given by

χ(fa) = F β
0a sβ

To complete the local description of super Riemann surfaces in terms of
metrics and gravitinos we still need the following lemma, which has been
mentioned first in [12] under stronger assumptions:

Lemma 2.16. Let FA be a Wess–Zumino frame and XA = (xa, ηα) Wess–
Zumino coordinates for FA. All higher order coefficients in (2.15) can be
expressed in terms of F b

0a and F β
0a and thus in terms of fa and χ.

Proof. The Equations (2.4), (2.13) and (2.10) are solvable for the unknown
coefficient functions. �

Theorem 2.17. Given a super manifold |M | over B together with a met-
ric g, a spinor bundle S and a gravitino field χ. Then there is a unique super
Riemann surface M over B together with an inclusion i : |M | →M such
that the above procedure gives back the gravitino and metric up to conformal
transformation of g and super Weyl transformation of the gravitino χ.

Proof. Cover |M | by open coordinate sets (V, ya). Choose a local U(1)-
frame sα of S and fa of T |M | such that s+ ⊗C s+ 7→ fz. Construct over the
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topological space V the super manifold (V,OV ) by setting OV = Λ(ΓV (S∨))
with coordinates xa = ya and ηα = sα, where sα is the canonical dual basis
to sα. Denote by FA the Wess–Zumino frame constructed from the coeffi-
cients of the frame fa and the gravitino χ according to Lemma 2.16. This
gives an integrable G-reduction of the structure group of TV . The map i is
locally constructed via its action on the coordinates (xa, ηα), i.e. i#xa = ya

and i#ηα = 0.
It remains to glue different local constructions in order to obtain a

well defined super Riemann surface over the same topological space ‖M‖.
The Wess–Zumino frames over different trivializing covers may differ by a
G-transformation that reduces to U(1)-transformation on |M |. The Wess–
Zumino coordinates of Wess–Zumino frames that differ by such a transforma-
tion are completely fixed by the U(1)-transformation. Details may be found
in [15]. �

We have shown a one-to-one correspondence

{i : |M | →M,M super Riemann surface} ←→ {|M |, S, g, χ}�Weyl, SWeyl

An advantage of this description is that on the right-hand side there are
no integrability conditions to be fulfilled. On the left hand side the integra-
bility conditions (2.4) have to be fulfilled. The presence of the integrability
conditions complicates the study of deformations as one needs to assure the
integrability of the deformations.

To obtain a description of the moduli space of super Riemann surfaces in
terms of metrics and gravitinos one may look for a one to one correspondence
(see e.g. [13] and references therein)

{M super Riemann surface}�SDiff(M)(2.18)

←→{|M |, S, g, χ}�Weyl, SWeyl,Diff(|M |),SUSY

The super symmetry transformations SUSY on the right hand side can con-
jecturally be identified with the change of embedding i, that is, a particular
subgroup of SDiff(M). A precise definition of SUSY and the study of the full
quotient must be left for further research. Here, we treat the infinitesimal
case. As a preparation we first study the infinitesimal change of embedding.

Proposition 2.19. The normal bundle to the embedding i : |M | →M is
given by i∗D = S. Let it : |M |t →M be a smooth family of embeddings such
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that the infinitesimal deformation is

q =
d

dt

∣∣∣∣
t=0

it ∈ Γ|M |
0
(i∗0D).

The derivatives of the corresponding families of local frames f(t)a and grav-
itinos χ(t)a are given by

d

dt

∣∣∣∣
t=0

f(t)a ' −2〈γbq, χ(fa)〉fb,

d

dt

∣∣∣∣
t=0

χ(t)a ' ∇
S
faq = ∇LCfa q + 〈γbχb, χa〉γ1γ2q.

(2.20)

Here, the symbol ' denotes equality up to local U(1)-, conformal and super
Weyl transformations. ∇LC is the Levi-Civita connection lifted to S.

This proposition also justifies that the field χ defined above was called
gravitino, because the transformations (2.20) are the expected super sym-
metries. Compare [1, 7, 13]. The interpretation of super symmetry given
in Proposition 2.19 as a normal variation of the underlying even manifold
resembles the one given in [2]. There, super symmetry of four-dimensional
super gravity is interpreted as a deformation of a local splitting of the body
projection.

Lemma 2.21. The gravitino can be gauged to zero locally. More precisely for
every point m ∈ ‖M‖ there exists an open neighbourhood U ⊆M such that
there is a U(1)-structure and an embedding i : |M | →M such that χ|i−1(U) =
0. The gravitino can be gauged to zero globally, if M is a trivial family of
super Riemann surfaces.

Proof. Choose around m complex coordinates (z, θ) such that D = 〈∂θ +
θ∂z〉 (see example 2.2). Let the U(1)-structure be given by the frames Fz =
∂z and F+ = ∂θ + θ∂z and the embedding by i#θ = 0. Then the gravitino
vanishes on U . �

Theorem 2.22. Let the metric g, the spinor bundle S and the gravitino
χ = 0 on |M | determine the super Riemann surface M and the embedding
i : |M | →M . The infinitesimal deformations of M are given by

H0(T∨|M | ⊗C T
∨|M |)⊕H0(S∨ ⊗C S

∨ ⊗C S
∨).

Here H0 denotes holomorphic sections.
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Proof. Any infinitesimal deformation of M is given by an infinitesimal de-
formation of metric and gravitino, denoted by h and ρ respectively. However
not every infinitesimal deformation of metric and gravitino give rise to an
infinitesimal deformation of the super Riemann surface. The infinitesimal
deformations of the metric and gravitino induced by Weyl and super Weyl,
diffeomorphisms and super symmetry do lead to equivalent super Riemann
surfaces. We will thus need to decompose the infinitesimal deformation h of
the metric as

(2.23) h = λg + LXg + susy(q) +D

for some infinitesimal Weyl transformation with parameter λ, a Lie deriva-
tive along the vector field X and infinitesimal super symmetry transforma-
tion susy(q) given by the spinor q as in (2.20). The parameters λ, X and
q need to be determined. The remaining part D is a true even infinitesimal
deformations of the super Riemann surface. Analogously, the infinitesimal
deformation ρ of the gravitino needs to be decomposed in

(2.24) ρ = γt+ LXχ+∇Sq + D

for some spinor t, that rests to be determined. The remaining part D is a
true odd infinitesimal deformation of the super Riemann surface.

We will work in local holomorphic coordinates z = x1 + ix2 defined in
some open neighbourhood U . We consider only the special case gij = δij
and χ = 0. The case of isothermal coordinates works analogously. Let X =
Xk∂xk . The Equation (2.23) simplifies to

hij = λδij +
(
∂xiX

k
)
δkj +

(
∂xjX

k
)
δki +Dij .

Letting

λ =
1

2
hijδ

ij −
(
∂xkX

k
)

it is possible to assume Dij is symmetric and trace free. As a consequence,
the bilinear form D can be identified with a section of T∨|M | ⊗C T

∨|M |:(
a b
b −a

)
7→ (a− ib) dz ⊗ dz

It is possible to choose the vector field X such that D is a holomorphic
quadratic differential. The holomorphicity condition for D is equivalent to



i
i

“2-Jost” — 2018/2/9 — 16:53 — page 1179 — #19 i
i

i
i

i
i

Super Riemann surfaces, metrics and gravitinos 1179

the following Laplace equations for Xk:

0 = ∂x1a+ ∂x2b =
1

2
∂x1 (h11 − h22) + ∂x2h12 − ∂2

x1X1 − ∂2
x2X1

0 = −∂x1b+ ∂x2a =
1

2
∂x2 (h11 − h22)− ∂x1h12 + ∂2

x1X2 + ∂2
x2X2

We have decomposed every infinitesimal deformation h of the metric g into
an infinitesimal Weyl transformation, a Lie derivative and a holomorphic
quadratic differential. The holomorphic quadratic differentials represent the
true even deformations of M .

In an analogous manner we proceed with the deformation ρ of the grav-
itino. It will be convenient to consider ρ as a section of T∨|M | ⊗ S∨. We
choose a complex basis s+ for S such that s+ ⊗ s+ = ∂z and let s+ = s3 − is4.
The corresponding dual basis will be denoted s+ and sα respectively. The
vector bundle T∨|M | ⊗ S∨ can be decomposed in S∨ ⊕ S∨ ⊗C S

∨ ⊗C S
∨. In

the basis we use here, the spinor part of an arbitrary section ρ is given by
sαγaβαρaβ . The Equation (2.24) is given in our local coordinates by

ρaβ = δabγ
bµ
βεµνt

ν − εβµ (∂xaq
µ) + Daβ.

It is possible to fix the spinor t such that D is in S∨ ⊗C S
∨ ⊗C S

∨, i.e.

0 = γaβα (ρaβ + εβµ∂xaq
µ)− 2εανt

ν .

Consequently the coefficients of D fulfil

D13 + D24 = 0, D23 −D14 = 0.

The cospinor valued differential form D can be identified with

(D13 + iD14) dz ⊗ s+.

The condition, for D to be a holomorphic section of S∨ ⊗C S
∨ ⊗C S

∨ is given
again by the Cauchy–Riemann equations

0 = ∂x1D13 − ∂x2D14 =
1

2
(∂x1 (ρ13 − ρ24) + ∂x2 (ρ14 + ρ23)) + ∂2

x1q4 + ∂2
x2q4,

0 = ∂x2D13 + ∂x1D14 =
1

2
(∂x2 (ρ13 − ρ24)− ∂x1 (ρ14 + ρ23))− ∂2

x1q3 − ∂2
x2q3.
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We can thus decompose the infinitesimal deformations of the gravitino in
an infinitesimal super Weyl transformation, an infinitesimal super symmetry
and a holomorphic section of S∨ ⊗C S

∨ ⊗C S
∨. �

Similar statements for trivial families can be found in [4, 17, 21]. However
the version given here is more general, as it allows for certain non-trivial
families. Furthermore the proof given here shows directly which deformations
of metric and gravitino correspond to infinitesimal deformations of the given
super Riemann surface.

The complex dimension of the infinitesimal deformation space can be
calculated by the theorem of Riemann–Roch in the case of B = R0|0. The
dimension was found to be 3p− 3|2p− 2 for genus p ≥ 2.

3. The action functional

We now turn to the action functional (∗). In this section we assume that M
is a fiberwise compact family of super Riemann surfaces with a compatible
super metric m. Let N be an arbitrary (super) manifold with Riemannian
metric n and Levi-Civita covariant derivative ∇TN . For details on Levi-
Civita covariant derivatives on super manifolds see [10]. Consider a morphism
Φ: M → N . The action

(3.1) A(M,Φ) =
1

2

∫
M
‖ dΦ|D ‖

2
m∨|D∨⊗Φ∗n[dvolm]

might be seen as a generalization of the harmonic action functional to super
Riemann surfaces. Remark that in contrast to the harmonic action functional
the tangent map dΦ is restricted to the subbundle D in TM . Given U(1)-
frames FA the action can be written as

(3.2) A(M,Φ) =
1

2

∫
M
εαβ〈FαΦ, FβΦ〉Φ∗n[F 1F 2F 3F 4].

The action (3.1) can be found in different forms in the literature, see in
particular [7, 9]. In [9] one can find an explicit proof for the G-invariance
of (3.2). Thus the action functional does not depend on the metric m, but
rather only on the super Riemann surface structure, i.e. the G-structure.

Proposition 3.3. The Euler–Lagrange equation of (3.1) for Φ is

(3.4) 0 = ∆DΦ = εαβ∇FαFβΦ + εαβ (divFα)FβΦ.
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We will call the differential operator ∆D, defined here, the D-Laplace opera-
tor.

Proof. Let Φt : M × R→ N be a perturbation of Φ0 = Φ. One can expand
Φt in t around 0 and obtains

Φt = Φ0 + t∂αΦt|t=0 +O(t2).

Let us denote ∂tΦt|t=0 = Ξ ∈ Γ(Φ∗TN) and expand A in t around 0:

d

dt

∣∣∣∣
t=0

A(Φt, FA)

=
1

2

d

dt

∣∣∣∣
t=0

∫
M
εαβ〈FαΦt, FβΦt〉[F 1F 2F 3F 4]

=
1

2

∫
M
∂tε

αβ〈FαΦt, FβΦt〉[F 1F 2F 3F 4]

∣∣∣∣
t=0

=

∫
M
εαβ〈∇Φ∗tTN

∂t
FαΦt, FβΦt〉[F 1F 2F 3F 4]

∣∣∣∣
t=0

=

∫
M
εαβ〈∇Φ∗tTN

Fα
∂tΦt, FβΦt〉[F 1F 2F 3F 4]

∣∣∣∣
t=0

=

∫
M
εαβ〈∇Φ∗TN

Fα Ξ, FβΦ〉[F 1F 2F 3F 4]

= −
∫
M
εαβ

(
〈Ξ,∇Φ∗TN

Fα FβΦ〉[F 1F 2F 3F 4]− 〈Ξ, FβΦ〉LFα [F 1F 2F 3F 4]
)

With the definition of divergence

(divFα) [F 1F 2F 3F 4] = LFα [F 1F 2F 3F 4],

the result follows. Of course the Euler–Lagrange Equation (3.4) isG-invariant
like the action (3.1). The D-Laplace, however, is only U(1)-invariant. �

We now turn to the question how the action (3.1) can be represented on
an underlying even manifold i : |M | →M .

Definition 3.5. Let Φ: M → N be a morphism and i : |M | →M be an
underlying even manifold. We call the fields

ϕ : |M | → N ψ : |M | → S∨ ⊗ ϕ∗TN F : |M | → ϕ∗TN

ϕ = Φ ◦ i ψ = sα ⊗ i∗FαΦ F =
1

2
i∗∆DΦ



i
i

“2-Jost” — 2018/2/9 — 16:53 — page 1182 — #22 i
i

i
i

i
i

1182 J. Jost, E. Keßler, and J. Tolksdorf

component fields of Φ. Recall that sα is the dual basis to the basis sα = i∗Fα
of the spinor bundle S = i∗D on |M |.

Remark 3.6. Suppose that XA = (xa, ηα) are Wess–Zumino coordinates
for the Wess–Zumino frame FA. Let furthermore Y B be local coordinates
on N . The map Φ: M → N is then given by the functions

Φ#Y B = fB0 + ηµfBµ + η2η1fB21

It holds that fB0 = ϕ#Y B because i#ηµ = 0. By the properties of Wess–
Zumino coordinates we have that i∗Fα = i∗∂ηα and thus fBµ = ψµY

B. Here ψµ
is the coefficient of ψ in the basis sµ and consequently a derivation on ON
with values in OM . If the target manifold N = Rp is Euclidean space one
can show that i∗∆D = 2i∗∂η1∂η2 . Consequently the map Φ can be written
schematically as

Φ = ϕ+ ηµψµ + η2η1F.

Theorem 3.7. Let M be a fiberwise compact family of super Riemann
surfaces and i : |M | →M an underlying even manifold. We denote by g,
χ and gS respectively the metric, gravitino and spinor metric on |M | con-
structed in Section 2 for a given U(1)-structure on M . Let Φ: M → N be
a morphism to a Riemannian super manifold (N,n) and ϕ, ψ and F its
component fields, as introduced in Definition 3.5. It holds

A(M,Φ) = A(ϕ, g, ψ, χ, F )(3.8)

=

∫
|M |

(
‖ dϕ‖2g∨⊗ϕ∗n + 〈ψ,D/ ψ〉g∨S⊗ϕ∗n − 〈F, F 〉ϕ∗n

+ 2〈χaγbγa∂xbϕ,ψ〉g∨S⊗ϕ∗n

+
1

2
〈χa, γbγaχb〉gS〈ψ,ψ〉g∨S⊗ϕ∗n

+
1

6
εαβεγδ〈Rϕ∗TN (ψα, ψγ)ψδ, ψβ〉ϕ∗n

)
dvolg

The idea for the proof of Theorem 3.7 is Proposition 1.17. One uses
crucially that integration in the odd directions is locally a derivation. In
Wess–Zumino coordinates (xa, ηα) for FA a local expression for the action is
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given by

A(M,Φ) =
1

2

∫
M
εαβ〈FαΦ, FβΦ〉Φ∗n(BerF )−1[dx1 dx2 dη1 dη2]

=
1

2

∫
|M |

i∗∂η1∂η2

(
εαβ〈FαΦ, FβΦ〉Φ∗n(BerF )−1

)
dx1 dx2

=
1

4

∫
|M |

i∗εµνFµFν

(
εαβ〈FαΦ, FβΦ〉Φ∗n(BerF )−1

)
dx1 dx2.

The expansion of the last expression is given in terms of component fields
of Φ (compare Definition 3.5) and commutators of Fα and derivatives of
BerF . By Lemma 2.16 the coordinate expansion of Fα, its commutators and
the Berezinian are determined by g and χ. The full calculation can be found
in [15].

It is now clear how the different symmetries of the action functional (∗)
arise. Different U(1)-reductions of the given G-structure on M induce met-
rics and gravitinos on |M | that differ only by Weyl and super Weyl trans-
formations. The action functional (3.1) is G-invariant and thus in turn the
action functional (3.8) is conformally and super Weyl invariant. The action
functional (3.1) is formulated without any reference to an embedding of an
underlying even manifold, but Theorem 3.7 is. The independence of (3.1) of
the embedding i translates into super symmetry of (3.8).

Proposition 3.9. The Euler–Lagrange equations of the action functional
(3.8) are given by the components of the Euler–Lagrange equation of (3.1):

0 = i∗∆DΦ 0 = sα ⊗ i∗∇Fα∆DΦ 0 = i∗∆D∆DΦ(3.10)

Sketch of proof. Schematically the infinitesimal variation Ξ of Φ can be de-
composed

Ξ = δϕ+ ηµδψµ + η2η1δF.

The infinitesimal variation of the action is then given by

δA = −
∫
M
〈Ξ,∆DΦ〉[dvolm].

Integration over the odd variables selects the coefficients of highest degree
in η, so that

δA = −
∫
|M |

1

2
〈δϕ, i∗∆D∆DΦ〉+ 〈δψ, sα ⊗ i∗∇FαΦ〉+ 〈δF, i∗∆DΦ〉 dvolg.

�
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By Theorem 2.3 different super Riemann surfaces are given by different
G-structures. The functional (3.1) is G-invariant but different G-structures
lead to different values of the functional. Consequently the action func-
tional (3.1) is a functional on the moduli space of super Riemann surfaces
for fixed Φ: M → N . The conjectured correspondence (2.18) shows that,
in principle, the component action (3.8) should be defined on the moduli
space of super Riemann surfaces. As explained earlier the difficulty lies in
the correct definition of the right-hand side of (2.18). However, infinitesimal
properties of the moduli space of super Riemann surfaces can be studied
from (3.8) already.

Proposition 3.11. Let M be a super Riemann surface and i : |M | →M
an underlying even manifold. By the construction in Section 2, the geometry
of M is determined by a metric g and a gravitino χ on |M |. Define the
energy-momentum tensor T of A(ϕ, g, ψ, χ, F ) by

(3.12) δgA(ϕ, g, ψ, χ, F ) =

∫
|M |

δg · T dvolg,

and the super current J by

(3.13) δχA(ϕ, g, ψ, χ, F ) =

∫
|M |

δχ · J dvolg.

Geometrically, the integrals (3.12) and (3.13) can be viewed as cotangent
vectors of the moduli space of super Riemann surfaces at M .

Let now ϕ, ψ and F fulfil the Euler–Lagrange Equations (3.10) and χ = 0.
The energy-momentum tensor T is traceless by the conformal symmetry and
the Noether current associated to the diffeomorphism invariance. The super
current J is a section of S∨ ⊗C S

∨ ⊗C S
∨ by the super Weyl symmetry and

the Noether current to super symmetry.
Furthermore, as the Noether currents are conserved quantities, they are

divergence free. Consequently, the energy-momentum tensor T is a holomor-
phic quadratic differential and the super current J is a holomorphic section
of S∨ ⊗C S

∨ ⊗C S
∨.

For a similar argument in the case of purely commuting variables see [14].
Similar to the case of Riemann surfaces and the harmonic action func-

tional we hope that the action functional (3.1) may be helpful to derive
further results about the moduli space of super Riemann surfaces.
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Summary

We have established the relation between the super symmetric action func-
tional (∗) and super Riemann surfaces. That is, we have shown that for a
particular underlying even manifold |M | of the super Riemann surfaceM the
integral A(M,Φ) reduces to the action functional A(ϕ, g, ψ, χ, F ) on |M |.

The first step was to define the underlying family of even manifolds
|M | → B of a family of super manifolds M → B. The underlying even man-
ifolds is in between the super manifold M and the completely reduced space
of M , as it still involves odd functions from the base B.

With the help of the underlying even manifold |M | we were able to show
that the structure of a super Riemann surfaceM is completely determined by
an underlying even manifold |M | together with a metric g, a spinor bundle S
and a spinor valued differential form χ, called gravitino. The redundancy in
the choice of g, S and χ could be shown to coincide with the conformal,
super Weyl and super symmetry invariance of the action A(ϕ, g, ψ, χ, F ).
Infinitesimal deformations of the super Riemann surface can be expressed
via infinitesimal deformations of g and χ, reproducing the classical result
that even infinitesimal deformations of M are given by holomorphic sec-
tions of T∨M ⊗ T∨M , whereas odd infinitesimal deformations are given by
holomorphic sections of (S∨)⊗3.

As an outlook, the similarities of A(M,Φ) with the functional of har-
monic maps on Riemann surfaces, together with the results presented in
this paper, give rise to the hope that the action functional A(M,Φ) and
its critical points may be useful to study the moduli space of super Rie-
mann surfaces. On one hand, the definition of super Riemann surfaces and
their moduli involve the integrability conditions (2.4). On the other hand,
however, the characterization of super Riemann surfaces in terms of metrics
and gravitinos is not obstructed. Due to Theorem 3.7, the action functional
A(ϕ, g, ψ, χ, F ) in terms of metric and gravitino is well defined on the moduli
space of super Riemann surfaces.

Acknowledgement

We wish to thank Ron Donagi for helpful comments on earlier versions of
this paper and for reminding us that smooth functions can not in general
be extended. We are grateful to the anonymous referee for constructive crit-
icism and, in particular, for pointing us at the importance of an invariant
definition of the Berezin integral. The second author wants to thank the
International Max Planck Research School Mathematics in the Sciences for



i
i

“2-Jost” — 2018/2/9 — 16:53 — page 1186 — #26 i
i

i
i

i
i

1186 J. Jost, E. Keßler, and J. Tolksdorf

financial support. The research leading to these results has received funding
from the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007–2013) / ERC grant agreement nº 267087.

References

[1] L. Brink, P. Di Vecchia, and P. Howe, A locally supersymmetric and
reparametrization invariant action for the spinning string, Physics Let-
ters B65 (1976), no. 5, 471–474.

[2] U. Bruzzo and R. Cianci, Structure of supermanifolds and supersym-
metry transformations, Communications in Mathematical Physics 95
(1984), no. 4, 393–400.

[3] C. Carmeli, L. Caston, and R. Fioresi, Mathematical foundations of su-
persymmetry, Zürich: European Mathematical Society, 2011.

[4] L. Crane and J. M. Rabin, Super Riemann surfaces: Uniformization
and Teichmüller theory, Communications in Mathematical Physics 113
(1988), no. 4, 601–623.

[5] P. Deligne and J. W. Morgan, Notes on supersymmetry, (following
Joseph Bernstein), in: Quantum fields and strings: A Course for Math-
ematicians, Ed. by Pierre Deligne et al., Providence: American Mathe-
matical Society, 1999, pp. 41–98.

[6] S. Deser and B. Zumino, A complete action for the spinning string,
Physics Letters B65 (1976), no. 4, 369–373.

[7] E. D’Hoker and D. H. Phong, The geometry of string perturbation theory,
Reviews of Modern Physics 60 (1988), no. 4, 917–1065.

[8] R. Donagi and E. Witten, Supermoduli space is not projected, in: String-
Math 2012. Ed. by Ron Donagi et al., Proceedings of Symposia in
Pure Mathematics 90, Providence: American Mathematical Society, pp.
19–71.

[9] S. B. Giddings and P. Nelson, The geometry of super Riemann surfaces,
Communications in Mathematical Physics 116 (1988), no. 4, 607–634.

[10] O. Goertsches, Riemannian supergeometry, Mathematische Zeitschrift
260 (2008), no. 3, 557–593.



i
i

“2-Jost” — 2018/2/9 — 16:53 — page 1187 — #27 i
i

i
i

i
i

Super Riemann surfaces, metrics and gravitinos 1187

[11] D. Hernández Ruipérez and J. Muñoz Masqué, Construction intrin-
sèque du faisceau de Berezin d’une variété graduée, Comptes rendus de
l’Académie des sciences 301 (1985), no. 1, 915–918.

[12] P. Howe, Super Weyl transformations in two dimensions, Journal of
Physics A: Mathematical and General 12 (1979), no. 3, 393–402.

[13] J. Jost, Geometry and Physics, Berlin: Springer, 2009.

[14] J. Jost, E. Keßler, J. Tolksdorf, R. Wu, and M. Zhu, Symmetries and
conservation laws of a nonlinear sigma model with gravitino, Journal of
Geometry and Physics, in press, (2018)

[15] E. Keßler, The super conformal action functional on super Riemann
surfaces, PhD thesis. Universität Leipzig, 2017.

[16] B. Kostant, Graded manifolds, graded Lie theory, and prequantization,
in: Differential Geometrical Methods in Mathematical Physics, Ed. by
Konrad Bleuler and Axel Reetz, Lecture Notes in Mathematics 570,
Berlin: Springer, 1977, pp. 177–306.

[17] C. LeBrun and M. Rothstein, Moduli of super Riemann surfaces, Com-
munications in Mathematical Physics 117 (1988), no. 1, 159–176.

[18] D. A. Leites, Introduction to the theory of supermanifolds, Russian
Mathematical Surveys 35 (1980), no. 1, 1–64.

[19] Yuri I. Manin, Gauge field theory and complex geometry, Grundlehren
der mathematischen Wissenschaften 289, Berlin, Heidelberg: Springer,
1988.

[20] M. Rothstein, Integration on noncompact supermanifolds, Transactions
of the American Mathematical Society 299 (1987), no. 1, 387–396.

[21] C. Sachse, Global analytic approach to super Teichmüller spaces, PhD
thesis, Universität Leipzig, 2007. arXiv:0902.3289 [math.AG].

Max-Planck-Institut für Mathematik in den Naturwissenschaften
Inselstraße 22, 04103 Leipzig, Germany
E-mail address: jjost@mis.mpg.de
E-mail address: kessler@mis.mpg.de
E-mail address: tolksdor@mis.mpg.de



i
i

“2-Jost” — 2018/2/9 — 16:53 — page 1188 — #28 i
i

i
i

i
i


	Introduction
	Super geometry
	Super Riemann surfaces
	The action functional
	Summary
	Acknowledgement
	References

